Merge tag 'overflow-v4.18-rc1-part2' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison-v1.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
24
25 #define DM_MSG_PREFIX   "thin"
26
27 /*
28  * Tunable constants
29  */
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
34
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38                 "A percentage of time allocated for copy on write");
39
40 /*
41  * The block size of the device holding pool data must be
42  * between 64KB and 1GB.
43  */
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46
47 /*
48  * Device id is restricted to 24 bits.
49  */
50 #define MAX_DEV_ID ((1 << 24) - 1)
51
52 /*
53  * How do we handle breaking sharing of data blocks?
54  * =================================================
55  *
56  * We use a standard copy-on-write btree to store the mappings for the
57  * devices (note I'm talking about copy-on-write of the metadata here, not
58  * the data).  When you take an internal snapshot you clone the root node
59  * of the origin btree.  After this there is no concept of an origin or a
60  * snapshot.  They are just two device trees that happen to point to the
61  * same data blocks.
62  *
63  * When we get a write in we decide if it's to a shared data block using
64  * some timestamp magic.  If it is, we have to break sharing.
65  *
66  * Let's say we write to a shared block in what was the origin.  The
67  * steps are:
68  *
69  * i) plug io further to this physical block. (see bio_prison code).
70  *
71  * ii) quiesce any read io to that shared data block.  Obviously
72  * including all devices that share this block.  (see dm_deferred_set code)
73  *
74  * iii) copy the data block to a newly allocate block.  This step can be
75  * missed out if the io covers the block. (schedule_copy).
76  *
77  * iv) insert the new mapping into the origin's btree
78  * (process_prepared_mapping).  This act of inserting breaks some
79  * sharing of btree nodes between the two devices.  Breaking sharing only
80  * effects the btree of that specific device.  Btrees for the other
81  * devices that share the block never change.  The btree for the origin
82  * device as it was after the last commit is untouched, ie. we're using
83  * persistent data structures in the functional programming sense.
84  *
85  * v) unplug io to this physical block, including the io that triggered
86  * the breaking of sharing.
87  *
88  * Steps (ii) and (iii) occur in parallel.
89  *
90  * The metadata _doesn't_ need to be committed before the io continues.  We
91  * get away with this because the io is always written to a _new_ block.
92  * If there's a crash, then:
93  *
94  * - The origin mapping will point to the old origin block (the shared
95  * one).  This will contain the data as it was before the io that triggered
96  * the breaking of sharing came in.
97  *
98  * - The snap mapping still points to the old block.  As it would after
99  * the commit.
100  *
101  * The downside of this scheme is the timestamp magic isn't perfect, and
102  * will continue to think that data block in the snapshot device is shared
103  * even after the write to the origin has broken sharing.  I suspect data
104  * blocks will typically be shared by many different devices, so we're
105  * breaking sharing n + 1 times, rather than n, where n is the number of
106  * devices that reference this data block.  At the moment I think the
107  * benefits far, far outweigh the disadvantages.
108  */
109
110 /*----------------------------------------------------------------*/
111
112 /*
113  * Key building.
114  */
115 enum lock_space {
116         VIRTUAL,
117         PHYSICAL
118 };
119
120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
121                       dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122 {
123         key->virtual = (ls == VIRTUAL);
124         key->dev = dm_thin_dev_id(td);
125         key->block_begin = b;
126         key->block_end = e;
127 }
128
129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130                            struct dm_cell_key *key)
131 {
132         build_key(td, PHYSICAL, b, b + 1llu, key);
133 }
134
135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136                               struct dm_cell_key *key)
137 {
138         build_key(td, VIRTUAL, b, b + 1llu, key);
139 }
140
141 /*----------------------------------------------------------------*/
142
143 #define THROTTLE_THRESHOLD (1 * HZ)
144
145 struct throttle {
146         struct rw_semaphore lock;
147         unsigned long threshold;
148         bool throttle_applied;
149 };
150
151 static void throttle_init(struct throttle *t)
152 {
153         init_rwsem(&t->lock);
154         t->throttle_applied = false;
155 }
156
157 static void throttle_work_start(struct throttle *t)
158 {
159         t->threshold = jiffies + THROTTLE_THRESHOLD;
160 }
161
162 static void throttle_work_update(struct throttle *t)
163 {
164         if (!t->throttle_applied && jiffies > t->threshold) {
165                 down_write(&t->lock);
166                 t->throttle_applied = true;
167         }
168 }
169
170 static void throttle_work_complete(struct throttle *t)
171 {
172         if (t->throttle_applied) {
173                 t->throttle_applied = false;
174                 up_write(&t->lock);
175         }
176 }
177
178 static void throttle_lock(struct throttle *t)
179 {
180         down_read(&t->lock);
181 }
182
183 static void throttle_unlock(struct throttle *t)
184 {
185         up_read(&t->lock);
186 }
187
188 /*----------------------------------------------------------------*/
189
190 /*
191  * A pool device ties together a metadata device and a data device.  It
192  * also provides the interface for creating and destroying internal
193  * devices.
194  */
195 struct dm_thin_new_mapping;
196
197 /*
198  * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
199  */
200 enum pool_mode {
201         PM_WRITE,               /* metadata may be changed */
202         PM_OUT_OF_DATA_SPACE,   /* metadata may be changed, though data may not be allocated */
203         PM_READ_ONLY,           /* metadata may not be changed */
204         PM_FAIL,                /* all I/O fails */
205 };
206
207 struct pool_features {
208         enum pool_mode mode;
209
210         bool zero_new_blocks:1;
211         bool discard_enabled:1;
212         bool discard_passdown:1;
213         bool error_if_no_space:1;
214 };
215
216 struct thin_c;
217 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
218 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
219 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
220
221 #define CELL_SORT_ARRAY_SIZE 8192
222
223 struct pool {
224         struct list_head list;
225         struct dm_target *ti;   /* Only set if a pool target is bound */
226
227         struct mapped_device *pool_md;
228         struct block_device *md_dev;
229         struct dm_pool_metadata *pmd;
230
231         dm_block_t low_water_blocks;
232         uint32_t sectors_per_block;
233         int sectors_per_block_shift;
234
235         struct pool_features pf;
236         bool low_water_triggered:1;     /* A dm event has been sent */
237         bool suspended:1;
238         bool out_of_data_space:1;
239
240         struct dm_bio_prison *prison;
241         struct dm_kcopyd_client *copier;
242
243         struct work_struct worker;
244         struct workqueue_struct *wq;
245         struct throttle throttle;
246         struct delayed_work waker;
247         struct delayed_work no_space_timeout;
248
249         unsigned long last_commit_jiffies;
250         unsigned ref_count;
251
252         spinlock_t lock;
253         struct bio_list deferred_flush_bios;
254         struct list_head prepared_mappings;
255         struct list_head prepared_discards;
256         struct list_head prepared_discards_pt2;
257         struct list_head active_thins;
258
259         struct dm_deferred_set *shared_read_ds;
260         struct dm_deferred_set *all_io_ds;
261
262         struct dm_thin_new_mapping *next_mapping;
263
264         process_bio_fn process_bio;
265         process_bio_fn process_discard;
266
267         process_cell_fn process_cell;
268         process_cell_fn process_discard_cell;
269
270         process_mapping_fn process_prepared_mapping;
271         process_mapping_fn process_prepared_discard;
272         process_mapping_fn process_prepared_discard_pt2;
273
274         struct dm_bio_prison_cell **cell_sort_array;
275
276         mempool_t mapping_pool;
277 };
278
279 static enum pool_mode get_pool_mode(struct pool *pool);
280 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
281
282 /*
283  * Target context for a pool.
284  */
285 struct pool_c {
286         struct dm_target *ti;
287         struct pool *pool;
288         struct dm_dev *data_dev;
289         struct dm_dev *metadata_dev;
290         struct dm_target_callbacks callbacks;
291
292         dm_block_t low_water_blocks;
293         struct pool_features requested_pf; /* Features requested during table load */
294         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
295 };
296
297 /*
298  * Target context for a thin.
299  */
300 struct thin_c {
301         struct list_head list;
302         struct dm_dev *pool_dev;
303         struct dm_dev *origin_dev;
304         sector_t origin_size;
305         dm_thin_id dev_id;
306
307         struct pool *pool;
308         struct dm_thin_device *td;
309         struct mapped_device *thin_md;
310
311         bool requeue_mode:1;
312         spinlock_t lock;
313         struct list_head deferred_cells;
314         struct bio_list deferred_bio_list;
315         struct bio_list retry_on_resume_list;
316         struct rb_root sort_bio_list; /* sorted list of deferred bios */
317
318         /*
319          * Ensures the thin is not destroyed until the worker has finished
320          * iterating the active_thins list.
321          */
322         atomic_t refcount;
323         struct completion can_destroy;
324 };
325
326 /*----------------------------------------------------------------*/
327
328 static bool block_size_is_power_of_two(struct pool *pool)
329 {
330         return pool->sectors_per_block_shift >= 0;
331 }
332
333 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
334 {
335         return block_size_is_power_of_two(pool) ?
336                 (b << pool->sectors_per_block_shift) :
337                 (b * pool->sectors_per_block);
338 }
339
340 /*----------------------------------------------------------------*/
341
342 struct discard_op {
343         struct thin_c *tc;
344         struct blk_plug plug;
345         struct bio *parent_bio;
346         struct bio *bio;
347 };
348
349 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
350 {
351         BUG_ON(!parent);
352
353         op->tc = tc;
354         blk_start_plug(&op->plug);
355         op->parent_bio = parent;
356         op->bio = NULL;
357 }
358
359 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
360 {
361         struct thin_c *tc = op->tc;
362         sector_t s = block_to_sectors(tc->pool, data_b);
363         sector_t len = block_to_sectors(tc->pool, data_e - data_b);
364
365         return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
366                                       GFP_NOWAIT, 0, &op->bio);
367 }
368
369 static void end_discard(struct discard_op *op, int r)
370 {
371         if (op->bio) {
372                 /*
373                  * Even if one of the calls to issue_discard failed, we
374                  * need to wait for the chain to complete.
375                  */
376                 bio_chain(op->bio, op->parent_bio);
377                 bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
378                 submit_bio(op->bio);
379         }
380
381         blk_finish_plug(&op->plug);
382
383         /*
384          * Even if r is set, there could be sub discards in flight that we
385          * need to wait for.
386          */
387         if (r && !op->parent_bio->bi_status)
388                 op->parent_bio->bi_status = errno_to_blk_status(r);
389         bio_endio(op->parent_bio);
390 }
391
392 /*----------------------------------------------------------------*/
393
394 /*
395  * wake_worker() is used when new work is queued and when pool_resume is
396  * ready to continue deferred IO processing.
397  */
398 static void wake_worker(struct pool *pool)
399 {
400         queue_work(pool->wq, &pool->worker);
401 }
402
403 /*----------------------------------------------------------------*/
404
405 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
406                       struct dm_bio_prison_cell **cell_result)
407 {
408         int r;
409         struct dm_bio_prison_cell *cell_prealloc;
410
411         /*
412          * Allocate a cell from the prison's mempool.
413          * This might block but it can't fail.
414          */
415         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
416
417         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
418         if (r)
419                 /*
420                  * We reused an old cell; we can get rid of
421                  * the new one.
422                  */
423                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
424
425         return r;
426 }
427
428 static void cell_release(struct pool *pool,
429                          struct dm_bio_prison_cell *cell,
430                          struct bio_list *bios)
431 {
432         dm_cell_release(pool->prison, cell, bios);
433         dm_bio_prison_free_cell(pool->prison, cell);
434 }
435
436 static void cell_visit_release(struct pool *pool,
437                                void (*fn)(void *, struct dm_bio_prison_cell *),
438                                void *context,
439                                struct dm_bio_prison_cell *cell)
440 {
441         dm_cell_visit_release(pool->prison, fn, context, cell);
442         dm_bio_prison_free_cell(pool->prison, cell);
443 }
444
445 static void cell_release_no_holder(struct pool *pool,
446                                    struct dm_bio_prison_cell *cell,
447                                    struct bio_list *bios)
448 {
449         dm_cell_release_no_holder(pool->prison, cell, bios);
450         dm_bio_prison_free_cell(pool->prison, cell);
451 }
452
453 static void cell_error_with_code(struct pool *pool,
454                 struct dm_bio_prison_cell *cell, blk_status_t error_code)
455 {
456         dm_cell_error(pool->prison, cell, error_code);
457         dm_bio_prison_free_cell(pool->prison, cell);
458 }
459
460 static blk_status_t get_pool_io_error_code(struct pool *pool)
461 {
462         return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
463 }
464
465 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
466 {
467         cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
468 }
469
470 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
471 {
472         cell_error_with_code(pool, cell, 0);
473 }
474
475 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
476 {
477         cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
478 }
479
480 /*----------------------------------------------------------------*/
481
482 /*
483  * A global list of pools that uses a struct mapped_device as a key.
484  */
485 static struct dm_thin_pool_table {
486         struct mutex mutex;
487         struct list_head pools;
488 } dm_thin_pool_table;
489
490 static void pool_table_init(void)
491 {
492         mutex_init(&dm_thin_pool_table.mutex);
493         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
494 }
495
496 static void pool_table_exit(void)
497 {
498         mutex_destroy(&dm_thin_pool_table.mutex);
499 }
500
501 static void __pool_table_insert(struct pool *pool)
502 {
503         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
504         list_add(&pool->list, &dm_thin_pool_table.pools);
505 }
506
507 static void __pool_table_remove(struct pool *pool)
508 {
509         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
510         list_del(&pool->list);
511 }
512
513 static struct pool *__pool_table_lookup(struct mapped_device *md)
514 {
515         struct pool *pool = NULL, *tmp;
516
517         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
518
519         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
520                 if (tmp->pool_md == md) {
521                         pool = tmp;
522                         break;
523                 }
524         }
525
526         return pool;
527 }
528
529 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
530 {
531         struct pool *pool = NULL, *tmp;
532
533         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
534
535         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
536                 if (tmp->md_dev == md_dev) {
537                         pool = tmp;
538                         break;
539                 }
540         }
541
542         return pool;
543 }
544
545 /*----------------------------------------------------------------*/
546
547 struct dm_thin_endio_hook {
548         struct thin_c *tc;
549         struct dm_deferred_entry *shared_read_entry;
550         struct dm_deferred_entry *all_io_entry;
551         struct dm_thin_new_mapping *overwrite_mapping;
552         struct rb_node rb_node;
553         struct dm_bio_prison_cell *cell;
554 };
555
556 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
557 {
558         bio_list_merge(bios, master);
559         bio_list_init(master);
560 }
561
562 static void error_bio_list(struct bio_list *bios, blk_status_t error)
563 {
564         struct bio *bio;
565
566         while ((bio = bio_list_pop(bios))) {
567                 bio->bi_status = error;
568                 bio_endio(bio);
569         }
570 }
571
572 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
573                 blk_status_t error)
574 {
575         struct bio_list bios;
576         unsigned long flags;
577
578         bio_list_init(&bios);
579
580         spin_lock_irqsave(&tc->lock, flags);
581         __merge_bio_list(&bios, master);
582         spin_unlock_irqrestore(&tc->lock, flags);
583
584         error_bio_list(&bios, error);
585 }
586
587 static void requeue_deferred_cells(struct thin_c *tc)
588 {
589         struct pool *pool = tc->pool;
590         unsigned long flags;
591         struct list_head cells;
592         struct dm_bio_prison_cell *cell, *tmp;
593
594         INIT_LIST_HEAD(&cells);
595
596         spin_lock_irqsave(&tc->lock, flags);
597         list_splice_init(&tc->deferred_cells, &cells);
598         spin_unlock_irqrestore(&tc->lock, flags);
599
600         list_for_each_entry_safe(cell, tmp, &cells, user_list)
601                 cell_requeue(pool, cell);
602 }
603
604 static void requeue_io(struct thin_c *tc)
605 {
606         struct bio_list bios;
607         unsigned long flags;
608
609         bio_list_init(&bios);
610
611         spin_lock_irqsave(&tc->lock, flags);
612         __merge_bio_list(&bios, &tc->deferred_bio_list);
613         __merge_bio_list(&bios, &tc->retry_on_resume_list);
614         spin_unlock_irqrestore(&tc->lock, flags);
615
616         error_bio_list(&bios, BLK_STS_DM_REQUEUE);
617         requeue_deferred_cells(tc);
618 }
619
620 static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
621 {
622         struct thin_c *tc;
623
624         rcu_read_lock();
625         list_for_each_entry_rcu(tc, &pool->active_thins, list)
626                 error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
627         rcu_read_unlock();
628 }
629
630 static void error_retry_list(struct pool *pool)
631 {
632         error_retry_list_with_code(pool, get_pool_io_error_code(pool));
633 }
634
635 /*
636  * This section of code contains the logic for processing a thin device's IO.
