Merge tag 'for-linus-20181012' of git://git.kernel.dk/linux-block
[linux-2.6-microblaze.git] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison-v1.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
24
25 #define DM_MSG_PREFIX   "thin"
26
27 /*
28  * Tunable constants
29  */
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
34
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38                 "A percentage of time allocated for copy on write");
39
40 /*
41  * The block size of the device holding pool data must be
42  * between 64KB and 1GB.
43  */
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46
47 /*
48  * Device id is restricted to 24 bits.
49  */
50 #define MAX_DEV_ID ((1 << 24) - 1)
51
52 /*
53  * How do we handle breaking sharing of data blocks?
54  * =================================================
55  *
56  * We use a standard copy-on-write btree to store the mappings for the
57  * devices (note I'm talking about copy-on-write of the metadata here, not
58  * the data).  When you take an internal snapshot you clone the root node
59  * of the origin btree.  After this there is no concept of an origin or a
60  * snapshot.  They are just two device trees that happen to point to the
61  * same data blocks.
62  *
63  * When we get a write in we decide if it's to a shared data block using
64  * some timestamp magic.  If it is, we have to break sharing.
65  *
66  * Let's say we write to a shared block in what was the origin.  The
67  * steps are:
68  *
69  * i) plug io further to this physical block. (see bio_prison code).
70  *
71  * ii) quiesce any read io to that shared data block.  Obviously
72  * including all devices that share this block.  (see dm_deferred_set code)
73  *
74  * iii) copy the data block to a newly allocate block.  This step can be
75  * missed out if the io covers the block. (schedule_copy).
76  *
77  * iv) insert the new mapping into the origin's btree
78  * (process_prepared_mapping).  This act of inserting breaks some
79  * sharing of btree nodes between the two devices.  Breaking sharing only
80  * effects the btree of that specific device.  Btrees for the other
81  * devices that share the block never change.  The btree for the origin
82  * device as it was after the last commit is untouched, ie. we're using
83  * persistent data structures in the functional programming sense.
84  *
85  * v) unplug io to this physical block, including the io that triggered
86  * the breaking of sharing.
87  *
88  * Steps (ii) and (iii) occur in parallel.
89  *
90  * The metadata _doesn't_ need to be committed before the io continues.  We
91  * get away with this because the io is always written to a _new_ block.
92  * If there's a crash, then:
93  *
94  * - The origin mapping will point to the old origin block (the shared
95  * one).  This will contain the data as it was before the io that triggered
96  * the breaking of sharing came in.
97  *
98  * - The snap mapping still points to the old block.  As it would after
99  * the commit.
100  *
101  * The downside of this scheme is the timestamp magic isn't perfect, and
102  * will continue to think that data block in the snapshot device is shared
103  * even after the write to the origin has broken sharing.  I suspect data
104  * blocks will typically be shared by many different devices, so we're
105  * breaking sharing n + 1 times, rather than n, where n is the number of
106  * devices that reference this data block.  At the moment I think the
107  * benefits far, far outweigh the disadvantages.
108  */
109
110 /*----------------------------------------------------------------*/
111
112 /*
113  * Key building.
114  */
115 enum lock_space {
116         VIRTUAL,
117         PHYSICAL
118 };
119
120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
121                       dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122 {
123         key->virtual = (ls == VIRTUAL);
124         key->dev = dm_thin_dev_id(td);
125         key->block_begin = b;
126         key->block_end = e;
127 }
128
129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130                            struct dm_cell_key *key)
131 {
132         build_key(td, PHYSICAL, b, b + 1llu, key);
133 }
134
135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136                               struct dm_cell_key *key)
137 {
138         build_key(td, VIRTUAL, b, b + 1llu, key);
139 }
140
141 /*----------------------------------------------------------------*/
142
143 #define THROTTLE_THRESHOLD (1 * HZ)
144
145 struct throttle {
146         struct rw_semaphore lock;
147         unsigned long threshold;
148         bool throttle_applied;
149 };
150
151 static void throttle_init(struct throttle *t)
152 {
153         init_rwsem(&t->lock);
154         t->throttle_applied = false;
155 }
156
157 static void throttle_work_start(struct throttle *t)
158 {
159         t->threshold = jiffies + THROTTLE_THRESHOLD;
160 }
161
162 static void throttle_work_update(struct throttle *t)
163 {
164         if (!t->throttle_applied && jiffies > t->threshold) {
165                 down_write(&t->lock);
166                 t->throttle_applied = true;
167         }
168 }
169
170 static void throttle_work_complete(struct throttle *t)
171 {
172         if (t->throttle_applied) {
173                 t->throttle_applied = false;
174                 up_write(&t->lock);
175         }
176 }
177
178 static void throttle_lock(struct throttle *t)
179 {
180         down_read(&t->lock);
181 }
182
183 static void throttle_unlock(struct throttle *t)
184 {
185         up_read(&t->lock);
186 }
187
188 /*----------------------------------------------------------------*/
189
190 /*
191  * A pool device ties together a metadata device and a data device.  It
192  * also provides the interface for creating and destroying internal
193  * devices.
194  */
195 struct dm_thin_new_mapping;
196
197 /*
198  * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
199  */
200 enum pool_mode {
201         PM_WRITE,               /* metadata may be changed */
202         PM_OUT_OF_DATA_SPACE,   /* metadata may be changed, though data may not be allocated */
203
204         /*
205          * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
206          */
207         PM_OUT_OF_METADATA_SPACE,
208         PM_READ_ONLY,           /* metadata may not be changed */
209
210         PM_FAIL,                /* all I/O fails */
211 };
212
213 struct pool_features {
214         enum pool_mode mode;
215
216         bool zero_new_blocks:1;
217         bool discard_enabled:1;
218         bool discard_passdown:1;
219         bool error_if_no_space:1;
220 };
221
222 struct thin_c;
223 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
224 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
225 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
226
227 #define CELL_SORT_ARRAY_SIZE 8192
228
229 struct pool {
230         struct list_head list;
231         struct dm_target *ti;   /* Only set if a pool target is bound */
232
233         struct mapped_device *pool_md;
234         struct block_device *md_dev;
235         struct dm_pool_metadata *pmd;
236
237         dm_block_t low_water_blocks;
238         uint32_t sectors_per_block;
239         int sectors_per_block_shift;
240
241         struct pool_features pf;
242         bool low_water_triggered:1;     /* A dm event has been sent */
243         bool suspended:1;
244         bool out_of_data_space:1;
245
246         struct dm_bio_prison *prison;
247         struct dm_kcopyd_client *copier;
248
249         struct work_struct worker;
250         struct workqueue_struct *wq;
251         struct throttle throttle;
252         struct delayed_work waker;
253         struct delayed_work no_space_timeout;
254
255         unsigned long last_commit_jiffies;
256         unsigned ref_count;
257
258         spinlock_t lock;
259         struct bio_list deferred_flush_bios;
260         struct list_head prepared_mappings;
261         struct list_head prepared_discards;
262         struct list_head prepared_discards_pt2;
263         struct list_head active_thins;
264
265         struct dm_deferred_set *shared_read_ds;
266         struct dm_deferred_set *all_io_ds;
267
268         struct dm_thin_new_mapping *next_mapping;
269
270         process_bio_fn process_bio;
271         process_bio_fn process_discard;
272
273         process_cell_fn process_cell;
274         process_cell_fn process_discard_cell;
275
276         process_mapping_fn process_prepared_mapping;
277         process_mapping_fn process_prepared_discard;
278         process_mapping_fn process_prepared_discard_pt2;
279
280         struct dm_bio_prison_cell **cell_sort_array;
281
282         mempool_t mapping_pool;
283 };
284
285 static enum pool_mode get_pool_mode(struct pool *pool);
286 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
287
288 /*
289  * Target context for a pool.
290  */
291 struct pool_c {
292         struct dm_target *ti;
293         struct pool *pool;
294         struct dm_dev *data_dev;
295         struct dm_dev *metadata_dev;
296         struct dm_target_callbacks callbacks;
297
298         dm_block_t low_water_blocks;
299         struct pool_features requested_pf; /* Features requested during table load */
300         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
301 };
302
303 /*
304  * Target context for a thin.
305  */
306 struct thin_c {
307         struct list_head list;
308         struct dm_dev *pool_dev;
309         struct dm_dev *origin_dev;
310         sector_t origin_size;
311         dm_thin_id dev_id;
312
313         struct pool *pool;
314         struct dm_thin_device *td;
315         struct mapped_device *thin_md;
316
317         bool requeue_mode:1;
318         spinlock_t lock;
319         struct list_head deferred_cells;
320         struct bio_list deferred_bio_list;
321         struct bio_list retry_on_resume_list;
322         struct rb_root sort_bio_list; /* sorted list of deferred bios */
323
324         /*
325          * Ensures the thin is not destroyed until the worker has finished
326          * iterating the active_thins list.
327          */
328         atomic_t refcount;
329         struct completion can_destroy;
330 };
331
332 /*----------------------------------------------------------------*/
333
334 static bool block_size_is_power_of_two(struct pool *pool)
335 {
336         return pool->sectors_per_block_shift >= 0;
337 }
338
339 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
340 {
341         return block_size_is_power_of_two(pool) ?
342                 (b << pool->sectors_per_block_shift) :
343                 (b * pool->sectors_per_block);
344 }
345
346 /*----------------------------------------------------------------*/
347
348 struct discard_op {
349         struct thin_c *tc;
350         struct blk_plug plug;
351         struct bio *parent_bio;
352         struct bio *bio;
353 };
354
355 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
356 {
357         BUG_ON(!parent);
358
359         op->tc = tc;
360         blk_start_plug(&op->plug);
361         op->parent_bio = parent;
362         op->bio = NULL;
363 }
364
365 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
366 {
367         struct thin_c *tc = op->tc;
368         sector_t s = block_to_sectors(tc->pool, data_b);
369         sector_t len = block_to_sectors(tc->pool, data_e - data_b);
370
371         return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
372                                       GFP_NOWAIT, 0, &op->bio);
373 }
374
375 static void end_discard(struct discard_op *op, int r)
376 {
377         if (op->bio) {
378                 /*
379                  * Even if one of the calls to issue_discard failed, we
380                  * need to wait for the chain to complete.
381                  */
382                 bio_chain(op->bio, op->parent_bio);
383                 bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
384                 submit_bio(op->bio);
385         }
386
387         blk_finish_plug(&op->plug);
388
389         /*
390          * Even if r is set, there could be sub discards in flight that we
391          * need to wait for.
392          */
393         if (r && !op->parent_bio->bi_status)
394                 op->parent_bio->bi_status = errno_to_blk_status(r);
395         bio_endio(op->parent_bio);
396 }
397
398 /*----------------------------------------------------------------*/
399
400 /*
401  * wake_worker() is used when new work is queued and when pool_resume is
402  * ready to continue deferred IO processing.
403  */
404 static void wake_worker(struct pool *pool)
405 {
406         queue_work(pool->wq, &pool->worker);
407 }
408
409 /*----------------------------------------------------------------*/
410
411 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
412                       struct dm_bio_prison_cell **cell_result)
413 {
414         int r;
415         struct dm_bio_prison_cell *cell_prealloc;
416
417         /*
418          * Allocate a cell from the prison's mempool.
419          * This might block but it can't fail.
420          */
421         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
422
423         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
424         if (r)
425                 /*
426                  * We reused an old cell; we can get rid of
427                  * the new one.
428                  */
429                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
430
431         return r;
432 }
433
434 static void cell_release(struct pool *pool,
435                          struct dm_bio_prison_cell *cell,
436                          struct bio_list *bios)
437 {
438         dm_cell_release(pool->prison, cell, bios);
439         dm_bio_prison_free_cell(pool->prison, cell);
440 }
441
442 static void cell_visit_release(struct pool *pool,
443                                void (*fn)(void *, struct dm_bio_prison_cell *),
444                                void *context,
445                                struct dm_bio_prison_cell *cell)
446 {
447         dm_cell_visit_release(pool->prison, fn, context, cell);
448         dm_bio_prison_free_cell(pool->prison, cell);
449 }
450
451 static void cell_release_no_holder(struct pool *pool,
452                                    struct dm_bio_prison_cell *cell,
453                                    struct bio_list *bios)
454 {
455         dm_cell_release_no_holder(pool->prison, cell, bios);
456         dm_bio_prison_free_cell(pool->prison, cell);
457 }
458
459 static void cell_error_with_code(struct pool *pool,
460                 struct dm_bio_prison_cell *cell, blk_status_t error_code)
461 {
462         dm_cell_error(pool->prison, cell, error_code);
463         dm_bio_prison_free_cell(pool->prison, cell);
464 }
465
466 static blk_status_t get_pool_io_error_code(struct pool *pool)
467 {
468         return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
469 }
470
471 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
472 {
473         cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
474 }
475
476 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
477 {
478         cell_error_with_code(pool, cell, 0);
479 }
480
481 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
482 {
483         cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
484 }
485
486 /*----------------------------------------------------------------*/
487
488 /*
489  * A global list of pools that uses a struct mapped_device as a key.
490  */
491 static struct dm_thin_pool_table {
492         struct mutex mutex;
493         struct list_head pools;
494 } dm_thin_pool_table;
495
496 static void pool_table_init(void)
497 {
498         mutex_init(&dm_thin_pool_table.mutex);
499         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
500 }
501
502 static void pool_table_exit(void)
503 {
504         mutex_destroy(&dm_thin_pool_table.mutex);
505 }
506
507 static void __pool_table_insert(struct pool *pool)
508 {
509         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
510         list_add(&pool->list, &dm_thin_pool_table.pools);
511 }
512
513 static void __pool_table_remove(struct pool *pool)
514 {
515         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
516         list_del(&pool->list);
517 }
518
519 static struct pool *__pool_table_lookup(struct mapped_device *md)
520 {
521         struct pool *pool = NULL, *tmp;
522
523         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
524
525         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
526                 if (tmp->pool_md == md) {
527                         pool = tmp;
528                         break;
529                 }
530         }
531
532         return pool;
533 }
534
535 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
536 {
537         struct pool *pool = NULL, *tmp;
538
539         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
540
541         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
542                 if (tmp->md_dev == md_dev) {
543                         pool = tmp;
544                         break;
545                 }
546         }
547
548         return pool;
549 }
550
551 /*----------------------------------------------------------------*/
552
553 struct dm_thin_endio_hook {
554         struct thin_c *tc;
555         struct dm_deferred_entry *shared_read_entry;
556         struct dm_deferred_entry *all_io_entry;
557         struct dm_thin_new_mapping *overwrite_mapping;
558         struct rb_node rb_node;
559         struct dm_bio_prison_cell *cell;
560 };
561
562 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
563 {
564         bio_list_merge(bios, master);
565         bio_list_init(master);
566 }
567
568 static void error_bio_list(struct bio_list *bios, blk_status_t error)
569 {
570         struct bio *bio;
571
572         while ((bio = bio_list_pop(bios))) {
573                 bio->bi_status = error;
574                 bio_endio(bio);
575         }
576 }
577
578 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
579                 blk_status_t error)
580 {
581         struct bio_list bios;
582         unsigned long flags;
583
584         bio_list_init(&bios);
585
586         spin_lock_irqsave(&tc->lock, flags);
587         __merge_bio_list(&bios, master);
588         spin_unlock_irqrestore(&tc->lock, flags);
589
590         error_bio_list(&bios, error);
591 }
592
593 static void requeue_deferred_cells(struct thin_c *tc)
594 {
595         struct pool *pool = tc->pool;
596         unsigned long flags;
597         struct list_head cells;
598         struct dm_bio_prison_cell *cell, *tmp;
599
600         INIT_LIST_HEAD(&cells);
601
602         spin_lock_irqsave(&tc->lock, flags);
603         list_splice_init(&tc->deferred_cells, &cells);
604         spin_unlock_irqrestore(&tc->lock, flags);
605
606         list_for_each_entry_safe(cell, tmp, &cells, user_list)
607                 cell_requeue(pool, cell);
608 }
609
610 static void requeue_io(struct thin_c *tc)
611 {
612         struct bio_list bios;
613         unsigned long flags;
614
615         bio_list_init(&bios);
616
617         spin_lock_irqsave(&tc->lock, flags);
618         __merge_bio_list(&bios, &tc->deferred_bio_list);
619         __merge_bio_list(&bios, &tc->retry_on_resume_list);
620         spin_unlock_irqrestore(&tc->lock, flags);
621
622         error_bio_list(&bios, BLK_STS_DM_REQUEUE);
623         requeue_deferred_cells(tc);
624 }
625
626 static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
627 {
628         struct thin_c *tc;
629
630         rcu_read_lock();
631         list_for_each_entry_rcu(tc, &pool->active_thins, list)
632                 error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
633         rcu_read_unlock();
634 }
635
636 static void error_retry_list(struct pool *pool)
637 {
638         error_retry_list_with_code(pool, get_pool_io_error_code(pool));
639 }
640
641 /*
642  * This section of code contains the logic for processing a thin device's IO.
