Linux 6.9-rc1
[linux-2.6-microblaze.git] / drivers / md / dm-thin-metadata.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2011-2012 Red Hat, Inc.
4  *
5  * This file is released under the GPL.
6  */
7
8 #include "dm-thin-metadata.h"
9 #include "persistent-data/dm-btree.h"
10 #include "persistent-data/dm-space-map.h"
11 #include "persistent-data/dm-space-map-disk.h"
12 #include "persistent-data/dm-transaction-manager.h"
13
14 #include <linux/list.h>
15 #include <linux/device-mapper.h>
16 #include <linux/workqueue.h>
17
18 /*
19  *--------------------------------------------------------------------------
20  * As far as the metadata goes, there is:
21  *
22  * - A superblock in block zero, taking up fewer than 512 bytes for
23  *   atomic writes.
24  *
25  * - A space map managing the metadata blocks.
26  *
27  * - A space map managing the data blocks.
28  *
29  * - A btree mapping our internal thin dev ids onto struct disk_device_details.
30  *
31  * - A hierarchical btree, with 2 levels which effectively maps (thin
32  *   dev id, virtual block) -> block_time.  Block time is a 64-bit
33  *   field holding the time in the low 24 bits, and block in the top 40
34  *   bits.
35  *
36  * BTrees consist solely of btree_nodes, that fill a block.  Some are
37  * internal nodes, as such their values are a __le64 pointing to other
38  * nodes.  Leaf nodes can store data of any reasonable size (ie. much
39  * smaller than the block size).  The nodes consist of the header,
40  * followed by an array of keys, followed by an array of values.  We have
41  * to binary search on the keys so they're all held together to help the
42  * cpu cache.
43  *
44  * Space maps have 2 btrees:
45  *
46  * - One maps a uint64_t onto a struct index_entry.  Which points to a
47  *   bitmap block, and has some details about how many free entries there
48  *   are etc.
49  *
50  * - The bitmap blocks have a header (for the checksum).  Then the rest
51  *   of the block is pairs of bits.  With the meaning being:
52  *
53  *   0 - ref count is 0
54  *   1 - ref count is 1
55  *   2 - ref count is 2
56  *   3 - ref count is higher than 2
57  *
58  * - If the count is higher than 2 then the ref count is entered in a
59  *   second btree that directly maps the block_address to a uint32_t ref
60  *   count.
61  *
62  * The space map metadata variant doesn't have a bitmaps btree.  Instead
63  * it has one single blocks worth of index_entries.  This avoids
64  * recursive issues with the bitmap btree needing to allocate space in
65  * order to insert.  With a small data block size such as 64k the
66  * metadata support data devices that are hundreds of terrabytes.
67  *
68  * The space maps allocate space linearly from front to back.  Space that
69  * is freed in a transaction is never recycled within that transaction.
70  * To try and avoid fragmenting _free_ space the allocator always goes
71  * back and fills in gaps.
72  *
73  * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
74  * from the block manager.
75  *--------------------------------------------------------------------------
76  */
77
78 #define DM_MSG_PREFIX   "thin metadata"
79
80 #define THIN_SUPERBLOCK_MAGIC 27022010
81 #define THIN_SUPERBLOCK_LOCATION 0
82 #define THIN_VERSION 2
83 #define SECTOR_TO_BLOCK_SHIFT 3
84
85 /*
86  * For btree insert:
87  *  3 for btree insert +
88  *  2 for btree lookup used within space map
89  * For btree remove:
90  *  2 for shadow spine +
91  *  4 for rebalance 3 child node
92  */
93 #define THIN_MAX_CONCURRENT_LOCKS 6
94
95 /* This should be plenty */
96 #define SPACE_MAP_ROOT_SIZE 128
97
98 /*
99  * Little endian on-disk superblock and device details.
100  */
101 struct thin_disk_superblock {
102         __le32 csum;    /* Checksum of superblock except for this field. */
103         __le32 flags;
104         __le64 blocknr; /* This block number, dm_block_t. */
105
106         __u8 uuid[16];
107         __le64 magic;
108         __le32 version;
109         __le32 time;
110
111         __le64 trans_id;
112
113         /*
114          * Root held by userspace transactions.
115          */
116         __le64 held_root;
117
118         __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
119         __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
120
121         /*
122          * 2-level btree mapping (dev_id, (dev block, time)) -> data block
123          */
124         __le64 data_mapping_root;
125
126         /*
127          * Device detail root mapping dev_id -> device_details
128          */
129         __le64 device_details_root;
130
131         __le32 data_block_size;         /* In 512-byte sectors. */
132
133         __le32 metadata_block_size;     /* In 512-byte sectors. */
134         __le64 metadata_nr_blocks;
135
136         __le32 compat_flags;
137         __le32 compat_ro_flags;
138         __le32 incompat_flags;
139 } __packed;
140
141 struct disk_device_details {
142         __le64 mapped_blocks;
143         __le64 transaction_id;          /* When created. */
144         __le32 creation_time;
145         __le32 snapshotted_time;
146 } __packed;
147
148 struct dm_pool_metadata {
149         struct hlist_node hash;
150
151         struct block_device *bdev;
152         struct dm_block_manager *bm;
153         struct dm_space_map *metadata_sm;
154         struct dm_space_map *data_sm;
155         struct dm_transaction_manager *tm;
156         struct dm_transaction_manager *nb_tm;
157
158         /*
159          * Two-level btree.
160          * First level holds thin_dev_t.
161          * Second level holds mappings.
162          */
163         struct dm_btree_info info;
164
165         /*
166          * Non-blocking version of the above.
167          */
168         struct dm_btree_info nb_info;
169
170         /*
171          * Just the top level for deleting whole devices.
172          */
173         struct dm_btree_info tl_info;
174
175         /*
176          * Just the bottom level for creating new devices.
177          */
178         struct dm_btree_info bl_info;
179
180         /*
181          * Describes the device details btree.
182          */
183         struct dm_btree_info details_info;
184
185         struct rw_semaphore root_lock;
186         uint32_t time;
187         dm_block_t root;
188         dm_block_t details_root;
189         struct list_head thin_devices;
190         uint64_t trans_id;
191         unsigned long flags;
192         sector_t data_block_size;
193
194         /*
195          * Pre-commit callback.
196          *
197          * This allows the thin provisioning target to run a callback before
198          * the metadata are committed.
199          */
200         dm_pool_pre_commit_fn pre_commit_fn;
201         void *pre_commit_context;
202
203         /*
204          * We reserve a section of the metadata for commit overhead.
205          * All reported space does *not* include this.
206          */
207         dm_block_t metadata_reserve;
208
209         /*
210          * Set if a transaction has to be aborted but the attempt to roll back
211          * to the previous (good) transaction failed.  The only pool metadata
212          * operation possible in this state is the closing of the device.
213          */
214         bool fail_io:1;
215
216         /*
217          * Set once a thin-pool has been accessed through one of the interfaces
218          * that imply the pool is in-service (e.g. thin devices created/deleted,
219          * thin-pool message, metadata snapshots, etc).
220          */
221         bool in_service:1;
222
223         /*
224          * Reading the space map roots can fail, so we read it into these
225          * buffers before the superblock is locked and updated.
