dm thin: handle metadata failures more consistently
[linux-2.6-microblaze.git] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18
19 #define DM_MSG_PREFIX   "thin"
20
21 /*
22  * Tunable constants
23  */
24 #define ENDIO_HOOK_POOL_SIZE 1024
25 #define MAPPING_POOL_SIZE 1024
26 #define PRISON_CELLS 1024
27 #define COMMIT_PERIOD HZ
28
29 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
30                 "A percentage of time allocated for copy on write");
31
32 /*
33  * The block size of the device holding pool data must be
34  * between 64KB and 1GB.
35  */
36 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
37 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
38
39 /*
40  * Device id is restricted to 24 bits.
41  */
42 #define MAX_DEV_ID ((1 << 24) - 1)
43
44 /*
45  * How do we handle breaking sharing of data blocks?
46  * =================================================
47  *
48  * We use a standard copy-on-write btree to store the mappings for the
49  * devices (note I'm talking about copy-on-write of the metadata here, not
50  * the data).  When you take an internal snapshot you clone the root node
51  * of the origin btree.  After this there is no concept of an origin or a
52  * snapshot.  They are just two device trees that happen to point to the
53  * same data blocks.
54  *
55  * When we get a write in we decide if it's to a shared data block using
56  * some timestamp magic.  If it is, we have to break sharing.
57  *
58  * Let's say we write to a shared block in what was the origin.  The
59  * steps are:
60  *
61  * i) plug io further to this physical block. (see bio_prison code).
62  *
63  * ii) quiesce any read io to that shared data block.  Obviously
64  * including all devices that share this block.  (see dm_deferred_set code)
65  *
66  * iii) copy the data block to a newly allocate block.  This step can be
67  * missed out if the io covers the block. (schedule_copy).
68  *
69  * iv) insert the new mapping into the origin's btree
70  * (process_prepared_mapping).  This act of inserting breaks some
71  * sharing of btree nodes between the two devices.  Breaking sharing only
72  * effects the btree of that specific device.  Btrees for the other
73  * devices that share the block never change.  The btree for the origin
74  * device as it was after the last commit is untouched, ie. we're using
75  * persistent data structures in the functional programming sense.
76  *
77  * v) unplug io to this physical block, including the io that triggered
78  * the breaking of sharing.
79  *
80  * Steps (ii) and (iii) occur in parallel.
81  *
82  * The metadata _doesn't_ need to be committed before the io continues.  We
83  * get away with this because the io is always written to a _new_ block.
84  * If there's a crash, then:
85  *
86  * - The origin mapping will point to the old origin block (the shared
87  * one).  This will contain the data as it was before the io that triggered
88  * the breaking of sharing came in.
89  *
90  * - The snap mapping still points to the old block.  As it would after
91  * the commit.
92  *
93  * The downside of this scheme is the timestamp magic isn't perfect, and
94  * will continue to think that data block in the snapshot device is shared
95  * even after the write to the origin has broken sharing.  I suspect data
96  * blocks will typically be shared by many different devices, so we're
97  * breaking sharing n + 1 times, rather than n, where n is the number of
98  * devices that reference this data block.  At the moment I think the
99  * benefits far, far outweigh the disadvantages.
100  */
101
102 /*----------------------------------------------------------------*/
103
104 /*
105  * Key building.
106  */
107 static void build_data_key(struct dm_thin_device *td,
108                            dm_block_t b, struct dm_cell_key *key)
109 {
110         key->virtual = 0;
111         key->dev = dm_thin_dev_id(td);
112         key->block = b;
113 }
114
115 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
116                               struct dm_cell_key *key)
117 {
118         key->virtual = 1;
119         key->dev = dm_thin_dev_id(td);
120         key->block = b;
121 }
122
123 /*----------------------------------------------------------------*/
124
125 /*
126  * A pool device ties together a metadata device and a data device.  It
127  * also provides the interface for creating and destroying internal
128  * devices.
129  */
130 struct dm_thin_new_mapping;
131
132 /*
133  * The pool runs in 3 modes.  Ordered in degraded order for comparisons.
134  */
135 enum pool_mode {
136         PM_WRITE,               /* metadata may be changed */
137         PM_READ_ONLY,           /* metadata may not be changed */
138         PM_FAIL,                /* all I/O fails */
139 };
140
141 struct pool_features {
142         enum pool_mode mode;
143
144         bool zero_new_blocks:1;
145         bool discard_enabled:1;
146         bool discard_passdown:1;
147 };
148
149 struct thin_c;
150 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
151 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
152
153 struct pool {
154         struct list_head list;
155         struct dm_target *ti;   /* Only set if a pool target is bound */
156
157         struct mapped_device *pool_md;
158         struct block_device *md_dev;
159         struct dm_pool_metadata *pmd;
160
161         dm_block_t low_water_blocks;
162         uint32_t sectors_per_block;
163         int sectors_per_block_shift;
164
165         struct pool_features pf;
166         bool low_water_triggered:1;     /* A dm event has been sent */
167         bool no_free_space:1;           /* A -ENOSPC warning has been issued */
168
169         struct dm_bio_prison *prison;
170         struct dm_kcopyd_client *copier;
171
172         struct workqueue_struct *wq;
173         struct work_struct worker;
174         struct delayed_work waker;
175
176         unsigned long last_commit_jiffies;
177         unsigned ref_count;
178
179         spinlock_t lock;
180         struct bio_list deferred_bios;
181         struct bio_list deferred_flush_bios;
182         struct list_head prepared_mappings;
183         struct list_head prepared_discards;
184
185         struct bio_list retry_on_resume_list;
186
187         struct dm_deferred_set *shared_read_ds;
188         struct dm_deferred_set *all_io_ds;
189
190         struct dm_thin_new_mapping *next_mapping;
191         mempool_t *mapping_pool;
192
193         process_bio_fn process_bio;
194         process_bio_fn process_discard;
195
196         process_mapping_fn process_prepared_mapping;
197         process_mapping_fn process_prepared_discard;
198 };
199
200 static enum pool_mode get_pool_mode(struct pool *pool);
201 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
202
203 /*
204  * Target context for a pool.
205  */
206 struct pool_c {
207         struct dm_target *ti;
208         struct pool *pool;
209         struct dm_dev *data_dev;
210         struct dm_dev *metadata_dev;
211         struct dm_target_callbacks callbacks;
212
213         dm_block_t low_water_blocks;
214         struct pool_features requested_pf; /* Features requested during table load */
215         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
216 };
217
218 /*
219  * Target context for a thin.
220  */
221 struct thin_c {
222         struct dm_dev *pool_dev;
223         struct dm_dev *origin_dev;
224         dm_thin_id dev_id;
225
226         struct pool *pool;
227         struct dm_thin_device *td;
228 };
229
230 /*----------------------------------------------------------------*/
231
232 /*
233  * wake_worker() is used when new work is queued and when pool_resume is
234  * ready to continue deferred IO processing.
235  */
236 static void wake_worker(struct pool *pool)
237 {
238         queue_work(pool->wq, &pool->worker);
239 }
240
241 /*----------------------------------------------------------------*/
242
243 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
244                       struct dm_bio_prison_cell **cell_result)
245 {
246         int r;
247         struct dm_bio_prison_cell *cell_prealloc;
248
249         /*
250          * Allocate a cell from the prison's mempool.
251          * This might block but it can't fail.
252          */
253         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
254
255         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
256         if (r)
257                 /*
258                  * We reused an old cell; we can get rid of
259                  * the new one.
260                  */
261                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
262
263         return r;
264 }
265
266 static void cell_release(struct pool *pool,
267                          struct dm_bio_prison_cell *cell,
268                          struct bio_list *bios)
269 {
270         dm_cell_release(pool->prison, cell, bios);
271         dm_bio_prison_free_cell(pool->prison, cell);
272 }
273
274 static void cell_release_no_holder(struct pool *pool,
275                                    struct dm_bio_prison_cell *cell,
276                                    struct bio_list *bios)
277 {
278         dm_cell_release_no_holder(pool->prison, cell, bios);
279         dm_bio_prison_free_cell(pool->prison, cell);
280 }
281
282 static void cell_defer_no_holder_no_free(struct thin_c *tc,
283                                          struct dm_bio_prison_cell *cell)
284 {
285         struct pool *pool = tc->pool;
286         unsigned long flags;
287
288         spin_lock_irqsave(&pool->lock, flags);
289         dm_cell_release_no_holder(pool->prison, cell, &pool->deferred_bios);
290         spin_unlock_irqrestore(&pool->lock, flags);
291
292         wake_worker(pool);
293 }
294
295 static void cell_error(struct pool *pool,
296                        struct dm_bio_prison_cell *cell)
297 {
298         dm_cell_error(pool->prison, cell);
299         dm_bio_prison_free_cell(pool->prison, cell);
300 }
301
302 /*----------------------------------------------------------------*/
303
304 /*
305  * A global list of pools that uses a struct mapped_device as a key.
306  */
307 static struct dm_thin_pool_table {
308         struct mutex mutex;
309         struct list_head pools;
310 } dm_thin_pool_table;
311
312 static void pool_table_init(void)
313 {
314         mutex_init(&dm_thin_pool_table.mutex);
315         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
316 }
317
318 static void __pool_table_insert(struct pool *pool)
319 {
320         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
321         list_add(&pool->list, &dm_thin_pool_table.pools);
322 }
323
324 static void __pool_table_remove(struct pool *pool)
325 {
326         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
327         list_del(&pool->list);
328 }
329
330 static struct pool *__pool_table_lookup(struct mapped_device *md)
331 {
332         struct pool *pool = NULL, *tmp;
333
334         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
335
336         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
337                 if (tmp->pool_md == md) {
338                         pool = tmp;
339                         break;
340                 }
341         }
342
343         return pool;
344 }
345
346 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
347 {
348         struct pool *pool = NULL, *tmp;
349
350         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
351
352         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
353                 if (tmp->md_dev == md_dev) {
354                         pool = tmp;
355                         break;
356                 }
357         }
358
359         return pool;
360 }
361
362 /*----------------------------------------------------------------*/
363
364 struct dm_thin_endio_hook {
365         struct thin_c *tc;
366         struct dm_deferred_entry *shared_read_entry;
367         struct dm_deferred_entry *all_io_entry;
368         struct dm_thin_new_mapping *overwrite_mapping;
369 };
370
371 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
372 {
373         struct bio *bio;
374         struct bio_list bios;
375
376         bio_list_init(&bios);
377         bio_list_merge(&bios, master);
378         bio_list_init(master);
379
380         while ((bio = bio_list_pop(&bios))) {
381                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
382
383                 if (h->tc == tc)
384                         bio_endio(bio, DM_ENDIO_REQUEUE);
385                 else
386                         bio_list_add(master, bio);
387         }
388 }
389
390 static void requeue_io(struct thin_c *tc)
391 {
392         struct pool *pool = tc->pool;
393         unsigned long flags;
394
395         spin_lock_irqsave(&pool->lock, flags);
396         __requeue_bio_list(tc, &pool->deferred_bios);
397         __requeue_bio_list(tc, &pool->retry_on_resume_list);
398         spin_unlock_irqrestore(&pool->lock, flags);
399 }
400
401 /*
402  * This section of code contains the logic for processing a thin device's IO.
403  * Much of the code depends on pool object resources (lists, workqueues, etc)
404  * but most is exclusively called from the thin target rather than the thin-pool
405  * target.
