dm integrity: fix missing goto in bitmap_flush_interval error handling
[linux-2.6-microblaze.git] / drivers / md / dm-integrity.c
1 /*
2  * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
3  * Copyright (C) 2016-2017 Milan Broz
4  * Copyright (C) 2016-2017 Mikulas Patocka
5  *
6  * This file is released under the GPL.
7  */
8
9 #include "dm-bio-record.h"
10
11 #include <linux/compiler.h>
12 #include <linux/module.h>
13 #include <linux/device-mapper.h>
14 #include <linux/dm-io.h>
15 #include <linux/vmalloc.h>
16 #include <linux/sort.h>
17 #include <linux/rbtree.h>
18 #include <linux/delay.h>
19 #include <linux/random.h>
20 #include <linux/reboot.h>
21 #include <crypto/hash.h>
22 #include <crypto/skcipher.h>
23 #include <linux/async_tx.h>
24 #include <linux/dm-bufio.h>
25
26 #define DM_MSG_PREFIX "integrity"
27
28 #define DEFAULT_INTERLEAVE_SECTORS      32768
29 #define DEFAULT_JOURNAL_SIZE_FACTOR     7
30 #define DEFAULT_SECTORS_PER_BITMAP_BIT  32768
31 #define DEFAULT_BUFFER_SECTORS          128
32 #define DEFAULT_JOURNAL_WATERMARK       50
33 #define DEFAULT_SYNC_MSEC               10000
34 #define DEFAULT_MAX_JOURNAL_SECTORS     131072
35 #define MIN_LOG2_INTERLEAVE_SECTORS     3
36 #define MAX_LOG2_INTERLEAVE_SECTORS     31
37 #define METADATA_WORKQUEUE_MAX_ACTIVE   16
38 #define RECALC_SECTORS                  8192
39 #define RECALC_WRITE_SUPER              16
40 #define BITMAP_BLOCK_SIZE               4096    /* don't change it */
41 #define BITMAP_FLUSH_INTERVAL           (10 * HZ)
42 #define DISCARD_FILLER                  0xf6
43 #define SALT_SIZE                       16
44
45 /*
46  * Warning - DEBUG_PRINT prints security-sensitive data to the log,
47  * so it should not be enabled in the official kernel
48  */
49 //#define DEBUG_PRINT
50 //#define INTERNAL_VERIFY
51
52 /*
53  * On disk structures
54  */
55
56 #define SB_MAGIC                        "integrt"
57 #define SB_VERSION_1                    1
58 #define SB_VERSION_2                    2
59 #define SB_VERSION_3                    3
60 #define SB_VERSION_4                    4
61 #define SB_VERSION_5                    5
62 #define SB_SECTORS                      8
63 #define MAX_SECTORS_PER_BLOCK           8
64
65 struct superblock {
66         __u8 magic[8];
67         __u8 version;
68         __u8 log2_interleave_sectors;
69         __u16 integrity_tag_size;
70         __u32 journal_sections;
71         __u64 provided_data_sectors;    /* userspace uses this value */
72         __u32 flags;
73         __u8 log2_sectors_per_block;
74         __u8 log2_blocks_per_bitmap_bit;
75         __u8 pad[2];
76         __u64 recalc_sector;
77         __u8 pad2[8];
78         __u8 salt[SALT_SIZE];
79 };
80
81 #define SB_FLAG_HAVE_JOURNAL_MAC        0x1
82 #define SB_FLAG_RECALCULATING           0x2
83 #define SB_FLAG_DIRTY_BITMAP            0x4
84 #define SB_FLAG_FIXED_PADDING           0x8
85 #define SB_FLAG_FIXED_HMAC              0x10
86
87 #define JOURNAL_ENTRY_ROUNDUP           8
88
89 typedef __u64 commit_id_t;
90 #define JOURNAL_MAC_PER_SECTOR          8
91
92 struct journal_entry {
93         union {
94                 struct {
95                         __u32 sector_lo;
96                         __u32 sector_hi;
97                 } s;
98                 __u64 sector;
99         } u;
100         commit_id_t last_bytes[];
101         /* __u8 tag[0]; */
102 };
103
104 #define journal_entry_tag(ic, je)               ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
105
106 #if BITS_PER_LONG == 64
107 #define journal_entry_set_sector(je, x)         do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
108 #else
109 #define journal_entry_set_sector(je, x)         do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
110 #endif
111 #define journal_entry_get_sector(je)            le64_to_cpu((je)->u.sector)
112 #define journal_entry_is_unused(je)             ((je)->u.s.sector_hi == cpu_to_le32(-1))
113 #define journal_entry_set_unused(je)            do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
114 #define journal_entry_is_inprogress(je)         ((je)->u.s.sector_hi == cpu_to_le32(-2))
115 #define journal_entry_set_inprogress(je)        do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
116
117 #define JOURNAL_BLOCK_SECTORS           8
118 #define JOURNAL_SECTOR_DATA             ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
119 #define JOURNAL_MAC_SIZE                (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
120
121 struct journal_sector {
122         __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
123         __u8 mac[JOURNAL_MAC_PER_SECTOR];
124         commit_id_t commit_id;
125 };
126
127 #define MAX_TAG_SIZE                    (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
128
129 #define METADATA_PADDING_SECTORS        8
130
131 #define N_COMMIT_IDS                    4
132
133 static unsigned char prev_commit_seq(unsigned char seq)
134 {
135         return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
136 }
137
138 static unsigned char next_commit_seq(unsigned char seq)
139 {
140         return (seq + 1) % N_COMMIT_IDS;
141 }
142
143 /*
144  * In-memory structures
145  */
146
147 struct journal_node {
148         struct rb_node node;
149         sector_t sector;
150 };
151
152 struct alg_spec {
153         char *alg_string;
154         char *key_string;
155         __u8 *key;
156         unsigned key_size;
157 };
158
159 struct dm_integrity_c {
160         struct dm_dev *dev;
161         struct dm_dev *meta_dev;
162         unsigned tag_size;
163         __s8 log2_tag_size;
164         sector_t start;
165         mempool_t journal_io_mempool;
166         struct dm_io_client *io;
167         struct dm_bufio_client *bufio;
168         struct workqueue_struct *metadata_wq;
169         struct superblock *sb;
170         unsigned journal_pages;
171         unsigned n_bitmap_blocks;
172
173         struct page_list *journal;
174         struct page_list *journal_io;