226          */
227         __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
228         __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
229 };
230
231 struct dm_thin_device {
232         struct list_head list;
233         struct dm_pool_metadata *pmd;
234         dm_thin_id id;
235
236         int open_count;
237         bool changed:1;
238         bool aborted_with_changes:1;
239         uint64_t mapped_blocks;
240         uint64_t transaction_id;
241         uint32_t creation_time;
242         uint32_t snapshotted_time;
243 };
244
245 /*
246  *--------------------------------------------------------------
247  * superblock validator
248  *--------------------------------------------------------------
249  */
250 #define SUPERBLOCK_CSUM_XOR 160774
251
252 static void sb_prepare_for_write(struct dm_block_validator *v,
253                                  struct dm_block *b,
254                                  size_t block_size)
255 {
256         struct thin_disk_superblock *disk_super = dm_block_data(b);
257
258         disk_super->blocknr = cpu_to_le64(dm_block_location(b));
259         disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
260                                                       block_size - sizeof(__le32),
261                                                       SUPERBLOCK_CSUM_XOR));
262 }
263
264 static int sb_check(struct dm_block_validator *v,
265                     struct dm_block *b,
266                     size_t block_size)
267 {
268         struct thin_disk_superblock *disk_super = dm_block_data(b);
269         __le32 csum_le;
270
271         if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
272                 DMERR("%s failed: blocknr %llu: wanted %llu",
273                       __func__, le64_to_cpu(disk_super->blocknr),
274                       (unsigned long long)dm_block_location(b));
275                 return -ENOTBLK;
276         }
277
278         if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
279                 DMERR("%s failed: magic %llu: wanted %llu",
280                       __func__, le64_to_cpu(disk_super->magic),
281                       (unsigned long long)THIN_SUPERBLOCK_MAGIC);
282                 return -EILSEQ;
283         }
284
285         csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
286                                              block_size - sizeof(__le32),
287                                              SUPERBLOCK_CSUM_XOR));
288         if (csum_le != disk_super->csum) {
289                 DMERR("%s failed: csum %u: wanted %u",
290                       __func__, le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
291                 return -EILSEQ;
292         }
293
294         return 0;
295 }
296
297 static struct dm_block_validator sb_validator = {
298         .name = "superblock",
299         .prepare_for_write = sb_prepare_for_write,
300         .check = sb_check
301 };
302
303 /*
304  *--------------------------------------------------------------
305  * Methods for the btree value types
306  *--------------------------------------------------------------
307  */
308 static uint64_t pack_block_time(dm_block_t b, uint32_t t)
309 {
310         return (b << 24) | t;
311 }
312
313 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
314 {
315         *b = v >> 24;
316         *t = v & ((1 << 24) - 1);
317 }
318
319 /*
320  * It's more efficient to call dm_sm_{inc,dec}_blocks as few times as
321  * possible.  'with_runs' reads contiguous runs of blocks, and calls the
322  * given sm function.
323  */
324 typedef int (*run_fn)(struct dm_space_map *, dm_block_t, dm_block_t);
325
326 static void with_runs(struct dm_space_map *sm, const __le64 *value_le, unsigned int count, run_fn fn)
327 {
328         uint64_t b, begin, end;
329         uint32_t t;
330         bool in_run = false;
331         unsigned int i;
332
333         for (i = 0; i < count; i++, value_le++) {
334                 /* We know value_le is 8 byte aligned */
335                 unpack_block_time(le64_to_cpu(*value_le), &b, &t);
336
337                 if (in_run) {
338                         if (b == end) {
339                                 end++;
340                         } else {
341                                 fn(sm, begin, end);
342                                 begin = b;
343                                 end = b + 1;
344                         }
345                 } else {
346                         in_run = true;
347                         begin = b;
348                         end = b + 1;
349                 }
350         }
351
352         if (in_run)
353                 fn(sm, begin, end);
354 }
355
356 static void data_block_inc(void *context, const void *value_le, unsigned int count)
357 {
358         with_runs((struct dm_space_map *) context,
359                   (const __le64 *) value_le, count, dm_sm_inc_blocks);
360 }
361
362 static void data_block_dec(void *context, const void *value_le, unsigned int count)
363 {
364         with_runs((struct dm_space_map *) context,
365                   (const __le64 *) value_le, count, dm_sm_dec_blocks);
366 }
367
368 static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
369 {
370         __le64 v1_le, v2_le;
371         uint64_t b1, b2;
372         uint32_t t;
373
374         memcpy(&v1_le, value1_le, sizeof(v1_le));
375         memcpy(&v2_le, value2_le, sizeof(v2_le));
376         unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
377         unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
378
379         return b1 == b2;
380 }
381
382 static void subtree_inc(void *context, const void *value, unsigned int count)
383 {
384         struct dm_btree_info *info = context;
385         const __le64 *root_le = value;
386         unsigned int i;
387
388         for (i = 0; i < count; i++, root_le++)
389                 dm_tm_inc(info->tm, le64_to_cpu(*root_le));
390 }
391
392 static void subtree_dec(void *context, const void *value, unsigned int count)
393 {
394         struct dm_btree_info *info = context;
395         const __le64 *root_le = value;
396         unsigned int i;
397
398         for (i = 0; i < count; i++, root_le++)
399                 if (dm_btree_del(info, le64_to_cpu(*root_le)))
400                         DMERR("btree delete failed");
401 }
402
403 static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
404 {
405         __le64 v1_le, v2_le;
406
407         memcpy(&v1_le, value1_le, sizeof(v1_le));
408         memcpy(&v2_le, value2_le, sizeof(v2_le));
409
410         return v1_le == v2_le;
411 }
412
413 /*----------------------------------------------------------------*/
414
415 /*
416  * Variant that is used for in-core only changes or code that
417  * shouldn't put the pool in service on its own (e.g. commit).
418  */
419 static inline void pmd_write_lock_in_core(struct dm_pool_metadata *pmd)
420         __acquires(pmd->root_lock)
421 {
422         down_write(&pmd->root_lock);
423 }
424
425 static inline void pmd_write_lock(struct dm_pool_metadata *pmd)
426 {
427         pmd_write_lock_in_core(pmd);
428         if (unlikely(!pmd->in_service))
429                 pmd->in_service = true;
430 }
431
432 static inline void pmd_write_unlock(struct dm_pool_metadata *pmd)
433         __releases(pmd->root_lock)
434 {
435         up_write(&pmd->root_lock);
436 }
437
438 /*----------------------------------------------------------------*/
439
440 static int superblock_lock_zero(struct dm_pool_metadata *pmd,
441                                 struct dm_block **sblock)
442 {
443         return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
444                                      &sb_validator, sblock);
445 }
446
447 static int superblock_lock(struct dm_pool_metadata *pmd,
448                            struct dm_block **sblock)
449 {
450         return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
451                                 &sb_validator, sblock);
452 }
453
454 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
455 {
456         int r;
457         unsigned int i;
458         struct dm_block *b;
459         __le64 *data_le, zero = cpu_to_le64(0);
460         unsigned int block_size = dm_bm_block_size(bm) / sizeof(__le64);
461
462         /*
463          * We can't use a validator here - it may be all zeroes.