637  * Much of the code depends on pool object resources (lists, workqueues, etc)
638  * but most is exclusively called from the thin target rather than the thin-pool
639  * target.
640  */
641
642 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
643 {
644         struct pool *pool = tc->pool;
645         sector_t block_nr = bio->bi_iter.bi_sector;
646
647         if (block_size_is_power_of_two(pool))
648                 block_nr >>= pool->sectors_per_block_shift;
649         else
650                 (void) sector_div(block_nr, pool->sectors_per_block);
651
652         return block_nr;
653 }
654
655 /*
656  * Returns the _complete_ blocks that this bio covers.
657  */
658 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
659                                 dm_block_t *begin, dm_block_t *end)
660 {
661         struct pool *pool = tc->pool;
662         sector_t b = bio->bi_iter.bi_sector;
663         sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
664
665         b += pool->sectors_per_block - 1ull; /* so we round up */
666
667         if (block_size_is_power_of_two(pool)) {
668                 b >>= pool->sectors_per_block_shift;
669                 e >>= pool->sectors_per_block_shift;
670         } else {
671                 (void) sector_div(b, pool->sectors_per_block);
672                 (void) sector_div(e, pool->sectors_per_block);
673         }
674
675         if (e < b)
676                 /* Can happen if the bio is within a single block. */
677                 e = b;
678
679         *begin = b;
680         *end = e;
681 }
682
683 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
684 {
685         struct pool *pool = tc->pool;
686         sector_t bi_sector = bio->bi_iter.bi_sector;
687
688         bio_set_dev(bio, tc->pool_dev->bdev);
689         if (block_size_is_power_of_two(pool))
690                 bio->bi_iter.bi_sector =
691                         (block << pool->sectors_per_block_shift) |
692                         (bi_sector & (pool->sectors_per_block - 1));
693         else
694                 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
695                                  sector_div(bi_sector, pool->sectors_per_block);
696 }
697
698 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
699 {
700         bio_set_dev(bio, tc->origin_dev->bdev);
701 }
702
703 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
704 {
705         return op_is_flush(bio->bi_opf) &&
706                 dm_thin_changed_this_transaction(tc->td);
707 }
708
709 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
710 {
711         struct dm_thin_endio_hook *h;
712
713         if (bio_op(bio) == REQ_OP_DISCARD)
714                 return;
715
716         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
717         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
718 }
719
720 static void issue(struct thin_c *tc, struct bio *bio)
721 {
722         struct pool *pool = tc->pool;
723         unsigned long flags;
724
725         if (!bio_triggers_commit(tc, bio)) {
726                 generic_make_request(bio);
727                 return;
728         }
729
730         /*
731          * Complete bio with an error if earlier I/O caused changes to
732          * the metadata that can't be committed e.g, due to I/O errors
733          * on the metadata device.
734          */
735         if (dm_thin_aborted_changes(tc->td)) {
736                 bio_io_error(bio);
737                 return;
738         }
739
740         /*
741          * Batch together any bios that trigger commits and then issue a
742          * single commit for them in process_deferred_bios().
743          */
744         spin_lock_irqsave(&pool->lock, flags);
745         bio_list_add(&pool->deferred_flush_bios, bio);
746         spin_unlock_irqrestore(&pool->lock, flags);
747 }
748
749 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
750 {
751         remap_to_origin(tc, bio);
752         issue(tc, bio);
753 }
754
755 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
756                             dm_block_t block)
757 {
758         remap(tc, bio, block);
759         issue(tc, bio);
760 }
761
762 /*----------------------------------------------------------------*/
763
764 /*
765  * Bio endio functions.
766  */
767 struct dm_thin_new_mapping {
768         struct list_head list;
769
770         bool pass_discard:1;
771         bool maybe_shared:1;
772
773         /*
774          * Track quiescing, copying and zeroing preparation actions.  When this
775          * counter hits zero the block is prepared and can be inserted into the
776          * btree.
777          */
778         atomic_t prepare_actions;
779
780         blk_status_t status;
781         struct thin_c *tc;
782         dm_block_t virt_begin, virt_end;
783         dm_block_t data_block;
784         struct dm_bio_prison_cell *cell;
785
786         /*
787          * If the bio covers the whole area of a block then we can avoid
788          * zeroing or copying.  Instead this bio is hooked.  The bio will
789          * still be in the cell, so care has to be taken to avoid issuing
790          * the bio twice.
791          */
792         struct bio *bio;
793         bio_end_io_t *saved_bi_end_io;
794 };
795
796 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
797 {
798         struct pool *pool = m->tc->pool;
799
800         if (atomic_dec_and_test(&m->prepare_actions)) {
801                 list_add_tail(&m->list, &pool->prepared_mappings);
802                 wake_worker(pool);
803         }
804 }
805
806 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
807 {
808         unsigned long flags;
809         struct pool *pool = m->tc->pool;
810
811         spin_lock_irqsave(&pool->lock, flags);
812         __complete_mapping_preparation(m);
813         spin_unlock_irqrestore(&pool->lock, flags);
814 }
815
816 static void copy_complete(int read_err, unsigned long write_err, void *context)
817 {
818         struct dm_thin_new_mapping *m = context;
819
820         m->status = read_err || write_err ? BLK_STS_IOERR : 0;
821         complete_mapping_preparation(m);
822 }
823
824 static void overwrite_endio(struct bio *bio)
825 {
826         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
827         struct dm_thin_new_mapping *m = h->overwrite_mapping;
828
829         bio->bi_end_io = m->saved_bi_end_io;
830
831         m->status = bio->bi_status;
832         complete_mapping_preparation(m);
833 }
834
835 /*----------------------------------------------------------------*/
836
837 /*
838  * Workqueue.
839  */
840
841 /*
842  * Prepared mapping jobs.
843  */
844
845 /*
846  * This sends the bios in the cell, except the original holder, back
847  * to the deferred_bios list.
848  */
849 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
850 {
851         struct pool *pool = tc->pool;
852         unsigned long flags;
853
854         spin_lock_irqsave(&tc->lock, flags);
855         cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
856         spin_unlock_irqrestore(&tc->lock, flags);
857
858         wake_worker(pool);
859 }
860
861 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
862
863 struct remap_info {
864         struct thin_c *tc;
865         struct bio_list defer_bios;
866         struct bio_list issue_bios;
867 };
868
869 static void __inc_remap_and_issue_cell(void *context,
870                                        struct dm_bio_prison_cell *cell)
871 {
872         struct remap_info *info = context;
873         struct bio *bio;
874
875         while ((bio = bio_list_pop(&cell->bios))) {
876                 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
877                         bio_list_add(&info->defer_bios, bio);
878                 else {
879                         inc_all_io_entry(info->tc->pool, bio);
880
881                         /*
882                          * We can't issue the bios with the bio prison lock
883                          * held, so we add them to a list to issue on
884                          * return from this function.
885                          */
886                         bio_list_add(&info->issue_bios, bio);
887                 }
888         }
889 }
890
891 static void inc_remap_and_issue_cell(struct thin_c *tc,
892                                      struct dm_bio_prison_cell *cell,
893                                      dm_block_t block)
894 {
895         struct bio *bio;
896         struct remap_info info;
897
898         info.tc = tc;
899         bio_list_init(&info.defer_bios);
900         bio_list_init(&info.issue_bios);
901
902         /*
903          * We have to be careful to inc any bios we're about to issue
904          * before the cell is released, and avoid a race with new bios
905          * being added to the cell.
906          */
907         cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
908                            &info, cell);
909
910         while ((bio = bio_list_pop(&info.defer_bios)))
911                 thin_defer_bio(tc, bio);
912
913         while ((bio = bio_list_pop(&info.issue_bios)))
914                 remap_and_issue(info.tc, bio, block);
915 }
916
917 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
918 {
919         cell_error(m->tc->pool, m->cell);
920         list_del(&m->list);
921         mempool_free(m, &m->tc->pool->mapping_pool);
922 }
923
924 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
925 {
926         struct thin_c *tc = m->tc;
927         struct pool *pool = tc->pool;
928         struct bio *bio = m->bio;
929         int r;
930
931         if (m->status) {
932                 cell_error(pool, m->cell);
933                 goto out;
934         }
935
936         /*
937          * Commit the prepared block into the mapping btree.
938          * Any I/O for this block arriving after this point will get
939          * remapped to it directly.
940          */
941         r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
942         if (r) {
943                 metadata_operation_failed(pool, "dm_thin_insert_block", r);
944                 cell_error(pool, m->cell);
945                 goto out;
946         }
947
948         /*
949          * Release any bios held while the block was being provisioned.
950          * If we are processing a write bio that completely covers the block,
951          * we already processed it so can ignore it now when processing
952          * the bios in the cell.
953          */
954         if (bio) {
955                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
956                 bio_endio(bio);
957         } else {
958                 inc_all_io_entry(tc->pool, m->cell->holder);
959                 remap_and_issue(tc, m->cell->holder, m->data_block);
960                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
961         }
962
963 out:
964         list_del(&m->list);
965         mempool_free(m, &pool->mapping_pool);
966 }
967
968 /*----------------------------------------------------------------*/
969
970 static void free_discard_mapping(struct dm_thin_new_mapping *m)
971 {
972         struct thin_c *tc = m->tc;
973         if (m->cell)
974                 cell_defer_no_holder(tc, m->cell);
975         mempool_free(m, &tc->pool->mapping_pool);
976 }
977
978 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
979 {
980         bio_io_error(m->bio);
981         free_discard_mapping(m);
982 }
983
984 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
985 {
986         bio_endio(m->bio);
987         free_discard_mapping(m);
988 }
989
990 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
991 {
992         int r;
993         struct thin_c *tc = m->tc;
994
995         r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
996         if (r) {
997                 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
998                 bio_io_error(m->bio);
999         } else
1000                 bio_endio(m->bio);
1001
1002         cell_defer_no_holder(tc, m->cell);
1003         mempool_free(m, &tc->pool->mapping_pool);
1004 }
1005
1006 /*----------------------------------------------------------------*/
1007
1008 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1009                                                    struct bio *discard_parent)
1010 {
1011         /*
1012          * We've already unmapped this range of blocks, but before we
1013          * passdown we have to check that these blocks are now unused.
1014          */
1015         int r = 0;
1016         bool used = true;
1017         struct thin_c *tc = m->tc;
1018         struct pool *pool = tc->pool;
1019         dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1020         struct discard_op op;
1021
1022         begin_discard(&op, tc, discard_parent);
1023         while (b != end) {
1024                 /* find start of unmapped run */
1025                 for (; b < end; b++) {
1026                         r = dm_pool_block_is_used(pool->pmd, b, &used);
1027                         if (r)
1028                                 goto out;
1029
1030                         if (!used)
1031                                 break;
1032                 }
1033
1034                 if (b == end)
1035                         break;
1036
1037                 /* find end of run */
1038                 for (e = b + 1; e != end; e++) {
1039                         r = dm_pool_block_is_used(pool->pmd, e, &used);
1040                         if (r)
1041                                 goto out;
1042
1043                         if (used)
1044                                 break;
1045                 }
1046
1047                 r = issue_discard(&op, b, e);
1048                 if (r)
1049                         goto out;
1050
1051                 b = e;
1052         }
1053 out:
1054         end_discard(&op, r);
1055 }
1056
1057 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1058 {
1059         unsigned long flags;
1060         struct pool *pool = m->tc->pool;
1061
1062         spin_lock_irqsave(&pool->lock, flags);
1063         list_add_tail(&m->list, &pool->prepared_discards_pt2);
1064         spin_unlock_irqrestore(&pool->lock, flags);
1065         wake_worker(pool);
1066 }
1067
1068 static void passdown_endio(struct bio *bio)
1069 {
1070         /*
1071          * It doesn't matter if the passdown discard failed, we still want
1072          * to unmap (we ignore err).
1073          */
1074         queue_passdown_pt2(bio->bi_private);
1075         bio_put(bio);
1076 }
1077
1078 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1079 {
1080         int r;
1081         struct thin_c *tc = m->tc;
1082         struct pool *pool = tc->pool;
1083         struct bio *discard_parent;
1084         dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1085
1086         /*
1087          * Only this thread allocates blocks, so we can be sure that the
1088          * newly unmapped blocks will not be allocated before the end of
1089          * the function.
1090          */
1091         r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1092         if (r) {
1093                 metadata_operation_failed(pool, "dm_thin_remove_range", r);
1094                 bio_io_error(m->bio);
1095                 cell_defer_no_holder(tc, m->cell);
1096                 mempool_free(m, &pool->mapping_pool);
1097                 return;
1098         }
1099
1100         /*
1101          * Increment the unmapped blocks.  This prevents a race between the
1102          * passdown io and reallocation of freed blocks.
1103          */
1104         r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1105         if (r) {
1106                 metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1107                 bio_io_error(m->bio);
1108                 cell_defer_no_holder(tc, m->cell);
1109                 mempool_free(m, &pool->mapping_pool);
1110                 return;
1111         }
1112
1113         discard_parent = bio_alloc(GFP_NOIO, 1);
1114         if (!discard_parent) {
1115                 DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1116                        dm_device_name(tc->pool->pool_md));
1117                 queue_passdown_pt2(m);
1118
1119         } else {
1120                 discard_parent->bi_end_io = passdown_endio;
1121                 discard_parent->bi_private = m;
1122
1123                 if (m->maybe_shared)
1124                         passdown_double_checking_shared_status(m, discard_parent);
1125                 else {
1126                         struct discard_op op;
1127
1128                         begin_discard(&op, tc, discard_parent);
1129                         r = issue_discard(&op, m->data_block, data_end);
1130                         end_discard(&op, r);
1131                 }
1132         }
1133 }
1134
1135 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1136 {
1137         int r;
1138         struct thin_c *tc = m->tc;
1139         struct pool *pool = tc->pool;
1140
1141         /*
1142          * The passdown has completed, so now we can decrement all those
1143          * unmapped blocks.
1144          */
1145         r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1146                                    m->data_block + (m->virt_end - m->virt_begin));
1147         if (r) {
1148                 metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1149                 bio_io_error(m->bio);
1150         } else
1151                 bio_endio(m->bio);
1152
1153         cell_defer_no_holder(tc, m->cell);
1154         mempool_free(m, &pool->mapping_pool);
1155 }
1156
1157 static void process_prepared(struct pool *pool, struct list_head *head,
1158                              process_mapping_fn *fn)
1159 {
1160         unsigned long flags;
1161         struct list_head maps;
1162         struct dm_thin_new_mapping *m, *tmp;
1163
1164         INIT_LIST_HEAD(&maps);
1165         spin_lock_irqsave(&pool->lock, flags);
1166         list_splice_init(head, &maps);
1167         spin_unlock_irqrestore(&pool->lock, flags);
1168
1169         list_for_each_entry_safe(m, tmp, &maps, list)
1170                 (*fn)(m);
1171 }
1172
1173 /*
1174  * Deferred bio jobs.