643  * Much of the code depends on pool object resources (lists, workqueues, etc)
644  * but most is exclusively called from the thin target rather than the thin-pool
645  * target.
646  */
647
648 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
649 {
650         struct pool *pool = tc->pool;
651         sector_t block_nr = bio->bi_iter.bi_sector;
652
653         if (block_size_is_power_of_two(pool))
654                 block_nr >>= pool->sectors_per_block_shift;
655         else
656                 (void) sector_div(block_nr, pool->sectors_per_block);
657
658         return block_nr;
659 }
660
661 /*
662  * Returns the _complete_ blocks that this bio covers.
663  */
664 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
665                                 dm_block_t *begin, dm_block_t *end)
666 {
667         struct pool *pool = tc->pool;
668         sector_t b = bio->bi_iter.bi_sector;
669         sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
670
671         b += pool->sectors_per_block - 1ull; /* so we round up */
672
673         if (block_size_is_power_of_two(pool)) {
674                 b >>= pool->sectors_per_block_shift;
675                 e >>= pool->sectors_per_block_shift;
676         } else {
677                 (void) sector_div(b, pool->sectors_per_block);
678                 (void) sector_div(e, pool->sectors_per_block);
679         }
680
681         if (e < b)
682                 /* Can happen if the bio is within a single block. */
683                 e = b;
684
685         *begin = b;
686         *end = e;
687 }
688
689 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
690 {
691         struct pool *pool = tc->pool;
692         sector_t bi_sector = bio->bi_iter.bi_sector;
693
694         bio_set_dev(bio, tc->pool_dev->bdev);
695         if (block_size_is_power_of_two(pool))
696                 bio->bi_iter.bi_sector =
697                         (block << pool->sectors_per_block_shift) |
698                         (bi_sector & (pool->sectors_per_block - 1));
699         else
700                 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
701                                  sector_div(bi_sector, pool->sectors_per_block);
702 }
703
704 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
705 {
706         bio_set_dev(bio, tc->origin_dev->bdev);
707 }
708
709 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
710 {
711         return op_is_flush(bio->bi_opf) &&
712                 dm_thin_changed_this_transaction(tc->td);
713 }
714
715 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
716 {
717         struct dm_thin_endio_hook *h;
718
719         if (bio_op(bio) == REQ_OP_DISCARD)
720                 return;
721
722         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
723         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
724 }
725
726 static void issue(struct thin_c *tc, struct bio *bio)
727 {
728         struct pool *pool = tc->pool;
729         unsigned long flags;
730
731         if (!bio_triggers_commit(tc, bio)) {
732                 generic_make_request(bio);
733                 return;
734         }
735
736         /*
737          * Complete bio with an error if earlier I/O caused changes to
738          * the metadata that can't be committed e.g, due to I/O errors
739          * on the metadata device.
740          */
741         if (dm_thin_aborted_changes(tc->td)) {
742                 bio_io_error(bio);
743                 return;
744         }
745
746         /*
747          * Batch together any bios that trigger commits and then issue a
748          * single commit for them in process_deferred_bios().
749          */
750         spin_lock_irqsave(&pool->lock, flags);
751         bio_list_add(&pool->deferred_flush_bios, bio);
752         spin_unlock_irqrestore(&pool->lock, flags);
753 }
754
755 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
756 {
757         remap_to_origin(tc, bio);
758         issue(tc, bio);
759 }
760
761 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
762                             dm_block_t block)
763 {
764         remap(tc, bio, block);
765         issue(tc, bio);
766 }
767
768 /*----------------------------------------------------------------*/
769
770 /*
771  * Bio endio functions.
772  */
773 struct dm_thin_new_mapping {
774         struct list_head list;
775
776         bool pass_discard:1;
777         bool maybe_shared:1;
778
779         /*
780          * Track quiescing, copying and zeroing preparation actions.  When this
781          * counter hits zero the block is prepared and can be inserted into the
782          * btree.
783          */
784         atomic_t prepare_actions;
785
786         blk_status_t status;
787         struct thin_c *tc;
788         dm_block_t virt_begin, virt_end;
789         dm_block_t data_block;
790         struct dm_bio_prison_cell *cell;
791
792         /*
793          * If the bio covers the whole area of a block then we can avoid
794          * zeroing or copying.  Instead this bio is hooked.  The bio will
795          * still be in the cell, so care has to be taken to avoid issuing
796          * the bio twice.
797          */
798         struct bio *bio;
799         bio_end_io_t *saved_bi_end_io;
800 };
801
802 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
803 {
804         struct pool *pool = m->tc->pool;
805
806         if (atomic_dec_and_test(&m->prepare_actions)) {
807                 list_add_tail(&m->list, &pool->prepared_mappings);
808                 wake_worker(pool);
809         }
810 }
811
812 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
813 {
814         unsigned long flags;
815         struct pool *pool = m->tc->pool;
816
817         spin_lock_irqsave(&pool->lock, flags);
818         __complete_mapping_preparation(m);
819         spin_unlock_irqrestore(&pool->lock, flags);
820 }
821
822 static void copy_complete(int read_err, unsigned long write_err, void *context)
823 {
824         struct dm_thin_new_mapping *m = context;
825
826         m->status = read_err || write_err ? BLK_STS_IOERR : 0;
827         complete_mapping_preparation(m);
828 }
829
830 static void overwrite_endio(struct bio *bio)
831 {
832         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
833         struct dm_thin_new_mapping *m = h->overwrite_mapping;
834
835         bio->bi_end_io = m->saved_bi_end_io;
836
837         m->status = bio->bi_status;
838         complete_mapping_preparation(m);
839 }
840
841 /*----------------------------------------------------------------*/
842
843 /*
844  * Workqueue.
845  */
846
847 /*
848  * Prepared mapping jobs.
849  */
850
851 /*
852  * This sends the bios in the cell, except the original holder, back
853  * to the deferred_bios list.
854  */
855 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
856 {
857         struct pool *pool = tc->pool;
858         unsigned long flags;
859
860         spin_lock_irqsave(&tc->lock, flags);
861         cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
862         spin_unlock_irqrestore(&tc->lock, flags);
863
864         wake_worker(pool);
865 }
866
867 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
868
869 struct remap_info {
870         struct thin_c *tc;
871         struct bio_list defer_bios;
872         struct bio_list issue_bios;
873 };
874
875 static void __inc_remap_and_issue_cell(void *context,
876                                        struct dm_bio_prison_cell *cell)
877 {
878         struct remap_info *info = context;
879         struct bio *bio;
880
881         while ((bio = bio_list_pop(&cell->bios))) {
882                 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
883                         bio_list_add(&info->defer_bios, bio);
884                 else {
885                         inc_all_io_entry(info->tc->pool, bio);
886
887                         /*
888                          * We can't issue the bios with the bio prison lock
889                          * held, so we add them to a list to issue on
890                          * return from this function.
891                          */
892                         bio_list_add(&info->issue_bios, bio);
893                 }
894         }
895 }
896
897 static void inc_remap_and_issue_cell(struct thin_c *tc,
898                                      struct dm_bio_prison_cell *cell,
899                                      dm_block_t block)
900 {
901         struct bio *bio;
902         struct remap_info info;
903
904         info.tc = tc;
905         bio_list_init(&info.defer_bios);
906         bio_list_init(&info.issue_bios);
907
908         /*
909          * We have to be careful to inc any bios we're about to issue
910          * before the cell is released, and avoid a race with new bios
911          * being added to the cell.
912          */
913         cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
914                            &info, cell);
915
916         while ((bio = bio_list_pop(&info.defer_bios)))
917                 thin_defer_bio(tc, bio);
918
919         while ((bio = bio_list_pop(&info.issue_bios)))
920                 remap_and_issue(info.tc, bio, block);
921 }
922
923 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
924 {
925         cell_error(m->tc->pool, m->cell);
926         list_del(&m->list);
927         mempool_free(m, &m->tc->pool->mapping_pool);
928 }
929
930 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
931 {
932         struct thin_c *tc = m->tc;
933         struct pool *pool = tc->pool;
934         struct bio *bio = m->bio;
935         int r;
936
937         if (m->status) {
938                 cell_error(pool, m->cell);
939                 goto out;
940         }
941
942         /*
943          * Commit the prepared block into the mapping btree.
944          * Any I/O for this block arriving after this point will get
945          * remapped to it directly.
946          */
947         r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
948         if (r) {
949                 metadata_operation_failed(pool, "dm_thin_insert_block", r);
950                 cell_error(pool, m->cell);
951                 goto out;
952         }
953
954         /*
955          * Release any bios held while the block was being provisioned.
956          * If we are processing a write bio that completely covers the block,
957          * we already processed it so can ignore it now when processing
958          * the bios in the cell.
959          */
960         if (bio) {
961                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
962                 bio_endio(bio);
963         } else {
964                 inc_all_io_entry(tc->pool, m->cell->holder);
965                 remap_and_issue(tc, m->cell->holder, m->data_block);
966                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
967         }
968
969 out:
970         list_del(&m->list);
971         mempool_free(m, &pool->mapping_pool);
972 }
973
974 /*----------------------------------------------------------------*/
975
976 static void free_discard_mapping(struct dm_thin_new_mapping *m)
977 {
978         struct thin_c *tc = m->tc;
979         if (m->cell)
980                 cell_defer_no_holder(tc, m->cell);
981         mempool_free(m, &tc->pool->mapping_pool);
982 }
983
984 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
985 {
986         bio_io_error(m->bio);
987         free_discard_mapping(m);
988 }
989
990 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
991 {
992         bio_endio(m->bio);
993         free_discard_mapping(m);
994 }
995
996 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
997 {
998         int r;
999         struct thin_c *tc = m->tc;
1000
1001         r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1002         if (r) {
1003                 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1004                 bio_io_error(m->bio);
1005         } else
1006                 bio_endio(m->bio);
1007
1008         cell_defer_no_holder(tc, m->cell);
1009         mempool_free(m, &tc->pool->mapping_pool);
1010 }
1011
1012 /*----------------------------------------------------------------*/
1013
1014 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1015                                                    struct bio *discard_parent)
1016 {
1017         /*
1018          * We've already unmapped this range of blocks, but before we
1019          * passdown we have to check that these blocks are now unused.
1020          */
1021         int r = 0;
1022         bool used = true;
1023         struct thin_c *tc = m->tc;
1024         struct pool *pool = tc->pool;
1025         dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1026         struct discard_op op;
1027
1028         begin_discard(&op, tc, discard_parent);
1029         while (b != end) {
1030                 /* find start of unmapped run */
1031                 for (; b < end; b++) {
1032                         r = dm_pool_block_is_used(pool->pmd, b, &used);
1033                         if (r)
1034                                 goto out;
1035
1036                         if (!used)
1037                                 break;
1038                 }
1039
1040                 if (b == end)
1041                         break;
1042
1043                 /* find end of run */
1044                 for (e = b + 1; e != end; e++) {
1045                         r = dm_pool_block_is_used(pool->pmd, e, &used);
1046                         if (r)
1047                                 goto out;
1048
1049                         if (used)
1050                                 break;
1051                 }
1052
1053                 r = issue_discard(&op, b, e);
1054                 if (r)
1055                         goto out;
1056
1057                 b = e;
1058         }
1059 out:
1060         end_discard(&op, r);
1061 }
1062
1063 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1064 {
1065         unsigned long flags;
1066         struct pool *pool = m->tc->pool;
1067
1068         spin_lock_irqsave(&pool->lock, flags);
1069         list_add_tail(&m->list, &pool->prepared_discards_pt2);
1070         spin_unlock_irqrestore(&pool->lock, flags);
1071         wake_worker(pool);
1072 }
1073
1074 static void passdown_endio(struct bio *bio)
1075 {
1076         /*
1077          * It doesn't matter if the passdown discard failed, we still want
1078          * to unmap (we ignore err).
1079          */
1080         queue_passdown_pt2(bio->bi_private);
1081         bio_put(bio);
1082 }
1083
1084 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1085 {
1086         int r;
1087         struct thin_c *tc = m->tc;
1088         struct pool *pool = tc->pool;
1089         struct bio *discard_parent;
1090         dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1091
1092         /*
1093          * Only this thread allocates blocks, so we can be sure that the
1094          * newly unmapped blocks will not be allocated before the end of
1095          * the function.
1096          */
1097         r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1098         if (r) {
1099                 metadata_operation_failed(pool, "dm_thin_remove_range", r);
1100                 bio_io_error(m->bio);
1101                 cell_defer_no_holder(tc, m->cell);
1102                 mempool_free(m, &pool->mapping_pool);
1103                 return;
1104         }
1105
1106         /*
1107          * Increment the unmapped blocks.  This prevents a race between the
1108          * passdown io and reallocation of freed blocks.
1109          */
1110         r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1111         if (r) {
1112                 metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1113                 bio_io_error(m->bio);
1114                 cell_defer_no_holder(tc, m->cell);
1115                 mempool_free(m, &pool->mapping_pool);
1116                 return;
1117         }
1118
1119         discard_parent = bio_alloc(GFP_NOIO, 1);
1120         if (!discard_parent) {
1121                 DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1122                        dm_device_name(tc->pool->pool_md));
1123                 queue_passdown_pt2(m);
1124
1125         } else {
1126                 discard_parent->bi_end_io = passdown_endio;
1127                 discard_parent->bi_private = m;
1128
1129                 if (m->maybe_shared)
1130                         passdown_double_checking_shared_status(m, discard_parent);
1131                 else {
1132                         struct discard_op op;
1133
1134                         begin_discard(&op, tc, discard_parent);
1135                         r = issue_discard(&op, m->data_block, data_end);
1136                         end_discard(&op, r);
1137                 }
1138         }
1139 }
1140
1141 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1142 {
1143         int r;
1144         struct thin_c *tc = m->tc;
1145         struct pool *pool = tc->pool;
1146
1147         /*
1148          * The passdown has completed, so now we can decrement all those
1149          * unmapped blocks.
1150          */
1151         r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1152                                    m->data_block + (m->virt_end - m->virt_begin));
1153         if (r) {
1154                 metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1155                 bio_io_error(m->bio);
1156         } else
1157                 bio_endio(m->bio);
1158
1159         cell_defer_no_holder(tc, m->cell);
1160         mempool_free(m, &pool->mapping_pool);
1161 }
1162
1163 static void process_prepared(struct pool *pool, struct list_head *head,
1164                              process_mapping_fn *fn)
1165 {
1166         unsigned long flags;
1167         struct list_head maps;
1168         struct dm_thin_new_mapping *m, *tmp;
1169
1170         INIT_LIST_HEAD(&maps);
1171         spin_lock_irqsave(&pool->lock, flags);
1172         list_splice_init(head, &maps);
1173         spin_unlock_irqrestore(&pool->lock, flags);
1174
1175         list_for_each_entry_safe(m, tmp, &maps, list)
1176                 (*fn)(m);
1177 }
1178
1179 /*
1180  * Deferred bio jobs.