464          */
465         r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
466         if (r)
467                 return r;
468
469         data_le = dm_block_data(b);
470         *result = 1;
471         for (i = 0; i < block_size; i++) {
472                 if (data_le[i] != zero) {
473                         *result = 0;
474                         break;
475                 }
476         }
477
478         dm_bm_unlock(b);
479
480         return 0;
481 }
482
483 static void __setup_btree_details(struct dm_pool_metadata *pmd)
484 {
485         pmd->info.tm = pmd->tm;
486         pmd->info.levels = 2;
487         pmd->info.value_type.context = pmd->data_sm;
488         pmd->info.value_type.size = sizeof(__le64);
489         pmd->info.value_type.inc = data_block_inc;
490         pmd->info.value_type.dec = data_block_dec;
491         pmd->info.value_type.equal = data_block_equal;
492
493         memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
494         pmd->nb_info.tm = pmd->nb_tm;
495
496         pmd->tl_info.tm = pmd->tm;
497         pmd->tl_info.levels = 1;
498         pmd->tl_info.value_type.context = &pmd->bl_info;
499         pmd->tl_info.value_type.size = sizeof(__le64);
500         pmd->tl_info.value_type.inc = subtree_inc;
501         pmd->tl_info.value_type.dec = subtree_dec;
502         pmd->tl_info.value_type.equal = subtree_equal;
503
504         pmd->bl_info.tm = pmd->tm;
505         pmd->bl_info.levels = 1;
506         pmd->bl_info.value_type.context = pmd->data_sm;
507         pmd->bl_info.value_type.size = sizeof(__le64);
508         pmd->bl_info.value_type.inc = data_block_inc;
509         pmd->bl_info.value_type.dec = data_block_dec;
510         pmd->bl_info.value_type.equal = data_block_equal;
511
512         pmd->details_info.tm = pmd->tm;
513         pmd->details_info.levels = 1;
514         pmd->details_info.value_type.context = NULL;
515         pmd->details_info.value_type.size = sizeof(struct disk_device_details);
516         pmd->details_info.value_type.inc = NULL;
517         pmd->details_info.value_type.dec = NULL;
518         pmd->details_info.value_type.equal = NULL;
519 }
520
521 static int save_sm_roots(struct dm_pool_metadata *pmd)
522 {
523         int r;
524         size_t len;
525
526         r = dm_sm_root_size(pmd->metadata_sm, &len);
527         if (r < 0)
528                 return r;
529
530         r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len);
531         if (r < 0)
532                 return r;
533
534         r = dm_sm_root_size(pmd->data_sm, &len);
535         if (r < 0)
536                 return r;
537
538         return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len);
539 }
540
541 static void copy_sm_roots(struct dm_pool_metadata *pmd,
542                           struct thin_disk_superblock *disk)
543 {
544         memcpy(&disk->metadata_space_map_root,
545                &pmd->metadata_space_map_root,
546                sizeof(pmd->metadata_space_map_root));
547
548         memcpy(&disk->data_space_map_root,
549                &pmd->data_space_map_root,
550                sizeof(pmd->data_space_map_root));
551 }
552
553 static int __write_initial_superblock(struct dm_pool_metadata *pmd)
554 {
555         int r;
556         struct dm_block *sblock;
557         struct thin_disk_superblock *disk_super;
558         sector_t bdev_size = bdev_nr_sectors(pmd->bdev);
559
560         if (bdev_size > THIN_METADATA_MAX_SECTORS)
561                 bdev_size = THIN_METADATA_MAX_SECTORS;
562
563         r = dm_sm_commit(pmd->data_sm);
564         if (r < 0)
565                 return r;
566
567         r = dm_tm_pre_commit(pmd->tm);
568         if (r < 0)
569                 return r;
570
571         r = save_sm_roots(pmd);
572         if (r < 0)
573                 return r;
574
575         r = superblock_lock_zero(pmd, &sblock);
576         if (r)
577                 return r;
578
579         disk_super = dm_block_data(sblock);
580         disk_super->flags = 0;
581         memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
582         disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
583         disk_super->version = cpu_to_le32(THIN_VERSION);
584         disk_super->time = 0;
585         disk_super->trans_id = 0;
586         disk_super->held_root = 0;
587
588         copy_sm_roots(pmd, disk_super);
589
590         disk_super->data_mapping_root = cpu_to_le64(pmd->root);
591         disk_super->device_details_root = cpu_to_le64(pmd->details_root);
592         disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
593         disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
594         disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
595
596         return dm_tm_commit(pmd->tm, sblock);
597 }
598
599 static int __format_metadata(struct dm_pool_metadata *pmd)
600 {
601         int r;
602
603         r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
604                                  &pmd->tm, &pmd->metadata_sm);
605         if (r < 0) {
606                 pmd->tm = NULL;
607                 pmd->metadata_sm = NULL;
608                 DMERR("tm_create_with_sm failed");
609                 return r;
610         }
611
612         pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
613         if (IS_ERR(pmd->data_sm)) {
614                 DMERR("sm_disk_create failed");
615                 r = PTR_ERR(pmd->data_sm);
616                 pmd->data_sm = NULL;
617                 goto bad_cleanup_tm;
618         }
619
620         pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
621         if (!pmd->nb_tm) {
622                 DMERR("could not create non-blocking clone tm");
623                 r = -ENOMEM;
624                 goto bad_cleanup_data_sm;
625         }
626
627         __setup_btree_details(pmd);
628
629         r = dm_btree_empty(&pmd->info, &pmd->root);
630         if (r < 0)
631                 goto bad_cleanup_nb_tm;
632
633         r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
634         if (r < 0) {
635                 DMERR("couldn't create devices root");
636                 goto bad_cleanup_nb_tm;
637         }
638
639         r = __write_initial_superblock(pmd);
640         if (r)
641                 goto bad_cleanup_nb_tm;
642
643         return 0;
644
645 bad_cleanup_nb_tm:
646         dm_tm_destroy(pmd->nb_tm);
647         pmd->nb_tm = NULL;
648 bad_cleanup_data_sm:
649         dm_sm_destroy(pmd->data_sm);
650         pmd->data_sm = NULL;
651 bad_cleanup_tm:
652         dm_tm_destroy(pmd->tm);
653         pmd->tm = NULL;
654         dm_sm_destroy(pmd->metadata_sm);
655         pmd->metadata_sm = NULL;
656
657         return r;
658 }
659
660 static int __check_incompat_features(struct thin_disk_superblock *disk_super,
661                                      struct dm_pool_metadata *pmd)
662 {
663         uint32_t features;
664
665         features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
666         if (features) {
667                 DMERR("could not access metadata due to unsupported optional features (%lx).",
668                       (unsigned long)features);
669                 return -EINVAL;
670         }
671
672         /*
673          * Check for read-only metadata to skip the following RDWR checks.
674          */
675         if (bdev_read_only(pmd->bdev))
676                 return 0;
677
678         features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
679         if (features) {
680                 DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
681                       (unsigned long)features);
682                 return -EINVAL;
683         }
684
685         return 0;
686 }
687
688 static int __open_metadata(struct dm_pool_metadata *pmd)
689 {
690         int r;
691         struct dm_block *sblock;
692         struct thin_disk_superblock *disk_super;
693
694         r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
695                             &sb_validator, &sblock);
696         if (r < 0) {
697                 DMERR("couldn't read superblock");
698                 return r;
699         }
700
701         disk_super = dm_block_data(sblock);
702
703         /* Verify the data block size hasn't changed */
704         if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) {
705                 DMERR("changing the data block size (from %u to %llu) is not supported",
706                       le32_to_cpu(disk_super->data_block_size),
707                       (unsigned long long)pmd->data_block_size);
708                 r = -EINVAL;
709                 goto bad_unlock_sblock;
710         }
711
712         r = __check_incompat_features(disk_super, pmd);
713         if (r < 0)
714                 goto bad_unlock_sblock;
715
716         r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
717                                disk_super->metadata_space_map_root,
718                                sizeof(disk_super->metadata_space_map_root),
719                                &pmd->tm, &pmd->metadata_sm);
720         if (r < 0) {
721                 pmd->tm = NULL;
722                 pmd->metadata_sm = NULL;
723                 DMERR("tm_open_with_sm failed");
724                 goto bad_unlock_sblock;
725         }
726
727         pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
728                                        sizeof(disk_super->data_space_map_root));
729         if (IS_ERR(pmd->data_sm)) {
730                 DMERR("sm_disk_open failed");
731                 r = PTR_ERR(pmd->data_sm);
732                 pmd->data_sm = NULL;
733                 goto bad_cleanup_tm;
734         }
735
736         pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
737         if (!pmd->nb_tm) {
738                 DMERR("could not create non-blocking clone tm");
739                 r = -ENOMEM;
740                 goto bad_cleanup_data_sm;
741         }
742
743         /*
744          * For pool metadata opening process, root setting is redundant
745          * because it will be set again in __begin_transaction(). But dm
746          * pool aborting process really needs to get last transaction's
747          * root to avoid accessing broken btree.