175         struct page_list *journal_xor;
176         struct page_list *recalc_bitmap;
177         struct page_list *may_write_bitmap;
178         struct bitmap_block_status *bbs;
179         unsigned bitmap_flush_interval;
180         int synchronous_mode;
181         struct bio_list synchronous_bios;
182         struct delayed_work bitmap_flush_work;
183
184         struct crypto_skcipher *journal_crypt;
185         struct scatterlist **journal_scatterlist;
186         struct scatterlist **journal_io_scatterlist;
187         struct skcipher_request **sk_requests;
188
189         struct crypto_shash *journal_mac;
190
191         struct journal_node *journal_tree;
192         struct rb_root journal_tree_root;
193
194         sector_t provided_data_sectors;
195
196         unsigned short journal_entry_size;
197         unsigned char journal_entries_per_sector;
198         unsigned char journal_section_entries;
199         unsigned short journal_section_sectors;
200         unsigned journal_sections;
201         unsigned journal_entries;
202         sector_t data_device_sectors;
203         sector_t meta_device_sectors;
204         unsigned initial_sectors;
205         unsigned metadata_run;
206         __s8 log2_metadata_run;
207         __u8 log2_buffer_sectors;
208         __u8 sectors_per_block;
209         __u8 log2_blocks_per_bitmap_bit;
210
211         unsigned char mode;
212
213         int failed;
214
215         struct crypto_shash *internal_hash;
216
217         struct dm_target *ti;
218
219         /* these variables are locked with endio_wait.lock */
220         struct rb_root in_progress;
221         struct list_head wait_list;
222         wait_queue_head_t endio_wait;
223         struct workqueue_struct *wait_wq;
224         struct workqueue_struct *offload_wq;
225
226         unsigned char commit_seq;
227         commit_id_t commit_ids[N_COMMIT_IDS];
228
229         unsigned committed_section;
230         unsigned n_committed_sections;
231
232         unsigned uncommitted_section;
233         unsigned n_uncommitted_sections;
234
235         unsigned free_section;
236         unsigned char free_section_entry;
237         unsigned free_sectors;
238
239         unsigned free_sectors_threshold;
240
241         struct workqueue_struct *commit_wq;
242         struct work_struct commit_work;
243
244         struct workqueue_struct *writer_wq;
245         struct work_struct writer_work;
246
247         struct workqueue_struct *recalc_wq;
248         struct work_struct recalc_work;
249         u8 *recalc_buffer;
250         u8 *recalc_tags;
251
252         struct bio_list flush_bio_list;
253
254         unsigned long autocommit_jiffies;
255         struct timer_list autocommit_timer;
256         unsigned autocommit_msec;
257
258         wait_queue_head_t copy_to_journal_wait;
259
260         struct completion crypto_backoff;
261
262         bool journal_uptodate;
263         bool just_formatted;
264         bool recalculate_flag;
265         bool reset_recalculate_flag;
266         bool discard;
267         bool fix_padding;
268         bool fix_hmac;
269         bool legacy_recalculate;
270
271         struct alg_spec internal_hash_alg;
272         struct alg_spec journal_crypt_alg;
273         struct alg_spec journal_mac_alg;
274
275         atomic64_t number_of_mismatches;
276
277         struct notifier_block reboot_notifier;
278 };
279
280 struct dm_integrity_range {
281         sector_t logical_sector;
282         sector_t n_sectors;
283         bool waiting;
284         union {
285                 struct rb_node node;
286                 struct {
287                         struct task_struct *task;
288                         struct list_head wait_entry;
289                 };
290         };
291 };
292
293 struct dm_integrity_io {
294         struct work_struct work;
295
296         struct dm_integrity_c *ic;
297         enum req_opf op;
298         bool fua;
299
300         struct dm_integrity_range range;
301
302         sector_t metadata_block;
303         unsigned metadata_offset;
304
305         atomic_t in_flight;
306         blk_status_t bi_status;
307
308         struct completion *completion;
309
310         struct dm_bio_details bio_details;
311 };
312
313 struct journal_completion {
314         struct dm_integrity_c *ic;
315         atomic_t in_flight;
316         struct completion comp;
317 };
318
319 struct journal_io {
320         struct dm_integrity_range range;
321         struct journal_completion *comp;
322 };
323
324 struct bitmap_block_status {
325         struct work_struct work;
326         struct dm_integrity_c *ic;
327         unsigned idx;
328         unsigned long *bitmap;
329         struct bio_list bio_queue;
330         spinlock_t bio_queue_lock;
331
332 };
333
334 static struct kmem_cache *journal_io_cache;
335
336 #define JOURNAL_IO_MEMPOOL      32
337
338 #ifdef DEBUG_PRINT
339 #define DEBUG_print(x, ...)     printk(KERN_DEBUG x, ##__VA_ARGS__)
340 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
341 {
342         va_list args;
343         va_start(args, msg);
344         vprintk(msg, args);
345         va_end(args);
346         if (len)
347                 pr_cont(":");
348         while (len) {
349                 pr_cont(" %02x", *bytes);
350                 bytes++;
351                 len--;
352         }
353         pr_cont("\n");
354 }
355 #define DEBUG_bytes(bytes, len, msg, ...)       __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
356 #else
357 #define DEBUG_print(x, ...)                     do { } while (0)
358 #define DEBUG_bytes(bytes, len, msg, ...)       do { } while (0)
359 #endif
360
361 static void dm_integrity_prepare(struct request *rq)
362 {
363 }
364
365 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
366 {
367 }
368
369 /*
370  * DM Integrity profile, protection is performed layer above (dm-crypt)
371  */
372 static const struct blk_integrity_profile dm_integrity_profile = {
373         .name                   = "DM-DIF-EXT-TAG",