406  */
407
408 static bool block_size_is_power_of_two(struct pool *pool)
409 {
410         return pool->sectors_per_block_shift >= 0;
411 }
412
413 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
414 {
415         struct pool *pool = tc->pool;
416         sector_t block_nr = bio->bi_sector;
417
418         if (block_size_is_power_of_two(pool))
419                 block_nr >>= pool->sectors_per_block_shift;
420         else
421                 (void) sector_div(block_nr, pool->sectors_per_block);
422
423         return block_nr;
424 }
425
426 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
427 {
428         struct pool *pool = tc->pool;
429         sector_t bi_sector = bio->bi_sector;
430
431         bio->bi_bdev = tc->pool_dev->bdev;
432         if (block_size_is_power_of_two(pool))
433                 bio->bi_sector = (block << pool->sectors_per_block_shift) |
434                                 (bi_sector & (pool->sectors_per_block - 1));
435         else
436                 bio->bi_sector = (block * pool->sectors_per_block) +
437                                  sector_div(bi_sector, pool->sectors_per_block);
438 }
439
440 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
441 {
442         bio->bi_bdev = tc->origin_dev->bdev;
443 }
444
445 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
446 {
447         return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
448                 dm_thin_changed_this_transaction(tc->td);
449 }
450
451 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
452 {
453         struct dm_thin_endio_hook *h;
454
455         if (bio->bi_rw & REQ_DISCARD)
456                 return;
457
458         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
459         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
460 }
461
462 static void issue(struct thin_c *tc, struct bio *bio)
463 {
464         struct pool *pool = tc->pool;
465         unsigned long flags;
466
467         if (!bio_triggers_commit(tc, bio)) {
468                 generic_make_request(bio);
469                 return;
470         }
471
472         /*
473          * Complete bio with an error if earlier I/O caused changes to
474          * the metadata that can't be committed e.g, due to I/O errors
475          * on the metadata device.
476          */
477         if (dm_thin_aborted_changes(tc->td)) {
478                 bio_io_error(bio);
479                 return;
480         }
481
482         /*
483          * Batch together any bios that trigger commits and then issue a
484          * single commit for them in process_deferred_bios().
485          */
486         spin_lock_irqsave(&pool->lock, flags);
487         bio_list_add(&pool->deferred_flush_bios, bio);
488         spin_unlock_irqrestore(&pool->lock, flags);
489 }
490
491 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
492 {
493         remap_to_origin(tc, bio);
494         issue(tc, bio);
495 }
496
497 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
498                             dm_block_t block)
499 {
500         remap(tc, bio, block);
501         issue(tc, bio);
502 }
503
504 /*----------------------------------------------------------------*/
505
506 /*
507  * Bio endio functions.
508  */
509 struct dm_thin_new_mapping {
510         struct list_head list;
511
512         bool quiesced:1;
513         bool prepared:1;
514         bool pass_discard:1;
515         bool definitely_not_shared:1;
516
517         int err;
518         struct thin_c *tc;
519         dm_block_t virt_block;
520         dm_block_t data_block;
521         struct dm_bio_prison_cell *cell, *cell2;
522
523         /*
524          * If the bio covers the whole area of a block then we can avoid
525          * zeroing or copying.  Instead this bio is hooked.  The bio will
526          * still be in the cell, so care has to be taken to avoid issuing
527          * the bio twice.
528          */
529         struct bio *bio;
530         bio_end_io_t *saved_bi_end_io;
531 };
532
533 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
534 {
535         struct pool *pool = m->tc->pool;
536
537         if (m->quiesced && m->prepared) {
538                 list_add_tail(&m->list, &pool->prepared_mappings);
539                 wake_worker(pool);
540         }
541 }
542
543 static void copy_complete(int read_err, unsigned long write_err, void *context)
544 {
545         unsigned long flags;
546         struct dm_thin_new_mapping *m = context;
547         struct pool *pool = m->tc->pool;
548
549         m->err = read_err || write_err ? -EIO : 0;
550
551         spin_lock_irqsave(&pool->lock, flags);
552         m->prepared = true;
553         __maybe_add_mapping(m);
554         spin_unlock_irqrestore(&pool->lock, flags);
555 }
556
557 static void overwrite_endio(struct bio *bio, int err)
558 {
559         unsigned long flags;
560         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
561         struct dm_thin_new_mapping *m = h->overwrite_mapping;
562         struct pool *pool = m->tc->pool;
563
564         m->err = err;
565
566         spin_lock_irqsave(&pool->lock, flags);
567         m->prepared = true;
568         __maybe_add_mapping(m);
569         spin_unlock_irqrestore(&pool->lock, flags);
570 }
571
572 /*----------------------------------------------------------------*/
573
574 /*
575  * Workqueue.
576  */
577
578 /*
579  * Prepared mapping jobs.
580  */
581
582 /*
583  * This sends the bios in the cell back to the deferred_bios list.
584  */
585 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
586 {
587         struct pool *pool = tc->pool;
588         unsigned long flags;
589
590         spin_lock_irqsave(&pool->lock, flags);
591         cell_release(pool, cell, &pool->deferred_bios);
592         spin_unlock_irqrestore(&tc->pool->lock, flags);
593
594         wake_worker(pool);
595 }
596
597 /*
598  * Same as cell_defer above, except it omits the original holder of the cell.
599  */
600 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
601 {
602         struct pool *pool = tc->pool;
603         unsigned long flags;
604
605         spin_lock_irqsave(&pool->lock, flags);
606         cell_release_no_holder(pool, cell, &pool->deferred_bios);
607         spin_unlock_irqrestore(&pool->lock, flags);
608
609         wake_worker(pool);
610 }
611
612 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
613 {
614         if (m->bio)
615                 m->bio->bi_end_io = m->saved_bi_end_io;
616         cell_error(m->tc->pool, m->cell);
617         list_del(&m->list);
618         mempool_free(m, m->tc->pool->mapping_pool);
619 }
620
621 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
622 {
623         struct thin_c *tc = m->tc;
624         struct pool *pool = tc->pool;
625         struct bio *bio;
626         int r;
627
628         bio = m->bio;
629         if (bio)
630                 bio->bi_end_io = m->saved_bi_end_io;
631
632         if (m->err) {
633                 cell_error(pool, m->cell);
634                 goto out;
635         }
636
637         /*
638          * Commit the prepared block into the mapping btree.
639          * Any I/O for this block arriving after this point will get
640          * remapped to it directly.
641          */
642         r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
643         if (r) {
644                 metadata_operation_failed(pool, "dm_thin_insert_block", r);
645                 cell_error(pool, m->cell);
646                 goto out;
647         }
648
649         /*
650          * Release any bios held while the block was being provisioned.
651          * If we are processing a write bio that completely covers the block,
652          * we already processed it so can ignore it now when processing
653          * the bios in the cell.
654          */
655         if (bio) {
656                 cell_defer_no_holder(tc, m->cell);
657                 bio_endio(bio, 0);
658         } else
659                 cell_defer(tc, m->cell);
660
661 out:
662         list_del(&m->list);
663         mempool_free(m, pool->mapping_pool);
664 }
665
666 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
667 {
668         struct thin_c *tc = m->tc;
669
670         bio_io_error(m->bio);
671         cell_defer_no_holder(tc, m->cell);
672         cell_defer_no_holder(tc, m->cell2);
673         mempool_free(m, tc->pool->mapping_pool);
674 }
675
676 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
677 {
678         struct thin_c *tc = m->tc;
679
680         inc_all_io_entry(tc->pool, m->bio);
681         cell_defer_no_holder(tc, m->cell);
682         cell_defer_no_holder(tc, m->cell2);
683
684         if (m->pass_discard)
685                 if (m->definitely_not_shared)
686                         remap_and_issue(tc, m->bio, m->data_block);
687                 else {
688                         bool used = false;
689                         if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
690                                 bio_endio(m->bio, 0);
691                         else
692                                 remap_and_issue(tc, m->bio, m->data_block);
693                 }
694         else
695                 bio_endio(m->bio, 0);
696
697         mempool_free(m, tc->pool->mapping_pool);
698 }
699
700 static void process_prepared_discard(struct dm_thin_new_mapping *m)
701 {
702         int r;
703         struct thin_c *tc = m->tc;
704
705         r = dm_thin_remove_block(tc->td, m->virt_block);
706         if (r)
707                 DMERR_LIMIT("dm_thin_remove_block() failed");
708
709         process_prepared_discard_passdown(m);
710 }
711
712 static void process_prepared(struct pool *pool, struct list_head *head,
713                              process_mapping_fn *fn)
714 {
715         unsigned long flags;
716         struct list_head maps;
717         struct dm_thin_new_mapping *m, *tmp;
718
719         INIT_LIST_HEAD(&maps);
720         spin_lock_irqsave(&pool->lock, flags);
721         list_splice_init(head, &maps);
722         spin_unlock_irqrestore(&pool->lock, flags);
723
724         list_for_each_entry_safe(m, tmp, &maps, list)
725                 (*fn)(m);
726 }
727
728 /*
729  * Deferred bio jobs.
730  */
731 static int io_overlaps_block(struct pool *pool, struct bio *bio)
732 {
733         return bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT);
734 }
735
736 static int io_overwrites_block(struct pool *pool, struct bio *bio)
737 {
738         return (bio_data_dir(bio) == WRITE) &&
739                 io_overlaps_block(pool, bio);
740 }
741
742 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
743                                bio_end_io_t *fn)
744 {
745         *save = bio->bi_end_io;
746         bio->bi_end_io = fn;
747 }
748
749 static int ensure_next_mapping(struct pool *pool)
750 {
751         if (pool->next_mapping)
752                 return 0;
753
754         pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
755
756         return pool->next_mapping ? 0 : -ENOMEM;
757 }
758
759 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
760 {
761         struct dm_thin_new_mapping *m = pool->next_mapping;
762
763         BUG_ON(!pool->next_mapping);
764
765         memset(m, 0, sizeof(struct dm_thin_new_mapping));
766         INIT_LIST_HEAD(&m->list);
767         m->bio = NULL;
768
769         pool->next_mapping = NULL;
770
771         return m;
772 }
773
774 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
775                           struct dm_dev *origin, dm_block_t data_origin,
776                           dm_block_t data_dest,
777                           struct dm_bio_prison_cell *cell, struct bio *bio)
778 {
779         int r;
780         struct pool *pool = tc->pool;
781         struct dm_thin_new_mapping *m = get_next_mapping(pool);
782
783         m->tc = tc;
784         m->virt_block = virt_block;
785         m->data_block = data_dest;
786         m->cell = cell;
787
788         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
789                 m->quiesced = true;
790
791         /*
792          * IO to pool_dev remaps to the pool target's data_dev.
793          *
794          * If the whole block of data is being overwritten, we can issue the
795          * bio immediately. Otherwise we use kcopyd to clone the data first.
