b461836b6d26387551e01be03273047efe01e679
[linux-2.6-microblaze.git] / drivers / md / dm-thin-metadata.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat, Inc.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "persistent-data/dm-btree.h"
9 #include "persistent-data/dm-space-map.h"
10 #include "persistent-data/dm-space-map-disk.h"
11 #include "persistent-data/dm-transaction-manager.h"
12
13 #include <linux/list.h>
14 #include <linux/device-mapper.h>
15 #include <linux/workqueue.h>
16
17 /*--------------------------------------------------------------------------
18  * As far as the metadata goes, there is:
19  *
20  * - A superblock in block zero, taking up fewer than 512 bytes for
21  *   atomic writes.
22  *
23  * - A space map managing the metadata blocks.
24  *
25  * - A space map managing the data blocks.
26  *
27  * - A btree mapping our internal thin dev ids onto struct disk_device_details.
28  *
29  * - A hierarchical btree, with 2 levels which effectively maps (thin
30  *   dev id, virtual block) -> block_time.  Block time is a 64-bit
31  *   field holding the time in the low 24 bits, and block in the top 40
32  *   bits.
33  *
34  * BTrees consist solely of btree_nodes, that fill a block.  Some are
35  * internal nodes, as such their values are a __le64 pointing to other
36  * nodes.  Leaf nodes can store data of any reasonable size (ie. much
37  * smaller than the block size).  The nodes consist of the header,
38  * followed by an array of keys, followed by an array of values.  We have
39  * to binary search on the keys so they're all held together to help the
40  * cpu cache.
41  *
42  * Space maps have 2 btrees:
43  *
44  * - One maps a uint64_t onto a struct index_entry.  Which points to a
45  *   bitmap block, and has some details about how many free entries there
46  *   are etc.
47  *
48  * - The bitmap blocks have a header (for the checksum).  Then the rest
49  *   of the block is pairs of bits.  With the meaning being:
50  *
51  *   0 - ref count is 0
52  *   1 - ref count is 1
53  *   2 - ref count is 2
54  *   3 - ref count is higher than 2
55  *
56  * - If the count is higher than 2 then the ref count is entered in a
57  *   second btree that directly maps the block_address to a uint32_t ref
58  *   count.
59  *
60  * The space map metadata variant doesn't have a bitmaps btree.  Instead
61  * it has one single blocks worth of index_entries.  This avoids
62  * recursive issues with the bitmap btree needing to allocate space in
63  * order to insert.  With a small data block size such as 64k the
64  * metadata support data devices that are hundreds of terrabytes.
65  *
66  * The space maps allocate space linearly from front to back.  Space that
67  * is freed in a transaction is never recycled within that transaction.
68  * To try and avoid fragmenting _free_ space the allocator always goes
69  * back and fills in gaps.
70  *
71  * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
72  * from the block manager.
73  *--------------------------------------------------------------------------*/
74
75 #define DM_MSG_PREFIX   "thin metadata"
76
77 #define THIN_SUPERBLOCK_MAGIC 27022010
78 #define THIN_SUPERBLOCK_LOCATION 0
79 #define THIN_VERSION 2
80 #define SECTOR_TO_BLOCK_SHIFT 3
81
82 /*
83  * For btree insert:
84  *  3 for btree insert +
85  *  2 for btree lookup used within space map
86  * For btree remove:
87  *  2 for shadow spine +
88  *  4 for rebalance 3 child node
89  */
90 #define THIN_MAX_CONCURRENT_LOCKS 6
91
92 /* This should be plenty */
93 #define SPACE_MAP_ROOT_SIZE 128
94
95 /*
96  * Little endian on-disk superblock and device details.
97  */
98 struct thin_disk_superblock {
99         __le32 csum;    /* Checksum of superblock except for this field. */
100         __le32 flags;
101         __le64 blocknr; /* This block number, dm_block_t. */
102
103         __u8 uuid[16];
104         __le64 magic;
105         __le32 version;
106         __le32 time;
107
108         __le64 trans_id;
109
110         /*
111          * Root held by userspace transactions.
112          */
113         __le64 held_root;
114
115         __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
116         __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
117
118         /*
119          * 2-level btree mapping (dev_id, (dev block, time)) -> data block
120          */
121         __le64 data_mapping_root;
122
123         /*
124          * Device detail root mapping dev_id -> device_details
125          */
126         __le64 device_details_root;
127
128         __le32 data_block_size;         /* In 512-byte sectors. */
129
130         __le32 metadata_block_size;     /* In 512-byte sectors. */
131         __le64 metadata_nr_blocks;
132
133         __le32 compat_flags;
134         __le32 compat_ro_flags;
135         __le32 incompat_flags;
136 } __packed;
137
138 struct disk_device_details {
139         __le64 mapped_blocks;
140         __le64 transaction_id;          /* When created. */
141         __le32 creation_time;
142         __le32 snapshotted_time;
143 } __packed;
144
145 struct dm_pool_metadata {
146         struct hlist_node hash;
147
148         struct block_device *bdev;
149         struct dm_block_manager *bm;
150         struct dm_space_map *metadata_sm;
151         struct dm_space_map *data_sm;
152         struct dm_transaction_manager *tm;
153         struct dm_transaction_manager *nb_tm;
154
155         /*
156          * Two-level btree.
157          * First level holds thin_dev_t.
158          * Second level holds mappings.
159          */
160         struct dm_btree_info info;
161
162         /*
163          * Non-blocking version of the above.
164          */
165         struct dm_btree_info nb_info;
166
167         /*
168          * Just the top level for deleting whole devices.
169          */
170         struct dm_btree_info tl_info;
171
172         /*
173          * Just the bottom level for creating new devices.
174          */
175         struct dm_btree_info bl_info;
176
177         /*
178          * Describes the device details btree.
179          */
180         struct dm_btree_info details_info;
181
182         struct rw_semaphore root_lock;
183         uint32_t time;
184         dm_block_t root;
185         dm_block_t details_root;
186         struct list_head thin_devices;
187         uint64_t trans_id;
188         unsigned long flags;
189         sector_t data_block_size;
190
191         /*
192          * Pre-commit callback.
193          *
194          * This allows the thin provisioning target to run a callback before
195          * the metadata are committed.
196          */
197         dm_pool_pre_commit_fn pre_commit_fn;
198         void *pre_commit_context;
199
200         /*
201          * We reserve a section of the metadata for commit overhead.
202          * All reported space does *not* include this.
203          */
204         dm_block_t metadata_reserve;
205
206         /*
207          * Set if a transaction has to be aborted but the attempt to roll back
208          * to the previous (good) transaction failed.  The only pool metadata
209          * operation possible in this state is the closing of the device.
210          */
211         bool fail_io:1;
212
213         /*
214          * Set once a thin-pool has been accessed through one of the interfaces
215          * that imply the pool is in-service (e.g. thin devices created/deleted,
216          * thin-pool message, metadata snapshots, etc).
217          */
218         bool in_service:1;
219
220         /*
221          * Reading the space map roots can fail, so we read it into these
222          * buffers before the superblock is locked and updated.