374         .generate_fn            = NULL,
375         .verify_fn              = NULL,
376         .prepare_fn             = dm_integrity_prepare,
377         .complete_fn            = dm_integrity_complete,
378 };
379
380 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
381 static void integrity_bio_wait(struct work_struct *w);
382 static void dm_integrity_dtr(struct dm_target *ti);
383
384 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
385 {
386         if (err == -EILSEQ)
387                 atomic64_inc(&ic->number_of_mismatches);
388         if (!cmpxchg(&ic->failed, 0, err))
389                 DMERR("Error on %s: %d", msg, err);
390 }
391
392 static int dm_integrity_failed(struct dm_integrity_c *ic)
393 {
394         return READ_ONCE(ic->failed);
395 }
396
397 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
398 {
399         if (ic->legacy_recalculate)
400                 return false;
401         if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
402             ic->internal_hash_alg.key || ic->journal_mac_alg.key :
403             ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
404                 return true;
405         return false;
406 }
407
408 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i,
409                                           unsigned j, unsigned char seq)
410 {
411         /*
412          * Xor the number with section and sector, so that if a piece of
413          * journal is written at wrong place, it is detected.
414          */
415         return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
416 }
417
418 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
419                                 sector_t *area, sector_t *offset)
420 {
421         if (!ic->meta_dev) {
422                 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
423                 *area = data_sector >> log2_interleave_sectors;
424                 *offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1);
425         } else {
426                 *area = 0;
427                 *offset = data_sector;
428         }
429 }
430
431 #define sector_to_block(ic, n)                                          \
432 do {                                                                    \
433         BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1));          \
434         (n) >>= (ic)->sb->log2_sectors_per_block;                       \
435 } while (0)
436
437 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
438                                             sector_t offset, unsigned *metadata_offset)
439 {
440         __u64 ms;
441         unsigned mo;
442
443         ms = area << ic->sb->log2_interleave_sectors;
444         if (likely(ic->log2_metadata_run >= 0))
445                 ms += area << ic->log2_metadata_run;
446         else
447                 ms += area * ic->metadata_run;
448         ms >>= ic->log2_buffer_sectors;
449
450         sector_to_block(ic, offset);
451
452         if (likely(ic->log2_tag_size >= 0)) {
453                 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
454                 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
455         } else {
456                 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
457                 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
458         }
459         *metadata_offset = mo;
460         return ms;
461 }
462
463 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
464 {
465         sector_t result;
466
467         if (ic->meta_dev)
468                 return offset;
469
470         result = area << ic->sb->log2_interleave_sectors;
471         if (likely(ic->log2_metadata_run >= 0))
472                 result += (area + 1) << ic->log2_metadata_run;
473         else
474                 result += (area + 1) * ic->metadata_run;
475
476         result += (sector_t)ic->initial_sectors + offset;
477         result += ic->start;
478
479         return result;
480 }
481
482 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr)
483 {
484         if (unlikely(*sec_ptr >= ic->journal_sections))
485                 *sec_ptr -= ic->journal_sections;
486 }
487
488 static void sb_set_version(struct dm_integrity_c *ic)
489 {
490         if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
491                 ic->sb->version = SB_VERSION_5;
492         else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
493                 ic->sb->version = SB_VERSION_4;
494         else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
495                 ic->sb->version = SB_VERSION_3;
496         else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
497                 ic->sb->version = SB_VERSION_2;
498         else
499                 ic->sb->version = SB_VERSION_1;
500 }
501
502 static int sb_mac(struct dm_integrity_c *ic, bool wr)
503 {
504         SHASH_DESC_ON_STACK(desc, ic->journal_mac);
505         int r;
506         unsigned size = crypto_shash_digestsize(ic->journal_mac);
507
508         if (sizeof(struct superblock) + size > 1 << SECTOR_SHIFT) {
509                 dm_integrity_io_error(ic, "digest is too long", -EINVAL);
510                 return -EINVAL;
511         }
512
513         desc->tfm = ic->journal_mac;
514
515         r = crypto_shash_init(desc);
516         if (unlikely(r < 0)) {
517                 dm_integrity_io_error(ic, "crypto_shash_init", r);
518                 return r;
519         }
520
521         r = crypto_shash_update(desc, (__u8 *)ic->sb, (1 << SECTOR_SHIFT) - size);
522         if (unlikely(r < 0)) {
523                 dm_integrity_io_error(ic, "crypto_shash_update", r);
524                 return r;
525         }
526
527         if (likely(wr)) {
528                 r = crypto_shash_final(desc, (__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size);
529                 if (unlikely(r < 0)) {
530                         dm_integrity_io_error(ic, "crypto_shash_final", r);