796          */
797         if (io_overwrites_block(pool, bio)) {
798                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
799
800                 h->overwrite_mapping = m;
801                 m->bio = bio;
802                 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
803                 inc_all_io_entry(pool, bio);
804                 remap_and_issue(tc, bio, data_dest);
805         } else {
806                 struct dm_io_region from, to;
807
808                 from.bdev = origin->bdev;
809                 from.sector = data_origin * pool->sectors_per_block;
810                 from.count = pool->sectors_per_block;
811
812                 to.bdev = tc->pool_dev->bdev;
813                 to.sector = data_dest * pool->sectors_per_block;
814                 to.count = pool->sectors_per_block;
815
816                 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
817                                    0, copy_complete, m);
818                 if (r < 0) {
819                         mempool_free(m, pool->mapping_pool);
820                         DMERR_LIMIT("dm_kcopyd_copy() failed");
821                         cell_error(pool, cell);
822                 }
823         }
824 }
825
826 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
827                                    dm_block_t data_origin, dm_block_t data_dest,
828                                    struct dm_bio_prison_cell *cell, struct bio *bio)
829 {
830         schedule_copy(tc, virt_block, tc->pool_dev,
831                       data_origin, data_dest, cell, bio);
832 }
833
834 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
835                                    dm_block_t data_dest,
836                                    struct dm_bio_prison_cell *cell, struct bio *bio)
837 {
838         schedule_copy(tc, virt_block, tc->origin_dev,
839                       virt_block, data_dest, cell, bio);
840 }
841
842 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
843                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
844                           struct bio *bio)
845 {
846         struct pool *pool = tc->pool;
847         struct dm_thin_new_mapping *m = get_next_mapping(pool);
848
849         m->quiesced = true;
850         m->prepared = false;
851         m->tc = tc;
852         m->virt_block = virt_block;
853         m->data_block = data_block;
854         m->cell = cell;
855
856         /*
857          * If the whole block of data is being overwritten or we are not
858          * zeroing pre-existing data, we can issue the bio immediately.
859          * Otherwise we use kcopyd to zero the data first.
860          */
861         if (!pool->pf.zero_new_blocks)
862                 process_prepared_mapping(m);
863
864         else if (io_overwrites_block(pool, bio)) {
865                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
866
867                 h->overwrite_mapping = m;
868                 m->bio = bio;
869                 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
870                 inc_all_io_entry(pool, bio);
871                 remap_and_issue(tc, bio, data_block);
872         } else {
873                 int r;
874                 struct dm_io_region to;
875
876                 to.bdev = tc->pool_dev->bdev;
877                 to.sector = data_block * pool->sectors_per_block;
878                 to.count = pool->sectors_per_block;
879
880                 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
881                 if (r < 0) {
882                         mempool_free(m, pool->mapping_pool);
883                         DMERR_LIMIT("dm_kcopyd_zero() failed");
884                         cell_error(pool, cell);
885                 }
886         }
887 }
888
889 /*
890  * A non-zero return indicates read_only or fail_io mode.
891  * Many callers don't care about the return value.
892  */
893 static int commit(struct pool *pool)
894 {
895         int r;
896
897         if (get_pool_mode(pool) != PM_WRITE)
898                 return -EINVAL;
899
900         r = dm_pool_commit_metadata(pool->pmd);
901         if (r)
902                 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
903
904         return r;
905 }
906
907 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
908 {
909         unsigned long flags;
910
911         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
912                 DMWARN("%s: reached low water mark for data device: sending event.",
913                        dm_device_name(pool->pool_md));
914                 spin_lock_irqsave(&pool->lock, flags);
915                 pool->low_water_triggered = true;
916                 spin_unlock_irqrestore(&pool->lock, flags);
917                 dm_table_event(pool->ti->table);
918         }
919 }
920
921 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
922 {
923         int r;
924         dm_block_t free_blocks;
925         unsigned long flags;
926         struct pool *pool = tc->pool;
927
928         /*
929          * Once no_free_space is set we must not allow allocation to succeed.
930          * Otherwise it is difficult to explain, debug, test and support.
931          */
932         if (pool->no_free_space)
933                 return -ENOSPC;
934
935         if (get_pool_mode(pool) != PM_WRITE)
936                 return -EINVAL;
937
938         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
939         if (r) {
940                 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
941                 return r;
942         }
943
944         check_low_water_mark(pool, free_blocks);
945
946         if (!free_blocks) {
947                 /*
948                  * Try to commit to see if that will free up some
949                  * more space.
950                  */
951                 r = commit(pool);
952                 if (r)
953                         return r;
954
955                 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
956                 if (r) {
957                         metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
958                         return r;
959                 }
960
961                 /*
962                  * If we still have no space we set a flag to avoid
963                  * doing all this checking and return -ENOSPC.  This
964                  * flag serves as a latch that disallows allocations from
965                  * this pool until the admin takes action (e.g. resize or
966                  * table reload).
967                  */
968                 if (!free_blocks) {
969                         DMWARN("%s: no free data space available.",
970                                dm_device_name(pool->pool_md));
971                         spin_lock_irqsave(&pool->lock, flags);
972                         pool->no_free_space = true;
973                         spin_unlock_irqrestore(&pool->lock, flags);
974                         return -ENOSPC;
975                 }
976         }
977
978         r = dm_pool_alloc_data_block(pool->pmd, result);
979         if (r) {
980                 if (r == -ENOSPC &&
981                     !dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks) &&
982                     !free_blocks)
983                         DMWARN("%s: no free metadata space available.",
984                                dm_device_name(pool->pool_md));
985
986                 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
987                 return r;
988         }
989
990         return 0;
991 }
992
993 /*
994  * If we have run out of space, queue bios until the device is
995  * resumed, presumably after having been reloaded with more space.
996  */
997 static void retry_on_resume(struct bio *bio)
998 {
999         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1000         struct thin_c *tc = h->tc;
1001         struct pool *pool = tc->pool;
1002         unsigned long flags;
1003
1004         spin_lock_irqsave(&pool->lock, flags);
1005         bio_list_add(&pool->retry_on_resume_list, bio);
1006         spin_unlock_irqrestore(&pool->lock, flags);
1007 }
1008
1009 static void no_space(struct pool *pool, struct dm_bio_prison_cell *cell)
1010 {
1011         struct bio *bio;
1012         struct bio_list bios;
1013
1014         bio_list_init(&bios);
1015         cell_release(pool, cell, &bios);
1016
1017         while ((bio = bio_list_pop(&bios)))
1018                 retry_on_resume(bio);
1019 }
1020
1021 static void process_discard(struct thin_c *tc, struct bio *bio)
1022 {
1023         int r;
1024         unsigned long flags;
1025         struct pool *pool = tc->pool;
1026         struct dm_bio_prison_cell *cell, *cell2;
1027         struct dm_cell_key key, key2;
1028         dm_block_t block = get_bio_block(tc, bio);
1029         struct dm_thin_lookup_result lookup_result;
1030         struct dm_thin_new_mapping *m;
1031
1032         build_virtual_key(tc->td, block, &key);
1033         if (bio_detain(tc->pool, &key, bio, &cell))
1034                 return;
1035
1036         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1037         switch (r) {
1038         case 0:
1039                 /*
1040                  * Check nobody is fiddling with this pool block.  This can
1041                  * happen if someone's in the process of breaking sharing
1042                  * on this block.
1043                  */
1044                 build_data_key(tc->td, lookup_result.block, &key2);
1045                 if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1046                         cell_defer_no_holder(tc, cell);
1047                         break;
1048                 }
1049
1050                 if (io_overlaps_block(pool, bio)) {
1051                         /*
1052                          * IO may still be going to the destination block.  We must
1053                          * quiesce before we can do the removal.
1054                          */
1055                         m = get_next_mapping(pool);
1056                         m->tc = tc;
1057                         m->pass_discard = pool->pf.discard_passdown;
1058                         m->definitely_not_shared = !lookup_result.shared;
1059                         m->virt_block = block;
1060                         m->data_block = lookup_result.block;
1061                         m->cell = cell;
1062                         m->cell2 = cell2;
1063                         m->bio = bio;
1064
1065                         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1066                                 spin_lock_irqsave(&pool->lock, flags);
1067                                 list_add_tail(&m->list, &pool->prepared_discards);
1068                                 spin_unlock_irqrestore(&pool->lock, flags);
1069                                 wake_worker(pool);
1070                         }
1071                 } else {
1072                         inc_all_io_entry(pool, bio);
1073                         cell_defer_no_holder(tc, cell);
1074                         cell_defer_no_holder(tc, cell2);
1075
1076                         /*
1077                          * The DM core makes sure that the discard doesn't span
1078                          * a block boundary.  So we submit the discard of a
1079                          * partial block appropriately.
1080                          */
1081                         if ((!lookup_result.shared) && pool->pf.discard_passdown)
1082                                 remap_and_issue(tc, bio, lookup_result.block);
1083                         else
1084                                 bio_endio(bio, 0);
1085                 }
1086                 break;
1087
1088         case -ENODATA:
1089                 /*
1090                  * It isn't provisioned, just forget it.
1091                  */
1092                 cell_defer_no_holder(tc, cell);
1093                 bio_endio(bio, 0);
1094                 break;
1095
1096         default:
1097                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1098                             __func__, r);
1099                 cell_defer_no_holder(tc, cell);
1100                 bio_io_error(bio);
1101                 break;
1102         }
1103 }
1104
1105 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1106                           struct dm_cell_key *key,
1107                           struct dm_thin_lookup_result *lookup_result,
1108                           struct dm_bio_prison_cell *cell)
1109 {
1110         int r;
1111         dm_block_t data_block;
1112         struct pool *pool = tc->pool;
1113
1114         r = alloc_data_block(tc, &data_block);
1115         switch (r) {
1116         case 0:
1117                 schedule_internal_copy(tc, block, lookup_result->block,
1118                                        data_block, cell, bio);
1119                 break;
1120
1121         case -ENOSPC:
1122                 no_space(pool, cell);
1123                 break;
1124
1125         default:
1126                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1127                             __func__, r);
1128                 cell_error(pool, cell);
1129                 break;
1130         }
1131 }
1132
1133 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1134                                dm_block_t block,
1135                                struct dm_thin_lookup_result *lookup_result)
1136 {
1137         struct dm_bio_prison_cell *cell;
1138         struct pool *pool = tc->pool;
1139         struct dm_cell_key key;
1140
1141         /*
1142          * If cell is already occupied, then sharing is already in the process
1143          * of being broken so we have nothing further to do here.
1144          */
1145         build_data_key(tc->td, lookup_result->block, &key);
1146         if (bio_detain(pool, &key, bio, &cell))
1147                 return;
1148
1149         if (bio_data_dir(bio) == WRITE && bio->bi_size)
1150                 break_sharing(tc, bio, block, &key, lookup_result, cell);
1151         else {
1152                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1153
1154                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1155                 inc_all_io_entry(pool, bio);
1156                 cell_defer_no_holder(tc, cell);
1157
1158                 remap_and_issue(tc, bio, lookup_result->block);
1159         }
1160 }
1161
1162 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1163                             struct dm_bio_prison_cell *cell)
1164 {
1165         int r;
1166         dm_block_t data_block;
1167         struct pool *pool = tc->pool;
1168
1169         /*
1170          * Remap empty bios (flushes) immediately, without provisioning.
1171          */
1172         if (!bio->bi_size) {
1173                 inc_all_io_entry(pool, bio);
1174                 cell_defer_no_holder(tc, cell);
1175
1176                 remap_and_issue(tc, bio, 0);
1177                 return;
1178         }
1179
1180         /*
1181          * Fill read bios with zeroes and complete them immediately.