1175  */
1176 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1177 {
1178         return bio->bi_iter.bi_size ==
1179                 (pool->sectors_per_block << SECTOR_SHIFT);
1180 }
1181
1182 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1183 {
1184         return (bio_data_dir(bio) == WRITE) &&
1185                 io_overlaps_block(pool, bio);
1186 }
1187
1188 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1189                                bio_end_io_t *fn)
1190 {
1191         *save = bio->bi_end_io;
1192         bio->bi_end_io = fn;
1193 }
1194
1195 static int ensure_next_mapping(struct pool *pool)
1196 {
1197         if (pool->next_mapping)
1198                 return 0;
1199
1200         pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1201
1202         return pool->next_mapping ? 0 : -ENOMEM;
1203 }
1204
1205 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1206 {
1207         struct dm_thin_new_mapping *m = pool->next_mapping;
1208
1209         BUG_ON(!pool->next_mapping);
1210
1211         memset(m, 0, sizeof(struct dm_thin_new_mapping));
1212         INIT_LIST_HEAD(&m->list);
1213         m->bio = NULL;
1214
1215         pool->next_mapping = NULL;
1216
1217         return m;
1218 }
1219
1220 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1221                     sector_t begin, sector_t end)
1222 {
1223         int r;
1224         struct dm_io_region to;
1225
1226         to.bdev = tc->pool_dev->bdev;
1227         to.sector = begin;
1228         to.count = end - begin;
1229
1230         r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1231         if (r < 0) {
1232                 DMERR_LIMIT("dm_kcopyd_zero() failed");
1233                 copy_complete(1, 1, m);
1234         }
1235 }
1236
1237 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1238                                       dm_block_t data_begin,
1239                                       struct dm_thin_new_mapping *m)
1240 {
1241         struct pool *pool = tc->pool;
1242         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1243
1244         h->overwrite_mapping = m;
1245         m->bio = bio;
1246         save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1247         inc_all_io_entry(pool, bio);
1248         remap_and_issue(tc, bio, data_begin);
1249 }
1250
1251 /*
1252  * A partial copy also needs to zero the uncopied region.
1253  */
1254 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1255                           struct dm_dev *origin, dm_block_t data_origin,
1256                           dm_block_t data_dest,
1257                           struct dm_bio_prison_cell *cell, struct bio *bio,
1258                           sector_t len)
1259 {
1260         int r;
1261         struct pool *pool = tc->pool;
1262         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1263
1264         m->tc = tc;
1265         m->virt_begin = virt_block;
1266         m->virt_end = virt_block + 1u;
1267         m->data_block = data_dest;
1268         m->cell = cell;
1269
1270         /*
1271          * quiesce action + copy action + an extra reference held for the
1272          * duration of this function (we may need to inc later for a
1273          * partial zero).
1274          */
1275         atomic_set(&m->prepare_actions, 3);
1276
1277         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1278                 complete_mapping_preparation(m); /* already quiesced */
1279
1280         /*
1281          * IO to pool_dev remaps to the pool target's data_dev.
1282          *
1283          * If the whole block of data is being overwritten, we can issue the
1284          * bio immediately. Otherwise we use kcopyd to clone the data first.
1285          */
1286         if (io_overwrites_block(pool, bio))
1287                 remap_and_issue_overwrite(tc, bio, data_dest, m);
1288         else {
1289                 struct dm_io_region from, to;
1290
1291                 from.bdev = origin->bdev;
1292                 from.sector = data_origin * pool->sectors_per_block;
1293                 from.count = len;
1294
1295                 to.bdev = tc->pool_dev->bdev;
1296                 to.sector = data_dest * pool->sectors_per_block;
1297                 to.count = len;
1298
1299                 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1300                                    0, copy_complete, m);
1301                 if (r < 0) {
1302                         DMERR_LIMIT("dm_kcopyd_copy() failed");
1303                         copy_complete(1, 1, m);
1304
1305                         /*
1306                          * We allow the zero to be issued, to simplify the
1307                          * error path.  Otherwise we'd need to start
1308                          * worrying about decrementing the prepare_actions
1309                          * counter.
1310                          */
1311                 }
1312
1313                 /*
1314                  * Do we need to zero a tail region?
1315                  */
1316                 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1317                         atomic_inc(&m->prepare_actions);
1318                         ll_zero(tc, m,
1319                                 data_dest * pool->sectors_per_block + len,
1320                                 (data_dest + 1) * pool->sectors_per_block);
1321                 }
1322         }
1323
1324         complete_mapping_preparation(m); /* drop our ref */
1325 }
1326
1327 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1328                                    dm_block_t data_origin, dm_block_t data_dest,
1329                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1330 {
1331         schedule_copy(tc, virt_block, tc->pool_dev,
1332                       data_origin, data_dest, cell, bio,
1333                       tc->pool->sectors_per_block);
1334 }
1335
1336 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1337                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
1338                           struct bio *bio)
1339 {
1340         struct pool *pool = tc->pool;
1341         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1342
1343         atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1344         m->tc = tc;
1345         m->virt_begin = virt_block;
1346         m->virt_end = virt_block + 1u;
1347         m->data_block = data_block;
1348         m->cell = cell;
1349
1350         /*
1351          * If the whole block of data is being overwritten or we are not
1352          * zeroing pre-existing data, we can issue the bio immediately.
1353          * Otherwise we use kcopyd to zero the data first.
1354          */
1355         if (pool->pf.zero_new_blocks) {
1356                 if (io_overwrites_block(pool, bio))
1357                         remap_and_issue_overwrite(tc, bio, data_block, m);
1358                 else
1359                         ll_zero(tc, m, data_block * pool->sectors_per_block,
1360                                 (data_block + 1) * pool->sectors_per_block);
1361         } else
1362                 process_prepared_mapping(m);
1363 }
1364
1365 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1366                                    dm_block_t data_dest,
1367                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1368 {
1369         struct pool *pool = tc->pool;
1370         sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1371         sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1372
1373         if (virt_block_end <= tc->origin_size)
1374                 schedule_copy(tc, virt_block, tc->origin_dev,
1375                               virt_block, data_dest, cell, bio,
1376                               pool->sectors_per_block);
1377
1378         else if (virt_block_begin < tc->origin_size)
1379                 schedule_copy(tc, virt_block, tc->origin_dev,
1380                               virt_block, data_dest, cell, bio,
1381                               tc->origin_size - virt_block_begin);
1382
1383         else
1384                 schedule_zero(tc, virt_block, data_dest, cell, bio);
1385 }
1386
1387 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1388
1389 static void check_for_space(struct pool *pool)
1390 {
1391         int r;
1392         dm_block_t nr_free;
1393
1394         if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1395                 return;
1396
1397         r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1398         if (r)
1399                 return;
1400
1401         if (nr_free)
1402                 set_pool_mode(pool, PM_WRITE);
1403 }
1404
1405 /*
1406  * A non-zero return indicates read_only or fail_io mode.
1407  * Many callers don't care about the return value.
1408  */
1409 static int commit(struct pool *pool)
1410 {
1411         int r;
1412
1413         if (get_pool_mode(pool) >= PM_READ_ONLY)
1414                 return -EINVAL;
1415
1416         r = dm_pool_commit_metadata(pool->pmd);
1417         if (r)
1418                 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1419         else
1420                 check_for_space(pool);
1421
1422         return r;
1423 }
1424
1425 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1426 {
1427         unsigned long flags;
1428
1429         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1430                 DMWARN("%s: reached low water mark for data device: sending event.",
1431                        dm_device_name(pool->pool_md));
1432                 spin_lock_irqsave(&pool->lock, flags);
1433                 pool->low_water_triggered = true;
1434                 spin_unlock_irqrestore(&pool->lock, flags);
1435                 dm_table_event(pool->ti->table);
1436         }
1437 }
1438
1439 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1440 {
1441         int r;
1442         dm_block_t free_blocks;
1443         struct pool *pool = tc->pool;
1444
1445         if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1446                 return -EINVAL;
1447
1448         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1449         if (r) {
1450                 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1451                 return r;
1452         }
1453
1454         check_low_water_mark(pool, free_blocks);
1455
1456         if (!free_blocks) {
1457                 /*
1458                  * Try to commit to see if that will free up some
1459                  * more space.
1460                  */
1461                 r = commit(pool);
1462                 if (r)
1463                         return r;
1464
1465                 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1466                 if (r) {
1467                         metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1468                         return r;
1469                 }
1470
1471                 if (!free_blocks) {
1472                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1473                         return -ENOSPC;
1474                 }
1475         }
1476
1477         r = dm_pool_alloc_data_block(pool->pmd, result);
1478         if (r) {
1479                 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1480                 return r;
1481         }
1482
1483         return 0;
1484 }
1485
1486 /*
1487  * If we have run out of space, queue bios until the device is
1488  * resumed, presumably after having been reloaded with more space.
1489  */
1490 static void retry_on_resume(struct bio *bio)
1491 {
1492         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1493         struct thin_c *tc = h->tc;
1494         unsigned long flags;
1495
1496         spin_lock_irqsave(&tc->lock, flags);
1497         bio_list_add(&tc->retry_on_resume_list, bio);
1498         spin_unlock_irqrestore(&tc->lock, flags);
1499 }
1500
1501 static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1502 {
1503         enum pool_mode m = get_pool_mode(pool);
1504
1505         switch (m) {
1506         case PM_WRITE:
1507                 /* Shouldn't get here */
1508                 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1509                 return BLK_STS_IOERR;
1510
1511         case PM_OUT_OF_DATA_SPACE:
1512                 return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1513
1514         case PM_READ_ONLY:
1515         case PM_FAIL:
1516                 return BLK_STS_IOERR;
1517         default:
1518                 /* Shouldn't get here */
1519                 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1520                 return BLK_STS_IOERR;
1521         }
1522 }
1523
1524 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1525 {
1526         blk_status_t error = should_error_unserviceable_bio(pool);
1527
1528         if (error) {
1529                 bio->bi_status = error;
1530                 bio_endio(bio);
1531         } else
1532                 retry_on_resume(bio);
1533 }
1534
1535 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1536 {
1537         struct bio *bio;
1538         struct bio_list bios;
1539         blk_status_t error;
1540
1541         error = should_error_unserviceable_bio(pool);
1542         if (error) {
1543                 cell_error_with_code(pool, cell, error);
1544                 return;
1545         }
1546
1547         bio_list_init(&bios);
1548         cell_release(pool, cell, &bios);
1549
1550         while ((bio = bio_list_pop(&bios)))
1551                 retry_on_resume(bio);
1552 }
1553
1554 static void process_discard_cell_no_passdown(struct thin_c *tc,
1555                                              struct dm_bio_prison_cell *virt_cell)
1556 {
1557         struct pool *pool = tc->pool;
1558         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1559
1560         /*
1561          * We don't need to lock the data blocks, since there's no
1562          * passdown.  We only lock data blocks for allocation and breaking sharing.
1563          */
1564         m->tc = tc;
1565         m->virt_begin = virt_cell->key.block_begin;
1566         m->virt_end = virt_cell->key.block_end;
1567         m->cell = virt_cell;
1568         m->bio = virt_cell->holder;
1569
1570         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1571                 pool->process_prepared_discard(m);
1572 }
1573
1574 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1575                                  struct bio *bio)
1576 {
1577         struct pool *pool = tc->pool;
1578
1579         int r;
1580         bool maybe_shared;
1581         struct dm_cell_key data_key;
1582         struct dm_bio_prison_cell *data_cell;
1583         struct dm_thin_new_mapping *m;
1584         dm_block_t virt_begin, virt_end, data_begin;
1585
1586         while (begin != end) {
1587                 r = ensure_next_mapping(pool);
1588                 if (r)
1589                         /* we did our best */
1590                         return;
1591
1592                 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1593                                               &data_begin, &maybe_shared);
1594                 if (r)
1595                         /*
1596                          * Silently fail, letting any mappings we've
1597                          * created complete.
1598                          */
1599                         break;
1600
1601                 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1602                 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1603                         /* contention, we'll give up with this range */
1604                         begin = virt_end;
1605                         continue;
1606                 }
1607
1608                 /*
1609                  * IO may still be going to the destination block.  We must
1610                  * quiesce before we can do the removal.
1611                  */
1612                 m = get_next_mapping(pool);
1613                 m->tc = tc;
1614                 m->maybe_shared = maybe_shared;
1615                 m->virt_begin = virt_begin;
1616                 m->virt_end = virt_end;
1617                 m->data_block = data_begin;
1618                 m->cell = data_cell;
1619                 m->bio = bio;
1620
1621                 /*
1622                  * The parent bio must not complete before sub discard bios are
1623                  * chained to it (see end_discard's bio_chain)!
1624                  *
1625                  * This per-mapping bi_remaining increment is paired with
1626                  * the implicit decrement that occurs via bio_endio() in
1627                  * end_discard().
1628                  */
1629                 bio_inc_remaining(bio);
1630                 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1631                         pool->process_prepared_discard(m);
1632
1633                 begin = virt_end;
1634         }
1635 }
1636
1637 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1638 {
1639         struct bio *bio = virt_cell->holder;
1640         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1641
1642         /*
1643          * The virt_cell will only get freed once the origin bio completes.
1644          * This means it will remain locked while all the individual
1645          * passdown bios are in flight.
1646          */
1647         h->cell = virt_cell;
1648         break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1649
1650         /*
1651          * We complete the bio now, knowing that the bi_remaining field
1652          * will prevent completion until the sub range discards have
1653          * completed.
1654          */
1655         bio_endio(bio);
1656 }
1657
1658 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1659 {
1660         dm_block_t begin, end;
1661         struct dm_cell_key virt_key;
1662         struct dm_bio_prison_cell *virt_cell;
1663
1664         get_bio_block_range(tc, bio, &begin, &end);
1665         if (begin == end) {
1666                 /*
1667                  * The discard covers less than a block.
1668                  */
1669                 bio_endio(bio);
1670                 return;
1671         }
1672
1673         build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1674         if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1675                 /*
1676                  * Potential starvation issue: We're relying on the
1677                  * fs/application being well behaved, and not trying to
1678                  * send IO to a region at the same time as discarding it.
1679                  * If they do this persistently then it's possible this
1680                  * cell will never be granted.
1681                  */
1682                 return;
1683
1684         tc->pool->process_discard_cell(tc, virt_cell);
1685 }
1686
1687 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1688                           struct dm_cell_key *key,
1689                           struct dm_thin_lookup_result *lookup_result,
1690                           struct dm_bio_prison_cell *cell)
1691 {
1692         int r;
1693         dm_block_t data_block;
1694         struct pool *pool = tc->pool;
1695
1696         r = alloc_data_block(tc, &data_block);
1697         switch (r) {
1698         case 0:
1699                 schedule_internal_copy(tc, block, lookup_result->block,
1700                                        data_block, cell, bio);
1701                 break;
1702
1703         case -ENOSPC:
1704                 retry_bios_on_resume(pool, cell);
1705                 break;
1706
1707         default:
1708                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1709                             __func__, r);
1710                 cell_error(pool, cell);
1711                 break;
1712         }
1713 }
1714
1715 static void __remap_and_issue_shared_cell(void *context,
1716                                           struct dm_bio_prison_cell *cell)
1717 {
1718         struct remap_info *info = context;
1719         struct bio *bio;
1720
1721         while ((bio = bio_list_pop(&cell->bios))) {
1722                 if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1723                     bio_op(bio) == REQ_OP_DISCARD)
1724                         bio_list_add(&info->defer_bios, bio);
1725                 else {
1726                         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1727
1728                         h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1729                         inc_all_io_entry(info->tc->pool, bio);
1730                         bio_list_add(&info->issue_bios, bio);
1731                 }
1732         }
1733 }
1734
1735 static void remap_and_issue_shared_cell(struct thin_c *tc,
1736                                         struct dm_bio_prison_cell *cell,
1737                                         dm_block_t block)
1738 {
1739         struct bio *bio;
1740         struct remap_info info;
1741
1742         info.tc = tc;
1743         bio_list_init(&info.defer_bios);
1744         bio_list_init(&info.issue_bios);
1745
1746         cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1747                            &info, cell);
1748
1749         while ((bio = bio_list_pop(&info.defer_bios)))
1750                 thin_defer_bio(tc, bio);
1751
1752         while ((bio = bio_list_pop(&info.issue_bios)))
1753                 remap_and_issue(tc, bio, block);
1754 }
1755
1756 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1757                                dm_block_t block,
1758                                struct dm_thin_lookup_result *lookup_result,
1759                                struct dm_bio_prison_cell *virt_cell)
1760 {
1761         struct dm_bio_prison_cell *data_cell;
1762         struct pool *pool = tc->pool;
1763         struct dm_cell_key key;
1764
1765         /*
1766          * If cell is already occupied, then sharing is already in the process
1767          * of being broken so we have nothing further to do here.
