ipv6: explicitly initialize udp6_addr in udp_sock_create6()
[linux-2.6-microblaze.git] / drivers / md / dm-verity-target.c
1 /*
2  * Copyright (C) 2012 Red Hat, Inc.
3  *
4  * Author: Mikulas Patocka <mpatocka@redhat.com>
5  *
6  * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
7  *
8  * This file is released under the GPLv2.
9  *
10  * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
11  * default prefetch value. Data are read in "prefetch_cluster" chunks from the
12  * hash device. Setting this greatly improves performance when data and hash
13  * are on the same disk on different partitions on devices with poor random
14  * access behavior.
15  */
16
17 #include "dm-verity.h"
18 #include "dm-verity-fec.h"
19
20 #include <linux/module.h>
21 #include <linux/reboot.h>
22
23 #define DM_MSG_PREFIX                   "verity"
24
25 #define DM_VERITY_ENV_LENGTH            42
26 #define DM_VERITY_ENV_VAR_NAME          "DM_VERITY_ERR_BLOCK_NR"
27
28 #define DM_VERITY_DEFAULT_PREFETCH_SIZE 262144
29
30 #define DM_VERITY_MAX_CORRUPTED_ERRS    100
31
32 #define DM_VERITY_OPT_LOGGING           "ignore_corruption"
33 #define DM_VERITY_OPT_RESTART           "restart_on_corruption"
34 #define DM_VERITY_OPT_IGN_ZEROES        "ignore_zero_blocks"
35 #define DM_VERITY_OPT_AT_MOST_ONCE      "check_at_most_once"
36
37 #define DM_VERITY_OPTS_MAX              (2 + DM_VERITY_OPTS_FEC)
38
39 static unsigned dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
40
41 module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, S_IRUGO | S_IWUSR);
42
43 struct dm_verity_prefetch_work {
44         struct work_struct work;
45         struct dm_verity *v;
46         sector_t block;
47         unsigned n_blocks;
48 };
49
50 /*
51  * Auxiliary structure appended to each dm-bufio buffer. If the value
52  * hash_verified is nonzero, hash of the block has been verified.
53  *
54  * The variable hash_verified is set to 0 when allocating the buffer, then
55  * it can be changed to 1 and it is never reset to 0 again.
56  *
57  * There is no lock around this value, a race condition can at worst cause
58  * that multiple processes verify the hash of the same buffer simultaneously
59  * and write 1 to hash_verified simultaneously.
60  * This condition is harmless, so we don't need locking.
61  */
62 struct buffer_aux {
63         int hash_verified;
64 };
65
66 /*
67  * Initialize struct buffer_aux for a freshly created buffer.
68  */
69 static void dm_bufio_alloc_callback(struct dm_buffer *buf)
70 {
71         struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
72
73         aux->hash_verified = 0;
74 }
75
76 /*
77  * Translate input sector number to the sector number on the target device.
78  */
79 static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
80 {
81         return v->data_start + dm_target_offset(v->ti, bi_sector);
82 }
83
84 /*
85  * Return hash position of a specified block at a specified tree level
86  * (0 is the lowest level).
87  * The lowest "hash_per_block_bits"-bits of the result denote hash position
88  * inside a hash block. The remaining bits denote location of the hash block.
89  */
90 static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
91                                          int level)
92 {
93         return block >> (level * v->hash_per_block_bits);
94 }
95
96 static int verity_hash_update(struct dm_verity *v, struct ahash_request *req,
97                                 const u8 *data, size_t len,
98                                 struct crypto_wait *wait)
99 {
100         struct scatterlist sg;
101
102         if (likely(!is_vmalloc_addr(data))) {
103                 sg_init_one(&sg, data, len);
104                 ahash_request_set_crypt(req, &sg, NULL, len);
105                 return crypto_wait_req(crypto_ahash_update(req), wait);
106         } else {
107                 do {
108                         int r;
109                         size_t this_step = min_t(size_t, len, PAGE_SIZE - offset_in_page(data));
110                         flush_kernel_vmap_range((void *)data, this_step);
111                         sg_init_table(&sg, 1);
112                         sg_set_page(&sg, vmalloc_to_page(data), this_step, offset_in_page(data));
113                         ahash_request_set_crypt(req, &sg, NULL, this_step);
114                         r = crypto_wait_req(crypto_ahash_update(req), wait);
115                         if (unlikely(r))
116                                 return r;
117                         data += this_step;
118                         len -= this_step;
119                 } while (len);
120                 return 0;
121         }
122 }
123
124 /*
125  * Wrapper for crypto_ahash_init, which handles verity salting.