1182          */
1183         if (bio_data_dir(bio) == READ) {
1184                 zero_fill_bio(bio);
1185                 cell_defer_no_holder(tc, cell);
1186                 bio_endio(bio, 0);
1187                 return;
1188         }
1189
1190         r = alloc_data_block(tc, &data_block);
1191         switch (r) {
1192         case 0:
1193                 if (tc->origin_dev)
1194                         schedule_external_copy(tc, block, data_block, cell, bio);
1195                 else
1196                         schedule_zero(tc, block, data_block, cell, bio);
1197                 break;
1198
1199         case -ENOSPC:
1200                 no_space(pool, cell);
1201                 break;
1202
1203         default:
1204                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1205                             __func__, r);
1206                 cell_error(pool, cell);
1207                 break;
1208         }
1209 }
1210
1211 static void process_bio(struct thin_c *tc, struct bio *bio)
1212 {
1213         int r;
1214         struct pool *pool = tc->pool;
1215         dm_block_t block = get_bio_block(tc, bio);
1216         struct dm_bio_prison_cell *cell;
1217         struct dm_cell_key key;
1218         struct dm_thin_lookup_result lookup_result;
1219
1220         /*
1221          * If cell is already occupied, then the block is already
1222          * being provisioned so we have nothing further to do here.
1223          */
1224         build_virtual_key(tc->td, block, &key);
1225         if (bio_detain(pool, &key, bio, &cell))
1226                 return;
1227
1228         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1229         switch (r) {
1230         case 0:
1231                 if (lookup_result.shared) {
1232                         process_shared_bio(tc, bio, block, &lookup_result);
1233                         cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1234                 } else {
1235                         inc_all_io_entry(pool, bio);
1236                         cell_defer_no_holder(tc, cell);
1237
1238                         remap_and_issue(tc, bio, lookup_result.block);
1239                 }
1240                 break;
1241
1242         case -ENODATA:
1243                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1244                         inc_all_io_entry(pool, bio);
1245                         cell_defer_no_holder(tc, cell);
1246
1247                         remap_to_origin_and_issue(tc, bio);
1248                 } else
1249                         provision_block(tc, bio, block, cell);
1250                 break;
1251
1252         default:
1253                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1254                             __func__, r);
1255                 cell_defer_no_holder(tc, cell);
1256                 bio_io_error(bio);
1257                 break;
1258         }
1259 }
1260
1261 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1262 {
1263         int r;
1264         int rw = bio_data_dir(bio);
1265         dm_block_t block = get_bio_block(tc, bio);
1266         struct dm_thin_lookup_result lookup_result;
1267
1268         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1269         switch (r) {
1270         case 0:
1271                 if (lookup_result.shared && (rw == WRITE) && bio->bi_size)
1272                         bio_io_error(bio);
1273                 else {
1274                         inc_all_io_entry(tc->pool, bio);
1275                         remap_and_issue(tc, bio, lookup_result.block);
1276                 }
1277                 break;
1278
1279         case -ENODATA:
1280                 if (rw != READ) {
1281                         bio_io_error(bio);
1282                         break;
1283                 }
1284
1285                 if (tc->origin_dev) {
1286                         inc_all_io_entry(tc->pool, bio);
1287                         remap_to_origin_and_issue(tc, bio);
1288                         break;
1289                 }
1290
1291                 zero_fill_bio(bio);
1292                 bio_endio(bio, 0);
1293                 break;
1294
1295         default:
1296                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1297                             __func__, r);
1298                 bio_io_error(bio);
1299                 break;
1300         }
1301 }
1302
1303 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1304 {
1305         bio_io_error(bio);
1306 }
1307
1308 /*
1309  * FIXME: should we also commit due to size of transaction, measured in
1310  * metadata blocks?
1311  */
1312 static int need_commit_due_to_time(struct pool *pool)
1313 {
1314         return jiffies < pool->last_commit_jiffies ||
1315                jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1316 }
1317
1318 static void process_deferred_bios(struct pool *pool)
1319 {
1320         unsigned long flags;
1321         struct bio *bio;
1322         struct bio_list bios;
1323
1324         bio_list_init(&bios);
1325
1326         spin_lock_irqsave(&pool->lock, flags);
1327         bio_list_merge(&bios, &pool->deferred_bios);
1328         bio_list_init(&pool->deferred_bios);
1329         spin_unlock_irqrestore(&pool->lock, flags);
1330
1331         while ((bio = bio_list_pop(&bios))) {
1332                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1333                 struct thin_c *tc = h->tc;
1334
1335                 /*
1336                  * If we've got no free new_mapping structs, and processing
1337                  * this bio might require one, we pause until there are some
1338                  * prepared mappings to process.
1339                  */
1340                 if (ensure_next_mapping(pool)) {
1341                         spin_lock_irqsave(&pool->lock, flags);
1342                         bio_list_merge(&pool->deferred_bios, &bios);
1343                         spin_unlock_irqrestore(&pool->lock, flags);
1344
1345                         break;
1346                 }
1347
1348                 if (bio->bi_rw & REQ_DISCARD)
1349                         pool->process_discard(tc, bio);
1350                 else
1351                         pool->process_bio(tc, bio);
1352         }
1353
1354         /*
1355          * If there are any deferred flush bios, we must commit
1356          * the metadata before issuing them.
1357          */
1358         bio_list_init(&bios);
1359         spin_lock_irqsave(&pool->lock, flags);
1360         bio_list_merge(&bios, &pool->deferred_flush_bios);
1361         bio_list_init(&pool->deferred_flush_bios);
1362         spin_unlock_irqrestore(&pool->lock, flags);
1363
1364         if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
1365                 return;
1366
1367         if (commit(pool)) {
1368                 while ((bio = bio_list_pop(&bios)))
1369                         bio_io_error(bio);
1370                 return;
1371         }
1372         pool->last_commit_jiffies = jiffies;
1373
1374         while ((bio = bio_list_pop(&bios)))
1375                 generic_make_request(bio);
1376 }
1377
1378 static void do_worker(struct work_struct *ws)
1379 {
1380         struct pool *pool = container_of(ws, struct pool, worker);
1381
1382         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1383         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1384         process_deferred_bios(pool);
1385 }
1386
1387 /*
1388  * We want to commit periodically so that not too much
1389  * unwritten data builds up.
1390  */
1391 static void do_waker(struct work_struct *ws)
1392 {
1393         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1394         wake_worker(pool);
1395         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1396 }
1397
1398 /*----------------------------------------------------------------*/
1399
1400 static enum pool_mode get_pool_mode(struct pool *pool)
1401 {
1402         return pool->pf.mode;
1403 }
1404
1405 static void set_pool_mode(struct pool *pool, enum pool_mode mode)
1406 {
1407         int r;
1408
1409         pool->pf.mode = mode;
1410
1411         switch (mode) {
1412         case PM_FAIL:
1413                 DMERR("%s: switching pool to failure mode",
1414                       dm_device_name(pool->pool_md));
1415                 dm_pool_metadata_read_only(pool->pmd);
1416                 pool->process_bio = process_bio_fail;
1417                 pool->process_discard = process_bio_fail;
1418                 pool->process_prepared_mapping = process_prepared_mapping_fail;
1419                 pool->process_prepared_discard = process_prepared_discard_fail;
1420                 break;
1421
1422         case PM_READ_ONLY:
1423                 DMERR("%s: switching pool to read-only mode",
1424                       dm_device_name(pool->pool_md));
1425                 r = dm_pool_abort_metadata(pool->pmd);
1426                 if (r) {
1427                         DMERR("%s: aborting transaction failed",
1428                               dm_device_name(pool->pool_md));
1429                         set_pool_mode(pool, PM_FAIL);
1430                 } else {
1431                         dm_pool_metadata_read_only(pool->pmd);
1432                         pool->process_bio = process_bio_read_only;
1433                         pool->process_discard = process_discard;
1434                         pool->process_prepared_mapping = process_prepared_mapping_fail;
1435                         pool->process_prepared_discard = process_prepared_discard_passdown;
1436                 }
1437                 break;
1438
1439         case PM_WRITE:
1440                 dm_pool_metadata_read_write(pool->pmd);
1441                 pool->process_bio = process_bio;
1442                 pool->process_discard = process_discard;
1443                 pool->process_prepared_mapping = process_prepared_mapping;
1444                 pool->process_prepared_discard = process_prepared_discard;
1445                 break;
1446         }
1447 }
1448
1449 /*
1450  * Rather than calling set_pool_mode directly, use these which describe the
1451  * reason for mode degradation.
1452  */
1453 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
1454 {
1455         DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1456                     dm_device_name(pool->pool_md), op, r);
1457
1458         set_pool_mode(pool, PM_READ_ONLY);
1459 }
1460
1461 /*----------------------------------------------------------------*/
1462
1463 /*
1464  * Mapping functions.
1465  */
1466
1467 /*
1468  * Called only while mapping a thin bio to hand it over to the workqueue.
1469  */
1470 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1471 {
1472         unsigned long flags;
1473         struct pool *pool = tc->pool;
1474
1475         spin_lock_irqsave(&pool->lock, flags);
1476         bio_list_add(&pool->deferred_bios, bio);
1477         spin_unlock_irqrestore(&pool->lock, flags);
1478
1479         wake_worker(pool);
1480 }
1481
1482 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1483 {
1484         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1485
1486         h->tc = tc;
1487         h->shared_read_entry = NULL;
1488         h->all_io_entry = NULL;
1489         h->overwrite_mapping = NULL;
1490 }
1491
1492 /*
1493  * Non-blocking function called from the thin target's map function.
1494  */
1495 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1496 {
1497         int r;
1498         struct thin_c *tc = ti->private;
1499         dm_block_t block = get_bio_block(tc, bio);
1500         struct dm_thin_device *td = tc->td;
1501         struct dm_thin_lookup_result result;
1502         struct dm_bio_prison_cell cell1, cell2;
1503         struct dm_bio_prison_cell *cell_result;
1504         struct dm_cell_key key;
1505
1506         thin_hook_bio(tc, bio);
1507
1508         if (get_pool_mode(tc->pool) == PM_FAIL) {
1509                 bio_io_error(bio);
1510                 return DM_MAPIO_SUBMITTED;
1511         }
1512
1513         if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1514                 thin_defer_bio(tc, bio);
1515                 return DM_MAPIO_SUBMITTED;
1516         }
1517
1518         r = dm_thin_find_block(td, block, 0, &result);
1519
1520         /*
1521          * Note that we defer readahead too.
1522          */
1523         switch (r) {
1524         case 0:
1525                 if (unlikely(result.shared)) {
1526                         /*
1527                          * We have a race condition here between the
1528                          * result.shared value returned by the lookup and
1529                          * snapshot creation, which may cause new
1530                          * sharing.
1531                          *
1532                          * To avoid this always quiesce the origin before
1533                          * taking the snap.  You want to do this anyway to
1534                          * ensure a consistent application view
1535                          * (i.e. lockfs).
1536                          *
1537                          * More distant ancestors are irrelevant. The
1538                          * shared flag will be set in their case.
1539                          */
1540                         thin_defer_bio(tc, bio);
1541                         return DM_MAPIO_SUBMITTED;
1542                 }
1543
1544                 build_virtual_key(tc->td, block, &key);
1545                 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
1546                         return DM_MAPIO_SUBMITTED;
1547
1548                 build_data_key(tc->td, result.block, &key);
1549                 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
1550                         cell_defer_no_holder_no_free(tc, &cell1);
1551                         return DM_MAPIO_SUBMITTED;
1552                 }
1553
1554                 inc_all_io_entry(tc->pool, bio);
1555                 cell_defer_no_holder_no_free(tc, &cell2);
1556                 cell_defer_no_holder_no_free(tc, &cell1);
1557
1558                 remap(tc, bio, result.block);
1559                 return DM_MAPIO_REMAPPED;
1560
1561         case -ENODATA:
1562                 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1563                         /*
1564                          * This block isn't provisioned, and we have no way
1565                          * of doing so.  Just error it.