1768          */
1769         build_data_key(tc->td, lookup_result->block, &key);
1770         if (bio_detain(pool, &key, bio, &data_cell)) {
1771                 cell_defer_no_holder(tc, virt_cell);
1772                 return;
1773         }
1774
1775         if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1776                 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1777                 cell_defer_no_holder(tc, virt_cell);
1778         } else {
1779                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1780
1781                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1782                 inc_all_io_entry(pool, bio);
1783                 remap_and_issue(tc, bio, lookup_result->block);
1784
1785                 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1786                 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1787         }
1788 }
1789
1790 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1791                             struct dm_bio_prison_cell *cell)
1792 {
1793         int r;
1794         dm_block_t data_block;
1795         struct pool *pool = tc->pool;
1796
1797         /*
1798          * Remap empty bios (flushes) immediately, without provisioning.
1799          */
1800         if (!bio->bi_iter.bi_size) {
1801                 inc_all_io_entry(pool, bio);
1802                 cell_defer_no_holder(tc, cell);
1803
1804                 remap_and_issue(tc, bio, 0);
1805                 return;
1806         }
1807
1808         /*
1809          * Fill read bios with zeroes and complete them immediately.
1810          */
1811         if (bio_data_dir(bio) == READ) {
1812                 zero_fill_bio(bio);
1813                 cell_defer_no_holder(tc, cell);
1814                 bio_endio(bio);
1815                 return;
1816         }
1817
1818         r = alloc_data_block(tc, &data_block);
1819         switch (r) {
1820         case 0:
1821                 if (tc->origin_dev)
1822                         schedule_external_copy(tc, block, data_block, cell, bio);
1823                 else
1824                         schedule_zero(tc, block, data_block, cell, bio);
1825                 break;
1826
1827         case -ENOSPC:
1828                 retry_bios_on_resume(pool, cell);
1829                 break;
1830
1831         default:
1832                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1833                             __func__, r);
1834                 cell_error(pool, cell);
1835                 break;
1836         }
1837 }
1838
1839 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1840 {
1841         int r;
1842         struct pool *pool = tc->pool;
1843         struct bio *bio = cell->holder;
1844         dm_block_t block = get_bio_block(tc, bio);
1845         struct dm_thin_lookup_result lookup_result;
1846
1847         if (tc->requeue_mode) {
1848                 cell_requeue(pool, cell);
1849                 return;
1850         }
1851
1852         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1853         switch (r) {
1854         case 0:
1855                 if (lookup_result.shared)
1856                         process_shared_bio(tc, bio, block, &lookup_result, cell);
1857                 else {
1858                         inc_all_io_entry(pool, bio);
1859                         remap_and_issue(tc, bio, lookup_result.block);
1860                         inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1861                 }
1862                 break;
1863
1864         case -ENODATA:
1865                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1866                         inc_all_io_entry(pool, bio);
1867                         cell_defer_no_holder(tc, cell);
1868
1869                         if (bio_end_sector(bio) <= tc->origin_size)
1870                                 remap_to_origin_and_issue(tc, bio);
1871
1872                         else if (bio->bi_iter.bi_sector < tc->origin_size) {
1873                                 zero_fill_bio(bio);
1874                                 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1875                                 remap_to_origin_and_issue(tc, bio);
1876
1877                         } else {
1878                                 zero_fill_bio(bio);
1879                                 bio_endio(bio);
1880                         }
1881                 } else
1882                         provision_block(tc, bio, block, cell);
1883                 break;
1884
1885         default:
1886                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1887                             __func__, r);
1888                 cell_defer_no_holder(tc, cell);
1889                 bio_io_error(bio);
1890                 break;
1891         }
1892 }
1893
1894 static void process_bio(struct thin_c *tc, struct bio *bio)
1895 {
1896         struct pool *pool = tc->pool;
1897         dm_block_t block = get_bio_block(tc, bio);
1898         struct dm_bio_prison_cell *cell;
1899         struct dm_cell_key key;
1900
1901         /*
1902          * If cell is already occupied, then the block is already
1903          * being provisioned so we have nothing further to do here.
1904          */
1905         build_virtual_key(tc->td, block, &key);
1906         if (bio_detain(pool, &key, bio, &cell))
1907                 return;
1908
1909         process_cell(tc, cell);
1910 }
1911
1912 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1913                                     struct dm_bio_prison_cell *cell)
1914 {
1915         int r;
1916         int rw = bio_data_dir(bio);
1917         dm_block_t block = get_bio_block(tc, bio);
1918         struct dm_thin_lookup_result lookup_result;
1919
1920         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1921         switch (r) {
1922         case 0:
1923                 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1924                         handle_unserviceable_bio(tc->pool, bio);
1925                         if (cell)
1926                                 cell_defer_no_holder(tc, cell);
1927                 } else {
1928                         inc_all_io_entry(tc->pool, bio);
1929                         remap_and_issue(tc, bio, lookup_result.block);
1930                         if (cell)
1931                                 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1932                 }
1933                 break;
1934
1935         case -ENODATA:
1936                 if (cell)
1937                         cell_defer_no_holder(tc, cell);
1938                 if (rw != READ) {
1939                         handle_unserviceable_bio(tc->pool, bio);
1940                         break;
1941                 }
1942
1943                 if (tc->origin_dev) {
1944                         inc_all_io_entry(tc->pool, bio);
1945                         remap_to_origin_and_issue(tc, bio);
1946                         break;
1947                 }
1948
1949                 zero_fill_bio(bio);
1950                 bio_endio(bio);
1951                 break;
1952
1953         default:
1954                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1955                             __func__, r);
1956                 if (cell)
1957                         cell_defer_no_holder(tc, cell);
1958                 bio_io_error(bio);
1959                 break;
1960         }
1961 }
1962
1963 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1964 {
1965         __process_bio_read_only(tc, bio, NULL);
1966 }
1967
1968 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1969 {
1970         __process_bio_read_only(tc, cell->holder, cell);
1971 }
1972
1973 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1974 {
1975         bio_endio(bio);
1976 }
1977
1978 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1979 {
1980         bio_io_error(bio);
1981 }
1982
1983 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1984 {
1985         cell_success(tc->pool, cell);
1986 }
1987
1988 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1989 {
1990         cell_error(tc->pool, cell);
1991 }
1992
1993 /*
1994  * FIXME: should we also commit due to size of transaction, measured in
1995  * metadata blocks?
1996  */
1997 static int need_commit_due_to_time(struct pool *pool)
1998 {
1999         return !time_in_range(jiffies, pool->last_commit_jiffies,
2000                               pool->last_commit_jiffies + COMMIT_PERIOD);
2001 }
2002
2003 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2004 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2005
2006 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2007 {
2008         struct rb_node **rbp, *parent;
2009         struct dm_thin_endio_hook *pbd;
2010         sector_t bi_sector = bio->bi_iter.bi_sector;
2011
2012         rbp = &tc->sort_bio_list.rb_node;
2013         parent = NULL;
2014         while (*rbp) {
2015                 parent = *rbp;
2016                 pbd = thin_pbd(parent);
2017
2018                 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2019                         rbp = &(*rbp)->rb_left;
2020                 else
2021                         rbp = &(*rbp)->rb_right;
2022         }
2023
2024         pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2025         rb_link_node(&pbd->rb_node, parent, rbp);
2026         rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2027 }
2028
2029 static void __extract_sorted_bios(struct thin_c *tc)
2030 {
2031         struct rb_node *node;
2032         struct dm_thin_endio_hook *pbd;
2033         struct bio *bio;
2034
2035         for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2036                 pbd = thin_pbd(node);
2037                 bio = thin_bio(pbd);
2038
2039                 bio_list_add(&tc->deferred_bio_list, bio);
2040                 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2041         }
2042
2043         WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2044 }
2045
2046 static void __sort_thin_deferred_bios(struct thin_c *tc)
2047 {
2048         struct bio *bio;
2049         struct bio_list bios;
2050
2051         bio_list_init(&bios);
2052         bio_list_merge(&bios, &tc->deferred_bio_list);
2053         bio_list_init(&tc->deferred_bio_list);
2054
2055         /* Sort deferred_bio_list using rb-tree */
2056         while ((bio = bio_list_pop(&bios)))
2057                 __thin_bio_rb_add(tc, bio);
2058
2059         /*
2060          * Transfer the sorted bios in sort_bio_list back to
2061          * deferred_bio_list to allow lockless submission of
2062          * all bios.
2063          */
2064         __extract_sorted_bios(tc);
2065 }
2066
2067 static void process_thin_deferred_bios(struct thin_c *tc)
2068 {
2069         struct pool *pool = tc->pool;
2070         unsigned long flags;
2071         struct bio *bio;
2072         struct bio_list bios;
2073         struct blk_plug plug;
2074         unsigned count = 0;
2075
2076         if (tc->requeue_mode) {
2077                 error_thin_bio_list(tc, &tc->deferred_bio_list,
2078                                 BLK_STS_DM_REQUEUE);
2079                 return;
2080         }
2081
2082         bio_list_init(&bios);
2083
2084         spin_lock_irqsave(&tc->lock, flags);
2085
2086         if (bio_list_empty(&tc->deferred_bio_list)) {
2087                 spin_unlock_irqrestore(&tc->lock, flags);
2088                 return;
2089         }
2090
2091         __sort_thin_deferred_bios(tc);
2092
2093         bio_list_merge(&bios, &tc->deferred_bio_list);
2094         bio_list_init(&tc->deferred_bio_list);
2095
2096         spin_unlock_irqrestore(&tc->lock, flags);
2097
2098         blk_start_plug(&plug);
2099         while ((bio = bio_list_pop(&bios))) {
2100                 /*
2101                  * If we've got no free new_mapping structs, and processing
2102                  * this bio might require one, we pause until there are some
2103                  * prepared mappings to process.
2104                  */
2105                 if (ensure_next_mapping(pool)) {
2106                         spin_lock_irqsave(&tc->lock, flags);
2107                         bio_list_add(&tc->deferred_bio_list, bio);
2108                         bio_list_merge(&tc->deferred_bio_list, &bios);
2109                         spin_unlock_irqrestore(&tc->lock, flags);
2110                         break;
2111                 }
2112
2113                 if (bio_op(bio) == REQ_OP_DISCARD)
2114                         pool->process_discard(tc, bio);
2115                 else
2116                         pool->process_bio(tc, bio);
2117
2118                 if ((count++ & 127) == 0) {
2119                         throttle_work_update(&pool->throttle);
2120                         dm_pool_issue_prefetches(pool->pmd);
2121                 }
2122         }
2123         blk_finish_plug(&plug);
2124 }
2125
2126 static int cmp_cells(const void *lhs, const void *rhs)
2127 {
2128         struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2129         struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2130
2131         BUG_ON(!lhs_cell->holder);
2132         BUG_ON(!rhs_cell->holder);
2133
2134         if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2135                 return -1;
2136
2137         if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2138                 return 1;
2139
2140         return 0;
2141 }
2142
2143 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2144 {
2145         unsigned count = 0;
2146         struct dm_bio_prison_cell *cell, *tmp;
2147
2148         list_for_each_entry_safe(cell, tmp, cells, user_list) {
2149                 if (count >= CELL_SORT_ARRAY_SIZE)
2150                         break;
2151
2152                 pool->cell_sort_array[count++] = cell;
2153                 list_del(&cell->user_list);
2154         }
2155
2156         sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2157
2158         return count;
2159 }
2160
2161 static void process_thin_deferred_cells(struct thin_c *tc)
2162 {
2163         struct pool *pool = tc->pool;
2164         unsigned long flags;
2165         struct list_head cells;
2166         struct dm_bio_prison_cell *cell;
2167         unsigned i, j, count;
2168
2169         INIT_LIST_HEAD(&cells);
2170
2171         spin_lock_irqsave(&tc->lock, flags);
2172         list_splice_init(&tc->deferred_cells, &cells);
2173         spin_unlock_irqrestore(&tc->lock, flags);
2174
2175         if (list_empty(&cells))
2176                 return;
2177
2178         do {
2179                 count = sort_cells(tc->pool, &cells);
2180
2181                 for (i = 0; i < count; i++) {
2182                         cell = pool->cell_sort_array[i];
2183                         BUG_ON(!cell->holder);
2184
2185                         /*
2186                          * If we've got no free new_mapping structs, and processing
2187                          * this bio might require one, we pause until there are some
2188                          * prepared mappings to process.
2189                          */
2190                         if (ensure_next_mapping(pool)) {
2191                                 for (j = i; j < count; j++)
2192                                         list_add(&pool->cell_sort_array[j]->user_list, &cells);
2193
2194                                 spin_lock_irqsave(&tc->lock, flags);
2195                                 list_splice(&cells, &tc->deferred_cells);
2196                                 spin_unlock_irqrestore(&tc->lock, flags);
2197                                 return;
2198                         }
2199
2200                         if (bio_op(cell->holder) == REQ_OP_DISCARD)
2201                                 pool->process_discard_cell(tc, cell);
2202                         else
2203                                 pool->process_cell(tc, cell);
2204                 }
2205         } while (!list_empty(&cells));
2206 }
2207
2208 static void thin_get(struct thin_c *tc);
2209 static void thin_put(struct thin_c *tc);
2210
2211 /*
2212  * We can't hold rcu_read_lock() around code that can block.  So we
2213  * find a thin with the rcu lock held; bump a refcount; then drop
2214  * the lock.
2215  */
2216 static struct thin_c *get_first_thin(struct pool *pool)
2217 {
2218         struct thin_c *tc = NULL;
2219
2220         rcu_read_lock();
2221         if (!list_empty(&pool->active_thins)) {
2222                 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2223                 thin_get(tc);
2224         }
2225         rcu_read_unlock();
2226
2227         return tc;
2228 }
2229
2230 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2231 {
2232         struct thin_c *old_tc = tc;
2233
2234         rcu_read_lock();
2235         list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2236                 thin_get(tc);
2237                 thin_put(old_tc);
2238                 rcu_read_unlock();
2239                 return tc;
2240         }
2241         thin_put(old_tc);
2242         rcu_read_unlock();
2243
2244         return NULL;
2245 }
2246
2247 static void process_deferred_bios(struct pool *pool)
2248 {
2249         unsigned long flags;
2250         struct bio *bio;
2251         struct bio_list bios;
2252         struct thin_c *tc;
2253
2254         tc = get_first_thin(pool);
2255         while (tc) {
2256                 process_thin_deferred_cells(tc);
2257                 process_thin_deferred_bios(tc);
2258                 tc = get_next_thin(pool, tc);
2259         }
2260
2261         /*
2262          * If there are any deferred flush bios, we must commit
2263          * the metadata before issuing them.
2264          */
2265         bio_list_init(&bios);
2266         spin_lock_irqsave(&pool->lock, flags);
2267         bio_list_merge(&bios, &pool->deferred_flush_bios);
2268         bio_list_init(&pool->deferred_flush_bios);
2269         spin_unlock_irqrestore(&pool->lock, flags);
2270
2271         if (bio_list_empty(&bios) &&
2272             !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2273                 return;
2274
2275         if (commit(pool)) {
2276                 while ((bio = bio_list_pop(&bios)))
2277                         bio_io_error(bio);
2278                 return;
2279         }
2280         pool->last_commit_jiffies = jiffies;
2281
2282         while ((bio = bio_list_pop(&bios)))
2283                 generic_make_request(bio);
2284 }
2285
2286 static void do_worker(struct work_struct *ws)
2287 {
2288         struct pool *pool = container_of(ws, struct pool, worker);
2289
2290         throttle_work_start(&pool->throttle);
2291         dm_pool_issue_prefetches(pool->pmd);
2292         throttle_work_update(&pool->throttle);
2293         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2294         throttle_work_update(&pool->throttle);
2295         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2296         throttle_work_update(&pool->throttle);
2297         process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2298         throttle_work_update(&pool->throttle);
2299         process_deferred_bios(pool);
2300         throttle_work_complete(&pool->throttle);
2301 }
2302
2303 /*
2304  * We want to commit periodically so that not too much
2305  * unwritten data builds up.
