Merge tag 'for-5.5-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[linux-2.6-microblaze.git] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison-v1.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
24
25 #define DM_MSG_PREFIX   "thin"
26
27 /*
28  * Tunable constants
29  */
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
34
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38                 "A percentage of time allocated for copy on write");
39
40 /*
41  * The block size of the device holding pool data must be
42  * between 64KB and 1GB.
43  */
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46
47 /*
48  * Device id is restricted to 24 bits.
49  */
50 #define MAX_DEV_ID ((1 << 24) - 1)
51
52 /*
53  * How do we handle breaking sharing of data blocks?
54  * =================================================
55  *
56  * We use a standard copy-on-write btree to store the mappings for the
57  * devices (note I'm talking about copy-on-write of the metadata here, not
58  * the data).  When you take an internal snapshot you clone the root node
59  * of the origin btree.  After this there is no concept of an origin or a
60  * snapshot.  They are just two device trees that happen to point to the
61  * same data blocks.
62  *
63  * When we get a write in we decide if it's to a shared data block using
64  * some timestamp magic.  If it is, we have to break sharing.
65  *
66  * Let's say we write to a shared block in what was the origin.  The
67  * steps are:
68  *
69  * i) plug io further to this physical block. (see bio_prison code).
70  *
71  * ii) quiesce any read io to that shared data block.  Obviously
72  * including all devices that share this block.  (see dm_deferred_set code)
73  *
74  * iii) copy the data block to a newly allocate block.  This step can be
75  * missed out if the io covers the block. (schedule_copy).
76  *
77  * iv) insert the new mapping into the origin's btree
78  * (process_prepared_mapping).  This act of inserting breaks some
79  * sharing of btree nodes between the two devices.  Breaking sharing only
80  * effects the btree of that specific device.  Btrees for the other
81  * devices that share the block never change.  The btree for the origin
82  * device as it was after the last commit is untouched, ie. we're using
83  * persistent data structures in the functional programming sense.
84  *
85  * v) unplug io to this physical block, including the io that triggered
86  * the breaking of sharing.
87  *
88  * Steps (ii) and (iii) occur in parallel.
89  *
90  * The metadata _doesn't_ need to be committed before the io continues.  We
91  * get away with this because the io is always written to a _new_ block.
92  * If there's a crash, then:
93  *
94  * - The origin mapping will point to the old origin block (the shared
95  * one).  This will contain the data as it was before the io that triggered
96  * the breaking of sharing came in.
97  *
98  * - The snap mapping still points to the old block.  As it would after
99  * the commit.
100  *
101  * The downside of this scheme is the timestamp magic isn't perfect, and
102  * will continue to think that data block in the snapshot device is shared
103  * even after the write to the origin has broken sharing.  I suspect data
104  * blocks will typically be shared by many different devices, so we're
105  * breaking sharing n + 1 times, rather than n, where n is the number of
106  * devices that reference this data block.  At the moment I think the
107  * benefits far, far outweigh the disadvantages.
108  */
109
110 /*----------------------------------------------------------------*/
111
112 /*
113  * Key building.
114  */
115 enum lock_space {
116         VIRTUAL,
117         PHYSICAL
118 };
119
120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
121                       dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122 {
123         key->virtual = (ls == VIRTUAL);
124         key->dev = dm_thin_dev_id(td);
125         key->block_begin = b;
126         key->block_end = e;
127 }
128
129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130                            struct dm_cell_key *key)
131 {
132         build_key(td, PHYSICAL, b, b + 1llu, key);
133 }
134
135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136                               struct dm_cell_key *key)
137 {
138         build_key(td, VIRTUAL, b, b + 1llu, key);
139 }
140
141 /*----------------------------------------------------------------*/
142
143 #define THROTTLE_THRESHOLD (1 * HZ)
144
145 struct throttle {
146         struct rw_semaphore lock;
147         unsigned long threshold;
148         bool throttle_applied;
149 };
150
151 static void throttle_init(struct throttle *t)
152 {
153         init_rwsem(&t->lock);
154         t->throttle_applied = false;
155 }
156
157 static void throttle_work_start(struct throttle *t)
158 {
159         t->threshold = jiffies + THROTTLE_THRESHOLD;
160 }
161
162 static void throttle_work_update(struct throttle *t)
163 {
164         if (!t->throttle_applied && jiffies > t->threshold) {
165                 down_write(&t->lock);
166                 t->throttle_applied = true;
167         }
168 }
169
170 static void throttle_work_complete(struct throttle *t)
171 {
172         if (t->throttle_applied) {
173                 t->throttle_applied = false;
174                 up_write(&t->lock);
175         }
176 }
177
178 static void throttle_lock(struct throttle *t)
179 {
180         down_read(&t->lock);
181 }
182
183 static void throttle_unlock(struct throttle *t)
184 {
185         up_read(&t->lock);
186 }
187
188 /*----------------------------------------------------------------*/
189
190 /*
191  * A pool device ties together a metadata device and a data device.  It
192  * also provides the interface for creating and destroying internal
193  * devices.
194  */
195 struct dm_thin_new_mapping;
196
197 /*
198  * The pool runs in various modes.  Ordered in degraded order for comparisons.
199  */
200 enum pool_mode {
201         PM_WRITE,               /* metadata may be changed */
202         PM_OUT_OF_DATA_SPACE,   /* metadata may be changed, though data may not be allocated */
203
204         /*
205          * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
206          */
207         PM_OUT_OF_METADATA_SPACE,
208         PM_READ_ONLY,           /* metadata may not be changed */
209
210         PM_FAIL,                /* all I/O fails */
211 };
212
213 struct pool_features {
214         enum pool_mode mode;
215
216         bool zero_new_blocks:1;
217         bool discard_enabled:1;
218         bool discard_passdown:1;
219         bool error_if_no_space:1;
220 };
221
222 struct thin_c;
223 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
224 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
225 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
226
227 #define CELL_SORT_ARRAY_SIZE 8192
228
229 struct pool {
230         struct list_head list;
231         struct dm_target *ti;   /* Only set if a pool target is bound */
232
233         struct mapped_device *pool_md;
234         struct block_device *md_dev;
235         struct dm_pool_metadata *pmd;
236
237         dm_block_t low_water_blocks;
238         uint32_t sectors_per_block;
239         int sectors_per_block_shift;
240
241         struct pool_features pf;
242         bool low_water_triggered:1;     /* A dm event has been sent */
243         bool suspended:1;
244         bool out_of_data_space:1;
245
246         struct dm_bio_prison *prison;
247         struct dm_kcopyd_client *copier;
248
249         struct work_struct worker;
250         struct workqueue_struct *wq;
251         struct throttle throttle;
252         struct delayed_work waker;
253         struct delayed_work no_space_timeout;
254
255         unsigned long last_commit_jiffies;
256         unsigned ref_count;
257
258         spinlock_t lock;
259         struct bio_list deferred_flush_bios;
260         struct bio_list deferred_flush_completions;
261         struct list_head prepared_mappings;
262         struct list_head prepared_discards;
263         struct list_head prepared_discards_pt2;
264         struct list_head active_thins;
265
266         struct dm_deferred_set *shared_read_ds;
267         struct dm_deferred_set *all_io_ds;
268
269         struct dm_thin_new_mapping *next_mapping;
270
271         process_bio_fn process_bio;
272         process_bio_fn process_discard;
273
274         process_cell_fn process_cell;
275         process_cell_fn process_discard_cell;
276
277         process_mapping_fn process_prepared_mapping;
278         process_mapping_fn process_prepared_discard;
279         process_mapping_fn process_prepared_discard_pt2;
280
281         struct dm_bio_prison_cell **cell_sort_array;
282
283         mempool_t mapping_pool;
284 };
285
286 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
287
288 static enum pool_mode get_pool_mode(struct pool *pool)
289 {
290         return pool->pf.mode;
291 }
292
293 static void notify_of_pool_mode_change(struct pool *pool)
294 {
295         const char *descs[] = {
296                 "write",
297                 "out-of-data-space",
298                 "read-only",
299                 "read-only",
300                 "fail"
301         };
302         const char *extra_desc = NULL;
303         enum pool_mode mode = get_pool_mode(pool);
304
305         if (mode == PM_OUT_OF_DATA_SPACE) {
306                 if (!pool->pf.error_if_no_space)
307                         extra_desc = " (queue IO)";
308                 else
309                         extra_desc = " (error IO)";
310         }
311
312         dm_table_event(pool->ti->table);
313         DMINFO("%s: switching pool to %s%s mode",
314                dm_device_name(pool->pool_md),
315                descs[(int)mode], extra_desc ? : "");
316 }
317
318 /*
319  * Target context for a pool.
320  */
321 struct pool_c {
322         struct dm_target *ti;
323         struct pool *pool;
324         struct dm_dev *data_dev;
325         struct dm_dev *metadata_dev;
326         struct dm_target_callbacks callbacks;
327
328         dm_block_t low_water_blocks;
329         struct pool_features requested_pf; /* Features requested during table load */
330         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
331         struct bio flush_bio;
332 };
333
334 /*
335  * Target context for a thin.
336  */
337 struct thin_c {
338         struct list_head list;
339         struct dm_dev *pool_dev;
340         struct dm_dev *origin_dev;
341         sector_t origin_size;
342         dm_thin_id dev_id;
343
344         struct pool *pool;
345         struct dm_thin_device *td;
346         struct mapped_device *thin_md;
347
348         bool requeue_mode:1;
349         spinlock_t lock;
350         struct list_head deferred_cells;
351         struct bio_list deferred_bio_list;
352         struct bio_list retry_on_resume_list;
353         struct rb_root sort_bio_list; /* sorted list of deferred bios */
354
355         /*
356          * Ensures the thin is not destroyed until the worker has finished
357          * iterating the active_thins list.
358          */
359         refcount_t refcount;
360         struct completion can_destroy;
361 };
362
363 /*----------------------------------------------------------------*/
364
365 static bool block_size_is_power_of_two(struct pool *pool)
366 {
367         return pool->sectors_per_block_shift >= 0;
368 }
369
370 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
371 {
372         return block_size_is_power_of_two(pool) ?
373                 (b << pool->sectors_per_block_shift) :
374                 (b * pool->sectors_per_block);
375 }
376
377 /*----------------------------------------------------------------*/
378
379 struct discard_op {
380         struct thin_c *tc;
381         struct blk_plug plug;
382         struct bio *parent_bio;
383         struct bio *bio;
384 };
385
386 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
387 {
388         BUG_ON(!parent);
389
390         op->tc = tc;
391         blk_start_plug(&op->plug);
392         op->parent_bio = parent;
393         op->bio = NULL;
394 }
395
396 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
397 {
398         struct thin_c *tc = op->tc;
399         sector_t s = block_to_sectors(tc->pool, data_b);
400         sector_t len = block_to_sectors(tc->pool, data_e - data_b);
401
402         return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
403                                       GFP_NOWAIT, 0, &op->bio);
404 }
405
406 static void end_discard(struct discard_op *op, int r)
407 {
408         if (op->bio) {
409                 /*
410                  * Even if one of the calls to issue_discard failed, we
411                  * need to wait for the chain to complete.
412                  */
413                 bio_chain(op->bio, op->parent_bio);
414                 bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
415                 submit_bio(op->bio);
416         }
417
418         blk_finish_plug(&op->plug);
419
420         /*
421          * Even if r is set, there could be sub discards in flight that we
422          * need to wait for.
423          */
424         if (r && !op->parent_bio->bi_status)
425                 op->parent_bio->bi_status = errno_to_blk_status(r);
426         bio_endio(op->parent_bio);
427 }
428
429 /*----------------------------------------------------------------*/
430
431 /*
432  * wake_worker() is used when new work is queued and when pool_resume is
433  * ready to continue deferred IO processing.
434  */
435 static void wake_worker(struct pool *pool)
436 {
437         queue_work(pool->wq, &pool->worker);
438 }
439
440 /*----------------------------------------------------------------*/
441
442 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
443                       struct dm_bio_prison_cell **cell_result)
444 {
445         int r;
446         struct dm_bio_prison_cell *cell_prealloc;
447
448         /*
449          * Allocate a cell from the prison's mempool.
450          * This might block but it can't fail.
451          */
452         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
453
454         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
455         if (r)
456                 /*
457                  * We reused an old cell; we can get rid of
458                  * the new one.
459                  */
460                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
461
462         return r;
463 }
464
465 static void cell_release(struct pool *pool,
466                          struct dm_bio_prison_cell *cell,
467                          struct bio_list *bios)
468 {
469         dm_cell_release(pool->prison, cell, bios);
470         dm_bio_prison_free_cell(pool->prison, cell);
471 }
472
473 static void cell_visit_release(struct pool *pool,
474                                void (*fn)(void *, struct dm_bio_prison_cell *),
475                                void *context,
476                                struct dm_bio_prison_cell *cell)
477 {
478         dm_cell_visit_release(pool->prison, fn, context, cell);
479         dm_bio_prison_free_cell(pool->prison, cell);
480 }
481
482 static void cell_release_no_holder(struct pool *pool,
483                                    struct dm_bio_prison_cell *cell,
484                                    struct bio_list *bios)
485 {
486         dm_cell_release_no_holder(pool->prison, cell, bios);
487         dm_bio_prison_free_cell(pool->prison, cell);
488 }
489
490 static void cell_error_with_code(struct pool *pool,
491                 struct dm_bio_prison_cell *cell, blk_status_t error_code)
492 {
493         dm_cell_error(pool->prison, cell, error_code);
494         dm_bio_prison_free_cell(pool->prison, cell);
495 }
496
497 static blk_status_t get_pool_io_error_code(struct pool *pool)
498 {
499         return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
500 }
501
502 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
503 {
504         cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
505 }
506
507 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
508 {
509         cell_error_with_code(pool, cell, 0);
510 }
511
512 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
513 {
514         cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
515 }
516
517 /*----------------------------------------------------------------*/
518
519 /*
520  * A global list of pools that uses a struct mapped_device as a key.
521  */
522 static struct dm_thin_pool_table {
523         struct mutex mutex;
524         struct list_head pools;
525 } dm_thin_pool_table;
526
527 static void pool_table_init(void)
528 {
529         mutex_init(&dm_thin_pool_table.mutex);
530         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
531 }
532
533 static void pool_table_exit(void)
534 {
535         mutex_destroy(&dm_thin_pool_table.mutex);
536 }
537
538 static void __pool_table_insert(struct pool *pool)
539 {
540         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
541         list_add(&pool->list, &dm_thin_pool_table.pools);
542 }
543
544 static void __pool_table_remove(struct pool *pool)
545 {
546         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
547         list_del(&pool->list);
548 }
549
550 static struct pool *__pool_table_lookup(struct mapped_device *md)
551 {
552         struct pool *pool = NULL, *tmp;
553
554         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
555
556         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
557                 if (tmp->pool_md == md) {
558                         pool = tmp;
559                         break;
560                 }
561         }
562
563         return pool;
564 }
565
566 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
567 {
568         struct pool *pool = NULL, *tmp;
569
570         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
571
572         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
573                 if (tmp->md_dev == md_dev) {
574                         pool = tmp;
575                         break;
576                 }
577         }
578
579         return pool;
580 }
581
582 /*----------------------------------------------------------------*/
583
584 struct dm_thin_endio_hook {
585         struct thin_c *tc;
586         struct dm_deferred_entry *shared_read_entry;
587         struct dm_deferred_entry *all_io_entry;
588         struct dm_thin_new_mapping *overwrite_mapping;
589         struct rb_node rb_node;
590         struct dm_bio_prison_cell *cell;
591 };
592
593 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
594 {
595         bio_list_merge(bios, master);
596         bio_list_init(master);
597 }
598
599 static void error_bio_list(struct bio_list *bios, blk_status_t error)
600 {
601         struct bio *bio;
602
603         while ((bio = bio_list_pop(bios))) {
604                 bio->bi_status = error;
605                 bio_endio(bio);
606         }
607 }
608
609 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
610                 blk_status_t error)
611 {
612         struct bio_list bios;
613
614         bio_list_init(&bios);
615
616         spin_lock_irq(&tc->lock);
617         __merge_bio_list(&bios, master);
618         spin_unlock_irq(&tc->lock);
619
620         error_bio_list(&bios, error);
621 }
622
623 static void requeue_deferred_cells(struct thin_c *tc)
624 {
625         struct pool *pool = tc->pool;
626         struct list_head cells;
627         struct dm_bio_prison_cell *cell, *tmp;
628
629         INIT_LIST_HEAD(&cells);
630
631         spin_lock_irq(&tc->lock);
632         list_splice_init(&tc->deferred_cells, &cells);
633         spin_unlock_irq(&tc->lock);
634
635         list_for_each_entry_safe(cell, tmp, &cells, user_list)
636                 cell_requeue(pool, cell);
637 }
638
639 static void requeue_io(struct thin_c *tc)
640 {
641         struct bio_list bios;
642
643         bio_list_init(&bios);
644
645         spin_lock_irq(&tc->lock);
646         __merge_bio_list(&bios, &tc->deferred_bio_list);
647         __merge_bio_list(&bios, &tc->retry_on_resume_list);
648         spin_unlock_irq(&tc->lock);
649
650         error_bio_list(&bios, BLK_STS_DM_REQUEUE);
651         requeue_deferred_cells(tc);
652 }
653
654 static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
655 {
656         struct thin_c *tc;
657
658         rcu_read_lock();
659         list_for_each_entry_rcu(tc, &pool->active_thins, list)
660                 error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
661         rcu_read_unlock();
662 }
663
664 static void error_retry_list(struct pool *pool)
665 {
666         error_retry_list_with_code(pool, get_pool_io_error_code(pool));
667 }
668
669 /*
670  * This section of code contains the logic for processing a thin device's IO.