1566                          */
1567                         bio_io_error(bio);
1568                         return DM_MAPIO_SUBMITTED;
1569                 }
1570                 /* fall through */
1571
1572         case -EWOULDBLOCK:
1573                 /*
1574                  * In future, the failed dm_thin_find_block above could
1575                  * provide the hint to load the metadata into cache.
1576                  */
1577                 thin_defer_bio(tc, bio);
1578                 return DM_MAPIO_SUBMITTED;
1579
1580         default:
1581                 /*
1582                  * Must always call bio_io_error on failure.
1583                  * dm_thin_find_block can fail with -EINVAL if the
1584                  * pool is switched to fail-io mode.
1585                  */
1586                 bio_io_error(bio);
1587                 return DM_MAPIO_SUBMITTED;
1588         }
1589 }
1590
1591 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1592 {
1593         int r;
1594         unsigned long flags;
1595         struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1596
1597         spin_lock_irqsave(&pt->pool->lock, flags);
1598         r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1599         spin_unlock_irqrestore(&pt->pool->lock, flags);
1600
1601         if (!r) {
1602                 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1603                 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1604         }
1605
1606         return r;
1607 }
1608
1609 static void __requeue_bios(struct pool *pool)
1610 {
1611         bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1612         bio_list_init(&pool->retry_on_resume_list);
1613 }
1614
1615 /*----------------------------------------------------------------
1616  * Binding of control targets to a pool object
1617  *--------------------------------------------------------------*/
1618 static bool data_dev_supports_discard(struct pool_c *pt)
1619 {
1620         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1621
1622         return q && blk_queue_discard(q);
1623 }
1624
1625 static bool is_factor(sector_t block_size, uint32_t n)
1626 {
1627         return !sector_div(block_size, n);
1628 }
1629
1630 /*
1631  * If discard_passdown was enabled verify that the data device
1632  * supports discards.  Disable discard_passdown if not.
1633  */
1634 static void disable_passdown_if_not_supported(struct pool_c *pt)
1635 {
1636         struct pool *pool = pt->pool;
1637         struct block_device *data_bdev = pt->data_dev->bdev;
1638         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1639         sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1640         const char *reason = NULL;
1641         char buf[BDEVNAME_SIZE];
1642
1643         if (!pt->adjusted_pf.discard_passdown)
1644                 return;
1645
1646         if (!data_dev_supports_discard(pt))
1647                 reason = "discard unsupported";
1648
1649         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1650                 reason = "max discard sectors smaller than a block";
1651
1652         else if (data_limits->discard_granularity > block_size)
1653                 reason = "discard granularity larger than a block";
1654
1655         else if (!is_factor(block_size, data_limits->discard_granularity))
1656                 reason = "discard granularity not a factor of block size";
1657
1658         if (reason) {
1659                 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1660                 pt->adjusted_pf.discard_passdown = false;
1661         }
1662 }
1663
1664 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1665 {
1666         struct pool_c *pt = ti->private;
1667
1668         /*
1669          * We want to make sure that a pool in PM_FAIL mode is never upgraded.
1670          */
1671         enum pool_mode old_mode = pool->pf.mode;
1672         enum pool_mode new_mode = pt->adjusted_pf.mode;
1673
1674         /*
1675          * If we were in PM_FAIL mode, rollback of metadata failed.  We're
1676          * not going to recover without a thin_repair.  So we never let the
1677          * pool move out of the old mode.  On the other hand a PM_READ_ONLY
1678          * may have been due to a lack of metadata or data space, and may
1679          * now work (ie. if the underlying devices have been resized).
1680          */
1681         if (old_mode == PM_FAIL)
1682                 new_mode = old_mode;
1683
1684         pool->ti = ti;
1685         pool->low_water_blocks = pt->low_water_blocks;
1686         pool->pf = pt->adjusted_pf;
1687
1688         set_pool_mode(pool, new_mode);
1689
1690         return 0;
1691 }
1692
1693 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1694 {
1695         if (pool->ti == ti)
1696                 pool->ti = NULL;
1697 }
1698
1699 /*----------------------------------------------------------------
1700  * Pool creation
1701  *--------------------------------------------------------------*/
1702 /* Initialize pool features. */
1703 static void pool_features_init(struct pool_features *pf)
1704 {
1705         pf->mode = PM_WRITE;
1706         pf->zero_new_blocks = true;
1707         pf->discard_enabled = true;
1708         pf->discard_passdown = true;
1709 }
1710
1711 static void __pool_destroy(struct pool *pool)
1712 {
1713         __pool_table_remove(pool);
1714
1715         if (dm_pool_metadata_close(pool->pmd) < 0)
1716                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1717
1718         dm_bio_prison_destroy(pool->prison);
1719         dm_kcopyd_client_destroy(pool->copier);
1720
1721         if (pool->wq)
1722                 destroy_workqueue(pool->wq);
1723
1724         if (pool->next_mapping)
1725                 mempool_free(pool->next_mapping, pool->mapping_pool);
1726         mempool_destroy(pool->mapping_pool);
1727         dm_deferred_set_destroy(pool->shared_read_ds);
1728         dm_deferred_set_destroy(pool->all_io_ds);
1729         kfree(pool);
1730 }
1731
1732 static struct kmem_cache *_new_mapping_cache;
1733
1734 static struct pool *pool_create(struct mapped_device *pool_md,
1735                                 struct block_device *metadata_dev,
1736                                 unsigned long block_size,
1737                                 int read_only, char **error)
1738 {
1739         int r;
1740         void *err_p;
1741         struct pool *pool;
1742         struct dm_pool_metadata *pmd;
1743         bool format_device = read_only ? false : true;
1744
1745         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
1746         if (IS_ERR(pmd)) {
1747                 *error = "Error creating metadata object";
1748                 return (struct pool *)pmd;
1749         }
1750
1751         pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1752         if (!pool) {
1753                 *error = "Error allocating memory for pool";
1754                 err_p = ERR_PTR(-ENOMEM);
1755                 goto bad_pool;
1756         }
1757
1758         pool->pmd = pmd;
1759         pool->sectors_per_block = block_size;
1760         if (block_size & (block_size - 1))
1761                 pool->sectors_per_block_shift = -1;
1762         else
1763                 pool->sectors_per_block_shift = __ffs(block_size);
1764         pool->low_water_blocks = 0;
1765         pool_features_init(&pool->pf);
1766         pool->prison = dm_bio_prison_create(PRISON_CELLS);
1767         if (!pool->prison) {
1768                 *error = "Error creating pool's bio prison";
1769                 err_p = ERR_PTR(-ENOMEM);
1770                 goto bad_prison;
1771         }
1772
1773         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
1774         if (IS_ERR(pool->copier)) {
1775                 r = PTR_ERR(pool->copier);
1776                 *error = "Error creating pool's kcopyd client";
1777                 err_p = ERR_PTR(r);
1778                 goto bad_kcopyd_client;
1779         }
1780
1781         /*
1782          * Create singlethreaded workqueue that will service all devices
1783          * that use this metadata.
1784          */
1785         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1786         if (!pool->wq) {
1787                 *error = "Error creating pool's workqueue";
1788                 err_p = ERR_PTR(-ENOMEM);
1789                 goto bad_wq;
1790         }
1791
1792         INIT_WORK(&pool->worker, do_worker);
1793         INIT_DELAYED_WORK(&pool->waker, do_waker);
1794         spin_lock_init(&pool->lock);
1795         bio_list_init(&pool->deferred_bios);
1796         bio_list_init(&pool->deferred_flush_bios);
1797         INIT_LIST_HEAD(&pool->prepared_mappings);
1798         INIT_LIST_HEAD(&pool->prepared_discards);
1799         pool->low_water_triggered = false;
1800         pool->no_free_space = false;
1801         bio_list_init(&pool->retry_on_resume_list);
1802
1803         pool->shared_read_ds = dm_deferred_set_create();
1804         if (!pool->shared_read_ds) {
1805                 *error = "Error creating pool's shared read deferred set";
1806                 err_p = ERR_PTR(-ENOMEM);
1807                 goto bad_shared_read_ds;
1808         }
1809
1810         pool->all_io_ds = dm_deferred_set_create();
1811         if (!pool->all_io_ds) {
1812                 *error = "Error creating pool's all io deferred set";
1813                 err_p = ERR_PTR(-ENOMEM);
1814                 goto bad_all_io_ds;
1815         }
1816
1817         pool->next_mapping = NULL;
1818         pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1819                                                       _new_mapping_cache);
1820         if (!pool->mapping_pool) {
1821                 *error = "Error creating pool's mapping mempool";
1822                 err_p = ERR_PTR(-ENOMEM);
1823                 goto bad_mapping_pool;
1824         }
1825
1826         pool->ref_count = 1;
1827         pool->last_commit_jiffies = jiffies;
1828         pool->pool_md = pool_md;
1829         pool->md_dev = metadata_dev;
1830         __pool_table_insert(pool);
1831
1832         return pool;
1833
1834 bad_mapping_pool:
1835         dm_deferred_set_destroy(pool->all_io_ds);
1836 bad_all_io_ds:
1837         dm_deferred_set_destroy(pool->shared_read_ds);
1838 bad_shared_read_ds:
1839         destroy_workqueue(pool->wq);
1840 bad_wq:
1841         dm_kcopyd_client_destroy(pool->copier);
1842 bad_kcopyd_client:
1843         dm_bio_prison_destroy(pool->prison);
1844 bad_prison:
1845         kfree(pool);
1846 bad_pool:
1847         if (dm_pool_metadata_close(pmd))
1848                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1849
1850         return err_p;
1851 }
1852
1853 static void __pool_inc(struct pool *pool)
1854 {
1855         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1856         pool->ref_count++;
1857 }
1858
1859 static void __pool_dec(struct pool *pool)
1860 {
1861         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1862         BUG_ON(!pool->ref_count);
1863         if (!--pool->ref_count)
1864                 __pool_destroy(pool);
1865 }
1866
1867 static struct pool *__pool_find(struct mapped_device *pool_md,
1868                                 struct block_device *metadata_dev,
1869                                 unsigned long block_size, int read_only,
1870                                 char **error, int *created)
1871 {
1872         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1873
1874         if (pool) {
1875                 if (pool->pool_md != pool_md) {
1876                         *error = "metadata device already in use by a pool";
1877                         return ERR_PTR(-EBUSY);
1878                 }
1879                 __pool_inc(pool);
1880
1881         } else {
1882                 pool = __pool_table_lookup(pool_md);
1883                 if (pool) {
1884                         if (pool->md_dev != metadata_dev) {
1885                                 *error = "different pool cannot replace a pool";
1886                                 return ERR_PTR(-EINVAL);
1887                         }
1888                         __pool_inc(pool);
1889
1890                 } else {
1891                         pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
1892                         *created = 1;
1893                 }
1894         }
1895
1896         return pool;
1897 }
1898
1899 /*----------------------------------------------------------------
1900  * Pool target methods
1901  *--------------------------------------------------------------*/
1902 static void pool_dtr(struct dm_target *ti)
1903 {
1904         struct pool_c *pt = ti->private;
1905
1906         mutex_lock(&dm_thin_pool_table.mutex);
1907
1908         unbind_control_target(pt->pool, ti);
1909         __pool_dec(pt->pool);
1910         dm_put_device(ti, pt->metadata_dev);
1911         dm_put_device(ti, pt->data_dev);
1912         kfree(pt);
1913
1914         mutex_unlock(&dm_thin_pool_table.mutex);
1915 }
1916
1917 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1918                                struct dm_target *ti)
1919 {
1920         int r;
1921         unsigned argc;
1922         const char *arg_name;
1923
1924         static struct dm_arg _args[] = {
1925                 {0, 3, "Invalid number of pool feature arguments"},
1926         };
1927
1928         /*
1929          * No feature arguments supplied.
