dm: bump version of core and various targets
[linux-2.6-microblaze.git] / drivers / md / dm-integrity.c
1 /*
2  * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
3  * Copyright (C) 2016-2017 Milan Broz
4  * Copyright (C) 2016-2017 Mikulas Patocka
5  *
6  * This file is released under the GPL.
7  */
8
9 #include "dm-bio-record.h"
10
11 #include <linux/compiler.h>
12 #include <linux/module.h>
13 #include <linux/device-mapper.h>
14 #include <linux/dm-io.h>
15 #include <linux/vmalloc.h>
16 #include <linux/sort.h>
17 #include <linux/rbtree.h>
18 #include <linux/delay.h>
19 #include <linux/random.h>
20 #include <linux/reboot.h>
21 #include <crypto/hash.h>
22 #include <crypto/skcipher.h>
23 #include <linux/async_tx.h>
24 #include <linux/dm-bufio.h>
25
26 #define DM_MSG_PREFIX "integrity"
27
28 #define DEFAULT_INTERLEAVE_SECTORS      32768
29 #define DEFAULT_JOURNAL_SIZE_FACTOR     7
30 #define DEFAULT_SECTORS_PER_BITMAP_BIT  32768
31 #define DEFAULT_BUFFER_SECTORS          128
32 #define DEFAULT_JOURNAL_WATERMARK       50
33 #define DEFAULT_SYNC_MSEC               10000
34 #define DEFAULT_MAX_JOURNAL_SECTORS     131072
35 #define MIN_LOG2_INTERLEAVE_SECTORS     3
36 #define MAX_LOG2_INTERLEAVE_SECTORS     31
37 #define METADATA_WORKQUEUE_MAX_ACTIVE   16
38 #define RECALC_SECTORS                  8192
39 #define RECALC_WRITE_SUPER              16
40 #define BITMAP_BLOCK_SIZE               4096    /* don't change it */
41 #define BITMAP_FLUSH_INTERVAL           (10 * HZ)
42
43 /*
44  * Warning - DEBUG_PRINT prints security-sensitive data to the log,
45  * so it should not be enabled in the official kernel
46  */
47 //#define DEBUG_PRINT
48 //#define INTERNAL_VERIFY
49
50 /*
51  * On disk structures
52  */
53
54 #define SB_MAGIC                        "integrt"
55 #define SB_VERSION_1                    1
56 #define SB_VERSION_2                    2
57 #define SB_VERSION_3                    3
58 #define SB_VERSION_4                    4
59 #define SB_SECTORS                      8
60 #define MAX_SECTORS_PER_BLOCK           8
61
62 struct superblock {
63         __u8 magic[8];
64         __u8 version;
65         __u8 log2_interleave_sectors;
66         __u16 integrity_tag_size;
67         __u32 journal_sections;
68         __u64 provided_data_sectors;    /* userspace uses this value */
69         __u32 flags;
70         __u8 log2_sectors_per_block;
71         __u8 log2_blocks_per_bitmap_bit;
72         __u8 pad[2];
73         __u64 recalc_sector;
74 };
75
76 #define SB_FLAG_HAVE_JOURNAL_MAC        0x1
77 #define SB_FLAG_RECALCULATING           0x2
78 #define SB_FLAG_DIRTY_BITMAP            0x4
79 #define SB_FLAG_FIXED_PADDING           0x8
80
81 #define JOURNAL_ENTRY_ROUNDUP           8
82
83 typedef __u64 commit_id_t;
84 #define JOURNAL_MAC_PER_SECTOR          8
85
86 struct journal_entry {
87         union {
88                 struct {
89                         __u32 sector_lo;
90                         __u32 sector_hi;
91                 } s;
92                 __u64 sector;
93         } u;
94         commit_id_t last_bytes[0];
95         /* __u8 tag[0]; */
96 };
97
98 #define journal_entry_tag(ic, je)               ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
99
100 #if BITS_PER_LONG == 64
101 #define journal_entry_set_sector(je, x)         do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
102 #else
103 #define journal_entry_set_sector(je, x)         do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
104 #endif
105 #define journal_entry_get_sector(je)            le64_to_cpu((je)->u.sector)
106 #define journal_entry_is_unused(je)             ((je)->u.s.sector_hi == cpu_to_le32(-1))
107 #define journal_entry_set_unused(je)            do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
108 #define journal_entry_is_inprogress(je)         ((je)->u.s.sector_hi == cpu_to_le32(-2))
109 #define journal_entry_set_inprogress(je)        do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
110
111 #define JOURNAL_BLOCK_SECTORS           8
112 #define JOURNAL_SECTOR_DATA             ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
113 #define JOURNAL_MAC_SIZE                (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
114
115 struct journal_sector {
116         __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
117         __u8 mac[JOURNAL_MAC_PER_SECTOR];
118         commit_id_t commit_id;
119 };
120
121 #define MAX_TAG_SIZE                    (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
122
123 #define METADATA_PADDING_SECTORS        8
124
125 #define N_COMMIT_IDS                    4
126
127 static unsigned char prev_commit_seq(unsigned char seq)
128 {
129         return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
130 }
131
132 static unsigned char next_commit_seq(unsigned char seq)
133 {
134         return (seq + 1) % N_COMMIT_IDS;
135 }
136
137 /*
138  * In-memory structures
139  */
140
141 struct journal_node {
142         struct rb_node node;
143         sector_t sector;
144 };
145
146 struct alg_spec {
147         char *alg_string;
148         char *key_string;
149         __u8 *key;
150         unsigned key_size;
151 };
152
153 struct dm_integrity_c {
154         struct dm_dev *dev;
155         struct dm_dev *meta_dev;
156         unsigned tag_size;
157         __s8 log2_tag_size;
158         sector_t start;
159         mempool_t journal_io_mempool;
160         struct dm_io_client *io;
161         struct dm_bufio_client *bufio;
162         struct workqueue_struct *metadata_wq;
163         struct superblock *sb;
164         unsigned journal_pages;
165         unsigned n_bitmap_blocks;
166
167         struct page_list *journal;
168         struct page_list *journal_io;
169         struct page_list *journal_xor;
170         struct page_list *recalc_bitmap;
171         struct page_list *may_write_bitmap;
172         struct bitmap_block_status *bbs;
173         unsigned bitmap_flush_interval;
174         int synchronous_mode;
175         struct bio_list synchronous_bios;
176         struct delayed_work bitmap_flush_work;
177
178         struct crypto_skcipher *journal_crypt;
179         struct scatterlist **journal_scatterlist;
180         struct scatterlist **journal_io_scatterlist;
181         struct skcipher_request **sk_requests;
182
183         struct crypto_shash *journal_mac;
184
185         struct journal_node *journal_tree;
186         struct rb_root journal_tree_root;
187
188         sector_t provided_data_sectors;
189
190         unsigned short journal_entry_size;
191         unsigned char journal_entries_per_sector;
192         unsigned char journal_section_entries;
193         unsigned short journal_section_sectors;
194         unsigned journal_sections;
195         unsigned journal_entries;
196         sector_t data_device_sectors;
197         sector_t meta_device_sectors;
198         unsigned initial_sectors;
199         unsigned metadata_run;
200         __s8 log2_metadata_run;
201         __u8 log2_buffer_sectors;
202         __u8 sectors_per_block;
203         __u8 log2_blocks_per_bitmap_bit;
204
205         unsigned char mode;
206
207         int failed;
208
209         struct crypto_shash *internal_hash;
210
211         struct dm_target *ti;
212
213         /* these variables are locked with endio_wait.lock */
214         struct rb_root in_progress;
215         struct list_head wait_list;
216         wait_queue_head_t endio_wait;
217         struct workqueue_struct *wait_wq;
218         struct workqueue_struct *offload_wq;
219
220         unsigned char commit_seq;
221         commit_id_t commit_ids[N_COMMIT_IDS];
222
223         unsigned committed_section;
224         unsigned n_committed_sections;
225
226         unsigned uncommitted_section;
227         unsigned n_uncommitted_sections;
228
229         unsigned free_section;
230         unsigned char free_section_entry;
231         unsigned free_sectors;
232
233         unsigned free_sectors_threshold;
234
235         struct workqueue_struct *commit_wq;
236         struct work_struct commit_work;
237
238         struct workqueue_struct *writer_wq;
239         struct work_struct writer_work;
240
241         struct workqueue_struct *recalc_wq;
242         struct work_struct recalc_work;
243         u8 *recalc_buffer;
244         u8 *recalc_tags;
245
246         struct bio_list flush_bio_list;
247
248         unsigned long autocommit_jiffies;
249         struct timer_list autocommit_timer;
250         unsigned autocommit_msec;
251
252         wait_queue_head_t copy_to_journal_wait;
253
254         struct completion crypto_backoff;
255
256         bool journal_uptodate;
257         bool just_formatted;
258         bool recalculate_flag;
259         bool fix_padding;
260
261         struct alg_spec internal_hash_alg;
262         struct alg_spec journal_crypt_alg;
263         struct alg_spec journal_mac_alg;
264
265         atomic64_t number_of_mismatches;
266
267         struct notifier_block reboot_notifier;
268 };
269
270 struct dm_integrity_range {
271         sector_t logical_sector;
272         sector_t n_sectors;
273         bool waiting;
274         union {
275                 struct rb_node node;
276                 struct {
277                         struct task_struct *task;
278                         struct list_head wait_entry;
279                 };
280         };
281 };
282
283 struct dm_integrity_io {
284         struct work_struct work;
285
286         struct dm_integrity_c *ic;
287         bool write;
288         bool fua;
289
290         struct dm_integrity_range range;
291
292         sector_t metadata_block;
293         unsigned metadata_offset;
294
295         atomic_t in_flight;
296         blk_status_t bi_status;
297
298         struct completion *completion;
299
300         struct dm_bio_details bio_details;
301 };
302
303 struct journal_completion {
304         struct dm_integrity_c *ic;
305         atomic_t in_flight;
306         struct completion comp;
307 };
308
309 struct journal_io {
310         struct dm_integrity_range range;
311         struct journal_completion *comp;
312 };
313
314 struct bitmap_block_status {
315         struct work_struct work;
316         struct dm_integrity_c *ic;
317         unsigned idx;
318         unsigned long *bitmap;
319         struct bio_list bio_queue;
320         spinlock_t bio_queue_lock;
321
322 };
323
324 static struct kmem_cache *journal_io_cache;
325
326 #define JOURNAL_IO_MEMPOOL      32
327
328 #ifdef DEBUG_PRINT
329 #define DEBUG_print(x, ...)     printk(KERN_DEBUG x, ##__VA_ARGS__)
330 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
331 {
332         va_list args;
333         va_start(args, msg);
334         vprintk(msg, args);
335         va_end(args);
336         if (len)
337                 pr_cont(":");
338         while (len) {
339                 pr_cont(" %02x", *bytes);
340                 bytes++;
341                 len--;
342         }
343         pr_cont("\n");
344 }
345 #define DEBUG_bytes(bytes, len, msg, ...)       __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
346 #else
347 #define DEBUG_print(x, ...)                     do { } while (0)
348 #define DEBUG_bytes(bytes, len, msg, ...)       do { } while (0)
349 #endif
350
351 static void dm_integrity_prepare(struct request *rq)
352 {
353 }
354
355 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
356 {
357 }
358
359 /*
360  * DM Integrity profile, protection is performed layer above (dm-crypt)
361  */
362 static const struct blk_integrity_profile dm_integrity_profile = {
363         .name                   = "DM-DIF-EXT-TAG",
364         .generate_fn            = NULL,
365         .verify_fn              = NULL,
366         .prepare_fn             = dm_integrity_prepare,
367         .complete_fn            = dm_integrity_complete,
368 };
369
370 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
371 static void integrity_bio_wait(struct work_struct *w);
372 static void dm_integrity_dtr(struct dm_target *ti);
373
374 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
375 {
376         if (err == -EILSEQ)
377                 atomic64_inc(&ic->number_of_mismatches);
378         if (!cmpxchg(&ic->failed, 0, err))
379                 DMERR("Error on %s: %d", msg, err);
380 }
381
382 static int dm_integrity_failed(struct dm_integrity_c *ic)
383 {
384         return READ_ONCE(ic->failed);
385 }
386
387 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i,
388                                           unsigned j, unsigned char seq)
389 {
390         /*
391          * Xor the number with section and sector, so that if a piece of
392          * journal is written at wrong place, it is detected.