2306  */
2307 static void do_waker(struct work_struct *ws)
2308 {
2309         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2310         wake_worker(pool);
2311         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2312 }
2313
2314 static void notify_of_pool_mode_change_to_oods(struct pool *pool);
2315
2316 /*
2317  * We're holding onto IO to allow userland time to react.  After the
2318  * timeout either the pool will have been resized (and thus back in
2319  * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2320  */
2321 static void do_no_space_timeout(struct work_struct *ws)
2322 {
2323         struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2324                                          no_space_timeout);
2325
2326         if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2327                 pool->pf.error_if_no_space = true;
2328                 notify_of_pool_mode_change_to_oods(pool);
2329                 error_retry_list_with_code(pool, BLK_STS_NOSPC);
2330         }
2331 }
2332
2333 /*----------------------------------------------------------------*/
2334
2335 struct pool_work {
2336         struct work_struct worker;
2337         struct completion complete;
2338 };
2339
2340 static struct pool_work *to_pool_work(struct work_struct *ws)
2341 {
2342         return container_of(ws, struct pool_work, worker);
2343 }
2344
2345 static void pool_work_complete(struct pool_work *pw)
2346 {
2347         complete(&pw->complete);
2348 }
2349
2350 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2351                            void (*fn)(struct work_struct *))
2352 {
2353         INIT_WORK_ONSTACK(&pw->worker, fn);
2354         init_completion(&pw->complete);
2355         queue_work(pool->wq, &pw->worker);
2356         wait_for_completion(&pw->complete);
2357 }
2358
2359 /*----------------------------------------------------------------*/
2360
2361 struct noflush_work {
2362         struct pool_work pw;
2363         struct thin_c *tc;
2364 };
2365
2366 static struct noflush_work *to_noflush(struct work_struct *ws)
2367 {
2368         return container_of(to_pool_work(ws), struct noflush_work, pw);
2369 }
2370
2371 static void do_noflush_start(struct work_struct *ws)
2372 {
2373         struct noflush_work *w = to_noflush(ws);
2374         w->tc->requeue_mode = true;
2375         requeue_io(w->tc);
2376         pool_work_complete(&w->pw);
2377 }
2378
2379 static void do_noflush_stop(struct work_struct *ws)
2380 {
2381         struct noflush_work *w = to_noflush(ws);
2382         w->tc->requeue_mode = false;
2383         pool_work_complete(&w->pw);
2384 }
2385
2386 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2387 {
2388         struct noflush_work w;
2389
2390         w.tc = tc;
2391         pool_work_wait(&w.pw, tc->pool, fn);
2392 }
2393
2394 /*----------------------------------------------------------------*/
2395
2396 static enum pool_mode get_pool_mode(struct pool *pool)
2397 {
2398         return pool->pf.mode;
2399 }
2400
2401 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2402 {
2403         dm_table_event(pool->ti->table);
2404         DMINFO("%s: switching pool to %s mode",
2405                dm_device_name(pool->pool_md), new_mode);
2406 }
2407
2408 static void notify_of_pool_mode_change_to_oods(struct pool *pool)
2409 {
2410         if (!pool->pf.error_if_no_space)
2411                 notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)");
2412         else
2413                 notify_of_pool_mode_change(pool, "out-of-data-space (error IO)");
2414 }
2415
2416 static bool passdown_enabled(struct pool_c *pt)
2417 {
2418         return pt->adjusted_pf.discard_passdown;
2419 }
2420
2421 static void set_discard_callbacks(struct pool *pool)
2422 {
2423         struct pool_c *pt = pool->ti->private;
2424
2425         if (passdown_enabled(pt)) {
2426                 pool->process_discard_cell = process_discard_cell_passdown;
2427                 pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2428                 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2429         } else {
2430                 pool->process_discard_cell = process_discard_cell_no_passdown;
2431                 pool->process_prepared_discard = process_prepared_discard_no_passdown;
2432         }
2433 }
2434
2435 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2436 {
2437         struct pool_c *pt = pool->ti->private;
2438         bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2439         enum pool_mode old_mode = get_pool_mode(pool);
2440         unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2441
2442         /*
2443          * Never allow the pool to transition to PM_WRITE mode if user
2444          * intervention is required to verify metadata and data consistency.
2445          */
2446         if (new_mode == PM_WRITE && needs_check) {
2447                 DMERR("%s: unable to switch pool to write mode until repaired.",
2448                       dm_device_name(pool->pool_md));
2449                 if (old_mode != new_mode)
2450                         new_mode = old_mode;
2451                 else
2452                         new_mode = PM_READ_ONLY;
2453         }
2454         /*
2455          * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2456          * not going to recover without a thin_repair.  So we never let the
2457          * pool move out of the old mode.
2458          */
2459         if (old_mode == PM_FAIL)
2460                 new_mode = old_mode;
2461
2462         switch (new_mode) {
2463         case PM_FAIL:
2464                 if (old_mode != new_mode)
2465                         notify_of_pool_mode_change(pool, "failure");
2466                 dm_pool_metadata_read_only(pool->pmd);
2467                 pool->process_bio = process_bio_fail;
2468                 pool->process_discard = process_bio_fail;
2469                 pool->process_cell = process_cell_fail;
2470                 pool->process_discard_cell = process_cell_fail;
2471                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2472                 pool->process_prepared_discard = process_prepared_discard_fail;
2473
2474                 error_retry_list(pool);
2475                 break;
2476
2477         case PM_READ_ONLY:
2478                 if (old_mode != new_mode)
2479                         notify_of_pool_mode_change(pool, "read-only");
2480                 dm_pool_metadata_read_only(pool->pmd);
2481                 pool->process_bio = process_bio_read_only;
2482                 pool->process_discard = process_bio_success;
2483                 pool->process_cell = process_cell_read_only;
2484                 pool->process_discard_cell = process_cell_success;
2485                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2486                 pool->process_prepared_discard = process_prepared_discard_success;
2487
2488                 error_retry_list(pool);
2489                 break;
2490
2491         case PM_OUT_OF_DATA_SPACE:
2492                 /*
2493                  * Ideally we'd never hit this state; the low water mark
2494                  * would trigger userland to extend the pool before we
2495                  * completely run out of data space.  However, many small
2496                  * IOs to unprovisioned space can consume data space at an
2497                  * alarming rate.  Adjust your low water mark if you're
2498                  * frequently seeing this mode.
2499                  */
2500                 if (old_mode != new_mode)
2501                         notify_of_pool_mode_change_to_oods(pool);
2502                 pool->out_of_data_space = true;
2503                 pool->process_bio = process_bio_read_only;
2504                 pool->process_discard = process_discard_bio;
2505                 pool->process_cell = process_cell_read_only;
2506                 pool->process_prepared_mapping = process_prepared_mapping;
2507                 set_discard_callbacks(pool);
2508
2509                 if (!pool->pf.error_if_no_space && no_space_timeout)
2510                         queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2511                 break;
2512
2513         case PM_WRITE:
2514                 if (old_mode != new_mode)
2515                         notify_of_pool_mode_change(pool, "write");
2516                 pool->out_of_data_space = false;
2517                 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2518                 dm_pool_metadata_read_write(pool->pmd);
2519                 pool->process_bio = process_bio;
2520                 pool->process_discard = process_discard_bio;
2521                 pool->process_cell = process_cell;
2522                 pool->process_prepared_mapping = process_prepared_mapping;
2523                 set_discard_callbacks(pool);
2524                 break;
2525         }
2526
2527         pool->pf.mode = new_mode;
2528         /*
2529          * The pool mode may have changed, sync it so bind_control_target()
2530          * doesn't cause an unexpected mode transition on resume.
2531          */
2532         pt->adjusted_pf.mode = new_mode;
2533 }
2534
2535 static void abort_transaction(struct pool *pool)
2536 {
2537         const char *dev_name = dm_device_name(pool->pool_md);
2538
2539         DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2540         if (dm_pool_abort_metadata(pool->pmd)) {
2541                 DMERR("%s: failed to abort metadata transaction", dev_name);
2542                 set_pool_mode(pool, PM_FAIL);
2543         }
2544
2545         if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2546                 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2547                 set_pool_mode(pool, PM_FAIL);
2548         }
2549 }
2550
2551 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2552 {
2553         DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2554                     dm_device_name(pool->pool_md), op, r);
2555
2556         abort_transaction(pool);
2557         set_pool_mode(pool, PM_READ_ONLY);
2558 }
2559
2560 /*----------------------------------------------------------------*/
2561
2562 /*
2563  * Mapping functions.
2564  */
2565
2566 /*
2567  * Called only while mapping a thin bio to hand it over to the workqueue.
2568  */
2569 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2570 {
2571         unsigned long flags;
2572         struct pool *pool = tc->pool;
2573
2574         spin_lock_irqsave(&tc->lock, flags);
2575         bio_list_add(&tc->deferred_bio_list, bio);
2576         spin_unlock_irqrestore(&tc->lock, flags);
2577
2578         wake_worker(pool);
2579 }
2580
2581 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2582 {
2583         struct pool *pool = tc->pool;
2584
2585         throttle_lock(&pool->throttle);
2586         thin_defer_bio(tc, bio);
2587         throttle_unlock(&pool->throttle);
2588 }
2589
2590 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2591 {
2592         unsigned long flags;
2593         struct pool *pool = tc->pool;
2594
2595         throttle_lock(&pool->throttle);
2596         spin_lock_irqsave(&tc->lock, flags);
2597         list_add_tail(&cell->user_list, &tc->deferred_cells);
2598         spin_unlock_irqrestore(&tc->lock, flags);
2599         throttle_unlock(&pool->throttle);
2600
2601         wake_worker(pool);
2602 }
2603
2604 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2605 {
2606         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2607
2608         h->tc = tc;
2609         h->shared_read_entry = NULL;
2610         h->all_io_entry = NULL;
2611         h->overwrite_mapping = NULL;
2612         h->cell = NULL;
2613 }
2614
2615 /*
2616  * Non-blocking function called from the thin target's map function.
2617  */
2618 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2619 {
2620         int r;
2621         struct thin_c *tc = ti->private;
2622         dm_block_t block = get_bio_block(tc, bio);
2623         struct dm_thin_device *td = tc->td;
2624         struct dm_thin_lookup_result result;
2625         struct dm_bio_prison_cell *virt_cell, *data_cell;
2626         struct dm_cell_key key;
2627
2628         thin_hook_bio(tc, bio);
2629
2630         if (tc->requeue_mode) {
2631                 bio->bi_status = BLK_STS_DM_REQUEUE;
2632                 bio_endio(bio);
2633                 return DM_MAPIO_SUBMITTED;
2634         }
2635
2636         if (get_pool_mode(tc->pool) == PM_FAIL) {
2637                 bio_io_error(bio);
2638                 return DM_MAPIO_SUBMITTED;
2639         }
2640
2641         if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2642                 thin_defer_bio_with_throttle(tc, bio);
2643                 return DM_MAPIO_SUBMITTED;
2644         }
2645
2646         /*
2647          * We must hold the virtual cell before doing the lookup, otherwise
2648          * there's a race with discard.
2649          */
2650         build_virtual_key(tc->td, block, &key);
2651         if (bio_detain(tc->pool, &key, bio, &virt_cell))
2652                 return DM_MAPIO_SUBMITTED;
2653
2654         r = dm_thin_find_block(td, block, 0, &result);
2655
2656         /*
2657          * Note that we defer readahead too.
2658          */
2659         switch (r) {
2660         case 0:
2661                 if (unlikely(result.shared)) {
2662                         /*
2663                          * We have a race condition here between the
2664                          * result.shared value returned by the lookup and
2665                          * snapshot creation, which may cause new
2666                          * sharing.
2667                          *
2668                          * To avoid this always quiesce the origin before
2669                          * taking the snap.  You want to do this anyway to
2670                          * ensure a consistent application view
2671                          * (i.e. lockfs).
2672                          *
2673                          * More distant ancestors are irrelevant. The
2674                          * shared flag will be set in their case.
2675                          */
2676                         thin_defer_cell(tc, virt_cell);
2677                         return DM_MAPIO_SUBMITTED;
2678                 }
2679
2680                 build_data_key(tc->td, result.block, &key);
2681                 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2682                         cell_defer_no_holder(tc, virt_cell);
2683                         return DM_MAPIO_SUBMITTED;
2684                 }
2685
2686                 inc_all_io_entry(tc->pool, bio);
2687                 cell_defer_no_holder(tc, data_cell);
2688                 cell_defer_no_holder(tc, virt_cell);
2689
2690                 remap(tc, bio, result.block);
2691                 return DM_MAPIO_REMAPPED;
2692
2693         case -ENODATA:
2694         case -EWOULDBLOCK:
2695                 thin_defer_cell(tc, virt_cell);
2696                 return DM_MAPIO_SUBMITTED;
2697
2698         default:
2699                 /*
2700                  * Must always call bio_io_error on failure.
2701                  * dm_thin_find_block can fail with -EINVAL if the
2702                  * pool is switched to fail-io mode.
2703                  */
2704                 bio_io_error(bio);
2705                 cell_defer_no_holder(tc, virt_cell);
2706                 return DM_MAPIO_SUBMITTED;
2707         }
2708 }
2709
2710 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2711 {
2712         struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2713         struct request_queue *q;
2714
2715         if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2716                 return 1;
2717
2718         q = bdev_get_queue(pt->data_dev->bdev);
2719         return bdi_congested(q->backing_dev_info, bdi_bits);
2720 }
2721
2722 static void requeue_bios(struct pool *pool)
2723 {
2724         unsigned long flags;
2725         struct thin_c *tc;
2726
2727         rcu_read_lock();
2728         list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2729                 spin_lock_irqsave(&tc->lock, flags);
2730                 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2731                 bio_list_init(&tc->retry_on_resume_list);
2732                 spin_unlock_irqrestore(&tc->lock, flags);
2733         }
2734         rcu_read_unlock();
2735 }
2736
2737 /*----------------------------------------------------------------
2738  * Binding of control targets to a pool object
2739  *--------------------------------------------------------------*/
2740 static bool data_dev_supports_discard(struct pool_c *pt)
2741 {
2742         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2743
2744         return q && blk_queue_discard(q);
2745 }
2746
2747 static bool is_factor(sector_t block_size, uint32_t n)
2748 {
2749         return !sector_div(block_size, n);
2750 }
2751
2752 /*
2753  * If discard_passdown was enabled verify that the data device
2754  * supports discards.  Disable discard_passdown if not.
2755  */
2756 static void disable_passdown_if_not_supported(struct pool_c *pt)
2757 {
2758         struct pool *pool = pt->pool;
2759         struct block_device *data_bdev = pt->data_dev->bdev;
2760         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2761         const char *reason = NULL;
2762         char buf[BDEVNAME_SIZE];
2763
2764         if (!pt->adjusted_pf.discard_passdown)
2765                 return;
2766
2767         if (!data_dev_supports_discard(pt))
2768                 reason = "discard unsupported";
2769
2770         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2771                 reason = "max discard sectors smaller than a block";
2772
2773         if (reason) {
2774                 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2775                 pt->adjusted_pf.discard_passdown = false;
2776         }
2777 }
2778
2779 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2780 {
2781         struct pool_c *pt = ti->private;
2782
2783         /*
2784          * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2785          */
2786         enum pool_mode old_mode = get_pool_mode(pool);
2787         enum pool_mode new_mode = pt->adjusted_pf.mode;
2788
2789         /*
2790          * Don't change the pool's mode until set_pool_mode() below.
2791          * Otherwise the pool's process_* function pointers may
2792          * not match the desired pool mode.