1930          */
1931         if (!as->argc)
1932                 return 0;
1933
1934         r = dm_read_arg_group(_args, as, &argc, &ti->error);
1935         if (r)
1936                 return -EINVAL;
1937
1938         while (argc && !r) {
1939                 arg_name = dm_shift_arg(as);
1940                 argc--;
1941
1942                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
1943                         pf->zero_new_blocks = false;
1944
1945                 else if (!strcasecmp(arg_name, "ignore_discard"))
1946                         pf->discard_enabled = false;
1947
1948                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
1949                         pf->discard_passdown = false;
1950
1951                 else if (!strcasecmp(arg_name, "read_only"))
1952                         pf->mode = PM_READ_ONLY;
1953
1954                 else {
1955                         ti->error = "Unrecognised pool feature requested";
1956                         r = -EINVAL;
1957                         break;
1958                 }
1959         }
1960
1961         return r;
1962 }
1963
1964 static void metadata_low_callback(void *context)
1965 {
1966         struct pool *pool = context;
1967
1968         DMWARN("%s: reached low water mark for metadata device: sending event.",
1969                dm_device_name(pool->pool_md));
1970
1971         dm_table_event(pool->ti->table);
1972 }
1973
1974 static sector_t get_metadata_dev_size(struct block_device *bdev)
1975 {
1976         sector_t metadata_dev_size = i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
1977         char buffer[BDEVNAME_SIZE];
1978
1979         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) {
1980                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1981                        bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
1982                 metadata_dev_size = THIN_METADATA_MAX_SECTORS_WARNING;
1983         }
1984
1985         return metadata_dev_size;
1986 }
1987
1988 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
1989 {
1990         sector_t metadata_dev_size = get_metadata_dev_size(bdev);
1991
1992         sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE >> SECTOR_SHIFT);
1993
1994         return metadata_dev_size;
1995 }
1996
1997 /*
1998  * When a metadata threshold is crossed a dm event is triggered, and
1999  * userland should respond by growing the metadata device.  We could let
2000  * userland set the threshold, like we do with the data threshold, but I'm
2001  * not sure they know enough to do this well.
2002  */
2003 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
2004 {
2005         /*
2006          * 4M is ample for all ops with the possible exception of thin
2007          * device deletion which is harmless if it fails (just retry the
2008          * delete after you've grown the device).
2009          */
2010         dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
2011         return min((dm_block_t)1024ULL /* 4M */, quarter);
2012 }
2013
2014 /*
2015  * thin-pool <metadata dev> <data dev>
2016  *           <data block size (sectors)>
2017  *           <low water mark (blocks)>
2018  *           [<#feature args> [<arg>]*]
2019  *
2020  * Optional feature arguments are:
2021  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2022  *           ignore_discard: disable discard
2023  *           no_discard_passdown: don't pass discards down to the data device
2024  */
2025 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2026 {
2027         int r, pool_created = 0;
2028         struct pool_c *pt;
2029         struct pool *pool;
2030         struct pool_features pf;
2031         struct dm_arg_set as;
2032         struct dm_dev *data_dev;
2033         unsigned long block_size;
2034         dm_block_t low_water_blocks;
2035         struct dm_dev *metadata_dev;
2036         fmode_t metadata_mode;
2037
2038         /*
2039          * FIXME Remove validation from scope of lock.
2040          */
2041         mutex_lock(&dm_thin_pool_table.mutex);
2042
2043         if (argc < 4) {
2044                 ti->error = "Invalid argument count";
2045                 r = -EINVAL;
2046                 goto out_unlock;
2047         }
2048
2049         as.argc = argc;
2050         as.argv = argv;
2051
2052         /*
2053          * Set default pool features.
2054          */
2055         pool_features_init(&pf);
2056
2057         dm_consume_args(&as, 4);
2058         r = parse_pool_features(&as, &pf, ti);
2059         if (r)
2060                 goto out_unlock;
2061
2062         metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2063         r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2064         if (r) {
2065                 ti->error = "Error opening metadata block device";
2066                 goto out_unlock;
2067         }
2068
2069         /*
2070          * Run for the side-effect of possibly issuing a warning if the
2071          * device is too big.
2072          */
2073         (void) get_metadata_dev_size(metadata_dev->bdev);
2074
2075         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2076         if (r) {
2077                 ti->error = "Error getting data device";
2078                 goto out_metadata;
2079         }
2080
2081         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2082             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2083             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2084             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2085                 ti->error = "Invalid block size";
2086                 r = -EINVAL;
2087                 goto out;
2088         }
2089
2090         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2091                 ti->error = "Invalid low water mark";
2092                 r = -EINVAL;
2093                 goto out;
2094         }
2095
2096         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2097         if (!pt) {
2098                 r = -ENOMEM;
2099                 goto out;
2100         }
2101
2102         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2103                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2104         if (IS_ERR(pool)) {
2105                 r = PTR_ERR(pool);
2106                 goto out_free_pt;
2107         }
2108
2109         /*
2110          * 'pool_created' reflects whether this is the first table load.
2111          * Top level discard support is not allowed to be changed after
2112          * initial load.  This would require a pool reload to trigger thin
2113          * device changes.
2114          */
2115         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2116                 ti->error = "Discard support cannot be disabled once enabled";
2117                 r = -EINVAL;
2118                 goto out_flags_changed;
2119         }
2120
2121         pt->pool = pool;
2122         pt->ti = ti;
2123         pt->metadata_dev = metadata_dev;
2124         pt->data_dev = data_dev;
2125         pt->low_water_blocks = low_water_blocks;
2126         pt->adjusted_pf = pt->requested_pf = pf;
2127         ti->num_flush_bios = 1;
2128
2129         /*
2130          * Only need to enable discards if the pool should pass
2131          * them down to the data device.  The thin device's discard
2132          * processing will cause mappings to be removed from the btree.
2133          */
2134         ti->discard_zeroes_data_unsupported = true;
2135         if (pf.discard_enabled && pf.discard_passdown) {
2136                 ti->num_discard_bios = 1;
2137
2138                 /*
2139                  * Setting 'discards_supported' circumvents the normal
2140                  * stacking of discard limits (this keeps the pool and
2141                  * thin devices' discard limits consistent).
2142                  */
2143                 ti->discards_supported = true;
2144         }
2145         ti->private = pt;
2146
2147         r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2148                                                 calc_metadata_threshold(pt),
2149                                                 metadata_low_callback,
2150                                                 pool);
2151         if (r)
2152                 goto out_free_pt;
2153
2154         pt->callbacks.congested_fn = pool_is_congested;
2155         dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2156
2157         mutex_unlock(&dm_thin_pool_table.mutex);
2158
2159         return 0;
2160
2161 out_flags_changed:
2162         __pool_dec(pool);
2163 out_free_pt:
2164         kfree(pt);
2165 out:
2166         dm_put_device(ti, data_dev);
2167 out_metadata:
2168         dm_put_device(ti, metadata_dev);
2169 out_unlock:
2170         mutex_unlock(&dm_thin_pool_table.mutex);
2171
2172         return r;
2173 }
2174
2175 static int pool_map(struct dm_target *ti, struct bio *bio)
2176 {
2177         int r;
2178         struct pool_c *pt = ti->private;
2179         struct pool *pool = pt->pool;
2180         unsigned long flags;
2181
2182         /*
2183          * As this is a singleton target, ti->begin is always zero.
2184          */
2185         spin_lock_irqsave(&pool->lock, flags);
2186         bio->bi_bdev = pt->data_dev->bdev;
2187         r = DM_MAPIO_REMAPPED;
2188         spin_unlock_irqrestore(&pool->lock, flags);
2189
2190         return r;
2191 }
2192
2193 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2194 {
2195         int r;
2196         struct pool_c *pt = ti->private;
2197         struct pool *pool = pt->pool;
2198         sector_t data_size = ti->len;
2199         dm_block_t sb_data_size;
2200
2201         *need_commit = false;
2202
2203         (void) sector_div(data_size, pool->sectors_per_block);
2204
2205         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2206         if (r) {
2207                 DMERR("%s: failed to retrieve data device size",
2208                       dm_device_name(pool->pool_md));
2209                 return r;
2210         }
2211
2212         if (data_size < sb_data_size) {
2213                 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
2214                       dm_device_name(pool->pool_md),
2215                       (unsigned long long)data_size, sb_data_size);
2216                 return -EINVAL;
2217
2218         } else if (data_size > sb_data_size) {
2219                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2220                 if (r) {
2221                         metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
2222                         return r;
2223                 }
2224
2225                 *need_commit = true;
2226         }
2227
2228         return 0;
2229 }
2230
2231 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
2232 {
2233         int r;
2234         struct pool_c *pt = ti->private;
2235         struct pool *pool = pt->pool;
2236         dm_block_t metadata_dev_size, sb_metadata_dev_size;
2237
2238         *need_commit = false;
2239
2240         metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
2241
2242         r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
2243         if (r) {
2244                 DMERR("%s: failed to retrieve metadata device size",
2245                       dm_device_name(pool->pool_md));
2246                 return r;
2247         }
2248
2249         if (metadata_dev_size < sb_metadata_dev_size) {
2250                 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
2251                       dm_device_name(pool->pool_md),
2252                       metadata_dev_size, sb_metadata_dev_size);
2253                 return -EINVAL;
2254
2255         } else if (metadata_dev_size > sb_metadata_dev_size) {
2256                 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
2257                 if (r) {
2258                         metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
2259                         return r;
2260                 }
2261
2262                 *need_commit = true;
2263         }
2264
2265         return 0;
2266 }
2267
2268 /*
2269  * Retrieves the number of blocks of the data device from
2270  * the superblock and compares it to the actual device size,
2271  * thus resizing the data device in case it has grown.
2272  *
2273  * This both copes with opening preallocated data devices in the ctr
2274  * being followed by a resume
2275  * -and-
2276  * calling the resume method individually after userspace has
2277  * grown the data device in reaction to a table event.
2278  */
2279 static int pool_preresume(struct dm_target *ti)
2280 {
2281         int r;
2282         bool need_commit1, need_commit2;
2283         struct pool_c *pt = ti->private;
2284         struct pool *pool = pt->pool;
2285
2286         /*
2287          * Take control of the pool object.