1181  */
1182 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1183 {
1184         return bio->bi_iter.bi_size ==
1185                 (pool->sectors_per_block << SECTOR_SHIFT);
1186 }
1187
1188 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1189 {
1190         return (bio_data_dir(bio) == WRITE) &&
1191                 io_overlaps_block(pool, bio);
1192 }
1193
1194 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1195                                bio_end_io_t *fn)
1196 {
1197         *save = bio->bi_end_io;
1198         bio->bi_end_io = fn;
1199 }
1200
1201 static int ensure_next_mapping(struct pool *pool)
1202 {
1203         if (pool->next_mapping)
1204                 return 0;
1205
1206         pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1207
1208         return pool->next_mapping ? 0 : -ENOMEM;
1209 }
1210
1211 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1212 {
1213         struct dm_thin_new_mapping *m = pool->next_mapping;
1214
1215         BUG_ON(!pool->next_mapping);
1216
1217         memset(m, 0, sizeof(struct dm_thin_new_mapping));
1218         INIT_LIST_HEAD(&m->list);
1219         m->bio = NULL;
1220
1221         pool->next_mapping = NULL;
1222
1223         return m;
1224 }
1225
1226 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1227                     sector_t begin, sector_t end)
1228 {
1229         struct dm_io_region to;
1230
1231         to.bdev = tc->pool_dev->bdev;
1232         to.sector = begin;
1233         to.count = end - begin;
1234
1235         dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1236 }
1237
1238 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1239                                       dm_block_t data_begin,
1240                                       struct dm_thin_new_mapping *m)
1241 {
1242         struct pool *pool = tc->pool;
1243         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1244
1245         h->overwrite_mapping = m;
1246         m->bio = bio;
1247         save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1248         inc_all_io_entry(pool, bio);
1249         remap_and_issue(tc, bio, data_begin);
1250 }
1251
1252 /*
1253  * A partial copy also needs to zero the uncopied region.
1254  */
1255 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1256                           struct dm_dev *origin, dm_block_t data_origin,
1257                           dm_block_t data_dest,
1258                           struct dm_bio_prison_cell *cell, struct bio *bio,
1259                           sector_t len)
1260 {
1261         struct pool *pool = tc->pool;
1262         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1263
1264         m->tc = tc;
1265         m->virt_begin = virt_block;
1266         m->virt_end = virt_block + 1u;
1267         m->data_block = data_dest;
1268         m->cell = cell;
1269
1270         /*
1271          * quiesce action + copy action + an extra reference held for the
1272          * duration of this function (we may need to inc later for a
1273          * partial zero).
1274          */
1275         atomic_set(&m->prepare_actions, 3);
1276
1277         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1278                 complete_mapping_preparation(m); /* already quiesced */
1279
1280         /*
1281          * IO to pool_dev remaps to the pool target's data_dev.
1282          *
1283          * If the whole block of data is being overwritten, we can issue the
1284          * bio immediately. Otherwise we use kcopyd to clone the data first.
1285          */
1286         if (io_overwrites_block(pool, bio))
1287                 remap_and_issue_overwrite(tc, bio, data_dest, m);
1288         else {
1289                 struct dm_io_region from, to;
1290
1291                 from.bdev = origin->bdev;
1292                 from.sector = data_origin * pool->sectors_per_block;
1293                 from.count = len;
1294
1295                 to.bdev = tc->pool_dev->bdev;
1296                 to.sector = data_dest * pool->sectors_per_block;
1297                 to.count = len;
1298
1299                 dm_kcopyd_copy(pool->copier, &from, 1, &to,
1300                                0, copy_complete, m);
1301
1302                 /*
1303                  * Do we need to zero a tail region?
1304                  */
1305                 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1306                         atomic_inc(&m->prepare_actions);
1307                         ll_zero(tc, m,
1308                                 data_dest * pool->sectors_per_block + len,
1309                                 (data_dest + 1) * pool->sectors_per_block);
1310                 }
1311         }
1312
1313         complete_mapping_preparation(m); /* drop our ref */
1314 }
1315
1316 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1317                                    dm_block_t data_origin, dm_block_t data_dest,
1318                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1319 {
1320         schedule_copy(tc, virt_block, tc->pool_dev,
1321                       data_origin, data_dest, cell, bio,
1322                       tc->pool->sectors_per_block);
1323 }
1324
1325 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1326                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
1327                           struct bio *bio)
1328 {
1329         struct pool *pool = tc->pool;
1330         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1331
1332         atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1333         m->tc = tc;
1334         m->virt_begin = virt_block;
1335         m->virt_end = virt_block + 1u;
1336         m->data_block = data_block;
1337         m->cell = cell;
1338
1339         /*
1340          * If the whole block of data is being overwritten or we are not
1341          * zeroing pre-existing data, we can issue the bio immediately.
1342          * Otherwise we use kcopyd to zero the data first.
1343          */
1344         if (pool->pf.zero_new_blocks) {
1345                 if (io_overwrites_block(pool, bio))
1346                         remap_and_issue_overwrite(tc, bio, data_block, m);
1347                 else
1348                         ll_zero(tc, m, data_block * pool->sectors_per_block,
1349                                 (data_block + 1) * pool->sectors_per_block);
1350         } else
1351                 process_prepared_mapping(m);
1352 }
1353
1354 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1355                                    dm_block_t data_dest,
1356                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1357 {
1358         struct pool *pool = tc->pool;
1359         sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1360         sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1361
1362         if (virt_block_end <= tc->origin_size)
1363                 schedule_copy(tc, virt_block, tc->origin_dev,
1364                               virt_block, data_dest, cell, bio,
1365                               pool->sectors_per_block);
1366
1367         else if (virt_block_begin < tc->origin_size)
1368                 schedule_copy(tc, virt_block, tc->origin_dev,
1369                               virt_block, data_dest, cell, bio,
1370                               tc->origin_size - virt_block_begin);
1371
1372         else
1373                 schedule_zero(tc, virt_block, data_dest, cell, bio);
1374 }
1375
1376 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1377
1378 static void requeue_bios(struct pool *pool);
1379
1380 static bool is_read_only_pool_mode(enum pool_mode mode)
1381 {
1382         return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
1383 }
1384
1385 static bool is_read_only(struct pool *pool)
1386 {
1387         return is_read_only_pool_mode(get_pool_mode(pool));
1388 }
1389
1390 static void check_for_metadata_space(struct pool *pool)
1391 {
1392         int r;
1393         const char *ooms_reason = NULL;
1394         dm_block_t nr_free;
1395
1396         r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
1397         if (r)
1398                 ooms_reason = "Could not get free metadata blocks";
1399         else if (!nr_free)
1400                 ooms_reason = "No free metadata blocks";
1401
1402         if (ooms_reason && !is_read_only(pool)) {
1403                 DMERR("%s", ooms_reason);
1404                 set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
1405         }
1406 }
1407
1408 static void check_for_data_space(struct pool *pool)
1409 {
1410         int r;
1411         dm_block_t nr_free;
1412
1413         if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1414                 return;
1415
1416         r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1417         if (r)
1418                 return;
1419
1420         if (nr_free) {
1421                 set_pool_mode(pool, PM_WRITE);
1422                 requeue_bios(pool);
1423         }
1424 }
1425
1426 /*
1427  * A non-zero return indicates read_only or fail_io mode.
1428  * Many callers don't care about the return value.
1429  */
1430 static int commit(struct pool *pool)
1431 {
1432         int r;
1433
1434         if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
1435                 return -EINVAL;
1436
1437         r = dm_pool_commit_metadata(pool->pmd);
1438         if (r)
1439                 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1440         else {
1441                 check_for_metadata_space(pool);
1442                 check_for_data_space(pool);
1443         }
1444
1445         return r;
1446 }
1447
1448 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1449 {
1450         unsigned long flags;
1451
1452         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1453                 DMWARN("%s: reached low water mark for data device: sending event.",
1454                        dm_device_name(pool->pool_md));
1455                 spin_lock_irqsave(&pool->lock, flags);
1456                 pool->low_water_triggered = true;
1457                 spin_unlock_irqrestore(&pool->lock, flags);
1458                 dm_table_event(pool->ti->table);
1459         }
1460 }
1461
1462 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1463 {
1464         int r;
1465         dm_block_t free_blocks;
1466         struct pool *pool = tc->pool;
1467
1468         if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1469                 return -EINVAL;
1470
1471         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1472         if (r) {
1473                 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1474                 return r;
1475         }
1476
1477         check_low_water_mark(pool, free_blocks);
1478
1479         if (!free_blocks) {
1480                 /*
1481                  * Try to commit to see if that will free up some
1482                  * more space.
1483                  */
1484                 r = commit(pool);
1485                 if (r)
1486                         return r;
1487
1488                 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1489                 if (r) {
1490                         metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1491                         return r;
1492                 }
1493
1494                 if (!free_blocks) {
1495                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1496                         return -ENOSPC;
1497                 }
1498         }
1499
1500         r = dm_pool_alloc_data_block(pool->pmd, result);
1501         if (r) {
1502                 if (r == -ENOSPC)
1503                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1504                 else
1505                         metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1506                 return r;
1507         }
1508
1509         r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
1510         if (r) {
1511                 metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
1512                 return r;
1513         }
1514
1515         if (!free_blocks) {
1516                 /* Let's commit before we use up the metadata reserve. */
1517                 r = commit(pool);
1518                 if (r)
1519                         return r;
1520         }
1521
1522         return 0;
1523 }
1524
1525 /*
1526  * If we have run out of space, queue bios until the device is
1527  * resumed, presumably after having been reloaded with more space.
1528  */
1529 static void retry_on_resume(struct bio *bio)
1530 {
1531         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1532         struct thin_c *tc = h->tc;
1533         unsigned long flags;
1534
1535         spin_lock_irqsave(&tc->lock, flags);
1536         bio_list_add(&tc->retry_on_resume_list, bio);
1537         spin_unlock_irqrestore(&tc->lock, flags);
1538 }
1539
1540 static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1541 {
1542         enum pool_mode m = get_pool_mode(pool);
1543
1544         switch (m) {
1545         case PM_WRITE:
1546                 /* Shouldn't get here */
1547                 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1548                 return BLK_STS_IOERR;
1549
1550         case PM_OUT_OF_DATA_SPACE:
1551                 return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1552
1553         case PM_OUT_OF_METADATA_SPACE:
1554         case PM_READ_ONLY:
1555         case PM_FAIL:
1556                 return BLK_STS_IOERR;
1557         default:
1558                 /* Shouldn't get here */
1559                 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1560                 return BLK_STS_IOERR;
1561         }
1562 }
1563
1564 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1565 {
1566         blk_status_t error = should_error_unserviceable_bio(pool);
1567
1568         if (error) {
1569                 bio->bi_status = error;
1570                 bio_endio(bio);
1571         } else
1572                 retry_on_resume(bio);
1573 }
1574
1575 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1576 {
1577         struct bio *bio;
1578         struct bio_list bios;
1579         blk_status_t error;
1580
1581         error = should_error_unserviceable_bio(pool);
1582         if (error) {
1583                 cell_error_with_code(pool, cell, error);
1584                 return;
1585         }
1586
1587         bio_list_init(&bios);
1588         cell_release(pool, cell, &bios);
1589
1590         while ((bio = bio_list_pop(&bios)))
1591                 retry_on_resume(bio);
1592 }
1593
1594 static void process_discard_cell_no_passdown(struct thin_c *tc,
1595                                              struct dm_bio_prison_cell *virt_cell)
1596 {
1597         struct pool *pool = tc->pool;
1598         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1599
1600         /*
1601          * We don't need to lock the data blocks, since there's no
1602          * passdown.  We only lock data blocks for allocation and breaking sharing.
1603          */
1604         m->tc = tc;
1605         m->virt_begin = virt_cell->key.block_begin;
1606         m->virt_end = virt_cell->key.block_end;
1607         m->cell = virt_cell;
1608         m->bio = virt_cell->holder;
1609
1610         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1611                 pool->process_prepared_discard(m);
1612 }
1613
1614 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1615                                  struct bio *bio)
1616 {
1617         struct pool *pool = tc->pool;
1618
1619         int r;
1620         bool maybe_shared;
1621         struct dm_cell_key data_key;
1622         struct dm_bio_prison_cell *data_cell;
1623         struct dm_thin_new_mapping *m;
1624         dm_block_t virt_begin, virt_end, data_begin;
1625
1626         while (begin != end) {
1627                 r = ensure_next_mapping(pool);
1628                 if (r)
1629                         /* we did our best */
1630                         return;
1631
1632                 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1633                                               &data_begin, &maybe_shared);
1634                 if (r)
1635                         /*
1636                          * Silently fail, letting any mappings we've
1637                          * created complete.
1638                          */
1639                         break;
1640
1641                 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1642                 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1643                         /* contention, we'll give up with this range */
1644                         begin = virt_end;
1645                         continue;
1646                 }
1647
1648                 /*
1649                  * IO may still be going to the destination block.  We must
1650                  * quiesce before we can do the removal.
1651                  */
1652                 m = get_next_mapping(pool);
1653                 m->tc = tc;
1654                 m->maybe_shared = maybe_shared;
1655                 m->virt_begin = virt_begin;
1656                 m->virt_end = virt_end;
1657                 m->data_block = data_begin;
1658                 m->cell = data_cell;
1659                 m->bio = bio;
1660
1661                 /*
1662                  * The parent bio must not complete before sub discard bios are
1663                  * chained to it (see end_discard's bio_chain)!
1664                  *
1665                  * This per-mapping bi_remaining increment is paired with
1666                  * the implicit decrement that occurs via bio_endio() in
1667                  * end_discard().
1668                  */
1669                 bio_inc_remaining(bio);
1670                 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1671                         pool->process_prepared_discard(m);
1672
1673                 begin = virt_end;
1674         }
1675 }
1676
1677 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1678 {
1679         struct bio *bio = virt_cell->holder;
1680         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1681
1682         /*
1683          * The virt_cell will only get freed once the origin bio completes.
1684          * This means it will remain locked while all the individual
1685          * passdown bios are in flight.
1686          */
1687         h->cell = virt_cell;
1688         break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1689
1690         /*
1691          * We complete the bio now, knowing that the bi_remaining field
1692          * will prevent completion until the sub range discards have
1693          * completed.
1694          */
1695         bio_endio(bio);
1696 }
1697
1698 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1699 {
1700         dm_block_t begin, end;
1701         struct dm_cell_key virt_key;
1702         struct dm_bio_prison_cell *virt_cell;
1703
1704         get_bio_block_range(tc, bio, &begin, &end);
1705         if (begin == end) {
1706                 /*
1707                  * The discard covers less than a block.
1708                  */
1709                 bio_endio(bio);
1710                 return;
1711         }
1712
1713         build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1714         if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1715                 /*
1716                  * Potential starvation issue: We're relying on the
1717                  * fs/application being well behaved, and not trying to
1718                  * send IO to a region at the same time as discarding it.
1719                  * If they do this persistently then it's possible this
1720                  * cell will never be granted.
1721                  */
1722                 return;
1723
1724         tc->pool->process_discard_cell(tc, virt_cell);
1725 }
1726
1727 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1728                           struct dm_cell_key *key,
1729                           struct dm_thin_lookup_result *lookup_result,
1730                           struct dm_bio_prison_cell *cell)
1731 {
1732         int r;
1733         dm_block_t data_block;
1734         struct pool *pool = tc->pool;
1735
1736         r = alloc_data_block(tc, &data_block);
1737         switch (r) {
1738         case 0:
1739                 schedule_internal_copy(tc, block, lookup_result->block,
1740                                        data_block, cell, bio);
1741                 break;
1742
1743         case -ENOSPC:
1744                 retry_bios_on_resume(pool, cell);
1745                 break;
1746
1747         default:
1748                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1749                             __func__, r);
1750                 cell_error(pool, cell);
1751                 break;
1752         }
1753 }
1754
1755 static void __remap_and_issue_shared_cell(void *context,
1756                                           struct dm_bio_prison_cell *cell)
1757 {
1758         struct remap_info *info = context;
1759         struct bio *bio;
1760
1761         while ((bio = bio_list_pop(&cell->bios))) {
1762                 if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1763                     bio_op(bio) == REQ_OP_DISCARD)
1764                         bio_list_add(&info->defer_bios, bio);
1765                 else {
1766                         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1767
1768                         h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1769                         inc_all_io_entry(info->tc->pool, bio);
1770                         bio_list_add(&info->issue_bios, bio);
1771                 }
1772         }
1773 }
1774
1775 static void remap_and_issue_shared_cell(struct thin_c *tc,
1776                                         struct dm_bio_prison_cell *cell,
1777                                         dm_block_t block)
1778 {
1779         struct bio *bio;
1780         struct remap_info info;
1781
1782         info.tc = tc;
1783         bio_list_init(&info.defer_bios);
1784         bio_list_init(&info.issue_bios);
1785
1786         cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1787                            &info, cell);
1788
1789         while ((bio = bio_list_pop(&info.defer_bios)))
1790                 thin_defer_bio(tc, bio);
1791
1792         while ((bio = bio_list_pop(&info.issue_bios)))
1793                 remap_and_issue(tc, bio, block);
1794 }
1795
1796 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1797                                dm_block_t block,
1798                                struct dm_thin_lookup_result *lookup_result,
1799                                struct dm_bio_prison_cell *virt_cell)
1800 {
1801         struct dm_bio_prison_cell *data_cell;
1802         struct pool *pool = tc->pool;
1803         struct dm_cell_key key;
1804
1805         /*
1806          * If cell is already occupied, then sharing is already in the process
1807          * of being broken so we have nothing further to do here.