223          */
224         __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
225         __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
226 };
227
228 struct dm_thin_device {
229         struct list_head list;
230         struct dm_pool_metadata *pmd;
231         dm_thin_id id;
232
233         int open_count;
234         bool changed:1;
235         bool aborted_with_changes:1;
236         uint64_t mapped_blocks;
237         uint64_t transaction_id;
238         uint32_t creation_time;
239         uint32_t snapshotted_time;
240 };
241
242 /*----------------------------------------------------------------
243  * superblock validator
244  *--------------------------------------------------------------*/
245
246 #define SUPERBLOCK_CSUM_XOR 160774
247
248 static void sb_prepare_for_write(struct dm_block_validator *v,
249                                  struct dm_block *b,
250                                  size_t block_size)
251 {
252         struct thin_disk_superblock *disk_super = dm_block_data(b);
253
254         disk_super->blocknr = cpu_to_le64(dm_block_location(b));
255         disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
256                                                       block_size - sizeof(__le32),
257                                                       SUPERBLOCK_CSUM_XOR));
258 }
259
260 static int sb_check(struct dm_block_validator *v,
261                     struct dm_block *b,
262                     size_t block_size)
263 {
264         struct thin_disk_superblock *disk_super = dm_block_data(b);
265         __le32 csum_le;
266
267         if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
268                 DMERR("sb_check failed: blocknr %llu: "
269                       "wanted %llu", le64_to_cpu(disk_super->blocknr),
270                       (unsigned long long)dm_block_location(b));
271                 return -ENOTBLK;
272         }
273
274         if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
275                 DMERR("sb_check failed: magic %llu: "
276                       "wanted %llu", le64_to_cpu(disk_super->magic),
277                       (unsigned long long)THIN_SUPERBLOCK_MAGIC);
278                 return -EILSEQ;
279         }
280
281         csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
282                                              block_size - sizeof(__le32),
283                                              SUPERBLOCK_CSUM_XOR));
284         if (csum_le != disk_super->csum) {
285                 DMERR("sb_check failed: csum %u: wanted %u",
286                       le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
287                 return -EILSEQ;
288         }
289
290         return 0;
291 }
292
293 static struct dm_block_validator sb_validator = {
294         .name = "superblock",
295         .prepare_for_write = sb_prepare_for_write,
296         .check = sb_check
297 };
298
299 /*----------------------------------------------------------------
300  * Methods for the btree value types
301  *--------------------------------------------------------------*/
302
303 static uint64_t pack_block_time(dm_block_t b, uint32_t t)
304 {
305         return (b << 24) | t;
306 }
307
308 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
309 {
310         *b = v >> 24;
311         *t = v & ((1 << 24) - 1);
312 }
313
314 static void data_block_inc(void *context, const void *value_le)
315 {
316         struct dm_space_map *sm = context;
317         __le64 v_le;
318         uint64_t b;
319         uint32_t t;
320
321         memcpy(&v_le, value_le, sizeof(v_le));
322         unpack_block_time(le64_to_cpu(v_le), &b, &t);
323         dm_sm_inc_block(sm, b);
324 }
325
326 static void data_block_dec(void *context, const void *value_le)
327 {
328         struct dm_space_map *sm = context;
329         __le64 v_le;
330         uint64_t b;
331         uint32_t t;
332
333         memcpy(&v_le, value_le, sizeof(v_le));
334         unpack_block_time(le64_to_cpu(v_le), &b, &t);
335         dm_sm_dec_block(sm, b);
336 }
337
338 static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
339 {
340         __le64 v1_le, v2_le;
341         uint64_t b1, b2;
342         uint32_t t;
343
344         memcpy(&v1_le, value1_le, sizeof(v1_le));
345         memcpy(&v2_le, value2_le, sizeof(v2_le));
346         unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
347         unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
348
349         return b1 == b2;
350 }
351
352 static void subtree_inc(void *context, const void *value)
353 {
354         struct dm_btree_info *info = context;
355         __le64 root_le;
356         uint64_t root;
357
358         memcpy(&root_le, value, sizeof(root_le));
359         root = le64_to_cpu(root_le);
360         dm_tm_inc(info->tm, root);
361 }
362
363 static void subtree_dec(void *context, const void *value)
364 {
365         struct dm_btree_info *info = context;
366         __le64 root_le;
367         uint64_t root;
368
369         memcpy(&root_le, value, sizeof(root_le));
370         root = le64_to_cpu(root_le);
371         if (dm_btree_del(info, root))
372                 DMERR("btree delete failed");
373 }
374
375 static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
376 {
377         __le64 v1_le, v2_le;
378         memcpy(&v1_le, value1_le, sizeof(v1_le));
379         memcpy(&v2_le, value2_le, sizeof(v2_le));
380
381         return v1_le == v2_le;
382 }
383
384 /*----------------------------------------------------------------*/
385
386 /*
387  * Variant that is used for in-core only changes or code that
388  * shouldn't put the pool in service on its own (e.g. commit).
389  */
390 static inline void pmd_write_lock_in_core(struct dm_pool_metadata *pmd)
391         __acquires(pmd->root_lock)
392 {
393         down_write(&pmd->root_lock);
394 }
395
396 static inline void pmd_write_lock(struct dm_pool_metadata *pmd)
397 {
398         pmd_write_lock_in_core(pmd);
399         if (unlikely(!pmd->in_service))
400                 pmd->in_service = true;
401 }
402
403 static inline void pmd_write_unlock(struct dm_pool_metadata *pmd)
404         __releases(pmd->root_lock)
405 {
406         up_write(&pmd->root_lock);
407 }
408
409 /*----------------------------------------------------------------*/
410
411 static int superblock_lock_zero(struct dm_pool_metadata *pmd,
412                                 struct dm_block **sblock)
413 {
414         return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
415                                      &sb_validator, sblock);
416 }
417
418 static int superblock_lock(struct dm_pool_metadata *pmd,
419                            struct dm_block **sblock)
420 {
421         return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
422                                 &sb_validator, sblock);
423 }
424
425 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
426 {
427         int r;
428         unsigned i;
429         struct dm_block *b;
430         __le64 *data_le, zero = cpu_to_le64(0);
431         unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
432
433         /*
434          * We can't use a validator here - it may be all zeroes.