2288          */
2289         r = bind_control_target(pool, ti);
2290         if (r)
2291                 return r;
2292
2293         r = maybe_resize_data_dev(ti, &need_commit1);
2294         if (r)
2295                 return r;
2296
2297         r = maybe_resize_metadata_dev(ti, &need_commit2);
2298         if (r)
2299                 return r;
2300
2301         if (need_commit1 || need_commit2)
2302                 (void) commit(pool);
2303
2304         return 0;
2305 }
2306
2307 static void pool_resume(struct dm_target *ti)
2308 {
2309         struct pool_c *pt = ti->private;
2310         struct pool *pool = pt->pool;
2311         unsigned long flags;
2312
2313         spin_lock_irqsave(&pool->lock, flags);
2314         pool->low_water_triggered = false;
2315         pool->no_free_space = false;
2316         __requeue_bios(pool);
2317         spin_unlock_irqrestore(&pool->lock, flags);
2318
2319         do_waker(&pool->waker.work);
2320 }
2321
2322 static void pool_postsuspend(struct dm_target *ti)
2323 {
2324         struct pool_c *pt = ti->private;
2325         struct pool *pool = pt->pool;
2326
2327         cancel_delayed_work(&pool->waker);
2328         flush_workqueue(pool->wq);
2329         (void) commit(pool);
2330 }
2331
2332 static int check_arg_count(unsigned argc, unsigned args_required)
2333 {
2334         if (argc != args_required) {
2335                 DMWARN("Message received with %u arguments instead of %u.",
2336                        argc, args_required);
2337                 return -EINVAL;
2338         }
2339
2340         return 0;
2341 }
2342
2343 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2344 {
2345         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2346             *dev_id <= MAX_DEV_ID)
2347                 return 0;
2348
2349         if (warning)
2350                 DMWARN("Message received with invalid device id: %s", arg);
2351
2352         return -EINVAL;
2353 }
2354
2355 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2356 {
2357         dm_thin_id dev_id;
2358         int r;
2359
2360         r = check_arg_count(argc, 2);
2361         if (r)
2362                 return r;
2363
2364         r = read_dev_id(argv[1], &dev_id, 1);
2365         if (r)
2366                 return r;
2367
2368         r = dm_pool_create_thin(pool->pmd, dev_id);
2369         if (r) {
2370                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2371                        argv[1]);
2372                 return r;
2373         }
2374
2375         return 0;
2376 }
2377
2378 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2379 {
2380         dm_thin_id dev_id;
2381         dm_thin_id origin_dev_id;
2382         int r;
2383
2384         r = check_arg_count(argc, 3);
2385         if (r)
2386                 return r;
2387
2388         r = read_dev_id(argv[1], &dev_id, 1);
2389         if (r)
2390                 return r;
2391
2392         r = read_dev_id(argv[2], &origin_dev_id, 1);
2393         if (r)
2394                 return r;
2395
2396         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2397         if (r) {
2398                 DMWARN("Creation of new snapshot %s of device %s failed.",
2399                        argv[1], argv[2]);
2400                 return r;
2401         }
2402
2403         return 0;
2404 }
2405
2406 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2407 {
2408         dm_thin_id dev_id;
2409         int r;
2410
2411         r = check_arg_count(argc, 2);
2412         if (r)
2413                 return r;
2414
2415         r = read_dev_id(argv[1], &dev_id, 1);
2416         if (r)
2417                 return r;
2418
2419         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2420         if (r)
2421                 DMWARN("Deletion of thin device %s failed.", argv[1]);
2422
2423         return r;
2424 }
2425
2426 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2427 {
2428         dm_thin_id old_id, new_id;
2429         int r;
2430
2431         r = check_arg_count(argc, 3);
2432         if (r)
2433                 return r;
2434
2435         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2436                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2437                 return -EINVAL;
2438         }
2439
2440         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2441                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2442                 return -EINVAL;
2443         }
2444
2445         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2446         if (r) {
2447                 DMWARN("Failed to change transaction id from %s to %s.",
2448                        argv[1], argv[2]);
2449                 return r;
2450         }
2451
2452         return 0;
2453 }
2454
2455 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2456 {
2457         int r;
2458
2459         r = check_arg_count(argc, 1);
2460         if (r)
2461                 return r;
2462
2463         (void) commit(pool);
2464
2465         r = dm_pool_reserve_metadata_snap(pool->pmd);
2466         if (r)
2467                 DMWARN("reserve_metadata_snap message failed.");
2468
2469         return r;
2470 }
2471
2472 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2473 {
2474         int r;
2475
2476         r = check_arg_count(argc, 1);
2477         if (r)
2478                 return r;
2479
2480         r = dm_pool_release_metadata_snap(pool->pmd);
2481         if (r)
2482                 DMWARN("release_metadata_snap message failed.");
2483
2484         return r;
2485 }
2486
2487 /*
2488  * Messages supported:
2489  *   create_thin        <dev_id>
2490  *   create_snap        <dev_id> <origin_id>
2491  *   delete             <dev_id>
2492  *   trim               <dev_id> <new_size_in_sectors>
2493  *   set_transaction_id <current_trans_id> <new_trans_id>
2494  *   reserve_metadata_snap
2495  *   release_metadata_snap
2496  */
2497 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2498 {
2499         int r = -EINVAL;
2500         struct pool_c *pt = ti->private;
2501         struct pool *pool = pt->pool;
2502
2503         if (!strcasecmp(argv[0], "create_thin"))
2504                 r = process_create_thin_mesg(argc, argv, pool);
2505
2506         else if (!strcasecmp(argv[0], "create_snap"))
2507                 r = process_create_snap_mesg(argc, argv, pool);
2508
2509         else if (!strcasecmp(argv[0], "delete"))
2510                 r = process_delete_mesg(argc, argv, pool);
2511
2512         else if (!strcasecmp(argv[0], "set_transaction_id"))
2513                 r = process_set_transaction_id_mesg(argc, argv, pool);
2514
2515         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2516                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2517
2518         else if (!strcasecmp(argv[0], "release_metadata_snap"))
2519                 r = process_release_metadata_snap_mesg(argc, argv, pool);
2520
2521         else
2522                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2523
2524         if (!r)
2525                 (void) commit(pool);
2526
2527         return r;
2528 }
2529
2530 static void emit_flags(struct pool_features *pf, char *result,
2531                        unsigned sz, unsigned maxlen)
2532 {
2533         unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2534                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY);
2535         DMEMIT("%u ", count);
2536
2537         if (!pf->zero_new_blocks)
2538                 DMEMIT("skip_block_zeroing ");
2539
2540         if (!pf->discard_enabled)
2541                 DMEMIT("ignore_discard ");
2542
2543         if (!pf->discard_passdown)
2544                 DMEMIT("no_discard_passdown ");
2545
2546         if (pf->mode == PM_READ_ONLY)
2547                 DMEMIT("read_only ");
2548 }
2549
2550 /*
2551  * Status line is:
2552  *    <transaction id> <used metadata sectors>/<total metadata sectors>
2553  *    <used data sectors>/<total data sectors> <held metadata root>
2554  */
2555 static void pool_status(struct dm_target *ti, status_type_t type,
2556                         unsigned status_flags, char *result, unsigned maxlen)
2557 {
2558         int r;
2559         unsigned sz = 0;
2560         uint64_t transaction_id;
2561         dm_block_t nr_free_blocks_data;
2562         dm_block_t nr_free_blocks_metadata;
2563         dm_block_t nr_blocks_data;
2564         dm_block_t nr_blocks_metadata;
2565         dm_block_t held_root;
2566         char buf[BDEVNAME_SIZE];
2567         char buf2[BDEVNAME_SIZE];
2568         struct pool_c *pt = ti->private;
2569         struct pool *pool = pt->pool;
2570
2571         switch (type) {
2572         case STATUSTYPE_INFO:
2573                 if (get_pool_mode(pool) == PM_FAIL) {
2574                         DMEMIT("Fail");
2575                         break;
2576                 }
2577
2578                 /* Commit to ensure statistics aren't out-of-date */
2579                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2580                         (void) commit(pool);
2581
2582                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
2583                 if (r) {
2584                         DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
2585                               dm_device_name(pool->pool_md), r);
2586                         goto err;
2587                 }
2588
2589                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
2590                 if (r) {
2591                         DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
2592                               dm_device_name(pool->pool_md), r);
2593                         goto err;
2594                 }
2595
2596                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2597                 if (r) {
2598                         DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
2599                               dm_device_name(pool->pool_md), r);
2600                         goto err;
2601                 }
2602
2603                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
2604                 if (r) {
2605                         DMERR("%s: dm_pool_get_free_block_count returned %d",
2606                               dm_device_name(pool->pool_md), r);
2607                         goto err;
2608                 }
2609
2610                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2611                 if (r) {
2612                         DMERR("%s: dm_pool_get_data_dev_size returned %d",
2613                               dm_device_name(pool->pool_md), r);
2614                         goto err;
2615                 }
2616
2617                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2618                 if (r) {
2619                         DMERR("%s: dm_pool_get_metadata_snap returned %d",
2620                               dm_device_name(pool->pool_md), r);
2621                         goto err;
2622                 }
2623
2624                 DMEMIT("%llu %llu/%llu %llu/%llu ",
2625                        (unsigned long long)transaction_id,
2626                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2627                        (unsigned long long)nr_blocks_metadata,
2628                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2629                        (unsigned long long)nr_blocks_data);
2630
2631                 if (held_root)
2632                         DMEMIT("%llu ", held_root);
2633                 else
2634                         DMEMIT("- ");
2635
2636                 if (pool->pf.mode == PM_READ_ONLY)
2637                         DMEMIT("ro ");
2638                 else
2639                         DMEMIT("rw ");
2640
2641                 if (!pool->pf.discard_enabled)
2642                         DMEMIT("ignore_discard");
2643                 else if (pool->pf.discard_passdown)
2644                         DMEMIT("discard_passdown");
2645                 else
2646                         DMEMIT("no_discard_passdown");
2647
2648                 break;
2649
2650         case STATUSTYPE_TABLE:
2651                 DMEMIT("%s %s %lu %llu ",
2652                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2653                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2654                        (unsigned long)pool->sectors_per_block,
2655                        (unsigned long long)pt->low_water_blocks);
2656                 emit_flags(&pt->requested_pf, result, sz, maxlen);
2657                 break;
2658         }
2659         return;
2660
2661 err:
2662         DMEMIT("Error");
2663 }
2664
2665 static int pool_iterate_devices(struct dm_target *ti,
2666                                 iterate_devices_callout_fn fn, void *data)
2667 {
2668         struct pool_c *pt = ti->private;
2669
2670         return fn(ti, pt->data_dev, 0, ti->len, data);
2671 }
2672
2673 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2674                       struct bio_vec *biovec, int max_size)
2675 {
2676         struct pool_c *pt = ti->private;
2677         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2678
2679         if (!q->merge_bvec_fn)
2680                 return max_size;
2681
2682         bvm->bi_bdev = pt->data_dev->bdev;
2683
2684         return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2685 }
2686
2687 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
2688 {
2689         struct pool *pool = pt->pool;
2690         struct queue_limits *data_limits;
2691
2692         limits->max_discard_sectors = pool->sectors_per_block;
2693
2694         /*
2695          * discard_granularity is just a hint, and not enforced.
2696          */
2697         if (pt->adjusted_pf.discard_passdown) {
2698                 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
2699                 limits->discard_granularity = data_limits->discard_granularity;
2700         } else
2701                 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2702 }
2703
2704 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2705 {
2706         struct pool_c *pt = ti->private;
2707         struct pool *pool = pt->pool;
2708         uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
2709
2710         /*
2711          * If the system-determined stacked limits are compatible with the
2712          * pool's blocksize (io_opt is a factor) do not override them.