748          */
749         pmd->root = le64_to_cpu(disk_super->data_mapping_root);
750         pmd->details_root = le64_to_cpu(disk_super->device_details_root);
751
752         __setup_btree_details(pmd);
753         dm_bm_unlock(sblock);
754
755         return 0;
756
757 bad_cleanup_data_sm:
758         dm_sm_destroy(pmd->data_sm);
759         pmd->data_sm = NULL;
760 bad_cleanup_tm:
761         dm_tm_destroy(pmd->tm);
762         pmd->tm = NULL;
763         dm_sm_destroy(pmd->metadata_sm);
764         pmd->metadata_sm = NULL;
765 bad_unlock_sblock:
766         dm_bm_unlock(sblock);
767
768         return r;
769 }
770
771 static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
772 {
773         int r, unformatted;
774
775         r = __superblock_all_zeroes(pmd->bm, &unformatted);
776         if (r)
777                 return r;
778
779         if (unformatted)
780                 return format_device ? __format_metadata(pmd) : -EPERM;
781
782         return __open_metadata(pmd);
783 }
784
785 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
786 {
787         int r;
788
789         pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
790                                           THIN_MAX_CONCURRENT_LOCKS);
791         if (IS_ERR(pmd->bm)) {
792                 DMERR("could not create block manager");
793                 r = PTR_ERR(pmd->bm);
794                 pmd->bm = NULL;
795                 return r;
796         }
797
798         r = __open_or_format_metadata(pmd, format_device);
799         if (r) {
800                 dm_block_manager_destroy(pmd->bm);
801                 pmd->bm = NULL;
802         }
803
804         return r;
805 }
806
807 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd,
808                                               bool destroy_bm)
809 {
810         dm_sm_destroy(pmd->data_sm);
811         pmd->data_sm = NULL;
812         dm_sm_destroy(pmd->metadata_sm);
813         pmd->metadata_sm = NULL;
814         dm_tm_destroy(pmd->nb_tm);
815         pmd->nb_tm = NULL;
816         dm_tm_destroy(pmd->tm);
817         pmd->tm = NULL;
818         if (destroy_bm)
819                 dm_block_manager_destroy(pmd->bm);
820 }
821
822 static int __begin_transaction(struct dm_pool_metadata *pmd)
823 {
824         int r;
825         struct thin_disk_superblock *disk_super;
826         struct dm_block *sblock;
827
828         /*
829          * We re-read the superblock every time.  Shouldn't need to do this
830          * really.
831          */
832         r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
833                             &sb_validator, &sblock);
834         if (r)
835                 return r;
836
837         disk_super = dm_block_data(sblock);
838         pmd->time = le32_to_cpu(disk_super->time);
839         pmd->root = le64_to_cpu(disk_super->data_mapping_root);
840         pmd->details_root = le64_to_cpu(disk_super->device_details_root);
841         pmd->trans_id = le64_to_cpu(disk_super->trans_id);
842         pmd->flags = le32_to_cpu(disk_super->flags);
843         pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
844
845         dm_bm_unlock(sblock);
846         return 0;
847 }
848
849 static int __write_changed_details(struct dm_pool_metadata *pmd)
850 {
851         int r;
852         struct dm_thin_device *td, *tmp;
853         struct disk_device_details details;
854         uint64_t key;
855
856         list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
857                 if (!td->changed)
858                         continue;
859
860                 key = td->id;
861
862                 details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
863                 details.transaction_id = cpu_to_le64(td->transaction_id);
864                 details.creation_time = cpu_to_le32(td->creation_time);
865                 details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
866                 __dm_bless_for_disk(&details);
867
868                 r = dm_btree_insert(&pmd->details_info, pmd->details_root,
869                                     &key, &details, &pmd->details_root);
870                 if (r)
871                         return r;
872
873                 if (td->open_count)
874                         td->changed = false;
875                 else {
876                         list_del(&td->list);
877                         kfree(td);
878                 }
879         }
880
881         return 0;
882 }
883
884 static int __commit_transaction(struct dm_pool_metadata *pmd)
885 {
886         int r;
887         struct thin_disk_superblock *disk_super;
888         struct dm_block *sblock;
889
890         /*
891          * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
892          */
893         BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
894         BUG_ON(!rwsem_is_locked(&pmd->root_lock));
895
896         if (unlikely(!pmd->in_service))
897                 return 0;
898
899         if (pmd->pre_commit_fn) {
900                 r = pmd->pre_commit_fn(pmd->pre_commit_context);
901                 if (r < 0) {
902                         DMERR("pre-commit callback failed");
903                         return r;
904                 }
905         }
906
907         r = __write_changed_details(pmd);
908         if (r < 0)
909                 return r;
910
911         r = dm_sm_commit(pmd->data_sm);
912         if (r < 0)
913                 return r;
914
915         r = dm_tm_pre_commit(pmd->tm);
916         if (r < 0)
917                 return r;
918
919         r = save_sm_roots(pmd);
920         if (r < 0)
921                 return r;
922
923         r = superblock_lock(pmd, &sblock);
924         if (r)
925                 return r;
926
927         disk_super = dm_block_data(sblock);
928         disk_super->time = cpu_to_le32(pmd->time);
929         disk_super->data_mapping_root = cpu_to_le64(pmd->root);
930         disk_super->device_details_root = cpu_to_le64(pmd->details_root);
931         disk_super->trans_id = cpu_to_le64(pmd->trans_id);
932         disk_super->flags = cpu_to_le32(pmd->flags);
933
934         copy_sm_roots(pmd, disk_super);
935
936         return dm_tm_commit(pmd->tm, sblock);
937 }
938
939 static void __set_metadata_reserve(struct dm_pool_metadata *pmd)
940 {
941         int r;
942         dm_block_t total;
943         dm_block_t max_blocks = 4096; /* 16M */
944
945         r = dm_sm_get_nr_blocks(pmd->metadata_sm, &total);
946         if (r) {
947                 DMERR("could not get size of metadata device");
948                 pmd->metadata_reserve = max_blocks;
949         } else
950                 pmd->metadata_reserve = min(max_blocks, div_u64(total, 10));
951 }
952
953 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
954                                                sector_t data_block_size,
955                                                bool format_device)
956 {
957         int r;
958         struct dm_pool_metadata *pmd;
959
960         pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
961         if (!pmd) {
962                 DMERR("could not allocate metadata struct");
963                 return ERR_PTR(-ENOMEM);
964         }
965
966         init_rwsem(&pmd->root_lock);
967         pmd->time = 0;
968         INIT_LIST_HEAD(&pmd->thin_devices);
969         pmd->fail_io = false;
970         pmd->in_service = false;
971         pmd->bdev = bdev;
972         pmd->data_block_size = data_block_size;
973         pmd->pre_commit_fn = NULL;
974         pmd->pre_commit_context = NULL;
975
976         r = __create_persistent_data_objects(pmd, format_device);
977         if (r) {
978                 kfree(pmd);
979                 return ERR_PTR(r);
980         }
981
982         r = __begin_transaction(pmd);
983         if (r < 0) {
984                 if (dm_pool_metadata_close(pmd) < 0)
985                         DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
986                 return ERR_PTR(r);
987         }
988
989         __set_metadata_reserve(pmd);
990
991         return pmd;
992 }
993
994 int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
995 {
996         int r;
997         unsigned int open_devices = 0;
998         struct dm_thin_device *td, *tmp;
999
1000         down_read(&pmd->root_lock);
1001         list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
1002                 if (td->open_count)
1003                         open_devices++;
1004                 else {
1005                         list_del(&td->list);
1006                         kfree(td);
1007                 }
1008         }
1009         up_read(&pmd->root_lock);
1010
1011         if (open_devices) {
1012                 DMERR("attempt to close pmd when %u device(s) are still open",
1013                        open_devices);
1014                 return -EBUSY;
1015         }
1016
1017         pmd_write_lock_in_core(pmd);
1018         if (!pmd->fail_io && !dm_bm_is_read_only(pmd->bm)) {
1019                 r = __commit_transaction(pmd);
1020                 if (r < 0)
1021                         DMWARN("%s: __commit_transaction() failed, error = %d",
1022                                __func__, r);
1023         }
1024         pmd_write_unlock(pmd);
1025         __destroy_persistent_data_objects(pmd, true);
1026
1027         kfree(pmd);
1028         return 0;
1029 }
1030
1031 /*
1032  * __open_device: Returns @td corresponding to device with id @dev,
1033  * creating it if @create is set and incrementing @td->open_count.