435          */
436         r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
437         if (r)
438                 return r;
439
440         data_le = dm_block_data(b);
441         *result = 1;
442         for (i = 0; i < block_size; i++) {
443                 if (data_le[i] != zero) {
444                         *result = 0;
445                         break;
446                 }
447         }
448
449         dm_bm_unlock(b);
450
451         return 0;
452 }
453
454 static void __setup_btree_details(struct dm_pool_metadata *pmd)
455 {
456         pmd->info.tm = pmd->tm;
457         pmd->info.levels = 2;
458         pmd->info.value_type.context = pmd->data_sm;
459         pmd->info.value_type.size = sizeof(__le64);
460         pmd->info.value_type.inc = data_block_inc;
461         pmd->info.value_type.dec = data_block_dec;
462         pmd->info.value_type.equal = data_block_equal;
463
464         memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
465         pmd->nb_info.tm = pmd->nb_tm;
466
467         pmd->tl_info.tm = pmd->tm;
468         pmd->tl_info.levels = 1;
469         pmd->tl_info.value_type.context = &pmd->bl_info;
470         pmd->tl_info.value_type.size = sizeof(__le64);
471         pmd->tl_info.value_type.inc = subtree_inc;
472         pmd->tl_info.value_type.dec = subtree_dec;
473         pmd->tl_info.value_type.equal = subtree_equal;
474
475         pmd->bl_info.tm = pmd->tm;
476         pmd->bl_info.levels = 1;
477         pmd->bl_info.value_type.context = pmd->data_sm;
478         pmd->bl_info.value_type.size = sizeof(__le64);
479         pmd->bl_info.value_type.inc = data_block_inc;
480         pmd->bl_info.value_type.dec = data_block_dec;
481         pmd->bl_info.value_type.equal = data_block_equal;
482
483         pmd->details_info.tm = pmd->tm;
484         pmd->details_info.levels = 1;
485         pmd->details_info.value_type.context = NULL;
486         pmd->details_info.value_type.size = sizeof(struct disk_device_details);
487         pmd->details_info.value_type.inc = NULL;
488         pmd->details_info.value_type.dec = NULL;
489         pmd->details_info.value_type.equal = NULL;
490 }
491
492 static int save_sm_roots(struct dm_pool_metadata *pmd)
493 {
494         int r;
495         size_t len;
496
497         r = dm_sm_root_size(pmd->metadata_sm, &len);
498         if (r < 0)
499                 return r;
500
501         r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len);
502         if (r < 0)
503                 return r;
504
505         r = dm_sm_root_size(pmd->data_sm, &len);
506         if (r < 0)
507                 return r;
508
509         return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len);
510 }
511
512 static void copy_sm_roots(struct dm_pool_metadata *pmd,
513                           struct thin_disk_superblock *disk)
514 {
515         memcpy(&disk->metadata_space_map_root,
516                &pmd->metadata_space_map_root,
517                sizeof(pmd->metadata_space_map_root));
518
519         memcpy(&disk->data_space_map_root,
520                &pmd->data_space_map_root,
521                sizeof(pmd->data_space_map_root));
522 }
523
524 static int __write_initial_superblock(struct dm_pool_metadata *pmd)
525 {
526         int r;
527         struct dm_block *sblock;
528         struct thin_disk_superblock *disk_super;
529         sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
530
531         if (bdev_size > THIN_METADATA_MAX_SECTORS)
532                 bdev_size = THIN_METADATA_MAX_SECTORS;
533
534         r = dm_sm_commit(pmd->data_sm);
535         if (r < 0)
536                 return r;
537
538         r = dm_tm_pre_commit(pmd->tm);
539         if (r < 0)
540                 return r;
541
542         r = save_sm_roots(pmd);
543         if (r < 0)
544                 return r;
545
546         r = superblock_lock_zero(pmd, &sblock);
547         if (r)
548                 return r;
549
550         disk_super = dm_block_data(sblock);
551         disk_super->flags = 0;
552         memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
553         disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
554         disk_super->version = cpu_to_le32(THIN_VERSION);
555         disk_super->time = 0;
556         disk_super->trans_id = 0;
557         disk_super->held_root = 0;
558
559         copy_sm_roots(pmd, disk_super);
560
561         disk_super->data_mapping_root = cpu_to_le64(pmd->root);
562         disk_super->device_details_root = cpu_to_le64(pmd->details_root);
563         disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
564         disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
565         disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
566
567         return dm_tm_commit(pmd->tm, sblock);
568 }
569
570 static int __format_metadata(struct dm_pool_metadata *pmd)
571 {
572         int r;
573
574         r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
575                                  &pmd->tm, &pmd->metadata_sm);
576         if (r < 0) {
577                 DMERR("tm_create_with_sm failed");
578                 return r;
579         }
580
581         pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
582         if (IS_ERR(pmd->data_sm)) {
583                 DMERR("sm_disk_create failed");
584                 r = PTR_ERR(pmd->data_sm);
585                 goto bad_cleanup_tm;
586         }
587
588         pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
589         if (!pmd->nb_tm) {
590                 DMERR("could not create non-blocking clone tm");
591                 r = -ENOMEM;
592                 goto bad_cleanup_data_sm;
593         }
594
595         __setup_btree_details(pmd);
596
597         r = dm_btree_empty(&pmd->info, &pmd->root);
598         if (r < 0)
599                 goto bad_cleanup_nb_tm;
600
601         r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
602         if (r < 0) {
603                 DMERR("couldn't create devices root");
604                 goto bad_cleanup_nb_tm;
605         }
606
607         r = __write_initial_superblock(pmd);
608         if (r)
609                 goto bad_cleanup_nb_tm;
610
611         return 0;
612
613 bad_cleanup_nb_tm:
614         dm_tm_destroy(pmd->nb_tm);
615 bad_cleanup_data_sm:
616         dm_sm_destroy(pmd->data_sm);
617 bad_cleanup_tm:
618         dm_tm_destroy(pmd->tm);
619         dm_sm_destroy(pmd->metadata_sm);
620
621         return r;
622 }
623
624 static int __check_incompat_features(struct thin_disk_superblock *disk_super,
625                                      struct dm_pool_metadata *pmd)
626 {
627         uint32_t features;
628
629         features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
630         if (features) {
631                 DMERR("could not access metadata due to unsupported optional features (%lx).",
632                       (unsigned long)features);
633                 return -EINVAL;
634         }
635
636         /*
637          * Check for read-only metadata to skip the following RDWR checks.
638          */
639         if (get_disk_ro(pmd->bdev->bd_disk))
640                 return 0;
641
642         features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
643         if (features) {
644                 DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
645                       (unsigned long)features);
646                 return -EINVAL;
647         }
648
649         return 0;
650 }
651
652 static int __open_metadata(struct dm_pool_metadata *pmd)
653 {
654         int r;
655         struct dm_block *sblock;
656         struct thin_disk_superblock *disk_super;
657
658         r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
659                             &sb_validator, &sblock);
660         if (r < 0) {
661                 DMERR("couldn't read superblock");
662                 return r;
663         }
664
665         disk_super = dm_block_data(sblock);
666
667         /* Verify the data block size hasn't changed */
668         if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) {
669                 DMERR("changing the data block size (from %u to %llu) is not supported",
670                       le32_to_cpu(disk_super->data_block_size),
671                       (unsigned long long)pmd->data_block_size);
672                 r = -EINVAL;
673                 goto bad_unlock_sblock;
674         }
675
676         r = __check_incompat_features(disk_super, pmd);
677         if (r < 0)
678                 goto bad_unlock_sblock;
679
680         r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
681                                disk_super->metadata_space_map_root,
682                                sizeof(disk_super->metadata_space_map_root),
683                                &pmd->tm, &pmd->metadata_sm);
684         if (r < 0) {
685                 DMERR("tm_open_with_sm failed");
686                 goto bad_unlock_sblock;
687         }
688
689         pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
690                                        sizeof(disk_super->data_space_map_root));
691         if (IS_ERR(pmd->data_sm)) {
692                 DMERR("sm_disk_open failed");
693                 r = PTR_ERR(pmd->data_sm);
694                 goto bad_cleanup_tm;
695         }
696
697         pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
698         if (!pmd->nb_tm) {
699                 DMERR("could not create non-blocking clone tm");
700                 r = -ENOMEM;
701                 goto bad_cleanup_data_sm;
702         }
703
704         __setup_btree_details(pmd);
705         dm_bm_unlock(sblock);
706
707         return 0;
708
709 bad_cleanup_data_sm:
710         dm_sm_destroy(pmd->data_sm);
711 bad_cleanup_tm:
712         dm_tm_destroy(pmd->tm);
713         dm_sm_destroy(pmd->metadata_sm);
714 bad_unlock_sblock:
715         dm_bm_unlock(sblock);
716
717         return r;
718 }
719
720 static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
721 {
722         int r, unformatted;
723
724         r = __superblock_all_zeroes(pmd->bm, &unformatted);
725         if (r)
726                 return r;
727
728         if (unformatted)
729                 return format_device ? __format_metadata(pmd) : -EPERM;
730
731         return __open_metadata(pmd);
732 }
733
734 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
735 {
736         int r;
737
738         pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
739                                           THIN_MAX_CONCURRENT_LOCKS);
740         if (IS_ERR(pmd->bm)) {
741                 DMERR("could not create block manager");
742                 r = PTR_ERR(pmd->bm);
743                 pmd->bm = NULL;
744                 return r;
745         }
746
747         r = __open_or_format_metadata(pmd, format_device);
748         if (r) {
749                 dm_block_manager_destroy(pmd->bm);
750                 pmd->bm = NULL;
751         }
752
753         return r;
754 }
755
756 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd)
757 {
758         dm_sm_destroy(pmd->data_sm);
759         dm_sm_destroy(pmd->metadata_sm);
760         dm_tm_destroy(pmd->nb_tm);
761         dm_tm_destroy(pmd->tm);
762         dm_block_manager_destroy(pmd->bm);
763 }
764
765 static int __begin_transaction(struct dm_pool_metadata *pmd)
766 {
767         int r;
768         struct thin_disk_superblock *disk_super;
769         struct dm_block *sblock;
770
771         /*
772          * We re-read the superblock every time.  Shouldn't need to do this
773          * really.