393          */
394         return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
395 }
396
397 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
398                                 sector_t *area, sector_t *offset)
399 {
400         if (!ic->meta_dev) {
401                 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
402                 *area = data_sector >> log2_interleave_sectors;
403                 *offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1);
404         } else {
405                 *area = 0;
406                 *offset = data_sector;
407         }
408 }
409
410 #define sector_to_block(ic, n)                                          \
411 do {                                                                    \
412         BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1));          \
413         (n) >>= (ic)->sb->log2_sectors_per_block;                       \
414 } while (0)
415
416 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
417                                             sector_t offset, unsigned *metadata_offset)
418 {
419         __u64 ms;
420         unsigned mo;
421
422         ms = area << ic->sb->log2_interleave_sectors;
423         if (likely(ic->log2_metadata_run >= 0))
424                 ms += area << ic->log2_metadata_run;
425         else
426                 ms += area * ic->metadata_run;
427         ms >>= ic->log2_buffer_sectors;
428
429         sector_to_block(ic, offset);
430
431         if (likely(ic->log2_tag_size >= 0)) {
432                 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
433                 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
434         } else {
435                 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
436                 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
437         }
438         *metadata_offset = mo;
439         return ms;
440 }
441
442 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
443 {
444         sector_t result;
445
446         if (ic->meta_dev)
447                 return offset;
448
449         result = area << ic->sb->log2_interleave_sectors;
450         if (likely(ic->log2_metadata_run >= 0))
451                 result += (area + 1) << ic->log2_metadata_run;
452         else
453                 result += (area + 1) * ic->metadata_run;
454
455         result += (sector_t)ic->initial_sectors + offset;
456         result += ic->start;
457
458         return result;
459 }
460
461 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr)
462 {
463         if (unlikely(*sec_ptr >= ic->journal_sections))
464                 *sec_ptr -= ic->journal_sections;
465 }
466
467 static void sb_set_version(struct dm_integrity_c *ic)
468 {
469         if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
470                 ic->sb->version = SB_VERSION_4;
471         else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
472                 ic->sb->version = SB_VERSION_3;
473         else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
474                 ic->sb->version = SB_VERSION_2;
475         else
476                 ic->sb->version = SB_VERSION_1;
477 }
478
479 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags)
480 {
481         struct dm_io_request io_req;
482         struct dm_io_region io_loc;
483
484         io_req.bi_op = op;
485         io_req.bi_op_flags = op_flags;
486         io_req.mem.type = DM_IO_KMEM;
487         io_req.mem.ptr.addr = ic->sb;
488         io_req.notify.fn = NULL;
489         io_req.client = ic->io;
490         io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
491         io_loc.sector = ic->start;
492         io_loc.count = SB_SECTORS;
493
494         if (op == REQ_OP_WRITE)
495                 sb_set_version(ic);
496
497         return dm_io(&io_req, 1, &io_loc, NULL);
498 }
499
500 #define BITMAP_OP_TEST_ALL_SET          0
501 #define BITMAP_OP_TEST_ALL_CLEAR        1
502 #define BITMAP_OP_SET                   2
503 #define BITMAP_OP_CLEAR                 3
504
505 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
506                             sector_t sector, sector_t n_sectors, int mode)
507 {
508         unsigned long bit, end_bit, this_end_bit, page, end_page;
509         unsigned long *data;
510
511         if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
512                 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
513                         (unsigned long long)sector,
514                         (unsigned long long)n_sectors,
515                         ic->sb->log2_sectors_per_block,
516                         ic->log2_blocks_per_bitmap_bit,
517                         mode);
518                 BUG();
519         }
520
521         if (unlikely(!n_sectors))
522                 return true;
523
524         bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
525         end_bit = (sector + n_sectors - 1) >>
526                 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
527
528         page = bit / (PAGE_SIZE * 8);
529         bit %= PAGE_SIZE * 8;
530
531         end_page = end_bit / (PAGE_SIZE * 8);
532         end_bit %= PAGE_SIZE * 8;
533
534 repeat:
535         if (page < end_page) {
536                 this_end_bit = PAGE_SIZE * 8 - 1;
537         } else {
538                 this_end_bit = end_bit;
539         }
540
541         data = lowmem_page_address(bitmap[page].page);
542
543         if (mode == BITMAP_OP_TEST_ALL_SET) {
544                 while (bit <= this_end_bit) {
545                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
546                                 do {
547                                         if (data[bit / BITS_PER_LONG] != -1)
548                                                 return false;
549                                         bit += BITS_PER_LONG;
550                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
551                                 continue;
552                         }
553                         if (!test_bit(bit, data))
554                                 return false;
555                         bit++;
556                 }
557         } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
558                 while (bit <= this_end_bit) {
559                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
560                                 do {
561                                         if (data[bit / BITS_PER_LONG] != 0)
562                                                 return false;
563                                         bit += BITS_PER_LONG;
564                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
565                                 continue;
566                         }
567                         if (test_bit(bit, data))
568                                 return false;
569                         bit++;
570                 }
571         } else if (mode == BITMAP_OP_SET) {
572                 while (bit <= this_end_bit) {
573                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
574                                 do {
575                                         data[bit / BITS_PER_LONG] = -1;
576                                         bit += BITS_PER_LONG;
577                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
578                                 continue;
579                         }
580                         __set_bit(bit, data);
581                         bit++;
582                 }
583         } else if (mode == BITMAP_OP_CLEAR) {
584                 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
585                         clear_page(data);
586                 else while (bit <= this_end_bit) {
587                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
588                                 do {
589                                         data[bit / BITS_PER_LONG] = 0;
590                                         bit += BITS_PER_LONG;
591                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
592                                 continue;
593                         }
594                         __clear_bit(bit, data);
595                         bit++;
596                 }
597         } else {
598                 BUG();
599         }
600
601         if (unlikely(page < end_page)) {
602                 bit = 0;
603                 page++;
604                 goto repeat;
605         }
606
607         return true;
608 }
609
610 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
611 {
612         unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
613         unsigned i;
614
615         for (i = 0; i < n_bitmap_pages; i++) {
616                 unsigned long *dst_data = lowmem_page_address(dst[i].page);
617                 unsigned long *src_data = lowmem_page_address(src[i].page);
618                 copy_page(dst_data, src_data);
619         }
620 }
621
622 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
623 {
624         unsigned bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
625         unsigned bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
626
627         BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
628         return &ic->bbs[bitmap_block];
629 }
630
631 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset,
632                                  bool e, const char *function)
633 {
634 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
635         unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
636
637         if (unlikely(section >= ic->journal_sections) ||
638             unlikely(offset >= limit)) {
639                 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
640                        function, section, offset, ic->journal_sections, limit);
641                 BUG();
642         }
643 #endif
644 }
645
646 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset,
647                                unsigned *pl_index, unsigned *pl_offset)
648 {
649         unsigned sector;
650
651         access_journal_check(ic, section, offset, false, "page_list_location");
652
653         sector = section * ic->journal_section_sectors + offset;
654
655         *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
656         *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
657 }
658
659 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
660                                                unsigned section, unsigned offset, unsigned *n_sectors)
661 {
662         unsigned pl_index, pl_offset;
663         char *va;
664
665         page_list_location(ic, section, offset, &pl_index, &pl_offset);
666
667         if (n_sectors)
668                 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
669
670         va = lowmem_page_address(pl[pl_index].page);
671
672         return (struct journal_sector *)(va + pl_offset);
673 }
674
675 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset)
676 {
677         return access_page_list(ic, ic->journal, section, offset, NULL);
678 }
679
680 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n)
681 {
682         unsigned rel_sector, offset;
683         struct journal_sector *js;
684
685         access_journal_check(ic, section, n, true, "access_journal_entry");
686
687         rel_sector = n % JOURNAL_BLOCK_SECTORS;
688         offset = n / JOURNAL_BLOCK_SECTORS;
689
690         js = access_journal(ic, section, rel_sector);
691         return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
692 }
693
694 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n)
695 {
696         n <<= ic->sb->log2_sectors_per_block;
697
698         n += JOURNAL_BLOCK_SECTORS;
699
700         access_journal_check(ic, section, n, false, "access_journal_data");
701
702         return access_journal(ic, section, n);
703 }
704
705 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE])
706 {
707         SHASH_DESC_ON_STACK(desc, ic->journal_mac);
708         int r;
709         unsigned j, size;
710
711         desc->tfm = ic->journal_mac;
712
713         r = crypto_shash_init(desc);
714         if (unlikely(r)) {
715                 dm_integrity_io_error(ic, "crypto_shash_init", r);
716                 goto err;
717         }
718
719         for (j = 0; j < ic->journal_section_entries; j++) {
720                 struct journal_entry *je = access_journal_entry(ic, section, j);
721                 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
722                 if (unlikely(r)) {
723                         dm_integrity_io_error(ic, "crypto_shash_update", r);
724                         goto err;
725                 }
726         }
727
728         size = crypto_shash_digestsize(ic->journal_mac);
729
730         if (likely(size <= JOURNAL_MAC_SIZE)) {
731                 r = crypto_shash_final(desc, result);
732                 if (unlikely(r)) {
733                         dm_integrity_io_error(ic, "crypto_shash_final", r);
734                         goto err;
735                 }
736                 memset(result + size, 0, JOURNAL_MAC_SIZE - size);
737         } else {
738                 __u8 digest[HASH_MAX_DIGESTSIZE];
739
740                 if (WARN_ON(size > sizeof(digest))) {
741                         dm_integrity_io_error(ic, "digest_size", -EINVAL);
742                         goto err;
743                 }
744                 r = crypto_shash_final(desc, digest);
745                 if (unlikely(r)) {
746                         dm_integrity_io_error(ic, "crypto_shash_final", r);
747                         goto err;
748                 }
749                 memcpy(result, digest, JOURNAL_MAC_SIZE);
750         }
751
752         return;
753 err:
754         memset(result, 0, JOURNAL_MAC_SIZE);
755 }
756
757 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr)
758 {
759         __u8 result[JOURNAL_MAC_SIZE];
760         unsigned j;
761
762         if (!ic->journal_mac)
763                 return;
764
765         section_mac(ic, section, result);
766
767         for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
768                 struct journal_sector *js = access_journal(ic, section, j);
769
770                 if (likely(wr))
771                         memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
772                 else {
773                         if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR))
774                                 dm_integrity_io_error(ic, "journal mac", -EILSEQ);
775                 }
776         }
777 }
778
779 static void complete_journal_op(void *context)
780 {
781         struct journal_completion *comp = context;
782         BUG_ON(!atomic_read(&comp->in_flight));
783         if (likely(atomic_dec_and_test(&comp->in_flight)))
784                 complete(&comp->comp);
785 }
786
787 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
788                         unsigned n_sections, struct journal_completion *comp)
789 {
790         struct async_submit_ctl submit;
791         size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
792         unsigned pl_index, pl_offset, section_index;
793         struct page_list *source_pl, *target_pl;
794
795         if (likely(encrypt)) {
796                 source_pl = ic->journal;
797                 target_pl = ic->journal_io;
798         } else {
799                 source_pl = ic->journal_io;
800                 target_pl = ic->journal;
801         }
802
803         page_list_location(ic, section, 0, &pl_index, &pl_offset);
804
805         atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
806
807         init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
808
809         section_index = pl_index;
810
811         do {
812                 size_t this_step;
813                 struct page *src_pages[2];
814                 struct page *dst_page;
815
816                 while (unlikely(pl_index == section_index)) {
817                         unsigned dummy;
818                         if (likely(encrypt))
819                                 rw_section_mac(ic, section, true);
820                         section++;
821                         n_sections--;
822                         if (!n_sections)
823                                 break;
824                         page_list_location(ic, section, 0, &section_index, &dummy);
825                 }
826
827                 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
828                 dst_page = target_pl[pl_index].page;
829                 src_pages[0] = source_pl[pl_index].page;
830                 src_pages[1] = ic->journal_xor[pl_index].page;
831
832                 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
833
834                 pl_index++;
835                 pl_offset = 0;
836                 n_bytes -= this_step;
837         } while (n_bytes);
838
839         BUG_ON(n_sections);
840
841         async_tx_issue_pending_all();
842 }
843
844 static void complete_journal_encrypt(struct crypto_async_request *req, int err)
845 {
846         struct journal_completion *comp = req->data;
847         if (unlikely(err)) {
848                 if (likely(err == -EINPROGRESS)) {
849                         complete(&comp->ic->crypto_backoff);
850                         return;
851                 }
852                 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
853         }
854         complete_journal_op(comp);
855 }
856
857 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
858 {
859         int r;
860         skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
861                                       complete_journal_encrypt, comp);
862         if (likely(encrypt))
863                 r = crypto_skcipher_encrypt(req);
864         else
865                 r = crypto_skcipher_decrypt(req);
866         if (likely(!r))
867                 return false;
868         if (likely(r == -EINPROGRESS))
869                 return true;
870         if (likely(r == -EBUSY)) {
871                 wait_for_completion(&comp->ic->crypto_backoff);
872                 reinit_completion(&comp->ic->crypto_backoff);
873                 return true;
874         }
875         dm_integrity_io_error(comp->ic, "encrypt", r);
876         return false;
877 }
878
879 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
880                           unsigned n_sections, struct journal_completion *comp)
881 {
882         struct scatterlist **source_sg;
883         struct scatterlist **target_sg;
884
885         atomic_add(2, &comp->in_flight);
886
887         if (likely(encrypt)) {
888                 source_sg = ic->journal_scatterlist;
889                 target_sg = ic->journal_io_scatterlist;
890         } else {
891                 source_sg = ic->journal_io_scatterlist;
892                 target_sg = ic->journal_scatterlist;
893         }
894
895         do {
896                 struct skcipher_request *req;
897                 unsigned ivsize;
898                 char *iv;
899
900                 if (likely(encrypt))
901                         rw_section_mac(ic, section, true);
902
903                 req = ic->sk_requests[section];
904                 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
905                 iv = req->iv;
906
907                 memcpy(iv, iv + ivsize, ivsize);
908
909                 req->src = source_sg[section];
910                 req->dst = target_sg[section];
911
912                 if (unlikely(do_crypt(encrypt, req, comp)))
913                         atomic_inc(&comp->in_flight);
914
915                 section++;
916                 n_sections--;
917         } while (n_sections);
918
919         atomic_dec(&comp->in_flight);
920         complete_journal_op(comp);
921 }
922
923 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
924                             unsigned n_sections, struct journal_completion *comp)
925 {
926         if (ic->journal_xor)
927                 return xor_journal(ic, encrypt, section, n_sections, comp);
928         else
929                 return crypt_journal(ic, encrypt, section, n_sections, comp);
930 }
931
932 static void complete_journal_io(unsigned long error, void *context)
933 {
934         struct journal_completion *comp = context;
935         if (unlikely(error != 0))
936                 dm_integrity_io_error(comp->ic, "writing journal", -EIO);
937         complete_journal_op(comp);
938 }
939
940 static void rw_journal_sectors(struct dm_integrity_c *ic, int op, int op_flags,
941                                unsigned sector, unsigned n_sectors, struct journal_completion *comp)
942 {
943         struct dm_io_request io_req;
944         struct dm_io_region io_loc;
945         unsigned pl_index, pl_offset;
946         int r;
947
948         if (unlikely(dm_integrity_failed(ic))) {
949                 if (comp)
950                         complete_journal_io(-1UL, comp);
951                 return;
952         }
953
954         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
955         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
956
957         io_req.bi_op = op;
958         io_req.bi_op_flags = op_flags;
959         io_req.mem.type = DM_IO_PAGE_LIST;
960         if (ic->journal_io)
961                 io_req.mem.ptr.pl = &ic->journal_io[pl_index];
962         else
963                 io_req.mem.ptr.pl = &ic->journal[pl_index];
964         io_req.mem.offset = pl_offset;
965         if (likely(comp != NULL)) {
966                 io_req.notify.fn = complete_journal_io;
967                 io_req.notify.context = comp;
968         } else {
969                 io_req.notify.fn = NULL;
970         }
971         io_req.client = ic->io;
972         io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
973         io_loc.sector = ic->start + SB_SECTORS + sector;
974         io_loc.count = n_sectors;
975
976         r = dm_io(&io_req, 1, &io_loc, NULL);
977         if (unlikely(r)) {
978                 dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r);
979                 if (comp) {
980                         WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
981                         complete_journal_io(-1UL, comp);
982                 }
983         }
984 }
985
986 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section,
987                        unsigned n_sections, struct journal_completion *comp)
988 {
989         unsigned sector, n_sectors;
990
991         sector = section * ic->journal_section_sectors;
992         n_sectors = n_sections * ic->journal_section_sectors;
993
994         rw_journal_sectors(ic, op, op_flags, sector, n_sectors, comp);
995 }
996
997 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections)
998 {
999         struct journal_completion io_comp;
1000         struct journal_completion crypt_comp_1;
1001         struct journal_completion crypt_comp_2;
1002         unsigned i;
1003
1004         io_comp.ic = ic;
1005         init_completion(&io_comp.comp);
1006
1007         if (commit_start + commit_sections <= ic->journal_sections) {
1008                 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1009                 if (ic->journal_io) {
1010                         crypt_comp_1.ic = ic;
1011                         init_completion(&crypt_comp_1.comp);
1012                         crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1013                         encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1014                         wait_for_completion_io(&crypt_comp_1.comp);
1015                 } else {
1016                         for (i = 0; i < commit_sections; i++)
1017                                 rw_section_mac(ic, commit_start + i, true);
1018                 }
1019                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start,
1020                            commit_sections, &io_comp);
1021         } else {
1022                 unsigned to_end;
1023                 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1024                 to_end = ic->journal_sections - commit_start;
1025                 if (ic->journal_io) {
1026                         crypt_comp_1.ic = ic;
1027                         init_completion(&crypt_comp_1.comp);
1028                         crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1029                         encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1030                         if (try_wait_for_completion(&crypt_comp_1.comp)) {