1808          */
1809         build_data_key(tc->td, lookup_result->block, &key);
1810         if (bio_detain(pool, &key, bio, &data_cell)) {
1811                 cell_defer_no_holder(tc, virt_cell);
1812                 return;
1813         }
1814
1815         if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1816                 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1817                 cell_defer_no_holder(tc, virt_cell);
1818         } else {
1819                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1820
1821                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1822                 inc_all_io_entry(pool, bio);
1823                 remap_and_issue(tc, bio, lookup_result->block);
1824
1825                 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1826                 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1827         }
1828 }
1829
1830 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1831                             struct dm_bio_prison_cell *cell)
1832 {
1833         int r;
1834         dm_block_t data_block;
1835         struct pool *pool = tc->pool;
1836
1837         /*
1838          * Remap empty bios (flushes) immediately, without provisioning.
1839          */
1840         if (!bio->bi_iter.bi_size) {
1841                 inc_all_io_entry(pool, bio);
1842                 cell_defer_no_holder(tc, cell);
1843
1844                 remap_and_issue(tc, bio, 0);
1845                 return;
1846         }
1847
1848         /*
1849          * Fill read bios with zeroes and complete them immediately.
1850          */
1851         if (bio_data_dir(bio) == READ) {
1852                 zero_fill_bio(bio);
1853                 cell_defer_no_holder(tc, cell);
1854                 bio_endio(bio);
1855                 return;
1856         }
1857
1858         r = alloc_data_block(tc, &data_block);
1859         switch (r) {
1860         case 0:
1861                 if (tc->origin_dev)
1862                         schedule_external_copy(tc, block, data_block, cell, bio);
1863                 else
1864                         schedule_zero(tc, block, data_block, cell, bio);
1865                 break;
1866
1867         case -ENOSPC:
1868                 retry_bios_on_resume(pool, cell);
1869                 break;
1870
1871         default:
1872                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1873                             __func__, r);
1874                 cell_error(pool, cell);
1875                 break;
1876         }
1877 }
1878
1879 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1880 {
1881         int r;
1882         struct pool *pool = tc->pool;
1883         struct bio *bio = cell->holder;
1884         dm_block_t block = get_bio_block(tc, bio);
1885         struct dm_thin_lookup_result lookup_result;
1886
1887         if (tc->requeue_mode) {
1888                 cell_requeue(pool, cell);
1889                 return;
1890         }
1891
1892         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1893         switch (r) {
1894         case 0:
1895                 if (lookup_result.shared)
1896                         process_shared_bio(tc, bio, block, &lookup_result, cell);
1897                 else {
1898                         inc_all_io_entry(pool, bio);
1899                         remap_and_issue(tc, bio, lookup_result.block);
1900                         inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1901                 }
1902                 break;
1903
1904         case -ENODATA:
1905                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1906                         inc_all_io_entry(pool, bio);
1907                         cell_defer_no_holder(tc, cell);
1908
1909                         if (bio_end_sector(bio) <= tc->origin_size)
1910                                 remap_to_origin_and_issue(tc, bio);
1911
1912                         else if (bio->bi_iter.bi_sector < tc->origin_size) {
1913                                 zero_fill_bio(bio);
1914                                 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1915                                 remap_to_origin_and_issue(tc, bio);
1916
1917                         } else {
1918                                 zero_fill_bio(bio);
1919                                 bio_endio(bio);
1920                         }
1921                 } else
1922                         provision_block(tc, bio, block, cell);
1923                 break;
1924
1925         default:
1926                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1927                             __func__, r);
1928                 cell_defer_no_holder(tc, cell);
1929                 bio_io_error(bio);
1930                 break;
1931         }
1932 }
1933
1934 static void process_bio(struct thin_c *tc, struct bio *bio)
1935 {
1936         struct pool *pool = tc->pool;
1937         dm_block_t block = get_bio_block(tc, bio);
1938         struct dm_bio_prison_cell *cell;
1939         struct dm_cell_key key;
1940
1941         /*
1942          * If cell is already occupied, then the block is already
1943          * being provisioned so we have nothing further to do here.
1944          */
1945         build_virtual_key(tc->td, block, &key);
1946         if (bio_detain(pool, &key, bio, &cell))
1947                 return;
1948
1949         process_cell(tc, cell);
1950 }
1951
1952 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1953                                     struct dm_bio_prison_cell *cell)
1954 {
1955         int r;
1956         int rw = bio_data_dir(bio);
1957         dm_block_t block = get_bio_block(tc, bio);
1958         struct dm_thin_lookup_result lookup_result;
1959
1960         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1961         switch (r) {
1962         case 0:
1963                 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1964                         handle_unserviceable_bio(tc->pool, bio);
1965                         if (cell)
1966                                 cell_defer_no_holder(tc, cell);
1967                 } else {
1968                         inc_all_io_entry(tc->pool, bio);
1969                         remap_and_issue(tc, bio, lookup_result.block);
1970                         if (cell)
1971                                 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1972                 }
1973                 break;
1974
1975         case -ENODATA:
1976                 if (cell)
1977                         cell_defer_no_holder(tc, cell);
1978                 if (rw != READ) {
1979                         handle_unserviceable_bio(tc->pool, bio);
1980                         break;
1981                 }
1982
1983                 if (tc->origin_dev) {
1984                         inc_all_io_entry(tc->pool, bio);
1985                         remap_to_origin_and_issue(tc, bio);
1986                         break;
1987                 }
1988
1989                 zero_fill_bio(bio);
1990                 bio_endio(bio);
1991                 break;
1992
1993         default:
1994                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1995                             __func__, r);
1996                 if (cell)
1997                         cell_defer_no_holder(tc, cell);
1998                 bio_io_error(bio);
1999                 break;
2000         }
2001 }
2002
2003 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
2004 {
2005         __process_bio_read_only(tc, bio, NULL);
2006 }
2007
2008 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2009 {
2010         __process_bio_read_only(tc, cell->holder, cell);
2011 }
2012
2013 static void process_bio_success(struct thin_c *tc, struct bio *bio)
2014 {
2015         bio_endio(bio);
2016 }
2017
2018 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
2019 {
2020         bio_io_error(bio);
2021 }
2022
2023 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2024 {
2025         cell_success(tc->pool, cell);
2026 }
2027
2028 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2029 {
2030         cell_error(tc->pool, cell);
2031 }
2032
2033 /*
2034  * FIXME: should we also commit due to size of transaction, measured in
2035  * metadata blocks?
2036  */
2037 static int need_commit_due_to_time(struct pool *pool)
2038 {
2039         return !time_in_range(jiffies, pool->last_commit_jiffies,
2040                               pool->last_commit_jiffies + COMMIT_PERIOD);
2041 }
2042
2043 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2044 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2045
2046 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2047 {
2048         struct rb_node **rbp, *parent;
2049         struct dm_thin_endio_hook *pbd;
2050         sector_t bi_sector = bio->bi_iter.bi_sector;
2051
2052         rbp = &tc->sort_bio_list.rb_node;
2053         parent = NULL;
2054         while (*rbp) {
2055                 parent = *rbp;
2056                 pbd = thin_pbd(parent);
2057
2058                 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2059                         rbp = &(*rbp)->rb_left;
2060                 else
2061                         rbp = &(*rbp)->rb_right;
2062         }
2063
2064         pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2065         rb_link_node(&pbd->rb_node, parent, rbp);
2066         rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2067 }
2068
2069 static void __extract_sorted_bios(struct thin_c *tc)
2070 {
2071         struct rb_node *node;
2072         struct dm_thin_endio_hook *pbd;
2073         struct bio *bio;
2074
2075         for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2076                 pbd = thin_pbd(node);
2077                 bio = thin_bio(pbd);
2078
2079                 bio_list_add(&tc->deferred_bio_list, bio);
2080                 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2081         }
2082
2083         WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2084 }
2085
2086 static void __sort_thin_deferred_bios(struct thin_c *tc)
2087 {
2088         struct bio *bio;
2089         struct bio_list bios;
2090
2091         bio_list_init(&bios);
2092         bio_list_merge(&bios, &tc->deferred_bio_list);
2093         bio_list_init(&tc->deferred_bio_list);
2094
2095         /* Sort deferred_bio_list using rb-tree */
2096         while ((bio = bio_list_pop(&bios)))
2097                 __thin_bio_rb_add(tc, bio);
2098
2099         /*
2100          * Transfer the sorted bios in sort_bio_list back to
2101          * deferred_bio_list to allow lockless submission of
2102          * all bios.
2103          */
2104         __extract_sorted_bios(tc);
2105 }
2106
2107 static void process_thin_deferred_bios(struct thin_c *tc)
2108 {
2109         struct pool *pool = tc->pool;
2110         unsigned long flags;
2111         struct bio *bio;
2112         struct bio_list bios;
2113         struct blk_plug plug;
2114         unsigned count = 0;
2115
2116         if (tc->requeue_mode) {
2117                 error_thin_bio_list(tc, &tc->deferred_bio_list,
2118                                 BLK_STS_DM_REQUEUE);
2119                 return;
2120         }
2121
2122         bio_list_init(&bios);
2123
2124         spin_lock_irqsave(&tc->lock, flags);
2125
2126         if (bio_list_empty(&tc->deferred_bio_list)) {
2127                 spin_unlock_irqrestore(&tc->lock, flags);
2128                 return;
2129         }
2130
2131         __sort_thin_deferred_bios(tc);
2132
2133         bio_list_merge(&bios, &tc->deferred_bio_list);
2134         bio_list_init(&tc->deferred_bio_list);
2135
2136         spin_unlock_irqrestore(&tc->lock, flags);
2137
2138         blk_start_plug(&plug);
2139         while ((bio = bio_list_pop(&bios))) {
2140                 /*
2141                  * If we've got no free new_mapping structs, and processing
2142                  * this bio might require one, we pause until there are some
2143                  * prepared mappings to process.
2144                  */
2145                 if (ensure_next_mapping(pool)) {
2146                         spin_lock_irqsave(&tc->lock, flags);
2147                         bio_list_add(&tc->deferred_bio_list, bio);
2148                         bio_list_merge(&tc->deferred_bio_list, &bios);
2149                         spin_unlock_irqrestore(&tc->lock, flags);
2150                         break;
2151                 }
2152
2153                 if (bio_op(bio) == REQ_OP_DISCARD)
2154                         pool->process_discard(tc, bio);
2155                 else
2156                         pool->process_bio(tc, bio);
2157
2158                 if ((count++ & 127) == 0) {
2159                         throttle_work_update(&pool->throttle);
2160                         dm_pool_issue_prefetches(pool->pmd);
2161                 }
2162         }
2163         blk_finish_plug(&plug);
2164 }
2165
2166 static int cmp_cells(const void *lhs, const void *rhs)
2167 {
2168         struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2169         struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2170
2171         BUG_ON(!lhs_cell->holder);
2172         BUG_ON(!rhs_cell->holder);
2173
2174         if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2175                 return -1;
2176
2177         if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2178                 return 1;
2179
2180         return 0;
2181 }
2182
2183 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2184 {
2185         unsigned count = 0;
2186         struct dm_bio_prison_cell *cell, *tmp;
2187
2188         list_for_each_entry_safe(cell, tmp, cells, user_list) {
2189                 if (count >= CELL_SORT_ARRAY_SIZE)
2190                         break;
2191
2192                 pool->cell_sort_array[count++] = cell;
2193                 list_del(&cell->user_list);
2194         }
2195
2196         sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2197
2198         return count;
2199 }
2200
2201 static void process_thin_deferred_cells(struct thin_c *tc)
2202 {
2203         struct pool *pool = tc->pool;
2204         unsigned long flags;
2205         struct list_head cells;
2206         struct dm_bio_prison_cell *cell;
2207         unsigned i, j, count;
2208
2209         INIT_LIST_HEAD(&cells);
2210
2211         spin_lock_irqsave(&tc->lock, flags);
2212         list_splice_init(&tc->deferred_cells, &cells);
2213         spin_unlock_irqrestore(&tc->lock, flags);
2214
2215         if (list_empty(&cells))
2216                 return;
2217
2218         do {
2219                 count = sort_cells(tc->pool, &cells);
2220
2221                 for (i = 0; i < count; i++) {
2222                         cell = pool->cell_sort_array[i];
2223                         BUG_ON(!cell->holder);
2224
2225                         /*
2226                          * If we've got no free new_mapping structs, and processing
2227                          * this bio might require one, we pause until there are some
2228                          * prepared mappings to process.
2229                          */
2230                         if (ensure_next_mapping(pool)) {
2231                                 for (j = i; j < count; j++)
2232                                         list_add(&pool->cell_sort_array[j]->user_list, &cells);
2233
2234                                 spin_lock_irqsave(&tc->lock, flags);
2235                                 list_splice(&cells, &tc->deferred_cells);
2236                                 spin_unlock_irqrestore(&tc->lock, flags);
2237                                 return;
2238                         }
2239
2240                         if (bio_op(cell->holder) == REQ_OP_DISCARD)
2241                                 pool->process_discard_cell(tc, cell);
2242                         else
2243                                 pool->process_cell(tc, cell);
2244                 }
2245         } while (!list_empty(&cells));
2246 }
2247
2248 static void thin_get(struct thin_c *tc);
2249 static void thin_put(struct thin_c *tc);
2250
2251 /*
2252  * We can't hold rcu_read_lock() around code that can block.  So we
2253  * find a thin with the rcu lock held; bump a refcount; then drop
2254  * the lock.
2255  */
2256 static struct thin_c *get_first_thin(struct pool *pool)
2257 {
2258         struct thin_c *tc = NULL;
2259
2260         rcu_read_lock();
2261         if (!list_empty(&pool->active_thins)) {
2262                 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2263                 thin_get(tc);
2264         }
2265         rcu_read_unlock();
2266
2267         return tc;
2268 }
2269
2270 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2271 {
2272         struct thin_c *old_tc = tc;
2273
2274         rcu_read_lock();
2275         list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2276                 thin_get(tc);
2277                 thin_put(old_tc);
2278                 rcu_read_unlock();
2279                 return tc;
2280         }
2281         thin_put(old_tc);
2282         rcu_read_unlock();
2283
2284         return NULL;
2285 }
2286
2287 static void process_deferred_bios(struct pool *pool)
2288 {
2289         unsigned long flags;
2290         struct bio *bio;
2291         struct bio_list bios;
2292         struct thin_c *tc;
2293
2294         tc = get_first_thin(pool);
2295         while (tc) {
2296                 process_thin_deferred_cells(tc);
2297                 process_thin_deferred_bios(tc);
2298                 tc = get_next_thin(pool, tc);
2299         }
2300
2301         /*
2302          * If there are any deferred flush bios, we must commit
2303          * the metadata before issuing them.
2304          */
2305         bio_list_init(&bios);
2306         spin_lock_irqsave(&pool->lock, flags);
2307         bio_list_merge(&bios, &pool->deferred_flush_bios);
2308         bio_list_init(&pool->deferred_flush_bios);
2309         spin_unlock_irqrestore(&pool->lock, flags);
2310
2311         if (bio_list_empty(&bios) &&
2312             !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2313                 return;
2314
2315         if (commit(pool)) {
2316                 while ((bio = bio_list_pop(&bios)))
2317                         bio_io_error(bio);
2318                 return;
2319         }
2320         pool->last_commit_jiffies = jiffies;
2321
2322         while ((bio = bio_list_pop(&bios)))
2323                 generic_make_request(bio);
2324 }
2325
2326 static void do_worker(struct work_struct *ws)
2327 {
2328         struct pool *pool = container_of(ws, struct pool, worker);
2329
2330         throttle_work_start(&pool->throttle);
2331         dm_pool_issue_prefetches(pool->pmd);
2332         throttle_work_update(&pool->throttle);
2333         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2334         throttle_work_update(&pool->throttle);
2335         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2336         throttle_work_update(&pool->throttle);
2337         process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2338         throttle_work_update(&pool->throttle);
2339         process_deferred_bios(pool);
2340         throttle_work_complete(&pool->throttle);
2341 }
2342
2343 /*
2344  * We want to commit periodically so that not too much
2345  * unwritten data builds up.