774          */
775         r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
776                             &sb_validator, &sblock);
777         if (r)
778                 return r;
779
780         disk_super = dm_block_data(sblock);
781         pmd->time = le32_to_cpu(disk_super->time);
782         pmd->root = le64_to_cpu(disk_super->data_mapping_root);
783         pmd->details_root = le64_to_cpu(disk_super->device_details_root);
784         pmd->trans_id = le64_to_cpu(disk_super->trans_id);
785         pmd->flags = le32_to_cpu(disk_super->flags);
786         pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
787
788         dm_bm_unlock(sblock);
789         return 0;
790 }
791
792 static int __write_changed_details(struct dm_pool_metadata *pmd)
793 {
794         int r;
795         struct dm_thin_device *td, *tmp;
796         struct disk_device_details details;
797         uint64_t key;
798
799         list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
800                 if (!td->changed)
801                         continue;
802
803                 key = td->id;
804
805                 details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
806                 details.transaction_id = cpu_to_le64(td->transaction_id);
807                 details.creation_time = cpu_to_le32(td->creation_time);
808                 details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
809                 __dm_bless_for_disk(&details);
810
811                 r = dm_btree_insert(&pmd->details_info, pmd->details_root,
812                                     &key, &details, &pmd->details_root);
813                 if (r)
814                         return r;
815
816                 if (td->open_count)
817                         td->changed = false;
818                 else {
819                         list_del(&td->list);
820                         kfree(td);
821                 }
822         }
823
824         return 0;
825 }
826
827 static int __commit_transaction(struct dm_pool_metadata *pmd)
828 {
829         int r;
830         struct thin_disk_superblock *disk_super;
831         struct dm_block *sblock;
832
833         /*
834          * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
835          */
836         BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
837         BUG_ON(!rwsem_is_locked(&pmd->root_lock));
838
839         if (unlikely(!pmd->in_service))
840                 return 0;
841
842         if (pmd->pre_commit_fn) {
843                 r = pmd->pre_commit_fn(pmd->pre_commit_context);
844                 if (r < 0) {
845                         DMERR("pre-commit callback failed");
846                         return r;
847                 }
848         }
849
850         r = __write_changed_details(pmd);
851         if (r < 0)
852                 return r;
853
854         r = dm_sm_commit(pmd->data_sm);
855         if (r < 0)
856                 return r;
857
858         r = dm_tm_pre_commit(pmd->tm);
859         if (r < 0)
860                 return r;
861
862         r = save_sm_roots(pmd);
863         if (r < 0)
864                 return r;
865
866         r = superblock_lock(pmd, &sblock);
867         if (r)
868                 return r;
869
870         disk_super = dm_block_data(sblock);
871         disk_super->time = cpu_to_le32(pmd->time);
872         disk_super->data_mapping_root = cpu_to_le64(pmd->root);
873         disk_super->device_details_root = cpu_to_le64(pmd->details_root);
874         disk_super->trans_id = cpu_to_le64(pmd->trans_id);
875         disk_super->flags = cpu_to_le32(pmd->flags);
876
877         copy_sm_roots(pmd, disk_super);
878
879         return dm_tm_commit(pmd->tm, sblock);
880 }
881
882 static void __set_metadata_reserve(struct dm_pool_metadata *pmd)
883 {
884         int r;
885         dm_block_t total;
886         dm_block_t max_blocks = 4096; /* 16M */
887
888         r = dm_sm_get_nr_blocks(pmd->metadata_sm, &total);
889         if (r) {
890                 DMERR("could not get size of metadata device");
891                 pmd->metadata_reserve = max_blocks;
892         } else
893                 pmd->metadata_reserve = min(max_blocks, div_u64(total, 10));
894 }
895
896 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
897                                                sector_t data_block_size,
898                                                bool format_device)
899 {
900         int r;
901         struct dm_pool_metadata *pmd;
902
903         pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
904         if (!pmd) {
905                 DMERR("could not allocate metadata struct");
906                 return ERR_PTR(-ENOMEM);
907         }
908
909         init_rwsem(&pmd->root_lock);
910         pmd->time = 0;
911         INIT_LIST_HEAD(&pmd->thin_devices);
912         pmd->fail_io = false;
913         pmd->in_service = false;
914         pmd->bdev = bdev;
915         pmd->data_block_size = data_block_size;
916         pmd->pre_commit_fn = NULL;
917         pmd->pre_commit_context = NULL;
918
919         r = __create_persistent_data_objects(pmd, format_device);
920         if (r) {
921                 kfree(pmd);
922                 return ERR_PTR(r);
923         }
924
925         r = __begin_transaction(pmd);
926         if (r < 0) {
927                 if (dm_pool_metadata_close(pmd) < 0)
928                         DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
929                 return ERR_PTR(r);
930         }
931
932         __set_metadata_reserve(pmd);
933
934         return pmd;
935 }
936
937 int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
938 {
939         int r;
940         unsigned open_devices = 0;
941         struct dm_thin_device *td, *tmp;
942
943         down_read(&pmd->root_lock);
944         list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
945                 if (td->open_count)
946                         open_devices++;
947                 else {
948                         list_del(&td->list);
949                         kfree(td);
950                 }
951         }
952         up_read(&pmd->root_lock);
953
954         if (open_devices) {
955                 DMERR("attempt to close pmd when %u device(s) are still open",
956                        open_devices);
957                 return -EBUSY;
958         }
959
960         pmd_write_lock_in_core(pmd);
961         if (!pmd->fail_io && !dm_bm_is_read_only(pmd->bm)) {
962                 r = __commit_transaction(pmd);
963                 if (r < 0)
964                         DMWARN("%s: __commit_transaction() failed, error = %d",
965                                __func__, r);
966         }
967         pmd_write_unlock(pmd);
968         if (!pmd->fail_io)
969                 __destroy_persistent_data_objects(pmd);
970
971         kfree(pmd);
972         return 0;
973 }
974
975 /*
976  * __open_device: Returns @td corresponding to device with id @dev,
977  * creating it if @create is set and incrementing @td->open_count.
978  * On failure, @td is undefined.
979  */
980 static int __open_device(struct dm_pool_metadata *pmd,
981                          dm_thin_id dev, int create,
982                          struct dm_thin_device **td)
983 {
984         int r, changed = 0;
985         struct dm_thin_device *td2;
986         uint64_t key = dev;
987         struct disk_device_details details_le;
988
989         /*
990          * If the device is already open, return it.
991          */
992         list_for_each_entry(td2, &pmd->thin_devices, list)
993                 if (td2->id == dev) {
994                         /*
995                          * May not create an already-open device.
996                          */
997                         if (create)
998                                 return -EEXIST;
999
1000                         td2->open_count++;
1001                         *td = td2;
1002                         return 0;
1003                 }
1004
1005         /*
1006          * Check the device exists.