1031                                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1032                                 reinit_completion(&crypt_comp_1.comp);
1033                                 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1034                                 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1035                                 wait_for_completion_io(&crypt_comp_1.comp);
1036                         } else {
1037                                 crypt_comp_2.ic = ic;
1038                                 init_completion(&crypt_comp_2.comp);
1039                                 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1040                                 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1041                                 wait_for_completion_io(&crypt_comp_1.comp);
1042                                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1043                                 wait_for_completion_io(&crypt_comp_2.comp);
1044                         }
1045                 } else {
1046                         for (i = 0; i < to_end; i++)
1047                                 rw_section_mac(ic, commit_start + i, true);
1048                         rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1049                         for (i = 0; i < commit_sections - to_end; i++)
1050                                 rw_section_mac(ic, i, true);
1051                 }
1052                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp);
1053         }
1054
1055         wait_for_completion_io(&io_comp.comp);
1056 }
1057
1058 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset,
1059                               unsigned n_sectors, sector_t target, io_notify_fn fn, void *data)
1060 {
1061         struct dm_io_request io_req;
1062         struct dm_io_region io_loc;
1063         int r;
1064         unsigned sector, pl_index, pl_offset;
1065
1066         BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1));
1067
1068         if (unlikely(dm_integrity_failed(ic))) {
1069                 fn(-1UL, data);
1070                 return;
1071         }
1072
1073         sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1074
1075         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1076         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1077
1078         io_req.bi_op = REQ_OP_WRITE;
1079         io_req.bi_op_flags = 0;
1080         io_req.mem.type = DM_IO_PAGE_LIST;
1081         io_req.mem.ptr.pl = &ic->journal[pl_index];
1082         io_req.mem.offset = pl_offset;
1083         io_req.notify.fn = fn;
1084         io_req.notify.context = data;
1085         io_req.client = ic->io;
1086         io_loc.bdev = ic->dev->bdev;
1087         io_loc.sector = target;
1088         io_loc.count = n_sectors;
1089
1090         r = dm_io(&io_req, 1, &io_loc, NULL);
1091         if (unlikely(r)) {
1092                 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1093                 fn(-1UL, data);
1094         }
1095 }
1096
1097 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1098 {
1099         return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1100                range1->logical_sector + range1->n_sectors > range2->logical_sector;
1101 }
1102
1103 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1104 {
1105         struct rb_node **n = &ic->in_progress.rb_node;
1106         struct rb_node *parent;
1107
1108         BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1));
1109
1110         if (likely(check_waiting)) {
1111                 struct dm_integrity_range *range;
1112                 list_for_each_entry(range, &ic->wait_list, wait_entry) {
1113                         if (unlikely(ranges_overlap(range, new_range)))
1114                                 return false;
1115                 }
1116         }
1117
1118         parent = NULL;
1119
1120         while (*n) {
1121                 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1122
1123                 parent = *n;
1124                 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
1125                         n = &range->node.rb_left;
1126                 } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
1127                         n = &range->node.rb_right;
1128                 } else {
1129                         return false;
1130                 }
1131         }
1132
1133         rb_link_node(&new_range->node, parent, n);
1134         rb_insert_color(&new_range->node, &ic->in_progress);
1135
1136         return true;
1137 }
1138
1139 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1140 {
1141         rb_erase(&range->node, &ic->in_progress);
1142         while (unlikely(!list_empty(&ic->wait_list))) {
1143                 struct dm_integrity_range *last_range =
1144                         list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1145                 struct task_struct *last_range_task;
1146                 last_range_task = last_range->task;
1147                 list_del(&last_range->wait_entry);
1148                 if (!add_new_range(ic, last_range, false)) {
1149                         last_range->task = last_range_task;
1150                         list_add(&last_range->wait_entry, &ic->wait_list);
1151                         break;
1152                 }
1153                 last_range->waiting = false;
1154                 wake_up_process(last_range_task);
1155         }
1156 }
1157
1158 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1159 {
1160         unsigned long flags;
1161
1162         spin_lock_irqsave(&ic->endio_wait.lock, flags);
1163         remove_range_unlocked(ic, range);
1164         spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1165 }
1166
1167 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1168 {
1169         new_range->waiting = true;
1170         list_add_tail(&new_range->wait_entry, &ic->wait_list);
1171         new_range->task = current;
1172         do {
1173                 __set_current_state(TASK_UNINTERRUPTIBLE);
1174                 spin_unlock_irq(&ic->endio_wait.lock);
1175                 io_schedule();
1176                 spin_lock_irq(&ic->endio_wait.lock);
1177         } while (unlikely(new_range->waiting));
1178 }
1179
1180 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1181 {
1182         if (unlikely(!add_new_range(ic, new_range, true)))
1183                 wait_and_add_new_range(ic, new_range);
1184 }
1185
1186 static void init_journal_node(struct journal_node *node)
1187 {
1188         RB_CLEAR_NODE(&node->node);
1189         node->sector = (sector_t)-1;
1190 }
1191
1192 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1193 {
1194         struct rb_node **link;
1195         struct rb_node *parent;
1196
1197         node->sector = sector;
1198         BUG_ON(!RB_EMPTY_NODE(&node->node));
1199
1200         link = &ic->journal_tree_root.rb_node;
1201         parent = NULL;
1202
1203         while (*link) {
1204                 struct journal_node *j;
1205                 parent = *link;
1206                 j = container_of(parent, struct journal_node, node);
1207                 if (sector < j->sector)
1208                         link = &j->node.rb_left;
1209                 else
1210                         link = &j->node.rb_right;
1211         }
1212
1213         rb_link_node(&node->node, parent, link);
1214         rb_insert_color(&node->node, &ic->journal_tree_root);
1215 }
1216
1217 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1218 {
1219         BUG_ON(RB_EMPTY_NODE(&node->node));
1220         rb_erase(&node->node, &ic->journal_tree_root);
1221         init_journal_node(node);
1222 }
1223
1224 #define NOT_FOUND       (-1U)
1225
1226 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1227 {
1228         struct rb_node *n = ic->journal_tree_root.rb_node;
1229         unsigned found = NOT_FOUND;
1230         *next_sector = (sector_t)-1;
1231         while (n) {
1232                 struct journal_node *j = container_of(n, struct journal_node, node);
1233                 if (sector == j->sector) {
1234                         found = j - ic->journal_tree;
1235                 }
1236                 if (sector < j->sector) {
1237                         *next_sector = j->sector;
1238                         n = j->node.rb_left;
1239                 } else {
1240                         n = j->node.rb_right;
1241                 }
1242         }
1243
1244         return found;
1245 }
1246
1247 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector)
1248 {
1249         struct journal_node *node, *next_node;
1250         struct rb_node *next;
1251
1252         if (unlikely(pos >= ic->journal_entries))
1253                 return false;
1254         node = &ic->journal_tree[pos];
1255         if (unlikely(RB_EMPTY_NODE(&node->node)))
1256                 return false;
1257         if (unlikely(node->sector != sector))
1258                 return false;
1259
1260         next = rb_next(&node->node);
1261         if (unlikely(!next))
1262                 return true;
1263
1264         next_node = container_of(next, struct journal_node, node);
1265         return next_node->sector != sector;
1266 }
1267
1268 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1269 {
1270         struct rb_node *next;
1271         struct journal_node *next_node;
1272         unsigned next_section;
1273
1274         BUG_ON(RB_EMPTY_NODE(&node->node));
1275
1276         next = rb_next(&node->node);
1277         if (unlikely(!next))
1278                 return false;
1279
1280         next_node = container_of(next, struct journal_node, node);
1281
1282         if (next_node->sector != node->sector)
1283                 return false;
1284
1285         next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries;
1286         if (next_section >= ic->committed_section &&
1287             next_section < ic->committed_section + ic->n_committed_sections)
1288                 return true;
1289         if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1290                 return true;
1291
1292         return false;
1293 }
1294
1295 #define TAG_READ        0
1296 #define TAG_WRITE       1
1297 #define TAG_CMP         2
1298
1299 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1300                                unsigned *metadata_offset, unsigned total_size, int op)
1301 {
1302         do {
1303                 unsigned char *data, *dp;
1304                 struct dm_buffer *b;
1305                 unsigned to_copy;
1306                 int r;
1307
1308                 r = dm_integrity_failed(ic);
1309                 if (unlikely(r))
1310                         return r;
1311
1312                 data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1313                 if (IS_ERR(data))
1314                         return PTR_ERR(data);
1315
1316                 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1317                 dp = data + *metadata_offset;
1318                 if (op == TAG_READ) {
1319                         memcpy(tag, dp, to_copy);
1320                 } else if (op == TAG_WRITE) {
1321                         memcpy(dp, tag, to_copy);
1322                         dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1323                 } else  {
1324                         /* e.g.: op == TAG_CMP */
1325                         if (unlikely(memcmp(dp, tag, to_copy))) {
1326                                 unsigned i;
1327
1328                                 for (i = 0; i < to_copy; i++) {
1329                                         if (dp[i] != tag[i])
1330                                                 break;
1331                                         total_size--;
1332                                 }
1333                                 dm_bufio_release(b);
1334                                 return total_size;
1335                         }
1336                 }
1337                 dm_bufio_release(b);
1338
1339                 tag += to_copy;
1340                 *metadata_offset += to_copy;
1341                 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1342                         (*metadata_block)++;
1343                         *metadata_offset = 0;
1344                 }
1345                 total_size -= to_copy;
1346         } while (unlikely(total_size));
1347
1348         return 0;
1349 }
1350
1351 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic)
1352 {
1353         int r;
1354         r = dm_bufio_write_dirty_buffers(ic->bufio);
1355         if (unlikely(r))
1356                 dm_integrity_io_error(ic, "writing tags", r);
1357 }
1358
1359 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1360 {
1361         DECLARE_WAITQUEUE(wait, current);
1362         __add_wait_queue(&ic->endio_wait, &wait);
1363         __set_current_state(TASK_UNINTERRUPTIBLE);
1364         spin_unlock_irq(&ic->endio_wait.lock);
1365         io_schedule();
1366         spin_lock_irq(&ic->endio_wait.lock);
1367         __remove_wait_queue(&ic->endio_wait, &wait);
1368 }
1369
1370 static void autocommit_fn(struct timer_list *t)
1371 {
1372         struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1373
1374         if (likely(!dm_integrity_failed(ic)))
1375                 queue_work(ic->commit_wq, &ic->commit_work);
1376 }
1377
1378 static void schedule_autocommit(struct dm_integrity_c *ic)
1379 {
1380         if (!timer_pending(&ic->autocommit_timer))
1381                 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1382 }
1383
1384 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1385 {
1386         struct bio *bio;
1387         unsigned long flags;
1388
1389         spin_lock_irqsave(&ic->endio_wait.lock, flags);
1390         bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1391         bio_list_add(&ic->flush_bio_list, bio);
1392         spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1393
1394         queue_work(ic->commit_wq, &ic->commit_work);
1395 }
1396
1397 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1398 {
1399         int r = dm_integrity_failed(ic);
1400         if (unlikely(r) && !bio->bi_status)
1401                 bio->bi_status = errno_to_blk_status(r);
1402         if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1403                 unsigned long flags;
1404                 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1405                 bio_list_add(&ic->synchronous_bios, bio);
1406                 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1407                 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1408                 return;
1409         }
1410         bio_endio(bio);
1411 }
1412
1413 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1414 {
1415         struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1416
1417         if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1418                 submit_flush_bio(ic, dio);
1419         else
1420                 do_endio(ic, bio);
1421 }
1422
1423 static void dec_in_flight(struct dm_integrity_io *dio)
1424 {
1425         if (atomic_dec_and_test(&dio->in_flight)) {
1426                 struct dm_integrity_c *ic = dio->ic;
1427                 struct bio *bio;
1428
1429                 remove_range(ic, &dio->range);
1430
1431                 if (unlikely(dio->write))
1432                         schedule_autocommit(ic);
1433
1434                 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1435
1436                 if (unlikely(dio->bi_status) && !bio->bi_status)
1437                         bio->bi_status = dio->bi_status;
1438                 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1439                         dio->range.logical_sector += dio->range.n_sectors;
1440                         bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1441                         INIT_WORK(&dio->work, integrity_bio_wait);
1442                         queue_work(ic->offload_wq, &dio->work);
1443                         return;
1444                 }
1445                 do_endio_flush(ic, dio);
1446         }
1447 }
1448
1449 static void integrity_end_io(struct bio *bio)
1450 {
1451         struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1452
1453         dm_bio_restore(&dio->bio_details, bio);
1454         if (bio->bi_integrity)
1455                 bio->bi_opf |= REQ_INTEGRITY;
1456
1457         if (dio->completion)
1458                 complete(dio->completion);
1459
1460         dec_in_flight(dio);
1461 }
1462
1463 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1464                                       const char *data, char *result)
1465 {
1466         __u64 sector_le = cpu_to_le64(sector);
1467         SHASH_DESC_ON_STACK(req, ic->internal_hash);
1468         int r;
1469         unsigned digest_size;
1470
1471         req->tfm = ic->internal_hash;
1472
1473         r = crypto_shash_init(req);
1474         if (unlikely(r < 0)) {
1475                 dm_integrity_io_error(ic, "crypto_shash_init", r);
1476                 goto failed;
1477         }
1478
1479         r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof sector_le);
1480         if (unlikely(r < 0)) {
1481                 dm_integrity_io_error(ic, "crypto_shash_update", r);
1482                 goto failed;
1483         }
1484
1485         r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1486         if (unlikely(r < 0)) {
1487                 dm_integrity_io_error(ic, "crypto_shash_update", r);
1488                 goto failed;
1489         }
1490
1491         r = crypto_shash_final(req, result);
1492         if (unlikely(r < 0)) {
1493                 dm_integrity_io_error(ic, "crypto_shash_final", r);
1494                 goto failed;
1495         }
1496
1497         digest_size = crypto_shash_digestsize(ic->internal_hash);
1498         if (unlikely(digest_size < ic->tag_size))
1499                 memset(result + digest_size, 0, ic->tag_size - digest_size);
1500
1501         return;
1502
1503 failed:
1504         /* this shouldn't happen anyway, the hash functions have no reason to fail */
1505         get_random_bytes(result, ic->tag_size);
1506 }
1507
1508 static void integrity_metadata(struct work_struct *w)
1509 {
1510         struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1511         struct dm_integrity_c *ic = dio->ic;
1512
1513         int r;
1514
1515         if (ic->internal_hash) {
1516                 struct bvec_iter iter;
1517                 struct bio_vec bv;
1518                 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1519                 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1520                 char *checksums;
1521                 unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1522                 char checksums_onstack[HASH_MAX_DIGESTSIZE];
1523                 unsigned sectors_to_process = dio->range.n_sectors;
1524                 sector_t sector = dio->range.logical_sector;
1525
1526                 if (unlikely(ic->mode == 'R'))
1527                         goto skip_io;
1528
1529                 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1530                                     GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1531                 if (!checksums) {
1532                         checksums = checksums_onstack;
1533                         if (WARN_ON(extra_space &&
1534                                     digest_size > sizeof(checksums_onstack))) {
1535                                 r = -EINVAL;
1536                                 goto error;
1537                         }
1538                 }
1539
1540                 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1541                         unsigned pos;
1542                         char *mem, *checksums_ptr;
1543
1544 again:
1545                         mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset;
1546                         pos = 0;
1547                         checksums_ptr = checksums;
1548                         do {
1549                                 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1550                                 checksums_ptr += ic->tag_size;
1551                                 sectors_to_process -= ic->sectors_per_block;
1552                                 pos += ic->sectors_per_block << SECTOR_SHIFT;
1553                                 sector += ic->sectors_per_block;
1554                         } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1555                         kunmap_atomic(mem);
1556
1557                         r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1558                                                 checksums_ptr - checksums, !dio->write ? TAG_CMP : TAG_WRITE);
1559                         if (unlikely(r)) {
1560                                 if (r > 0) {
1561                                         DMERR_LIMIT("Checksum failed at sector 0x%llx",
1562                                                     (unsigned long long)(sector - ((r + ic->tag_size - 1) / ic->tag_size)));
1563                                         r = -EILSEQ;
1564                                         atomic64_inc(&ic->number_of_mismatches);
1565                                 }
1566                                 if (likely(checksums != checksums_onstack))
1567                                         kfree(checksums);
1568                                 goto error;
1569                         }
1570
1571                         if (!sectors_to_process)
1572                                 break;
1573
1574                         if (unlikely(pos < bv.bv_len)) {
1575                                 bv.bv_offset += pos;
1576                                 bv.bv_len -= pos;
1577                                 goto again;
1578                         }
1579                 }
1580
1581                 if (likely(checksums != checksums_onstack))
1582                         kfree(checksums);
1583         } else {
1584                 struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1585
1586                 if (bip) {
1587                         struct bio_vec biv;
1588                         struct bvec_iter iter;
1589                         unsigned data_to_process = dio->range.n_sectors;
1590                         sector_to_block(ic, data_to_process);
1591                         data_to_process *= ic->tag_size;
1592
1593                         bip_for_each_vec(biv, bip, iter) {
1594                                 unsigned char *tag;
1595                                 unsigned this_len;
1596
1597                                 BUG_ON(PageHighMem(biv.bv_page));
1598                                 tag = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1599                                 this_len = min(biv.bv_len, data_to_process);
1600                                 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1601                                                         this_len, !dio->write ? TAG_READ : TAG_WRITE);
1602                                 if (unlikely(r))
1603                                         goto error;
1604                                 data_to_process -= this_len;
1605                                 if (!data_to_process)
1606                                         break;
1607                         }
1608                 }
1609         }
1610 skip_io:
1611         dec_in_flight(dio);
1612         return;
1613 error:
1614         dio->bi_status = errno_to_blk_status(r);
1615         dec_in_flight(dio);
1616 }
1617
1618 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1619 {
1620         struct dm_integrity_c *ic = ti->private;
1621         struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1622         struct bio_integrity_payload *bip;
1623
1624         sector_t area, offset;
1625
1626         dio->ic = ic;
1627         dio->bi_status = 0;
1628
1629         if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1630                 submit_flush_bio(ic, dio);
1631                 return DM_MAPIO_SUBMITTED;
1632         }
1633
1634         dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1635         dio->write = bio_op(bio) == REQ_OP_WRITE;
1636         dio->fua = dio->write && bio->bi_opf & REQ_FUA;
1637         if (unlikely(dio->fua)) {
1638                 /*
1639                  * Don't pass down the FUA flag because we have to flush
1640                  * disk cache anyway.