126  */
127 static int verity_hash_init(struct dm_verity *v, struct ahash_request *req,
128                                 struct crypto_wait *wait)
129 {
130         int r;
131
132         ahash_request_set_tfm(req, v->tfm);
133         ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP |
134                                         CRYPTO_TFM_REQ_MAY_BACKLOG,
135                                         crypto_req_done, (void *)wait);
136         crypto_init_wait(wait);
137
138         r = crypto_wait_req(crypto_ahash_init(req), wait);
139
140         if (unlikely(r < 0)) {
141                 DMERR("crypto_ahash_init failed: %d", r);
142                 return r;
143         }
144
145         if (likely(v->salt_size && (v->version >= 1)))
146                 r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
147
148         return r;
149 }
150
151 static int verity_hash_final(struct dm_verity *v, struct ahash_request *req,
152                              u8 *digest, struct crypto_wait *wait)
153 {
154         int r;
155
156         if (unlikely(v->salt_size && (!v->version))) {
157                 r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
158
159                 if (r < 0) {
160                         DMERR("verity_hash_final failed updating salt: %d", r);
161                         goto out;
162                 }
163         }
164
165         ahash_request_set_crypt(req, NULL, digest, 0);
166         r = crypto_wait_req(crypto_ahash_final(req), wait);
167 out:
168         return r;
169 }
170
171 int verity_hash(struct dm_verity *v, struct ahash_request *req,
172                 const u8 *data, size_t len, u8 *digest)
173 {
174         int r;
175         struct crypto_wait wait;
176
177         r = verity_hash_init(v, req, &wait);
178         if (unlikely(r < 0))
179                 goto out;
180
181         r = verity_hash_update(v, req, data, len, &wait);
182         if (unlikely(r < 0))
183                 goto out;
184
185         r = verity_hash_final(v, req, digest, &wait);
186
187 out:
188         return r;
189 }
190
191 static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
192                                  sector_t *hash_block, unsigned *offset)
193 {
194         sector_t position = verity_position_at_level(v, block, level);
195         unsigned idx;
196
197         *hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
198
199         if (!offset)
200                 return;
201
202         idx = position & ((1 << v->hash_per_block_bits) - 1);
203         if (!v->version)
204                 *offset = idx * v->digest_size;
205         else
206                 *offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
207 }
208
209 /*
210  * Handle verification errors.
211  */
212 static int verity_handle_err(struct dm_verity *v, enum verity_block_type type,
213                              unsigned long long block)
214 {
215         char verity_env[DM_VERITY_ENV_LENGTH];
216         char *envp[] = { verity_env, NULL };
217         const char *type_str = "";
218         struct mapped_device *md = dm_table_get_md(v->ti->table);
219
220         /* Corruption should be visible in device status in all modes */
221         v->hash_failed = 1;
222
223         if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS)
224                 goto out;
225
226         v->corrupted_errs++;
227
228         switch (type) {
229         case DM_VERITY_BLOCK_TYPE_DATA:
230                 type_str = "data";
231                 break;
232         case DM_VERITY_BLOCK_TYPE_METADATA:
233                 type_str = "metadata";
234                 break;
235         default:
236                 BUG();
237         }
238
239         DMERR("%s: %s block %llu is corrupted", v->data_dev->name, type_str,
240                 block);
241
242         if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS)
243                 DMERR("%s: reached maximum errors", v->data_dev->name);
244
245         snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu",
246                 DM_VERITY_ENV_VAR_NAME, type, block);
247
248         kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp);
249
250 out:
251         if (v->mode == DM_VERITY_MODE_LOGGING)
252                 return 0;
253
254         if (v->mode == DM_VERITY_MODE_RESTART)
255                 kernel_restart("dm-verity device corrupted");
256
257         return 1;
258 }
259
260 /*
261  * Verify hash of a metadata block pertaining to the specified data block
262  * ("block" argument) at a specified level ("level" argument).
263  *
264  * On successful return, verity_io_want_digest(v, io) contains the hash value
265  * for a lower tree level or for the data block (if we're at the lowest level).
266  *
267  * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
268  * If "skip_unverified" is false, unverified buffer is hashed and verified
269  * against current value of verity_io_want_digest(v, io).