531                         return r;
532                 }
533         } else {
534                 __u8 result[HASH_MAX_DIGESTSIZE];
535                 r = crypto_shash_final(desc, result);
536                 if (unlikely(r < 0)) {
537                         dm_integrity_io_error(ic, "crypto_shash_final", r);
538                         return r;
539                 }
540                 if (memcmp((__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size, result, size)) {
541                         dm_integrity_io_error(ic, "superblock mac", -EILSEQ);
542                         return -EILSEQ;
543                 }
544         }
545
546         return 0;
547 }
548
549 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags)
550 {
551         struct dm_io_request io_req;
552         struct dm_io_region io_loc;
553         int r;
554
555         io_req.bi_op = op;
556         io_req.bi_op_flags = op_flags;
557         io_req.mem.type = DM_IO_KMEM;
558         io_req.mem.ptr.addr = ic->sb;
559         io_req.notify.fn = NULL;
560         io_req.client = ic->io;
561         io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
562         io_loc.sector = ic->start;
563         io_loc.count = SB_SECTORS;
564
565         if (op == REQ_OP_WRITE) {
566                 sb_set_version(ic);
567                 if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
568                         r = sb_mac(ic, true);
569                         if (unlikely(r))
570                                 return r;
571                 }
572         }
573
574         r = dm_io(&io_req, 1, &io_loc, NULL);
575         if (unlikely(r))
576                 return r;
577
578         if (op == REQ_OP_READ) {
579                 if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
580                         r = sb_mac(ic, false);
581                         if (unlikely(r))
582                                 return r;
583                 }
584         }
585
586         return 0;
587 }
588
589 #define BITMAP_OP_TEST_ALL_SET          0
590 #define BITMAP_OP_TEST_ALL_CLEAR        1
591 #define BITMAP_OP_SET                   2
592 #define BITMAP_OP_CLEAR                 3
593
594 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
595                             sector_t sector, sector_t n_sectors, int mode)
596 {
597         unsigned long bit, end_bit, this_end_bit, page, end_page;
598         unsigned long *data;
599
600         if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
601                 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
602                         sector,
603                         n_sectors,
604                         ic->sb->log2_sectors_per_block,
605                         ic->log2_blocks_per_bitmap_bit,
606                         mode);
607                 BUG();
608         }
609
610         if (unlikely(!n_sectors))
611                 return true;
612
613         bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
614         end_bit = (sector + n_sectors - 1) >>
615                 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
616
617         page = bit / (PAGE_SIZE * 8);
618         bit %= PAGE_SIZE * 8;
619
620         end_page = end_bit / (PAGE_SIZE * 8);
621         end_bit %= PAGE_SIZE * 8;
622
623 repeat:
624         if (page < end_page) {
625                 this_end_bit = PAGE_SIZE * 8 - 1;
626         } else {
627                 this_end_bit = end_bit;
628         }
629
630         data = lowmem_page_address(bitmap[page].page);
631
632         if (mode == BITMAP_OP_TEST_ALL_SET) {
633                 while (bit <= this_end_bit) {
634                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
635                                 do {
636                                         if (data[bit / BITS_PER_LONG] != -1)
637                                                 return false;
638                                         bit += BITS_PER_LONG;
639                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
640                                 continue;
641                         }
642                         if (!test_bit(bit, data))
643                                 return false;
644                         bit++;
645                 }
646         } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
647                 while (bit <= this_end_bit) {
648                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
649                                 do {
650                                         if (data[bit / BITS_PER_LONG] != 0)
651                                                 return false;
652                                         bit += BITS_PER_LONG;
653                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
654                                 continue;
655                         }
656                         if (test_bit(bit, data))
657                                 return false;
658                         bit++;
659                 }
660         } else if (mode == BITMAP_OP_SET) {
661                 while (bit <= this_end_bit) {
662                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
663                                 do {
664                                         data[bit / BITS_PER_LONG] = -1;
665                                         bit += BITS_PER_LONG;
666                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
667                                 continue;
668                         }
669                         __set_bit(bit, data);
670                         bit++;
671                 }
672         } else if (mode == BITMAP_OP_CLEAR) {
673                 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
674                         clear_page(data);
675                 else while (bit <= this_end_bit) {
676                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
677                                 do {