1007          */
1008         r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1009                             &key, &details_le);
1010         if (r) {
1011                 if (r != -ENODATA || !create)
1012                         return r;
1013
1014                 /*
1015                  * Create new device.
1016                  */
1017                 changed = 1;
1018                 details_le.mapped_blocks = 0;
1019                 details_le.transaction_id = cpu_to_le64(pmd->trans_id);
1020                 details_le.creation_time = cpu_to_le32(pmd->time);
1021                 details_le.snapshotted_time = cpu_to_le32(pmd->time);
1022         }
1023
1024         *td = kmalloc(sizeof(**td), GFP_NOIO);
1025         if (!*td)
1026                 return -ENOMEM;
1027
1028         (*td)->pmd = pmd;
1029         (*td)->id = dev;
1030         (*td)->open_count = 1;
1031         (*td)->changed = changed;
1032         (*td)->aborted_with_changes = false;
1033         (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
1034         (*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
1035         (*td)->creation_time = le32_to_cpu(details_le.creation_time);
1036         (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
1037
1038         list_add(&(*td)->list, &pmd->thin_devices);
1039
1040         return 0;
1041 }
1042
1043 static void __close_device(struct dm_thin_device *td)
1044 {
1045         --td->open_count;
1046 }
1047
1048 static int __create_thin(struct dm_pool_metadata *pmd,
1049                          dm_thin_id dev)
1050 {
1051         int r;
1052         dm_block_t dev_root;
1053         uint64_t key = dev;
1054         struct disk_device_details details_le;
1055         struct dm_thin_device *td;
1056         __le64 value;
1057
1058         r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1059                             &key, &details_le);
1060         if (!r)
1061                 return -EEXIST;
1062
1063         /*
1064          * Create an empty btree for the mappings.
1065          */
1066         r = dm_btree_empty(&pmd->bl_info, &dev_root);
1067         if (r)
1068                 return r;
1069
1070         /*
1071          * Insert it into the main mapping tree.
1072          */
1073         value = cpu_to_le64(dev_root);
1074         __dm_bless_for_disk(&value);
1075         r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1076         if (r) {
1077                 dm_btree_del(&pmd->bl_info, dev_root);
1078                 return r;
1079         }
1080
1081         r = __open_device(pmd, dev, 1, &td);
1082         if (r) {
1083                 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1084                 dm_btree_del(&pmd->bl_info, dev_root);
1085                 return r;
1086         }
1087         __close_device(td);
1088
1089         return r;
1090 }
1091
1092 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
1093 {
1094         int r = -EINVAL;
1095
1096         pmd_write_lock(pmd);
1097         if (!pmd->fail_io)
1098                 r = __create_thin(pmd, dev);
1099         pmd_write_unlock(pmd);
1100
1101         return r;
1102 }
1103
1104 static int __set_snapshot_details(struct dm_pool_metadata *pmd,
1105                                   struct dm_thin_device *snap,
1106                                   dm_thin_id origin, uint32_t time)
1107 {
1108         int r;
1109         struct dm_thin_device *td;
1110
1111         r = __open_device(pmd, origin, 0, &td);
1112         if (r)
1113                 return r;
1114
1115         td->changed = true;
1116         td->snapshotted_time = time;
1117
1118         snap->mapped_blocks = td->mapped_blocks;
1119         snap->snapshotted_time = time;
1120         __close_device(td);
1121
1122         return 0;
1123 }
1124
1125 static int __create_snap(struct dm_pool_metadata *pmd,
1126                          dm_thin_id dev, dm_thin_id origin)
1127 {
1128         int r;
1129         dm_block_t origin_root;
1130         uint64_t key = origin, dev_key = dev;
1131         struct dm_thin_device *td;
1132         struct disk_device_details details_le;
1133         __le64 value;
1134
1135         /* check this device is unused */
1136         r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1137                             &dev_key, &details_le);
1138         if (!r)
1139                 return -EEXIST;
1140
1141         /* find the mapping tree for the origin */
1142         r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1143         if (r)
1144                 return r;
1145         origin_root = le64_to_cpu(value);
1146
1147         /* clone the origin, an inc will do */
1148         dm_tm_inc(pmd->tm, origin_root);
1149
1150         /* insert into the main mapping tree */
1151         value = cpu_to_le64(origin_root);
1152         __dm_bless_for_disk(&value);
1153         key = dev;
1154         r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1155         if (r) {
1156                 dm_tm_dec(pmd->tm, origin_root);
1157                 return r;
1158         }
1159
1160         pmd->time++;
1161
1162         r = __open_device(pmd, dev, 1, &td);
1163         if (r)
1164                 goto bad;
1165
1166         r = __set_snapshot_details(pmd, td, origin, pmd->time);
1167         __close_device(td);
1168
1169         if (r)
1170                 goto bad;
1171
1172         return 0;
1173
1174 bad:
1175         dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1176         dm_btree_remove(&pmd->details_info, pmd->details_root,
1177                         &key, &pmd->details_root);
1178         return r;
1179 }
1180
1181 int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1182                                  dm_thin_id dev,
1183                                  dm_thin_id origin)
1184 {
1185         int r = -EINVAL;
1186
1187         pmd_write_lock(pmd);
1188         if (!pmd->fail_io)
1189                 r = __create_snap(pmd, dev, origin);
1190         pmd_write_unlock(pmd);
1191
1192         return r;
1193 }
1194
1195 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1196 {
1197         int r;
1198         uint64_t key = dev;
1199         struct dm_thin_device *td;
1200
1201         /* TODO: failure should mark the transaction invalid */
1202         r = __open_device(pmd, dev, 0, &td);
1203         if (r)
1204                 return r;
1205
1206         if (td->open_count > 1) {
1207                 __close_device(td);
1208                 return -EBUSY;
1209         }
1210
1211         list_del(&td->list);
1212         kfree(td);
1213         r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1214                             &key, &pmd->details_root);
1215         if (r)
1216                 return r;
1217
1218         r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1219         if (r)
1220                 return r;
1221
1222         return 0;
1223 }
1224
1225 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1226                                dm_thin_id dev)
1227 {
1228         int r = -EINVAL;
1229
1230         pmd_write_lock(pmd);
1231         if (!pmd->fail_io)
1232                 r = __delete_device(pmd, dev);
1233         pmd_write_unlock(pmd);
1234
1235         return r;
1236 }
1237
1238 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1239                                         uint64_t current_id,
1240                                         uint64_t new_id)
1241 {
1242         int r = -EINVAL;
1243
1244         pmd_write_lock(pmd);
1245
1246         if (pmd->fail_io)
1247                 goto out;
1248
1249         if (pmd->trans_id != current_id) {
1250                 DMERR("mismatched transaction id");
1251                 goto out;
1252         }
1253
1254         pmd->trans_id = new_id;
1255         r = 0;
1256
1257 out:
1258         pmd_write_unlock(pmd);
1259
1260         return r;
1261 }
1262
1263 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1264                                         uint64_t *result)
1265 {
1266         int r = -EINVAL;
1267
1268         down_read(&pmd->root_lock);
1269         if (!pmd->fail_io) {
1270                 *result = pmd->trans_id;
1271                 r = 0;
1272         }
1273         up_read(&pmd->root_lock);
1274
1275         return r;
1276 }
1277
1278 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1279 {
1280         int r, inc;
1281         struct thin_disk_superblock *disk_super;
1282         struct dm_block *copy, *sblock;
1283         dm_block_t held_root;
1284
1285         /*
1286          * We commit to ensure the btree roots which we increment in a
1287          * moment are up to date.