2793          */
2794         pt->adjusted_pf.mode = old_mode;
2795
2796         pool->ti = ti;
2797         pool->pf = pt->adjusted_pf;
2798         pool->low_water_blocks = pt->low_water_blocks;
2799
2800         set_pool_mode(pool, new_mode);
2801
2802         return 0;
2803 }
2804
2805 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2806 {
2807         if (pool->ti == ti)
2808                 pool->ti = NULL;
2809 }
2810
2811 /*----------------------------------------------------------------
2812  * Pool creation
2813  *--------------------------------------------------------------*/
2814 /* Initialize pool features. */
2815 static void pool_features_init(struct pool_features *pf)
2816 {
2817         pf->mode = PM_WRITE;
2818         pf->zero_new_blocks = true;
2819         pf->discard_enabled = true;
2820         pf->discard_passdown = true;
2821         pf->error_if_no_space = false;
2822 }
2823
2824 static void __pool_destroy(struct pool *pool)
2825 {
2826         __pool_table_remove(pool);
2827
2828         vfree(pool->cell_sort_array);
2829         if (dm_pool_metadata_close(pool->pmd) < 0)
2830                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2831
2832         dm_bio_prison_destroy(pool->prison);
2833         dm_kcopyd_client_destroy(pool->copier);
2834
2835         if (pool->wq)
2836                 destroy_workqueue(pool->wq);
2837
2838         if (pool->next_mapping)
2839                 mempool_free(pool->next_mapping, &pool->mapping_pool);
2840         mempool_exit(&pool->mapping_pool);
2841         dm_deferred_set_destroy(pool->shared_read_ds);
2842         dm_deferred_set_destroy(pool->all_io_ds);
2843         kfree(pool);
2844 }
2845
2846 static struct kmem_cache *_new_mapping_cache;
2847
2848 static struct pool *pool_create(struct mapped_device *pool_md,
2849                                 struct block_device *metadata_dev,
2850                                 unsigned long block_size,
2851                                 int read_only, char **error)
2852 {
2853         int r;
2854         void *err_p;
2855         struct pool *pool;
2856         struct dm_pool_metadata *pmd;
2857         bool format_device = read_only ? false : true;
2858
2859         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2860         if (IS_ERR(pmd)) {
2861                 *error = "Error creating metadata object";
2862                 return (struct pool *)pmd;
2863         }
2864
2865         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2866         if (!pool) {
2867                 *error = "Error allocating memory for pool";
2868                 err_p = ERR_PTR(-ENOMEM);
2869                 goto bad_pool;
2870         }
2871
2872         pool->pmd = pmd;
2873         pool->sectors_per_block = block_size;
2874         if (block_size & (block_size - 1))
2875                 pool->sectors_per_block_shift = -1;
2876         else
2877                 pool->sectors_per_block_shift = __ffs(block_size);
2878         pool->low_water_blocks = 0;
2879         pool_features_init(&pool->pf);
2880         pool->prison = dm_bio_prison_create();
2881         if (!pool->prison) {
2882                 *error = "Error creating pool's bio prison";
2883                 err_p = ERR_PTR(-ENOMEM);
2884                 goto bad_prison;
2885         }
2886
2887         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2888         if (IS_ERR(pool->copier)) {
2889                 r = PTR_ERR(pool->copier);
2890                 *error = "Error creating pool's kcopyd client";
2891                 err_p = ERR_PTR(r);
2892                 goto bad_kcopyd_client;
2893         }
2894
2895         /*
2896          * Create singlethreaded workqueue that will service all devices
2897          * that use this metadata.
2898          */
2899         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2900         if (!pool->wq) {
2901                 *error = "Error creating pool's workqueue";
2902                 err_p = ERR_PTR(-ENOMEM);
2903                 goto bad_wq;
2904         }
2905
2906         throttle_init(&pool->throttle);
2907         INIT_WORK(&pool->worker, do_worker);
2908         INIT_DELAYED_WORK(&pool->waker, do_waker);
2909         INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2910         spin_lock_init(&pool->lock);
2911         bio_list_init(&pool->deferred_flush_bios);
2912         INIT_LIST_HEAD(&pool->prepared_mappings);
2913         INIT_LIST_HEAD(&pool->prepared_discards);
2914         INIT_LIST_HEAD(&pool->prepared_discards_pt2);
2915         INIT_LIST_HEAD(&pool->active_thins);
2916         pool->low_water_triggered = false;
2917         pool->suspended = true;
2918         pool->out_of_data_space = false;
2919
2920         pool->shared_read_ds = dm_deferred_set_create();
2921         if (!pool->shared_read_ds) {
2922                 *error = "Error creating pool's shared read deferred set";
2923                 err_p = ERR_PTR(-ENOMEM);
2924                 goto bad_shared_read_ds;
2925         }
2926
2927         pool->all_io_ds = dm_deferred_set_create();
2928         if (!pool->all_io_ds) {
2929                 *error = "Error creating pool's all io deferred set";
2930                 err_p = ERR_PTR(-ENOMEM);
2931                 goto bad_all_io_ds;
2932         }
2933
2934         pool->next_mapping = NULL;
2935         r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
2936                                    _new_mapping_cache);
2937         if (r) {
2938                 *error = "Error creating pool's mapping mempool";
2939                 err_p = ERR_PTR(r);
2940                 goto bad_mapping_pool;
2941         }
2942
2943         pool->cell_sort_array =
2944                 vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
2945                                    sizeof(*pool->cell_sort_array)));
2946         if (!pool->cell_sort_array) {
2947                 *error = "Error allocating cell sort array";
2948                 err_p = ERR_PTR(-ENOMEM);
2949                 goto bad_sort_array;
2950         }
2951
2952         pool->ref_count = 1;
2953         pool->last_commit_jiffies = jiffies;
2954         pool->pool_md = pool_md;
2955         pool->md_dev = metadata_dev;
2956         __pool_table_insert(pool);
2957
2958         return pool;
2959
2960 bad_sort_array:
2961         mempool_exit(&pool->mapping_pool);
2962 bad_mapping_pool:
2963         dm_deferred_set_destroy(pool->all_io_ds);
2964 bad_all_io_ds:
2965         dm_deferred_set_destroy(pool->shared_read_ds);
2966 bad_shared_read_ds:
2967         destroy_workqueue(pool->wq);
2968 bad_wq:
2969         dm_kcopyd_client_destroy(pool->copier);
2970 bad_kcopyd_client:
2971         dm_bio_prison_destroy(pool->prison);
2972 bad_prison:
2973         kfree(pool);
2974 bad_pool:
2975         if (dm_pool_metadata_close(pmd))
2976                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2977
2978         return err_p;
2979 }
2980
2981 static void __pool_inc(struct pool *pool)
2982 {
2983         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2984         pool->ref_count++;
2985 }
2986
2987 static void __pool_dec(struct pool *pool)
2988 {
2989         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2990         BUG_ON(!pool->ref_count);
2991         if (!--pool->ref_count)
2992                 __pool_destroy(pool);
2993 }
2994
2995 static struct pool *__pool_find(struct mapped_device *pool_md,
2996                                 struct block_device *metadata_dev,
2997                                 unsigned long block_size, int read_only,
2998                                 char **error, int *created)
2999 {
3000         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3001
3002         if (pool) {
3003                 if (pool->pool_md != pool_md) {
3004                         *error = "metadata device already in use by a pool";
3005                         return ERR_PTR(-EBUSY);
3006                 }
3007                 __pool_inc(pool);
3008
3009         } else {
3010                 pool = __pool_table_lookup(pool_md);
3011                 if (pool) {
3012                         if (pool->md_dev != metadata_dev) {
3013                                 *error = "different pool cannot replace a pool";
3014                                 return ERR_PTR(-EINVAL);
3015                         }
3016                         __pool_inc(pool);
3017
3018                 } else {
3019                         pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
3020                         *created = 1;
3021                 }
3022         }
3023
3024         return pool;
3025 }
3026
3027 /*----------------------------------------------------------------
3028  * Pool target methods
3029  *--------------------------------------------------------------*/
3030 static void pool_dtr(struct dm_target *ti)
3031 {
3032         struct pool_c *pt = ti->private;
3033
3034         mutex_lock(&dm_thin_pool_table.mutex);
3035
3036         unbind_control_target(pt->pool, ti);
3037         __pool_dec(pt->pool);
3038         dm_put_device(ti, pt->metadata_dev);
3039         dm_put_device(ti, pt->data_dev);
3040         kfree(pt);
3041
3042         mutex_unlock(&dm_thin_pool_table.mutex);
3043 }
3044
3045 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3046                                struct dm_target *ti)
3047 {
3048         int r;
3049         unsigned argc;
3050         const char *arg_name;
3051
3052         static const struct dm_arg _args[] = {
3053                 {0, 4, "Invalid number of pool feature arguments"},
3054         };
3055
3056         /*
3057          * No feature arguments supplied.
3058          */
3059         if (!as->argc)
3060                 return 0;
3061
3062         r = dm_read_arg_group(_args, as, &argc, &ti->error);
3063         if (r)
3064                 return -EINVAL;
3065
3066         while (argc && !r) {
3067                 arg_name = dm_shift_arg(as);
3068                 argc--;
3069
3070                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
3071                         pf->zero_new_blocks = false;
3072
3073                 else if (!strcasecmp(arg_name, "ignore_discard"))
3074                         pf->discard_enabled = false;
3075
3076                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
3077                         pf->discard_passdown = false;
3078
3079                 else if (!strcasecmp(arg_name, "read_only"))
3080                         pf->mode = PM_READ_ONLY;
3081
3082                 else if (!strcasecmp(arg_name, "error_if_no_space"))
3083                         pf->error_if_no_space = true;
3084
3085                 else {
3086                         ti->error = "Unrecognised pool feature requested";
3087                         r = -EINVAL;
3088                         break;
3089                 }
3090         }
3091
3092         return r;
3093 }
3094
3095 static void metadata_low_callback(void *context)
3096 {
3097         struct pool *pool = context;
3098
3099         DMWARN("%s: reached low water mark for metadata device: sending event.",
3100                dm_device_name(pool->pool_md));
3101
3102         dm_table_event(pool->ti->table);
3103 }
3104
3105 static sector_t get_dev_size(struct block_device *bdev)
3106 {
3107         return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3108 }
3109
3110 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3111 {
3112         sector_t metadata_dev_size = get_dev_size(bdev);
3113         char buffer[BDEVNAME_SIZE];
3114
3115         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3116                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3117                        bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3118 }
3119
3120 static sector_t get_metadata_dev_size(struct block_device *bdev)
3121 {
3122         sector_t metadata_dev_size = get_dev_size(bdev);
3123
3124         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3125                 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3126
3127         return metadata_dev_size;
3128 }
3129
3130 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3131 {
3132         sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3133
3134         sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3135
3136         return metadata_dev_size;
3137 }
3138
3139 /*
3140  * When a metadata threshold is crossed a dm event is triggered, and
3141  * userland should respond by growing the metadata device.  We could let
3142  * userland set the threshold, like we do with the data threshold, but I'm
3143  * not sure they know enough to do this well.
3144  */
3145 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3146 {
3147         /*
3148          * 4M is ample for all ops with the possible exception of thin
3149          * device deletion which is harmless if it fails (just retry the
3150          * delete after you've grown the device).
3151          */
3152         dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3153         return min((dm_block_t)1024ULL /* 4M */, quarter);
3154 }
3155
3156 /*
3157  * thin-pool <metadata dev> <data dev>
3158  *           <data block size (sectors)>
3159  *           <low water mark (blocks)>
3160  *           [<#feature args> [<arg>]*]
3161  *
3162  * Optional feature arguments are:
3163  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3164  *           ignore_discard: disable discard
3165  *           no_discard_passdown: don't pass discards down to the data device
3166  *           read_only: Don't allow any changes to be made to the pool metadata.
3167  *           error_if_no_space: error IOs, instead of queueing, if no space.
3168  */
3169 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3170 {
3171         int r, pool_created = 0;
3172         struct pool_c *pt;
3173         struct pool *pool;
3174         struct pool_features pf;
3175         struct dm_arg_set as;
3176         struct dm_dev *data_dev;
3177         unsigned long block_size;
3178         dm_block_t low_water_blocks;
3179         struct dm_dev *metadata_dev;
3180         fmode_t metadata_mode;
3181
3182         /*
3183          * FIXME Remove validation from scope of lock.
3184          */
3185         mutex_lock(&dm_thin_pool_table.mutex);
3186
3187         if (argc < 4) {
3188                 ti->error = "Invalid argument count";
3189                 r = -EINVAL;
3190                 goto out_unlock;
3191         }
3192
3193         as.argc = argc;
3194         as.argv = argv;
3195
3196         /*
3197          * Set default pool features.
3198          */
3199         pool_features_init(&pf);
3200
3201         dm_consume_args(&as, 4);
3202         r = parse_pool_features(&as, &pf, ti);
3203         if (r)
3204                 goto out_unlock;
3205
3206         metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3207         r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3208         if (r) {
3209                 ti->error = "Error opening metadata block device";
3210                 goto out_unlock;
3211         }
3212         warn_if_metadata_device_too_big(metadata_dev->bdev);
3213
3214         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3215         if (r) {
3216                 ti->error = "Error getting data device";
3217                 goto out_metadata;
3218         }
3219
3220         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3221             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3222             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3223             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3224                 ti->error = "Invalid block size";
3225                 r = -EINVAL;
3226                 goto out;
3227         }
3228
3229         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3230                 ti->error = "Invalid low water mark";
3231                 r = -EINVAL;
3232                 goto out;
3233         }
3234
3235         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3236         if (!pt) {
3237                 r = -ENOMEM;
3238                 goto out;
3239         }
3240
3241         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3242                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3243         if (IS_ERR(pool)) {
3244                 r = PTR_ERR(pool);
3245                 goto out_free_pt;
3246         }
3247
3248         /*
3249          * 'pool_created' reflects whether this is the first table load.
3250          * Top level discard support is not allowed to be changed after
3251          * initial load.  This would require a pool reload to trigger thin
3252          * device changes.
3253          */
3254         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3255                 ti->error = "Discard support cannot be disabled once enabled";
3256                 r = -EINVAL;
3257                 goto out_flags_changed;
3258         }
3259
3260         pt->pool = pool;
3261         pt->ti = ti;
3262         pt->metadata_dev = metadata_dev;
3263         pt->data_dev = data_dev;
3264         pt->low_water_blocks = low_water_blocks;
3265         pt->adjusted_pf = pt->requested_pf = pf;
3266         ti->num_flush_bios = 1;
3267
3268         /*
3269          * Only need to enable discards if the pool should pass
3270          * them down to the data device.  The thin device's discard
3271          * processing will cause mappings to be removed from the btree.
3272          */
3273         if (pf.discard_enabled && pf.discard_passdown) {
3274                 ti->num_discard_bios = 1;
3275
3276                 /*
3277                  * Setting 'discards_supported' circumvents the normal
3278                  * stacking of discard limits (this keeps the pool and
3279                  * thin devices' discard limits consistent).
3280                  */
3281                 ti->discards_supported = true;
3282         }
3283         ti->private = pt;
3284
3285         r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3286                                                 calc_metadata_threshold(pt),
3287                                                 metadata_low_callback,
3288                                                 pool);
3289         if (r)
3290                 goto out_flags_changed;
3291
3292         pt->callbacks.congested_fn = pool_is_congested;
3293         dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3294
3295         mutex_unlock(&dm_thin_pool_table.mutex);
3296
3297         return 0;
3298
3299 out_flags_changed:
3300         __pool_dec(pool);
3301 out_free_pt:
3302         kfree(pt);
3303 out:
3304         dm_put_device(ti, data_dev);
3305 out_metadata:
3306         dm_put_device(ti, metadata_dev);
3307 out_unlock:
3308         mutex_unlock(&dm_thin_pool_table.mutex);
3309
3310         return r;
3311 }
3312
3313 static int pool_map(struct dm_target *ti, struct bio *bio)
3314 {
3315         int r;
3316         struct pool_c *pt = ti->private;
3317         struct pool *pool = pt->pool;
3318         unsigned long flags;
3319
3320         /*
3321          * As this is a singleton target, ti->begin is always zero.