671  * Much of the code depends on pool object resources (lists, workqueues, etc)
672  * but most is exclusively called from the thin target rather than the thin-pool
673  * target.
674  */
675
676 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
677 {
678         struct pool *pool = tc->pool;
679         sector_t block_nr = bio->bi_iter.bi_sector;
680
681         if (block_size_is_power_of_two(pool))
682                 block_nr >>= pool->sectors_per_block_shift;
683         else
684                 (void) sector_div(block_nr, pool->sectors_per_block);
685
686         return block_nr;
687 }
688
689 /*
690  * Returns the _complete_ blocks that this bio covers.
691  */
692 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
693                                 dm_block_t *begin, dm_block_t *end)
694 {
695         struct pool *pool = tc->pool;
696         sector_t b = bio->bi_iter.bi_sector;
697         sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
698
699         b += pool->sectors_per_block - 1ull; /* so we round up */
700
701         if (block_size_is_power_of_two(pool)) {
702                 b >>= pool->sectors_per_block_shift;
703                 e >>= pool->sectors_per_block_shift;
704         } else {
705                 (void) sector_div(b, pool->sectors_per_block);
706                 (void) sector_div(e, pool->sectors_per_block);
707         }
708
709         if (e < b)
710                 /* Can happen if the bio is within a single block. */
711                 e = b;
712
713         *begin = b;
714         *end = e;
715 }
716
717 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
718 {
719         struct pool *pool = tc->pool;
720         sector_t bi_sector = bio->bi_iter.bi_sector;
721
722         bio_set_dev(bio, tc->pool_dev->bdev);
723         if (block_size_is_power_of_two(pool))
724                 bio->bi_iter.bi_sector =
725                         (block << pool->sectors_per_block_shift) |
726                         (bi_sector & (pool->sectors_per_block - 1));
727         else
728                 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
729                                  sector_div(bi_sector, pool->sectors_per_block);
730 }
731
732 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
733 {
734         bio_set_dev(bio, tc->origin_dev->bdev);
735 }
736
737 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
738 {
739         return op_is_flush(bio->bi_opf) &&
740                 dm_thin_changed_this_transaction(tc->td);
741 }
742
743 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
744 {
745         struct dm_thin_endio_hook *h;
746
747         if (bio_op(bio) == REQ_OP_DISCARD)
748                 return;
749
750         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
751         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
752 }
753
754 static void issue(struct thin_c *tc, struct bio *bio)
755 {
756         struct pool *pool = tc->pool;
757
758         if (!bio_triggers_commit(tc, bio)) {
759                 generic_make_request(bio);
760                 return;
761         }
762
763         /*
764          * Complete bio with an error if earlier I/O caused changes to
765          * the metadata that can't be committed e.g, due to I/O errors
766          * on the metadata device.
767          */
768         if (dm_thin_aborted_changes(tc->td)) {
769                 bio_io_error(bio);
770                 return;
771         }
772
773         /*
774          * Batch together any bios that trigger commits and then issue a
775          * single commit for them in process_deferred_bios().
776          */
777         spin_lock_irq(&pool->lock);
778         bio_list_add(&pool->deferred_flush_bios, bio);
779         spin_unlock_irq(&pool->lock);
780 }
781
782 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
783 {
784         remap_to_origin(tc, bio);
785         issue(tc, bio);
786 }
787
788 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
789                             dm_block_t block)
790 {
791         remap(tc, bio, block);
792         issue(tc, bio);
793 }
794
795 /*----------------------------------------------------------------*/
796
797 /*
798  * Bio endio functions.
799  */
800 struct dm_thin_new_mapping {
801         struct list_head list;
802
803         bool pass_discard:1;
804         bool maybe_shared:1;
805
806         /*
807          * Track quiescing, copying and zeroing preparation actions.  When this
808          * counter hits zero the block is prepared and can be inserted into the
809          * btree.
810          */
811         atomic_t prepare_actions;
812
813         blk_status_t status;
814         struct thin_c *tc;
815         dm_block_t virt_begin, virt_end;
816         dm_block_t data_block;
817         struct dm_bio_prison_cell *cell;
818
819         /*
820          * If the bio covers the whole area of a block then we can avoid
821          * zeroing or copying.  Instead this bio is hooked.  The bio will
822          * still be in the cell, so care has to be taken to avoid issuing
823          * the bio twice.
824          */
825         struct bio *bio;
826         bio_end_io_t *saved_bi_end_io;
827 };
828
829 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
830 {
831         struct pool *pool = m->tc->pool;
832
833         if (atomic_dec_and_test(&m->prepare_actions)) {
834                 list_add_tail(&m->list, &pool->prepared_mappings);
835                 wake_worker(pool);
836         }
837 }
838
839 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
840 {
841         unsigned long flags;
842         struct pool *pool = m->tc->pool;
843
844         spin_lock_irqsave(&pool->lock, flags);
845         __complete_mapping_preparation(m);
846         spin_unlock_irqrestore(&pool->lock, flags);
847 }
848
849 static void copy_complete(int read_err, unsigned long write_err, void *context)
850 {
851         struct dm_thin_new_mapping *m = context;
852
853         m->status = read_err || write_err ? BLK_STS_IOERR : 0;
854         complete_mapping_preparation(m);
855 }
856
857 static void overwrite_endio(struct bio *bio)
858 {
859         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
860         struct dm_thin_new_mapping *m = h->overwrite_mapping;
861
862         bio->bi_end_io = m->saved_bi_end_io;
863
864         m->status = bio->bi_status;
865         complete_mapping_preparation(m);
866 }
867
868 /*----------------------------------------------------------------*/
869
870 /*
871  * Workqueue.
872  */
873
874 /*
875  * Prepared mapping jobs.
876  */
877
878 /*
879  * This sends the bios in the cell, except the original holder, back
880  * to the deferred_bios list.
881  */
882 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
883 {
884         struct pool *pool = tc->pool;
885         unsigned long flags;
886         int has_work;
887
888         spin_lock_irqsave(&tc->lock, flags);
889         cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
890         has_work = !bio_list_empty(&tc->deferred_bio_list);
891         spin_unlock_irqrestore(&tc->lock, flags);
892
893         if (has_work)
894                 wake_worker(pool);
895 }
896
897 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
898
899 struct remap_info {
900         struct thin_c *tc;
901         struct bio_list defer_bios;
902         struct bio_list issue_bios;
903 };
904
905 static void __inc_remap_and_issue_cell(void *context,
906                                        struct dm_bio_prison_cell *cell)
907 {
908         struct remap_info *info = context;
909         struct bio *bio;
910
911         while ((bio = bio_list_pop(&cell->bios))) {
912                 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
913                         bio_list_add(&info->defer_bios, bio);
914                 else {
915                         inc_all_io_entry(info->tc->pool, bio);
916
917                         /*
918                          * We can't issue the bios with the bio prison lock
919                          * held, so we add them to a list to issue on
920                          * return from this function.
921                          */
922                         bio_list_add(&info->issue_bios, bio);
923                 }
924         }
925 }
926
927 static void inc_remap_and_issue_cell(struct thin_c *tc,
928                                      struct dm_bio_prison_cell *cell,
929                                      dm_block_t block)
930 {
931         struct bio *bio;
932         struct remap_info info;
933
934         info.tc = tc;
935         bio_list_init(&info.defer_bios);
936         bio_list_init(&info.issue_bios);
937
938         /*
939          * We have to be careful to inc any bios we're about to issue
940          * before the cell is released, and avoid a race with new bios
941          * being added to the cell.
942          */
943         cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
944                            &info, cell);
945
946         while ((bio = bio_list_pop(&info.defer_bios)))
947                 thin_defer_bio(tc, bio);
948
949         while ((bio = bio_list_pop(&info.issue_bios)))
950                 remap_and_issue(info.tc, bio, block);
951 }
952
953 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
954 {
955         cell_error(m->tc->pool, m->cell);
956         list_del(&m->list);
957         mempool_free(m, &m->tc->pool->mapping_pool);
958 }
959
960 static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio)
961 {
962         struct pool *pool = tc->pool;
963
964         /*
965          * If the bio has the REQ_FUA flag set we must commit the metadata
966          * before signaling its completion.
967          */
968         if (!bio_triggers_commit(tc, bio)) {
969                 bio_endio(bio);
970                 return;
971         }
972
973         /*
974          * Complete bio with an error if earlier I/O caused changes to the
975          * metadata that can't be committed, e.g, due to I/O errors on the
976          * metadata device.
977          */
978         if (dm_thin_aborted_changes(tc->td)) {
979                 bio_io_error(bio);
980                 return;
981         }
982
983         /*
984          * Batch together any bios that trigger commits and then issue a
985          * single commit for them in process_deferred_bios().
986          */
987         spin_lock_irq(&pool->lock);
988         bio_list_add(&pool->deferred_flush_completions, bio);
989         spin_unlock_irq(&pool->lock);
990 }
991
992 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
993 {
994         struct thin_c *tc = m->tc;
995         struct pool *pool = tc->pool;
996         struct bio *bio = m->bio;
997         int r;
998
999         if (m->status) {
1000                 cell_error(pool, m->cell);
1001                 goto out;
1002         }
1003
1004         /*
1005          * Commit the prepared block into the mapping btree.
1006          * Any I/O for this block arriving after this point will get
1007          * remapped to it directly.
1008          */
1009         r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
1010         if (r) {
1011                 metadata_operation_failed(pool, "dm_thin_insert_block", r);
1012                 cell_error(pool, m->cell);
1013                 goto out;
1014         }
1015
1016         /*
1017          * Release any bios held while the block was being provisioned.
1018          * If we are processing a write bio that completely covers the block,
1019          * we already processed it so can ignore it now when processing
1020          * the bios in the cell.
1021          */
1022         if (bio) {
1023                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1024                 complete_overwrite_bio(tc, bio);
1025         } else {
1026                 inc_all_io_entry(tc->pool, m->cell->holder);
1027                 remap_and_issue(tc, m->cell->holder, m->data_block);
1028                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1029         }
1030
1031 out:
1032         list_del(&m->list);
1033         mempool_free(m, &pool->mapping_pool);
1034 }
1035
1036 /*----------------------------------------------------------------*/
1037
1038 static void free_discard_mapping(struct dm_thin_new_mapping *m)
1039 {
1040         struct thin_c *tc = m->tc;
1041         if (m->cell)
1042                 cell_defer_no_holder(tc, m->cell);
1043         mempool_free(m, &tc->pool->mapping_pool);
1044 }
1045
1046 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1047 {
1048         bio_io_error(m->bio);
1049         free_discard_mapping(m);
1050 }
1051
1052 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1053 {
1054         bio_endio(m->bio);
1055         free_discard_mapping(m);
1056 }
1057
1058 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1059 {
1060         int r;
1061         struct thin_c *tc = m->tc;
1062
1063         r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1064         if (r) {
1065                 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1066                 bio_io_error(m->bio);
1067         } else
1068                 bio_endio(m->bio);
1069
1070         cell_defer_no_holder(tc, m->cell);
1071         mempool_free(m, &tc->pool->mapping_pool);
1072 }
1073
1074 /*----------------------------------------------------------------*/
1075
1076 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1077                                                    struct bio *discard_parent)
1078 {
1079         /*
1080          * We've already unmapped this range of blocks, but before we
1081          * passdown we have to check that these blocks are now unused.
1082          */
1083         int r = 0;
1084         bool shared = true;
1085         struct thin_c *tc = m->tc;
1086         struct pool *pool = tc->pool;
1087         dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1088         struct discard_op op;
1089
1090         begin_discard(&op, tc, discard_parent);
1091         while (b != end) {
1092                 /* find start of unmapped run */
1093                 for (; b < end; b++) {
1094                         r = dm_pool_block_is_shared(pool->pmd, b, &shared);
1095                         if (r)
1096                                 goto out;
1097
1098                         if (!shared)
1099                                 break;
1100                 }
1101
1102                 if (b == end)
1103                         break;
1104
1105                 /* find end of run */
1106                 for (e = b + 1; e != end; e++) {
1107                         r = dm_pool_block_is_shared(pool->pmd, e, &shared);
1108                         if (r)
1109                                 goto out;
1110
1111                         if (shared)
1112                                 break;
1113                 }
1114
1115                 r = issue_discard(&op, b, e);
1116                 if (r)
1117                         goto out;
1118
1119                 b = e;
1120         }
1121 out:
1122         end_discard(&op, r);
1123 }
1124
1125 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1126 {
1127         unsigned long flags;
1128         struct pool *pool = m->tc->pool;
1129
1130         spin_lock_irqsave(&pool->lock, flags);
1131         list_add_tail(&m->list, &pool->prepared_discards_pt2);
1132         spin_unlock_irqrestore(&pool->lock, flags);
1133         wake_worker(pool);
1134 }
1135
1136 static void passdown_endio(struct bio *bio)
1137 {
1138         /*
1139          * It doesn't matter if the passdown discard failed, we still want
1140          * to unmap (we ignore err).
1141          */
1142         queue_passdown_pt2(bio->bi_private);
1143         bio_put(bio);
1144 }
1145
1146 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1147 {
1148         int r;
1149         struct thin_c *tc = m->tc;
1150         struct pool *pool = tc->pool;
1151         struct bio *discard_parent;
1152         dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1153
1154         /*
1155          * Only this thread allocates blocks, so we can be sure that the
1156          * newly unmapped blocks will not be allocated before the end of
1157          * the function.
1158          */
1159         r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1160         if (r) {
1161                 metadata_operation_failed(pool, "dm_thin_remove_range", r);
1162                 bio_io_error(m->bio);
1163                 cell_defer_no_holder(tc, m->cell);
1164                 mempool_free(m, &pool->mapping_pool);
1165                 return;
1166         }
1167
1168         /*
1169          * Increment the unmapped blocks.  This prevents a race between the
1170          * passdown io and reallocation of freed blocks.
1171          */
1172         r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1173         if (r) {
1174                 metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1175                 bio_io_error(m->bio);
1176                 cell_defer_no_holder(tc, m->cell);
1177                 mempool_free(m, &pool->mapping_pool);
1178                 return;
1179         }
1180
1181         discard_parent = bio_alloc(GFP_NOIO, 1);
1182         if (!discard_parent) {
1183                 DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1184                        dm_device_name(tc->pool->pool_md));
1185                 queue_passdown_pt2(m);
1186
1187         } else {
1188                 discard_parent->bi_end_io = passdown_endio;
1189                 discard_parent->bi_private = m;
1190
1191                 if (m->maybe_shared)
1192                         passdown_double_checking_shared_status(m, discard_parent);
1193                 else {
1194                         struct discard_op op;
1195
1196                         begin_discard(&op, tc, discard_parent);
1197                         r = issue_discard(&op, m->data_block, data_end);
1198                         end_discard(&op, r);
1199                 }
1200         }
1201 }
1202
1203 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1204 {
1205         int r;
1206         struct thin_c *tc = m->tc;
1207         struct pool *pool = tc->pool;
1208
1209         /*
1210          * The passdown has completed, so now we can decrement all those
1211          * unmapped blocks.