678                                         data[bit / BITS_PER_LONG] = 0;
679                                         bit += BITS_PER_LONG;
680                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
681                                 continue;
682                         }
683                         __clear_bit(bit, data);
684                         bit++;
685                 }
686         } else {
687                 BUG();
688         }
689
690         if (unlikely(page < end_page)) {
691                 bit = 0;
692                 page++;
693                 goto repeat;
694         }
695
696         return true;
697 }
698
699 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
700 {
701         unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
702         unsigned i;
703
704         for (i = 0; i < n_bitmap_pages; i++) {
705                 unsigned long *dst_data = lowmem_page_address(dst[i].page);
706                 unsigned long *src_data = lowmem_page_address(src[i].page);
707                 copy_page(dst_data, src_data);
708         }
709 }
710
711 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
712 {
713         unsigned bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
714         unsigned bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
715
716         BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
717         return &ic->bbs[bitmap_block];
718 }
719
720 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset,
721                                  bool e, const char *function)
722 {
723 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
724         unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
725
726         if (unlikely(section >= ic->journal_sections) ||
727             unlikely(offset >= limit)) {
728                 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
729                        function, section, offset, ic->journal_sections, limit);
730                 BUG();
731         }
732 #endif
733 }
734
735 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset,
736                                unsigned *pl_index, unsigned *pl_offset)
737 {
738         unsigned sector;
739
740         access_journal_check(ic, section, offset, false, "page_list_location");
741
742         sector = section * ic->journal_section_sectors + offset;
743
744         *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
745         *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
746 }
747
748 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
749                                                unsigned section, unsigned offset, unsigned *n_sectors)
750 {
751         unsigned pl_index, pl_offset;
752         char *va;
753
754         page_list_location(ic, section, offset, &pl_index, &pl_offset);
755
756         if (n_sectors)
757                 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
758
759         va = lowmem_page_address(pl[pl_index].page);
760
761         return (struct journal_sector *)(va + pl_offset);
762 }
763
764 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset)
765 {
766         return access_page_list(ic, ic->journal, section, offset, NULL);
767 }
768
769 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n)
770 {
771         unsigned rel_sector, offset;
772         struct journal_sector *js;
773
774         access_journal_check(ic, section, n, true, "access_journal_entry");
775
776         rel_sector = n % JOURNAL_BLOCK_SECTORS;
777         offset = n / JOURNAL_BLOCK_SECTORS;
778
779         js = access_journal(ic, section, rel_sector);
780         return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
781 }
782
783 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n)
784 {
785         n <<= ic->sb->log2_sectors_per_block;
786
787         n += JOURNAL_BLOCK_SECTORS;
788
789         access_journal_check(ic, section, n, false, "access_journal_data");
790
791         return access_journal(ic, section, n);
792 }
793
794 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE])
795 {
796         SHASH_DESC_ON_STACK(desc, ic->journal_mac);
797         int r;
798         unsigned j, size;
799
800         desc->tfm = ic->journal_mac;
801
802         r = crypto_shash_init(desc);
803         if (unlikely(r < 0)) {
804                 dm_integrity_io_error(ic, "crypto_shash_init", r);
805                 goto err;
806         }
807
808         if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
809                 uint64_t section_le;
810
811                 r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE);
812                 if (unlikely(r < 0)) {
813                         dm_integrity_io_error(ic, "crypto_shash_update", r);
814                         goto err;
815                 }
816
817                 section_le = cpu_to_le64(section);
818                 r = crypto_shash_update(desc, (__u8 *)&section_le, sizeof section_le);
819                 if (unlikely(r < 0)) {
820                         dm_integrity_io_error(ic, "crypto_shash_update", r);
821                         goto err;
822                 }
823         }
824
825         for (j = 0; j < ic->journal_section_entries; j++) {
826                 struct journal_entry *je = access_journal_entry(ic, section, j);
827                 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
828                 if (unlikely(r < 0)) {
829                         dm_integrity_io_error(ic, "crypto_shash_update", r);
830                         goto err;
831                 }
832         }
833
834         size = crypto_shash_digestsize(ic->journal_mac);
835
836         if (likely(size <= JOURNAL_MAC_SIZE)) {
837                 r = crypto_shash_final(desc, result);
838                 if (unlikely(r < 0)) {
839                         dm_integrity_io_error(ic, "crypto_shash_final", r);
840                         goto err;
841                 }
842                 memset(result + size, 0, JOURNAL_MAC_SIZE - size);
843         } else {