1641                  */
1642                 bio->bi_opf &= ~REQ_FUA;
1643         }
1644         if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1645                 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1646                       (unsigned long long)dio->range.logical_sector, bio_sectors(bio),
1647                       (unsigned long long)ic->provided_data_sectors);
1648                 return DM_MAPIO_KILL;
1649         }
1650         if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) {
1651                 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1652                       ic->sectors_per_block,
1653                       (unsigned long long)dio->range.logical_sector, bio_sectors(bio));
1654                 return DM_MAPIO_KILL;
1655         }
1656
1657         if (ic->sectors_per_block > 1) {
1658                 struct bvec_iter iter;
1659                 struct bio_vec bv;
1660                 bio_for_each_segment(bv, bio, iter) {
1661                         if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1662                                 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1663                                         bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1664                                 return DM_MAPIO_KILL;
1665                         }
1666                 }
1667         }
1668
1669         bip = bio_integrity(bio);
1670         if (!ic->internal_hash) {
1671                 if (bip) {
1672                         unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1673                         if (ic->log2_tag_size >= 0)
1674                                 wanted_tag_size <<= ic->log2_tag_size;
1675                         else
1676                                 wanted_tag_size *= ic->tag_size;
1677                         if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1678                                 DMERR("Invalid integrity data size %u, expected %u",
1679                                       bip->bip_iter.bi_size, wanted_tag_size);
1680                                 return DM_MAPIO_KILL;
1681                         }
1682                 }
1683         } else {
1684                 if (unlikely(bip != NULL)) {
1685                         DMERR("Unexpected integrity data when using internal hash");
1686                         return DM_MAPIO_KILL;
1687                 }
1688         }
1689
1690         if (unlikely(ic->mode == 'R') && unlikely(dio->write))
1691                 return DM_MAPIO_KILL;
1692
1693         get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1694         dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1695         bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1696
1697         dm_integrity_map_continue(dio, true);
1698         return DM_MAPIO_SUBMITTED;
1699 }
1700
1701 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1702                                  unsigned journal_section, unsigned journal_entry)
1703 {
1704         struct dm_integrity_c *ic = dio->ic;
1705         sector_t logical_sector;
1706         unsigned n_sectors;
1707
1708         logical_sector = dio->range.logical_sector;
1709         n_sectors = dio->range.n_sectors;
1710         do {
1711                 struct bio_vec bv = bio_iovec(bio);
1712                 char *mem;
1713
1714                 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1715                         bv.bv_len = n_sectors << SECTOR_SHIFT;
1716                 n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1717                 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1718 retry_kmap:
1719                 mem = kmap_atomic(bv.bv_page);
1720                 if (likely(dio->write))
1721                         flush_dcache_page(bv.bv_page);
1722
1723                 do {
1724                         struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1725
1726                         if (unlikely(!dio->write)) {
1727                                 struct journal_sector *js;
1728                                 char *mem_ptr;
1729                                 unsigned s;
1730
1731                                 if (unlikely(journal_entry_is_inprogress(je))) {
1732                                         flush_dcache_page(bv.bv_page);
1733                                         kunmap_atomic(mem);
1734
1735                                         __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1736                                         goto retry_kmap;
1737                                 }
1738                                 smp_rmb();
1739                                 BUG_ON(journal_entry_get_sector(je) != logical_sector);
1740                                 js = access_journal_data(ic, journal_section, journal_entry);
1741                                 mem_ptr = mem + bv.bv_offset;
1742                                 s = 0;
1743                                 do {
1744                                         memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1745                                         *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1746                                         js++;
1747                                         mem_ptr += 1 << SECTOR_SHIFT;
1748                                 } while (++s < ic->sectors_per_block);
1749 #ifdef INTERNAL_VERIFY
1750                                 if (ic->internal_hash) {
1751                                         char checksums_onstack[max(HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1752
1753                                         integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
1754                                         if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
1755                                                 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
1756                                                             (unsigned long long)logical_sector);
1757                                         }
1758                                 }
1759 #endif
1760                         }
1761
1762                         if (!ic->internal_hash) {
1763                                 struct bio_integrity_payload *bip = bio_integrity(bio);
1764                                 unsigned tag_todo = ic->tag_size;
1765                                 char *tag_ptr = journal_entry_tag(ic, je);
1766
1767                                 if (bip) do {
1768                                         struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
1769                                         unsigned tag_now = min(biv.bv_len, tag_todo);
1770                                         char *tag_addr;
1771                                         BUG_ON(PageHighMem(biv.bv_page));
1772                                         tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1773                                         if (likely(dio->write))
1774                                                 memcpy(tag_ptr, tag_addr, tag_now);
1775                                         else
1776                                                 memcpy(tag_addr, tag_ptr, tag_now);
1777                                         bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
1778                                         tag_ptr += tag_now;
1779                                         tag_todo -= tag_now;
1780                                 } while (unlikely(tag_todo)); else {
1781                                         if (likely(dio->write))
1782                                                 memset(tag_ptr, 0, tag_todo);
1783                                 }
1784                         }
1785
1786                         if (likely(dio->write)) {
1787                                 struct journal_sector *js;
1788                                 unsigned s;
1789
1790                                 js = access_journal_data(ic, journal_section, journal_entry);
1791                                 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
1792
1793                                 s = 0;
1794                                 do {
1795                                         je->last_bytes[s] = js[s].commit_id;
1796                                 } while (++s < ic->sectors_per_block);
1797
1798                                 if (ic->internal_hash) {
1799                                         unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1800                                         if (unlikely(digest_size > ic->tag_size)) {
1801                                                 char checksums_onstack[HASH_MAX_DIGESTSIZE];
1802                                                 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
1803                                                 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
1804                                         } else
1805                                                 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
1806                                 }
1807
1808                                 journal_entry_set_sector(je, logical_sector);
1809                         }
1810                         logical_sector += ic->sectors_per_block;
1811
1812                         journal_entry++;
1813                         if (unlikely(journal_entry == ic->journal_section_entries)) {
1814                                 journal_entry = 0;
1815                                 journal_section++;
1816                                 wraparound_section(ic, &journal_section);
1817                         }
1818
1819                         bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
1820                 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
1821
1822                 if (unlikely(!dio->write))
1823                         flush_dcache_page(bv.bv_page);
1824                 kunmap_atomic(mem);
1825         } while (n_sectors);
1826
1827         if (likely(dio->write)) {
1828                 smp_mb();
1829                 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
1830                         wake_up(&ic->copy_to_journal_wait);
1831                 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
1832                         queue_work(ic->commit_wq, &ic->commit_work);
1833                 } else {
1834                         schedule_autocommit(ic);
1835                 }
1836         } else {
1837                 remove_range(ic, &dio->range);
1838         }
1839
1840         if (unlikely(bio->bi_iter.bi_size)) {
1841                 sector_t area, offset;
1842
1843                 dio->range.logical_sector = logical_sector;
1844                 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1845                 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1846                 return true;
1847         }
1848
1849         return false;
1850 }
1851
1852 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
1853 {
1854         struct dm_integrity_c *ic = dio->ic;
1855         struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1856         unsigned journal_section, journal_entry;
1857         unsigned journal_read_pos;
1858         struct completion read_comp;
1859         bool need_sync_io = ic->internal_hash && !dio->write;
1860
1861         if (need_sync_io && from_map) {
1862                 INIT_WORK(&dio->work, integrity_bio_wait);
1863                 queue_work(ic->offload_wq, &dio->work);
1864                 return;
1865         }
1866
1867 lock_retry:
1868         spin_lock_irq(&ic->endio_wait.lock);
1869 retry:
1870         if (unlikely(dm_integrity_failed(ic))) {
1871                 spin_unlock_irq(&ic->endio_wait.lock);
1872                 do_endio(ic, bio);
1873                 return;
1874         }
1875         dio->range.n_sectors = bio_sectors(bio);
1876         journal_read_pos = NOT_FOUND;
1877         if (likely(ic->mode == 'J')) {
1878                 if (dio->write) {
1879                         unsigned next_entry, i, pos;
1880                         unsigned ws, we, range_sectors;
1881
1882                         dio->range.n_sectors = min(dio->range.n_sectors,
1883                                                    (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
1884                         if (unlikely(!dio->range.n_sectors)) {
1885                                 if (from_map)
1886                                         goto offload_to_thread;
1887                                 sleep_on_endio_wait(ic);
1888                                 goto retry;
1889                         }
1890                         range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
1891                         ic->free_sectors -= range_sectors;
1892                         journal_section = ic->free_section;
1893                         journal_entry = ic->free_section_entry;
1894
1895                         next_entry = ic->free_section_entry + range_sectors;
1896                         ic->free_section_entry = next_entry % ic->journal_section_entries;
1897                         ic->free_section += next_entry / ic->journal_section_entries;
1898                         ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
1899                         wraparound_section(ic, &ic->free_section);
1900
1901                         pos = journal_section * ic->journal_section_entries + journal_entry;
1902                         ws = journal_section;
1903                         we = journal_entry;
1904                         i = 0;
1905                         do {
1906                                 struct journal_entry *je;
1907
1908                                 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
1909                                 pos++;
1910                                 if (unlikely(pos >= ic->journal_entries))
1911                                         pos = 0;
1912
1913                                 je = access_journal_entry(ic, ws, we);
1914                                 BUG_ON(!journal_entry_is_unused(je));
1915                                 journal_entry_set_inprogress(je);
1916                                 we++;
1917                                 if (unlikely(we == ic->journal_section_entries)) {
1918                                         we = 0;
1919                                         ws++;
1920                                         wraparound_section(ic, &ws);
1921                                 }
1922                         } while ((i += ic->sectors_per_block) < dio->range.n_sectors);
1923
1924                         spin_unlock_irq(&ic->endio_wait.lock);
1925                         goto journal_read_write;
1926                 } else {
1927                         sector_t next_sector;
1928                         journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
1929                         if (likely(journal_read_pos == NOT_FOUND)) {
1930                                 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
1931                                         dio->range.n_sectors = next_sector - dio->range.logical_sector;
1932                         } else {
1933                                 unsigned i;
1934                                 unsigned jp = journal_read_pos + 1;
1935                                 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
1936                                         if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
1937                                                 break;
1938                                 }
1939                                 dio->range.n_sectors = i;
1940                         }
1941                 }
1942         }
1943         if (unlikely(!add_new_range(ic, &dio->range, true))) {
1944                 /*
1945                  * We must not sleep in the request routine because it could
1946                  * stall bios on current->bio_list.
1947                  * So, we offload the bio to a workqueue if we have to sleep.
1948                  */
1949                 if (from_map) {
1950 offload_to_thread:
1951                         spin_unlock_irq(&ic->endio_wait.lock);
1952                         INIT_WORK(&dio->work, integrity_bio_wait);
1953                         queue_work(ic->wait_wq, &dio->work);
1954                         return;
1955                 }
1956                 if (journal_read_pos != NOT_FOUND)
1957                         dio->range.n_sectors = ic->sectors_per_block;
1958                 wait_and_add_new_range(ic, &dio->range);
1959                 /*
1960                  * wait_and_add_new_range drops the spinlock, so the journal
1961                  * may have been changed arbitrarily. We need to recheck.
1962                  * To simplify the code, we restrict I/O size to just one block.
1963                  */
1964                 if (journal_read_pos != NOT_FOUND) {
1965                         sector_t next_sector;
1966                         unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
1967                         if (unlikely(new_pos != journal_read_pos)) {
1968                                 remove_range_unlocked(ic, &dio->range);
1969                                 goto retry;
1970                         }
1971                 }
1972         }
1973         spin_unlock_irq(&ic->endio_wait.lock);
1974
1975         if (unlikely(journal_read_pos != NOT_FOUND)) {
1976                 journal_section = journal_read_pos / ic->journal_section_entries;
1977                 journal_entry = journal_read_pos % ic->journal_section_entries;
1978                 goto journal_read_write;
1979         }
1980
1981         if (ic->mode == 'B' && dio->write) {
1982                 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
1983                                      dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
1984                         struct bitmap_block_status *bbs;
1985
1986                         bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
1987                         spin_lock(&bbs->bio_queue_lock);
1988                         bio_list_add(&bbs->bio_queue, bio);
1989                         spin_unlock(&bbs->bio_queue_lock);
1990                         queue_work(ic->writer_wq, &bbs->work);
1991                         return;
1992                 }
1993         }
1994
1995         dio->in_flight = (atomic_t)ATOMIC_INIT(2);
1996
1997         if (need_sync_io) {
1998                 init_completion(&read_comp);
1999                 dio->completion = &read_comp;
2000         } else
2001                 dio->completion = NULL;
2002
2003         dm_bio_record(&dio->bio_details, bio);
2004         bio_set_dev(bio, ic->dev->bdev);
2005         bio->bi_integrity = NULL;
2006         bio->bi_opf &= ~REQ_INTEGRITY;
2007         bio->bi_end_io = integrity_end_io;
2008         bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2009
2010         generic_make_request(bio);
2011
2012         if (need_sync_io) {
2013                 wait_for_completion_io(&read_comp);
2014                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2015                     dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2016                         goto skip_check;
2017                 if (ic->mode == 'B') {
2018                         if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2019                                              dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2020                                 goto skip_check;
2021                 }
2022
2023                 if (likely(!bio->bi_status))
2024                         integrity_metadata(&dio->work);
2025                 else
2026 skip_check:
2027                         dec_in_flight(dio);
2028
2029         } else {
2030                 INIT_WORK(&dio->work, integrity_metadata);
2031                 queue_work(ic->metadata_wq, &dio->work);
2032         }
2033
2034         return;
2035
2036 journal_read_write:
2037         if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2038                 goto lock_retry;
2039
2040         do_endio_flush(ic, dio);
2041 }
2042
2043
2044 static void integrity_bio_wait(struct work_struct *w)
2045 {
2046         struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2047
2048         dm_integrity_map_continue(dio, false);
2049 }
2050
2051 static void pad_uncommitted(struct dm_integrity_c *ic)
2052 {
2053         if (ic->free_section_entry) {
2054                 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2055                 ic->free_section_entry = 0;
2056                 ic->free_section++;
2057                 wraparound_section(ic, &ic->free_section);
2058                 ic->n_uncommitted_sections++;
2059         }
2060         if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2061                     (ic->n_uncommitted_sections + ic->n_committed_sections) *
2062                     ic->journal_section_entries + ic->free_sectors)) {
2063                 DMCRIT("journal_sections %u, journal_section_entries %u, "
2064                        "n_uncommitted_sections %u, n_committed_sections %u, "
2065                        "journal_section_entries %u, free_sectors %u",
2066                        ic->journal_sections, ic->journal_section_entries,
2067                        ic->n_uncommitted_sections, ic->n_committed_sections,
2068                        ic->journal_section_entries, ic->free_sectors);
2069         }
2070 }
2071
2072 static void integrity_commit(struct work_struct *w)
2073 {
2074         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2075         unsigned commit_start, commit_sections;
2076         unsigned i, j, n;
2077         struct bio *flushes;
2078
2079         del_timer(&ic->autocommit_timer);
2080
2081         spin_lock_irq(&ic->endio_wait.lock);
2082         flushes = bio_list_get(&ic->flush_bio_list);
2083         if (unlikely(ic->mode != 'J')) {
2084                 spin_unlock_irq(&ic->endio_wait.lock);
2085                 dm_integrity_flush_buffers(ic);
2086                 goto release_flush_bios;
2087         }
2088
2089         pad_uncommitted(ic);
2090         commit_start = ic->uncommitted_section;
2091         commit_sections = ic->n_uncommitted_sections;
2092         spin_unlock_irq(&ic->endio_wait.lock);
2093
2094         if (!commit_sections)
2095                 goto release_flush_bios;
2096
2097         i = commit_start;
2098         for (n = 0; n < commit_sections; n++) {
2099                 for (j = 0; j < ic->journal_section_entries; j++) {
2100                         struct journal_entry *je;
2101                         je = access_journal_entry(ic, i, j);
2102                         io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2103                 }
2104                 for (j = 0; j < ic->journal_section_sectors; j++) {
2105                         struct journal_sector *js;
2106                         js = access_journal(ic, i, j);
2107                         js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2108                 }
2109                 i++;
2110                 if (unlikely(i >= ic->journal_sections))
2111                         ic->commit_seq = next_commit_seq(ic->commit_seq);
2112                 wraparound_section(ic, &i);
2113         }
2114         smp_rmb();
2115
2116         write_journal(ic, commit_start, commit_sections);
2117
2118         spin_lock_irq(&ic->endio_wait.lock);
2119         ic->uncommitted_section += commit_sections;
2120         wraparound_section(ic, &ic->uncommitted_section);
2121         ic->n_uncommitted_sections -= commit_sections;
2122         ic->n_committed_sections += commit_sections;
2123         spin_unlock_irq(&ic->endio_wait.lock);
2124
2125         if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2126                 queue_work(ic->writer_wq, &ic->writer_work);
2127
2128 release_flush_bios:
2129         while (flushes) {
2130                 struct bio *next = flushes->bi_next;
2131                 flushes->bi_next = NULL;
2132                 do_endio(ic, flushes);
2133                 flushes = next;
2134         }
2135 }
2136
2137 static void complete_copy_from_journal(unsigned long error, void *context)
2138 {
2139         struct journal_io *io = context;
2140         struct journal_completion *comp = io->comp;
2141         struct dm_integrity_c *ic = comp->ic;
2142         remove_range(ic, &io->range);
2143         mempool_free(io, &ic->journal_io_mempool);