1034  * On failure, @td is undefined.
1035  */
1036 static int __open_device(struct dm_pool_metadata *pmd,
1037                          dm_thin_id dev, int create,
1038                          struct dm_thin_device **td)
1039 {
1040         int r, changed = 0;
1041         struct dm_thin_device *td2;
1042         uint64_t key = dev;
1043         struct disk_device_details details_le;
1044
1045         /*
1046          * If the device is already open, return it.
1047          */
1048         list_for_each_entry(td2, &pmd->thin_devices, list)
1049                 if (td2->id == dev) {
1050                         /*
1051                          * May not create an already-open device.
1052                          */
1053                         if (create)
1054                                 return -EEXIST;
1055
1056                         td2->open_count++;
1057                         *td = td2;
1058                         return 0;
1059                 }
1060
1061         /*
1062          * Check the device exists.
1063          */
1064         r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1065                             &key, &details_le);
1066         if (r) {
1067                 if (r != -ENODATA || !create)
1068                         return r;
1069
1070                 /*
1071                  * Create new device.
1072                  */
1073                 changed = 1;
1074                 details_le.mapped_blocks = 0;
1075                 details_le.transaction_id = cpu_to_le64(pmd->trans_id);
1076                 details_le.creation_time = cpu_to_le32(pmd->time);
1077                 details_le.snapshotted_time = cpu_to_le32(pmd->time);
1078         }
1079
1080         *td = kmalloc(sizeof(**td), GFP_NOIO);
1081         if (!*td)
1082                 return -ENOMEM;
1083
1084         (*td)->pmd = pmd;
1085         (*td)->id = dev;
1086         (*td)->open_count = 1;
1087         (*td)->changed = changed;
1088         (*td)->aborted_with_changes = false;
1089         (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
1090         (*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
1091         (*td)->creation_time = le32_to_cpu(details_le.creation_time);
1092         (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
1093
1094         list_add(&(*td)->list, &pmd->thin_devices);
1095
1096         return 0;
1097 }
1098
1099 static void __close_device(struct dm_thin_device *td)
1100 {
1101         --td->open_count;
1102 }
1103
1104 static int __create_thin(struct dm_pool_metadata *pmd,
1105                          dm_thin_id dev)
1106 {
1107         int r;
1108         dm_block_t dev_root;
1109         uint64_t key = dev;
1110         struct dm_thin_device *td;
1111         __le64 value;
1112
1113         r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1114                             &key, NULL);
1115         if (!r)
1116                 return -EEXIST;
1117
1118         /*
1119          * Create an empty btree for the mappings.
1120          */
1121         r = dm_btree_empty(&pmd->bl_info, &dev_root);
1122         if (r)
1123                 return r;
1124
1125         /*
1126          * Insert it into the main mapping tree.
1127          */
1128         value = cpu_to_le64(dev_root);
1129         __dm_bless_for_disk(&value);
1130         r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1131         if (r) {
1132                 dm_btree_del(&pmd->bl_info, dev_root);
1133                 return r;
1134         }
1135
1136         r = __open_device(pmd, dev, 1, &td);
1137         if (r) {
1138                 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1139                 dm_btree_del(&pmd->bl_info, dev_root);
1140                 return r;
1141         }
1142         __close_device(td);
1143
1144         return r;
1145 }
1146
1147 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
1148 {
1149         int r = -EINVAL;
1150
1151         pmd_write_lock(pmd);
1152         if (!pmd->fail_io)
1153                 r = __create_thin(pmd, dev);
1154         pmd_write_unlock(pmd);
1155
1156         return r;
1157 }
1158
1159 static int __set_snapshot_details(struct dm_pool_metadata *pmd,
1160                                   struct dm_thin_device *snap,
1161                                   dm_thin_id origin, uint32_t time)
1162 {
1163         int r;
1164         struct dm_thin_device *td;
1165
1166         r = __open_device(pmd, origin, 0, &td);
1167         if (r)
1168                 return r;
1169
1170         td->changed = true;
1171         td->snapshotted_time = time;
1172
1173         snap->mapped_blocks = td->mapped_blocks;
1174         snap->snapshotted_time = time;
1175         __close_device(td);
1176
1177         return 0;
1178 }
1179
1180 static int __create_snap(struct dm_pool_metadata *pmd,
1181                          dm_thin_id dev, dm_thin_id origin)
1182 {
1183         int r;
1184         dm_block_t origin_root;
1185         uint64_t key = origin, dev_key = dev;
1186         struct dm_thin_device *td;
1187         __le64 value;
1188
1189         /* check this device is unused */
1190         r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1191                             &dev_key, NULL);
1192         if (!r)
1193                 return -EEXIST;
1194
1195         /* find the mapping tree for the origin */
1196         r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1197         if (r)
1198                 return r;
1199         origin_root = le64_to_cpu(value);
1200
1201         /* clone the origin, an inc will do */
1202         dm_tm_inc(pmd->tm, origin_root);
1203
1204         /* insert into the main mapping tree */
1205         value = cpu_to_le64(origin_root);
1206         __dm_bless_for_disk(&value);
1207         key = dev;
1208         r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1209         if (r) {
1210                 dm_tm_dec(pmd->tm, origin_root);
1211                 return r;
1212         }
1213
1214         pmd->time++;
1215
1216         r = __open_device(pmd, dev, 1, &td);
1217         if (r)
1218                 goto bad;
1219
1220         r = __set_snapshot_details(pmd, td, origin, pmd->time);
1221         __close_device(td);
1222
1223         if (r)
1224                 goto bad;
1225
1226         return 0;
1227
1228 bad:
1229         dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1230         dm_btree_remove(&pmd->details_info, pmd->details_root,
1231                         &key, &pmd->details_root);
1232         return r;
1233 }
1234
1235 int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1236                                  dm_thin_id dev,
1237                                  dm_thin_id origin)
1238 {
1239         int r = -EINVAL;
1240
1241         pmd_write_lock(pmd);
1242         if (!pmd->fail_io)
1243                 r = __create_snap(pmd, dev, origin);
1244         pmd_write_unlock(pmd);
1245
1246         return r;
1247 }
1248
1249 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1250 {
1251         int r;
1252         uint64_t key = dev;
1253         struct dm_thin_device *td;
1254
1255         /* TODO: failure should mark the transaction invalid */
1256         r = __open_device(pmd, dev, 0, &td);
1257         if (r)
1258                 return r;
1259
1260         if (td->open_count > 1) {
1261                 __close_device(td);
1262                 return -EBUSY;
1263         }
1264
1265         list_del(&td->list);
1266         kfree(td);
1267         r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1268                             &key, &pmd->details_root);
1269         if (r)
1270                 return r;
1271
1272         r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1273         if (r)
1274                 return r;
1275
1276         return 0;
1277 }
1278
1279 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1280                                dm_thin_id dev)
1281 {
1282         int r = -EINVAL;
1283
1284         pmd_write_lock(pmd);
1285         if (!pmd->fail_io)
1286                 r = __delete_device(pmd, dev);
1287         pmd_write_unlock(pmd);
1288
1289         return r;
1290 }
1291
1292 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1293                                         uint64_t current_id,
1294                                         uint64_t new_id)
1295 {
1296         int r = -EINVAL;
1297
1298         pmd_write_lock(pmd);
1299
1300         if (pmd->fail_io)
1301                 goto out;
1302
1303         if (pmd->trans_id != current_id) {
1304                 DMERR("mismatched transaction id");
1305                 goto out;
1306         }
1307
1308         pmd->trans_id = new_id;
1309         r = 0;
1310
1311 out:
1312         pmd_write_unlock(pmd);
1313
1314         return r;
1315 }
1316
1317 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1318                                         uint64_t *result)
1319 {
1320         int r = -EINVAL;
1321
1322         down_read(&pmd->root_lock);
1323         if (!pmd->fail_io) {
1324                 *result = pmd->trans_id;
1325                 r = 0;
1326         }
1327         up_read(&pmd->root_lock);
1328
1329         return r;
1330 }
1331
1332 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1333 {
1334         int r, inc;
1335         struct thin_disk_superblock *disk_super;
1336         struct dm_block *copy, *sblock;
1337         dm_block_t held_root;
1338
1339         /*
1340          * We commit to ensure the btree roots which we increment in a
1341          * moment are up to date.