1212          */
1213         r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1214                                    m->data_block + (m->virt_end - m->virt_begin));
1215         if (r) {
1216                 metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1217                 bio_io_error(m->bio);
1218         } else
1219                 bio_endio(m->bio);
1220
1221         cell_defer_no_holder(tc, m->cell);
1222         mempool_free(m, &pool->mapping_pool);
1223 }
1224
1225 static void process_prepared(struct pool *pool, struct list_head *head,
1226                              process_mapping_fn *fn)
1227 {
1228         struct list_head maps;
1229         struct dm_thin_new_mapping *m, *tmp;
1230
1231         INIT_LIST_HEAD(&maps);
1232         spin_lock_irq(&pool->lock);
1233         list_splice_init(head, &maps);
1234         spin_unlock_irq(&pool->lock);
1235
1236         list_for_each_entry_safe(m, tmp, &maps, list)
1237                 (*fn)(m);
1238 }
1239
1240 /*
1241  * Deferred bio jobs.
1242  */
1243 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1244 {
1245         return bio->bi_iter.bi_size ==
1246                 (pool->sectors_per_block << SECTOR_SHIFT);
1247 }
1248
1249 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1250 {
1251         return (bio_data_dir(bio) == WRITE) &&
1252                 io_overlaps_block(pool, bio);
1253 }
1254
1255 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1256                                bio_end_io_t *fn)
1257 {
1258         *save = bio->bi_end_io;
1259         bio->bi_end_io = fn;
1260 }
1261
1262 static int ensure_next_mapping(struct pool *pool)
1263 {
1264         if (pool->next_mapping)
1265                 return 0;
1266
1267         pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1268
1269         return pool->next_mapping ? 0 : -ENOMEM;
1270 }
1271
1272 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1273 {
1274         struct dm_thin_new_mapping *m = pool->next_mapping;
1275
1276         BUG_ON(!pool->next_mapping);
1277
1278         memset(m, 0, sizeof(struct dm_thin_new_mapping));
1279         INIT_LIST_HEAD(&m->list);
1280         m->bio = NULL;
1281
1282         pool->next_mapping = NULL;
1283
1284         return m;
1285 }
1286
1287 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1288                     sector_t begin, sector_t end)
1289 {
1290         struct dm_io_region to;
1291
1292         to.bdev = tc->pool_dev->bdev;
1293         to.sector = begin;
1294         to.count = end - begin;
1295
1296         dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1297 }
1298
1299 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1300                                       dm_block_t data_begin,
1301                                       struct dm_thin_new_mapping *m)
1302 {
1303         struct pool *pool = tc->pool;
1304         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1305
1306         h->overwrite_mapping = m;
1307         m->bio = bio;
1308         save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1309         inc_all_io_entry(pool, bio);
1310         remap_and_issue(tc, bio, data_begin);
1311 }
1312
1313 /*
1314  * A partial copy also needs to zero the uncopied region.
1315  */
1316 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1317                           struct dm_dev *origin, dm_block_t data_origin,
1318                           dm_block_t data_dest,
1319                           struct dm_bio_prison_cell *cell, struct bio *bio,
1320                           sector_t len)
1321 {
1322         struct pool *pool = tc->pool;
1323         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1324
1325         m->tc = tc;
1326         m->virt_begin = virt_block;
1327         m->virt_end = virt_block + 1u;
1328         m->data_block = data_dest;
1329         m->cell = cell;
1330
1331         /*
1332          * quiesce action + copy action + an extra reference held for the
1333          * duration of this function (we may need to inc later for a
1334          * partial zero).
1335          */
1336         atomic_set(&m->prepare_actions, 3);
1337
1338         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1339                 complete_mapping_preparation(m); /* already quiesced */
1340
1341         /*
1342          * IO to pool_dev remaps to the pool target's data_dev.
1343          *
1344          * If the whole block of data is being overwritten, we can issue the
1345          * bio immediately. Otherwise we use kcopyd to clone the data first.
1346          */
1347         if (io_overwrites_block(pool, bio))
1348                 remap_and_issue_overwrite(tc, bio, data_dest, m);
1349         else {
1350                 struct dm_io_region from, to;
1351
1352                 from.bdev = origin->bdev;
1353                 from.sector = data_origin * pool->sectors_per_block;
1354                 from.count = len;
1355
1356                 to.bdev = tc->pool_dev->bdev;
1357                 to.sector = data_dest * pool->sectors_per_block;
1358                 to.count = len;
1359
1360                 dm_kcopyd_copy(pool->copier, &from, 1, &to,
1361                                0, copy_complete, m);
1362
1363                 /*
1364                  * Do we need to zero a tail region?
1365                  */
1366                 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1367                         atomic_inc(&m->prepare_actions);
1368                         ll_zero(tc, m,
1369                                 data_dest * pool->sectors_per_block + len,
1370                                 (data_dest + 1) * pool->sectors_per_block);
1371                 }
1372         }
1373
1374         complete_mapping_preparation(m); /* drop our ref */
1375 }
1376
1377 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1378                                    dm_block_t data_origin, dm_block_t data_dest,
1379                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1380 {
1381         schedule_copy(tc, virt_block, tc->pool_dev,
1382                       data_origin, data_dest, cell, bio,
1383                       tc->pool->sectors_per_block);
1384 }
1385
1386 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1387                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
1388                           struct bio *bio)
1389 {
1390         struct pool *pool = tc->pool;
1391         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1392
1393         atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1394         m->tc = tc;
1395         m->virt_begin = virt_block;
1396         m->virt_end = virt_block + 1u;
1397         m->data_block = data_block;
1398         m->cell = cell;
1399
1400         /*
1401          * If the whole block of data is being overwritten or we are not
1402          * zeroing pre-existing data, we can issue the bio immediately.
1403          * Otherwise we use kcopyd to zero the data first.
1404          */
1405         if (pool->pf.zero_new_blocks) {
1406                 if (io_overwrites_block(pool, bio))
1407                         remap_and_issue_overwrite(tc, bio, data_block, m);
1408                 else
1409                         ll_zero(tc, m, data_block * pool->sectors_per_block,
1410                                 (data_block + 1) * pool->sectors_per_block);
1411         } else
1412                 process_prepared_mapping(m);
1413 }
1414
1415 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1416                                    dm_block_t data_dest,
1417                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1418 {
1419         struct pool *pool = tc->pool;
1420         sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1421         sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1422
1423         if (virt_block_end <= tc->origin_size)
1424                 schedule_copy(tc, virt_block, tc->origin_dev,
1425                               virt_block, data_dest, cell, bio,
1426                               pool->sectors_per_block);
1427
1428         else if (virt_block_begin < tc->origin_size)
1429                 schedule_copy(tc, virt_block, tc->origin_dev,
1430                               virt_block, data_dest, cell, bio,
1431                               tc->origin_size - virt_block_begin);
1432
1433         else
1434                 schedule_zero(tc, virt_block, data_dest, cell, bio);
1435 }
1436
1437 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1438
1439 static void requeue_bios(struct pool *pool);
1440
1441 static bool is_read_only_pool_mode(enum pool_mode mode)
1442 {
1443         return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
1444 }
1445
1446 static bool is_read_only(struct pool *pool)
1447 {
1448         return is_read_only_pool_mode(get_pool_mode(pool));
1449 }
1450
1451 static void check_for_metadata_space(struct pool *pool)
1452 {
1453         int r;
1454         const char *ooms_reason = NULL;
1455         dm_block_t nr_free;
1456
1457         r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
1458         if (r)
1459                 ooms_reason = "Could not get free metadata blocks";
1460         else if (!nr_free)
1461                 ooms_reason = "No free metadata blocks";
1462
1463         if (ooms_reason && !is_read_only(pool)) {
1464                 DMERR("%s", ooms_reason);
1465                 set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
1466         }
1467 }
1468
1469 static void check_for_data_space(struct pool *pool)
1470 {
1471         int r;
1472         dm_block_t nr_free;
1473
1474         if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1475                 return;
1476
1477         r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1478         if (r)
1479                 return;
1480
1481         if (nr_free) {
1482                 set_pool_mode(pool, PM_WRITE);
1483                 requeue_bios(pool);
1484         }
1485 }
1486
1487 /*
1488  * A non-zero return indicates read_only or fail_io mode.
1489  * Many callers don't care about the return value.
1490  */
1491 static int commit(struct pool *pool)
1492 {
1493         int r;
1494
1495         if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
1496                 return -EINVAL;
1497
1498         r = dm_pool_commit_metadata(pool->pmd);
1499         if (r)
1500                 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1501         else {
1502                 check_for_metadata_space(pool);
1503                 check_for_data_space(pool);
1504         }
1505
1506         return r;
1507 }
1508
1509 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1510 {
1511         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1512                 DMWARN("%s: reached low water mark for data device: sending event.",
1513                        dm_device_name(pool->pool_md));
1514                 spin_lock_irq(&pool->lock);
1515                 pool->low_water_triggered = true;
1516                 spin_unlock_irq(&pool->lock);
1517                 dm_table_event(pool->ti->table);
1518         }
1519 }
1520
1521 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1522 {
1523         int r;
1524         dm_block_t free_blocks;
1525         struct pool *pool = tc->pool;
1526
1527         if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1528                 return -EINVAL;
1529
1530         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1531         if (r) {
1532                 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1533                 return r;
1534         }
1535
1536         check_low_water_mark(pool, free_blocks);
1537
1538         if (!free_blocks) {
1539                 /*
1540                  * Try to commit to see if that will free up some
1541                  * more space.
1542                  */
1543                 r = commit(pool);
1544                 if (r)
1545                         return r;
1546
1547                 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1548                 if (r) {
1549                         metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1550                         return r;
1551                 }
1552
1553                 if (!free_blocks) {
1554                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1555                         return -ENOSPC;
1556                 }
1557         }
1558
1559         r = dm_pool_alloc_data_block(pool->pmd, result);
1560         if (r) {
1561                 if (r == -ENOSPC)
1562                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1563                 else
1564                         metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1565                 return r;
1566         }
1567
1568         r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
1569         if (r) {
1570                 metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
1571                 return r;
1572         }
1573
1574         if (!free_blocks) {
1575                 /* Let's commit before we use up the metadata reserve. */
1576                 r = commit(pool);
1577                 if (r)
1578                         return r;
1579         }
1580
1581         return 0;
1582 }
1583
1584 /*
1585  * If we have run out of space, queue bios until the device is
1586  * resumed, presumably after having been reloaded with more space.
1587  */
1588 static void retry_on_resume(struct bio *bio)
1589 {
1590         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1591         struct thin_c *tc = h->tc;
1592
1593         spin_lock_irq(&tc->lock);
1594         bio_list_add(&tc->retry_on_resume_list, bio);
1595         spin_unlock_irq(&tc->lock);
1596 }
1597
1598 static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1599 {
1600         enum pool_mode m = get_pool_mode(pool);
1601
1602         switch (m) {
1603         case PM_WRITE:
1604                 /* Shouldn't get here */
1605                 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1606                 return BLK_STS_IOERR;
1607
1608         case PM_OUT_OF_DATA_SPACE:
1609                 return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1610
1611         case PM_OUT_OF_METADATA_SPACE:
1612         case PM_READ_ONLY:
1613         case PM_FAIL:
1614                 return BLK_STS_IOERR;
1615         default:
1616                 /* Shouldn't get here */
1617                 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1618                 return BLK_STS_IOERR;
1619         }
1620 }
1621
1622 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1623 {
1624         blk_status_t error = should_error_unserviceable_bio(pool);
1625
1626         if (error) {
1627                 bio->bi_status = error;
1628                 bio_endio(bio);
1629         } else
1630                 retry_on_resume(bio);
1631 }
1632
1633 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1634 {
1635         struct bio *bio;
1636         struct bio_list bios;
1637         blk_status_t error;
1638
1639         error = should_error_unserviceable_bio(pool);
1640         if (error) {
1641                 cell_error_with_code(pool, cell, error);
1642                 return;
1643         }
1644
1645         bio_list_init(&bios);
1646         cell_release(pool, cell, &bios);
1647
1648         while ((bio = bio_list_pop(&bios)))
1649                 retry_on_resume(bio);
1650 }
1651
1652 static void process_discard_cell_no_passdown(struct thin_c *tc,
1653                                              struct dm_bio_prison_cell *virt_cell)
1654 {
1655         struct pool *pool = tc->pool;
1656         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1657
1658         /*
1659          * We don't need to lock the data blocks, since there's no
1660          * passdown.  We only lock data blocks for allocation and breaking sharing.
1661          */
1662         m->tc = tc;
1663         m->virt_begin = virt_cell->key.block_begin;
1664         m->virt_end = virt_cell->key.block_end;
1665         m->cell = virt_cell;
1666         m->bio = virt_cell->holder;
1667
1668         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1669                 pool->process_prepared_discard(m);
1670 }
1671
1672 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1673                                  struct bio *bio)
1674 {
1675         struct pool *pool = tc->pool;
1676
1677         int r;
1678         bool maybe_shared;
1679         struct dm_cell_key data_key;
1680         struct dm_bio_prison_cell *data_cell;
1681         struct dm_thin_new_mapping *m;
1682         dm_block_t virt_begin, virt_end, data_begin;
1683
1684         while (begin != end) {
1685                 r = ensure_next_mapping(pool);
1686                 if (r)
1687                         /* we did our best */
1688                         return;
1689
1690                 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1691                                               &data_begin, &maybe_shared);
1692                 if (r)
1693                         /*
1694                          * Silently fail, letting any mappings we've
1695                          * created complete.
1696                          */
1697                         break;
1698
1699                 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1700                 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1701                         /* contention, we'll give up with this range */
1702                         begin = virt_end;
1703                         continue;
1704                 }
1705
1706                 /*
1707                  * IO may still be going to the destination block.  We must
1708                  * quiesce before we can do the removal.
1709                  */
1710                 m = get_next_mapping(pool);
1711                 m->tc = tc;
1712                 m->maybe_shared = maybe_shared;
1713                 m->virt_begin = virt_begin;
1714                 m->virt_end = virt_end;
1715                 m->data_block = data_begin;
1716                 m->cell = data_cell;
1717                 m->bio = bio;
1718
1719                 /*
1720                  * The parent bio must not complete before sub discard bios are
1721                  * chained to it (see end_discard's bio_chain)!
1722                  *
1723                  * This per-mapping bi_remaining increment is paired with
1724                  * the implicit decrement that occurs via bio_endio() in
1725                  * end_discard().
1726                  */
1727                 bio_inc_remaining(bio);
1728                 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1729                         pool->process_prepared_discard(m);
1730
1731                 begin = virt_end;
1732         }
1733 }
1734
1735 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1736 {
1737         struct bio *bio = virt_cell->holder;
1738         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1739
1740         /*
1741          * The virt_cell will only get freed once the origin bio completes.
1742          * This means it will remain locked while all the individual
1743          * passdown bios are in flight.
1744          */
1745         h->cell = virt_cell;
1746         break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1747
1748         /*
1749          * We complete the bio now, knowing that the bi_remaining field
1750          * will prevent completion until the sub range discards have
1751          * completed.
1752          */
1753         bio_endio(bio);
1754 }
1755
1756 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1757 {
1758         dm_block_t begin, end;
1759         struct dm_cell_key virt_key;
1760         struct dm_bio_prison_cell *virt_cell;
1761
1762         get_bio_block_range(tc, bio, &begin, &end);
1763         if (begin == end) {
1764                 /*
1765                  * The discard covers less than a block.
1766                  */
1767                 bio_endio(bio);
1768                 return;
1769         }
1770
1771         build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1772         if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1773                 /*
1774                  * Potential starvation issue: We're relying on the
1775                  * fs/application being well behaved, and not trying to
1776                  * send IO to a region at the same time as discarding it.
1777                  * If they do this persistently then it's possible this
1778                  * cell will never be granted.