2346  */
2347 static void do_waker(struct work_struct *ws)
2348 {
2349         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2350         wake_worker(pool);
2351         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2352 }
2353
2354 static void notify_of_pool_mode_change_to_oods(struct pool *pool);
2355
2356 /*
2357  * We're holding onto IO to allow userland time to react.  After the
2358  * timeout either the pool will have been resized (and thus back in
2359  * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2360  */
2361 static void do_no_space_timeout(struct work_struct *ws)
2362 {
2363         struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2364                                          no_space_timeout);
2365
2366         if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2367                 pool->pf.error_if_no_space = true;
2368                 notify_of_pool_mode_change_to_oods(pool);
2369                 error_retry_list_with_code(pool, BLK_STS_NOSPC);
2370         }
2371 }
2372
2373 /*----------------------------------------------------------------*/
2374
2375 struct pool_work {
2376         struct work_struct worker;
2377         struct completion complete;
2378 };
2379
2380 static struct pool_work *to_pool_work(struct work_struct *ws)
2381 {
2382         return container_of(ws, struct pool_work, worker);
2383 }
2384
2385 static void pool_work_complete(struct pool_work *pw)
2386 {
2387         complete(&pw->complete);
2388 }
2389
2390 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2391                            void (*fn)(struct work_struct *))
2392 {
2393         INIT_WORK_ONSTACK(&pw->worker, fn);
2394         init_completion(&pw->complete);
2395         queue_work(pool->wq, &pw->worker);
2396         wait_for_completion(&pw->complete);
2397 }
2398
2399 /*----------------------------------------------------------------*/
2400
2401 struct noflush_work {
2402         struct pool_work pw;
2403         struct thin_c *tc;
2404 };
2405
2406 static struct noflush_work *to_noflush(struct work_struct *ws)
2407 {
2408         return container_of(to_pool_work(ws), struct noflush_work, pw);
2409 }
2410
2411 static void do_noflush_start(struct work_struct *ws)
2412 {
2413         struct noflush_work *w = to_noflush(ws);
2414         w->tc->requeue_mode = true;
2415         requeue_io(w->tc);
2416         pool_work_complete(&w->pw);
2417 }
2418
2419 static void do_noflush_stop(struct work_struct *ws)
2420 {
2421         struct noflush_work *w = to_noflush(ws);
2422         w->tc->requeue_mode = false;
2423         pool_work_complete(&w->pw);
2424 }
2425
2426 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2427 {
2428         struct noflush_work w;
2429
2430         w.tc = tc;
2431         pool_work_wait(&w.pw, tc->pool, fn);
2432 }
2433
2434 /*----------------------------------------------------------------*/
2435
2436 static enum pool_mode get_pool_mode(struct pool *pool)
2437 {
2438         return pool->pf.mode;
2439 }
2440
2441 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2442 {
2443         dm_table_event(pool->ti->table);
2444         DMINFO("%s: switching pool to %s mode",
2445                dm_device_name(pool->pool_md), new_mode);
2446 }
2447
2448 static void notify_of_pool_mode_change_to_oods(struct pool *pool)
2449 {
2450         if (!pool->pf.error_if_no_space)
2451                 notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)");
2452         else
2453                 notify_of_pool_mode_change(pool, "out-of-data-space (error IO)");
2454 }
2455
2456 static bool passdown_enabled(struct pool_c *pt)
2457 {
2458         return pt->adjusted_pf.discard_passdown;
2459 }
2460
2461 static void set_discard_callbacks(struct pool *pool)
2462 {
2463         struct pool_c *pt = pool->ti->private;
2464
2465         if (passdown_enabled(pt)) {
2466                 pool->process_discard_cell = process_discard_cell_passdown;
2467                 pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2468                 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2469         } else {
2470                 pool->process_discard_cell = process_discard_cell_no_passdown;
2471                 pool->process_prepared_discard = process_prepared_discard_no_passdown;
2472         }
2473 }
2474
2475 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2476 {
2477         struct pool_c *pt = pool->ti->private;
2478         bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2479         enum pool_mode old_mode = get_pool_mode(pool);
2480         unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2481
2482         /*
2483          * Never allow the pool to transition to PM_WRITE mode if user
2484          * intervention is required to verify metadata and data consistency.
2485          */
2486         if (new_mode == PM_WRITE && needs_check) {
2487                 DMERR("%s: unable to switch pool to write mode until repaired.",
2488                       dm_device_name(pool->pool_md));
2489                 if (old_mode != new_mode)
2490                         new_mode = old_mode;
2491                 else
2492                         new_mode = PM_READ_ONLY;
2493         }
2494         /*
2495          * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2496          * not going to recover without a thin_repair.  So we never let the
2497          * pool move out of the old mode.
2498          */
2499         if (old_mode == PM_FAIL)
2500                 new_mode = old_mode;
2501
2502         switch (new_mode) {
2503         case PM_FAIL:
2504                 if (old_mode != new_mode)
2505                         notify_of_pool_mode_change(pool, "failure");
2506                 dm_pool_metadata_read_only(pool->pmd);
2507                 pool->process_bio = process_bio_fail;
2508                 pool->process_discard = process_bio_fail;
2509                 pool->process_cell = process_cell_fail;
2510                 pool->process_discard_cell = process_cell_fail;
2511                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2512                 pool->process_prepared_discard = process_prepared_discard_fail;
2513
2514                 error_retry_list(pool);
2515                 break;
2516
2517         case PM_OUT_OF_METADATA_SPACE:
2518         case PM_READ_ONLY:
2519                 if (!is_read_only_pool_mode(old_mode))
2520                         notify_of_pool_mode_change(pool, "read-only");
2521                 dm_pool_metadata_read_only(pool->pmd);
2522                 pool->process_bio = process_bio_read_only;
2523                 pool->process_discard = process_bio_success;
2524                 pool->process_cell = process_cell_read_only;
2525                 pool->process_discard_cell = process_cell_success;
2526                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2527                 pool->process_prepared_discard = process_prepared_discard_success;
2528
2529                 error_retry_list(pool);
2530                 break;
2531
2532         case PM_OUT_OF_DATA_SPACE:
2533                 /*
2534                  * Ideally we'd never hit this state; the low water mark
2535                  * would trigger userland to extend the pool before we
2536                  * completely run out of data space.  However, many small
2537                  * IOs to unprovisioned space can consume data space at an
2538                  * alarming rate.  Adjust your low water mark if you're
2539                  * frequently seeing this mode.
2540                  */
2541                 if (old_mode != new_mode)
2542                         notify_of_pool_mode_change_to_oods(pool);
2543                 pool->out_of_data_space = true;
2544                 pool->process_bio = process_bio_read_only;
2545                 pool->process_discard = process_discard_bio;
2546                 pool->process_cell = process_cell_read_only;
2547                 pool->process_prepared_mapping = process_prepared_mapping;
2548                 set_discard_callbacks(pool);
2549
2550                 if (!pool->pf.error_if_no_space && no_space_timeout)
2551                         queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2552                 break;
2553
2554         case PM_WRITE:
2555                 if (old_mode != new_mode)
2556                         notify_of_pool_mode_change(pool, "write");
2557                 if (old_mode == PM_OUT_OF_DATA_SPACE)
2558                         cancel_delayed_work_sync(&pool->no_space_timeout);
2559                 pool->out_of_data_space = false;
2560                 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2561                 dm_pool_metadata_read_write(pool->pmd);
2562                 pool->process_bio = process_bio;
2563                 pool->process_discard = process_discard_bio;
2564                 pool->process_cell = process_cell;
2565                 pool->process_prepared_mapping = process_prepared_mapping;
2566                 set_discard_callbacks(pool);
2567                 break;
2568         }
2569
2570         pool->pf.mode = new_mode;
2571         /*
2572          * The pool mode may have changed, sync it so bind_control_target()
2573          * doesn't cause an unexpected mode transition on resume.
2574          */
2575         pt->adjusted_pf.mode = new_mode;
2576 }
2577
2578 static void abort_transaction(struct pool *pool)
2579 {
2580         const char *dev_name = dm_device_name(pool->pool_md);
2581
2582         DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2583         if (dm_pool_abort_metadata(pool->pmd)) {
2584                 DMERR("%s: failed to abort metadata transaction", dev_name);
2585                 set_pool_mode(pool, PM_FAIL);
2586         }
2587
2588         if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2589                 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2590                 set_pool_mode(pool, PM_FAIL);
2591         }
2592 }
2593
2594 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2595 {
2596         DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2597                     dm_device_name(pool->pool_md), op, r);
2598
2599         abort_transaction(pool);
2600         set_pool_mode(pool, PM_READ_ONLY);
2601 }
2602
2603 /*----------------------------------------------------------------*/
2604
2605 /*
2606  * Mapping functions.
2607  */
2608
2609 /*
2610  * Called only while mapping a thin bio to hand it over to the workqueue.
2611  */
2612 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2613 {
2614         unsigned long flags;
2615         struct pool *pool = tc->pool;
2616
2617         spin_lock_irqsave(&tc->lock, flags);
2618         bio_list_add(&tc->deferred_bio_list, bio);
2619         spin_unlock_irqrestore(&tc->lock, flags);
2620
2621         wake_worker(pool);
2622 }
2623
2624 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2625 {
2626         struct pool *pool = tc->pool;
2627
2628         throttle_lock(&pool->throttle);
2629         thin_defer_bio(tc, bio);
2630         throttle_unlock(&pool->throttle);
2631 }
2632
2633 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2634 {
2635         unsigned long flags;
2636         struct pool *pool = tc->pool;
2637
2638         throttle_lock(&pool->throttle);
2639         spin_lock_irqsave(&tc->lock, flags);
2640         list_add_tail(&cell->user_list, &tc->deferred_cells);
2641         spin_unlock_irqrestore(&tc->lock, flags);
2642         throttle_unlock(&pool->throttle);
2643
2644         wake_worker(pool);
2645 }
2646
2647 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2648 {
2649         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2650
2651         h->tc = tc;
2652         h->shared_read_entry = NULL;
2653         h->all_io_entry = NULL;
2654         h->overwrite_mapping = NULL;
2655         h->cell = NULL;
2656 }
2657
2658 /*
2659  * Non-blocking function called from the thin target's map function.
2660  */
2661 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2662 {
2663         int r;
2664         struct thin_c *tc = ti->private;
2665         dm_block_t block = get_bio_block(tc, bio);
2666         struct dm_thin_device *td = tc->td;
2667         struct dm_thin_lookup_result result;
2668         struct dm_bio_prison_cell *virt_cell, *data_cell;
2669         struct dm_cell_key key;
2670
2671         thin_hook_bio(tc, bio);
2672
2673         if (tc->requeue_mode) {
2674                 bio->bi_status = BLK_STS_DM_REQUEUE;
2675                 bio_endio(bio);
2676                 return DM_MAPIO_SUBMITTED;
2677         }
2678
2679         if (get_pool_mode(tc->pool) == PM_FAIL) {
2680                 bio_io_error(bio);
2681                 return DM_MAPIO_SUBMITTED;
2682         }
2683
2684         if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2685                 thin_defer_bio_with_throttle(tc, bio);
2686                 return DM_MAPIO_SUBMITTED;
2687         }
2688
2689         /*
2690          * We must hold the virtual cell before doing the lookup, otherwise
2691          * there's a race with discard.
2692          */
2693         build_virtual_key(tc->td, block, &key);
2694         if (bio_detain(tc->pool, &key, bio, &virt_cell))
2695                 return DM_MAPIO_SUBMITTED;
2696
2697         r = dm_thin_find_block(td, block, 0, &result);
2698
2699         /*
2700          * Note that we defer readahead too.
2701          */
2702         switch (r) {
2703         case 0:
2704                 if (unlikely(result.shared)) {
2705                         /*
2706                          * We have a race condition here between the
2707                          * result.shared value returned by the lookup and
2708                          * snapshot creation, which may cause new
2709                          * sharing.
2710                          *
2711                          * To avoid this always quiesce the origin before
2712                          * taking the snap.  You want to do this anyway to
2713                          * ensure a consistent application view
2714                          * (i.e. lockfs).
2715                          *
2716                          * More distant ancestors are irrelevant. The
2717                          * shared flag will be set in their case.
2718                          */
2719                         thin_defer_cell(tc, virt_cell);
2720                         return DM_MAPIO_SUBMITTED;
2721                 }
2722
2723                 build_data_key(tc->td, result.block, &key);
2724                 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2725                         cell_defer_no_holder(tc, virt_cell);
2726                         return DM_MAPIO_SUBMITTED;
2727                 }
2728
2729                 inc_all_io_entry(tc->pool, bio);
2730                 cell_defer_no_holder(tc, data_cell);
2731                 cell_defer_no_holder(tc, virt_cell);
2732
2733                 remap(tc, bio, result.block);
2734                 return DM_MAPIO_REMAPPED;
2735
2736         case -ENODATA:
2737         case -EWOULDBLOCK:
2738                 thin_defer_cell(tc, virt_cell);
2739                 return DM_MAPIO_SUBMITTED;
2740
2741         default:
2742                 /*
2743                  * Must always call bio_io_error on failure.
2744                  * dm_thin_find_block can fail with -EINVAL if the
2745                  * pool is switched to fail-io mode.
2746                  */
2747                 bio_io_error(bio);
2748                 cell_defer_no_holder(tc, virt_cell);
2749                 return DM_MAPIO_SUBMITTED;
2750         }
2751 }
2752
2753 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2754 {
2755         struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2756         struct request_queue *q;
2757
2758         if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2759                 return 1;
2760
2761         q = bdev_get_queue(pt->data_dev->bdev);
2762         return bdi_congested(q->backing_dev_info, bdi_bits);
2763 }
2764
2765 static void requeue_bios(struct pool *pool)
2766 {
2767         unsigned long flags;
2768         struct thin_c *tc;
2769
2770         rcu_read_lock();
2771         list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2772                 spin_lock_irqsave(&tc->lock, flags);
2773                 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2774                 bio_list_init(&tc->retry_on_resume_list);
2775                 spin_unlock_irqrestore(&tc->lock, flags);
2776         }
2777         rcu_read_unlock();
2778 }
2779
2780 /*----------------------------------------------------------------
2781  * Binding of control targets to a pool object
2782  *--------------------------------------------------------------*/
2783 static bool data_dev_supports_discard(struct pool_c *pt)
2784 {
2785         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2786
2787         return q && blk_queue_discard(q);
2788 }
2789
2790 static bool is_factor(sector_t block_size, uint32_t n)
2791 {
2792         return !sector_div(block_size, n);
2793 }
2794
2795 /*
2796  * If discard_passdown was enabled verify that the data device
2797  * supports discards.  Disable discard_passdown if not.
2798  */
2799 static void disable_passdown_if_not_supported(struct pool_c *pt)
2800 {
2801         struct pool *pool = pt->pool;
2802         struct block_device *data_bdev = pt->data_dev->bdev;
2803         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2804         const char *reason = NULL;
2805         char buf[BDEVNAME_SIZE];
2806
2807         if (!pt->adjusted_pf.discard_passdown)
2808                 return;
2809
2810         if (!data_dev_supports_discard(pt))
2811                 reason = "discard unsupported";
2812
2813         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2814                 reason = "max discard sectors smaller than a block";
2815
2816         if (reason) {
2817                 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2818                 pt->adjusted_pf.discard_passdown = false;
2819         }
2820 }
2821
2822 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2823 {
2824         struct pool_c *pt = ti->private;
2825
2826         /*
2827          * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2828          */
2829         enum pool_mode old_mode = get_pool_mode(pool);
2830         enum pool_mode new_mode = pt->adjusted_pf.mode;
2831
2832         /*
2833          * Don't change the pool's mode until set_pool_mode() below.
2834          * Otherwise the pool's process_* function pointers may
2835          * not match the desired pool mode.