2144         if (unlikely(error != 0))
2145                 dm_integrity_io_error(ic, "copying from journal", -EIO);
2146         complete_journal_op(comp);
2147 }
2148
2149 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2150                                struct journal_entry *je)
2151 {
2152         unsigned s = 0;
2153         do {
2154                 js->commit_id = je->last_bytes[s];
2155                 js++;
2156         } while (++s < ic->sectors_per_block);
2157 }
2158
2159 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start,
2160                              unsigned write_sections, bool from_replay)
2161 {
2162         unsigned i, j, n;
2163         struct journal_completion comp;
2164         struct blk_plug plug;
2165
2166         blk_start_plug(&plug);
2167
2168         comp.ic = ic;
2169         comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2170         init_completion(&comp.comp);
2171
2172         i = write_start;
2173         for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2174 #ifndef INTERNAL_VERIFY
2175                 if (unlikely(from_replay))
2176 #endif
2177                         rw_section_mac(ic, i, false);
2178                 for (j = 0; j < ic->journal_section_entries; j++) {
2179                         struct journal_entry *je = access_journal_entry(ic, i, j);
2180                         sector_t sec, area, offset;
2181                         unsigned k, l, next_loop;
2182                         sector_t metadata_block;
2183                         unsigned metadata_offset;
2184                         struct journal_io *io;
2185
2186                         if (journal_entry_is_unused(je))
2187                                 continue;
2188                         BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2189                         sec = journal_entry_get_sector(je);
2190                         if (unlikely(from_replay)) {
2191                                 if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) {
2192                                         dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2193                                         sec &= ~(sector_t)(ic->sectors_per_block - 1);
2194                                 }
2195                         }
2196                         get_area_and_offset(ic, sec, &area, &offset);
2197                         restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2198                         for (k = j + 1; k < ic->journal_section_entries; k++) {
2199                                 struct journal_entry *je2 = access_journal_entry(ic, i, k);
2200                                 sector_t sec2, area2, offset2;
2201                                 if (journal_entry_is_unused(je2))
2202                                         break;
2203                                 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2204                                 sec2 = journal_entry_get_sector(je2);
2205                                 get_area_and_offset(ic, sec2, &area2, &offset2);
2206                                 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2207                                         break;
2208                                 restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2209                         }
2210                         next_loop = k - 1;
2211
2212                         io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2213                         io->comp = &comp;
2214                         io->range.logical_sector = sec;
2215                         io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2216
2217                         spin_lock_irq(&ic->endio_wait.lock);
2218                         add_new_range_and_wait(ic, &io->range);
2219
2220                         if (likely(!from_replay)) {
2221                                 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2222
2223                                 /* don't write if there is newer committed sector */
2224                                 while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2225                                         struct journal_entry *je2 = access_journal_entry(ic, i, j);
2226
2227                                         journal_entry_set_unused(je2);
2228                                         remove_journal_node(ic, &section_node[j]);
2229                                         j++;
2230                                         sec += ic->sectors_per_block;
2231                                         offset += ic->sectors_per_block;
2232                                 }
2233                                 while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2234                                         struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2235
2236                                         journal_entry_set_unused(je2);
2237                                         remove_journal_node(ic, &section_node[k - 1]);
2238                                         k--;
2239                                 }
2240                                 if (j == k) {
2241                                         remove_range_unlocked(ic, &io->range);
2242                                         spin_unlock_irq(&ic->endio_wait.lock);
2243                                         mempool_free(io, &ic->journal_io_mempool);
2244                                         goto skip_io;
2245                                 }
2246                                 for (l = j; l < k; l++) {
2247                                         remove_journal_node(ic, &section_node[l]);
2248                                 }
2249                         }
2250                         spin_unlock_irq(&ic->endio_wait.lock);
2251
2252                         metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2253                         for (l = j; l < k; l++) {
2254                                 int r;
2255                                 struct journal_entry *je2 = access_journal_entry(ic, i, l);
2256
2257                                 if (
2258 #ifndef INTERNAL_VERIFY
2259                                     unlikely(from_replay) &&
2260 #endif
2261                                     ic->internal_hash) {
2262                                         char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2263
2264                                         integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2265                                                                   (char *)access_journal_data(ic, i, l), test_tag);
2266                                         if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size)))
2267                                                 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2268                                 }
2269
2270                                 journal_entry_set_unused(je2);
2271                                 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2272                                                         ic->tag_size, TAG_WRITE);
2273                                 if (unlikely(r)) {
2274                                         dm_integrity_io_error(ic, "reading tags", r);
2275                                 }
2276                         }
2277
2278                         atomic_inc(&comp.in_flight);
2279                         copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2280                                           (k - j) << ic->sb->log2_sectors_per_block,
2281                                           get_data_sector(ic, area, offset),
2282                                           complete_copy_from_journal, io);
2283 skip_io:
2284                         j = next_loop;
2285                 }
2286         }
2287
2288         dm_bufio_write_dirty_buffers_async(ic->bufio);
2289
2290         blk_finish_plug(&plug);
2291
2292         complete_journal_op(&comp);
2293         wait_for_completion_io(&comp.comp);
2294
2295         dm_integrity_flush_buffers(ic);
2296 }
2297
2298 static void integrity_writer(struct work_struct *w)
2299 {
2300         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2301         unsigned write_start, write_sections;
2302
2303         unsigned prev_free_sectors;
2304
2305         /* the following test is not needed, but it tests the replay code */
2306         if (unlikely(dm_suspended(ic->ti)) && !ic->meta_dev)
2307                 return;
2308
2309         spin_lock_irq(&ic->endio_wait.lock);
2310         write_start = ic->committed_section;
2311         write_sections = ic->n_committed_sections;
2312         spin_unlock_irq(&ic->endio_wait.lock);
2313
2314         if (!write_sections)
2315                 return;
2316
2317         do_journal_write(ic, write_start, write_sections, false);
2318
2319         spin_lock_irq(&ic->endio_wait.lock);
2320
2321         ic->committed_section += write_sections;
2322         wraparound_section(ic, &ic->committed_section);
2323         ic->n_committed_sections -= write_sections;
2324
2325         prev_free_sectors = ic->free_sectors;
2326         ic->free_sectors += write_sections * ic->journal_section_entries;
2327         if (unlikely(!prev_free_sectors))
2328                 wake_up_locked(&ic->endio_wait);
2329
2330         spin_unlock_irq(&ic->endio_wait.lock);
2331 }
2332
2333 static void recalc_write_super(struct dm_integrity_c *ic)
2334 {
2335         int r;
2336
2337         dm_integrity_flush_buffers(ic);
2338         if (dm_integrity_failed(ic))
2339                 return;
2340
2341         r = sync_rw_sb(ic, REQ_OP_WRITE, 0);
2342         if (unlikely(r))
2343                 dm_integrity_io_error(ic, "writing superblock", r);
2344 }
2345
2346 static void integrity_recalc(struct work_struct *w)
2347 {
2348         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2349         struct dm_integrity_range range;
2350         struct dm_io_request io_req;
2351         struct dm_io_region io_loc;
2352         sector_t area, offset;
2353         sector_t metadata_block;
2354         unsigned metadata_offset;
2355         sector_t logical_sector, n_sectors;
2356         __u8 *t;
2357         unsigned i;
2358         int r;
2359         unsigned super_counter = 0;
2360
2361         DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2362
2363         spin_lock_irq(&ic->endio_wait.lock);
2364
2365 next_chunk:
2366
2367         if (unlikely(dm_suspended(ic->ti)))
2368                 goto unlock_ret;
2369
2370         range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2371         if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2372                 if (ic->mode == 'B') {
2373                         DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2374                         queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2375                 }
2376                 goto unlock_ret;
2377         }
2378
2379         get_area_and_offset(ic, range.logical_sector, &area, &offset);
2380         range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector);
2381         if (!ic->meta_dev)
2382                 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned)offset);
2383
2384         add_new_range_and_wait(ic, &range);
2385         spin_unlock_irq(&ic->endio_wait.lock);
2386         logical_sector = range.logical_sector;
2387         n_sectors = range.n_sectors;
2388
2389         if (ic->mode == 'B') {
2390                 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) {
2391                         goto advance_and_next;
2392                 }
2393                 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2394                                        ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2395                         logical_sector += ic->sectors_per_block;
2396                         n_sectors -= ic->sectors_per_block;
2397                         cond_resched();
2398                 }
2399                 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2400                                        ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2401                         n_sectors -= ic->sectors_per_block;
2402                         cond_resched();
2403                 }
2404                 get_area_and_offset(ic, logical_sector, &area, &offset);
2405         }
2406
2407         DEBUG_print("recalculating: %lx, %lx\n", logical_sector, n_sectors);
2408
2409         if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2410                 recalc_write_super(ic);
2411                 if (ic->mode == 'B') {
2412                         queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2413                 }
2414                 super_counter = 0;
2415         }
2416
2417         if (unlikely(dm_integrity_failed(ic)))
2418                 goto err;
2419
2420         io_req.bi_op = REQ_OP_READ;
2421         io_req.bi_op_flags = 0;
2422         io_req.mem.type = DM_IO_VMA;
2423         io_req.mem.ptr.addr = ic->recalc_buffer;
2424         io_req.notify.fn = NULL;
2425         io_req.client = ic->io;
2426         io_loc.bdev = ic->dev->bdev;
2427         io_loc.sector = get_data_sector(ic, area, offset);
2428         io_loc.count = n_sectors;
2429
2430         r = dm_io(&io_req, 1, &io_loc, NULL);
2431         if (unlikely(r)) {
2432                 dm_integrity_io_error(ic, "reading data", r);
2433                 goto err;
2434         }
2435
2436         t = ic->recalc_tags;
2437         for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2438                 integrity_sector_checksum(ic, logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t);
2439                 t += ic->tag_size;
2440         }
2441
2442         metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2443
2444         r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE);
2445         if (unlikely(r)) {
2446                 dm_integrity_io_error(ic, "writing tags", r);
2447                 goto err;
2448         }
2449
2450 advance_and_next:
2451         cond_resched();
2452
2453         spin_lock_irq(&ic->endio_wait.lock);
2454         remove_range_unlocked(ic, &range);
2455         ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2456         goto next_chunk;
2457
2458 err:
2459         remove_range(ic, &range);
2460         return;
2461
2462 unlock_ret:
2463         spin_unlock_irq(&ic->endio_wait.lock);
2464
2465         recalc_write_super(ic);
2466 }
2467
2468 static void bitmap_block_work(struct work_struct *w)
2469 {
2470         struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2471         struct dm_integrity_c *ic = bbs->ic;
2472         struct bio *bio;
2473         struct bio_list bio_queue;
2474         struct bio_list waiting;
2475
2476         bio_list_init(&waiting);
2477
2478         spin_lock(&bbs->bio_queue_lock);
2479         bio_queue = bbs->bio_queue;
2480         bio_list_init(&bbs->bio_queue);
2481         spin_unlock(&bbs->bio_queue_lock);
2482
2483         while ((bio = bio_list_pop(&bio_queue))) {
2484                 struct dm_integrity_io *dio;
2485
2486                 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2487
2488                 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2489                                     dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2490                         remove_range(ic, &dio->range);
2491                         INIT_WORK(&dio->work, integrity_bio_wait);
2492                         queue_work(ic->offload_wq, &dio->work);
2493                 } else {
2494                         block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2495                                         dio->range.n_sectors, BITMAP_OP_SET);
2496                         bio_list_add(&waiting, bio);
2497                 }
2498         }
2499
2500         if (bio_list_empty(&waiting))
2501                 return;
2502
2503         rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC,
2504                            bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2505                            BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2506
2507         while ((bio = bio_list_pop(&waiting))) {
2508                 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2509
2510                 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2511                                 dio->range.n_sectors, BITMAP_OP_SET);
2512
2513                 remove_range(ic, &dio->range);
2514                 INIT_WORK(&dio->work, integrity_bio_wait);
2515                 queue_work(ic->offload_wq, &dio->work);
2516         }
2517
2518         queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2519 }
2520
2521 static void bitmap_flush_work(struct work_struct *work)
2522 {
2523         struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2524         struct dm_integrity_range range;
2525         unsigned long limit;
2526         struct bio *bio;
2527
2528         dm_integrity_flush_buffers(ic);
2529
2530         range.logical_sector = 0;
2531         range.n_sectors = ic->provided_data_sectors;
2532
2533         spin_lock_irq(&ic->endio_wait.lock);
2534         add_new_range_and_wait(ic, &range);
2535         spin_unlock_irq(&ic->endio_wait.lock);
2536
2537         dm_integrity_flush_buffers(ic);
2538         if (ic->meta_dev)
2539                 blkdev_issue_flush(ic->dev->bdev, GFP_NOIO, NULL);
2540
2541         limit = ic->provided_data_sectors;
2542         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2543                 limit = le64_to_cpu(ic->sb->recalc_sector)
2544                         >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2545                         << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2546         }
2547         /*DEBUG_print("zeroing journal\n");*/
2548         block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2549         block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2550
2551         rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
2552                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2553
2554         spin_lock_irq(&ic->endio_wait.lock);
2555         remove_range_unlocked(ic, &range);
2556         while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2557                 bio_endio(bio);
2558                 spin_unlock_irq(&ic->endio_wait.lock);
2559                 spin_lock_irq(&ic->endio_wait.lock);
2560         }
2561         spin_unlock_irq(&ic->endio_wait.lock);
2562 }
2563
2564
2565 static void init_journal(struct dm_integrity_c *ic, unsigned start_section,
2566                          unsigned n_sections, unsigned char commit_seq)
2567 {
2568         unsigned i, j, n;
2569
2570         if (!n_sections)
2571                 return;
2572
2573         for (n = 0; n < n_sections; n++) {
2574                 i = start_section + n;
2575                 wraparound_section(ic, &i);
2576                 for (j = 0; j < ic->journal_section_sectors; j++) {
2577                         struct journal_sector *js = access_journal(ic, i, j);
2578                         memset(&js->entries, 0, JOURNAL_SECTOR_DATA);
2579                         js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2580                 }
2581                 for (j = 0; j < ic->journal_section_entries; j++) {
2582                         struct journal_entry *je = access_journal_entry(ic, i, j);
2583                         journal_entry_set_unused(je);
2584                 }
2585         }
2586
2587         write_journal(ic, start_section, n_sections);
2588 }
2589
2590 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id)
2591 {
2592         unsigned char k;
2593         for (k = 0; k < N_COMMIT_IDS; k++) {
2594                 if (dm_integrity_commit_id(ic, i, j, k) == id)
2595                         return k;
2596         }
2597         dm_integrity_io_error(ic, "journal commit id", -EIO);
2598         return -EIO;
2599 }
2600
2601 static void replay_journal(struct dm_integrity_c *ic)
2602 {
2603         unsigned i, j;
2604         bool used_commit_ids[N_COMMIT_IDS];
2605         unsigned max_commit_id_sections[N_COMMIT_IDS];
2606         unsigned write_start, write_sections;
2607         unsigned continue_section;
2608         bool journal_empty;
2609         unsigned char unused, last_used, want_commit_seq;
2610
2611         if (ic->mode == 'R')
2612                 return;
2613
2614         if (ic->journal_uptodate)
2615                 return;
2616
2617         last_used = 0;
2618         write_start = 0;
2619
2620         if (!ic->just_formatted) {
2621                 DEBUG_print("reading journal\n");
2622                 rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL);
2623                 if (ic->journal_io)
2624                         DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2625                 if (ic->journal_io) {
2626                         struct journal_completion crypt_comp;
2627                         crypt_comp.ic = ic;
2628                         init_completion(&crypt_comp.comp);
2629                         crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2630                         encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2631                         wait_for_completion(&crypt_comp.comp);
2632                 }
2633                 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2634         }
2635
2636         if (dm_integrity_failed(ic))
2637                 goto clear_journal;
2638
2639         journal_empty = true;
2640         memset(used_commit_ids, 0, sizeof used_commit_ids);
2641         memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
2642         for (i = 0; i < ic->journal_sections; i++) {
2643                 for (j = 0; j < ic->journal_section_sectors; j++) {
2644                         int k;
2645                         struct journal_sector *js = access_journal(ic, i, j);
2646                         k = find_commit_seq(ic, i, j, js->commit_id);
2647                         if (k < 0)
2648                                 goto clear_journal;
2649                         used_commit_ids[k] = true;
2650                         max_commit_id_sections[k] = i;
2651                 }
2652                 if (journal_empty) {
2653                         for (j = 0; j < ic->journal_section_entries; j++) {
2654                                 struct journal_entry *je = access_journal_entry(ic, i, j);
2655                                 if (!journal_entry_is_unused(je)) {
2656                                         journal_empty = false;
2657                                         break;
2658                                 }
2659                         }
2660                 }
2661         }
2662
2663         if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2664                 unused = N_COMMIT_IDS - 1;
2665                 while (unused && !used_commit_ids[unused - 1])
2666                         unused--;
2667         } else {
2668                 for (unused = 0; unused < N_COMMIT_IDS; unused++)
2669                         if (!used_commit_ids[unused])
2670                                 break;
2671                 if (unused == N_COMMIT_IDS) {
2672                         dm_integrity_io_error(ic, "journal commit ids", -EIO);
2673                         goto clear_journal;
2674                 }
2675         }
2676         DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
2677                     unused, used_commit_ids[0], used_commit_ids[1],
2678                     used_commit_ids[2], used_commit_ids[3]);
2679
2680         last_used = prev_commit_seq(unused);
2681         want_commit_seq = prev_commit_seq(last_used);
2682
2683         if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
2684                 journal_empty = true;
2685
2686         write_start = max_commit_id_sections[last_used] + 1;
2687         if (unlikely(write_start >= ic->journal_sections))
2688                 want_commit_seq = next_commit_seq(want_commit_seq);
2689         wraparound_section(ic, &write_start);
2690
2691         i = write_start;
2692         for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
2693                 for (j = 0; j < ic->journal_section_sectors; j++) {
2694                         struct journal_sector *js = access_journal(ic, i, j);
2695
2696                         if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
2697                                 /*
2698                                  * This could be caused by crash during writing.