1779                  */
1780                 return;
1781
1782         tc->pool->process_discard_cell(tc, virt_cell);
1783 }
1784
1785 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1786                           struct dm_cell_key *key,
1787                           struct dm_thin_lookup_result *lookup_result,
1788                           struct dm_bio_prison_cell *cell)
1789 {
1790         int r;
1791         dm_block_t data_block;
1792         struct pool *pool = tc->pool;
1793
1794         r = alloc_data_block(tc, &data_block);
1795         switch (r) {
1796         case 0:
1797                 schedule_internal_copy(tc, block, lookup_result->block,
1798                                        data_block, cell, bio);
1799                 break;
1800
1801         case -ENOSPC:
1802                 retry_bios_on_resume(pool, cell);
1803                 break;
1804
1805         default:
1806                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1807                             __func__, r);
1808                 cell_error(pool, cell);
1809                 break;
1810         }
1811 }
1812
1813 static void __remap_and_issue_shared_cell(void *context,
1814                                           struct dm_bio_prison_cell *cell)
1815 {
1816         struct remap_info *info = context;
1817         struct bio *bio;
1818
1819         while ((bio = bio_list_pop(&cell->bios))) {
1820                 if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1821                     bio_op(bio) == REQ_OP_DISCARD)
1822                         bio_list_add(&info->defer_bios, bio);
1823                 else {
1824                         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1825
1826                         h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1827                         inc_all_io_entry(info->tc->pool, bio);
1828                         bio_list_add(&info->issue_bios, bio);
1829                 }
1830         }
1831 }
1832
1833 static void remap_and_issue_shared_cell(struct thin_c *tc,
1834                                         struct dm_bio_prison_cell *cell,
1835                                         dm_block_t block)
1836 {
1837         struct bio *bio;
1838         struct remap_info info;
1839
1840         info.tc = tc;
1841         bio_list_init(&info.defer_bios);
1842         bio_list_init(&info.issue_bios);
1843
1844         cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1845                            &info, cell);
1846
1847         while ((bio = bio_list_pop(&info.defer_bios)))
1848                 thin_defer_bio(tc, bio);
1849
1850         while ((bio = bio_list_pop(&info.issue_bios)))
1851                 remap_and_issue(tc, bio, block);
1852 }
1853
1854 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1855                                dm_block_t block,
1856                                struct dm_thin_lookup_result *lookup_result,
1857                                struct dm_bio_prison_cell *virt_cell)
1858 {
1859         struct dm_bio_prison_cell *data_cell;
1860         struct pool *pool = tc->pool;
1861         struct dm_cell_key key;
1862
1863         /*
1864          * If cell is already occupied, then sharing is already in the process
1865          * of being broken so we have nothing further to do here.
1866          */
1867         build_data_key(tc->td, lookup_result->block, &key);
1868         if (bio_detain(pool, &key, bio, &data_cell)) {
1869                 cell_defer_no_holder(tc, virt_cell);
1870                 return;
1871         }
1872
1873         if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1874                 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1875                 cell_defer_no_holder(tc, virt_cell);
1876         } else {
1877                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1878
1879                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1880                 inc_all_io_entry(pool, bio);
1881                 remap_and_issue(tc, bio, lookup_result->block);
1882
1883                 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1884                 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1885         }
1886 }
1887
1888 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1889                             struct dm_bio_prison_cell *cell)
1890 {
1891         int r;
1892         dm_block_t data_block;
1893         struct pool *pool = tc->pool;
1894
1895         /*
1896          * Remap empty bios (flushes) immediately, without provisioning.
1897          */
1898         if (!bio->bi_iter.bi_size) {
1899                 inc_all_io_entry(pool, bio);
1900                 cell_defer_no_holder(tc, cell);
1901
1902                 remap_and_issue(tc, bio, 0);
1903                 return;
1904         }
1905
1906         /*
1907          * Fill read bios with zeroes and complete them immediately.
1908          */
1909         if (bio_data_dir(bio) == READ) {
1910                 zero_fill_bio(bio);
1911                 cell_defer_no_holder(tc, cell);
1912                 bio_endio(bio);
1913                 return;
1914         }
1915
1916         r = alloc_data_block(tc, &data_block);
1917         switch (r) {
1918         case 0:
1919                 if (tc->origin_dev)
1920                         schedule_external_copy(tc, block, data_block, cell, bio);
1921                 else
1922                         schedule_zero(tc, block, data_block, cell, bio);
1923                 break;
1924
1925         case -ENOSPC:
1926                 retry_bios_on_resume(pool, cell);
1927                 break;
1928
1929         default:
1930                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1931                             __func__, r);
1932                 cell_error(pool, cell);
1933                 break;
1934         }
1935 }
1936
1937 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1938 {
1939         int r;
1940         struct pool *pool = tc->pool;
1941         struct bio *bio = cell->holder;
1942         dm_block_t block = get_bio_block(tc, bio);
1943         struct dm_thin_lookup_result lookup_result;
1944
1945         if (tc->requeue_mode) {
1946                 cell_requeue(pool, cell);
1947                 return;
1948         }
1949
1950         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1951         switch (r) {
1952         case 0:
1953                 if (lookup_result.shared)
1954                         process_shared_bio(tc, bio, block, &lookup_result, cell);
1955                 else {
1956                         inc_all_io_entry(pool, bio);
1957                         remap_and_issue(tc, bio, lookup_result.block);
1958                         inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1959                 }
1960                 break;
1961
1962         case -ENODATA:
1963                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1964                         inc_all_io_entry(pool, bio);
1965                         cell_defer_no_holder(tc, cell);
1966
1967                         if (bio_end_sector(bio) <= tc->origin_size)
1968                                 remap_to_origin_and_issue(tc, bio);
1969
1970                         else if (bio->bi_iter.bi_sector < tc->origin_size) {
1971                                 zero_fill_bio(bio);
1972                                 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1973                                 remap_to_origin_and_issue(tc, bio);
1974
1975                         } else {
1976                                 zero_fill_bio(bio);
1977                                 bio_endio(bio);
1978                         }
1979                 } else
1980                         provision_block(tc, bio, block, cell);
1981                 break;
1982
1983         default:
1984                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1985                             __func__, r);
1986                 cell_defer_no_holder(tc, cell);
1987                 bio_io_error(bio);
1988                 break;
1989         }
1990 }
1991
1992 static void process_bio(struct thin_c *tc, struct bio *bio)
1993 {
1994         struct pool *pool = tc->pool;
1995         dm_block_t block = get_bio_block(tc, bio);
1996         struct dm_bio_prison_cell *cell;
1997         struct dm_cell_key key;
1998
1999         /*
2000          * If cell is already occupied, then the block is already
2001          * being provisioned so we have nothing further to do here.
2002          */
2003         build_virtual_key(tc->td, block, &key);
2004         if (bio_detain(pool, &key, bio, &cell))
2005                 return;
2006
2007         process_cell(tc, cell);
2008 }
2009
2010 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
2011                                     struct dm_bio_prison_cell *cell)
2012 {
2013         int r;
2014         int rw = bio_data_dir(bio);
2015         dm_block_t block = get_bio_block(tc, bio);
2016         struct dm_thin_lookup_result lookup_result;
2017
2018         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
2019         switch (r) {
2020         case 0:
2021                 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
2022                         handle_unserviceable_bio(tc->pool, bio);
2023                         if (cell)
2024                                 cell_defer_no_holder(tc, cell);
2025                 } else {
2026                         inc_all_io_entry(tc->pool, bio);
2027                         remap_and_issue(tc, bio, lookup_result.block);
2028                         if (cell)
2029                                 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
2030                 }
2031                 break;
2032
2033         case -ENODATA:
2034                 if (cell)
2035                         cell_defer_no_holder(tc, cell);
2036                 if (rw != READ) {
2037                         handle_unserviceable_bio(tc->pool, bio);
2038                         break;
2039                 }
2040
2041                 if (tc->origin_dev) {
2042                         inc_all_io_entry(tc->pool, bio);
2043                         remap_to_origin_and_issue(tc, bio);
2044                         break;
2045                 }
2046
2047                 zero_fill_bio(bio);
2048                 bio_endio(bio);
2049                 break;
2050
2051         default:
2052                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2053                             __func__, r);
2054                 if (cell)
2055                         cell_defer_no_holder(tc, cell);
2056                 bio_io_error(bio);
2057                 break;
2058         }
2059 }
2060
2061 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
2062 {
2063         __process_bio_read_only(tc, bio, NULL);
2064 }
2065
2066 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2067 {
2068         __process_bio_read_only(tc, cell->holder, cell);
2069 }
2070
2071 static void process_bio_success(struct thin_c *tc, struct bio *bio)
2072 {
2073         bio_endio(bio);
2074 }
2075
2076 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
2077 {
2078         bio_io_error(bio);
2079 }
2080
2081 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2082 {
2083         cell_success(tc->pool, cell);
2084 }
2085
2086 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2087 {
2088         cell_error(tc->pool, cell);
2089 }
2090
2091 /*
2092  * FIXME: should we also commit due to size of transaction, measured in
2093  * metadata blocks?
2094  */
2095 static int need_commit_due_to_time(struct pool *pool)
2096 {
2097         return !time_in_range(jiffies, pool->last_commit_jiffies,
2098                               pool->last_commit_jiffies + COMMIT_PERIOD);
2099 }
2100
2101 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2102 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2103
2104 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2105 {
2106         struct rb_node **rbp, *parent;
2107         struct dm_thin_endio_hook *pbd;
2108         sector_t bi_sector = bio->bi_iter.bi_sector;
2109
2110         rbp = &tc->sort_bio_list.rb_node;
2111         parent = NULL;
2112         while (*rbp) {
2113                 parent = *rbp;
2114                 pbd = thin_pbd(parent);
2115
2116                 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2117                         rbp = &(*rbp)->rb_left;
2118                 else
2119                         rbp = &(*rbp)->rb_right;
2120         }
2121
2122         pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2123         rb_link_node(&pbd->rb_node, parent, rbp);
2124         rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2125 }
2126
2127 static void __extract_sorted_bios(struct thin_c *tc)
2128 {
2129         struct rb_node *node;
2130         struct dm_thin_endio_hook *pbd;
2131         struct bio *bio;
2132
2133         for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2134                 pbd = thin_pbd(node);
2135                 bio = thin_bio(pbd);
2136
2137                 bio_list_add(&tc->deferred_bio_list, bio);
2138                 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2139         }
2140
2141         WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2142 }
2143
2144 static void __sort_thin_deferred_bios(struct thin_c *tc)
2145 {
2146         struct bio *bio;
2147         struct bio_list bios;
2148
2149         bio_list_init(&bios);
2150         bio_list_merge(&bios, &tc->deferred_bio_list);
2151         bio_list_init(&tc->deferred_bio_list);
2152
2153         /* Sort deferred_bio_list using rb-tree */
2154         while ((bio = bio_list_pop(&bios)))
2155                 __thin_bio_rb_add(tc, bio);
2156
2157         /*
2158          * Transfer the sorted bios in sort_bio_list back to
2159          * deferred_bio_list to allow lockless submission of
2160          * all bios.
2161          */
2162         __extract_sorted_bios(tc);
2163 }
2164
2165 static void process_thin_deferred_bios(struct thin_c *tc)
2166 {
2167         struct pool *pool = tc->pool;
2168         struct bio *bio;
2169         struct bio_list bios;
2170         struct blk_plug plug;
2171         unsigned count = 0;
2172
2173         if (tc->requeue_mode) {
2174                 error_thin_bio_list(tc, &tc->deferred_bio_list,
2175                                 BLK_STS_DM_REQUEUE);
2176                 return;
2177         }
2178
2179         bio_list_init(&bios);
2180
2181         spin_lock_irq(&tc->lock);
2182
2183         if (bio_list_empty(&tc->deferred_bio_list)) {
2184                 spin_unlock_irq(&tc->lock);
2185                 return;
2186         }
2187
2188         __sort_thin_deferred_bios(tc);
2189
2190         bio_list_merge(&bios, &tc->deferred_bio_list);
2191         bio_list_init(&tc->deferred_bio_list);
2192
2193         spin_unlock_irq(&tc->lock);
2194
2195         blk_start_plug(&plug);
2196         while ((bio = bio_list_pop(&bios))) {
2197                 /*
2198                  * If we've got no free new_mapping structs, and processing
2199                  * this bio might require one, we pause until there are some
2200                  * prepared mappings to process.
2201                  */
2202                 if (ensure_next_mapping(pool)) {
2203                         spin_lock_irq(&tc->lock);
2204                         bio_list_add(&tc->deferred_bio_list, bio);
2205                         bio_list_merge(&tc->deferred_bio_list, &bios);
2206                         spin_unlock_irq(&tc->lock);
2207                         break;
2208                 }
2209
2210                 if (bio_op(bio) == REQ_OP_DISCARD)
2211                         pool->process_discard(tc, bio);
2212                 else
2213                         pool->process_bio(tc, bio);
2214
2215                 if ((count++ & 127) == 0) {
2216                         throttle_work_update(&pool->throttle);
2217                         dm_pool_issue_prefetches(pool->pmd);
2218                 }
2219         }
2220         blk_finish_plug(&plug);
2221 }
2222
2223 static int cmp_cells(const void *lhs, const void *rhs)
2224 {
2225         struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2226         struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2227
2228         BUG_ON(!lhs_cell->holder);
2229         BUG_ON(!rhs_cell->holder);
2230
2231         if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2232                 return -1;
2233
2234         if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2235                 return 1;
2236
2237         return 0;
2238 }
2239
2240 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2241 {
2242         unsigned count = 0;
2243         struct dm_bio_prison_cell *cell, *tmp;
2244
2245         list_for_each_entry_safe(cell, tmp, cells, user_list) {
2246                 if (count >= CELL_SORT_ARRAY_SIZE)
2247                         break;
2248
2249                 pool->cell_sort_array[count++] = cell;
2250                 list_del(&cell->user_list);
2251         }
2252
2253         sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2254
2255         return count;
2256 }
2257
2258 static void process_thin_deferred_cells(struct thin_c *tc)
2259 {
2260         struct pool *pool = tc->pool;
2261         struct list_head cells;
2262         struct dm_bio_prison_cell *cell;
2263         unsigned i, j, count;
2264
2265         INIT_LIST_HEAD(&cells);
2266
2267         spin_lock_irq(&tc->lock);
2268         list_splice_init(&tc->deferred_cells, &cells);
2269         spin_unlock_irq(&tc->lock);
2270
2271         if (list_empty(&cells))
2272                 return;
2273
2274         do {
2275                 count = sort_cells(tc->pool, &cells);
2276
2277                 for (i = 0; i < count; i++) {
2278                         cell = pool->cell_sort_array[i];
2279                         BUG_ON(!cell->holder);
2280
2281                         /*
2282                          * If we've got no free new_mapping structs, and processing
2283                          * this bio might require one, we pause until there are some
2284                          * prepared mappings to process.
2285                          */
2286                         if (ensure_next_mapping(pool)) {
2287                                 for (j = i; j < count; j++)
2288                                         list_add(&pool->cell_sort_array[j]->user_list, &cells);
2289
2290                                 spin_lock_irq(&tc->lock);
2291                                 list_splice(&cells, &tc->deferred_cells);
2292                                 spin_unlock_irq(&tc->lock);
2293                                 return;
2294                         }
2295
2296                         if (bio_op(cell->holder) == REQ_OP_DISCARD)
2297                                 pool->process_discard_cell(tc, cell);
2298                         else
2299                                 pool->process_cell(tc, cell);
2300                 }
2301         } while (!list_empty(&cells));
2302 }
2303
2304 static void thin_get(struct thin_c *tc);
2305 static void thin_put(struct thin_c *tc);
2306
2307 /*
2308  * We can't hold rcu_read_lock() around code that can block.  So we
2309  * find a thin with the rcu lock held; bump a refcount; then drop
2310  * the lock.
2311  */
2312 static struct thin_c *get_first_thin(struct pool *pool)
2313 {
2314         struct thin_c *tc = NULL;
2315
2316         rcu_read_lock();
2317         if (!list_empty(&pool->active_thins)) {
2318                 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2319                 thin_get(tc);
2320         }
2321         rcu_read_unlock();
2322
2323         return tc;
2324 }
2325
2326 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2327 {
2328         struct thin_c *old_tc = tc;
2329
2330         rcu_read_lock();
2331         list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2332                 thin_get(tc);
2333                 thin_put(old_tc);
2334                 rcu_read_unlock();
2335                 return tc;
2336         }
2337         thin_put(old_tc);
2338         rcu_read_unlock();
2339
2340         return NULL;
2341 }
2342
2343 static void process_deferred_bios(struct pool *pool)
2344 {
2345         struct bio *bio;
2346         struct bio_list bios, bio_completions;
2347         struct thin_c *tc;
2348
2349         tc = get_first_thin(pool);
2350         while (tc) {
2351                 process_thin_deferred_cells(tc);
2352                 process_thin_deferred_bios(tc);
2353                 tc = get_next_thin(pool, tc);
2354         }
2355
2356         /*
2357          * If there are any deferred flush bios, we must commit the metadata
2358          * before issuing them or signaling their completion.