844                 __u8 digest[HASH_MAX_DIGESTSIZE];
845
846                 if (WARN_ON(size > sizeof(digest))) {
847                         dm_integrity_io_error(ic, "digest_size", -EINVAL);
848                         goto err;
849                 }
850                 r = crypto_shash_final(desc, digest);
851                 if (unlikely(r < 0)) {
852                         dm_integrity_io_error(ic, "crypto_shash_final", r);
853                         goto err;
854                 }
855                 memcpy(result, digest, JOURNAL_MAC_SIZE);
856         }
857
858         return;
859 err:
860         memset(result, 0, JOURNAL_MAC_SIZE);
861 }
862
863 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr)
864 {
865         __u8 result[JOURNAL_MAC_SIZE];
866         unsigned j;
867
868         if (!ic->journal_mac)
869                 return;
870
871         section_mac(ic, section, result);
872
873         for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
874                 struct journal_sector *js = access_journal(ic, section, j);
875
876                 if (likely(wr))
877                         memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
878                 else {
879                         if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR))
880                                 dm_integrity_io_error(ic, "journal mac", -EILSEQ);
881                 }
882         }
883 }
884
885 static void complete_journal_op(void *context)
886 {
887         struct journal_completion *comp = context;
888         BUG_ON(!atomic_read(&comp->in_flight));
889         if (likely(atomic_dec_and_test(&comp->in_flight)))
890                 complete(&comp->comp);
891 }
892
893 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
894                         unsigned n_sections, struct journal_completion *comp)
895 {
896         struct async_submit_ctl submit;
897         size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
898         unsigned pl_index, pl_offset, section_index;
899         struct page_list *source_pl, *target_pl;
900
901         if (likely(encrypt)) {
902                 source_pl = ic->journal;
903                 target_pl = ic->journal_io;
904         } else {
905                 source_pl = ic->journal_io;
906                 target_pl = ic->journal;
907         }
908
909         page_list_location(ic, section, 0, &pl_index, &pl_offset);
910
911         atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
912
913         init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
914
915         section_index = pl_index;
916
917         do {
918                 size_t this_step;
919                 struct page *src_pages[2];
920                 struct page *dst_page;
921
922                 while (unlikely(pl_index == section_index)) {
923                         unsigned dummy;
924                         if (likely(encrypt))
925                                 rw_section_mac(ic, section, true);
926                         section++;
927                         n_sections--;
928                         if (!n_sections)
929                                 break;
930                         page_list_location(ic, section, 0, &section_index, &dummy);
931                 }
932
933                 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
934                 dst_page = target_pl[pl_index].page;
935                 src_pages[0] = source_pl[pl_index].page;
936                 src_pages[1] = ic->journal_xor[pl_index].page;
937
938                 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
939
940                 pl_index++;
941                 pl_offset = 0;
942                 n_bytes -= this_step;
943         } while (n_bytes);
944
945         BUG_ON(n_sections);
946
947         async_tx_issue_pending_all();
948 }
949
950 static void complete_journal_encrypt(struct crypto_async_request *req, int err)
951 {
952         struct journal_completion *comp = req->data;
953         if (unlikely(err)) {
954                 if (likely(err == -EINPROGRESS)) {
955                         complete(&comp->ic->crypto_backoff);
956                         return;
957                 }
958                 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
959         }
960         complete_journal_op(comp);
961 }
962
963 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
964 {
965         int r;
966         skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
967                                       complete_journal_encrypt, comp);
968         if (likely(encrypt))
969                 r = crypto_skcipher_encrypt(req);
970         else
971                 r = crypto_skcipher_decrypt(req);
972         if (likely(!r))
973                 return false;
974         if (likely(r == -EINPROGRESS))
975                 return true;
976         if (likely(r == -EBUSY)) {
977                 wait_for_completion(&comp->ic->crypto_backoff);
978                 reinit_completion(&comp->ic->crypto_backoff);
979                 return true;
980         }
981         dm_integrity_io_error(comp->ic, "encrypt", r);
982         return false;
983 }
984
985 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
986                           unsigned n_sections, struct journal_completion *comp)
987 {
988         struct scatterlist **source_sg;
989         struct scatterlist **target_sg;
990
991         atomic_add(2, &comp->in_flight);
992
993         if (likely(encrypt)) {
994                 source_sg = ic->journal_scatterlist;
995                 target_sg = ic->journal_io_scatterlist;
996         } else {
997                 source_sg = ic->journal_io_scatterlist;
998                 target_sg = ic->journal_scatterlist;
999         }
1000
1001         do {
1002                 struct skcipher_request *req;
1003                 unsigned ivsize;
1004                 char *iv;
1005
1006                 if (likely(encrypt))
1007                         rw_section_mac(ic, section, true);