1288          */
1289         r = __commit_transaction(pmd);
1290         if (r < 0) {
1291                 DMWARN("%s: __commit_transaction() failed, error = %d",
1292                        __func__, r);
1293                 return r;
1294         }
1295
1296         /*
1297          * Copy the superblock.
1298          */
1299         dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1300         r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1301                                &sb_validator, &copy, &inc);
1302         if (r)
1303                 return r;
1304
1305         BUG_ON(!inc);
1306
1307         held_root = dm_block_location(copy);
1308         disk_super = dm_block_data(copy);
1309
1310         if (le64_to_cpu(disk_super->held_root)) {
1311                 DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1312
1313                 dm_tm_dec(pmd->tm, held_root);
1314                 dm_tm_unlock(pmd->tm, copy);
1315                 return -EBUSY;
1316         }
1317
1318         /*
1319          * Wipe the spacemap since we're not publishing this.
1320          */
1321         memset(&disk_super->data_space_map_root, 0,
1322                sizeof(disk_super->data_space_map_root));
1323         memset(&disk_super->metadata_space_map_root, 0,
1324                sizeof(disk_super->metadata_space_map_root));
1325
1326         /*
1327          * Increment the data structures that need to be preserved.
1328          */
1329         dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1330         dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1331         dm_tm_unlock(pmd->tm, copy);
1332
1333         /*
1334          * Write the held root into the superblock.
1335          */
1336         r = superblock_lock(pmd, &sblock);
1337         if (r) {
1338                 dm_tm_dec(pmd->tm, held_root);
1339                 return r;
1340         }
1341
1342         disk_super = dm_block_data(sblock);
1343         disk_super->held_root = cpu_to_le64(held_root);
1344         dm_bm_unlock(sblock);
1345         return 0;
1346 }
1347
1348 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1349 {
1350         int r = -EINVAL;
1351
1352         pmd_write_lock(pmd);
1353         if (!pmd->fail_io)
1354                 r = __reserve_metadata_snap(pmd);
1355         pmd_write_unlock(pmd);
1356
1357         return r;
1358 }
1359
1360 static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1361 {
1362         int r;
1363         struct thin_disk_superblock *disk_super;
1364         struct dm_block *sblock, *copy;
1365         dm_block_t held_root;
1366
1367         r = superblock_lock(pmd, &sblock);
1368         if (r)
1369                 return r;
1370
1371         disk_super = dm_block_data(sblock);
1372         held_root = le64_to_cpu(disk_super->held_root);
1373         disk_super->held_root = cpu_to_le64(0);
1374
1375         dm_bm_unlock(sblock);
1376
1377         if (!held_root) {
1378                 DMWARN("No pool metadata snapshot found: nothing to release.");
1379                 return -EINVAL;
1380         }
1381
1382         r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
1383         if (r)
1384                 return r;
1385
1386         disk_super = dm_block_data(copy);
1387         dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root));
1388         dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root));
1389         dm_sm_dec_block(pmd->metadata_sm, held_root);
1390
1391         dm_tm_unlock(pmd->tm, copy);
1392
1393         return 0;
1394 }
1395
1396 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1397 {
1398         int r = -EINVAL;
1399
1400         pmd_write_lock(pmd);
1401         if (!pmd->fail_io)
1402                 r = __release_metadata_snap(pmd);
1403         pmd_write_unlock(pmd);
1404
1405         return r;
1406 }
1407
1408 static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1409                                dm_block_t *result)
1410 {
1411         int r;
1412         struct thin_disk_superblock *disk_super;
1413         struct dm_block *sblock;
1414
1415         r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1416                             &sb_validator, &sblock);
1417         if (r)
1418                 return r;
1419
1420         disk_super = dm_block_data(sblock);
1421         *result = le64_to_cpu(disk_super->held_root);
1422
1423         dm_bm_unlock(sblock);
1424
1425         return 0;
1426 }
1427
1428 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1429                               dm_block_t *result)
1430 {
1431         int r = -EINVAL;
1432
1433         down_read(&pmd->root_lock);
1434         if (!pmd->fail_io)
1435                 r = __get_metadata_snap(pmd, result);
1436         up_read(&pmd->root_lock);
1437
1438         return r;
1439 }
1440
1441 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1442                              struct dm_thin_device **td)
1443 {
1444         int r = -EINVAL;
1445
1446         pmd_write_lock_in_core(pmd);
1447         if (!pmd->fail_io)
1448                 r = __open_device(pmd, dev, 0, td);
1449         pmd_write_unlock(pmd);
1450
1451         return r;
1452 }
1453
1454 int dm_pool_close_thin_device(struct dm_thin_device *td)
1455 {
1456         pmd_write_lock_in_core(td->pmd);
1457         __close_device(td);
1458         pmd_write_unlock(td->pmd);
1459
1460         return 0;
1461 }
1462
1463 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1464 {
1465         return td->id;
1466 }
1467
1468 /*
1469  * Check whether @time (of block creation) is older than @td's last snapshot.
1470  * If so then the associated block is shared with the last snapshot device.
1471  * Any block on a device created *after* the device last got snapshotted is
1472  * necessarily not shared.
1473  */
1474 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1475 {
1476         return td->snapshotted_time > time;
1477 }
1478
1479 static void unpack_lookup_result(struct dm_thin_device *td, __le64 value,
1480                                  struct dm_thin_lookup_result *result)
1481 {
1482         uint64_t block_time = 0;
1483         dm_block_t exception_block;
1484         uint32_t exception_time;
1485
1486         block_time = le64_to_cpu(value);
1487         unpack_block_time(block_time, &exception_block, &exception_time);
1488         result->block = exception_block;
1489         result->shared = __snapshotted_since(td, exception_time);
1490 }
1491
1492 static int __find_block(struct dm_thin_device *td, dm_block_t block,
1493                         int can_issue_io, struct dm_thin_lookup_result *result)
1494 {
1495         int r;
1496         __le64 value;
1497         struct dm_pool_metadata *pmd = td->pmd;
1498         dm_block_t keys[2] = { td->id, block };
1499         struct dm_btree_info *info;
1500
1501         if (can_issue_io) {
1502                 info = &pmd->info;
1503         } else
1504                 info = &pmd->nb_info;
1505
1506         r = dm_btree_lookup(info, pmd->root, keys, &value);
1507         if (!r)
1508                 unpack_lookup_result(td, value, result);
1509
1510         return r;
1511 }
1512
1513 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1514                        int can_issue_io, struct dm_thin_lookup_result *result)
1515 {
1516         int r;
1517         struct dm_pool_metadata *pmd = td->pmd;
1518
1519         down_read(&pmd->root_lock);
1520         if (pmd->fail_io) {
1521                 up_read(&pmd->root_lock);
1522                 return -EINVAL;
1523         }
1524
1525         r = __find_block(td, block, can_issue_io, result);
1526
1527         up_read(&pmd->root_lock);
1528         return r;
1529 }
1530
1531 static int __find_next_mapped_block(struct dm_thin_device *td, dm_block_t block,
1532                                           dm_block_t *vblock,
1533                                           struct dm_thin_lookup_result *result)
1534 {
1535         int r;
1536         __le64 value;
1537         struct dm_pool_metadata *pmd = td->pmd;
1538         dm_block_t keys[2] = { td->id, block };
1539
1540         r = dm_btree_lookup_next(&pmd->info, pmd->root, keys, vblock, &value);
1541         if (!r)
1542                 unpack_lookup_result(td, value, result);
1543
1544         return r;
1545 }
1546
1547 static int __find_mapped_range(struct dm_thin_device *td,
1548                                dm_block_t begin, dm_block_t end,
1549                                dm_block_t *thin_begin, dm_block_t *thin_end,
1550                                dm_block_t *pool_begin, bool *maybe_shared)
1551 {
1552         int r;
1553         dm_block_t pool_end;
1554         struct dm_thin_lookup_result lookup;