270  */
271 static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
272                                sector_t block, int level, bool skip_unverified,
273                                u8 *want_digest)
274 {
275         struct dm_buffer *buf;
276         struct buffer_aux *aux;
277         u8 *data;
278         int r;
279         sector_t hash_block;
280         unsigned offset;
281
282         verity_hash_at_level(v, block, level, &hash_block, &offset);
283
284         data = dm_bufio_read(v->bufio, hash_block, &buf);
285         if (IS_ERR(data))
286                 return PTR_ERR(data);
287
288         aux = dm_bufio_get_aux_data(buf);
289
290         if (!aux->hash_verified) {
291                 if (skip_unverified) {
292                         r = 1;
293                         goto release_ret_r;
294                 }
295
296                 r = verity_hash(v, verity_io_hash_req(v, io),
297                                 data, 1 << v->hash_dev_block_bits,
298                                 verity_io_real_digest(v, io));
299                 if (unlikely(r < 0))
300                         goto release_ret_r;
301
302                 if (likely(memcmp(verity_io_real_digest(v, io), want_digest,
303                                   v->digest_size) == 0))
304                         aux->hash_verified = 1;
305                 else if (verity_fec_decode(v, io,
306                                            DM_VERITY_BLOCK_TYPE_METADATA,
307                                            hash_block, data, NULL) == 0)
308                         aux->hash_verified = 1;
309                 else if (verity_handle_err(v,
310                                            DM_VERITY_BLOCK_TYPE_METADATA,
311                                            hash_block)) {
312                         r = -EIO;
313                         goto release_ret_r;
314                 }
315         }
316
317         data += offset;
318         memcpy(want_digest, data, v->digest_size);
319         r = 0;
320
321 release_ret_r:
322         dm_bufio_release(buf);
323         return r;
324 }
325
326 /*
327  * Find a hash for a given block, write it to digest and verify the integrity
328  * of the hash tree if necessary.
329  */
330 int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
331                           sector_t block, u8 *digest, bool *is_zero)
332 {
333         int r = 0, i;
334
335         if (likely(v->levels)) {
336                 /*
337                  * First, we try to get the requested hash for
338                  * the current block. If the hash block itself is
339                  * verified, zero is returned. If it isn't, this
340                  * function returns 1 and we fall back to whole
341                  * chain verification.
342                  */
343                 r = verity_verify_level(v, io, block, 0, true, digest);
344                 if (likely(r <= 0))
345                         goto out;
346         }
347
348         memcpy(digest, v->root_digest, v->digest_size);
349
350         for (i = v->levels - 1; i >= 0; i--) {
351                 r = verity_verify_level(v, io, block, i, false, digest);
352                 if (unlikely(r))
353                         goto out;
354         }
355 out:
356         if (!r && v->zero_digest)
357                 *is_zero = !memcmp(v->zero_digest, digest, v->digest_size);
358         else
359                 *is_zero = false;
360
361         return r;
362 }
363
364 /*
365  * Calculates the digest for the given bio
366  */
367 static int verity_for_io_block(struct dm_verity *v, struct dm_verity_io *io,
368                                struct bvec_iter *iter, struct crypto_wait *wait)
369 {
370         unsigned int todo = 1 << v->data_dev_block_bits;
371         struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
372         struct scatterlist sg;
373         struct ahash_request *req = verity_io_hash_req(v, io);
374
375         do {
376                 int r;
377                 unsigned int len;
378                 struct bio_vec bv = bio_iter_iovec(bio, *iter);
379
380                 sg_init_table(&sg, 1);
381
382                 len = bv.bv_len;
383
384                 if (likely(len >= todo))
385                         len = todo;
386                 /*
387                  * Operating on a single page at a time looks suboptimal
388                  * until you consider the typical block size is 4,096B.
389                  * Going through this loops twice should be very rare.
390                  */
391                 sg_set_page(&sg, bv.bv_page, len, bv.bv_offset);
392                 ahash_request_set_crypt(req, &sg, NULL, len);
393                 r = crypto_wait_req(crypto_ahash_update(req), wait);
394
395                 if (unlikely(r < 0)) {
396                         DMERR("verity_for_io_block crypto op failed: %d", r);
397                         return r;
398                 }
399
400                 bio_advance_iter(bio, iter, len);
401                 todo -= len;
402         } while (todo);
403
404         return 0;
405 }
406
407 /*
408  * Calls function process for 1 << v->data_dev_block_bits bytes in the bio_vec
409  * starting from iter.
410  */
411 int verity_for_bv_block(struct dm_verity *v, struct dm_verity_io *io,
412                         struct bvec_iter *iter,
413                         int (*process)(struct dm_verity *v,
414                                        struct dm_verity_io *io, u8 *data,
415                                        size_t len))
416 {
417         unsigned todo = 1 << v->data_dev_block_bits;
418         struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
419
420         do {
421                 int r;
422                 u8 *page;
423                 unsigned len;
424                 struct bio_vec bv = bio_iter_iovec(bio, *iter);
425
426                 page = kmap_atomic(bv.bv_page);
427                 len = bv.bv_len;
428
429                 if (likely(len >= todo))
430                         len = todo;
431
432                 r = process(v, io, page + bv.bv_offset, len);
433                 kunmap_atomic(page);
434
435                 if (r < 0)
436                         return r;
437
438                 bio_advance_iter(bio, iter, len);
439                 todo -= len;
440         } while (todo);
441
442         return 0;
443 }
444
445 static int verity_bv_zero(struct dm_verity *v, struct dm_verity_io *io,
446                           u8 *data, size_t len)
447 {
448         memset(data, 0, len);
449         return 0;
450 }
451
452 /*
453  * Moves the bio iter one data block forward.