2359          */
2360         bio_list_init(&bios);
2361         bio_list_init(&bio_completions);
2362
2363         spin_lock_irq(&pool->lock);
2364         bio_list_merge(&bios, &pool->deferred_flush_bios);
2365         bio_list_init(&pool->deferred_flush_bios);
2366
2367         bio_list_merge(&bio_completions, &pool->deferred_flush_completions);
2368         bio_list_init(&pool->deferred_flush_completions);
2369         spin_unlock_irq(&pool->lock);
2370
2371         if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) &&
2372             !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2373                 return;
2374
2375         if (commit(pool)) {
2376                 bio_list_merge(&bios, &bio_completions);
2377
2378                 while ((bio = bio_list_pop(&bios)))
2379                         bio_io_error(bio);
2380                 return;
2381         }
2382         pool->last_commit_jiffies = jiffies;
2383
2384         while ((bio = bio_list_pop(&bio_completions)))
2385                 bio_endio(bio);
2386
2387         while ((bio = bio_list_pop(&bios))) {
2388                 /*
2389                  * The data device was flushed as part of metadata commit,
2390                  * so complete redundant flushes immediately.
2391                  */
2392                 if (bio->bi_opf & REQ_PREFLUSH)
2393                         bio_endio(bio);
2394                 else
2395                         generic_make_request(bio);
2396         }
2397 }
2398
2399 static void do_worker(struct work_struct *ws)
2400 {
2401         struct pool *pool = container_of(ws, struct pool, worker);
2402
2403         throttle_work_start(&pool->throttle);
2404         dm_pool_issue_prefetches(pool->pmd);
2405         throttle_work_update(&pool->throttle);
2406         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2407         throttle_work_update(&pool->throttle);
2408         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2409         throttle_work_update(&pool->throttle);
2410         process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2411         throttle_work_update(&pool->throttle);
2412         process_deferred_bios(pool);
2413         throttle_work_complete(&pool->throttle);
2414 }
2415
2416 /*
2417  * We want to commit periodically so that not too much
2418  * unwritten data builds up.
2419  */
2420 static void do_waker(struct work_struct *ws)
2421 {
2422         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2423         wake_worker(pool);
2424         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2425 }
2426
2427 /*
2428  * We're holding onto IO to allow userland time to react.  After the
2429  * timeout either the pool will have been resized (and thus back in
2430  * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2431  */
2432 static void do_no_space_timeout(struct work_struct *ws)
2433 {
2434         struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2435                                          no_space_timeout);
2436
2437         if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2438                 pool->pf.error_if_no_space = true;
2439                 notify_of_pool_mode_change(pool);
2440                 error_retry_list_with_code(pool, BLK_STS_NOSPC);
2441         }
2442 }
2443
2444 /*----------------------------------------------------------------*/
2445
2446 struct pool_work {
2447         struct work_struct worker;
2448         struct completion complete;
2449 };
2450
2451 static struct pool_work *to_pool_work(struct work_struct *ws)
2452 {
2453         return container_of(ws, struct pool_work, worker);
2454 }
2455
2456 static void pool_work_complete(struct pool_work *pw)
2457 {
2458         complete(&pw->complete);
2459 }
2460
2461 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2462                            void (*fn)(struct work_struct *))
2463 {
2464         INIT_WORK_ONSTACK(&pw->worker, fn);
2465         init_completion(&pw->complete);
2466         queue_work(pool->wq, &pw->worker);
2467         wait_for_completion(&pw->complete);
2468 }
2469
2470 /*----------------------------------------------------------------*/
2471
2472 struct noflush_work {
2473         struct pool_work pw;
2474         struct thin_c *tc;
2475 };
2476
2477 static struct noflush_work *to_noflush(struct work_struct *ws)
2478 {
2479         return container_of(to_pool_work(ws), struct noflush_work, pw);
2480 }
2481
2482 static void do_noflush_start(struct work_struct *ws)
2483 {
2484         struct noflush_work *w = to_noflush(ws);
2485         w->tc->requeue_mode = true;
2486         requeue_io(w->tc);
2487         pool_work_complete(&w->pw);
2488 }
2489
2490 static void do_noflush_stop(struct work_struct *ws)
2491 {
2492         struct noflush_work *w = to_noflush(ws);
2493         w->tc->requeue_mode = false;
2494         pool_work_complete(&w->pw);
2495 }
2496
2497 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2498 {
2499         struct noflush_work w;
2500
2501         w.tc = tc;
2502         pool_work_wait(&w.pw, tc->pool, fn);
2503 }
2504
2505 /*----------------------------------------------------------------*/
2506
2507 static bool passdown_enabled(struct pool_c *pt)
2508 {
2509         return pt->adjusted_pf.discard_passdown;
2510 }
2511
2512 static void set_discard_callbacks(struct pool *pool)
2513 {
2514         struct pool_c *pt = pool->ti->private;
2515
2516         if (passdown_enabled(pt)) {
2517                 pool->process_discard_cell = process_discard_cell_passdown;
2518                 pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2519                 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2520         } else {
2521                 pool->process_discard_cell = process_discard_cell_no_passdown;
2522                 pool->process_prepared_discard = process_prepared_discard_no_passdown;
2523         }
2524 }
2525
2526 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2527 {
2528         struct pool_c *pt = pool->ti->private;
2529         bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2530         enum pool_mode old_mode = get_pool_mode(pool);
2531         unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2532
2533         /*
2534          * Never allow the pool to transition to PM_WRITE mode if user
2535          * intervention is required to verify metadata and data consistency.
2536          */
2537         if (new_mode == PM_WRITE && needs_check) {
2538                 DMERR("%s: unable to switch pool to write mode until repaired.",
2539                       dm_device_name(pool->pool_md));
2540                 if (old_mode != new_mode)
2541                         new_mode = old_mode;
2542                 else
2543                         new_mode = PM_READ_ONLY;
2544         }
2545         /*
2546          * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2547          * not going to recover without a thin_repair.  So we never let the
2548          * pool move out of the old mode.
2549          */
2550         if (old_mode == PM_FAIL)
2551                 new_mode = old_mode;
2552
2553         switch (new_mode) {
2554         case PM_FAIL:
2555                 dm_pool_metadata_read_only(pool->pmd);
2556                 pool->process_bio = process_bio_fail;
2557                 pool->process_discard = process_bio_fail;
2558                 pool->process_cell = process_cell_fail;
2559                 pool->process_discard_cell = process_cell_fail;
2560                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2561                 pool->process_prepared_discard = process_prepared_discard_fail;
2562
2563                 error_retry_list(pool);
2564                 break;
2565
2566         case PM_OUT_OF_METADATA_SPACE:
2567         case PM_READ_ONLY:
2568                 dm_pool_metadata_read_only(pool->pmd);
2569                 pool->process_bio = process_bio_read_only;
2570                 pool->process_discard = process_bio_success;
2571                 pool->process_cell = process_cell_read_only;
2572                 pool->process_discard_cell = process_cell_success;
2573                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2574                 pool->process_prepared_discard = process_prepared_discard_success;
2575
2576                 error_retry_list(pool);
2577                 break;
2578
2579         case PM_OUT_OF_DATA_SPACE:
2580                 /*
2581                  * Ideally we'd never hit this state; the low water mark
2582                  * would trigger userland to extend the pool before we
2583                  * completely run out of data space.  However, many small
2584                  * IOs to unprovisioned space can consume data space at an
2585                  * alarming rate.  Adjust your low water mark if you're
2586                  * frequently seeing this mode.
2587                  */
2588                 pool->out_of_data_space = true;
2589                 pool->process_bio = process_bio_read_only;
2590                 pool->process_discard = process_discard_bio;
2591                 pool->process_cell = process_cell_read_only;
2592                 pool->process_prepared_mapping = process_prepared_mapping;
2593                 set_discard_callbacks(pool);
2594
2595                 if (!pool->pf.error_if_no_space && no_space_timeout)
2596                         queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2597                 break;
2598
2599         case PM_WRITE:
2600                 if (old_mode == PM_OUT_OF_DATA_SPACE)
2601                         cancel_delayed_work_sync(&pool->no_space_timeout);
2602                 pool->out_of_data_space = false;
2603                 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2604                 dm_pool_metadata_read_write(pool->pmd);
2605                 pool->process_bio = process_bio;
2606                 pool->process_discard = process_discard_bio;
2607                 pool->process_cell = process_cell;
2608                 pool->process_prepared_mapping = process_prepared_mapping;
2609                 set_discard_callbacks(pool);
2610                 break;
2611         }
2612
2613         pool->pf.mode = new_mode;
2614         /*
2615          * The pool mode may have changed, sync it so bind_control_target()
2616          * doesn't cause an unexpected mode transition on resume.
2617          */
2618         pt->adjusted_pf.mode = new_mode;
2619
2620         if (old_mode != new_mode)
2621                 notify_of_pool_mode_change(pool);
2622 }
2623
2624 static void abort_transaction(struct pool *pool)
2625 {
2626         const char *dev_name = dm_device_name(pool->pool_md);
2627
2628         DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2629         if (dm_pool_abort_metadata(pool->pmd)) {
2630                 DMERR("%s: failed to abort metadata transaction", dev_name);
2631                 set_pool_mode(pool, PM_FAIL);
2632         }
2633
2634         if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2635                 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2636                 set_pool_mode(pool, PM_FAIL);
2637         }
2638 }
2639
2640 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2641 {
2642         DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2643                     dm_device_name(pool->pool_md), op, r);
2644
2645         abort_transaction(pool);
2646         set_pool_mode(pool, PM_READ_ONLY);
2647 }
2648
2649 /*----------------------------------------------------------------*/
2650
2651 /*
2652  * Mapping functions.
2653  */
2654
2655 /*
2656  * Called only while mapping a thin bio to hand it over to the workqueue.
2657  */
2658 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2659 {
2660         struct pool *pool = tc->pool;
2661
2662         spin_lock_irq(&tc->lock);
2663         bio_list_add(&tc->deferred_bio_list, bio);
2664         spin_unlock_irq(&tc->lock);
2665
2666         wake_worker(pool);
2667 }
2668
2669 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2670 {
2671         struct pool *pool = tc->pool;
2672
2673         throttle_lock(&pool->throttle);
2674         thin_defer_bio(tc, bio);
2675         throttle_unlock(&pool->throttle);
2676 }
2677
2678 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2679 {
2680         struct pool *pool = tc->pool;
2681
2682         throttle_lock(&pool->throttle);
2683         spin_lock_irq(&tc->lock);
2684         list_add_tail(&cell->user_list, &tc->deferred_cells);
2685         spin_unlock_irq(&tc->lock);
2686         throttle_unlock(&pool->throttle);
2687
2688         wake_worker(pool);
2689 }
2690
2691 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2692 {
2693         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2694
2695         h->tc = tc;
2696         h->shared_read_entry = NULL;
2697         h->all_io_entry = NULL;
2698         h->overwrite_mapping = NULL;
2699         h->cell = NULL;
2700 }
2701
2702 /*
2703  * Non-blocking function called from the thin target's map function.
2704  */
2705 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2706 {
2707         int r;
2708         struct thin_c *tc = ti->private;
2709         dm_block_t block = get_bio_block(tc, bio);
2710         struct dm_thin_device *td = tc->td;
2711         struct dm_thin_lookup_result result;
2712         struct dm_bio_prison_cell *virt_cell, *data_cell;
2713         struct dm_cell_key key;
2714
2715         thin_hook_bio(tc, bio);
2716
2717         if (tc->requeue_mode) {
2718                 bio->bi_status = BLK_STS_DM_REQUEUE;
2719                 bio_endio(bio);
2720                 return DM_MAPIO_SUBMITTED;
2721         }
2722
2723         if (get_pool_mode(tc->pool) == PM_FAIL) {
2724                 bio_io_error(bio);
2725                 return DM_MAPIO_SUBMITTED;
2726         }
2727
2728         if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2729                 thin_defer_bio_with_throttle(tc, bio);
2730                 return DM_MAPIO_SUBMITTED;
2731         }
2732
2733         /*
2734          * We must hold the virtual cell before doing the lookup, otherwise
2735          * there's a race with discard.
2736          */
2737         build_virtual_key(tc->td, block, &key);
2738         if (bio_detain(tc->pool, &key, bio, &virt_cell))
2739                 return DM_MAPIO_SUBMITTED;
2740
2741         r = dm_thin_find_block(td, block, 0, &result);
2742
2743         /*
2744          * Note that we defer readahead too.
2745          */
2746         switch (r) {
2747         case 0:
2748                 if (unlikely(result.shared)) {
2749                         /*
2750                          * We have a race condition here between the
2751                          * result.shared value returned by the lookup and
2752                          * snapshot creation, which may cause new
2753                          * sharing.
2754                          *
2755                          * To avoid this always quiesce the origin before
2756                          * taking the snap.  You want to do this anyway to
2757                          * ensure a consistent application view
2758                          * (i.e. lockfs).
2759                          *
2760                          * More distant ancestors are irrelevant. The
2761                          * shared flag will be set in their case.
2762                          */
2763                         thin_defer_cell(tc, virt_cell);
2764                         return DM_MAPIO_SUBMITTED;
2765                 }
2766
2767                 build_data_key(tc->td, result.block, &key);
2768                 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2769                         cell_defer_no_holder(tc, virt_cell);
2770                         return DM_MAPIO_SUBMITTED;
2771                 }
2772
2773                 inc_all_io_entry(tc->pool, bio);
2774                 cell_defer_no_holder(tc, data_cell);
2775                 cell_defer_no_holder(tc, virt_cell);
2776
2777                 remap(tc, bio, result.block);
2778                 return DM_MAPIO_REMAPPED;
2779
2780         case -ENODATA:
2781         case -EWOULDBLOCK:
2782                 thin_defer_cell(tc, virt_cell);
2783                 return DM_MAPIO_SUBMITTED;
2784
2785         default:
2786                 /*
2787                  * Must always call bio_io_error on failure.
2788                  * dm_thin_find_block can fail with -EINVAL if the
2789                  * pool is switched to fail-io mode.
2790                  */
2791                 bio_io_error(bio);
2792                 cell_defer_no_holder(tc, virt_cell);
2793                 return DM_MAPIO_SUBMITTED;
2794         }
2795 }
2796
2797 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2798 {
2799         struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2800         struct request_queue *q;
2801
2802         if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2803                 return 1;
2804
2805         q = bdev_get_queue(pt->data_dev->bdev);
2806         return bdi_congested(q->backing_dev_info, bdi_bits);
2807 }
2808
2809 static void requeue_bios(struct pool *pool)
2810 {
2811         struct thin_c *tc;
2812
2813         rcu_read_lock();
2814         list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2815                 spin_lock_irq(&tc->lock);
2816                 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2817                 bio_list_init(&tc->retry_on_resume_list);
2818                 spin_unlock_irq(&tc->lock);
2819         }
2820         rcu_read_unlock();
2821 }
2822
2823 /*----------------------------------------------------------------
2824  * Binding of control targets to a pool object
2825  *--------------------------------------------------------------*/
2826 static bool data_dev_supports_discard(struct pool_c *pt)
2827 {
2828         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2829
2830         return q && blk_queue_discard(q);
2831 }
2832
2833 static bool is_factor(sector_t block_size, uint32_t n)
2834 {
2835         return !sector_div(block_size, n);
2836 }
2837
2838 /*
2839  * If discard_passdown was enabled verify that the data device
2840  * supports discards.  Disable discard_passdown if not.
2841  */
2842 static void disable_passdown_if_not_supported(struct pool_c *pt)
2843 {
2844         struct pool *pool = pt->pool;
2845         struct block_device *data_bdev = pt->data_dev->bdev;
2846         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2847         const char *reason = NULL;
2848         char buf[BDEVNAME_SIZE];
2849
2850         if (!pt->adjusted_pf.discard_passdown)
2851                 return;
2852
2853         if (!data_dev_supports_discard(pt))
2854                 reason = "discard unsupported";
2855
2856         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2857                 reason = "max discard sectors smaller than a block";
2858
2859         if (reason) {
2860                 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2861                 pt->adjusted_pf.discard_passdown = false;
2862         }
2863 }
2864
2865 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2866 {
2867         struct pool_c *pt = ti->private;
2868
2869         /*
2870          * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2871          */
2872         enum pool_mode old_mode = get_pool_mode(pool);
2873         enum pool_mode new_mode = pt->adjusted_pf.mode;
2874
2875         /*
2876          * Don't change the pool's mode until set_pool_mode() below.
2877          * Otherwise the pool's process_* function pointers may
2878          * not match the desired pool mode.