1008
1009                 req = ic->sk_requests[section];
1010                 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
1011                 iv = req->iv;
1012
1013                 memcpy(iv, iv + ivsize, ivsize);
1014
1015                 req->src = source_sg[section];
1016                 req->dst = target_sg[section];
1017
1018                 if (unlikely(do_crypt(encrypt, req, comp)))
1019                         atomic_inc(&comp->in_flight);
1020
1021                 section++;
1022                 n_sections--;
1023         } while (n_sections);
1024
1025         atomic_dec(&comp->in_flight);
1026         complete_journal_op(comp);
1027 }
1028
1029 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
1030                             unsigned n_sections, struct journal_completion *comp)
1031 {
1032         if (ic->journal_xor)
1033                 return xor_journal(ic, encrypt, section, n_sections, comp);
1034         else
1035                 return crypt_journal(ic, encrypt, section, n_sections, comp);
1036 }
1037
1038 static void complete_journal_io(unsigned long error, void *context)
1039 {
1040         struct journal_completion *comp = context;
1041         if (unlikely(error != 0))
1042                 dm_integrity_io_error(comp->ic, "writing journal", -EIO);
1043         complete_journal_op(comp);
1044 }
1045
1046 static void rw_journal_sectors(struct dm_integrity_c *ic, int op, int op_flags,
1047                                unsigned sector, unsigned n_sectors, struct journal_completion *comp)
1048 {
1049         struct dm_io_request io_req;
1050         struct dm_io_region io_loc;
1051         unsigned pl_index, pl_offset;
1052         int r;
1053
1054         if (unlikely(dm_integrity_failed(ic))) {
1055                 if (comp)
1056                         complete_journal_io(-1UL, comp);
1057                 return;
1058         }
1059
1060         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1061         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1062
1063         io_req.bi_op = op;
1064         io_req.bi_op_flags = op_flags;
1065         io_req.mem.type = DM_IO_PAGE_LIST;
1066         if (ic->journal_io)
1067                 io_req.mem.ptr.pl = &ic->journal_io[pl_index];
1068         else
1069                 io_req.mem.ptr.pl = &ic->journal[pl_index];
1070         io_req.mem.offset = pl_offset;
1071         if (likely(comp != NULL)) {
1072                 io_req.notify.fn = complete_journal_io;
1073                 io_req.notify.context = comp;
1074         } else {
1075                 io_req.notify.fn = NULL;
1076         }
1077         io_req.client = ic->io;
1078         io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
1079         io_loc.sector = ic->start + SB_SECTORS + sector;
1080         io_loc.count = n_sectors;
1081
1082         r = dm_io(&io_req, 1, &io_loc, NULL);
1083         if (unlikely(r)) {
1084                 dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r);
1085                 if (comp) {
1086                         WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1087                         complete_journal_io(-1UL, comp);
1088                 }
1089         }
1090 }
1091
1092 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section,
1093                        unsigned n_sections, struct journal_completion *comp)
1094 {
1095         unsigned sector, n_sectors;
1096
1097         sector = section * ic->journal_section_sectors;
1098         n_sectors = n_sections * ic->journal_section_sectors;
1099
1100         rw_journal_sectors(ic, op, op_flags, sector, n_sectors, comp);
1101 }
1102
1103 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections)
1104 {
1105         struct journal_completion io_comp;
1106         struct journal_completion crypt_comp_1;
1107         struct journal_completion crypt_comp_2;
1108         unsigned i;
1109
1110         io_comp.ic = ic;
1111         init_completion(&io_comp.comp);
1112
1113         if (commit_start + commit_sections <= ic->journal_sections) {
1114                 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1115                 if (ic->journal_io) {
1116                         crypt_comp_1.ic = ic;
1117                         init_completion(&crypt_comp_1.comp);
1118                         crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1119                         encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1120                         wait_for_completion_io(&crypt_comp_1.comp);
1121                 } else {
1122                         for (i = 0; i < commit_sections; i++)
1123                                 rw_section_mac(ic, commit_start + i, true);
1124                 }
1125                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start,
1126                            commit_sections, &io_comp);
1127         } else {
1128                 unsigned to_end;
1129                 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1130                 to_end = ic->journal_sections - commit_start;
1131                 if (ic->journal_io) {
1132                         crypt_comp_1.ic = ic;
1133                         init_completion(&crypt_comp_1.comp);
1134                         crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1135                         encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1136                         if (try_wait_for_completion(&crypt_comp_1.comp)) {
1137                                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1138                                 reinit_completion(&crypt_comp_1.comp);
1139                                 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1140                                 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1141                                 wait_for_completion_io(&crypt_comp_1.comp);
1142                         } else {
1143                                 crypt_comp_2.ic = ic;