454  */
455 static inline void verity_bv_skip_block(struct dm_verity *v,
456                                         struct dm_verity_io *io,
457                                         struct bvec_iter *iter)
458 {
459         struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
460
461         bio_advance_iter(bio, iter, 1 << v->data_dev_block_bits);
462 }
463
464 /*
465  * Verify one "dm_verity_io" structure.
466  */
467 static int verity_verify_io(struct dm_verity_io *io)
468 {
469         bool is_zero;
470         struct dm_verity *v = io->v;
471         struct bvec_iter start;
472         unsigned b;
473         struct crypto_wait wait;
474
475         for (b = 0; b < io->n_blocks; b++) {
476                 int r;
477                 sector_t cur_block = io->block + b;
478                 struct ahash_request *req = verity_io_hash_req(v, io);
479
480                 if (v->validated_blocks &&
481                     likely(test_bit(cur_block, v->validated_blocks))) {
482                         verity_bv_skip_block(v, io, &io->iter);
483                         continue;
484                 }
485
486                 r = verity_hash_for_block(v, io, cur_block,
487                                           verity_io_want_digest(v, io),
488                                           &is_zero);
489                 if (unlikely(r < 0))
490                         return r;
491
492                 if (is_zero) {
493                         /*
494                          * If we expect a zero block, don't validate, just
495                          * return zeros.
496                          */
497                         r = verity_for_bv_block(v, io, &io->iter,
498                                                 verity_bv_zero);
499                         if (unlikely(r < 0))
500                                 return r;
501
502                         continue;
503                 }
504
505                 r = verity_hash_init(v, req, &wait);
506                 if (unlikely(r < 0))
507                         return r;
508
509                 start = io->iter;
510                 r = verity_for_io_block(v, io, &io->iter, &wait);
511                 if (unlikely(r < 0))
512                         return r;
513
514                 r = verity_hash_final(v, req, verity_io_real_digest(v, io),
515                                         &wait);
516                 if (unlikely(r < 0))
517                         return r;
518
519                 if (likely(memcmp(verity_io_real_digest(v, io),
520                                   verity_io_want_digest(v, io), v->digest_size) == 0)) {
521                         if (v->validated_blocks)
522                                 set_bit(cur_block, v->validated_blocks);
523                         continue;
524                 }
525                 else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA,
526                                            cur_block, NULL, &start) == 0)
527                         continue;
528                 else if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA,
529                                            cur_block))
530                         return -EIO;
531         }
532
533         return 0;
534 }
535
536 /*
537  * End one "io" structure with a given error.
538  */
539 static void verity_finish_io(struct dm_verity_io *io, blk_status_t status)
540 {
541         struct dm_verity *v = io->v;
542         struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
543
544         bio->bi_end_io = io->orig_bi_end_io;
545         bio->bi_status = status;
546
547         verity_fec_finish_io(io);
548
549         bio_endio(bio);
550 }
551
552 static void verity_work(struct work_struct *w)
553 {
554         struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
555
556         verity_finish_io(io, errno_to_blk_status(verity_verify_io(io)));
557 }
558
559 static void verity_end_io(struct bio *bio)
560 {
561         struct dm_verity_io *io = bio->bi_private;
562
563         if (bio->bi_status && !verity_fec_is_enabled(io->v)) {
564                 verity_finish_io(io, bio->bi_status);
565                 return;
566         }
567
568         INIT_WORK(&io->work, verity_work);
569         queue_work(io->v->verify_wq, &io->work);
570 }
571
572 /*
573  * Prefetch buffers for the specified io.
574  * The root buffer is not prefetched, it is assumed that it will be cached
575  * all the time.