2879          */
2880         pt->adjusted_pf.mode = old_mode;
2881
2882         pool->ti = ti;
2883         pool->pf = pt->adjusted_pf;
2884         pool->low_water_blocks = pt->low_water_blocks;
2885
2886         set_pool_mode(pool, new_mode);
2887
2888         return 0;
2889 }
2890
2891 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2892 {
2893         if (pool->ti == ti)
2894                 pool->ti = NULL;
2895 }
2896
2897 /*----------------------------------------------------------------
2898  * Pool creation
2899  *--------------------------------------------------------------*/
2900 /* Initialize pool features. */
2901 static void pool_features_init(struct pool_features *pf)
2902 {
2903         pf->mode = PM_WRITE;
2904         pf->zero_new_blocks = true;
2905         pf->discard_enabled = true;
2906         pf->discard_passdown = true;
2907         pf->error_if_no_space = false;
2908 }
2909
2910 static void __pool_destroy(struct pool *pool)
2911 {
2912         __pool_table_remove(pool);
2913
2914         vfree(pool->cell_sort_array);
2915         if (dm_pool_metadata_close(pool->pmd) < 0)
2916                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2917
2918         dm_bio_prison_destroy(pool->prison);
2919         dm_kcopyd_client_destroy(pool->copier);
2920
2921         if (pool->wq)
2922                 destroy_workqueue(pool->wq);
2923
2924         if (pool->next_mapping)
2925                 mempool_free(pool->next_mapping, &pool->mapping_pool);
2926         mempool_exit(&pool->mapping_pool);
2927         dm_deferred_set_destroy(pool->shared_read_ds);
2928         dm_deferred_set_destroy(pool->all_io_ds);
2929         kfree(pool);
2930 }
2931
2932 static struct kmem_cache *_new_mapping_cache;
2933
2934 static struct pool *pool_create(struct mapped_device *pool_md,
2935                                 struct block_device *metadata_dev,
2936                                 unsigned long block_size,
2937                                 int read_only, char **error)
2938 {
2939         int r;
2940         void *err_p;
2941         struct pool *pool;
2942         struct dm_pool_metadata *pmd;
2943         bool format_device = read_only ? false : true;
2944
2945         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2946         if (IS_ERR(pmd)) {
2947                 *error = "Error creating metadata object";
2948                 return (struct pool *)pmd;
2949         }
2950
2951         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2952         if (!pool) {
2953                 *error = "Error allocating memory for pool";
2954                 err_p = ERR_PTR(-ENOMEM);
2955                 goto bad_pool;
2956         }
2957
2958         pool->pmd = pmd;
2959         pool->sectors_per_block = block_size;
2960         if (block_size & (block_size - 1))
2961                 pool->sectors_per_block_shift = -1;
2962         else
2963                 pool->sectors_per_block_shift = __ffs(block_size);
2964         pool->low_water_blocks = 0;
2965         pool_features_init(&pool->pf);
2966         pool->prison = dm_bio_prison_create();
2967         if (!pool->prison) {
2968                 *error = "Error creating pool's bio prison";
2969                 err_p = ERR_PTR(-ENOMEM);
2970                 goto bad_prison;
2971         }
2972
2973         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2974         if (IS_ERR(pool->copier)) {
2975                 r = PTR_ERR(pool->copier);
2976                 *error = "Error creating pool's kcopyd client";
2977                 err_p = ERR_PTR(r);
2978                 goto bad_kcopyd_client;
2979         }
2980
2981         /*
2982          * Create singlethreaded workqueue that will service all devices
2983          * that use this metadata.
2984          */
2985         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2986         if (!pool->wq) {
2987                 *error = "Error creating pool's workqueue";
2988                 err_p = ERR_PTR(-ENOMEM);
2989                 goto bad_wq;
2990         }
2991
2992         throttle_init(&pool->throttle);
2993         INIT_WORK(&pool->worker, do_worker);
2994         INIT_DELAYED_WORK(&pool->waker, do_waker);
2995         INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2996         spin_lock_init(&pool->lock);
2997         bio_list_init(&pool->deferred_flush_bios);
2998         bio_list_init(&pool->deferred_flush_completions);
2999         INIT_LIST_HEAD(&pool->prepared_mappings);
3000         INIT_LIST_HEAD(&pool->prepared_discards);
3001         INIT_LIST_HEAD(&pool->prepared_discards_pt2);
3002         INIT_LIST_HEAD(&pool->active_thins);
3003         pool->low_water_triggered = false;
3004         pool->suspended = true;
3005         pool->out_of_data_space = false;
3006
3007         pool->shared_read_ds = dm_deferred_set_create();
3008         if (!pool->shared_read_ds) {
3009                 *error = "Error creating pool's shared read deferred set";
3010                 err_p = ERR_PTR(-ENOMEM);
3011                 goto bad_shared_read_ds;
3012         }
3013
3014         pool->all_io_ds = dm_deferred_set_create();
3015         if (!pool->all_io_ds) {
3016                 *error = "Error creating pool's all io deferred set";
3017                 err_p = ERR_PTR(-ENOMEM);
3018                 goto bad_all_io_ds;
3019         }
3020
3021         pool->next_mapping = NULL;
3022         r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
3023                                    _new_mapping_cache);
3024         if (r) {
3025                 *error = "Error creating pool's mapping mempool";
3026                 err_p = ERR_PTR(r);
3027                 goto bad_mapping_pool;
3028         }
3029
3030         pool->cell_sort_array =
3031                 vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
3032                                    sizeof(*pool->cell_sort_array)));
3033         if (!pool->cell_sort_array) {
3034                 *error = "Error allocating cell sort array";
3035                 err_p = ERR_PTR(-ENOMEM);
3036                 goto bad_sort_array;
3037         }
3038
3039         pool->ref_count = 1;
3040         pool->last_commit_jiffies = jiffies;
3041         pool->pool_md = pool_md;
3042         pool->md_dev = metadata_dev;
3043         __pool_table_insert(pool);
3044
3045         return pool;
3046
3047 bad_sort_array:
3048         mempool_exit(&pool->mapping_pool);
3049 bad_mapping_pool:
3050         dm_deferred_set_destroy(pool->all_io_ds);
3051 bad_all_io_ds:
3052         dm_deferred_set_destroy(pool->shared_read_ds);
3053 bad_shared_read_ds:
3054         destroy_workqueue(pool->wq);
3055 bad_wq:
3056         dm_kcopyd_client_destroy(pool->copier);
3057 bad_kcopyd_client:
3058         dm_bio_prison_destroy(pool->prison);
3059 bad_prison:
3060         kfree(pool);
3061 bad_pool:
3062         if (dm_pool_metadata_close(pmd))
3063                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
3064
3065         return err_p;
3066 }
3067
3068 static void __pool_inc(struct pool *pool)
3069 {
3070         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3071         pool->ref_count++;
3072 }
3073
3074 static void __pool_dec(struct pool *pool)
3075 {
3076         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3077         BUG_ON(!pool->ref_count);
3078         if (!--pool->ref_count)
3079                 __pool_destroy(pool);
3080 }
3081
3082 static struct pool *__pool_find(struct mapped_device *pool_md,
3083                                 struct block_device *metadata_dev,
3084                                 unsigned long block_size, int read_only,
3085                                 char **error, int *created)
3086 {
3087         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3088
3089         if (pool) {
3090                 if (pool->pool_md != pool_md) {
3091                         *error = "metadata device already in use by a pool";
3092                         return ERR_PTR(-EBUSY);
3093                 }
3094                 __pool_inc(pool);
3095
3096         } else {
3097                 pool = __pool_table_lookup(pool_md);
3098                 if (pool) {
3099                         if (pool->md_dev != metadata_dev) {
3100                                 *error = "different pool cannot replace a pool";
3101                                 return ERR_PTR(-EINVAL);
3102                         }
3103                         __pool_inc(pool);
3104
3105                 } else {
3106                         pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
3107                         *created = 1;
3108                 }
3109         }
3110
3111         return pool;
3112 }
3113
3114 /*----------------------------------------------------------------
3115  * Pool target methods
3116  *--------------------------------------------------------------*/
3117 static void pool_dtr(struct dm_target *ti)
3118 {
3119         struct pool_c *pt = ti->private;
3120
3121         mutex_lock(&dm_thin_pool_table.mutex);
3122
3123         unbind_control_target(pt->pool, ti);
3124         __pool_dec(pt->pool);
3125         dm_put_device(ti, pt->metadata_dev);
3126         dm_put_device(ti, pt->data_dev);
3127         bio_uninit(&pt->flush_bio);
3128         kfree(pt);
3129
3130         mutex_unlock(&dm_thin_pool_table.mutex);
3131 }
3132
3133 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3134                                struct dm_target *ti)
3135 {
3136         int r;
3137         unsigned argc;
3138         const char *arg_name;
3139
3140         static const struct dm_arg _args[] = {
3141                 {0, 4, "Invalid number of pool feature arguments"},
3142         };
3143
3144         /*
3145          * No feature arguments supplied.
3146          */
3147         if (!as->argc)
3148                 return 0;
3149
3150         r = dm_read_arg_group(_args, as, &argc, &ti->error);
3151         if (r)
3152                 return -EINVAL;
3153
3154         while (argc && !r) {
3155                 arg_name = dm_shift_arg(as);
3156                 argc--;
3157
3158                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
3159                         pf->zero_new_blocks = false;
3160
3161                 else if (!strcasecmp(arg_name, "ignore_discard"))
3162                         pf->discard_enabled = false;
3163
3164                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
3165                         pf->discard_passdown = false;
3166
3167                 else if (!strcasecmp(arg_name, "read_only"))
3168                         pf->mode = PM_READ_ONLY;
3169
3170                 else if (!strcasecmp(arg_name, "error_if_no_space"))
3171                         pf->error_if_no_space = true;
3172
3173                 else {
3174                         ti->error = "Unrecognised pool feature requested";
3175                         r = -EINVAL;
3176                         break;
3177                 }
3178         }
3179
3180         return r;
3181 }
3182
3183 static void metadata_low_callback(void *context)
3184 {
3185         struct pool *pool = context;
3186
3187         DMWARN("%s: reached low water mark for metadata device: sending event.",
3188                dm_device_name(pool->pool_md));
3189
3190         dm_table_event(pool->ti->table);
3191 }
3192
3193 /*
3194  * We need to flush the data device **before** committing the metadata.
3195  *
3196  * This ensures that the data blocks of any newly inserted mappings are
3197  * properly written to non-volatile storage and won't be lost in case of a
3198  * crash.
3199  *
3200  * Failure to do so can result in data corruption in the case of internal or
3201  * external snapshots and in the case of newly provisioned blocks, when block
3202  * zeroing is enabled.
3203  */
3204 static int metadata_pre_commit_callback(void *context)
3205 {
3206         struct pool_c *pt = context;
3207         struct bio *flush_bio = &pt->flush_bio;
3208
3209         bio_reset(flush_bio);
3210         bio_set_dev(flush_bio, pt->data_dev->bdev);
3211         flush_bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
3212
3213         return submit_bio_wait(flush_bio);
3214 }
3215
3216 static sector_t get_dev_size(struct block_device *bdev)
3217 {
3218         return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3219 }
3220
3221 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3222 {
3223         sector_t metadata_dev_size = get_dev_size(bdev);
3224         char buffer[BDEVNAME_SIZE];
3225
3226         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3227                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3228                        bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3229 }
3230
3231 static sector_t get_metadata_dev_size(struct block_device *bdev)
3232 {
3233         sector_t metadata_dev_size = get_dev_size(bdev);
3234
3235         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3236                 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3237
3238         return metadata_dev_size;
3239 }
3240
3241 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3242 {
3243         sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3244
3245         sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3246
3247         return metadata_dev_size;
3248 }
3249
3250 /*
3251  * When a metadata threshold is crossed a dm event is triggered, and
3252  * userland should respond by growing the metadata device.  We could let
3253  * userland set the threshold, like we do with the data threshold, but I'm
3254  * not sure they know enough to do this well.
3255  */
3256 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3257 {
3258         /*
3259          * 4M is ample for all ops with the possible exception of thin
3260          * device deletion which is harmless if it fails (just retry the
3261          * delete after you've grown the device).
3262          */
3263         dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3264         return min((dm_block_t)1024ULL /* 4M */, quarter);
3265 }
3266
3267 /*
3268  * thin-pool <metadata dev> <data dev>
3269  *           <data block size (sectors)>
3270  *           <low water mark (blocks)>
3271  *           [<#feature args> [<arg>]*]
3272  *
3273  * Optional feature arguments are:
3274  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3275  *           ignore_discard: disable discard
3276  *           no_discard_passdown: don't pass discards down to the data device
3277  *           read_only: Don't allow any changes to be made to the pool metadata.
3278  *           error_if_no_space: error IOs, instead of queueing, if no space.
3279  */
3280 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3281 {
3282         int r, pool_created = 0;
3283         struct pool_c *pt;
3284         struct pool *pool;
3285         struct pool_features pf;
3286         struct dm_arg_set as;
3287         struct dm_dev *data_dev;
3288         unsigned long block_size;
3289         dm_block_t low_water_blocks;
3290         struct dm_dev *metadata_dev;
3291         fmode_t metadata_mode;
3292
3293         /*
3294          * FIXME Remove validation from scope of lock.
3295          */
3296         mutex_lock(&dm_thin_pool_table.mutex);
3297
3298         if (argc < 4) {
3299                 ti->error = "Invalid argument count";
3300                 r = -EINVAL;
3301                 goto out_unlock;
3302         }
3303
3304         as.argc = argc;
3305         as.argv = argv;
3306
3307         /* make sure metadata and data are different devices */
3308         if (!strcmp(argv[0], argv[1])) {
3309                 ti->error = "Error setting metadata or data device";
3310                 r = -EINVAL;
3311                 goto out_unlock;
3312         }
3313
3314         /*
3315          * Set default pool features.
3316          */
3317         pool_features_init(&pf);
3318
3319         dm_consume_args(&as, 4);
3320         r = parse_pool_features(&as, &pf, ti);
3321         if (r)
3322                 goto out_unlock;
3323
3324         metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3325         r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3326         if (r) {
3327                 ti->error = "Error opening metadata block device";
3328                 goto out_unlock;
3329         }
3330         warn_if_metadata_device_too_big(metadata_dev->bdev);
3331
3332         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3333         if (r) {
3334                 ti->error = "Error getting data device";
3335                 goto out_metadata;
3336         }
3337
3338         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3339             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3340             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3341             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3342                 ti->error = "Invalid block size";
3343                 r = -EINVAL;
3344                 goto out;
3345         }
3346
3347         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3348                 ti->error = "Invalid low water mark";
3349                 r = -EINVAL;
3350                 goto out;
3351         }
3352
3353         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3354         if (!pt) {
3355                 r = -ENOMEM;
3356                 goto out;
3357         }
3358
3359         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3360                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3361         if (IS_ERR(pool)) {
3362                 r = PTR_ERR(pool);
3363                 goto out_free_pt;
3364         }
3365
3366         /*
3367          * 'pool_created' reflects whether this is the first table load.
3368          * Top level discard support is not allowed to be changed after
3369          * initial load.  This would require a pool reload to trigger thin
3370          * device changes.
3371          */
3372         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3373                 ti->error = "Discard support cannot be disabled once enabled";
3374                 r = -EINVAL;
3375                 goto out_flags_changed;
3376         }
3377
3378         pt->pool = pool;
3379         pt->ti = ti;
3380         pt->metadata_dev = metadata_dev;
3381         pt->data_dev = data_dev;
3382         pt->low_water_blocks = low_water_blocks;
3383         pt->adjusted_pf = pt->requested_pf = pf;
3384         bio_init(&pt->flush_bio, NULL, 0);
3385         ti->num_flush_bios = 1;
3386
3387         /*
3388          * Only need to enable discards if the pool should pass
3389          * them down to the data device.  The thin device's discard
3390          * processing will cause mappings to be removed from the btree.
3391          */
3392         if (pf.discard_enabled && pf.discard_passdown) {
3393                 ti->num_discard_bios = 1;
3394
3395                 /*
3396                  * Setting 'discards_supported' circumvents the normal
3397                  * stacking of discard limits (this keeps the pool and
3398                  * thin devices' discard limits consistent).
3399                  */
3400                 ti->discards_supported = true;
3401         }
3402         ti->private = pt;
3403
3404         r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3405                                                 calc_metadata_threshold(pt),
3406                                                 metadata_low_callback,
3407                                                 pool);
3408         if (r)
3409                 goto out_flags_changed;
3410
3411         dm_pool_register_pre_commit_callback(pt->pool->pmd,
3412                                              metadata_pre_commit_callback,
3413                                              pt);
3414
3415         pt->callbacks.congested_fn = pool_is_congested;
3416         dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3417
3418         mutex_unlock(&dm_thin_pool_table.mutex);
3419
3420         return 0;
3421
3422 out_flags_changed:
3423         __pool_dec(pool);
3424 out_free_pt:
3425         kfree(pt);
3426 out:
3427         dm_put_device(ti, data_dev);
3428 out_metadata:
3429         dm_put_device(ti, metadata_dev);
3430 out_unlock:
3431         mutex_unlock(&dm_thin_pool_table.mutex);
3432
3433         return r;
3434 }
3435
3436 static int pool_map(struct dm_target *ti, struct bio *bio)
3437 {
3438         int r;
3439         struct pool_c *pt = ti->private;
3440         struct pool *pool = pt->pool;
3441
3442         /*
3443          * As this is a singleton target, ti->begin is always zero.