1342          */
1343         r = __commit_transaction(pmd);
1344         if (r < 0) {
1345                 DMWARN("%s: __commit_transaction() failed, error = %d",
1346                        __func__, r);
1347                 return r;
1348         }
1349
1350         /*
1351          * Copy the superblock.
1352          */
1353         dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1354         r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1355                                &sb_validator, &copy, &inc);
1356         if (r)
1357                 return r;
1358
1359         BUG_ON(!inc);
1360
1361         held_root = dm_block_location(copy);
1362         disk_super = dm_block_data(copy);
1363
1364         if (le64_to_cpu(disk_super->held_root)) {
1365                 DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1366
1367                 dm_tm_dec(pmd->tm, held_root);
1368                 dm_tm_unlock(pmd->tm, copy);
1369                 return -EBUSY;
1370         }
1371
1372         /*
1373          * Wipe the spacemap since we're not publishing this.
1374          */
1375         memset(&disk_super->data_space_map_root, 0,
1376                sizeof(disk_super->data_space_map_root));
1377         memset(&disk_super->metadata_space_map_root, 0,
1378                sizeof(disk_super->metadata_space_map_root));
1379
1380         /*
1381          * Increment the data structures that need to be preserved.
1382          */
1383         dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1384         dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1385         dm_tm_unlock(pmd->tm, copy);
1386
1387         /*
1388          * Write the held root into the superblock.
1389          */
1390         r = superblock_lock(pmd, &sblock);
1391         if (r) {
1392                 dm_tm_dec(pmd->tm, held_root);
1393                 return r;
1394         }
1395
1396         disk_super = dm_block_data(sblock);
1397         disk_super->held_root = cpu_to_le64(held_root);
1398         dm_bm_unlock(sblock);
1399         return 0;
1400 }
1401
1402 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1403 {
1404         int r = -EINVAL;
1405
1406         pmd_write_lock(pmd);
1407         if (!pmd->fail_io)
1408                 r = __reserve_metadata_snap(pmd);
1409         pmd_write_unlock(pmd);
1410
1411         return r;
1412 }
1413
1414 static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1415 {
1416         int r;
1417         struct thin_disk_superblock *disk_super;
1418         struct dm_block *sblock, *copy;
1419         dm_block_t held_root;
1420
1421         r = superblock_lock(pmd, &sblock);
1422         if (r)
1423                 return r;
1424
1425         disk_super = dm_block_data(sblock);
1426         held_root = le64_to_cpu(disk_super->held_root);
1427         disk_super->held_root = cpu_to_le64(0);
1428
1429         dm_bm_unlock(sblock);
1430
1431         if (!held_root) {
1432                 DMWARN("No pool metadata snapshot found: nothing to release.");
1433                 return -EINVAL;
1434         }
1435
1436         r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
1437         if (r)
1438                 return r;
1439
1440         disk_super = dm_block_data(copy);
1441         dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root));
1442         dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root));
1443         dm_sm_dec_block(pmd->metadata_sm, held_root);
1444
1445         dm_tm_unlock(pmd->tm, copy);
1446
1447         return 0;
1448 }
1449
1450 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1451 {
1452         int r = -EINVAL;
1453
1454         pmd_write_lock(pmd);
1455         if (!pmd->fail_io)
1456                 r = __release_metadata_snap(pmd);
1457         pmd_write_unlock(pmd);
1458
1459         return r;
1460 }
1461
1462 static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1463                                dm_block_t *result)
1464 {
1465         int r;
1466         struct thin_disk_superblock *disk_super;
1467         struct dm_block *sblock;
1468
1469         r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1470                             &sb_validator, &sblock);
1471         if (r)
1472                 return r;
1473
1474         disk_super = dm_block_data(sblock);
1475         *result = le64_to_cpu(disk_super->held_root);
1476
1477         dm_bm_unlock(sblock);
1478
1479         return 0;
1480 }
1481
1482 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1483                               dm_block_t *result)
1484 {
1485         int r = -EINVAL;
1486
1487         down_read(&pmd->root_lock);
1488         if (!pmd->fail_io)
1489                 r = __get_metadata_snap(pmd, result);
1490         up_read(&pmd->root_lock);
1491
1492         return r;
1493 }
1494
1495 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1496                              struct dm_thin_device **td)
1497 {
1498         int r = -EINVAL;
1499
1500         pmd_write_lock_in_core(pmd);
1501         if (!pmd->fail_io)
1502                 r = __open_device(pmd, dev, 0, td);
1503         pmd_write_unlock(pmd);
1504
1505         return r;
1506 }
1507
1508 int dm_pool_close_thin_device(struct dm_thin_device *td)
1509 {
1510         pmd_write_lock_in_core(td->pmd);
1511         __close_device(td);
1512         pmd_write_unlock(td->pmd);
1513
1514         return 0;
1515 }
1516
1517 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1518 {
1519         return td->id;
1520 }
1521
1522 /*
1523  * Check whether @time (of block creation) is older than @td's last snapshot.
1524  * If so then the associated block is shared with the last snapshot device.
1525  * Any block on a device created *after* the device last got snapshotted is
1526  * necessarily not shared.