576  */
577 static void verity_prefetch_io(struct work_struct *work)
578 {
579         struct dm_verity_prefetch_work *pw =
580                 container_of(work, struct dm_verity_prefetch_work, work);
581         struct dm_verity *v = pw->v;
582         int i;
583
584         for (i = v->levels - 2; i >= 0; i--) {
585                 sector_t hash_block_start;
586                 sector_t hash_block_end;
587                 verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL);
588                 verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL);
589                 if (!i) {
590                         unsigned cluster = READ_ONCE(dm_verity_prefetch_cluster);
591
592                         cluster >>= v->data_dev_block_bits;
593                         if (unlikely(!cluster))
594                                 goto no_prefetch_cluster;
595
596                         if (unlikely(cluster & (cluster - 1)))
597                                 cluster = 1 << __fls(cluster);
598
599                         hash_block_start &= ~(sector_t)(cluster - 1);
600                         hash_block_end |= cluster - 1;
601                         if (unlikely(hash_block_end >= v->hash_blocks))
602                                 hash_block_end = v->hash_blocks - 1;
603                 }
604 no_prefetch_cluster:
605                 dm_bufio_prefetch(v->bufio, hash_block_start,
606                                   hash_block_end - hash_block_start + 1);
607         }
608
609         kfree(pw);
610 }
611
612 static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io)
613 {
614         struct dm_verity_prefetch_work *pw;
615
616         pw = kmalloc(sizeof(struct dm_verity_prefetch_work),
617                 GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
618
619         if (!pw)
620                 return;
621
622         INIT_WORK(&pw->work, verity_prefetch_io);
623         pw->v = v;
624         pw->block = io->block;
625         pw->n_blocks = io->n_blocks;
626         queue_work(v->verify_wq, &pw->work);
627 }
628
629 /*
630  * Bio map function. It allocates dm_verity_io structure and bio vector and
631  * fills them. Then it issues prefetches and the I/O.
632  */
633 static int verity_map(struct dm_target *ti, struct bio *bio)
634 {
635         struct dm_verity *v = ti->private;
636         struct dm_verity_io *io;
637
638         bio_set_dev(bio, v->data_dev->bdev);
639         bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector);
640
641         if (((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
642             ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
643                 DMERR_LIMIT("unaligned io");
644                 return DM_MAPIO_KILL;
645         }
646
647         if (bio_end_sector(bio) >>
648             (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
649                 DMERR_LIMIT("io out of range");
650                 return DM_MAPIO_KILL;
651         }
652
653         if (bio_data_dir(bio) == WRITE)
654                 return DM_MAPIO_KILL;
655
656         io = dm_per_bio_data(bio, ti->per_io_data_size);
657         io->v = v;
658         io->orig_bi_end_io = bio->bi_end_io;
659         io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
660         io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits;
661
662         bio->bi_end_io = verity_end_io;
663         bio->bi_private = io;
664         io->iter = bio->bi_iter;
665
666         verity_fec_init_io(io);
667
668         verity_submit_prefetch(v, io);
669
670         generic_make_request(bio);
671
672         return DM_MAPIO_SUBMITTED;
673 }
674
675 /*
676  * Status: V (valid) or C (corruption found)
677  */
678 static void verity_status(struct dm_target *ti, status_type_t type,
679                           unsigned status_flags, char *result, unsigned maxlen)
680 {
681         struct dm_verity *v = ti->private;
682         unsigned args = 0;
683         unsigned sz = 0;
684         unsigned x;
685
686         switch (type) {
687         case STATUSTYPE_INFO:
688                 DMEMIT("%c", v->hash_failed ? 'C' : 'V');
689                 break;
690         case STATUSTYPE_TABLE:
691                 DMEMIT("%u %s %s %u %u %llu %llu %s ",
692                         v->version,
693                         v->data_dev->name,
694                         v->hash_dev->name,
695                         1 << v->data_dev_block_bits,
696                         1 << v->hash_dev_block_bits,
697                         (unsigned long long)v->data_blocks,
698                         (unsigned long long)v->hash_start,
699                         v->alg_name
700                         );
701                 for (x = 0; x < v->digest_size; x++)
702                         DMEMIT("%02x", v->root_digest[x]);
703                 DMEMIT(" ");
704                 if (!v->salt_size)
705                         DMEMIT("-");
706                 else
707                         for (x = 0; x < v->salt_size; x++)
708                                 DMEMIT("%02x", v->salt[x]);
709                 if (v->mode != DM_VERITY_MODE_EIO)
710                         args++;
711                 if (verity_fec_is_enabled(v))
712                         args += DM_VERITY_OPTS_FEC;
713                 if (v->zero_digest)
714                         args++;
715                 if (v->validated_blocks)
716                         args++;
717                 if (!args)
718                         return;
719                 DMEMIT(" %u", args);
720                 if (v->mode != DM_VERITY_MODE_EIO) {
721                         DMEMIT(" ");
722                         switch (v->mode) {
723                         case DM_VERITY_MODE_LOGGING:
724                                 DMEMIT(DM_VERITY_OPT_LOGGING);
725                                 break;
726                         case DM_VERITY_MODE_RESTART:
727                                 DMEMIT(DM_VERITY_OPT_RESTART);
728                                 break;
729                         default:
730                                 BUG();