3444          */
3445         spin_lock_irq(&pool->lock);
3446         bio_set_dev(bio, pt->data_dev->bdev);
3447         r = DM_MAPIO_REMAPPED;
3448         spin_unlock_irq(&pool->lock);
3449
3450         return r;
3451 }
3452
3453 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3454 {
3455         int r;
3456         struct pool_c *pt = ti->private;
3457         struct pool *pool = pt->pool;
3458         sector_t data_size = ti->len;
3459         dm_block_t sb_data_size;
3460
3461         *need_commit = false;
3462
3463         (void) sector_div(data_size, pool->sectors_per_block);
3464
3465         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3466         if (r) {
3467                 DMERR("%s: failed to retrieve data device size",
3468                       dm_device_name(pool->pool_md));
3469                 return r;
3470         }
3471
3472         if (data_size < sb_data_size) {
3473                 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3474                       dm_device_name(pool->pool_md),
3475                       (unsigned long long)data_size, sb_data_size);
3476                 return -EINVAL;
3477
3478         } else if (data_size > sb_data_size) {
3479                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3480                         DMERR("%s: unable to grow the data device until repaired.",
3481                               dm_device_name(pool->pool_md));
3482                         return 0;
3483                 }
3484
3485                 if (sb_data_size)
3486                         DMINFO("%s: growing the data device from %llu to %llu blocks",
3487                                dm_device_name(pool->pool_md),
3488                                sb_data_size, (unsigned long long)data_size);
3489                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3490                 if (r) {
3491                         metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3492                         return r;
3493                 }
3494
3495                 *need_commit = true;
3496         }
3497
3498         return 0;
3499 }
3500
3501 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3502 {
3503         int r;
3504         struct pool_c *pt = ti->private;
3505         struct pool *pool = pt->pool;
3506         dm_block_t metadata_dev_size, sb_metadata_dev_size;
3507
3508         *need_commit = false;
3509
3510         metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3511
3512         r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3513         if (r) {
3514                 DMERR("%s: failed to retrieve metadata device size",
3515                       dm_device_name(pool->pool_md));
3516                 return r;
3517         }
3518
3519         if (metadata_dev_size < sb_metadata_dev_size) {
3520                 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3521                       dm_device_name(pool->pool_md),
3522                       metadata_dev_size, sb_metadata_dev_size);
3523                 return -EINVAL;
3524
3525         } else if (metadata_dev_size > sb_metadata_dev_size) {
3526                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3527                         DMERR("%s: unable to grow the metadata device until repaired.",
3528                               dm_device_name(pool->pool_md));
3529                         return 0;
3530                 }
3531
3532                 warn_if_metadata_device_too_big(pool->md_dev);
3533                 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3534                        dm_device_name(pool->pool_md),
3535                        sb_metadata_dev_size, metadata_dev_size);
3536
3537                 if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
3538                         set_pool_mode(pool, PM_WRITE);
3539
3540                 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3541                 if (r) {
3542                         metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3543                         return r;
3544                 }
3545
3546                 *need_commit = true;
3547         }
3548
3549         return 0;
3550 }
3551
3552 /*
3553  * Retrieves the number of blocks of the data device from
3554  * the superblock and compares it to the actual device size,
3555  * thus resizing the data device in case it has grown.
3556  *
3557  * This both copes with opening preallocated data devices in the ctr
3558  * being followed by a resume
3559  * -and-
3560  * calling the resume method individually after userspace has
3561  * grown the data device in reaction to a table event.
3562  */
3563 static int pool_preresume(struct dm_target *ti)
3564 {
3565         int r;
3566         bool need_commit1, need_commit2;
3567         struct pool_c *pt = ti->private;
3568         struct pool *pool = pt->pool;
3569
3570         /*
3571          * Take control of the pool object.
3572          */
3573         r = bind_control_target(pool, ti);
3574         if (r)
3575                 return r;
3576
3577         r = maybe_resize_data_dev(ti, &need_commit1);
3578         if (r)
3579                 return r;
3580
3581         r = maybe_resize_metadata_dev(ti, &need_commit2);
3582         if (r)
3583                 return r;
3584
3585         if (need_commit1 || need_commit2)
3586                 (void) commit(pool);
3587
3588         return 0;
3589 }
3590
3591 static void pool_suspend_active_thins(struct pool *pool)
3592 {
3593         struct thin_c *tc;
3594
3595         /* Suspend all active thin devices */
3596         tc = get_first_thin(pool);
3597         while (tc) {
3598                 dm_internal_suspend_noflush(tc->thin_md);
3599                 tc = get_next_thin(pool, tc);
3600         }
3601 }
3602
3603 static void pool_resume_active_thins(struct pool *pool)
3604 {
3605         struct thin_c *tc;
3606
3607         /* Resume all active thin devices */
3608         tc = get_first_thin(pool);
3609         while (tc) {
3610                 dm_internal_resume(tc->thin_md);
3611                 tc = get_next_thin(pool, tc);
3612         }
3613 }
3614
3615 static void pool_resume(struct dm_target *ti)
3616 {
3617         struct pool_c *pt = ti->private;
3618         struct pool *pool = pt->pool;
3619
3620         /*
3621          * Must requeue active_thins' bios and then resume
3622          * active_thins _before_ clearing 'suspend' flag.
3623          */
3624         requeue_bios(pool);
3625         pool_resume_active_thins(pool);
3626
3627         spin_lock_irq(&pool->lock);
3628         pool->low_water_triggered = false;
3629         pool->suspended = false;
3630         spin_unlock_irq(&pool->lock);
3631
3632         do_waker(&pool->waker.work);
3633 }
3634
3635 static void pool_presuspend(struct dm_target *ti)
3636 {
3637         struct pool_c *pt = ti->private;
3638         struct pool *pool = pt->pool;
3639
3640         spin_lock_irq(&pool->lock);
3641         pool->suspended = true;
3642         spin_unlock_irq(&pool->lock);
3643
3644         pool_suspend_active_thins(pool);
3645 }
3646
3647 static void pool_presuspend_undo(struct dm_target *ti)
3648 {
3649         struct pool_c *pt = ti->private;
3650         struct pool *pool = pt->pool;
3651
3652         pool_resume_active_thins(pool);
3653
3654         spin_lock_irq(&pool->lock);
3655         pool->suspended = false;
3656         spin_unlock_irq(&pool->lock);
3657 }
3658
3659 static void pool_postsuspend(struct dm_target *ti)
3660 {
3661         struct pool_c *pt = ti->private;
3662         struct pool *pool = pt->pool;
3663
3664         cancel_delayed_work_sync(&pool->waker);
3665         cancel_delayed_work_sync(&pool->no_space_timeout);
3666         flush_workqueue(pool->wq);
3667         (void) commit(pool);
3668 }
3669
3670 static int check_arg_count(unsigned argc, unsigned args_required)
3671 {
3672         if (argc != args_required) {
3673                 DMWARN("Message received with %u arguments instead of %u.",
3674                        argc, args_required);
3675                 return -EINVAL;
3676         }
3677
3678         return 0;
3679 }
3680
3681 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3682 {
3683         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3684             *dev_id <= MAX_DEV_ID)
3685                 return 0;
3686
3687         if (warning)
3688                 DMWARN("Message received with invalid device id: %s", arg);
3689
3690         return -EINVAL;
3691 }
3692
3693 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3694 {
3695         dm_thin_id dev_id;
3696         int r;
3697
3698         r = check_arg_count(argc, 2);
3699         if (r)
3700                 return r;
3701
3702         r = read_dev_id(argv[1], &dev_id, 1);
3703         if (r)
3704                 return r;
3705
3706         r = dm_pool_create_thin(pool->pmd, dev_id);
3707         if (r) {
3708                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3709                        argv[1]);
3710                 return r;
3711         }
3712
3713         return 0;
3714 }
3715
3716 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3717 {
3718         dm_thin_id dev_id;
3719         dm_thin_id origin_dev_id;
3720         int r;
3721
3722         r = check_arg_count(argc, 3);
3723         if (r)
3724                 return r;
3725
3726         r = read_dev_id(argv[1], &dev_id, 1);
3727         if (r)
3728                 return r;
3729
3730         r = read_dev_id(argv[2], &origin_dev_id, 1);
3731         if (r)
3732                 return r;
3733
3734         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3735         if (r) {
3736                 DMWARN("Creation of new snapshot %s of device %s failed.",
3737                        argv[1], argv[2]);
3738                 return r;
3739         }
3740
3741         return 0;
3742 }
3743
3744 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3745 {
3746         dm_thin_id dev_id;
3747         int r;
3748
3749         r = check_arg_count(argc, 2);
3750         if (r)
3751                 return r;
3752
3753         r = read_dev_id(argv[1], &dev_id, 1);
3754         if (r)
3755                 return r;
3756
3757         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3758         if (r)
3759                 DMWARN("Deletion of thin device %s failed.", argv[1]);
3760
3761         return r;
3762 }
3763
3764 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3765 {
3766         dm_thin_id old_id, new_id;
3767         int r;
3768
3769         r = check_arg_count(argc, 3);
3770         if (r)
3771                 return r;
3772
3773         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3774                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3775                 return -EINVAL;
3776         }
3777
3778         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3779                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3780                 return -EINVAL;
3781         }
3782
3783         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3784         if (r) {
3785                 DMWARN("Failed to change transaction id from %s to %s.",
3786                        argv[1], argv[2]);
3787                 return r;
3788         }
3789
3790         return 0;
3791 }
3792
3793 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3794 {
3795         int r;
3796
3797         r = check_arg_count(argc, 1);
3798         if (r)
3799                 return r;
3800
3801         (void) commit(pool);
3802
3803         r = dm_pool_reserve_metadata_snap(pool->pmd);
3804         if (r)
3805                 DMWARN("reserve_metadata_snap message failed.");
3806
3807         return r;
3808 }
3809
3810 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3811 {
3812         int r;
3813
3814         r = check_arg_count(argc, 1);
3815         if (r)
3816                 return r;
3817
3818         r = dm_pool_release_metadata_snap(pool->pmd);
3819         if (r)
3820                 DMWARN("release_metadata_snap message failed.");
3821
3822         return r;
3823 }
3824
3825 /*
3826  * Messages supported:
3827  *   create_thin        <dev_id>
3828  *   create_snap        <dev_id> <origin_id>
3829  *   delete             <dev_id>
3830  *   set_transaction_id <current_trans_id> <new_trans_id>
3831  *   reserve_metadata_snap
3832  *   release_metadata_snap
3833  */
3834 static int pool_message(struct dm_target *ti, unsigned argc, char **argv,
3835                         char *result, unsigned maxlen)
3836 {
3837         int r = -EINVAL;
3838         struct pool_c *pt = ti->private;
3839         struct pool *pool = pt->pool;
3840
3841         if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
3842                 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3843                       dm_device_name(pool->pool_md));
3844                 return -EOPNOTSUPP;
3845         }
3846
3847         if (!strcasecmp(argv[0], "create_thin"))
3848                 r = process_create_thin_mesg(argc, argv, pool);
3849
3850         else if (!strcasecmp(argv[0], "create_snap"))
3851                 r = process_create_snap_mesg(argc, argv, pool);
3852
3853         else if (!strcasecmp(argv[0], "delete"))
3854                 r = process_delete_mesg(argc, argv, pool);
3855
3856         else if (!strcasecmp(argv[0], "set_transaction_id"))
3857                 r = process_set_transaction_id_mesg(argc, argv, pool);
3858
3859         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3860                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3861
3862         else if (!strcasecmp(argv[0], "release_metadata_snap"))
3863                 r = process_release_metadata_snap_mesg(argc, argv, pool);
3864
3865         else
3866                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3867
3868         if (!r)
3869                 (void) commit(pool);
3870
3871         return r;
3872 }
3873
3874 static void emit_flags(struct pool_features *pf, char *result,
3875                        unsigned sz, unsigned maxlen)
3876 {
3877         unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3878                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3879                 pf->error_if_no_space;
3880         DMEMIT("%u ", count);
3881
3882         if (!pf->zero_new_blocks)
3883                 DMEMIT("skip_block_zeroing ");
3884
3885         if (!pf->discard_enabled)
3886                 DMEMIT("ignore_discard ");
3887
3888         if (!pf->discard_passdown)
3889                 DMEMIT("no_discard_passdown ");
3890
3891         if (pf->mode == PM_READ_ONLY)
3892                 DMEMIT("read_only ");
3893
3894         if (pf->error_if_no_space)
3895                 DMEMIT("error_if_no_space ");
3896 }
3897
3898 /*
3899  * Status line is:
3900  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3901  *    <used data sectors>/<total data sectors> <held metadata root>
3902  *    <pool mode> <discard config> <no space config> <needs_check>
3903  */
3904 static void pool_status(struct dm_target *ti, status_type_t type,
3905                         unsigned status_flags, char *result, unsigned maxlen)
3906 {
3907         int r;
3908         unsigned sz = 0;
3909         uint64_t transaction_id;
3910         dm_block_t nr_free_blocks_data;
3911         dm_block_t nr_free_blocks_metadata;
3912         dm_block_t nr_blocks_data;
3913         dm_block_t nr_blocks_metadata;
3914         dm_block_t held_root;
3915         enum pool_mode mode;
3916         char buf[BDEVNAME_SIZE];
3917         char buf2[BDEVNAME_SIZE];
3918         struct pool_c *pt = ti->private;
3919         struct pool *pool = pt->pool;
3920
3921         switch (type) {
3922         case STATUSTYPE_INFO:
3923                 if (get_pool_mode(pool) == PM_FAIL) {
3924                         DMEMIT("Fail");
3925                         break;
3926                 }
3927
3928                 /* Commit to ensure statistics aren't out-of-date */
3929                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3930                         (void) commit(pool);
3931
3932                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3933                 if (r) {
3934                         DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3935                               dm_device_name(pool->pool_md), r);
3936                         goto err;
3937                 }
3938
3939                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3940                 if (r) {
3941                         DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3942                               dm_device_name(pool->pool_md), r);
3943                         goto err;
3944                 }
3945
3946                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3947                 if (r) {
3948                         DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3949                               dm_device_name(pool->pool_md), r);
3950                         goto err;
3951                 }
3952
3953                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3954                 if (r) {
3955                         DMERR("%s: dm_pool_get_free_block_count returned %d",
3956                               dm_device_name(pool->pool_md), r);
3957                         goto err;
3958                 }
3959
3960                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3961                 if (r) {
3962                         DMERR("%s: dm_pool_get_data_dev_size returned %d",
3963                               dm_device_name(pool->pool_md), r);
3964                         goto err;
3965                 }
3966
3967                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3968                 if (r) {
3969                         DMERR("%s: dm_pool_get_metadata_snap returned %d",
3970                               dm_device_name(pool->pool_md), r);
3971                         goto err;
3972                 }
3973
3974                 DMEMIT("%llu %llu/%llu %llu/%llu ",
3975                        (unsigned long long)transaction_id,
3976                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3977                        (unsigned long long)nr_blocks_metadata,
3978                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3979                        (unsigned long long)nr_blocks_data);
3980
3981                 if (held_root)
3982                         DMEMIT("%llu ", held_root);
3983                 else
3984                         DMEMIT("- ");
3985
3986                 mode = get_pool_mode(pool);
3987                 if (mode == PM_OUT_OF_DATA_SPACE)
3988                         DMEMIT("out_of_data_space ");
3989                 else if (is_read_only_pool_mode(mode))
3990                         DMEMIT("ro ");
3991                 else
3992                         DMEMIT("rw ");
3993
3994                 if (!pool->pf.discard_enabled)
3995                         DMEMIT("ignore_discard ");
3996                 else if (pool->pf.discard_passdown)
3997                         DMEMIT("discard_passdown ");
3998                 else
3999                         DMEMIT("no_discard_passdown ");
4000
4001                 if (pool->pf.error_if_no_space)
4002                         DMEMIT("error_if_no_space ");
4003                 else
4004                         DMEMIT("queue_if_no_space ");
4005
4006                 if (dm_pool_metadata_needs_check(pool->pmd))
4007                         DMEMIT("needs_check ");
4008                 else
4009                         DMEMIT("- ");
4010
4011                 DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
4012
4013                 break;
4014
4015         case STATUSTYPE_TABLE:
4016                 DMEMIT("%s %s %lu %llu ",
4017                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
4018                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
4019                        (unsigned long)pool->sectors_per_block,
4020                        (unsigned long long)pt->low_water_blocks);
4021                 emit_flags(&pt->requested_pf, result, sz, maxlen);
4022                 break;
4023         }
4024         return;
4025
4026 err:
4027         DMEMIT("Error");
4028 }
4029
4030 static int pool_iterate_devices(struct dm_target *ti,
4031                                 iterate_devices_callout_fn fn, void *data)
4032 {
4033         struct pool_c *pt = ti->private;
4034
4035         return fn(ti, pt->data_dev, 0, ti->len, data);
4036 }
4037
4038 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
4039 {
4040         struct pool_c *pt = ti->private;
4041         struct pool *pool = pt->pool;
4042         sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
4043
4044         /*
4045          * If max_sectors is smaller than pool->sectors_per_block adjust it
4046          * to the highest possible power-of-2 factor of pool->sectors_per_block.