1527  */
1528 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1529 {
1530         return td->snapshotted_time > time;
1531 }
1532
1533 static void unpack_lookup_result(struct dm_thin_device *td, __le64 value,
1534                                  struct dm_thin_lookup_result *result)
1535 {
1536         uint64_t block_time = 0;
1537         dm_block_t exception_block;
1538         uint32_t exception_time;
1539
1540         block_time = le64_to_cpu(value);
1541         unpack_block_time(block_time, &exception_block, &exception_time);
1542         result->block = exception_block;
1543         result->shared = __snapshotted_since(td, exception_time);
1544 }
1545
1546 static int __find_block(struct dm_thin_device *td, dm_block_t block,
1547                         int can_issue_io, struct dm_thin_lookup_result *result)
1548 {
1549         int r;
1550         __le64 value;
1551         struct dm_pool_metadata *pmd = td->pmd;
1552         dm_block_t keys[2] = { td->id, block };
1553         struct dm_btree_info *info;
1554
1555         if (can_issue_io)
1556                 info = &pmd->info;
1557         else
1558                 info = &pmd->nb_info;
1559
1560         r = dm_btree_lookup(info, pmd->root, keys, &value);
1561         if (!r)
1562                 unpack_lookup_result(td, value, result);
1563
1564         return r;
1565 }
1566
1567 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1568                        int can_issue_io, struct dm_thin_lookup_result *result)
1569 {
1570         int r;
1571         struct dm_pool_metadata *pmd = td->pmd;
1572
1573         down_read(&pmd->root_lock);
1574         if (pmd->fail_io) {
1575                 up_read(&pmd->root_lock);
1576                 return -EINVAL;
1577         }
1578
1579         r = __find_block(td, block, can_issue_io, result);
1580
1581         up_read(&pmd->root_lock);
1582         return r;
1583 }
1584
1585 static int __find_next_mapped_block(struct dm_thin_device *td, dm_block_t block,
1586                                           dm_block_t *vblock,
1587                                           struct dm_thin_lookup_result *result)
1588 {
1589         int r;
1590         __le64 value;
1591         struct dm_pool_metadata *pmd = td->pmd;
1592         dm_block_t keys[2] = { td->id, block };
1593
1594         r = dm_btree_lookup_next(&pmd->info, pmd->root, keys, vblock, &value);
1595         if (!r)
1596                 unpack_lookup_result(td, value, result);
1597
1598         return r;
1599 }
1600
1601 static int __find_mapped_range(struct dm_thin_device *td,
1602                                dm_block_t begin, dm_block_t end,
1603                                dm_block_t *thin_begin, dm_block_t *thin_end,
1604                                dm_block_t *pool_begin, bool *maybe_shared)
1605 {
1606         int r;
1607         dm_block_t pool_end;
1608         struct dm_thin_lookup_result lookup;
1609
1610         if (end < begin)
1611                 return -ENODATA;
1612
1613         r = __find_next_mapped_block(td, begin, &begin, &lookup);
1614         if (r)
1615                 return r;
1616
1617         if (begin >= end)
1618                 return -ENODATA;
1619
1620         *thin_begin = begin;
1621         *pool_begin = lookup.block;
1622         *maybe_shared = lookup.shared;
1623
1624         begin++;
1625         pool_end = *pool_begin + 1;
1626         while (begin != end) {
1627                 r = __find_block(td, begin, true, &lookup);
1628                 if (r) {
1629                         if (r == -ENODATA)
1630                                 break;
1631
1632                         return r;
1633                 }
1634
1635                 if ((lookup.block != pool_end) ||
1636                     (lookup.shared != *maybe_shared))
1637                         break;
1638
1639                 pool_end++;
1640                 begin++;
1641         }
1642
1643         *thin_end = begin;
1644         return 0;
1645 }
1646
1647 int dm_thin_find_mapped_range(struct dm_thin_device *td,
1648                               dm_block_t begin, dm_block_t end,
1649                               dm_block_t *thin_begin, dm_block_t *thin_end,
1650                               dm_block_t *pool_begin, bool *maybe_shared)
1651 {
1652         int r = -EINVAL;
1653         struct dm_pool_metadata *pmd = td->pmd;
1654
1655         down_read(&pmd->root_lock);
1656         if (!pmd->fail_io) {
1657                 r = __find_mapped_range(td, begin, end, thin_begin, thin_end,
1658                                         pool_begin, maybe_shared);
1659         }
1660         up_read(&pmd->root_lock);
1661
1662         return r;
1663 }
1664
1665 static int __insert(struct dm_thin_device *td, dm_block_t block,
1666                     dm_block_t data_block)
1667 {
1668         int r, inserted;
1669         __le64 value;
1670         struct dm_pool_metadata *pmd = td->pmd;
1671         dm_block_t keys[2] = { td->id, block };
1672
1673         value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1674         __dm_bless_for_disk(&value);
1675
1676         r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1677                                    &pmd->root, &inserted);
1678         if (r)
1679                 return r;
1680
1681         td->changed = true;
1682         if (inserted)
1683                 td->mapped_blocks++;
1684
1685         return 0;
1686 }
1687
1688 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1689                          dm_block_t data_block)
1690 {
1691         int r = -EINVAL;
1692
1693         pmd_write_lock(td->pmd);
1694         if (!td->pmd->fail_io)
1695                 r = __insert(td, block, data_block);
1696         pmd_write_unlock(td->pmd);
1697
1698         return r;
1699 }
1700
1701 static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end)
1702 {
1703         int r;
1704         unsigned int count, total_count = 0;
1705         struct dm_pool_metadata *pmd = td->pmd;
1706         dm_block_t keys[1] = { td->id };
1707         __le64 value;
1708         dm_block_t mapping_root;
1709
1710         /*
1711          * Find the mapping tree
1712          */
1713         r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value);
1714         if (r)
1715                 return r;
1716
1717         /*
1718          * Remove from the mapping tree, taking care to inc the
1719          * ref count so it doesn't get deleted.
1720          */
1721         mapping_root = le64_to_cpu(value);
1722         dm_tm_inc(pmd->tm, mapping_root);
1723         r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root);
1724         if (r)
1725                 return r;
1726
1727         /*
1728          * Remove leaves stops at the first unmapped entry, so we have to
1729          * loop round finding mapped ranges.
1730          */
1731         while (begin < end) {
1732                 r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value);
1733                 if (r == -ENODATA)
1734                         break;
1735
1736                 if (r)
1737                         return r;
1738
1739                 if (begin >= end)
1740                         break;
1741
1742                 r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count);
1743                 if (r)
1744                         return r;
1745
1746                 total_count += count;
1747         }
1748
1749         td->mapped_blocks -= total_count;
1750         td->changed = true;
1751
1752         /*
1753          * Reinsert the mapping tree.
1754          */
1755         value = cpu_to_le64(mapping_root);
1756         __dm_bless_for_disk(&value);
1757         return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root);
1758 }
1759
1760 int dm_thin_remove_range(struct dm_thin_device *td,
1761                          dm_block_t begin, dm_block_t end)
1762 {
1763         int r = -EINVAL;
1764
1765         pmd_write_lock(td->pmd);
1766         if (!td->pmd->fail_io)
1767                 r = __remove_range(td, begin, end);
1768         pmd_write_unlock(td->pmd);
1769
1770         return r;
1771 }
1772
1773 int dm_pool_block_is_shared(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
1774 {
1775         int r = -EINVAL;
1776         uint32_t ref_count;
1777
1778         down_read(&pmd->root_lock);
1779         if (!pmd->fail_io) {
1780                 r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
1781                 if (!r)
1782                         *result = (ref_count > 1);
1783         }
1784         up_read(&pmd->root_lock);
1785
1786         return r;
1787 }
1788
1789 int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1790 {
1791         int r = -EINVAL;
1792
1793         pmd_write_lock(pmd);
1794         if (!pmd->fail_io)
1795                 r = dm_sm_inc_blocks(pmd->data_sm, b, e);
1796         pmd_write_unlock(pmd);
1797
1798         return r;
1799 }
1800
1801 int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1802 {
1803         int r = -EINVAL;
1804
1805         pmd_write_lock(pmd);
1806         if (!pmd->fail_io)
1807                 r = dm_sm_dec_blocks(pmd->data_sm, b, e);
1808         pmd_write_unlock(pmd);
1809
1810         return r;
1811 }
1812
1813 bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
1814 {
1815         int r;
1816
1817         down_read(&td->pmd->root_lock);
1818         r = td->changed;
1819         up_read(&td->pmd->root_lock);
1820
1821         return r;
1822 }
1823
1824 bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
1825 {
1826         bool r = false;
1827         struct dm_thin_device *td, *tmp;
1828
1829         down_read(&pmd->root_lock);
1830         list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
1831                 if (td->changed) {
1832                         r = td->changed;
1833                         break;
1834                 }
1835         }
1836         up_read(&pmd->root_lock);
1837
1838         return r;
1839 }
1840
1841 bool dm_thin_aborted_changes(struct dm_thin_device *td)
1842 {
1843         bool r;
1844
1845         down_read(&td->pmd->root_lock);
1846         r = td->aborted_with_changes;
1847         up_read(&td->pmd->root_lock);
1848
1849         return r;
1850 }
1851
1852 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1853 {
1854         int r = -EINVAL;
1855
1856         pmd_write_lock(pmd);
1857         if (!pmd->fail_io)
1858                 r = dm_sm_new_block(pmd->data_sm, result);
1859         pmd_write_unlock(pmd);
1860
1861         return r;
1862 }
1863
1864 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1865 {
1866         int r = -EINVAL;
1867
1868         /*
1869          * Care is taken to not have commit be what
1870          * triggers putting the thin-pool in-service.