731                         }
732                 }
733                 if (v->zero_digest)
734                         DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES);
735                 if (v->validated_blocks)
736                         DMEMIT(" " DM_VERITY_OPT_AT_MOST_ONCE);
737                 sz = verity_fec_status_table(v, sz, result, maxlen);
738                 break;
739         }
740 }
741
742 static int verity_prepare_ioctl(struct dm_target *ti, struct block_device **bdev)
743 {
744         struct dm_verity *v = ti->private;
745
746         *bdev = v->data_dev->bdev;
747
748         if (v->data_start ||
749             ti->len != i_size_read(v->data_dev->bdev->bd_inode) >> SECTOR_SHIFT)
750                 return 1;
751         return 0;
752 }
753
754 static int verity_iterate_devices(struct dm_target *ti,
755                                   iterate_devices_callout_fn fn, void *data)
756 {
757         struct dm_verity *v = ti->private;
758
759         return fn(ti, v->data_dev, v->data_start, ti->len, data);
760 }
761
762 static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
763 {
764         struct dm_verity *v = ti->private;
765
766         if (limits->logical_block_size < 1 << v->data_dev_block_bits)
767                 limits->logical_block_size = 1 << v->data_dev_block_bits;
768
769         if (limits->physical_block_size < 1 << v->data_dev_block_bits)
770                 limits->physical_block_size = 1 << v->data_dev_block_bits;
771
772         blk_limits_io_min(limits, limits->logical_block_size);
773 }
774
775 static void verity_dtr(struct dm_target *ti)
776 {
777         struct dm_verity *v = ti->private;
778
779         if (v->verify_wq)
780                 destroy_workqueue(v->verify_wq);
781
782         if (v->bufio)
783                 dm_bufio_client_destroy(v->bufio);
784
785         kvfree(v->validated_blocks);
786         kfree(v->salt);
787         kfree(v->root_digest);
788         kfree(v->zero_digest);
789
790         if (v->tfm)
791                 crypto_free_ahash(v->tfm);
792
793         kfree(v->alg_name);
794
795         if (v->hash_dev)
796                 dm_put_device(ti, v->hash_dev);
797
798         if (v->data_dev)
799                 dm_put_device(ti, v->data_dev);
800
801         verity_fec_dtr(v);
802
803         kfree(v);
804 }
805
806 static int verity_alloc_most_once(struct dm_verity *v)
807 {
808         struct dm_target *ti = v->ti;
809
810         /* the bitset can only handle INT_MAX blocks */
811         if (v->data_blocks > INT_MAX) {
812                 ti->error = "device too large to use check_at_most_once";
813                 return -E2BIG;
814         }
815
816         v->validated_blocks = kvcalloc(BITS_TO_LONGS(v->data_blocks),
817                                        sizeof(unsigned long),
818                                        GFP_KERNEL);
819         if (!v->validated_blocks) {
820                 ti->error = "failed to allocate bitset for check_at_most_once";
821                 return -ENOMEM;
822         }
823
824         return 0;
825 }
826
827 static int verity_alloc_zero_digest(struct dm_verity *v)
828 {
829         int r = -ENOMEM;
830         struct ahash_request *req;
831         u8 *zero_data;
832
833         v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL);
834
835         if (!v->zero_digest)
836                 return r;
837
838         req = kmalloc(v->ahash_reqsize, GFP_KERNEL);
839
840         if (!req)
841                 return r; /* verity_dtr will free zero_digest */
842
843         zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL);
844
845         if (!zero_data)
846                 goto out;
847
848         r = verity_hash(v, req, zero_data, 1 << v->data_dev_block_bits,
849                         v->zero_digest);
850
851 out:
852         kfree(req);
853         kfree(zero_data);
854
855         return r;
856 }
857
858 static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v)
859 {
860         int r;
861         unsigned argc;
862         struct dm_target *ti = v->ti;
863         const char *arg_name;
864
865         static const struct dm_arg _args[] = {
866                 {0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"},
867         };
868
869         r = dm_read_arg_group(_args, as, &argc, &ti->error);
870         if (r)
871                 return -EINVAL;
872
873         if (!argc)
874                 return 0;
875
876         do {
877                 arg_name = dm_shift_arg(as);
878                 argc--;
879
880                 if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING)) {
881                         v->mode = DM_VERITY_MODE_LOGGING;
882                         continue;
883
884                 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART)) {
885                         v->mode = DM_VERITY_MODE_RESTART;
886                         continue;
887
888                 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) {
889                         r = verity_alloc_zero_digest(v);
890                         if (r) {
891                                 ti->error = "Cannot allocate zero digest";
892                                 return r;
893                         }
894                         continue;
895
896                 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_AT_MOST_ONCE)) {
897                         r = verity_alloc_most_once(v);
898                         if (r)
899                                 return r;
900                         continue;
901
902                 } else if (verity_is_fec_opt_arg(arg_name)) {
903                         r = verity_fec_parse_opt_args(as, v, &argc, arg_name);
904                         if (r)
905                                 return r;
906                         continue;
907                 }
908
909                 ti->error = "Unrecognized verity feature request";
910                 return -EINVAL;
911         } while (argc && !r);
912
913         return r;
914 }
915
916 /*
917  * Target parameters:
918  *      <version>       The current format is version 1.