2699                                  * We won't replay the inconsistent part of the
2700                                  * journal.
2701                                  */
2702                                 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
2703                                             i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
2704                                 goto brk;
2705                         }
2706                 }
2707                 i++;
2708                 if (unlikely(i >= ic->journal_sections))
2709                         want_commit_seq = next_commit_seq(want_commit_seq);
2710                 wraparound_section(ic, &i);
2711         }
2712 brk:
2713
2714         if (!journal_empty) {
2715                 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
2716                             write_sections, write_start, want_commit_seq);
2717                 do_journal_write(ic, write_start, write_sections, true);
2718         }
2719
2720         if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
2721                 continue_section = write_start;
2722                 ic->commit_seq = want_commit_seq;
2723                 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
2724         } else {
2725                 unsigned s;
2726                 unsigned char erase_seq;
2727 clear_journal:
2728                 DEBUG_print("clearing journal\n");
2729
2730                 erase_seq = prev_commit_seq(prev_commit_seq(last_used));
2731                 s = write_start;
2732                 init_journal(ic, s, 1, erase_seq);
2733                 s++;
2734                 wraparound_section(ic, &s);
2735                 if (ic->journal_sections >= 2) {
2736                         init_journal(ic, s, ic->journal_sections - 2, erase_seq);
2737                         s += ic->journal_sections - 2;
2738                         wraparound_section(ic, &s);
2739                         init_journal(ic, s, 1, erase_seq);
2740                 }
2741
2742                 continue_section = 0;
2743                 ic->commit_seq = next_commit_seq(erase_seq);
2744         }
2745
2746         ic->committed_section = continue_section;
2747         ic->n_committed_sections = 0;
2748
2749         ic->uncommitted_section = continue_section;
2750         ic->n_uncommitted_sections = 0;
2751
2752         ic->free_section = continue_section;
2753         ic->free_section_entry = 0;
2754         ic->free_sectors = ic->journal_entries;
2755
2756         ic->journal_tree_root = RB_ROOT;
2757         for (i = 0; i < ic->journal_entries; i++)
2758                 init_journal_node(&ic->journal_tree[i]);
2759 }
2760
2761 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
2762 {
2763         DEBUG_print("dm_integrity_enter_synchronous_mode\n");
2764
2765         if (ic->mode == 'B') {
2766                 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
2767                 ic->synchronous_mode = 1;
2768
2769                 cancel_delayed_work_sync(&ic->bitmap_flush_work);
2770                 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2771                 flush_workqueue(ic->commit_wq);
2772         }
2773 }
2774
2775 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
2776 {
2777         struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
2778
2779         DEBUG_print("dm_integrity_reboot\n");
2780
2781         dm_integrity_enter_synchronous_mode(ic);
2782
2783         return NOTIFY_DONE;
2784 }
2785
2786 static void dm_integrity_postsuspend(struct dm_target *ti)
2787 {
2788         struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2789         int r;
2790
2791         WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
2792
2793         del_timer_sync(&ic->autocommit_timer);
2794
2795         if (ic->recalc_wq)
2796                 drain_workqueue(ic->recalc_wq);
2797
2798         if (ic->mode == 'B')
2799                 cancel_delayed_work_sync(&ic->bitmap_flush_work);
2800
2801         queue_work(ic->commit_wq, &ic->commit_work);
2802         drain_workqueue(ic->commit_wq);
2803
2804         if (ic->mode == 'J') {
2805                 if (ic->meta_dev)
2806                         queue_work(ic->writer_wq, &ic->writer_work);
2807                 drain_workqueue(ic->writer_wq);
2808                 dm_integrity_flush_buffers(ic);
2809         }
2810
2811         if (ic->mode == 'B') {
2812                 dm_integrity_flush_buffers(ic);
2813 #if 1
2814                 /* set to 0 to test bitmap replay code */
2815                 init_journal(ic, 0, ic->journal_sections, 0);
2816                 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
2817                 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
2818                 if (unlikely(r))
2819                         dm_integrity_io_error(ic, "writing superblock", r);
2820 #endif
2821         }
2822
2823         BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
2824
2825         ic->journal_uptodate = true;
2826 }
2827
2828 static void dm_integrity_resume(struct dm_target *ti)
2829 {
2830         struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2831         int r;
2832         DEBUG_print("resume\n");
2833
2834         if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
2835                 DEBUG_print("resume dirty_bitmap\n");
2836                 rw_journal_sectors(ic, REQ_OP_READ, 0, 0,
2837                                    ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2838                 if (ic->mode == 'B') {
2839                         if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
2840                                 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
2841                                 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
2842                                 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
2843                                                      BITMAP_OP_TEST_ALL_CLEAR)) {
2844                                         ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
2845                                         ic->sb->recalc_sector = cpu_to_le64(0);
2846                                 }
2847                         } else {
2848                                 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
2849                                             ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
2850                                 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
2851                                 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
2852                                 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
2853                                 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
2854                                 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
2855                                                    ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2856                                 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
2857                                 ic->sb->recalc_sector = cpu_to_le64(0);
2858                         }
2859                 } else {
2860                         if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
2861                               block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR))) {
2862                                 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
2863                                 ic->sb->recalc_sector = cpu_to_le64(0);
2864                         }
2865                         init_journal(ic, 0, ic->journal_sections, 0);
2866                         replay_journal(ic);
2867                         ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
2868                 }
2869                 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
2870                 if (unlikely(r))
2871                         dm_integrity_io_error(ic, "writing superblock", r);
2872         } else {
2873                 replay_journal(ic);
2874                 if (ic->mode == 'B') {
2875                         ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
2876                         ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
2877                         r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
2878                         if (unlikely(r))
2879                                 dm_integrity_io_error(ic, "writing superblock", r);
2880
2881                         block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2882                         block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2883                         block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2884                         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2885                             le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
2886                                 block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
2887                                                 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
2888                                 block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
2889                                                 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
2890                                 block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
2891                                                 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
2892                         }
2893                         rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
2894                                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2895                 }
2896         }
2897
2898         DEBUG_print("testing recalc: %x\n", ic->sb->flags);
2899         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2900                 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
2901                 DEBUG_print("recalc pos: %lx / %lx\n", (long)recalc_pos, ic->provided_data_sectors);
2902                 if (recalc_pos < ic->provided_data_sectors) {
2903                         queue_work(ic->recalc_wq, &ic->recalc_work);
2904                 } else if (recalc_pos > ic->provided_data_sectors) {
2905                         ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
2906                         recalc_write_super(ic);
2907                 }
2908         }
2909
2910         ic->reboot_notifier.notifier_call = dm_integrity_reboot;
2911         ic->reboot_notifier.next = NULL;
2912         ic->reboot_notifier.priority = INT_MAX - 1;     /* be notified after md and before hardware drivers */
2913         WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
2914
2915 #if 0
2916         /* set to 1 to stress test synchronous mode */
2917         dm_integrity_enter_synchronous_mode(ic);
2918 #endif
2919 }
2920
2921 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
2922                                 unsigned status_flags, char *result, unsigned maxlen)
2923 {
2924         struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2925         unsigned arg_count;
2926         size_t sz = 0;
2927
2928         switch (type) {
2929         case STATUSTYPE_INFO:
2930                 DMEMIT("%llu %llu",
2931                         (unsigned long long)atomic64_read(&ic->number_of_mismatches),
2932                         (unsigned long long)ic->provided_data_sectors);
2933                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
2934                         DMEMIT(" %llu", (unsigned long long)le64_to_cpu(ic->sb->recalc_sector));
2935                 else
2936                         DMEMIT(" -");
2937                 break;
2938
2939         case STATUSTYPE_TABLE: {
2940                 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
2941                 watermark_percentage += ic->journal_entries / 2;
2942                 do_div(watermark_percentage, ic->journal_entries);
2943                 arg_count = 3;
2944                 arg_count += !!ic->meta_dev;
2945                 arg_count += ic->sectors_per_block != 1;
2946                 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
2947                 arg_count += ic->mode == 'J';
2948                 arg_count += ic->mode == 'J';
2949                 arg_count += ic->mode == 'B';
2950                 arg_count += ic->mode == 'B';
2951                 arg_count += !!ic->internal_hash_alg.alg_string;
2952                 arg_count += !!ic->journal_crypt_alg.alg_string;
2953                 arg_count += !!ic->journal_mac_alg.alg_string;
2954                 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
2955                 DMEMIT("%s %llu %u %c %u", ic->dev->name, (unsigned long long)ic->start,
2956                        ic->tag_size, ic->mode, arg_count);
2957                 if (ic->meta_dev)
2958                         DMEMIT(" meta_device:%s", ic->meta_dev->name);
2959                 if (ic->sectors_per_block != 1)
2960                         DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
2961                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
2962                         DMEMIT(" recalculate");
2963                 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
2964                 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
2965                 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
2966                 if (ic->mode == 'J') {
2967                         DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage);
2968                         DMEMIT(" commit_time:%u", ic->autocommit_msec);
2969                 }
2970                 if (ic->mode == 'B') {
2971                         DMEMIT(" sectors_per_bit:%llu", (unsigned long long)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
2972                         DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
2973                 }
2974                 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
2975                         DMEMIT(" fix_padding");
2976
2977 #define EMIT_ALG(a, n)                                                  \
2978                 do {                                                    \
2979                         if (ic->a.alg_string) {                         \
2980                                 DMEMIT(" %s:%s", n, ic->a.alg_string);  \
2981                                 if (ic->a.key_string)                   \
2982                                         DMEMIT(":%s", ic->a.key_string);\
2983                         }                                               \
2984                 } while (0)
2985                 EMIT_ALG(internal_hash_alg, "internal_hash");
2986                 EMIT_ALG(journal_crypt_alg, "journal_crypt");
2987                 EMIT_ALG(journal_mac_alg, "journal_mac");
2988                 break;
2989         }
2990         }
2991 }
2992
2993 static int dm_integrity_iterate_devices(struct dm_target *ti,
2994                                         iterate_devices_callout_fn fn, void *data)
2995 {
2996         struct dm_integrity_c *ic = ti->private;
2997
2998         if (!ic->meta_dev)
2999                 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3000         else
3001                 return fn(ti, ic->dev, 0, ti->len, data);
3002 }
3003
3004 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3005 {
3006         struct dm_integrity_c *ic = ti->private;
3007
3008         if (ic->sectors_per_block > 1) {
3009                 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3010                 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3011                 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3012         }
3013 }
3014
3015 static void calculate_journal_section_size(struct dm_integrity_c *ic)
3016 {
3017         unsigned sector_space = JOURNAL_SECTOR_DATA;
3018
3019         ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3020         ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3021                                          JOURNAL_ENTRY_ROUNDUP);
3022
3023         if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3024                 sector_space -= JOURNAL_MAC_PER_SECTOR;
3025         ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3026         ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3027         ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3028         ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3029 }
3030
3031 static int calculate_device_limits(struct dm_integrity_c *ic)
3032 {
3033         __u64 initial_sectors;
3034
3035         calculate_journal_section_size(ic);
3036         initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3037         if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3038                 return -EINVAL;
3039         ic->initial_sectors = initial_sectors;
3040
3041         if (!ic->meta_dev) {
3042                 sector_t last_sector, last_area, last_offset;
3043
3044                 /* we have to maintain excessive padding for compatibility with existing volumes */
3045                 __u64 metadata_run_padding =
3046                         ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3047                         (__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3048                         (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3049
3050                 ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3051                                             metadata_run_padding) >> SECTOR_SHIFT;
3052                 if (!(ic->metadata_run & (ic->metadata_run - 1)))
3053                         ic->log2_metadata_run = __ffs(ic->metadata_run);
3054                 else
3055                         ic->log2_metadata_run = -1;
3056
3057                 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3058                 last_sector = get_data_sector(ic, last_area, last_offset);
3059                 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3060                         return -EINVAL;
3061         } else {
3062                 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3063                 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3064                                 >> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3065                 meta_size <<= ic->log2_buffer_sectors;
3066                 if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3067                     ic->initial_sectors + meta_size > ic->meta_device_sectors)
3068                         return -EINVAL;
3069                 ic->metadata_run = 1;
3070                 ic->log2_metadata_run = 0;
3071         }
3072
3073         return 0;
3074 }
3075
3076 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors)
3077 {
3078         unsigned journal_sections;
3079         int test_bit;
3080
3081         memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3082         memcpy(ic->sb->magic, SB_MAGIC, 8);
3083         ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3084         ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3085         if (ic->journal_mac_alg.alg_string)
3086                 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3087
3088         calculate_journal_section_size(ic);
3089         journal_sections = journal_sectors / ic->journal_section_sectors;
3090         if (!journal_sections)
3091                 journal_sections = 1;
3092
3093         if (!ic->meta_dev) {
3094                 if (ic->fix_padding)
3095                         ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3096                 ic->sb->journal_sections = cpu_to_le32(journal_sections);
3097                 if (!interleave_sectors)
3098                         interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3099                 ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3100                 ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3101                 ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3102
3103                 ic->provided_data_sectors = 0;
3104                 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3105                         __u64 prev_data_sectors = ic->provided_data_sectors;
3106
3107                         ic->provided_data_sectors |= (sector_t)1 << test_bit;
3108                         if (calculate_device_limits(ic))
3109                                 ic->provided_data_sectors = prev_data_sectors;
3110                 }
3111                 if (!ic->provided_data_sectors)
3112                         return -EINVAL;
3113         } else {
3114                 ic->sb->log2_interleave_sectors = 0;
3115                 ic->provided_data_sectors = ic->data_device_sectors;
3116                 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3117
3118 try_smaller_buffer:
3119                 ic->sb->journal_sections = cpu_to_le32(0);
3120                 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3121                         __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3122                         __u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3123                         if (test_journal_sections > journal_sections)
3124                                 continue;
3125                         ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3126                         if (calculate_device_limits(ic))
3127                                 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3128
3129                 }
3130                 if (!le32_to_cpu(ic->sb->journal_sections)) {
3131                         if (ic->log2_buffer_sectors > 3) {
3132                                 ic->log2_buffer_sectors--;
3133                                 goto try_smaller_buffer;
3134                         }
3135                         return -EINVAL;
3136                 }
3137         }
3138
3139         ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3140
3141         sb_set_version(ic);
3142
3143         return 0;
3144 }
3145
3146 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3147 {
3148         struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3149         struct blk_integrity bi;
3150
3151         memset(&bi, 0, sizeof(bi));
3152         bi.profile = &dm_integrity_profile;
3153         bi.tuple_size = ic->tag_size;
3154         bi.tag_size = bi.tuple_size;
3155         bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3156
3157         blk_integrity_register(disk, &bi);
3158         blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3159 }
3160
3161 static void dm_integrity_free_page_list(struct page_list *pl)
3162 {
3163         unsigned i;
3164
3165         if (!pl)
3166                 return;
3167         for (i = 0; pl[i].page; i++)
3168                 __free_page(pl[i].page);
3169         kvfree(pl);
3170 }
3171
3172 static struct page_list *dm_integrity_alloc_page_list(unsigned n_pages)
3173 {
3174         struct page_list *pl;
3175         unsigned i;
3176
3177         pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3178         if (!pl)
3179                 return NULL;
3180
3181         for (i = 0; i < n_pages; i++) {
3182                 pl[i].page = alloc_page(GFP_KERNEL);
3183                 if (!pl[i].page) {
3184                         dm_integrity_free_page_list(pl);
3185                         return NULL;
3186                 }
3187                 if (i)
3188                         pl[i - 1].next = &pl[i];
3189         }
3190         pl[i].page = NULL;
3191         pl[i].next = NULL;
3192
3193         return pl;
3194 }
3195
3196 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3197 {
3198         unsigned i;
3199         for (i = 0; i < ic->journal_sections; i++)
3200                 kvfree(sl[i]);
3201         kvfree(sl);
3202 }
3203
3204 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3205                                                                    struct page_list *pl)
3206 {
3207         struct scatterlist **sl;
3208         unsigned i;
3209
3210         sl = kvmalloc_array(ic->journal_sections,
3211                             sizeof(struct scatterlist *),
3212                             GFP_KERNEL | __GFP_ZERO);
3213         if (!sl)
3214                 return NULL;
3215
3216         for (i = 0; i < ic->journal_sections; i++) {
3217                 struct scatterlist *s;
3218                 unsigned start_index, start_offset;
3219                 unsigned end_index, end_offset;
3220                 unsigned n_pages;
3221                 unsigned idx;
3222
3223                 page_list_location(ic, i, 0, &start_index, &start_offset);
3224                 page_list_location(ic, i, ic->journal_section_sectors - 1,
3225                                    &end_index, &end_offset);
3226
3227                 n_pages = (end_index - start_index + 1);
3228
3229                 s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3230                                    GFP_KERNEL);
3231                 if (!s) {
3232                         dm_integrity_free_journal_scatterlist(ic, sl);
3233                         return NULL;
3234                 }
3235
3236                 sg_init_table(s, n_pages);
3237                 for (idx = start_index; idx <= end_index; idx++) {
3238                         char *va = lowmem_page_address(pl[idx].page);
3239                         unsigned start = 0, end = PAGE_SIZE;
3240                         if (idx == start_index)
3241                                 start = start_offset;
3242                         if (idx == end_index)
3243                                 end = end_offset + (1 << SECTOR_SHIFT);
3244                         sg_set_buf(&s[idx - start_index], va + start, end - start);
3245                 }
3246