2713          */
2714         if (io_opt_sectors < pool->sectors_per_block ||
2715             do_div(io_opt_sectors, pool->sectors_per_block)) {
2716                 blk_limits_io_min(limits, 0);
2717                 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2718         }
2719
2720         /*
2721          * pt->adjusted_pf is a staging area for the actual features to use.
2722          * They get transferred to the live pool in bind_control_target()
2723          * called from pool_preresume().
2724          */
2725         if (!pt->adjusted_pf.discard_enabled) {
2726                 /*
2727                  * Must explicitly disallow stacking discard limits otherwise the
2728                  * block layer will stack them if pool's data device has support.
2729                  * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
2730                  * user to see that, so make sure to set all discard limits to 0.
2731                  */
2732                 limits->discard_granularity = 0;
2733                 return;
2734         }
2735
2736         disable_passdown_if_not_supported(pt);
2737
2738         set_discard_limits(pt, limits);
2739 }
2740
2741 static struct target_type pool_target = {
2742         .name = "thin-pool",
2743         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2744                     DM_TARGET_IMMUTABLE,
2745         .version = {1, 9, 0},
2746         .module = THIS_MODULE,
2747         .ctr = pool_ctr,
2748         .dtr = pool_dtr,
2749         .map = pool_map,
2750         .postsuspend = pool_postsuspend,
2751         .preresume = pool_preresume,
2752         .resume = pool_resume,
2753         .message = pool_message,
2754         .status = pool_status,
2755         .merge = pool_merge,
2756         .iterate_devices = pool_iterate_devices,
2757         .io_hints = pool_io_hints,
2758 };
2759
2760 /*----------------------------------------------------------------
2761  * Thin target methods
2762  *--------------------------------------------------------------*/
2763 static void thin_dtr(struct dm_target *ti)
2764 {
2765         struct thin_c *tc = ti->private;
2766
2767         mutex_lock(&dm_thin_pool_table.mutex);
2768
2769         __pool_dec(tc->pool);
2770         dm_pool_close_thin_device(tc->td);
2771         dm_put_device(ti, tc->pool_dev);
2772         if (tc->origin_dev)
2773                 dm_put_device(ti, tc->origin_dev);
2774         kfree(tc);
2775
2776         mutex_unlock(&dm_thin_pool_table.mutex);
2777 }
2778
2779 /*
2780  * Thin target parameters:
2781  *
2782  * <pool_dev> <dev_id> [origin_dev]
2783  *
2784  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2785  * dev_id: the internal device identifier
2786  * origin_dev: a device external to the pool that should act as the origin
2787  *
2788  * If the pool device has discards disabled, they get disabled for the thin
2789  * device as well.
2790  */
2791 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2792 {
2793         int r;
2794         struct thin_c *tc;
2795         struct dm_dev *pool_dev, *origin_dev;
2796         struct mapped_device *pool_md;
2797
2798         mutex_lock(&dm_thin_pool_table.mutex);
2799
2800         if (argc != 2 && argc != 3) {
2801                 ti->error = "Invalid argument count";
2802                 r = -EINVAL;
2803                 goto out_unlock;
2804         }
2805
2806         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2807         if (!tc) {
2808                 ti->error = "Out of memory";
2809                 r = -ENOMEM;
2810                 goto out_unlock;
2811         }
2812
2813         if (argc == 3) {
2814                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2815                 if (r) {
2816                         ti->error = "Error opening origin device";
2817                         goto bad_origin_dev;
2818                 }
2819                 tc->origin_dev = origin_dev;
2820         }
2821
2822         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2823         if (r) {
2824                 ti->error = "Error opening pool device";
2825                 goto bad_pool_dev;
2826         }
2827         tc->pool_dev = pool_dev;
2828
2829         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2830                 ti->error = "Invalid device id";
2831                 r = -EINVAL;
2832                 goto bad_common;
2833         }
2834
2835         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2836         if (!pool_md) {
2837                 ti->error = "Couldn't get pool mapped device";
2838                 r = -EINVAL;
2839                 goto bad_common;
2840         }
2841
2842         tc->pool = __pool_table_lookup(pool_md);
2843         if (!tc->pool) {
2844                 ti->error = "Couldn't find pool object";
2845                 r = -EINVAL;
2846                 goto bad_pool_lookup;
2847         }
2848         __pool_inc(tc->pool);
2849
2850         if (get_pool_mode(tc->pool) == PM_FAIL) {
2851                 ti->error = "Couldn't open thin device, Pool is in fail mode";
2852                 goto bad_thin_open;
2853         }
2854
2855         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2856         if (r) {
2857                 ti->error = "Couldn't open thin internal device";
2858                 goto bad_thin_open;
2859         }
2860
2861         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
2862         if (r)
2863                 goto bad_thin_open;
2864
2865         ti->num_flush_bios = 1;
2866         ti->flush_supported = true;
2867         ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
2868
2869         /* In case the pool supports discards, pass them on. */
2870         ti->discard_zeroes_data_unsupported = true;
2871         if (tc->pool->pf.discard_enabled) {
2872                 ti->discards_supported = true;
2873                 ti->num_discard_bios = 1;
2874                 /* Discard bios must be split on a block boundary */
2875                 ti->split_discard_bios = true;
2876         }
2877
2878         dm_put(pool_md);
2879
2880         mutex_unlock(&dm_thin_pool_table.mutex);
2881
2882         return 0;
2883
2884 bad_thin_open:
2885         __pool_dec(tc->pool);
2886 bad_pool_lookup:
2887         dm_put(pool_md);
2888 bad_common:
2889         dm_put_device(ti, tc->pool_dev);
2890 bad_pool_dev:
2891         if (tc->origin_dev)
2892                 dm_put_device(ti, tc->origin_dev);
2893 bad_origin_dev:
2894         kfree(tc);
2895 out_unlock:
2896         mutex_unlock(&dm_thin_pool_table.mutex);
2897
2898         return r;
2899 }
2900
2901 static int thin_map(struct dm_target *ti, struct bio *bio)
2902 {
2903         bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
2904
2905         return thin_bio_map(ti, bio);
2906 }
2907
2908 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
2909 {
2910         unsigned long flags;
2911         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2912         struct list_head work;
2913         struct dm_thin_new_mapping *m, *tmp;
2914         struct pool *pool = h->tc->pool;
2915
2916         if (h->shared_read_entry) {
2917                 INIT_LIST_HEAD(&work);
2918                 dm_deferred_entry_dec(h->shared_read_entry, &work);
2919
2920                 spin_lock_irqsave(&pool->lock, flags);
2921                 list_for_each_entry_safe(m, tmp, &work, list) {
2922                         list_del(&m->list);
2923                         m->quiesced = true;
2924                         __maybe_add_mapping(m);
2925                 }
2926                 spin_unlock_irqrestore(&pool->lock, flags);
2927         }
2928
2929         if (h->all_io_entry) {
2930                 INIT_LIST_HEAD(&work);
2931                 dm_deferred_entry_dec(h->all_io_entry, &work);
2932                 if (!list_empty(&work)) {
2933                         spin_lock_irqsave(&pool->lock, flags);
2934                         list_for_each_entry_safe(m, tmp, &work, list)
2935                                 list_add_tail(&m->list, &pool->prepared_discards);
2936                         spin_unlock_irqrestore(&pool->lock, flags);
2937                         wake_worker(pool);
2938                 }
2939         }
2940
2941         return 0;
2942 }
2943
2944 static void thin_postsuspend(struct dm_target *ti)
2945 {
2946         if (dm_noflush_suspending(ti))
2947                 requeue_io((struct thin_c *)ti->private);
2948 }
2949
2950 /*
2951  * <nr mapped sectors> <highest mapped sector>
2952  */
2953 static void thin_status(struct dm_target *ti, status_type_t type,
2954                         unsigned status_flags, char *result, unsigned maxlen)
2955 {
2956         int r;
2957         ssize_t sz = 0;
2958         dm_block_t mapped, highest;
2959         char buf[BDEVNAME_SIZE];
2960         struct thin_c *tc = ti->private;
2961
2962         if (get_pool_mode(tc->pool) == PM_FAIL) {
2963                 DMEMIT("Fail");
2964                 return;
2965         }
2966
2967         if (!tc->td)
2968                 DMEMIT("-");
2969         else {
2970                 switch (type) {
2971                 case STATUSTYPE_INFO:
2972                         r = dm_thin_get_mapped_count(tc->td, &mapped);
2973                         if (r) {
2974                                 DMERR("dm_thin_get_mapped_count returned %d", r);
2975                                 goto err;
2976                         }
2977
2978                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
2979                         if (r < 0) {
2980                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
2981                                 goto err;
2982                         }
2983
2984                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
2985                         if (r)
2986                                 DMEMIT("%llu", ((highest + 1) *
2987                                                 tc->pool->sectors_per_block) - 1);
2988                         else
2989                                 DMEMIT("-");
2990                         break;
2991
2992                 case STATUSTYPE_TABLE:
2993                         DMEMIT("%s %lu",
2994                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
2995                                (unsigned long) tc->dev_id);
2996                         if (tc->origin_dev)
2997                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
2998                         break;
2999                 }
3000         }
3001
3002         return;
3003
3004 err:
3005         DMEMIT("Error");
3006 }
3007
3008 static int thin_iterate_devices(struct dm_target *ti,
3009                                 iterate_devices_callout_fn fn, void *data)
3010 {
3011         sector_t blocks;
3012         struct thin_c *tc = ti->private;
3013         struct pool *pool = tc->pool;
3014
3015         /*
3016          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
3017          * we follow a more convoluted path through to the pool's target.
3018          */
3019         if (!pool->ti)
3020                 return 0;       /* nothing is bound */
3021
3022         blocks = pool->ti->len;
3023         (void) sector_div(blocks, pool->sectors_per_block);
3024         if (blocks)
3025                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
3026
3027         return 0;
3028 }
3029
3030 static struct target_type thin_target = {
3031         .name = "thin",
3032         .version = {1, 9, 0},
3033         .module = THIS_MODULE,
3034         .ctr = thin_ctr,
3035         .dtr = thin_dtr,
3036         .map = thin_map,
3037         .end_io = thin_endio,
3038         .postsuspend = thin_postsuspend,
3039         .status = thin_status,
3040         .iterate_devices = thin_iterate_devices,
3041 };
3042
3043 /*----------------------------------------------------------------*/
3044
3045 static int __init dm_thin_init(void)
3046 {
3047         int r;
3048
3049         pool_table_init();
3050
3051         r = dm_register_target(&thin_target);
3052         if (r)
3053                 return r;
3054
3055         r = dm_register_target(&pool_target);
3056         if (r)
3057                 goto bad_pool_target;
3058
3059         r = -ENOMEM;
3060
3061         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3062         if (!_new_mapping_cache)
3063                 goto bad_new_mapping_cache;
3064
3065         return 0;
3066
3067 bad_new_mapping_cache:
3068         dm_unregister_target(&pool_target);
3069 bad_pool_target:
3070         dm_unregister_target(&thin_target);
3071
3072         return r;
3073 }
3074
3075 static void dm_thin_exit(void)
3076 {
3077         dm_unregister_target(&thin_target);
3078         dm_unregister_target(&pool_target);
3079
3080         kmem_cache_destroy(_new_mapping_cache);
3081 }
3082
3083 module_init(dm_thin_init);
3084 module_exit(dm_thin_exit);
3085
3086 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3087 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3088 MODULE_LICENSE("GPL");