2836          */
2837         pt->adjusted_pf.mode = old_mode;
2838
2839         pool->ti = ti;
2840         pool->pf = pt->adjusted_pf;
2841         pool->low_water_blocks = pt->low_water_blocks;
2842
2843         set_pool_mode(pool, new_mode);
2844
2845         return 0;
2846 }
2847
2848 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2849 {
2850         if (pool->ti == ti)
2851                 pool->ti = NULL;
2852 }
2853
2854 /*----------------------------------------------------------------
2855  * Pool creation
2856  *--------------------------------------------------------------*/
2857 /* Initialize pool features. */
2858 static void pool_features_init(struct pool_features *pf)
2859 {
2860         pf->mode = PM_WRITE;
2861         pf->zero_new_blocks = true;
2862         pf->discard_enabled = true;
2863         pf->discard_passdown = true;
2864         pf->error_if_no_space = false;
2865 }
2866
2867 static void __pool_destroy(struct pool *pool)
2868 {
2869         __pool_table_remove(pool);
2870
2871         vfree(pool->cell_sort_array);
2872         if (dm_pool_metadata_close(pool->pmd) < 0)
2873                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2874
2875         dm_bio_prison_destroy(pool->prison);
2876         dm_kcopyd_client_destroy(pool->copier);
2877
2878         if (pool->wq)
2879                 destroy_workqueue(pool->wq);
2880
2881         if (pool->next_mapping)
2882                 mempool_free(pool->next_mapping, &pool->mapping_pool);
2883         mempool_exit(&pool->mapping_pool);
2884         dm_deferred_set_destroy(pool->shared_read_ds);
2885         dm_deferred_set_destroy(pool->all_io_ds);
2886         kfree(pool);
2887 }
2888
2889 static struct kmem_cache *_new_mapping_cache;
2890
2891 static struct pool *pool_create(struct mapped_device *pool_md,
2892                                 struct block_device *metadata_dev,
2893                                 unsigned long block_size,
2894                                 int read_only, char **error)
2895 {
2896         int r;
2897         void *err_p;
2898         struct pool *pool;
2899         struct dm_pool_metadata *pmd;
2900         bool format_device = read_only ? false : true;
2901
2902         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2903         if (IS_ERR(pmd)) {
2904                 *error = "Error creating metadata object";
2905                 return (struct pool *)pmd;
2906         }
2907
2908         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2909         if (!pool) {
2910                 *error = "Error allocating memory for pool";
2911                 err_p = ERR_PTR(-ENOMEM);
2912                 goto bad_pool;
2913         }
2914
2915         pool->pmd = pmd;
2916         pool->sectors_per_block = block_size;
2917         if (block_size & (block_size - 1))
2918                 pool->sectors_per_block_shift = -1;
2919         else
2920                 pool->sectors_per_block_shift = __ffs(block_size);
2921         pool->low_water_blocks = 0;
2922         pool_features_init(&pool->pf);
2923         pool->prison = dm_bio_prison_create();
2924         if (!pool->prison) {
2925                 *error = "Error creating pool's bio prison";
2926                 err_p = ERR_PTR(-ENOMEM);
2927                 goto bad_prison;
2928         }
2929
2930         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2931         if (IS_ERR(pool->copier)) {
2932                 r = PTR_ERR(pool->copier);
2933                 *error = "Error creating pool's kcopyd client";
2934                 err_p = ERR_PTR(r);
2935                 goto bad_kcopyd_client;
2936         }
2937
2938         /*
2939          * Create singlethreaded workqueue that will service all devices
2940          * that use this metadata.
2941          */
2942         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2943         if (!pool->wq) {
2944                 *error = "Error creating pool's workqueue";
2945                 err_p = ERR_PTR(-ENOMEM);
2946                 goto bad_wq;
2947         }
2948
2949         throttle_init(&pool->throttle);
2950         INIT_WORK(&pool->worker, do_worker);
2951         INIT_DELAYED_WORK(&pool->waker, do_waker);
2952         INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2953         spin_lock_init(&pool->lock);
2954         bio_list_init(&pool->deferred_flush_bios);
2955         INIT_LIST_HEAD(&pool->prepared_mappings);
2956         INIT_LIST_HEAD(&pool->prepared_discards);
2957         INIT_LIST_HEAD(&pool->prepared_discards_pt2);
2958         INIT_LIST_HEAD(&pool->active_thins);
2959         pool->low_water_triggered = false;
2960         pool->suspended = true;
2961         pool->out_of_data_space = false;
2962
2963         pool->shared_read_ds = dm_deferred_set_create();
2964         if (!pool->shared_read_ds) {
2965                 *error = "Error creating pool's shared read deferred set";
2966                 err_p = ERR_PTR(-ENOMEM);
2967                 goto bad_shared_read_ds;
2968         }
2969
2970         pool->all_io_ds = dm_deferred_set_create();
2971         if (!pool->all_io_ds) {
2972                 *error = "Error creating pool's all io deferred set";
2973                 err_p = ERR_PTR(-ENOMEM);
2974                 goto bad_all_io_ds;
2975         }
2976
2977         pool->next_mapping = NULL;
2978         r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
2979                                    _new_mapping_cache);
2980         if (r) {
2981                 *error = "Error creating pool's mapping mempool";
2982                 err_p = ERR_PTR(r);
2983                 goto bad_mapping_pool;
2984         }
2985
2986         pool->cell_sort_array =
2987                 vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
2988                                    sizeof(*pool->cell_sort_array)));
2989         if (!pool->cell_sort_array) {
2990                 *error = "Error allocating cell sort array";
2991                 err_p = ERR_PTR(-ENOMEM);
2992                 goto bad_sort_array;
2993         }
2994
2995         pool->ref_count = 1;
2996         pool->last_commit_jiffies = jiffies;
2997         pool->pool_md = pool_md;
2998         pool->md_dev = metadata_dev;
2999         __pool_table_insert(pool);
3000
3001         return pool;
3002
3003 bad_sort_array:
3004         mempool_exit(&pool->mapping_pool);
3005 bad_mapping_pool:
3006         dm_deferred_set_destroy(pool->all_io_ds);
3007 bad_all_io_ds:
3008         dm_deferred_set_destroy(pool->shared_read_ds);
3009 bad_shared_read_ds:
3010         destroy_workqueue(pool->wq);
3011 bad_wq:
3012         dm_kcopyd_client_destroy(pool->copier);
3013 bad_kcopyd_client:
3014         dm_bio_prison_destroy(pool->prison);
3015 bad_prison:
3016         kfree(pool);
3017 bad_pool:
3018         if (dm_pool_metadata_close(pmd))
3019                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
3020
3021         return err_p;
3022 }
3023
3024 static void __pool_inc(struct pool *pool)
3025 {
3026         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3027         pool->ref_count++;
3028 }
3029
3030 static void __pool_dec(struct pool *pool)
3031 {
3032         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3033         BUG_ON(!pool->ref_count);
3034         if (!--pool->ref_count)
3035                 __pool_destroy(pool);
3036 }
3037
3038 static struct pool *__pool_find(struct mapped_device *pool_md,
3039                                 struct block_device *metadata_dev,
3040                                 unsigned long block_size, int read_only,
3041                                 char **error, int *created)
3042 {
3043         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3044
3045         if (pool) {
3046                 if (pool->pool_md != pool_md) {
3047                         *error = "metadata device already in use by a pool";
3048                         return ERR_PTR(-EBUSY);
3049                 }
3050                 __pool_inc(pool);
3051
3052         } else {
3053                 pool = __pool_table_lookup(pool_md);
3054                 if (pool) {
3055                         if (pool->md_dev != metadata_dev) {
3056                                 *error = "different pool cannot replace a pool";
3057                                 return ERR_PTR(-EINVAL);
3058                         }
3059                         __pool_inc(pool);
3060
3061                 } else {
3062                         pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
3063                         *created = 1;
3064                 }
3065         }
3066
3067         return pool;
3068 }
3069
3070 /*----------------------------------------------------------------
3071  * Pool target methods
3072  *--------------------------------------------------------------*/
3073 static void pool_dtr(struct dm_target *ti)
3074 {
3075         struct pool_c *pt = ti->private;
3076
3077         mutex_lock(&dm_thin_pool_table.mutex);
3078
3079         unbind_control_target(pt->pool, ti);
3080         __pool_dec(pt->pool);
3081         dm_put_device(ti, pt->metadata_dev);
3082         dm_put_device(ti, pt->data_dev);
3083         kfree(pt);
3084
3085         mutex_unlock(&dm_thin_pool_table.mutex);
3086 }
3087
3088 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3089                                struct dm_target *ti)
3090 {
3091         int r;
3092         unsigned argc;
3093         const char *arg_name;
3094
3095         static const struct dm_arg _args[] = {
3096                 {0, 4, "Invalid number of pool feature arguments"},
3097         };
3098
3099         /*
3100          * No feature arguments supplied.
3101          */
3102         if (!as->argc)
3103                 return 0;
3104
3105         r = dm_read_arg_group(_args, as, &argc, &ti->error);
3106         if (r)
3107                 return -EINVAL;
3108
3109         while (argc && !r) {
3110                 arg_name = dm_shift_arg(as);
3111                 argc--;
3112
3113                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
3114                         pf->zero_new_blocks = false;
3115
3116                 else if (!strcasecmp(arg_name, "ignore_discard"))
3117                         pf->discard_enabled = false;
3118
3119                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
3120                         pf->discard_passdown = false;
3121
3122                 else if (!strcasecmp(arg_name, "read_only"))
3123                         pf->mode = PM_READ_ONLY;
3124
3125                 else if (!strcasecmp(arg_name, "error_if_no_space"))
3126                         pf->error_if_no_space = true;
3127
3128                 else {
3129                         ti->error = "Unrecognised pool feature requested";
3130                         r = -EINVAL;
3131                         break;
3132                 }
3133         }
3134
3135         return r;
3136 }
3137
3138 static void metadata_low_callback(void *context)
3139 {
3140         struct pool *pool = context;
3141
3142         DMWARN("%s: reached low water mark for metadata device: sending event.",
3143                dm_device_name(pool->pool_md));
3144
3145         dm_table_event(pool->ti->table);
3146 }
3147
3148 static sector_t get_dev_size(struct block_device *bdev)
3149 {
3150         return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3151 }
3152
3153 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3154 {
3155         sector_t metadata_dev_size = get_dev_size(bdev);
3156         char buffer[BDEVNAME_SIZE];
3157
3158         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3159                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3160                        bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3161 }
3162
3163 static sector_t get_metadata_dev_size(struct block_device *bdev)
3164 {
3165         sector_t metadata_dev_size = get_dev_size(bdev);
3166
3167         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3168                 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3169
3170         return metadata_dev_size;
3171 }
3172
3173 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3174 {
3175         sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3176
3177         sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3178
3179         return metadata_dev_size;
3180 }
3181
3182 /*
3183  * When a metadata threshold is crossed a dm event is triggered, and
3184  * userland should respond by growing the metadata device.  We could let
3185  * userland set the threshold, like we do with the data threshold, but I'm
3186  * not sure they know enough to do this well.
3187  */
3188 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3189 {
3190         /*
3191          * 4M is ample for all ops with the possible exception of thin
3192          * device deletion which is harmless if it fails (just retry the
3193          * delete after you've grown the device).
3194          */
3195         dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3196         return min((dm_block_t)1024ULL /* 4M */, quarter);
3197 }
3198
3199 /*
3200  * thin-pool <metadata dev> <data dev>
3201  *           <data block size (sectors)>
3202  *           <low water mark (blocks)>
3203  *           [<#feature args> [<arg>]*]
3204  *
3205  * Optional feature arguments are:
3206  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3207  *           ignore_discard: disable discard
3208  *           no_discard_passdown: don't pass discards down to the data device
3209  *           read_only: Don't allow any changes to be made to the pool metadata.
3210  *           error_if_no_space: error IOs, instead of queueing, if no space.
3211  */
3212 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3213 {
3214         int r, pool_created = 0;
3215         struct pool_c *pt;
3216         struct pool *pool;
3217         struct pool_features pf;
3218         struct dm_arg_set as;
3219         struct dm_dev *data_dev;
3220         unsigned long block_size;
3221         dm_block_t low_water_blocks;
3222         struct dm_dev *metadata_dev;
3223         fmode_t metadata_mode;
3224
3225         /*
3226          * FIXME Remove validation from scope of lock.
3227          */
3228         mutex_lock(&dm_thin_pool_table.mutex);
3229
3230         if (argc < 4) {
3231                 ti->error = "Invalid argument count";
3232                 r = -EINVAL;
3233                 goto out_unlock;
3234         }
3235
3236         as.argc = argc;
3237         as.argv = argv;
3238
3239         /*
3240          * Set default pool features.
3241          */
3242         pool_features_init(&pf);
3243
3244         dm_consume_args(&as, 4);
3245         r = parse_pool_features(&as, &pf, ti);
3246         if (r)
3247                 goto out_unlock;
3248
3249         metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3250         r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3251         if (r) {
3252                 ti->error = "Error opening metadata block device";
3253                 goto out_unlock;
3254         }
3255         warn_if_metadata_device_too_big(metadata_dev->bdev);
3256
3257         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3258         if (r) {
3259                 ti->error = "Error getting data device";
3260                 goto out_metadata;
3261         }
3262
3263         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3264             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3265             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3266             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3267                 ti->error = "Invalid block size";
3268                 r = -EINVAL;
3269                 goto out;
3270         }
3271
3272         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3273                 ti->error = "Invalid low water mark";
3274                 r = -EINVAL;
3275                 goto out;
3276         }
3277
3278         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3279         if (!pt) {
3280                 r = -ENOMEM;
3281                 goto out;
3282         }
3283
3284         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3285                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3286         if (IS_ERR(pool)) {
3287                 r = PTR_ERR(pool);
3288                 goto out_free_pt;
3289         }
3290
3291         /*
3292          * 'pool_created' reflects whether this is the first table load.
3293          * Top level discard support is not allowed to be changed after
3294          * initial load.  This would require a pool reload to trigger thin
3295          * device changes.
3296          */
3297         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3298                 ti->error = "Discard support cannot be disabled once enabled";
3299                 r = -EINVAL;
3300                 goto out_flags_changed;
3301         }
3302
3303         pt->pool = pool;
3304         pt->ti = ti;
3305         pt->metadata_dev = metadata_dev;
3306         pt->data_dev = data_dev;
3307         pt->low_water_blocks = low_water_blocks;
3308         pt->adjusted_pf = pt->requested_pf = pf;
3309         ti->num_flush_bios = 1;
3310
3311         /*
3312          * Only need to enable discards if the pool should pass
3313          * them down to the data device.  The thin device's discard
3314          * processing will cause mappings to be removed from the btree.
3315          */
3316         if (pf.discard_enabled && pf.discard_passdown) {
3317                 ti->num_discard_bios = 1;
3318
3319                 /*
3320                  * Setting 'discards_supported' circumvents the normal
3321                  * stacking of discard limits (this keeps the pool and
3322                  * thin devices' discard limits consistent).
3323                  */
3324                 ti->discards_supported = true;
3325         }
3326         ti->private = pt;
3327
3328         r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3329                                                 calc_metadata_threshold(pt),
3330                                                 metadata_low_callback,
3331                                                 pool);
3332         if (r)
3333                 goto out_flags_changed;
3334
3335         pt->callbacks.congested_fn = pool_is_congested;
3336         dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3337
3338         mutex_unlock(&dm_thin_pool_table.mutex);
3339
3340         return 0;
3341
3342 out_flags_changed:
3343         __pool_dec(pool);
3344 out_free_pt:
3345         kfree(pt);
3346 out:
3347         dm_put_device(ti, data_dev);
3348 out_metadata:
3349         dm_put_device(ti, metadata_dev);
3350 out_unlock:
3351         mutex_unlock(&dm_thin_pool_table.mutex);
3352
3353         return r;
3354 }
3355
3356 static int pool_map(struct dm_target *ti, struct bio *bio)
3357 {
3358         int r;
3359         struct pool_c *pt = ti->private;
3360         struct pool *pool = pt->pool;
3361         unsigned long flags;
3362
3363         /*
3364          * As this is a singleton target, ti->begin is always zero.