4047          * This is especially beneficial when the pool's data device is a RAID
4048          * device that has a full stripe width that matches pool->sectors_per_block
4049          * -- because even though partial RAID stripe-sized IOs will be issued to a
4050          *    single RAID stripe; when aggregated they will end on a full RAID stripe
4051          *    boundary.. which avoids additional partial RAID stripe writes cascading
4052          */
4053         if (limits->max_sectors < pool->sectors_per_block) {
4054                 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
4055                         if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
4056                                 limits->max_sectors--;
4057                         limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
4058                 }
4059         }
4060
4061         /*
4062          * If the system-determined stacked limits are compatible with the
4063          * pool's blocksize (io_opt is a factor) do not override them.
4064          */
4065         if (io_opt_sectors < pool->sectors_per_block ||
4066             !is_factor(io_opt_sectors, pool->sectors_per_block)) {
4067                 if (is_factor(pool->sectors_per_block, limits->max_sectors))
4068                         blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
4069                 else
4070                         blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
4071                 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
4072         }
4073
4074         /*
4075          * pt->adjusted_pf is a staging area for the actual features to use.
4076          * They get transferred to the live pool in bind_control_target()
4077          * called from pool_preresume().
4078          */
4079         if (!pt->adjusted_pf.discard_enabled) {
4080                 /*
4081                  * Must explicitly disallow stacking discard limits otherwise the
4082                  * block layer will stack them if pool's data device has support.
4083                  * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
4084                  * user to see that, so make sure to set all discard limits to 0.
4085                  */
4086                 limits->discard_granularity = 0;
4087                 return;
4088         }
4089
4090         disable_passdown_if_not_supported(pt);
4091
4092         /*
4093          * The pool uses the same discard limits as the underlying data
4094          * device.  DM core has already set this up.
4095          */
4096 }
4097
4098 static struct target_type pool_target = {
4099         .name = "thin-pool",
4100         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
4101                     DM_TARGET_IMMUTABLE,
4102         .version = {1, 21, 0},
4103         .module = THIS_MODULE,
4104         .ctr = pool_ctr,
4105         .dtr = pool_dtr,
4106         .map = pool_map,
4107         .presuspend = pool_presuspend,
4108         .presuspend_undo = pool_presuspend_undo,
4109         .postsuspend = pool_postsuspend,
4110         .preresume = pool_preresume,
4111         .resume = pool_resume,
4112         .message = pool_message,
4113         .status = pool_status,
4114         .iterate_devices = pool_iterate_devices,
4115         .io_hints = pool_io_hints,
4116 };
4117
4118 /*----------------------------------------------------------------
4119  * Thin target methods
4120  *--------------------------------------------------------------*/
4121 static void thin_get(struct thin_c *tc)
4122 {
4123         refcount_inc(&tc->refcount);
4124 }
4125
4126 static void thin_put(struct thin_c *tc)
4127 {
4128         if (refcount_dec_and_test(&tc->refcount))
4129                 complete(&tc->can_destroy);
4130 }
4131
4132 static void thin_dtr(struct dm_target *ti)
4133 {
4134         struct thin_c *tc = ti->private;
4135
4136         spin_lock_irq(&tc->pool->lock);
4137         list_del_rcu(&tc->list);
4138         spin_unlock_irq(&tc->pool->lock);
4139         synchronize_rcu();
4140
4141         thin_put(tc);
4142         wait_for_completion(&tc->can_destroy);
4143
4144         mutex_lock(&dm_thin_pool_table.mutex);
4145
4146         __pool_dec(tc->pool);
4147         dm_pool_close_thin_device(tc->td);
4148         dm_put_device(ti, tc->pool_dev);
4149         if (tc->origin_dev)
4150                 dm_put_device(ti, tc->origin_dev);
4151         kfree(tc);
4152
4153         mutex_unlock(&dm_thin_pool_table.mutex);
4154 }
4155
4156 /*
4157  * Thin target parameters:
4158  *
4159  * <pool_dev> <dev_id> [origin_dev]
4160  *
4161  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4162  * dev_id: the internal device identifier
4163  * origin_dev: a device external to the pool that should act as the origin
4164  *
4165  * If the pool device has discards disabled, they get disabled for the thin
4166  * device as well.
4167  */
4168 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4169 {
4170         int r;
4171         struct thin_c *tc;
4172         struct dm_dev *pool_dev, *origin_dev;
4173         struct mapped_device *pool_md;
4174
4175         mutex_lock(&dm_thin_pool_table.mutex);
4176
4177         if (argc != 2 && argc != 3) {
4178                 ti->error = "Invalid argument count";
4179                 r = -EINVAL;
4180                 goto out_unlock;
4181         }
4182
4183         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4184         if (!tc) {
4185                 ti->error = "Out of memory";
4186                 r = -ENOMEM;
4187                 goto out_unlock;
4188         }
4189         tc->thin_md = dm_table_get_md(ti->table);
4190         spin_lock_init(&tc->lock);
4191         INIT_LIST_HEAD(&tc->deferred_cells);
4192         bio_list_init(&tc->deferred_bio_list);
4193         bio_list_init(&tc->retry_on_resume_list);
4194         tc->sort_bio_list = RB_ROOT;
4195
4196         if (argc == 3) {
4197                 if (!strcmp(argv[0], argv[2])) {
4198                         ti->error = "Error setting origin device";
4199                         r = -EINVAL;
4200                         goto bad_origin_dev;
4201                 }
4202
4203                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4204                 if (r) {
4205                         ti->error = "Error opening origin device";
4206                         goto bad_origin_dev;
4207                 }
4208                 tc->origin_dev = origin_dev;
4209         }
4210
4211         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4212         if (r) {
4213                 ti->error = "Error opening pool device";
4214                 goto bad_pool_dev;
4215         }
4216         tc->pool_dev = pool_dev;
4217
4218         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4219                 ti->error = "Invalid device id";
4220                 r = -EINVAL;
4221                 goto bad_common;
4222         }
4223
4224         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4225         if (!pool_md) {
4226                 ti->error = "Couldn't get pool mapped device";
4227                 r = -EINVAL;
4228                 goto bad_common;
4229         }
4230
4231         tc->pool = __pool_table_lookup(pool_md);
4232         if (!tc->pool) {
4233                 ti->error = "Couldn't find pool object";
4234                 r = -EINVAL;
4235                 goto bad_pool_lookup;
4236         }
4237         __pool_inc(tc->pool);
4238
4239         if (get_pool_mode(tc->pool) == PM_FAIL) {
4240                 ti->error = "Couldn't open thin device, Pool is in fail mode";
4241                 r = -EINVAL;
4242                 goto bad_pool;
4243         }
4244
4245         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4246         if (r) {
4247                 ti->error = "Couldn't open thin internal device";
4248                 goto bad_pool;
4249         }
4250
4251         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4252         if (r)
4253                 goto bad;
4254
4255         ti->num_flush_bios = 1;
4256         ti->flush_supported = true;
4257         ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4258
4259         /* In case the pool supports discards, pass them on. */
4260         if (tc->pool->pf.discard_enabled) {
4261                 ti->discards_supported = true;
4262                 ti->num_discard_bios = 1;
4263         }
4264
4265         mutex_unlock(&dm_thin_pool_table.mutex);
4266
4267         spin_lock_irq(&tc->pool->lock);
4268         if (tc->pool->suspended) {
4269                 spin_unlock_irq(&tc->pool->lock);
4270                 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4271                 ti->error = "Unable to activate thin device while pool is suspended";
4272                 r = -EINVAL;
4273                 goto bad;
4274         }
4275         refcount_set(&tc->refcount, 1);
4276         init_completion(&tc->can_destroy);
4277         list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4278         spin_unlock_irq(&tc->pool->lock);
4279         /*
4280          * This synchronize_rcu() call is needed here otherwise we risk a
4281          * wake_worker() call finding no bios to process (because the newly
4282          * added tc isn't yet visible).  So this reduces latency since we
4283          * aren't then dependent on the periodic commit to wake_worker().
4284          */
4285         synchronize_rcu();
4286
4287         dm_put(pool_md);
4288
4289         return 0;
4290
4291 bad:
4292         dm_pool_close_thin_device(tc->td);
4293 bad_pool:
4294         __pool_dec(tc->pool);
4295 bad_pool_lookup:
4296         dm_put(pool_md);
4297 bad_common:
4298         dm_put_device(ti, tc->pool_dev);
4299 bad_pool_dev:
4300         if (tc->origin_dev)
4301                 dm_put_device(ti, tc->origin_dev);
4302 bad_origin_dev:
4303         kfree(tc);
4304 out_unlock:
4305         mutex_unlock(&dm_thin_pool_table.mutex);
4306
4307         return r;
4308 }
4309
4310 static int thin_map(struct dm_target *ti, struct bio *bio)
4311 {
4312         bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4313
4314         return thin_bio_map(ti, bio);
4315 }
4316
4317 static int thin_endio(struct dm_target *ti, struct bio *bio,
4318                 blk_status_t *err)
4319 {
4320         unsigned long flags;
4321         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4322         struct list_head work;
4323         struct dm_thin_new_mapping *m, *tmp;
4324         struct pool *pool = h->tc->pool;
4325
4326         if (h->shared_read_entry) {
4327                 INIT_LIST_HEAD(&work);
4328                 dm_deferred_entry_dec(h->shared_read_entry, &work);
4329
4330                 spin_lock_irqsave(&pool->lock, flags);
4331                 list_for_each_entry_safe(m, tmp, &work, list) {
4332                         list_del(&m->list);
4333                         __complete_mapping_preparation(m);
4334                 }
4335                 spin_unlock_irqrestore(&pool->lock, flags);
4336         }
4337
4338         if (h->all_io_entry) {
4339                 INIT_LIST_HEAD(&work);
4340                 dm_deferred_entry_dec(h->all_io_entry, &work);
4341                 if (!list_empty(&work)) {
4342                         spin_lock_irqsave(&pool->lock, flags);
4343                         list_for_each_entry_safe(m, tmp, &work, list)
4344                                 list_add_tail(&m->list, &pool->prepared_discards);
4345                         spin_unlock_irqrestore(&pool->lock, flags);
4346                         wake_worker(pool);
4347                 }
4348         }
4349
4350         if (h->cell)
4351                 cell_defer_no_holder(h->tc, h->cell);
4352
4353         return DM_ENDIO_DONE;
4354 }
4355
4356 static void thin_presuspend(struct dm_target *ti)
4357 {
4358         struct thin_c *tc = ti->private;
4359
4360         if (dm_noflush_suspending(ti))
4361                 noflush_work(tc, do_noflush_start);
4362 }
4363
4364 static void thin_postsuspend(struct dm_target *ti)
4365 {
4366         struct thin_c *tc = ti->private;
4367
4368         /*
4369          * The dm_noflush_suspending flag has been cleared by now, so
4370          * unfortunately we must always run this.
4371          */
4372         noflush_work(tc, do_noflush_stop);
4373 }
4374
4375 static int thin_preresume(struct dm_target *ti)
4376 {
4377         struct thin_c *tc = ti->private;
4378
4379         if (tc->origin_dev)
4380                 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4381
4382         return 0;
4383 }
4384
4385 /*
4386  * <nr mapped sectors> <highest mapped sector>
4387  */
4388 static void thin_status(struct dm_target *ti, status_type_t type,
4389                         unsigned status_flags, char *result, unsigned maxlen)
4390 {
4391         int r;
4392         ssize_t sz = 0;
4393         dm_block_t mapped, highest;
4394         char buf[BDEVNAME_SIZE];
4395         struct thin_c *tc = ti->private;
4396
4397         if (get_pool_mode(tc->pool) == PM_FAIL) {
4398                 DMEMIT("Fail");
4399                 return;
4400         }
4401
4402         if (!tc->td)
4403                 DMEMIT("-");
4404         else {
4405                 switch (type) {
4406                 case STATUSTYPE_INFO:
4407                         r = dm_thin_get_mapped_count(tc->td, &mapped);
4408                         if (r) {
4409                                 DMERR("dm_thin_get_mapped_count returned %d", r);
4410                                 goto err;
4411                         }
4412
4413                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4414                         if (r < 0) {
4415                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4416                                 goto err;
4417                         }
4418
4419                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4420                         if (r)
4421                                 DMEMIT("%llu", ((highest + 1) *
4422                                                 tc->pool->sectors_per_block) - 1);
4423                         else
4424                                 DMEMIT("-");
4425                         break;
4426
4427                 case STATUSTYPE_TABLE:
4428                         DMEMIT("%s %lu",
4429                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4430                                (unsigned long) tc->dev_id);
4431                         if (tc->origin_dev)
4432                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4433                         break;
4434                 }
4435         }
4436
4437         return;
4438
4439 err:
4440         DMEMIT("Error");
4441 }
4442
4443 static int thin_iterate_devices(struct dm_target *ti,
4444                                 iterate_devices_callout_fn fn, void *data)
4445 {
4446         sector_t blocks;
4447         struct thin_c *tc = ti->private;
4448         struct pool *pool = tc->pool;
4449
4450         /*
4451          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4452          * we follow a more convoluted path through to the pool's target.
4453          */
4454         if (!pool->ti)
4455                 return 0;       /* nothing is bound */
4456
4457         blocks = pool->ti->len;
4458         (void) sector_div(blocks, pool->sectors_per_block);
4459         if (blocks)
4460                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4461
4462         return 0;
4463 }
4464
4465 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4466 {
4467         struct thin_c *tc = ti->private;
4468         struct pool *pool = tc->pool;
4469
4470         if (!pool->pf.discard_enabled)
4471                 return;
4472
4473         limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4474         limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4475 }
4476
4477 static struct target_type thin_target = {
4478         .name = "thin",
4479         .version = {1, 21, 0},
4480         .module = THIS_MODULE,
4481         .ctr = thin_ctr,
4482         .dtr = thin_dtr,
4483         .map = thin_map,
4484         .end_io = thin_endio,
4485         .preresume = thin_preresume,
4486         .presuspend = thin_presuspend,
4487         .postsuspend = thin_postsuspend,
4488         .status = thin_status,
4489         .iterate_devices = thin_iterate_devices,
4490         .io_hints = thin_io_hints,
4491 };
4492
4493 /*----------------------------------------------------------------*/
4494
4495 static int __init dm_thin_init(void)
4496 {
4497         int r = -ENOMEM;
4498
4499         pool_table_init();
4500
4501         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4502         if (!_new_mapping_cache)
4503                 return r;
4504
4505         r = dm_register_target(&thin_target);
4506         if (r)
4507                 goto bad_new_mapping_cache;
4508
4509         r = dm_register_target(&pool_target);
4510         if (r)
4511                 goto bad_thin_target;
4512
4513         return 0;
4514
4515 bad_thin_target:
4516         dm_unregister_target(&thin_target);
4517 bad_new_mapping_cache:
4518         kmem_cache_destroy(_new_mapping_cache);
4519
4520         return r;
4521 }
4522
4523 static void dm_thin_exit(void)
4524 {
4525         dm_unregister_target(&thin_target);
4526         dm_unregister_target(&pool_target);
4527
4528         kmem_cache_destroy(_new_mapping_cache);
4529
4530         pool_table_exit();
4531 }
4532
4533 module_init(dm_thin_init);
4534 module_exit(dm_thin_exit);
4535
4536 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4537 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4538
4539 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4540 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4541 MODULE_LICENSE("GPL");