3322          */
3323         spin_lock_irqsave(&pool->lock, flags);
3324         bio_set_dev(bio, pt->data_dev->bdev);
3325         r = DM_MAPIO_REMAPPED;
3326         spin_unlock_irqrestore(&pool->lock, flags);
3327
3328         return r;
3329 }
3330
3331 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3332 {
3333         int r;
3334         struct pool_c *pt = ti->private;
3335         struct pool *pool = pt->pool;
3336         sector_t data_size = ti->len;
3337         dm_block_t sb_data_size;
3338
3339         *need_commit = false;
3340
3341         (void) sector_div(data_size, pool->sectors_per_block);
3342
3343         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3344         if (r) {
3345                 DMERR("%s: failed to retrieve data device size",
3346                       dm_device_name(pool->pool_md));
3347                 return r;
3348         }
3349
3350         if (data_size < sb_data_size) {
3351                 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3352                       dm_device_name(pool->pool_md),
3353                       (unsigned long long)data_size, sb_data_size);
3354                 return -EINVAL;
3355
3356         } else if (data_size > sb_data_size) {
3357                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3358                         DMERR("%s: unable to grow the data device until repaired.",
3359                               dm_device_name(pool->pool_md));
3360                         return 0;
3361                 }
3362
3363                 if (sb_data_size)
3364                         DMINFO("%s: growing the data device from %llu to %llu blocks",
3365                                dm_device_name(pool->pool_md),
3366                                sb_data_size, (unsigned long long)data_size);
3367                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3368                 if (r) {
3369                         metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3370                         return r;
3371                 }
3372
3373                 *need_commit = true;
3374         }
3375
3376         return 0;
3377 }
3378
3379 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3380 {
3381         int r;
3382         struct pool_c *pt = ti->private;
3383         struct pool *pool = pt->pool;
3384         dm_block_t metadata_dev_size, sb_metadata_dev_size;
3385
3386         *need_commit = false;
3387
3388         metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3389
3390         r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3391         if (r) {
3392                 DMERR("%s: failed to retrieve metadata device size",
3393                       dm_device_name(pool->pool_md));
3394                 return r;
3395         }
3396
3397         if (metadata_dev_size < sb_metadata_dev_size) {
3398                 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3399                       dm_device_name(pool->pool_md),
3400                       metadata_dev_size, sb_metadata_dev_size);
3401                 return -EINVAL;
3402
3403         } else if (metadata_dev_size > sb_metadata_dev_size) {
3404                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3405                         DMERR("%s: unable to grow the metadata device until repaired.",
3406                               dm_device_name(pool->pool_md));
3407                         return 0;
3408                 }
3409
3410                 warn_if_metadata_device_too_big(pool->md_dev);
3411                 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3412                        dm_device_name(pool->pool_md),
3413                        sb_metadata_dev_size, metadata_dev_size);
3414                 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3415                 if (r) {
3416                         metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3417                         return r;
3418                 }
3419
3420                 *need_commit = true;
3421         }
3422
3423         return 0;
3424 }
3425
3426 /*
3427  * Retrieves the number of blocks of the data device from
3428  * the superblock and compares it to the actual device size,
3429  * thus resizing the data device in case it has grown.
3430  *
3431  * This both copes with opening preallocated data devices in the ctr
3432  * being followed by a resume
3433  * -and-
3434  * calling the resume method individually after userspace has
3435  * grown the data device in reaction to a table event.
3436  */
3437 static int pool_preresume(struct dm_target *ti)
3438 {
3439         int r;
3440         bool need_commit1, need_commit2;
3441         struct pool_c *pt = ti->private;
3442         struct pool *pool = pt->pool;
3443
3444         /*
3445          * Take control of the pool object.
3446          */
3447         r = bind_control_target(pool, ti);
3448         if (r)
3449                 return r;
3450
3451         r = maybe_resize_data_dev(ti, &need_commit1);
3452         if (r)
3453                 return r;
3454
3455         r = maybe_resize_metadata_dev(ti, &need_commit2);
3456         if (r)
3457                 return r;
3458
3459         if (need_commit1 || need_commit2)
3460                 (void) commit(pool);
3461
3462         return 0;
3463 }
3464
3465 static void pool_suspend_active_thins(struct pool *pool)
3466 {
3467         struct thin_c *tc;
3468
3469         /* Suspend all active thin devices */
3470         tc = get_first_thin(pool);
3471         while (tc) {
3472                 dm_internal_suspend_noflush(tc->thin_md);
3473                 tc = get_next_thin(pool, tc);
3474         }
3475 }
3476
3477 static void pool_resume_active_thins(struct pool *pool)
3478 {
3479         struct thin_c *tc;
3480
3481         /* Resume all active thin devices */
3482         tc = get_first_thin(pool);
3483         while (tc) {
3484                 dm_internal_resume(tc->thin_md);
3485                 tc = get_next_thin(pool, tc);
3486         }
3487 }
3488
3489 static void pool_resume(struct dm_target *ti)
3490 {
3491         struct pool_c *pt = ti->private;
3492         struct pool *pool = pt->pool;
3493         unsigned long flags;
3494
3495         /*
3496          * Must requeue active_thins' bios and then resume
3497          * active_thins _before_ clearing 'suspend' flag.
3498          */
3499         requeue_bios(pool);
3500         pool_resume_active_thins(pool);
3501
3502         spin_lock_irqsave(&pool->lock, flags);
3503         pool->low_water_triggered = false;
3504         pool->suspended = false;
3505         spin_unlock_irqrestore(&pool->lock, flags);
3506
3507         do_waker(&pool->waker.work);
3508 }
3509
3510 static void pool_presuspend(struct dm_target *ti)
3511 {
3512         struct pool_c *pt = ti->private;
3513         struct pool *pool = pt->pool;
3514         unsigned long flags;
3515
3516         spin_lock_irqsave(&pool->lock, flags);
3517         pool->suspended = true;
3518         spin_unlock_irqrestore(&pool->lock, flags);
3519
3520         pool_suspend_active_thins(pool);
3521 }
3522
3523 static void pool_presuspend_undo(struct dm_target *ti)
3524 {
3525         struct pool_c *pt = ti->private;
3526         struct pool *pool = pt->pool;
3527         unsigned long flags;
3528
3529         pool_resume_active_thins(pool);
3530
3531         spin_lock_irqsave(&pool->lock, flags);
3532         pool->suspended = false;
3533         spin_unlock_irqrestore(&pool->lock, flags);
3534 }
3535
3536 static void pool_postsuspend(struct dm_target *ti)
3537 {
3538         struct pool_c *pt = ti->private;
3539         struct pool *pool = pt->pool;
3540
3541         cancel_delayed_work_sync(&pool->waker);
3542         cancel_delayed_work_sync(&pool->no_space_timeout);
3543         flush_workqueue(pool->wq);
3544         (void) commit(pool);
3545 }
3546
3547 static int check_arg_count(unsigned argc, unsigned args_required)
3548 {
3549         if (argc != args_required) {
3550                 DMWARN("Message received with %u arguments instead of %u.",
3551                        argc, args_required);
3552                 return -EINVAL;
3553         }
3554
3555         return 0;
3556 }
3557
3558 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3559 {
3560         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3561             *dev_id <= MAX_DEV_ID)
3562                 return 0;
3563
3564         if (warning)
3565                 DMWARN("Message received with invalid device id: %s", arg);
3566
3567         return -EINVAL;
3568 }
3569
3570 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3571 {
3572         dm_thin_id dev_id;
3573         int r;
3574
3575         r = check_arg_count(argc, 2);
3576         if (r)
3577                 return r;
3578
3579         r = read_dev_id(argv[1], &dev_id, 1);
3580         if (r)
3581                 return r;
3582
3583         r = dm_pool_create_thin(pool->pmd, dev_id);
3584         if (r) {
3585                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3586                        argv[1]);
3587                 return r;
3588         }
3589
3590         return 0;
3591 }
3592
3593 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3594 {
3595         dm_thin_id dev_id;
3596         dm_thin_id origin_dev_id;
3597         int r;
3598
3599         r = check_arg_count(argc, 3);
3600         if (r)
3601                 return r;
3602
3603         r = read_dev_id(argv[1], &dev_id, 1);
3604         if (r)
3605                 return r;
3606
3607         r = read_dev_id(argv[2], &origin_dev_id, 1);
3608         if (r)
3609                 return r;
3610
3611         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3612         if (r) {
3613                 DMWARN("Creation of new snapshot %s of device %s failed.",
3614                        argv[1], argv[2]);
3615                 return r;
3616         }
3617
3618         return 0;
3619 }
3620
3621 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3622 {
3623         dm_thin_id dev_id;
3624         int r;
3625
3626         r = check_arg_count(argc, 2);
3627         if (r)
3628                 return r;
3629
3630         r = read_dev_id(argv[1], &dev_id, 1);
3631         if (r)
3632                 return r;
3633
3634         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3635         if (r)
3636                 DMWARN("Deletion of thin device %s failed.", argv[1]);
3637
3638         return r;
3639 }
3640
3641 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3642 {
3643         dm_thin_id old_id, new_id;
3644         int r;
3645
3646         r = check_arg_count(argc, 3);
3647         if (r)
3648                 return r;
3649
3650         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3651                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3652                 return -EINVAL;
3653         }
3654
3655         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3656                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3657                 return -EINVAL;
3658         }
3659
3660         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3661         if (r) {
3662                 DMWARN("Failed to change transaction id from %s to %s.",
3663                        argv[1], argv[2]);
3664                 return r;
3665         }
3666
3667         return 0;
3668 }
3669
3670 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3671 {
3672         int r;
3673
3674         r = check_arg_count(argc, 1);
3675         if (r)
3676                 return r;
3677
3678         (void) commit(pool);
3679
3680         r = dm_pool_reserve_metadata_snap(pool->pmd);
3681         if (r)
3682                 DMWARN("reserve_metadata_snap message failed.");
3683
3684         return r;
3685 }
3686
3687 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3688 {
3689         int r;
3690
3691         r = check_arg_count(argc, 1);
3692         if (r)
3693                 return r;
3694
3695         r = dm_pool_release_metadata_snap(pool->pmd);
3696         if (r)
3697                 DMWARN("release_metadata_snap message failed.");
3698
3699         return r;
3700 }
3701
3702 /*
3703  * Messages supported:
3704  *   create_thin        <dev_id>
3705  *   create_snap        <dev_id> <origin_id>
3706  *   delete             <dev_id>
3707  *   set_transaction_id <current_trans_id> <new_trans_id>
3708  *   reserve_metadata_snap
3709  *   release_metadata_snap
3710  */
3711 static int pool_message(struct dm_target *ti, unsigned argc, char **argv,
3712                         char *result, unsigned maxlen)
3713 {
3714         int r = -EINVAL;
3715         struct pool_c *pt = ti->private;
3716         struct pool *pool = pt->pool;
3717
3718         if (get_pool_mode(pool) >= PM_READ_ONLY) {
3719                 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3720                       dm_device_name(pool->pool_md));
3721                 return -EOPNOTSUPP;
3722         }
3723
3724         if (!strcasecmp(argv[0], "create_thin"))
3725                 r = process_create_thin_mesg(argc, argv, pool);
3726
3727         else if (!strcasecmp(argv[0], "create_snap"))
3728                 r = process_create_snap_mesg(argc, argv, pool);
3729
3730         else if (!strcasecmp(argv[0], "delete"))
3731                 r = process_delete_mesg(argc, argv, pool);
3732
3733         else if (!strcasecmp(argv[0], "set_transaction_id"))
3734                 r = process_set_transaction_id_mesg(argc, argv, pool);
3735
3736         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3737                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3738
3739         else if (!strcasecmp(argv[0], "release_metadata_snap"))
3740                 r = process_release_metadata_snap_mesg(argc, argv, pool);
3741
3742         else
3743                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3744
3745         if (!r)
3746                 (void) commit(pool);
3747
3748         return r;
3749 }
3750
3751 static void emit_flags(struct pool_features *pf, char *result,
3752                        unsigned sz, unsigned maxlen)
3753 {
3754         unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3755                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3756                 pf->error_if_no_space;
3757         DMEMIT("%u ", count);
3758
3759         if (!pf->zero_new_blocks)
3760                 DMEMIT("skip_block_zeroing ");
3761
3762         if (!pf->discard_enabled)
3763                 DMEMIT("ignore_discard ");
3764
3765         if (!pf->discard_passdown)
3766                 DMEMIT("no_discard_passdown ");
3767
3768         if (pf->mode == PM_READ_ONLY)
3769                 DMEMIT("read_only ");
3770
3771         if (pf->error_if_no_space)
3772                 DMEMIT("error_if_no_space ");
3773 }
3774
3775 /*
3776  * Status line is:
3777  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3778  *    <used data sectors>/<total data sectors> <held metadata root>
3779  *    <pool mode> <discard config> <no space config> <needs_check>
3780  */
3781 static void pool_status(struct dm_target *ti, status_type_t type,
3782                         unsigned status_flags, char *result, unsigned maxlen)
3783 {
3784         int r;
3785         unsigned sz = 0;
3786         uint64_t transaction_id;
3787         dm_block_t nr_free_blocks_data;
3788         dm_block_t nr_free_blocks_metadata;
3789         dm_block_t nr_blocks_data;
3790         dm_block_t nr_blocks_metadata;
3791         dm_block_t held_root;
3792         char buf[BDEVNAME_SIZE];
3793         char buf2[BDEVNAME_SIZE];
3794         struct pool_c *pt = ti->private;
3795         struct pool *pool = pt->pool;
3796
3797         switch (type) {
3798         case STATUSTYPE_INFO:
3799                 if (get_pool_mode(pool) == PM_FAIL) {
3800                         DMEMIT("Fail");
3801                         break;
3802                 }
3803
3804                 /* Commit to ensure statistics aren't out-of-date */
3805                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3806                         (void) commit(pool);
3807
3808                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3809                 if (r) {
3810                         DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3811                               dm_device_name(pool->pool_md), r);
3812                         goto err;
3813                 }
3814
3815                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3816                 if (r) {
3817                         DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3818                               dm_device_name(pool->pool_md), r);
3819                         goto err;
3820                 }
3821
3822                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3823                 if (r) {
3824                         DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3825                               dm_device_name(pool->pool_md), r);
3826                         goto err;
3827                 }
3828
3829                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3830                 if (r) {
3831                         DMERR("%s: dm_pool_get_free_block_count returned %d",
3832                               dm_device_name(pool->pool_md), r);
3833                         goto err;
3834                 }
3835
3836                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3837                 if (r) {
3838                         DMERR("%s: dm_pool_get_data_dev_size returned %d",
3839                               dm_device_name(pool->pool_md), r);
3840                         goto err;
3841                 }
3842
3843                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3844                 if (r) {
3845                         DMERR("%s: dm_pool_get_metadata_snap returned %d",
3846                               dm_device_name(pool->pool_md), r);
3847                         goto err;
3848                 }
3849
3850                 DMEMIT("%llu %llu/%llu %llu/%llu ",
3851                        (unsigned long long)transaction_id,
3852                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3853                        (unsigned long long)nr_blocks_metadata,
3854                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3855                        (unsigned long long)nr_blocks_data);
3856
3857                 if (held_root)
3858                         DMEMIT("%llu ", held_root);
3859                 else
3860                         DMEMIT("- ");
3861
3862                 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3863                         DMEMIT("out_of_data_space ");
3864                 else if (pool->pf.mode == PM_READ_ONLY)
3865                         DMEMIT("ro ");
3866                 else
3867                         DMEMIT("rw ");
3868
3869                 if (!pool->pf.discard_enabled)
3870                         DMEMIT("ignore_discard ");
3871                 else if (pool->pf.discard_passdown)
3872                         DMEMIT("discard_passdown ");
3873                 else
3874                         DMEMIT("no_discard_passdown ");
3875
3876                 if (pool->pf.error_if_no_space)
3877                         DMEMIT("error_if_no_space ");
3878                 else
3879                         DMEMIT("queue_if_no_space ");
3880
3881                 if (dm_pool_metadata_needs_check(pool->pmd))
3882                         DMEMIT("needs_check ");
3883                 else
3884                         DMEMIT("- ");
3885
3886                 break;
3887
3888         case STATUSTYPE_TABLE:
3889                 DMEMIT("%s %s %lu %llu ",
3890                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3891                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3892                        (unsigned long)pool->sectors_per_block,
3893                        (unsigned long long)pt->low_water_blocks);
3894                 emit_flags(&pt->requested_pf, result, sz, maxlen);
3895                 break;
3896         }
3897         return;
3898
3899 err:
3900         DMEMIT("Error");
3901 }
3902
3903 static int pool_iterate_devices(struct dm_target *ti,
3904                                 iterate_devices_callout_fn fn, void *data)
3905 {
3906         struct pool_c *pt = ti->private;
3907
3908         return fn(ti, pt->data_dev, 0, ti->len, data);
3909 }
3910
3911 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3912 {
3913         struct pool_c *pt = ti->private;
3914         struct pool *pool = pt->pool;
3915         sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3916
3917         /*
3918          * If max_sectors is smaller than pool->sectors_per_block adjust it
3919          * to the highest possible power-of-2 factor of pool->sectors_per_block.