1871          */
1872         pmd_write_lock_in_core(pmd);
1873         if (pmd->fail_io)
1874                 goto out;
1875
1876         r = __commit_transaction(pmd);
1877         if (r < 0)
1878                 goto out;
1879
1880         /*
1881          * Open the next transaction.
1882          */
1883         r = __begin_transaction(pmd);
1884 out:
1885         pmd_write_unlock(pmd);
1886         return r;
1887 }
1888
1889 static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
1890 {
1891         struct dm_thin_device *td;
1892
1893         list_for_each_entry(td, &pmd->thin_devices, list)
1894                 td->aborted_with_changes = td->changed;
1895 }
1896
1897 int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
1898 {
1899         int r = -EINVAL;
1900
1901         /* fail_io is double-checked with pmd->root_lock held below */
1902         if (unlikely(pmd->fail_io))
1903                 return r;
1904
1905         pmd_write_lock(pmd);
1906         if (pmd->fail_io) {
1907                 pmd_write_unlock(pmd);
1908                 return r;
1909         }
1910         __set_abort_with_changes_flags(pmd);
1911
1912         /* destroy data_sm/metadata_sm/nb_tm/tm */
1913         __destroy_persistent_data_objects(pmd, false);
1914
1915         /* reset bm */
1916         dm_block_manager_reset(pmd->bm);
1917
1918         /* rebuild data_sm/metadata_sm/nb_tm/tm */
1919         r = __open_or_format_metadata(pmd, false);
1920         if (r)
1921                 pmd->fail_io = true;
1922         pmd_write_unlock(pmd);
1923         return r;
1924 }
1925
1926 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1927 {
1928         int r = -EINVAL;
1929
1930         down_read(&pmd->root_lock);
1931         if (!pmd->fail_io)
1932                 r = dm_sm_get_nr_free(pmd->data_sm, result);
1933         up_read(&pmd->root_lock);
1934
1935         return r;
1936 }
1937
1938 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1939                                           dm_block_t *result)
1940 {
1941         int r = -EINVAL;
1942
1943         down_read(&pmd->root_lock);
1944         if (!pmd->fail_io)
1945                 r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1946
1947         if (!r) {
1948                 if (*result < pmd->metadata_reserve)
1949                         *result = 0;
1950                 else
1951                         *result -= pmd->metadata_reserve;
1952         }
1953         up_read(&pmd->root_lock);
1954
1955         return r;
1956 }
1957
1958 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1959                                   dm_block_t *result)
1960 {
1961         int r = -EINVAL;
1962
1963         down_read(&pmd->root_lock);
1964         if (!pmd->fail_io)
1965                 r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1966         up_read(&pmd->root_lock);
1967
1968         return r;
1969 }
1970
1971 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1972 {
1973         int r = -EINVAL;
1974
1975         down_read(&pmd->root_lock);
1976         if (!pmd->fail_io)
1977                 r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1978         up_read(&pmd->root_lock);
1979
1980         return r;
1981 }
1982
1983 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1984 {
1985         int r = -EINVAL;
1986         struct dm_pool_metadata *pmd = td->pmd;
1987
1988         down_read(&pmd->root_lock);
1989         if (!pmd->fail_io) {
1990                 *result = td->mapped_blocks;
1991                 r = 0;
1992         }
1993         up_read(&pmd->root_lock);
1994
1995         return r;
1996 }
1997
1998 static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1999 {
2000         int r;
2001         __le64 value_le;
2002         dm_block_t thin_root;
2003         struct dm_pool_metadata *pmd = td->pmd;
2004
2005         r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
2006         if (r)
2007                 return r;
2008
2009         thin_root = le64_to_cpu(value_le);
2010
2011         return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
2012 }
2013
2014 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
2015                                      dm_block_t *result)
2016 {
2017         int r = -EINVAL;
2018         struct dm_pool_metadata *pmd = td->pmd;
2019
2020         down_read(&pmd->root_lock);
2021         if (!pmd->fail_io)
2022                 r = __highest_block(td, result);
2023         up_read(&pmd->root_lock);
2024
2025         return r;
2026 }
2027
2028 static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
2029 {
2030         int r;
2031         dm_block_t old_count;
2032
2033         r = dm_sm_get_nr_blocks(sm, &old_count);
2034         if (r)
2035                 return r;
2036
2037         if (new_count == old_count)
2038                 return 0;
2039
2040         if (new_count < old_count) {
2041                 DMERR("cannot reduce size of space map");
2042                 return -EINVAL;
2043         }
2044
2045         return dm_sm_extend(sm, new_count - old_count);
2046 }
2047
2048 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
2049 {
2050         int r = -EINVAL;
2051
2052         pmd_write_lock(pmd);
2053         if (!pmd->fail_io)
2054                 r = __resize_space_map(pmd->data_sm, new_count);
2055         pmd_write_unlock(pmd);
2056
2057         return r;
2058 }
2059
2060 int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
2061 {
2062         int r = -EINVAL;
2063
2064         pmd_write_lock(pmd);
2065         if (!pmd->fail_io) {
2066                 r = __resize_space_map(pmd->metadata_sm, new_count);
2067                 if (!r)
2068                         __set_metadata_reserve(pmd);
2069         }
2070         pmd_write_unlock(pmd);
2071
2072         return r;
2073 }
2074
2075 void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
2076 {
2077         pmd_write_lock_in_core(pmd);
2078         dm_bm_set_read_only(pmd->bm);
2079         pmd_write_unlock(pmd);
2080 }
2081
2082 void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
2083 {
2084         pmd_write_lock_in_core(pmd);
2085         dm_bm_set_read_write(pmd->bm);
2086         pmd_write_unlock(pmd);
2087 }
2088
2089 int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
2090                                         dm_block_t threshold,
2091                                         dm_sm_threshold_fn fn,
2092                                         void *context)
2093 {
2094         int r = -EINVAL;
2095
2096         pmd_write_lock_in_core(pmd);
2097         if (!pmd->fail_io) {
2098                 r = dm_sm_register_threshold_callback(pmd->metadata_sm,
2099                                                       threshold, fn, context);
2100         }
2101         pmd_write_unlock(pmd);
2102
2103         return r;
2104 }
2105
2106 void dm_pool_register_pre_commit_callback(struct dm_pool_metadata *pmd,
2107                                           dm_pool_pre_commit_fn fn,
2108                                           void *context)
2109 {
2110         pmd_write_lock_in_core(pmd);
2111         pmd->pre_commit_fn = fn;
2112         pmd->pre_commit_context = context;
2113         pmd_write_unlock(pmd);
2114 }
2115
2116 int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
2117 {
2118         int r = -EINVAL;
2119         struct dm_block *sblock;
2120         struct thin_disk_superblock *disk_super;
2121
2122         pmd_write_lock(pmd);
2123         if (pmd->fail_io)
2124                 goto out;
2125
2126         pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
2127
2128         r = superblock_lock(pmd, &sblock);
2129         if (r) {
2130                 DMERR("couldn't lock superblock");
2131                 goto out;
2132         }
2133
2134         disk_super = dm_block_data(sblock);
2135         disk_super->flags = cpu_to_le32(pmd->flags);
2136
2137         dm_bm_unlock(sblock);
2138 out:
2139         pmd_write_unlock(pmd);
2140         return r;
2141 }
2142
2143 bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
2144 {
2145         bool needs_check;
2146
2147         down_read(&pmd->root_lock);
2148         needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
2149         up_read(&pmd->root_lock);
2150
2151         return needs_check;
2152 }
2153
2154 void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd)
2155 {
2156         down_read(&pmd->root_lock);
2157         if (!pmd->fail_io)
2158                 dm_tm_issue_prefetches(pmd->tm);
2159         up_read(&pmd->root_lock);
2160 }