3365          */
3366         spin_lock_irqsave(&pool->lock, flags);
3367         bio_set_dev(bio, pt->data_dev->bdev);
3368         r = DM_MAPIO_REMAPPED;
3369         spin_unlock_irqrestore(&pool->lock, flags);
3370
3371         return r;
3372 }
3373
3374 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3375 {
3376         int r;
3377         struct pool_c *pt = ti->private;
3378         struct pool *pool = pt->pool;
3379         sector_t data_size = ti->len;
3380         dm_block_t sb_data_size;
3381
3382         *need_commit = false;
3383
3384         (void) sector_div(data_size, pool->sectors_per_block);
3385
3386         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3387         if (r) {
3388                 DMERR("%s: failed to retrieve data device size",
3389                       dm_device_name(pool->pool_md));
3390                 return r;
3391         }
3392
3393         if (data_size < sb_data_size) {
3394                 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3395                       dm_device_name(pool->pool_md),
3396                       (unsigned long long)data_size, sb_data_size);
3397                 return -EINVAL;
3398
3399         } else if (data_size > sb_data_size) {
3400                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3401                         DMERR("%s: unable to grow the data device until repaired.",
3402                               dm_device_name(pool->pool_md));
3403                         return 0;
3404                 }
3405
3406                 if (sb_data_size)
3407                         DMINFO("%s: growing the data device from %llu to %llu blocks",
3408                                dm_device_name(pool->pool_md),
3409                                sb_data_size, (unsigned long long)data_size);
3410                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3411                 if (r) {
3412                         metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3413                         return r;
3414                 }
3415
3416                 *need_commit = true;
3417         }
3418
3419         return 0;
3420 }
3421
3422 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3423 {
3424         int r;
3425         struct pool_c *pt = ti->private;
3426         struct pool *pool = pt->pool;
3427         dm_block_t metadata_dev_size, sb_metadata_dev_size;
3428
3429         *need_commit = false;
3430
3431         metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3432
3433         r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3434         if (r) {
3435                 DMERR("%s: failed to retrieve metadata device size",
3436                       dm_device_name(pool->pool_md));
3437                 return r;
3438         }
3439
3440         if (metadata_dev_size < sb_metadata_dev_size) {
3441                 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3442                       dm_device_name(pool->pool_md),
3443                       metadata_dev_size, sb_metadata_dev_size);
3444                 return -EINVAL;
3445
3446         } else if (metadata_dev_size > sb_metadata_dev_size) {
3447                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3448                         DMERR("%s: unable to grow the metadata device until repaired.",
3449                               dm_device_name(pool->pool_md));
3450                         return 0;
3451                 }
3452
3453                 warn_if_metadata_device_too_big(pool->md_dev);
3454                 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3455                        dm_device_name(pool->pool_md),
3456                        sb_metadata_dev_size, metadata_dev_size);
3457
3458                 if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
3459                         set_pool_mode(pool, PM_WRITE);
3460
3461                 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3462                 if (r) {
3463                         metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3464                         return r;
3465                 }
3466
3467                 *need_commit = true;
3468         }
3469
3470         return 0;
3471 }
3472
3473 /*
3474  * Retrieves the number of blocks of the data device from
3475  * the superblock and compares it to the actual device size,
3476  * thus resizing the data device in case it has grown.
3477  *
3478  * This both copes with opening preallocated data devices in the ctr
3479  * being followed by a resume
3480  * -and-
3481  * calling the resume method individually after userspace has
3482  * grown the data device in reaction to a table event.
3483  */
3484 static int pool_preresume(struct dm_target *ti)
3485 {
3486         int r;
3487         bool need_commit1, need_commit2;
3488         struct pool_c *pt = ti->private;
3489         struct pool *pool = pt->pool;
3490
3491         /*
3492          * Take control of the pool object.
3493          */
3494         r = bind_control_target(pool, ti);
3495         if (r)
3496                 return r;
3497
3498         r = maybe_resize_data_dev(ti, &need_commit1);
3499         if (r)
3500                 return r;
3501
3502         r = maybe_resize_metadata_dev(ti, &need_commit2);
3503         if (r)
3504                 return r;
3505
3506         if (need_commit1 || need_commit2)
3507                 (void) commit(pool);
3508
3509         return 0;
3510 }
3511
3512 static void pool_suspend_active_thins(struct pool *pool)
3513 {
3514         struct thin_c *tc;
3515
3516         /* Suspend all active thin devices */
3517         tc = get_first_thin(pool);
3518         while (tc) {
3519                 dm_internal_suspend_noflush(tc->thin_md);
3520                 tc = get_next_thin(pool, tc);
3521         }
3522 }
3523
3524 static void pool_resume_active_thins(struct pool *pool)
3525 {
3526         struct thin_c *tc;
3527
3528         /* Resume all active thin devices */
3529         tc = get_first_thin(pool);
3530         while (tc) {
3531                 dm_internal_resume(tc->thin_md);
3532                 tc = get_next_thin(pool, tc);
3533         }
3534 }
3535
3536 static void pool_resume(struct dm_target *ti)
3537 {
3538         struct pool_c *pt = ti->private;
3539         struct pool *pool = pt->pool;
3540         unsigned long flags;
3541
3542         /*
3543          * Must requeue active_thins' bios and then resume
3544          * active_thins _before_ clearing 'suspend' flag.
3545          */
3546         requeue_bios(pool);
3547         pool_resume_active_thins(pool);
3548
3549         spin_lock_irqsave(&pool->lock, flags);
3550         pool->low_water_triggered = false;
3551         pool->suspended = false;
3552         spin_unlock_irqrestore(&pool->lock, flags);
3553
3554         do_waker(&pool->waker.work);
3555 }
3556
3557 static void pool_presuspend(struct dm_target *ti)
3558 {
3559         struct pool_c *pt = ti->private;
3560         struct pool *pool = pt->pool;
3561         unsigned long flags;
3562
3563         spin_lock_irqsave(&pool->lock, flags);
3564         pool->suspended = true;
3565         spin_unlock_irqrestore(&pool->lock, flags);
3566
3567         pool_suspend_active_thins(pool);
3568 }
3569
3570 static void pool_presuspend_undo(struct dm_target *ti)
3571 {
3572         struct pool_c *pt = ti->private;
3573         struct pool *pool = pt->pool;
3574         unsigned long flags;
3575
3576         pool_resume_active_thins(pool);
3577
3578         spin_lock_irqsave(&pool->lock, flags);
3579         pool->suspended = false;
3580         spin_unlock_irqrestore(&pool->lock, flags);
3581 }
3582
3583 static void pool_postsuspend(struct dm_target *ti)
3584 {
3585         struct pool_c *pt = ti->private;
3586         struct pool *pool = pt->pool;
3587
3588         cancel_delayed_work_sync(&pool->waker);
3589         cancel_delayed_work_sync(&pool->no_space_timeout);
3590         flush_workqueue(pool->wq);
3591         (void) commit(pool);
3592 }
3593
3594 static int check_arg_count(unsigned argc, unsigned args_required)
3595 {
3596         if (argc != args_required) {
3597                 DMWARN("Message received with %u arguments instead of %u.",
3598                        argc, args_required);
3599                 return -EINVAL;
3600         }
3601
3602         return 0;
3603 }
3604
3605 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3606 {
3607         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3608             *dev_id <= MAX_DEV_ID)
3609                 return 0;
3610
3611         if (warning)
3612                 DMWARN("Message received with invalid device id: %s", arg);
3613
3614         return -EINVAL;
3615 }
3616
3617 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3618 {
3619         dm_thin_id dev_id;
3620         int r;
3621
3622         r = check_arg_count(argc, 2);
3623         if (r)
3624                 return r;
3625
3626         r = read_dev_id(argv[1], &dev_id, 1);
3627         if (r)
3628                 return r;
3629
3630         r = dm_pool_create_thin(pool->pmd, dev_id);
3631         if (r) {
3632                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3633                        argv[1]);
3634                 return r;
3635         }
3636
3637         return 0;
3638 }
3639
3640 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3641 {
3642         dm_thin_id dev_id;
3643         dm_thin_id origin_dev_id;
3644         int r;
3645
3646         r = check_arg_count(argc, 3);
3647         if (r)
3648                 return r;
3649
3650         r = read_dev_id(argv[1], &dev_id, 1);
3651         if (r)
3652                 return r;
3653
3654         r = read_dev_id(argv[2], &origin_dev_id, 1);
3655         if (r)
3656                 return r;
3657
3658         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3659         if (r) {
3660                 DMWARN("Creation of new snapshot %s of device %s failed.",
3661                        argv[1], argv[2]);
3662                 return r;
3663         }
3664
3665         return 0;
3666 }
3667
3668 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3669 {
3670         dm_thin_id dev_id;
3671         int r;
3672
3673         r = check_arg_count(argc, 2);
3674         if (r)
3675                 return r;
3676
3677         r = read_dev_id(argv[1], &dev_id, 1);
3678         if (r)
3679                 return r;
3680
3681         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3682         if (r)
3683                 DMWARN("Deletion of thin device %s failed.", argv[1]);
3684
3685         return r;
3686 }
3687
3688 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3689 {
3690         dm_thin_id old_id, new_id;
3691         int r;
3692
3693         r = check_arg_count(argc, 3);
3694         if (r)
3695                 return r;
3696
3697         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3698                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3699                 return -EINVAL;
3700         }
3701
3702         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3703                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3704                 return -EINVAL;
3705         }
3706
3707         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3708         if (r) {
3709                 DMWARN("Failed to change transaction id from %s to %s.",
3710                        argv[1], argv[2]);
3711                 return r;
3712         }
3713
3714         return 0;
3715 }
3716
3717 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3718 {
3719         int r;
3720
3721         r = check_arg_count(argc, 1);
3722         if (r)
3723                 return r;
3724
3725         (void) commit(pool);
3726
3727         r = dm_pool_reserve_metadata_snap(pool->pmd);
3728         if (r)
3729                 DMWARN("reserve_metadata_snap message failed.");
3730
3731         return r;
3732 }
3733
3734 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3735 {
3736         int r;
3737
3738         r = check_arg_count(argc, 1);
3739         if (r)
3740                 return r;
3741
3742         r = dm_pool_release_metadata_snap(pool->pmd);
3743         if (r)
3744                 DMWARN("release_metadata_snap message failed.");
3745
3746         return r;
3747 }
3748
3749 /*
3750  * Messages supported:
3751  *   create_thin        <dev_id>
3752  *   create_snap        <dev_id> <origin_id>
3753  *   delete             <dev_id>
3754  *   set_transaction_id <current_trans_id> <new_trans_id>
3755  *   reserve_metadata_snap
3756  *   release_metadata_snap
3757  */
3758 static int pool_message(struct dm_target *ti, unsigned argc, char **argv,
3759                         char *result, unsigned maxlen)
3760 {
3761         int r = -EINVAL;
3762         struct pool_c *pt = ti->private;
3763         struct pool *pool = pt->pool;
3764
3765         if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
3766                 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3767                       dm_device_name(pool->pool_md));
3768                 return -EOPNOTSUPP;
3769         }
3770
3771         if (!strcasecmp(argv[0], "create_thin"))
3772                 r = process_create_thin_mesg(argc, argv, pool);
3773
3774         else if (!strcasecmp(argv[0], "create_snap"))
3775                 r = process_create_snap_mesg(argc, argv, pool);
3776
3777         else if (!strcasecmp(argv[0], "delete"))
3778                 r = process_delete_mesg(argc, argv, pool);
3779
3780         else if (!strcasecmp(argv[0], "set_transaction_id"))
3781                 r = process_set_transaction_id_mesg(argc, argv, pool);
3782
3783         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3784                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3785
3786         else if (!strcasecmp(argv[0], "release_metadata_snap"))
3787                 r = process_release_metadata_snap_mesg(argc, argv, pool);
3788
3789         else
3790                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3791
3792         if (!r)
3793                 (void) commit(pool);
3794
3795         return r;
3796 }
3797
3798 static void emit_flags(struct pool_features *pf, char *result,
3799                        unsigned sz, unsigned maxlen)
3800 {
3801         unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3802                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3803                 pf->error_if_no_space;
3804         DMEMIT("%u ", count);
3805
3806         if (!pf->zero_new_blocks)
3807                 DMEMIT("skip_block_zeroing ");
3808
3809         if (!pf->discard_enabled)
3810                 DMEMIT("ignore_discard ");
3811
3812         if (!pf->discard_passdown)
3813                 DMEMIT("no_discard_passdown ");
3814
3815         if (pf->mode == PM_READ_ONLY)
3816                 DMEMIT("read_only ");
3817
3818         if (pf->error_if_no_space)
3819                 DMEMIT("error_if_no_space ");
3820 }
3821
3822 /*
3823  * Status line is:
3824  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3825  *    <used data sectors>/<total data sectors> <held metadata root>
3826  *    <pool mode> <discard config> <no space config> <needs_check>
3827  */
3828 static void pool_status(struct dm_target *ti, status_type_t type,
3829                         unsigned status_flags, char *result, unsigned maxlen)
3830 {
3831         int r;
3832         unsigned sz = 0;
3833         uint64_t transaction_id;
3834         dm_block_t nr_free_blocks_data;
3835         dm_block_t nr_free_blocks_metadata;
3836         dm_block_t nr_blocks_data;
3837         dm_block_t nr_blocks_metadata;
3838         dm_block_t held_root;
3839         enum pool_mode mode;
3840         char buf[BDEVNAME_SIZE];
3841         char buf2[BDEVNAME_SIZE];
3842         struct pool_c *pt = ti->private;
3843         struct pool *pool = pt->pool;
3844
3845         switch (type) {
3846         case STATUSTYPE_INFO:
3847                 if (get_pool_mode(pool) == PM_FAIL) {
3848                         DMEMIT("Fail");
3849                         break;
3850                 }
3851
3852                 /* Commit to ensure statistics aren't out-of-date */
3853                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3854                         (void) commit(pool);
3855
3856                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3857                 if (r) {
3858                         DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3859                               dm_device_name(pool->pool_md), r);
3860                         goto err;
3861                 }
3862
3863                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3864                 if (r) {
3865                         DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3866                               dm_device_name(pool->pool_md), r);
3867                         goto err;
3868                 }
3869
3870                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3871                 if (r) {
3872                         DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3873                               dm_device_name(pool->pool_md), r);
3874                         goto err;
3875                 }
3876
3877                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3878                 if (r) {
3879                         DMERR("%s: dm_pool_get_free_block_count returned %d",
3880                               dm_device_name(pool->pool_md), r);
3881                         goto err;
3882                 }
3883
3884                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3885                 if (r) {
3886                         DMERR("%s: dm_pool_get_data_dev_size returned %d",
3887                               dm_device_name(pool->pool_md), r);
3888                         goto err;
3889                 }
3890
3891                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3892                 if (r) {
3893                         DMERR("%s: dm_pool_get_metadata_snap returned %d",
3894                               dm_device_name(pool->pool_md), r);
3895                         goto err;
3896                 }
3897
3898                 DMEMIT("%llu %llu/%llu %llu/%llu ",
3899                        (unsigned long long)transaction_id,
3900                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3901                        (unsigned long long)nr_blocks_metadata,
3902                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3903                        (unsigned long long)nr_blocks_data);
3904
3905                 if (held_root)
3906                         DMEMIT("%llu ", held_root);
3907                 else
3908                         DMEMIT("- ");
3909
3910                 mode = get_pool_mode(pool);
3911                 if (mode == PM_OUT_OF_DATA_SPACE)
3912                         DMEMIT("out_of_data_space ");
3913                 else if (is_read_only_pool_mode(mode))
3914                         DMEMIT("ro ");
3915                 else
3916                         DMEMIT("rw ");
3917
3918                 if (!pool->pf.discard_enabled)
3919                         DMEMIT("ignore_discard ");
3920                 else if (pool->pf.discard_passdown)
3921                         DMEMIT("discard_passdown ");
3922                 else
3923                         DMEMIT("no_discard_passdown ");
3924
3925                 if (pool->pf.error_if_no_space)
3926                         DMEMIT("error_if_no_space ");
3927                 else
3928                         DMEMIT("queue_if_no_space ");
3929
3930                 if (dm_pool_metadata_needs_check(pool->pmd))
3931                         DMEMIT("needs_check ");
3932                 else
3933                         DMEMIT("- ");
3934
3935                 DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
3936
3937                 break;
3938
3939         case STATUSTYPE_TABLE:
3940                 DMEMIT("%s %s %lu %llu ",
3941                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3942                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3943                        (unsigned long)pool->sectors_per_block,
3944                        (unsigned long long)pt->low_water_blocks);
3945                 emit_flags(&pt->requested_pf, result, sz, maxlen);
3946                 break;
3947         }
3948         return;
3949
3950 err:
3951         DMEMIT("Error");
3952 }
3953
3954 static int pool_iterate_devices(struct dm_target *ti,
3955                                 iterate_devices_callout_fn fn, void *data)
3956 {
3957         struct pool_c *pt = ti->private;
3958
3959         return fn(ti, pt->data_dev, 0, ti->len, data);
3960 }
3961
3962 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3963 {
3964         struct pool_c *pt = ti->private;
3965         struct pool *pool = pt->pool;
3966         sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3967
3968         /*
3969          * If max_sectors is smaller than pool->sectors_per_block adjust it
3970          * to the highest possible power-of-2 factor of pool->sectors_per_block.