3247                 sl[i] = s;
3248         }
3249
3250         return sl;
3251 }
3252
3253 static void free_alg(struct alg_spec *a)
3254 {
3255         kzfree(a->alg_string);
3256         kzfree(a->key);
3257         memset(a, 0, sizeof *a);
3258 }
3259
3260 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3261 {
3262         char *k;
3263
3264         free_alg(a);
3265
3266         a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3267         if (!a->alg_string)
3268                 goto nomem;
3269
3270         k = strchr(a->alg_string, ':');
3271         if (k) {
3272                 *k = 0;
3273                 a->key_string = k + 1;
3274                 if (strlen(a->key_string) & 1)
3275                         goto inval;
3276
3277                 a->key_size = strlen(a->key_string) / 2;
3278                 a->key = kmalloc(a->key_size, GFP_KERNEL);
3279                 if (!a->key)
3280                         goto nomem;
3281                 if (hex2bin(a->key, a->key_string, a->key_size))
3282                         goto inval;
3283         }
3284
3285         return 0;
3286 inval:
3287         *error = error_inval;
3288         return -EINVAL;
3289 nomem:
3290         *error = "Out of memory for an argument";
3291         return -ENOMEM;
3292 }
3293
3294 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3295                    char *error_alg, char *error_key)
3296 {
3297         int r;
3298
3299         if (a->alg_string) {
3300                 *hash = crypto_alloc_shash(a->alg_string, 0, 0);
3301                 if (IS_ERR(*hash)) {
3302                         *error = error_alg;
3303                         r = PTR_ERR(*hash);
3304                         *hash = NULL;
3305                         return r;
3306                 }
3307
3308                 if (a->key) {
3309                         r = crypto_shash_setkey(*hash, a->key, a->key_size);
3310                         if (r) {
3311                                 *error = error_key;
3312                                 return r;
3313                         }
3314                 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3315                         *error = error_key;
3316                         return -ENOKEY;
3317                 }
3318         }
3319
3320         return 0;
3321 }
3322
3323 static int create_journal(struct dm_integrity_c *ic, char **error)
3324 {
3325         int r = 0;
3326         unsigned i;
3327         __u64 journal_pages, journal_desc_size, journal_tree_size;
3328         unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3329         struct skcipher_request *req = NULL;
3330
3331         ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3332         ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3333         ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3334         ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3335
3336         journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3337                                 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3338         journal_desc_size = journal_pages * sizeof(struct page_list);
3339         if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3340                 *error = "Journal doesn't fit into memory";
3341                 r = -ENOMEM;
3342                 goto bad;
3343         }
3344         ic->journal_pages = journal_pages;
3345
3346         ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3347         if (!ic->journal) {
3348                 *error = "Could not allocate memory for journal";
3349                 r = -ENOMEM;
3350                 goto bad;
3351         }
3352         if (ic->journal_crypt_alg.alg_string) {
3353                 unsigned ivsize, blocksize;
3354                 struct journal_completion comp;
3355
3356                 comp.ic = ic;
3357                 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, 0);
3358                 if (IS_ERR(ic->journal_crypt)) {
3359                         *error = "Invalid journal cipher";
3360                         r = PTR_ERR(ic->journal_crypt);
3361                         ic->journal_crypt = NULL;
3362                         goto bad;
3363                 }
3364                 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3365                 blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3366
3367                 if (ic->journal_crypt_alg.key) {
3368                         r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3369                                                    ic->journal_crypt_alg.key_size);
3370                         if (r) {
3371                                 *error = "Error setting encryption key";
3372                                 goto bad;
3373                         }
3374                 }
3375                 DEBUG_print("cipher %s, block size %u iv size %u\n",
3376                             ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3377
3378                 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3379                 if (!ic->journal_io) {
3380                         *error = "Could not allocate memory for journal io";
3381                         r = -ENOMEM;
3382                         goto bad;
3383                 }
3384
3385                 if (blocksize == 1) {
3386                         struct scatterlist *sg;
3387
3388                         req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3389                         if (!req) {
3390                                 *error = "Could not allocate crypt request";
3391                                 r = -ENOMEM;
3392                                 goto bad;
3393                         }
3394
3395                         crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3396                         if (!crypt_iv) {
3397                                 *error = "Could not allocate iv";
3398                                 r = -ENOMEM;
3399                                 goto bad;
3400                         }
3401
3402                         ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3403                         if (!ic->journal_xor) {
3404                                 *error = "Could not allocate memory for journal xor";
3405                                 r = -ENOMEM;
3406                                 goto bad;
3407                         }
3408
3409                         sg = kvmalloc_array(ic->journal_pages + 1,
3410                                             sizeof(struct scatterlist),
3411                                             GFP_KERNEL);
3412                         if (!sg) {
3413                                 *error = "Unable to allocate sg list";
3414                                 r = -ENOMEM;
3415                                 goto bad;
3416                         }
3417                         sg_init_table(sg, ic->journal_pages + 1);
3418                         for (i = 0; i < ic->journal_pages; i++) {
3419                                 char *va = lowmem_page_address(ic->journal_xor[i].page);
3420                                 clear_page(va);
3421                                 sg_set_buf(&sg[i], va, PAGE_SIZE);
3422                         }
3423                         sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids);
3424
3425                         skcipher_request_set_crypt(req, sg, sg,
3426                                                    PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv);
3427                         init_completion(&comp.comp);
3428                         comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3429                         if (do_crypt(true, req, &comp))
3430                                 wait_for_completion(&comp.comp);
3431                         kvfree(sg);
3432                         r = dm_integrity_failed(ic);
3433                         if (r) {
3434                                 *error = "Unable to encrypt journal";
3435                                 goto bad;
3436                         }
3437                         DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3438
3439                         crypto_free_skcipher(ic->journal_crypt);
3440                         ic->journal_crypt = NULL;
3441                 } else {
3442                         unsigned crypt_len = roundup(ivsize, blocksize);
3443
3444                         req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3445                         if (!req) {
3446                                 *error = "Could not allocate crypt request";
3447                                 r = -ENOMEM;
3448                                 goto bad;
3449                         }
3450
3451                         crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3452                         if (!crypt_iv) {
3453                                 *error = "Could not allocate iv";
3454                                 r = -ENOMEM;
3455                                 goto bad;
3456                         }
3457
3458                         crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3459                         if (!crypt_data) {
3460                                 *error = "Unable to allocate crypt data";
3461                                 r = -ENOMEM;
3462                                 goto bad;
3463                         }
3464
3465                         ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3466                         if (!ic->journal_scatterlist) {
3467                                 *error = "Unable to allocate sg list";
3468                                 r = -ENOMEM;
3469                                 goto bad;
3470                         }
3471                         ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3472                         if (!ic->journal_io_scatterlist) {
3473                                 *error = "Unable to allocate sg list";
3474                                 r = -ENOMEM;
3475                                 goto bad;
3476                         }
3477                         ic->sk_requests = kvmalloc_array(ic->journal_sections,
3478                                                          sizeof(struct skcipher_request *),
3479                                                          GFP_KERNEL | __GFP_ZERO);
3480                         if (!ic->sk_requests) {
3481                                 *error = "Unable to allocate sk requests";
3482                                 r = -ENOMEM;
3483                                 goto bad;
3484                         }
3485                         for (i = 0; i < ic->journal_sections; i++) {
3486                                 struct scatterlist sg;
3487                                 struct skcipher_request *section_req;
3488                                 __u32 section_le = cpu_to_le32(i);
3489
3490                                 memset(crypt_iv, 0x00, ivsize);
3491                                 memset(crypt_data, 0x00, crypt_len);
3492                                 memcpy(crypt_data, &section_le, min((size_t)crypt_len, sizeof(section_le)));
3493
3494                                 sg_init_one(&sg, crypt_data, crypt_len);
3495                                 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3496                                 init_completion(&comp.comp);
3497                                 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3498                                 if (do_crypt(true, req, &comp))
3499                                         wait_for_completion(&comp.comp);
3500
3501                                 r = dm_integrity_failed(ic);
3502                                 if (r) {
3503                                         *error = "Unable to generate iv";
3504                                         goto bad;
3505                                 }
3506
3507                                 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3508                                 if (!section_req) {
3509                                         *error = "Unable to allocate crypt request";
3510                                         r = -ENOMEM;
3511                                         goto bad;
3512                                 }
3513                                 section_req->iv = kmalloc_array(ivsize, 2,
3514                                                                 GFP_KERNEL);
3515                                 if (!section_req->iv) {
3516                                         skcipher_request_free(section_req);
3517                                         *error = "Unable to allocate iv";
3518                                         r = -ENOMEM;
3519                                         goto bad;
3520                                 }
3521                                 memcpy(section_req->iv + ivsize, crypt_data, ivsize);
3522                                 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
3523                                 ic->sk_requests[i] = section_req;
3524                                 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
3525                         }
3526                 }
3527         }
3528
3529         for (i = 0; i < N_COMMIT_IDS; i++) {
3530                 unsigned j;
3531 retest_commit_id:
3532                 for (j = 0; j < i; j++) {
3533                         if (ic->commit_ids[j] == ic->commit_ids[i]) {
3534                                 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
3535                                 goto retest_commit_id;
3536                         }
3537                 }
3538                 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
3539         }
3540
3541         journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
3542         if (journal_tree_size > ULONG_MAX) {
3543                 *error = "Journal doesn't fit into memory";
3544                 r = -ENOMEM;
3545                 goto bad;
3546         }
3547         ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
3548         if (!ic->journal_tree) {
3549                 *error = "Could not allocate memory for journal tree";
3550                 r = -ENOMEM;
3551         }
3552 bad:
3553         kfree(crypt_data);
3554         kfree(crypt_iv);
3555         skcipher_request_free(req);
3556
3557         return r;
3558 }
3559
3560 /*
3561  * Construct a integrity mapping
3562  *
3563  * Arguments:
3564  *      device
3565  *      offset from the start of the device
3566  *      tag size
3567  *      D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
3568  *      number of optional arguments
3569  *      optional arguments:
3570  *              journal_sectors
3571  *              interleave_sectors
3572  *              buffer_sectors
3573  *              journal_watermark
3574  *              commit_time
3575  *              meta_device
3576  *              block_size
3577  *              sectors_per_bit
3578  *              bitmap_flush_interval
3579  *              internal_hash
3580  *              journal_crypt
3581  *              journal_mac
3582  *              recalculate
3583  */
3584 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
3585 {
3586         struct dm_integrity_c *ic;
3587         char dummy;
3588         int r;
3589         unsigned extra_args;
3590         struct dm_arg_set as;
3591         static const struct dm_arg _args[] = {
3592                 {0, 9, "Invalid number of feature args"},
3593         };
3594         unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
3595         bool should_write_sb;
3596         __u64 threshold;
3597         unsigned long long start;
3598         __s8 log2_sectors_per_bitmap_bit = -1;
3599         __s8 log2_blocks_per_bitmap_bit;
3600         __u64 bits_in_journal;
3601         __u64 n_bitmap_bits;
3602
3603 #define DIRECT_ARGUMENTS        4
3604
3605         if (argc <= DIRECT_ARGUMENTS) {
3606                 ti->error = "Invalid argument count";
3607                 return -EINVAL;
3608         }
3609
3610         ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
3611         if (!ic) {
3612                 ti->error = "Cannot allocate integrity context";
3613                 return -ENOMEM;
3614         }
3615         ti->private = ic;
3616         ti->per_io_data_size = sizeof(struct dm_integrity_io);
3617         ic->ti = ti;
3618
3619         ic->in_progress = RB_ROOT;
3620         INIT_LIST_HEAD(&ic->wait_list);
3621         init_waitqueue_head(&ic->endio_wait);
3622         bio_list_init(&ic->flush_bio_list);
3623         init_waitqueue_head(&ic->copy_to_journal_wait);
3624         init_completion(&ic->crypto_backoff);
3625         atomic64_set(&ic->number_of_mismatches, 0);
3626         ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
3627
3628         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
3629         if (r) {
3630                 ti->error = "Device lookup failed";
3631                 goto bad;
3632         }
3633
3634         if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
3635                 ti->error = "Invalid starting offset";
3636                 r = -EINVAL;
3637                 goto bad;
3638         }
3639         ic->start = start;
3640
3641         if (strcmp(argv[2], "-")) {
3642                 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
3643                         ti->error = "Invalid tag size";
3644                         r = -EINVAL;
3645                         goto bad;
3646                 }
3647         }
3648
3649         if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
3650             !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
3651                 ic->mode = argv[3][0];
3652         } else {
3653                 ti->error = "Invalid mode (expecting J, B, D, R)";
3654                 r = -EINVAL;
3655                 goto bad;
3656         }
3657
3658         journal_sectors = 0;
3659         interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3660         buffer_sectors = DEFAULT_BUFFER_SECTORS;
3661         journal_watermark = DEFAULT_JOURNAL_WATERMARK;
3662         sync_msec = DEFAULT_SYNC_MSEC;
3663         ic->sectors_per_block = 1;
3664
3665         as.argc = argc - DIRECT_ARGUMENTS;
3666         as.argv = argv + DIRECT_ARGUMENTS;
3667         r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
3668         if (r)
3669                 goto bad;
3670
3671         while (extra_args--) {
3672                 const char *opt_string;
3673                 unsigned val;
3674                 unsigned long long llval;
3675                 opt_string = dm_shift_arg(&as);
3676                 if (!opt_string) {
3677                         r = -EINVAL;
3678                         ti->error = "Not enough feature arguments";
3679                         goto bad;
3680                 }
3681                 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
3682                         journal_sectors = val ? val : 1;
3683                 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
3684                         interleave_sectors = val;
3685                 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
3686                         buffer_sectors = val;
3687                 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
3688                         journal_watermark = val;
3689                 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
3690                         sync_msec = val;
3691                 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
3692                         if (ic->meta_dev) {
3693                                 dm_put_device(ti, ic->meta_dev);
3694                                 ic->meta_dev = NULL;
3695                         }
3696                         r = dm_get_device(ti, strchr(opt_string, ':') + 1,
3697                                           dm_table_get_mode(ti->table), &ic->meta_dev);
3698                         if (r) {
3699                                 ti->error = "Device lookup failed";
3700                                 goto bad;
3701                         }
3702                 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
3703                         if (val < 1 << SECTOR_SHIFT ||
3704                             val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
3705                             (val & (val -1))) {
3706                                 r = -EINVAL;
3707                                 ti->error = "Invalid block_size argument";
3708                                 goto bad;
3709                         }
3710                         ic->sectors_per_block = val >> SECTOR_SHIFT;
3711                 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
3712                         log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
3713                 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
3714                         if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
3715                                 r = -EINVAL;
3716                                 ti->error = "Invalid bitmap_flush_interval argument";
3717                         }
3718                         ic->bitmap_flush_interval = msecs_to_jiffies(val);
3719                 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
3720                         r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
3721                                             "Invalid internal_hash argument");
3722                         if (r)
3723                                 goto bad;
3724                 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
3725                         r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
3726                                             "Invalid journal_crypt argument");
3727                         if (r)
3728                                 goto bad;
3729                 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
3730                         r = get_alg_and_key(opt_string, &ic->journal_mac_alg,  &ti->error,
3731                                             "Invalid journal_mac argument");
3732                         if (r)
3733                                 goto bad;
3734                 } else if (!strcmp(opt_string, "recalculate")) {
3735                         ic->recalculate_flag = true;
3736                 } else if (!strcmp(opt_string, "fix_padding")) {
3737                         ic->fix_padding = true;
3738                 } else {
3739                         r = -EINVAL;
3740                         ti->error = "Invalid argument";
3741                         goto bad;
3742                 }
3743         }
3744
3745         ic->data_device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT;
3746         if (!ic->meta_dev)
3747                 ic->meta_device_sectors = ic->data_device_sectors;
3748         else
3749                 ic->meta_device_sectors = i_size_read(ic->meta_dev->bdev->bd_inode) >> SECTOR_SHIFT;
3750
3751         if (!journal_sectors) {
3752                 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
3753                                       ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
3754         }
3755
3756         if (!buffer_sectors)
3757                 buffer_sectors = 1;
3758         ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
3759
3760         r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
3761                     "Invalid internal hash", "Error setting internal hash key");
3762         if (r)
3763                 goto bad;
3764
3765         r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
3766                     "Invalid journal mac", "Error setting journal mac key");
3767         if (r)
3768                 goto bad;
3769
3770         if (!ic->tag_size) {
3771                 if (!ic->internal_hash) {
3772                         ti->error = "Unknown tag size";
3773                         r = -EINVAL;
3774                         goto bad;
3775                 }
3776                 ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
3777         }
3778         if (ic->tag_size > MAX_TAG_SIZE) {
3779                 ti->error = "Too big tag size";
3780                 r = -EINVAL;
3781                 goto bad;
3782         }
3783         if (!(ic->tag_size & (ic->tag_size - 1)))
3784                 ic->log2_tag_size = __ffs(ic->tag_size);
3785         else
3786                 ic->log2_tag_size = -1;
3787
3788         if (ic->mode == 'B' && !ic->internal_hash) {
3789                 r = -EINVAL;
3790                 ti->error = "Bitmap mode can be only used with internal hash";
3791                 goto bad;
3792         }
3793
3794         ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
3795         ic->autocommit_msec = sync_msec;
3796         timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
3797
3798         ic->io = dm_io_client_create();
3799         if (IS_ERR(ic->io)) {
3800                 r = PTR_ERR(ic->io);
3801                 ic->io = NULL;
3802                 ti->error = "Cannot allocate dm io";
3803                 goto bad;
3804         }
3805
3806         r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
3807         if (r) {
3808                 ti->error = "Cannot allocate mempool";
3809                 goto bad;
3810         }
3811
3812         ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
3813                                           WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
3814         if (!ic->metadata_wq) {
3815                 ti->error = "Cannot allocate workqueue";
3816                 r = -ENOMEM;
3817                 goto bad;
3818         }
3819
3820         /*
3821          * If this workqueue were percpu, it would cause bio reordering
3822          * and reduced performance.