1555
1556         if (end < begin)
1557                 return -ENODATA;
1558
1559         r = __find_next_mapped_block(td, begin, &begin, &lookup);
1560         if (r)
1561                 return r;
1562
1563         if (begin >= end)
1564                 return -ENODATA;
1565
1566         *thin_begin = begin;
1567         *pool_begin = lookup.block;
1568         *maybe_shared = lookup.shared;
1569
1570         begin++;
1571         pool_end = *pool_begin + 1;
1572         while (begin != end) {
1573                 r = __find_block(td, begin, true, &lookup);
1574                 if (r) {
1575                         if (r == -ENODATA)
1576                                 break;
1577                         else
1578                                 return r;
1579                 }
1580
1581                 if ((lookup.block != pool_end) ||
1582                     (lookup.shared != *maybe_shared))
1583                         break;
1584
1585                 pool_end++;
1586                 begin++;
1587         }
1588
1589         *thin_end = begin;
1590         return 0;
1591 }
1592
1593 int dm_thin_find_mapped_range(struct dm_thin_device *td,
1594                               dm_block_t begin, dm_block_t end,
1595                               dm_block_t *thin_begin, dm_block_t *thin_end,
1596                               dm_block_t *pool_begin, bool *maybe_shared)
1597 {
1598         int r = -EINVAL;
1599         struct dm_pool_metadata *pmd = td->pmd;
1600
1601         down_read(&pmd->root_lock);
1602         if (!pmd->fail_io) {
1603                 r = __find_mapped_range(td, begin, end, thin_begin, thin_end,
1604                                         pool_begin, maybe_shared);
1605         }
1606         up_read(&pmd->root_lock);
1607
1608         return r;
1609 }
1610
1611 static int __insert(struct dm_thin_device *td, dm_block_t block,
1612                     dm_block_t data_block)
1613 {
1614         int r, inserted;
1615         __le64 value;
1616         struct dm_pool_metadata *pmd = td->pmd;
1617         dm_block_t keys[2] = { td->id, block };
1618
1619         value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1620         __dm_bless_for_disk(&value);
1621
1622         r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1623                                    &pmd->root, &inserted);
1624         if (r)
1625                 return r;
1626
1627         td->changed = true;
1628         if (inserted)
1629                 td->mapped_blocks++;
1630
1631         return 0;
1632 }
1633
1634 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1635                          dm_block_t data_block)
1636 {
1637         int r = -EINVAL;
1638
1639         pmd_write_lock(td->pmd);
1640         if (!td->pmd->fail_io)
1641                 r = __insert(td, block, data_block);
1642         pmd_write_unlock(td->pmd);
1643
1644         return r;
1645 }
1646
1647 static int __remove(struct dm_thin_device *td, dm_block_t block)
1648 {
1649         int r;
1650         struct dm_pool_metadata *pmd = td->pmd;
1651         dm_block_t keys[2] = { td->id, block };
1652
1653         r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
1654         if (r)
1655                 return r;
1656
1657         td->mapped_blocks--;
1658         td->changed = true;
1659
1660         return 0;
1661 }
1662
1663 static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end)
1664 {
1665         int r;
1666         unsigned count, total_count = 0;
1667         struct dm_pool_metadata *pmd = td->pmd;
1668         dm_block_t keys[1] = { td->id };
1669         __le64 value;
1670         dm_block_t mapping_root;
1671
1672         /*
1673          * Find the mapping tree
1674          */
1675         r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value);
1676         if (r)
1677                 return r;
1678
1679         /*
1680          * Remove from the mapping tree, taking care to inc the
1681          * ref count so it doesn't get deleted.
1682          */
1683         mapping_root = le64_to_cpu(value);
1684         dm_tm_inc(pmd->tm, mapping_root);
1685         r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root);
1686         if (r)
1687                 return r;
1688
1689         /*
1690          * Remove leaves stops at the first unmapped entry, so we have to
1691          * loop round finding mapped ranges.
1692          */
1693         while (begin < end) {
1694                 r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value);
1695                 if (r == -ENODATA)
1696                         break;
1697
1698                 if (r)
1699                         return r;
1700
1701                 if (begin >= end)
1702                         break;
1703
1704                 r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count);
1705                 if (r)
1706                         return r;
1707
1708                 total_count += count;
1709         }
1710
1711         td->mapped_blocks -= total_count;
1712         td->changed = true;
1713
1714         /*
1715          * Reinsert the mapping tree.
1716          */
1717         value = cpu_to_le64(mapping_root);
1718         __dm_bless_for_disk(&value);
1719         return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root);
1720 }
1721
1722 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
1723 {
1724         int r = -EINVAL;
1725
1726         pmd_write_lock(td->pmd);
1727         if (!td->pmd->fail_io)
1728                 r = __remove(td, block);
1729         pmd_write_unlock(td->pmd);
1730
1731         return r;
1732 }
1733
1734 int dm_thin_remove_range(struct dm_thin_device *td,
1735                          dm_block_t begin, dm_block_t end)
1736 {
1737         int r = -EINVAL;
1738
1739         pmd_write_lock(td->pmd);
1740         if (!td->pmd->fail_io)
1741                 r = __remove_range(td, begin, end);
1742         pmd_write_unlock(td->pmd);
1743
1744         return r;
1745 }
1746
1747 int dm_pool_block_is_shared(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
1748 {
1749         int r;
1750         uint32_t ref_count;
1751
1752         down_read(&pmd->root_lock);
1753         r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
1754         if (!r)
1755                 *result = (ref_count > 1);
1756         up_read(&pmd->root_lock);
1757
1758         return r;
1759 }
1760
1761 int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1762 {
1763         int r = 0;
1764
1765         pmd_write_lock(pmd);
1766         for (; b != e; b++) {
1767                 r = dm_sm_inc_block(pmd->data_sm, b);
1768                 if (r)
1769                         break;
1770         }
1771         pmd_write_unlock(pmd);
1772
1773         return r;
1774 }
1775
1776 int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1777 {
1778         int r = 0;
1779
1780         pmd_write_lock(pmd);
1781         for (; b != e; b++) {
1782                 r = dm_sm_dec_block(pmd->data_sm, b);
1783                 if (r)
1784                         break;
1785         }
1786         pmd_write_unlock(pmd);
1787
1788         return r;
1789 }
1790
1791 bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
1792 {
1793         int r;
1794
1795         down_read(&td->pmd->root_lock);
1796         r = td->changed;
1797         up_read(&td->pmd->root_lock);
1798
1799         return r;
1800 }
1801
1802 bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
1803 {
1804         bool r = false;
1805         struct dm_thin_device *td, *tmp;
1806
1807         down_read(&pmd->root_lock);
1808         list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
1809                 if (td->changed) {
1810                         r = td->changed;
1811                         break;
1812                 }
1813         }
1814         up_read(&pmd->root_lock);
1815
1816         return r;
1817 }
1818
1819 bool dm_thin_aborted_changes(struct dm_thin_device *td)
1820 {
1821         bool r;
1822
1823         down_read(&td->pmd->root_lock);
1824         r = td->aborted_with_changes;
1825         up_read(&td->pmd->root_lock);
1826
1827         return r;
1828 }
1829
1830 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1831 {
1832         int r = -EINVAL;
1833
1834         pmd_write_lock(pmd);
1835         if (!pmd->fail_io)
1836                 r = dm_sm_new_block(pmd->data_sm, result);
1837         pmd_write_unlock(pmd);
1838
1839         return r;
1840 }
1841
1842 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1843 {
1844         int r = -EINVAL;
1845
1846         /*
1847          * Care is taken to not have commit be what
1848          * triggers putting the thin-pool in-service.