919  *                      Vsn 0 is compatible with original Chromium OS releases.
920  *      <data device>
921  *      <hash device>
922  *      <data block size>
923  *      <hash block size>
924  *      <the number of data blocks>
925  *      <hash start block>
926  *      <algorithm>
927  *      <digest>
928  *      <salt>          Hex string or "-" if no salt.
929  */
930 static int verity_ctr(struct dm_target *ti, unsigned argc, char **argv)
931 {
932         struct dm_verity *v;
933         struct dm_arg_set as;
934         unsigned int num;
935         unsigned long long num_ll;
936         int r;
937         int i;
938         sector_t hash_position;
939         char dummy;
940
941         v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
942         if (!v) {
943                 ti->error = "Cannot allocate verity structure";
944                 return -ENOMEM;
945         }
946         ti->private = v;
947         v->ti = ti;
948
949         r = verity_fec_ctr_alloc(v);
950         if (r)
951                 goto bad;
952
953         if ((dm_table_get_mode(ti->table) & ~FMODE_READ)) {
954                 ti->error = "Device must be readonly";
955                 r = -EINVAL;
956                 goto bad;
957         }
958
959         if (argc < 10) {
960                 ti->error = "Not enough arguments";
961                 r = -EINVAL;
962                 goto bad;
963         }
964
965         if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 ||
966             num > 1) {
967                 ti->error = "Invalid version";
968                 r = -EINVAL;
969                 goto bad;
970         }
971         v->version = num;
972
973         r = dm_get_device(ti, argv[1], FMODE_READ, &v->data_dev);
974         if (r) {
975                 ti->error = "Data device lookup failed";
976                 goto bad;
977         }
978
979         r = dm_get_device(ti, argv[2], FMODE_READ, &v->hash_dev);
980         if (r) {
981                 ti->error = "Hash device lookup failed";
982                 goto bad;
983         }
984
985         if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
986             !num || (num & (num - 1)) ||
987             num < bdev_logical_block_size(v->data_dev->bdev) ||
988             num > PAGE_SIZE) {
989                 ti->error = "Invalid data device block size";
990                 r = -EINVAL;
991                 goto bad;
992         }
993         v->data_dev_block_bits = __ffs(num);
994
995         if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
996             !num || (num & (num - 1)) ||
997             num < bdev_logical_block_size(v->hash_dev->bdev) ||
998             num > INT_MAX) {
999                 ti->error = "Invalid hash device block size";
1000                 r = -EINVAL;
1001                 goto bad;
1002         }
1003         v->hash_dev_block_bits = __ffs(num);
1004
1005         if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
1006             (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
1007             >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1008                 ti->error = "Invalid data blocks";
1009                 r = -EINVAL;
1010                 goto bad;
1011         }
1012         v->data_blocks = num_ll;
1013
1014         if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
1015                 ti->error = "Data device is too small";
1016                 r = -EINVAL;
1017                 goto bad;
1018         }
1019
1020         if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
1021             (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
1022             >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1023                 ti->error = "Invalid hash start";
1024                 r = -EINVAL;
1025                 goto bad;
1026         }
1027         v->hash_start = num_ll;
1028
1029         v->alg_name = kstrdup(argv[7], GFP_KERNEL);
1030         if (!v->alg_name) {
1031                 ti->error = "Cannot allocate algorithm name";
1032                 r = -ENOMEM;
1033                 goto bad;
1034         }
1035
1036         v->tfm = crypto_alloc_ahash(v->alg_name, 0, 0);
1037         if (IS_ERR(v->tfm)) {
1038                 ti->error = "Cannot initialize hash function";
1039                 r = PTR_ERR(v->tfm);
1040                 v->tfm = NULL;
1041                 goto bad;
1042         }
1043         v->digest_size = crypto_ahash_digestsize(v->tfm);
1044         if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
1045                 ti->error = "Digest size too big";
1046                 r = -EINVAL;
1047                 goto bad;
1048         }
1049         v->ahash_reqsize = sizeof(struct ahash_request) +
1050                 crypto_ahash_reqsize(v->tfm);
1051
1052         v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
1053         if (!v->root_digest) {
1054                 ti->error = "Cannot allocate root digest";
1055                 r = -ENOMEM;
1056                 goto bad;
1057         }
1058         if (strlen(argv[8]) != v->digest_size * 2 ||
1059             hex2bin(v->root_digest, argv[8], v->digest_size)) {