3971          * This is especially beneficial when the pool's data device is a RAID
3972          * device that has a full stripe width that matches pool->sectors_per_block
3973          * -- because even though partial RAID stripe-sized IOs will be issued to a
3974          *    single RAID stripe; when aggregated they will end on a full RAID stripe
3975          *    boundary.. which avoids additional partial RAID stripe writes cascading
3976          */
3977         if (limits->max_sectors < pool->sectors_per_block) {
3978                 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3979                         if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3980                                 limits->max_sectors--;
3981                         limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3982                 }
3983         }
3984
3985         /*
3986          * If the system-determined stacked limits are compatible with the
3987          * pool's blocksize (io_opt is a factor) do not override them.
3988          */
3989         if (io_opt_sectors < pool->sectors_per_block ||
3990             !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3991                 if (is_factor(pool->sectors_per_block, limits->max_sectors))
3992                         blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3993                 else
3994                         blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3995                 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3996         }
3997
3998         /*
3999          * pt->adjusted_pf is a staging area for the actual features to use.
4000          * They get transferred to the live pool in bind_control_target()
4001          * called from pool_preresume().
4002          */
4003         if (!pt->adjusted_pf.discard_enabled) {
4004                 /*
4005                  * Must explicitly disallow stacking discard limits otherwise the
4006                  * block layer will stack them if pool's data device has support.
4007                  * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
4008                  * user to see that, so make sure to set all discard limits to 0.
4009                  */
4010                 limits->discard_granularity = 0;
4011                 return;
4012         }
4013
4014         disable_passdown_if_not_supported(pt);
4015
4016         /*
4017          * The pool uses the same discard limits as the underlying data
4018          * device.  DM core has already set this up.
4019          */
4020 }
4021
4022 static struct target_type pool_target = {
4023         .name = "thin-pool",
4024         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
4025                     DM_TARGET_IMMUTABLE,
4026         .version = {1, 20, 0},
4027         .module = THIS_MODULE,
4028         .ctr = pool_ctr,
4029         .dtr = pool_dtr,
4030         .map = pool_map,
4031         .presuspend = pool_presuspend,
4032         .presuspend_undo = pool_presuspend_undo,
4033         .postsuspend = pool_postsuspend,
4034         .preresume = pool_preresume,
4035         .resume = pool_resume,
4036         .message = pool_message,
4037         .status = pool_status,
4038         .iterate_devices = pool_iterate_devices,
4039         .io_hints = pool_io_hints,
4040 };
4041
4042 /*----------------------------------------------------------------
4043  * Thin target methods
4044  *--------------------------------------------------------------*/
4045 static void thin_get(struct thin_c *tc)
4046 {
4047         atomic_inc(&tc->refcount);
4048 }
4049
4050 static void thin_put(struct thin_c *tc)
4051 {
4052         if (atomic_dec_and_test(&tc->refcount))
4053                 complete(&tc->can_destroy);
4054 }
4055
4056 static void thin_dtr(struct dm_target *ti)
4057 {
4058         struct thin_c *tc = ti->private;
4059         unsigned long flags;
4060
4061         spin_lock_irqsave(&tc->pool->lock, flags);
4062         list_del_rcu(&tc->list);
4063         spin_unlock_irqrestore(&tc->pool->lock, flags);
4064         synchronize_rcu();
4065
4066         thin_put(tc);
4067         wait_for_completion(&tc->can_destroy);
4068
4069         mutex_lock(&dm_thin_pool_table.mutex);
4070
4071         __pool_dec(tc->pool);
4072         dm_pool_close_thin_device(tc->td);
4073         dm_put_device(ti, tc->pool_dev);
4074         if (tc->origin_dev)
4075                 dm_put_device(ti, tc->origin_dev);
4076         kfree(tc);
4077
4078         mutex_unlock(&dm_thin_pool_table.mutex);
4079 }
4080
4081 /*
4082  * Thin target parameters:
4083  *
4084  * <pool_dev> <dev_id> [origin_dev]
4085  *
4086  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4087  * dev_id: the internal device identifier
4088  * origin_dev: a device external to the pool that should act as the origin
4089  *
4090  * If the pool device has discards disabled, they get disabled for the thin
4091  * device as well.
4092  */
4093 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4094 {
4095         int r;
4096         struct thin_c *tc;
4097         struct dm_dev *pool_dev, *origin_dev;
4098         struct mapped_device *pool_md;
4099         unsigned long flags;
4100
4101         mutex_lock(&dm_thin_pool_table.mutex);
4102
4103         if (argc != 2 && argc != 3) {
4104                 ti->error = "Invalid argument count";
4105                 r = -EINVAL;
4106                 goto out_unlock;
4107         }
4108
4109         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4110         if (!tc) {
4111                 ti->error = "Out of memory";
4112                 r = -ENOMEM;
4113                 goto out_unlock;
4114         }
4115         tc->thin_md = dm_table_get_md(ti->table);
4116         spin_lock_init(&tc->lock);
4117         INIT_LIST_HEAD(&tc->deferred_cells);
4118         bio_list_init(&tc->deferred_bio_list);
4119         bio_list_init(&tc->retry_on_resume_list);
4120         tc->sort_bio_list = RB_ROOT;
4121
4122         if (argc == 3) {
4123                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4124                 if (r) {
4125                         ti->error = "Error opening origin device";
4126                         goto bad_origin_dev;
4127                 }
4128                 tc->origin_dev = origin_dev;
4129         }
4130
4131         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4132         if (r) {
4133                 ti->error = "Error opening pool device";
4134                 goto bad_pool_dev;
4135         }
4136         tc->pool_dev = pool_dev;
4137
4138         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4139                 ti->error = "Invalid device id";
4140                 r = -EINVAL;
4141                 goto bad_common;
4142         }
4143
4144         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4145         if (!pool_md) {
4146                 ti->error = "Couldn't get pool mapped device";
4147                 r = -EINVAL;
4148                 goto bad_common;
4149         }
4150
4151         tc->pool = __pool_table_lookup(pool_md);
4152         if (!tc->pool) {
4153                 ti->error = "Couldn't find pool object";
4154                 r = -EINVAL;
4155                 goto bad_pool_lookup;
4156         }
4157         __pool_inc(tc->pool);
4158
4159         if (get_pool_mode(tc->pool) == PM_FAIL) {
4160                 ti->error = "Couldn't open thin device, Pool is in fail mode";
4161                 r = -EINVAL;
4162                 goto bad_pool;
4163         }
4164
4165         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4166         if (r) {
4167                 ti->error = "Couldn't open thin internal device";
4168                 goto bad_pool;
4169         }
4170
4171         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4172         if (r)
4173                 goto bad;
4174
4175         ti->num_flush_bios = 1;
4176         ti->flush_supported = true;
4177         ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4178
4179         /* In case the pool supports discards, pass them on. */
4180         if (tc->pool->pf.discard_enabled) {
4181                 ti->discards_supported = true;
4182                 ti->num_discard_bios = 1;
4183                 ti->split_discard_bios = false;
4184         }
4185
4186         mutex_unlock(&dm_thin_pool_table.mutex);
4187
4188         spin_lock_irqsave(&tc->pool->lock, flags);
4189         if (tc->pool->suspended) {
4190                 spin_unlock_irqrestore(&tc->pool->lock, flags);
4191                 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4192                 ti->error = "Unable to activate thin device while pool is suspended";
4193                 r = -EINVAL;
4194                 goto bad;
4195         }
4196         atomic_set(&tc->refcount, 1);
4197         init_completion(&tc->can_destroy);
4198         list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4199         spin_unlock_irqrestore(&tc->pool->lock, flags);
4200         /*
4201          * This synchronize_rcu() call is needed here otherwise we risk a
4202          * wake_worker() call finding no bios to process (because the newly
4203          * added tc isn't yet visible).  So this reduces latency since we
4204          * aren't then dependent on the periodic commit to wake_worker().
4205          */
4206         synchronize_rcu();
4207
4208         dm_put(pool_md);
4209
4210         return 0;
4211
4212 bad:
4213         dm_pool_close_thin_device(tc->td);
4214 bad_pool:
4215         __pool_dec(tc->pool);
4216 bad_pool_lookup:
4217         dm_put(pool_md);
4218 bad_common:
4219         dm_put_device(ti, tc->pool_dev);
4220 bad_pool_dev:
4221         if (tc->origin_dev)
4222                 dm_put_device(ti, tc->origin_dev);
4223 bad_origin_dev:
4224         kfree(tc);
4225 out_unlock:
4226         mutex_unlock(&dm_thin_pool_table.mutex);
4227
4228         return r;
4229 }
4230
4231 static int thin_map(struct dm_target *ti, struct bio *bio)
4232 {
4233         bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4234
4235         return thin_bio_map(ti, bio);
4236 }
4237
4238 static int thin_endio(struct dm_target *ti, struct bio *bio,
4239                 blk_status_t *err)
4240 {
4241         unsigned long flags;
4242         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4243         struct list_head work;
4244         struct dm_thin_new_mapping *m, *tmp;
4245         struct pool *pool = h->tc->pool;
4246
4247         if (h->shared_read_entry) {
4248                 INIT_LIST_HEAD(&work);
4249                 dm_deferred_entry_dec(h->shared_read_entry, &work);
4250
4251                 spin_lock_irqsave(&pool->lock, flags);
4252                 list_for_each_entry_safe(m, tmp, &work, list) {
4253                         list_del(&m->list);
4254                         __complete_mapping_preparation(m);
4255                 }
4256                 spin_unlock_irqrestore(&pool->lock, flags);
4257         }
4258
4259         if (h->all_io_entry) {
4260                 INIT_LIST_HEAD(&work);
4261                 dm_deferred_entry_dec(h->all_io_entry, &work);
4262                 if (!list_empty(&work)) {
4263                         spin_lock_irqsave(&pool->lock, flags);
4264                         list_for_each_entry_safe(m, tmp, &work, list)
4265                                 list_add_tail(&m->list, &pool->prepared_discards);
4266                         spin_unlock_irqrestore(&pool->lock, flags);
4267                         wake_worker(pool);
4268                 }
4269         }
4270
4271         if (h->cell)
4272                 cell_defer_no_holder(h->tc, h->cell);
4273
4274         return DM_ENDIO_DONE;
4275 }
4276
4277 static void thin_presuspend(struct dm_target *ti)
4278 {
4279         struct thin_c *tc = ti->private;
4280
4281         if (dm_noflush_suspending(ti))
4282                 noflush_work(tc, do_noflush_start);
4283 }
4284
4285 static void thin_postsuspend(struct dm_target *ti)
4286 {
4287         struct thin_c *tc = ti->private;
4288
4289         /*
4290          * The dm_noflush_suspending flag has been cleared by now, so
4291          * unfortunately we must always run this.
4292          */
4293         noflush_work(tc, do_noflush_stop);
4294 }
4295
4296 static int thin_preresume(struct dm_target *ti)
4297 {
4298         struct thin_c *tc = ti->private;
4299
4300         if (tc->origin_dev)
4301                 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4302
4303         return 0;
4304 }
4305
4306 /*
4307  * <nr mapped sectors> <highest mapped sector>
4308  */
4309 static void thin_status(struct dm_target *ti, status_type_t type,
4310                         unsigned status_flags, char *result, unsigned maxlen)
4311 {
4312         int r;
4313         ssize_t sz = 0;
4314         dm_block_t mapped, highest;
4315         char buf[BDEVNAME_SIZE];
4316         struct thin_c *tc = ti->private;
4317
4318         if (get_pool_mode(tc->pool) == PM_FAIL) {
4319                 DMEMIT("Fail");
4320                 return;
4321         }
4322
4323         if (!tc->td)
4324                 DMEMIT("-");
4325         else {
4326                 switch (type) {
4327                 case STATUSTYPE_INFO:
4328                         r = dm_thin_get_mapped_count(tc->td, &mapped);
4329                         if (r) {
4330                                 DMERR("dm_thin_get_mapped_count returned %d", r);
4331                                 goto err;
4332                         }
4333
4334                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4335                         if (r < 0) {
4336                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4337                                 goto err;
4338                         }
4339
4340                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4341                         if (r)
4342                                 DMEMIT("%llu", ((highest + 1) *
4343                                                 tc->pool->sectors_per_block) - 1);
4344                         else
4345                                 DMEMIT("-");
4346                         break;
4347
4348                 case STATUSTYPE_TABLE:
4349                         DMEMIT("%s %lu",
4350                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4351                                (unsigned long) tc->dev_id);
4352                         if (tc->origin_dev)
4353                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4354                         break;
4355                 }
4356         }
4357
4358         return;
4359
4360 err:
4361         DMEMIT("Error");
4362 }
4363
4364 static int thin_iterate_devices(struct dm_target *ti,
4365                                 iterate_devices_callout_fn fn, void *data)
4366 {
4367         sector_t blocks;
4368         struct thin_c *tc = ti->private;
4369         struct pool *pool = tc->pool;
4370
4371         /*
4372          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4373          * we follow a more convoluted path through to the pool's target.
4374          */
4375         if (!pool->ti)
4376                 return 0;       /* nothing is bound */
4377
4378         blocks = pool->ti->len;
4379         (void) sector_div(blocks, pool->sectors_per_block);
4380         if (blocks)
4381                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4382
4383         return 0;
4384 }
4385
4386 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4387 {
4388         struct thin_c *tc = ti->private;
4389         struct pool *pool = tc->pool;
4390
4391         if (!pool->pf.discard_enabled)
4392                 return;
4393
4394         limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4395         limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4396 }
4397
4398 static struct target_type thin_target = {
4399         .name = "thin",
4400         .version = {1, 20, 0},
4401         .module = THIS_MODULE,
4402         .ctr = thin_ctr,
4403         .dtr = thin_dtr,
4404         .map = thin_map,
4405         .end_io = thin_endio,
4406         .preresume = thin_preresume,
4407         .presuspend = thin_presuspend,
4408         .postsuspend = thin_postsuspend,
4409         .status = thin_status,
4410         .iterate_devices = thin_iterate_devices,
4411         .io_hints = thin_io_hints,
4412 };
4413
4414 /*----------------------------------------------------------------*/
4415
4416 static int __init dm_thin_init(void)
4417 {
4418         int r = -ENOMEM;
4419
4420         pool_table_init();
4421
4422         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4423         if (!_new_mapping_cache)
4424                 return r;
4425
4426         r = dm_register_target(&thin_target);
4427         if (r)
4428                 goto bad_new_mapping_cache;
4429
4430         r = dm_register_target(&pool_target);
4431         if (r)
4432                 goto bad_thin_target;
4433
4434         return 0;
4435
4436 bad_thin_target:
4437         dm_unregister_target(&thin_target);
4438 bad_new_mapping_cache:
4439         kmem_cache_destroy(_new_mapping_cache);
4440
4441         return r;
4442 }
4443
4444 static void dm_thin_exit(void)
4445 {
4446         dm_unregister_target(&thin_target);
4447         dm_unregister_target(&pool_target);
4448
4449         kmem_cache_destroy(_new_mapping_cache);
4450
4451         pool_table_exit();
4452 }
4453
4454 module_init(dm_thin_init);
4455 module_exit(dm_thin_exit);
4456
4457 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4458 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4459
4460 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4461 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4462 MODULE_LICENSE("GPL");