3920          * This is especially beneficial when the pool's data device is a RAID
3921          * device that has a full stripe width that matches pool->sectors_per_block
3922          * -- because even though partial RAID stripe-sized IOs will be issued to a
3923          *    single RAID stripe; when aggregated they will end on a full RAID stripe
3924          *    boundary.. which avoids additional partial RAID stripe writes cascading
3925          */
3926         if (limits->max_sectors < pool->sectors_per_block) {
3927                 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3928                         if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3929                                 limits->max_sectors--;
3930                         limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3931                 }
3932         }
3933
3934         /*
3935          * If the system-determined stacked limits are compatible with the
3936          * pool's blocksize (io_opt is a factor) do not override them.
3937          */
3938         if (io_opt_sectors < pool->sectors_per_block ||
3939             !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3940                 if (is_factor(pool->sectors_per_block, limits->max_sectors))
3941                         blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3942                 else
3943                         blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3944                 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3945         }
3946
3947         /*
3948          * pt->adjusted_pf is a staging area for the actual features to use.
3949          * They get transferred to the live pool in bind_control_target()
3950          * called from pool_preresume().
3951          */
3952         if (!pt->adjusted_pf.discard_enabled) {
3953                 /*
3954                  * Must explicitly disallow stacking discard limits otherwise the
3955                  * block layer will stack them if pool's data device has support.
3956                  * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3957                  * user to see that, so make sure to set all discard limits to 0.
3958                  */
3959                 limits->discard_granularity = 0;
3960                 return;
3961         }
3962
3963         disable_passdown_if_not_supported(pt);
3964
3965         /*
3966          * The pool uses the same discard limits as the underlying data
3967          * device.  DM core has already set this up.
3968          */
3969 }
3970
3971 static struct target_type pool_target = {
3972         .name = "thin-pool",
3973         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3974                     DM_TARGET_IMMUTABLE,
3975         .version = {1, 19, 0},
3976         .module = THIS_MODULE,
3977         .ctr = pool_ctr,
3978         .dtr = pool_dtr,
3979         .map = pool_map,
3980         .presuspend = pool_presuspend,
3981         .presuspend_undo = pool_presuspend_undo,
3982         .postsuspend = pool_postsuspend,
3983         .preresume = pool_preresume,
3984         .resume = pool_resume,
3985         .message = pool_message,
3986         .status = pool_status,
3987         .iterate_devices = pool_iterate_devices,
3988         .io_hints = pool_io_hints,
3989 };
3990
3991 /*----------------------------------------------------------------
3992  * Thin target methods
3993  *--------------------------------------------------------------*/
3994 static void thin_get(struct thin_c *tc)
3995 {
3996         atomic_inc(&tc->refcount);
3997 }
3998
3999 static void thin_put(struct thin_c *tc)
4000 {
4001         if (atomic_dec_and_test(&tc->refcount))
4002                 complete(&tc->can_destroy);
4003 }
4004
4005 static void thin_dtr(struct dm_target *ti)
4006 {
4007         struct thin_c *tc = ti->private;
4008         unsigned long flags;
4009
4010         spin_lock_irqsave(&tc->pool->lock, flags);
4011         list_del_rcu(&tc->list);
4012         spin_unlock_irqrestore(&tc->pool->lock, flags);
4013         synchronize_rcu();
4014
4015         thin_put(tc);
4016         wait_for_completion(&tc->can_destroy);
4017
4018         mutex_lock(&dm_thin_pool_table.mutex);
4019
4020         __pool_dec(tc->pool);
4021         dm_pool_close_thin_device(tc->td);
4022         dm_put_device(ti, tc->pool_dev);
4023         if (tc->origin_dev)
4024                 dm_put_device(ti, tc->origin_dev);
4025         kfree(tc);
4026
4027         mutex_unlock(&dm_thin_pool_table.mutex);
4028 }
4029
4030 /*
4031  * Thin target parameters:
4032  *
4033  * <pool_dev> <dev_id> [origin_dev]
4034  *
4035  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4036  * dev_id: the internal device identifier
4037  * origin_dev: a device external to the pool that should act as the origin
4038  *
4039  * If the pool device has discards disabled, they get disabled for the thin
4040  * device as well.
4041  */
4042 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4043 {
4044         int r;
4045         struct thin_c *tc;
4046         struct dm_dev *pool_dev, *origin_dev;
4047         struct mapped_device *pool_md;
4048         unsigned long flags;
4049
4050         mutex_lock(&dm_thin_pool_table.mutex);
4051
4052         if (argc != 2 && argc != 3) {
4053                 ti->error = "Invalid argument count";
4054                 r = -EINVAL;
4055                 goto out_unlock;
4056         }
4057
4058         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4059         if (!tc) {
4060                 ti->error = "Out of memory";
4061                 r = -ENOMEM;
4062                 goto out_unlock;
4063         }
4064         tc->thin_md = dm_table_get_md(ti->table);
4065         spin_lock_init(&tc->lock);
4066         INIT_LIST_HEAD(&tc->deferred_cells);
4067         bio_list_init(&tc->deferred_bio_list);
4068         bio_list_init(&tc->retry_on_resume_list);
4069         tc->sort_bio_list = RB_ROOT;
4070
4071         if (argc == 3) {
4072                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4073                 if (r) {
4074                         ti->error = "Error opening origin device";
4075                         goto bad_origin_dev;
4076                 }
4077                 tc->origin_dev = origin_dev;
4078         }
4079
4080         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4081         if (r) {
4082                 ti->error = "Error opening pool device";
4083                 goto bad_pool_dev;
4084         }
4085         tc->pool_dev = pool_dev;
4086
4087         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4088                 ti->error = "Invalid device id";
4089                 r = -EINVAL;
4090                 goto bad_common;
4091         }
4092
4093         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4094         if (!pool_md) {
4095                 ti->error = "Couldn't get pool mapped device";
4096                 r = -EINVAL;
4097                 goto bad_common;
4098         }
4099
4100         tc->pool = __pool_table_lookup(pool_md);
4101         if (!tc->pool) {
4102                 ti->error = "Couldn't find pool object";
4103                 r = -EINVAL;
4104                 goto bad_pool_lookup;
4105         }
4106         __pool_inc(tc->pool);
4107
4108         if (get_pool_mode(tc->pool) == PM_FAIL) {
4109                 ti->error = "Couldn't open thin device, Pool is in fail mode";
4110                 r = -EINVAL;
4111                 goto bad_pool;
4112         }
4113
4114         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4115         if (r) {
4116                 ti->error = "Couldn't open thin internal device";
4117                 goto bad_pool;
4118         }
4119
4120         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4121         if (r)
4122                 goto bad;
4123
4124         ti->num_flush_bios = 1;
4125         ti->flush_supported = true;
4126         ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4127
4128         /* In case the pool supports discards, pass them on. */
4129         if (tc->pool->pf.discard_enabled) {
4130                 ti->discards_supported = true;
4131                 ti->num_discard_bios = 1;
4132                 ti->split_discard_bios = false;
4133         }
4134
4135         mutex_unlock(&dm_thin_pool_table.mutex);
4136
4137         spin_lock_irqsave(&tc->pool->lock, flags);
4138         if (tc->pool->suspended) {
4139                 spin_unlock_irqrestore(&tc->pool->lock, flags);
4140                 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4141                 ti->error = "Unable to activate thin device while pool is suspended";
4142                 r = -EINVAL;
4143                 goto bad;
4144         }
4145         atomic_set(&tc->refcount, 1);
4146         init_completion(&tc->can_destroy);
4147         list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4148         spin_unlock_irqrestore(&tc->pool->lock, flags);
4149         /*
4150          * This synchronize_rcu() call is needed here otherwise we risk a
4151          * wake_worker() call finding no bios to process (because the newly
4152          * added tc isn't yet visible).  So this reduces latency since we
4153          * aren't then dependent on the periodic commit to wake_worker().
4154          */
4155         synchronize_rcu();
4156
4157         dm_put(pool_md);
4158
4159         return 0;
4160
4161 bad:
4162         dm_pool_close_thin_device(tc->td);
4163 bad_pool:
4164         __pool_dec(tc->pool);
4165 bad_pool_lookup:
4166         dm_put(pool_md);
4167 bad_common:
4168         dm_put_device(ti, tc->pool_dev);
4169 bad_pool_dev:
4170         if (tc->origin_dev)
4171                 dm_put_device(ti, tc->origin_dev);
4172 bad_origin_dev:
4173         kfree(tc);
4174 out_unlock:
4175         mutex_unlock(&dm_thin_pool_table.mutex);
4176
4177         return r;
4178 }
4179
4180 static int thin_map(struct dm_target *ti, struct bio *bio)
4181 {
4182         bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4183
4184         return thin_bio_map(ti, bio);
4185 }
4186
4187 static int thin_endio(struct dm_target *ti, struct bio *bio,
4188                 blk_status_t *err)
4189 {
4190         unsigned long flags;
4191         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4192         struct list_head work;
4193         struct dm_thin_new_mapping *m, *tmp;
4194         struct pool *pool = h->tc->pool;
4195
4196         if (h->shared_read_entry) {
4197                 INIT_LIST_HEAD(&work);
4198                 dm_deferred_entry_dec(h->shared_read_entry, &work);
4199
4200                 spin_lock_irqsave(&pool->lock, flags);
4201                 list_for_each_entry_safe(m, tmp, &work, list) {
4202                         list_del(&m->list);
4203                         __complete_mapping_preparation(m);
4204                 }
4205                 spin_unlock_irqrestore(&pool->lock, flags);
4206         }
4207
4208         if (h->all_io_entry) {
4209                 INIT_LIST_HEAD(&work);
4210                 dm_deferred_entry_dec(h->all_io_entry, &work);
4211                 if (!list_empty(&work)) {
4212                         spin_lock_irqsave(&pool->lock, flags);
4213                         list_for_each_entry_safe(m, tmp, &work, list)
4214                                 list_add_tail(&m->list, &pool->prepared_discards);
4215                         spin_unlock_irqrestore(&pool->lock, flags);
4216                         wake_worker(pool);
4217                 }
4218         }
4219
4220         if (h->cell)
4221                 cell_defer_no_holder(h->tc, h->cell);
4222
4223         return DM_ENDIO_DONE;
4224 }
4225
4226 static void thin_presuspend(struct dm_target *ti)
4227 {
4228         struct thin_c *tc = ti->private;
4229
4230         if (dm_noflush_suspending(ti))
4231                 noflush_work(tc, do_noflush_start);
4232 }
4233
4234 static void thin_postsuspend(struct dm_target *ti)
4235 {
4236         struct thin_c *tc = ti->private;
4237
4238         /*
4239          * The dm_noflush_suspending flag has been cleared by now, so
4240          * unfortunately we must always run this.
4241          */
4242         noflush_work(tc, do_noflush_stop);
4243 }
4244
4245 static int thin_preresume(struct dm_target *ti)
4246 {
4247         struct thin_c *tc = ti->private;
4248
4249         if (tc->origin_dev)
4250                 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4251
4252         return 0;
4253 }
4254
4255 /*
4256  * <nr mapped sectors> <highest mapped sector>
4257  */
4258 static void thin_status(struct dm_target *ti, status_type_t type,
4259                         unsigned status_flags, char *result, unsigned maxlen)
4260 {
4261         int r;
4262         ssize_t sz = 0;
4263         dm_block_t mapped, highest;
4264         char buf[BDEVNAME_SIZE];
4265         struct thin_c *tc = ti->private;
4266
4267         if (get_pool_mode(tc->pool) == PM_FAIL) {
4268                 DMEMIT("Fail");
4269                 return;
4270         }
4271
4272         if (!tc->td)
4273                 DMEMIT("-");
4274         else {
4275                 switch (type) {
4276                 case STATUSTYPE_INFO:
4277                         r = dm_thin_get_mapped_count(tc->td, &mapped);
4278                         if (r) {
4279                                 DMERR("dm_thin_get_mapped_count returned %d", r);
4280                                 goto err;
4281                         }
4282
4283                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4284                         if (r < 0) {
4285                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4286                                 goto err;
4287                         }
4288
4289                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4290                         if (r)
4291                                 DMEMIT("%llu", ((highest + 1) *
4292                                                 tc->pool->sectors_per_block) - 1);
4293                         else
4294                                 DMEMIT("-");
4295                         break;
4296
4297                 case STATUSTYPE_TABLE:
4298                         DMEMIT("%s %lu",
4299                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4300                                (unsigned long) tc->dev_id);
4301                         if (tc->origin_dev)
4302                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4303                         break;
4304                 }
4305         }
4306
4307         return;
4308
4309 err:
4310         DMEMIT("Error");
4311 }
4312
4313 static int thin_iterate_devices(struct dm_target *ti,
4314                                 iterate_devices_callout_fn fn, void *data)
4315 {
4316         sector_t blocks;
4317         struct thin_c *tc = ti->private;
4318         struct pool *pool = tc->pool;
4319
4320         /*
4321          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4322          * we follow a more convoluted path through to the pool's target.
4323          */
4324         if (!pool->ti)
4325                 return 0;       /* nothing is bound */
4326
4327         blocks = pool->ti->len;
4328         (void) sector_div(blocks, pool->sectors_per_block);
4329         if (blocks)
4330                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4331
4332         return 0;
4333 }
4334
4335 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4336 {
4337         struct thin_c *tc = ti->private;
4338         struct pool *pool = tc->pool;
4339
4340         if (!pool->pf.discard_enabled)
4341                 return;
4342
4343         limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4344         limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4345 }
4346
4347 static struct target_type thin_target = {
4348         .name = "thin",
4349         .version = {1, 19, 0},
4350         .module = THIS_MODULE,
4351         .ctr = thin_ctr,
4352         .dtr = thin_dtr,
4353         .map = thin_map,
4354         .end_io = thin_endio,
4355         .preresume = thin_preresume,
4356         .presuspend = thin_presuspend,
4357         .postsuspend = thin_postsuspend,
4358         .status = thin_status,
4359         .iterate_devices = thin_iterate_devices,
4360         .io_hints = thin_io_hints,
4361 };
4362
4363 /*----------------------------------------------------------------*/
4364
4365 static int __init dm_thin_init(void)
4366 {
4367         int r = -ENOMEM;
4368
4369         pool_table_init();
4370
4371         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4372         if (!_new_mapping_cache)
4373                 return r;
4374
4375         r = dm_register_target(&thin_target);
4376         if (r)
4377                 goto bad_new_mapping_cache;
4378
4379         r = dm_register_target(&pool_target);
4380         if (r)
4381                 goto bad_thin_target;
4382
4383         return 0;
4384
4385 bad_thin_target:
4386         dm_unregister_target(&thin_target);
4387 bad_new_mapping_cache:
4388         kmem_cache_destroy(_new_mapping_cache);
4389
4390         return r;
4391 }
4392
4393 static void dm_thin_exit(void)
4394 {
4395         dm_unregister_target(&thin_target);
4396         dm_unregister_target(&pool_target);
4397
4398         kmem_cache_destroy(_new_mapping_cache);
4399
4400         pool_table_exit();
4401 }
4402
4403 module_init(dm_thin_init);
4404 module_exit(dm_thin_exit);
4405
4406 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4407 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4408
4409 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4410 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4411 MODULE_LICENSE("GPL");