1060                 ti->error = "Invalid root digest";
1061                 r = -EINVAL;
1062                 goto bad;
1063         }
1064
1065         if (strcmp(argv[9], "-")) {
1066                 v->salt_size = strlen(argv[9]) / 2;
1067                 v->salt = kmalloc(v->salt_size, GFP_KERNEL);
1068                 if (!v->salt) {
1069                         ti->error = "Cannot allocate salt";
1070                         r = -ENOMEM;
1071                         goto bad;
1072                 }
1073                 if (strlen(argv[9]) != v->salt_size * 2 ||
1074                     hex2bin(v->salt, argv[9], v->salt_size)) {
1075                         ti->error = "Invalid salt";
1076                         r = -EINVAL;
1077                         goto bad;
1078                 }
1079         }
1080
1081         argv += 10;
1082         argc -= 10;
1083
1084         /* Optional parameters */
1085         if (argc) {
1086                 as.argc = argc;
1087                 as.argv = argv;
1088
1089                 r = verity_parse_opt_args(&as, v);
1090                 if (r < 0)
1091                         goto bad;
1092         }
1093
1094         v->hash_per_block_bits =
1095                 __fls((1 << v->hash_dev_block_bits) / v->digest_size);
1096
1097         v->levels = 0;
1098         if (v->data_blocks)
1099                 while (v->hash_per_block_bits * v->levels < 64 &&
1100                        (unsigned long long)(v->data_blocks - 1) >>
1101                        (v->hash_per_block_bits * v->levels))
1102                         v->levels++;
1103
1104         if (v->levels > DM_VERITY_MAX_LEVELS) {
1105                 ti->error = "Too many tree levels";
1106                 r = -E2BIG;
1107                 goto bad;
1108         }
1109
1110         hash_position = v->hash_start;
1111         for (i = v->levels - 1; i >= 0; i--) {
1112                 sector_t s;
1113                 v->hash_level_block[i] = hash_position;
1114                 s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
1115                                         >> ((i + 1) * v->hash_per_block_bits);
1116                 if (hash_position + s < hash_position) {
1117                         ti->error = "Hash device offset overflow";
1118                         r = -E2BIG;
1119                         goto bad;
1120                 }
1121                 hash_position += s;
1122         }
1123         v->hash_blocks = hash_position;
1124
1125         v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
1126                 1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
1127                 dm_bufio_alloc_callback, NULL);
1128         if (IS_ERR(v->bufio)) {
1129                 ti->error = "Cannot initialize dm-bufio";
1130                 r = PTR_ERR(v->bufio);
1131                 v->bufio = NULL;
1132                 goto bad;
1133         }
1134
1135         if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
1136                 ti->error = "Hash device is too small";
1137                 r = -E2BIG;
1138                 goto bad;
1139         }
1140
1141         /* WQ_UNBOUND greatly improves performance when running on ramdisk */
1142         v->verify_wq = alloc_workqueue("kverityd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND, num_online_cpus());
1143         if (!v->verify_wq) {
1144                 ti->error = "Cannot allocate workqueue";
1145                 r = -ENOMEM;
1146                 goto bad;
1147         }
1148
1149         ti->per_io_data_size = sizeof(struct dm_verity_io) +
1150                                 v->ahash_reqsize + v->digest_size * 2;
1151
1152         r = verity_fec_ctr(v);
1153         if (r)
1154                 goto bad;
1155
1156         ti->per_io_data_size = roundup(ti->per_io_data_size,
1157                                        __alignof__(struct dm_verity_io));
1158
1159         return 0;
1160
1161 bad:
1162         verity_dtr(ti);
1163
1164         return r;
1165 }
1166
1167 static struct target_type verity_target = {
1168         .name           = "verity",
1169         .version        = {1, 4, 0},
1170         .module         = THIS_MODULE,
1171         .ctr            = verity_ctr,
1172         .dtr            = verity_dtr,
1173         .map            = verity_map,
1174         .status         = verity_status,
1175         .prepare_ioctl  = verity_prepare_ioctl,
1176         .iterate_devices = verity_iterate_devices,
1177         .io_hints       = verity_io_hints,
1178 };
1179
1180 static int __init dm_verity_init(void)
1181 {
1182         int r;
1183
1184         r = dm_register_target(&verity_target);
1185         if (r < 0)
1186                 DMERR("register failed %d", r);
1187
1188         return r;
1189 }
1190
1191 static void __exit dm_verity_exit(void)
1192 {
1193         dm_unregister_target(&verity_target);
1194 }
1195
1196 module_init(dm_verity_init);
1197 module_exit(dm_verity_exit);
1198
1199 MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
1200 MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
1201 MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
1202 MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
1203 MODULE_LICENSE("GPL");