3823          */
3824         ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3825         if (!ic->wait_wq) {
3826                 ti->error = "Cannot allocate workqueue";
3827                 r = -ENOMEM;
3828                 goto bad;
3829         }
3830
3831         ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
3832                                           METADATA_WORKQUEUE_MAX_ACTIVE);
3833         if (!ic->offload_wq) {
3834                 ti->error = "Cannot allocate workqueue";
3835                 r = -ENOMEM;
3836                 goto bad;
3837         }
3838
3839         ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
3840         if (!ic->commit_wq) {
3841                 ti->error = "Cannot allocate workqueue";
3842                 r = -ENOMEM;
3843                 goto bad;
3844         }
3845         INIT_WORK(&ic->commit_work, integrity_commit);
3846
3847         if (ic->mode == 'J' || ic->mode == 'B') {
3848                 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
3849                 if (!ic->writer_wq) {
3850                         ti->error = "Cannot allocate workqueue";
3851                         r = -ENOMEM;
3852                         goto bad;
3853                 }
3854                 INIT_WORK(&ic->writer_work, integrity_writer);
3855         }
3856
3857         ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
3858         if (!ic->sb) {
3859                 r = -ENOMEM;
3860                 ti->error = "Cannot allocate superblock area";
3861                 goto bad;
3862         }
3863
3864         r = sync_rw_sb(ic, REQ_OP_READ, 0);
3865         if (r) {
3866                 ti->error = "Error reading superblock";
3867                 goto bad;
3868         }
3869         should_write_sb = false;
3870         if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
3871                 if (ic->mode != 'R') {
3872                         if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
3873                                 r = -EINVAL;
3874                                 ti->error = "The device is not initialized";
3875                                 goto bad;
3876                         }
3877                 }
3878
3879                 r = initialize_superblock(ic, journal_sectors, interleave_sectors);
3880                 if (r) {
3881                         ti->error = "Could not initialize superblock";
3882                         goto bad;
3883                 }
3884                 if (ic->mode != 'R')
3885                         should_write_sb = true;
3886         }
3887
3888         if (!ic->sb->version || ic->sb->version > SB_VERSION_4) {
3889                 r = -EINVAL;
3890                 ti->error = "Unknown version";
3891                 goto bad;
3892         }
3893         if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
3894                 r = -EINVAL;
3895                 ti->error = "Tag size doesn't match the information in superblock";
3896                 goto bad;
3897         }
3898         if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
3899                 r = -EINVAL;
3900                 ti->error = "Block size doesn't match the information in superblock";
3901                 goto bad;
3902         }
3903         if (!le32_to_cpu(ic->sb->journal_sections)) {
3904                 r = -EINVAL;
3905                 ti->error = "Corrupted superblock, journal_sections is 0";
3906                 goto bad;
3907         }
3908         /* make sure that ti->max_io_len doesn't overflow */
3909         if (!ic->meta_dev) {
3910                 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
3911                     ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
3912                         r = -EINVAL;
3913                         ti->error = "Invalid interleave_sectors in the superblock";
3914                         goto bad;
3915                 }
3916         } else {
3917                 if (ic->sb->log2_interleave_sectors) {
3918                         r = -EINVAL;
3919                         ti->error = "Invalid interleave_sectors in the superblock";
3920                         goto bad;
3921                 }
3922         }
3923         ic->provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3924         if (ic->provided_data_sectors != le64_to_cpu(ic->sb->provided_data_sectors)) {
3925                 /* test for overflow */
3926                 r = -EINVAL;
3927                 ti->error = "The superblock has 64-bit device size, but the kernel was compiled with 32-bit sectors";
3928                 goto bad;
3929         }
3930         if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
3931                 r = -EINVAL;
3932                 ti->error = "Journal mac mismatch";
3933                 goto bad;
3934         }
3935
3936 try_smaller_buffer:
3937         r = calculate_device_limits(ic);
3938         if (r) {
3939                 if (ic->meta_dev) {
3940                         if (ic->log2_buffer_sectors > 3) {
3941                                 ic->log2_buffer_sectors--;
3942                                 goto try_smaller_buffer;
3943                         }
3944                 }
3945                 ti->error = "The device is too small";
3946                 goto bad;
3947         }
3948
3949         if (log2_sectors_per_bitmap_bit < 0)
3950                 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
3951         if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
3952                 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
3953
3954         bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
3955         if (bits_in_journal > UINT_MAX)
3956                 bits_in_journal = UINT_MAX;
3957         while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
3958                 log2_sectors_per_bitmap_bit++;
3959
3960         log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
3961         ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
3962         if (should_write_sb) {
3963                 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
3964         }
3965         n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
3966                                 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
3967         ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
3968
3969         if (!ic->meta_dev)
3970                 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
3971
3972         if (ti->len > ic->provided_data_sectors) {
3973                 r = -EINVAL;
3974                 ti->error = "Not enough provided sectors for requested mapping size";
3975                 goto bad;
3976         }
3977
3978
3979         threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
3980         threshold += 50;
3981         do_div(threshold, 100);
3982         ic->free_sectors_threshold = threshold;
3983
3984         DEBUG_print("initialized:\n");
3985         DEBUG_print("   integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
3986         DEBUG_print("   journal_entry_size %u\n", ic->journal_entry_size);
3987         DEBUG_print("   journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
3988         DEBUG_print("   journal_section_entries %u\n", ic->journal_section_entries);
3989         DEBUG_print("   journal_section_sectors %u\n", ic->journal_section_sectors);
3990         DEBUG_print("   journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections));
3991         DEBUG_print("   journal_entries %u\n", ic->journal_entries);
3992         DEBUG_print("   log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
3993         DEBUG_print("   data_device_sectors 0x%llx\n", i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT);
3994         DEBUG_print("   initial_sectors 0x%x\n", ic->initial_sectors);
3995         DEBUG_print("   metadata_run 0x%x\n", ic->metadata_run);
3996         DEBUG_print("   log2_metadata_run %d\n", ic->log2_metadata_run);
3997         DEBUG_print("   provided_data_sectors 0x%llx (%llu)\n", (unsigned long long)ic->provided_data_sectors,
3998                     (unsigned long long)ic->provided_data_sectors);
3999         DEBUG_print("   log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4000         DEBUG_print("   bits_in_journal %llu\n", (unsigned long long)bits_in_journal);
4001
4002         if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4003                 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4004                 ic->sb->recalc_sector = cpu_to_le64(0);
4005         }
4006
4007         if (ic->internal_hash) {
4008                 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4009                 if (!ic->recalc_wq ) {
4010                         ti->error = "Cannot allocate workqueue";
4011                         r = -ENOMEM;
4012                         goto bad;
4013                 }
4014                 INIT_WORK(&ic->recalc_work, integrity_recalc);
4015                 ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT);
4016                 if (!ic->recalc_buffer) {
4017                         ti->error = "Cannot allocate buffer for recalculating";
4018                         r = -ENOMEM;
4019                         goto bad;
4020                 }
4021                 ic->recalc_tags = kvmalloc_array(RECALC_SECTORS >> ic->sb->log2_sectors_per_block,
4022                                                  ic->tag_size, GFP_KERNEL);
4023                 if (!ic->recalc_tags) {
4024                         ti->error = "Cannot allocate tags for recalculating";
4025                         r = -ENOMEM;
4026                         goto bad;
4027                 }
4028         }
4029
4030         ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4031                         1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL);
4032         if (IS_ERR(ic->bufio)) {
4033                 r = PTR_ERR(ic->bufio);
4034                 ti->error = "Cannot initialize dm-bufio";
4035                 ic->bufio = NULL;
4036                 goto bad;
4037         }
4038         dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4039
4040         if (ic->mode != 'R') {
4041                 r = create_journal(ic, &ti->error);
4042                 if (r)
4043                         goto bad;
4044
4045         }
4046
4047         if (ic->mode == 'B') {
4048                 unsigned i;
4049                 unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4050
4051                 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4052                 if (!ic->recalc_bitmap) {
4053                         r = -ENOMEM;
4054                         goto bad;
4055                 }
4056                 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4057                 if (!ic->may_write_bitmap) {
4058                         r = -ENOMEM;
4059                         goto bad;
4060                 }
4061                 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4062                 if (!ic->bbs) {
4063                         r = -ENOMEM;
4064                         goto bad;
4065                 }
4066                 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4067                 for (i = 0; i < ic->n_bitmap_blocks; i++) {
4068                         struct bitmap_block_status *bbs = &ic->bbs[i];
4069                         unsigned sector, pl_index, pl_offset;
4070
4071                         INIT_WORK(&bbs->work, bitmap_block_work);
4072                         bbs->ic = ic;
4073                         bbs->idx = i;
4074                         bio_list_init(&bbs->bio_queue);
4075                         spin_lock_init(&bbs->bio_queue_lock);
4076
4077                         sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4078                         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4079                         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4080
4081                         bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4082                 }
4083         }
4084
4085         if (should_write_sb) {
4086                 int r;
4087
4088                 init_journal(ic, 0, ic->journal_sections, 0);
4089                 r = dm_integrity_failed(ic);
4090                 if (unlikely(r)) {
4091                         ti->error = "Error initializing journal";
4092                         goto bad;
4093                 }
4094                 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
4095                 if (r) {
4096                         ti->error = "Error initializing superblock";
4097                         goto bad;
4098                 }
4099                 ic->just_formatted = true;
4100         }
4101
4102         if (!ic->meta_dev) {
4103                 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4104                 if (r)
4105                         goto bad;
4106         }
4107         if (ic->mode == 'B') {
4108                 unsigned max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4109                 if (!max_io_len)
4110                         max_io_len = 1U << 31;
4111                 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4112                 if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4113                         r = dm_set_target_max_io_len(ti, max_io_len);
4114                         if (r)
4115                                 goto bad;
4116                 }
4117         }
4118
4119         if (!ic->internal_hash)
4120                 dm_integrity_set(ti, ic);
4121
4122         ti->num_flush_bios = 1;
4123         ti->flush_supported = true;
4124
4125         return 0;
4126
4127 bad:
4128         dm_integrity_dtr(ti);
4129         return r;
4130 }
4131
4132 static void dm_integrity_dtr(struct dm_target *ti)
4133 {
4134         struct dm_integrity_c *ic = ti->private;
4135
4136         BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4137         BUG_ON(!list_empty(&ic->wait_list));
4138
4139         if (ic->metadata_wq)
4140                 destroy_workqueue(ic->metadata_wq);
4141         if (ic->wait_wq)
4142                 destroy_workqueue(ic->wait_wq);
4143         if (ic->offload_wq)
4144                 destroy_workqueue(ic->offload_wq);
4145         if (ic->commit_wq)
4146                 destroy_workqueue(ic->commit_wq);
4147         if (ic->writer_wq)
4148                 destroy_workqueue(ic->writer_wq);
4149         if (ic->recalc_wq)
4150                 destroy_workqueue(ic->recalc_wq);
4151         vfree(ic->recalc_buffer);
4152         kvfree(ic->recalc_tags);
4153         kvfree(ic->bbs);
4154         if (ic->bufio)
4155                 dm_bufio_client_destroy(ic->bufio);
4156         mempool_exit(&ic->journal_io_mempool);
4157         if (ic->io)
4158                 dm_io_client_destroy(ic->io);
4159         if (ic->dev)
4160                 dm_put_device(ti, ic->dev);
4161         if (ic->meta_dev)
4162                 dm_put_device(ti, ic->meta_dev);
4163         dm_integrity_free_page_list(ic->journal);
4164         dm_integrity_free_page_list(ic->journal_io);
4165         dm_integrity_free_page_list(ic->journal_xor);
4166         dm_integrity_free_page_list(ic->recalc_bitmap);
4167         dm_integrity_free_page_list(ic->may_write_bitmap);
4168         if (ic->journal_scatterlist)
4169                 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4170         if (ic->journal_io_scatterlist)
4171                 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4172         if (ic->sk_requests) {
4173                 unsigned i;
4174
4175                 for (i = 0; i < ic->journal_sections; i++) {
4176                         struct skcipher_request *req = ic->sk_requests[i];
4177                         if (req) {
4178                                 kzfree(req->iv);
4179                                 skcipher_request_free(req);
4180                         }
4181                 }
4182                 kvfree(ic->sk_requests);
4183         }
4184         kvfree(ic->journal_tree);
4185         if (ic->sb)
4186                 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4187
4188         if (ic->internal_hash)
4189                 crypto_free_shash(ic->internal_hash);
4190         free_alg(&ic->internal_hash_alg);
4191
4192         if (ic->journal_crypt)
4193                 crypto_free_skcipher(ic->journal_crypt);
4194         free_alg(&ic->journal_crypt_alg);
4195
4196         if (ic->journal_mac)
4197                 crypto_free_shash(ic->journal_mac);
4198         free_alg(&ic->journal_mac_alg);
4199
4200         kfree(ic);
4201 }
4202
4203 static struct target_type integrity_target = {
4204         .name                   = "integrity",
4205         .version                = {1, 5, 0},
4206         .module                 = THIS_MODULE,
4207         .features               = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4208         .ctr                    = dm_integrity_ctr,
4209         .dtr                    = dm_integrity_dtr,
4210         .map                    = dm_integrity_map,
4211         .postsuspend            = dm_integrity_postsuspend,
4212         .resume                 = dm_integrity_resume,
4213         .status                 = dm_integrity_status,
4214         .iterate_devices        = dm_integrity_iterate_devices,
4215         .io_hints               = dm_integrity_io_hints,
4216 };
4217
4218 static int __init dm_integrity_init(void)
4219 {
4220         int r;
4221
4222         journal_io_cache = kmem_cache_create("integrity_journal_io",
4223                                              sizeof(struct journal_io), 0, 0, NULL);
4224         if (!journal_io_cache) {
4225                 DMERR("can't allocate journal io cache");
4226                 return -ENOMEM;
4227         }
4228
4229         r = dm_register_target(&integrity_target);
4230
4231         if (r < 0)
4232                 DMERR("register failed %d", r);
4233
4234         return r;
4235 }
4236
4237 static void __exit dm_integrity_exit(void)
4238 {
4239         dm_unregister_target(&integrity_target);
4240         kmem_cache_destroy(journal_io_cache);
4241 }
4242
4243 module_init(dm_integrity_init);
4244 module_exit(dm_integrity_exit);
4245
4246 MODULE_AUTHOR("Milan Broz");
4247 MODULE_AUTHOR("Mikulas Patocka");
4248 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4249 MODULE_LICENSE("GPL");