1849          */
1850         pmd_write_lock_in_core(pmd);
1851         if (pmd->fail_io)
1852                 goto out;
1853
1854         r = __commit_transaction(pmd);
1855         if (r < 0)
1856                 goto out;
1857
1858         /*
1859          * Open the next transaction.
1860          */
1861         r = __begin_transaction(pmd);
1862 out:
1863         pmd_write_unlock(pmd);
1864         return r;
1865 }
1866
1867 static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
1868 {
1869         struct dm_thin_device *td;
1870
1871         list_for_each_entry(td, &pmd->thin_devices, list)
1872                 td->aborted_with_changes = td->changed;
1873 }
1874
1875 int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
1876 {
1877         int r = -EINVAL;
1878
1879         pmd_write_lock(pmd);
1880         if (pmd->fail_io)
1881                 goto out;
1882
1883         __set_abort_with_changes_flags(pmd);
1884         __destroy_persistent_data_objects(pmd);
1885         r = __create_persistent_data_objects(pmd, false);
1886         if (r)
1887                 pmd->fail_io = true;
1888
1889 out:
1890         pmd_write_unlock(pmd);
1891
1892         return r;
1893 }
1894
1895 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1896 {
1897         int r = -EINVAL;
1898
1899         down_read(&pmd->root_lock);
1900         if (!pmd->fail_io)
1901                 r = dm_sm_get_nr_free(pmd->data_sm, result);
1902         up_read(&pmd->root_lock);
1903
1904         return r;
1905 }
1906
1907 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1908                                           dm_block_t *result)
1909 {
1910         int r = -EINVAL;
1911
1912         down_read(&pmd->root_lock);
1913         if (!pmd->fail_io)
1914                 r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1915
1916         if (!r) {
1917                 if (*result < pmd->metadata_reserve)
1918                         *result = 0;
1919                 else
1920                         *result -= pmd->metadata_reserve;
1921         }
1922         up_read(&pmd->root_lock);
1923
1924         return r;
1925 }
1926
1927 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1928                                   dm_block_t *result)
1929 {
1930         int r = -EINVAL;
1931
1932         down_read(&pmd->root_lock);
1933         if (!pmd->fail_io)
1934                 r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1935         up_read(&pmd->root_lock);
1936
1937         return r;
1938 }
1939
1940 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1941 {
1942         int r = -EINVAL;
1943
1944         down_read(&pmd->root_lock);
1945         if (!pmd->fail_io)
1946                 r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1947         up_read(&pmd->root_lock);
1948
1949         return r;
1950 }
1951
1952 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1953 {
1954         int r = -EINVAL;
1955         struct dm_pool_metadata *pmd = td->pmd;
1956
1957         down_read(&pmd->root_lock);
1958         if (!pmd->fail_io) {
1959                 *result = td->mapped_blocks;
1960                 r = 0;
1961         }
1962         up_read(&pmd->root_lock);
1963
1964         return r;
1965 }
1966
1967 static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1968 {
1969         int r;
1970         __le64 value_le;
1971         dm_block_t thin_root;
1972         struct dm_pool_metadata *pmd = td->pmd;
1973
1974         r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
1975         if (r)
1976                 return r;
1977
1978         thin_root = le64_to_cpu(value_le);
1979
1980         return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
1981 }
1982
1983 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
1984                                      dm_block_t *result)
1985 {
1986         int r = -EINVAL;
1987         struct dm_pool_metadata *pmd = td->pmd;
1988
1989         down_read(&pmd->root_lock);
1990         if (!pmd->fail_io)
1991                 r = __highest_block(td, result);
1992         up_read(&pmd->root_lock);
1993
1994         return r;
1995 }
1996
1997 static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
1998 {
1999         int r;
2000         dm_block_t old_count;
2001
2002         r = dm_sm_get_nr_blocks(sm, &old_count);
2003         if (r)
2004                 return r;
2005
2006         if (new_count == old_count)
2007                 return 0;
2008
2009         if (new_count < old_count) {
2010                 DMERR("cannot reduce size of space map");
2011                 return -EINVAL;
2012         }
2013
2014         return dm_sm_extend(sm, new_count - old_count);
2015 }
2016
2017 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
2018 {
2019         int r = -EINVAL;
2020
2021         pmd_write_lock(pmd);
2022         if (!pmd->fail_io)
2023                 r = __resize_space_map(pmd->data_sm, new_count);
2024         pmd_write_unlock(pmd);
2025
2026         return r;
2027 }
2028
2029 int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
2030 {
2031         int r = -EINVAL;
2032
2033         pmd_write_lock(pmd);
2034         if (!pmd->fail_io) {
2035                 r = __resize_space_map(pmd->metadata_sm, new_count);
2036                 if (!r)
2037                         __set_metadata_reserve(pmd);
2038         }
2039         pmd_write_unlock(pmd);
2040
2041         return r;
2042 }
2043
2044 void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
2045 {
2046         pmd_write_lock_in_core(pmd);
2047         dm_bm_set_read_only(pmd->bm);
2048         pmd_write_unlock(pmd);
2049 }
2050
2051 void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
2052 {
2053         pmd_write_lock_in_core(pmd);
2054         dm_bm_set_read_write(pmd->bm);
2055         pmd_write_unlock(pmd);
2056 }
2057
2058 int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
2059                                         dm_block_t threshold,
2060                                         dm_sm_threshold_fn fn,
2061                                         void *context)
2062 {
2063         int r;
2064
2065         pmd_write_lock_in_core(pmd);
2066         r = dm_sm_register_threshold_callback(pmd->metadata_sm, threshold, fn, context);
2067         pmd_write_unlock(pmd);
2068
2069         return r;
2070 }
2071
2072 void dm_pool_register_pre_commit_callback(struct dm_pool_metadata *pmd,
2073                                           dm_pool_pre_commit_fn fn,
2074                                           void *context)
2075 {
2076         pmd_write_lock_in_core(pmd);
2077         pmd->pre_commit_fn = fn;
2078         pmd->pre_commit_context = context;
2079         pmd_write_unlock(pmd);
2080 }
2081
2082 int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
2083 {
2084         int r = -EINVAL;
2085         struct dm_block *sblock;
2086         struct thin_disk_superblock *disk_super;
2087
2088         pmd_write_lock(pmd);
2089         if (pmd->fail_io)
2090                 goto out;
2091
2092         pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
2093
2094         r = superblock_lock(pmd, &sblock);
2095         if (r) {
2096                 DMERR("couldn't lock superblock");
2097                 goto out;
2098         }
2099
2100         disk_super = dm_block_data(sblock);
2101         disk_super->flags = cpu_to_le32(pmd->flags);
2102
2103         dm_bm_unlock(sblock);
2104 out:
2105         pmd_write_unlock(pmd);
2106         return r;
2107 }
2108
2109 bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
2110 {
2111         bool needs_check;
2112
2113         down_read(&pmd->root_lock);
2114         needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
2115         up_read(&pmd->root_lock);
2116
2117         return needs_check;
2118 }
2119
2120 void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd)
2121 {
2122         down_read(&pmd->root_lock);
2123         if (!pmd->fail_io)
2124                 dm_tm_issue_prefetches(pmd->tm);
2125         up_read(&pmd->root_lock);
2126 }