1144                                 init_completion(&crypt_comp_2.comp);
1145                                 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1146                                 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1147                                 wait_for_completion_io(&crypt_comp_1.comp);
1148                                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1149                                 wait_for_completion_io(&crypt_comp_2.comp);
1150                         }
1151                 } else {
1152                         for (i = 0; i < to_end; i++)
1153                                 rw_section_mac(ic, commit_start + i, true);
1154                         rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1155                         for (i = 0; i < commit_sections - to_end; i++)
1156                                 rw_section_mac(ic, i, true);
1157                 }
1158                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp);
1159         }
1160
1161         wait_for_completion_io(&io_comp.comp);
1162 }
1163
1164 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset,
1165                               unsigned n_sectors, sector_t target, io_notify_fn fn, void *data)
1166 {
1167         struct dm_io_request io_req;
1168         struct dm_io_region io_loc;
1169         int r;
1170         unsigned sector, pl_index, pl_offset;
1171
1172         BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1));
1173
1174         if (unlikely(dm_integrity_failed(ic))) {
1175                 fn(-1UL, data);
1176                 return;
1177         }
1178
1179         sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1180
1181         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1182         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1183
1184         io_req.bi_op = REQ_OP_WRITE;
1185         io_req.bi_op_flags = 0;
1186         io_req.mem.type = DM_IO_PAGE_LIST;
1187         io_req.mem.ptr.pl = &ic->journal[pl_index];
1188         io_req.mem.offset = pl_offset;
1189         io_req.notify.fn = fn;
1190         io_req.notify.context = data;
1191         io_req.client = ic->io;
1192         io_loc.bdev = ic->dev->bdev;
1193         io_loc.sector = target;
1194         io_loc.count = n_sectors;
1195
1196         r = dm_io(&io_req, 1, &io_loc, NULL);
1197         if (unlikely(r)) {
1198                 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1199                 fn(-1UL, data);
1200         }
1201 }
1202
1203 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1204 {
1205         return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1206                range1->logical_sector + range1->n_sectors > range2->logical_sector;
1207 }
1208
1209 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1210 {
1211         struct rb_node **n = &ic->in_progress.rb_node;
1212         struct rb_node *parent;
1213
1214         BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1));
1215
1216         if (likely(check_waiting)) {
1217                 struct dm_integrity_range *range;
1218                 list_for_each_entry(range, &ic->wait_list, wait_entry) {
1219                         if (unlikely(ranges_overlap(range, new_range)))
1220                                 return false;
1221                 }
1222         }
1223
1224         parent = NULL;
1225
1226         while (*n) {
1227                 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1228
1229                 parent = *n;
1230                 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
1231                         n = &range->node.rb_left;
1232                 } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
1233                         n = &range->node.rb_right;
1234                 } else {
1235                         return false;
1236                 }
1237         }
1238
1239         rb_link_node(&new_range->node, parent, n);
1240         rb_insert_color(&new_range->node, &ic->in_progress);
1241
1242         return true;
1243 }
1244
1245 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1246 {
1247         rb_erase(&range->node, &ic->in_progress);
1248         while (unlikely(!list_empty(&ic->wait_list))) {
1249                 struct dm_integrity_range *last_range =
1250                         list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1251                 struct task_struct *last_range_task;
1252                 last_range_task = last_range->task;
1253                 list_del(&last_range->wait_entry);
1254                 if (!add_new_range(ic, last_range, false)) {
1255                         last_range->task = last_range_task;
1256                         list_add(&last_range->wait_entry, &ic->wait_list);
1257                         break;
1258                 }
1259                 last_range->waiting = false;
1260                 wake_up_process(last_range_task);
1261         }
1262 }
1263
1264 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1265 {
1266         unsigned long flags;
1267
1268         spin_lock_irqsave(&ic->endio_wait.lock, flags);
1269         remove_range_unlocked(ic, range);
1270         spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1271 }
1272
1273 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1274 {
1275         new_range->waiting = true;
1276         list_add_tail(&new_range->wait_entry, &ic->wait_list);
1277         new_range->task = current;
1278         do {
1279                 __set_current_state(TASK_UNINTERRUPTIBLE);
1280                 spin_unlock_irq(&ic->endio_wait.lock);
1281                 io_schedule();
1282                 spin_lock_irq(&ic->endio_wait.lock);
1283         } while (unlikely(new_range->waiting));
1284 }
1285
1286 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1287 {
1288         if (unlikely(!add_new_range(ic, new_range, true)))
1289                 wait_and_add_new_range(ic, new_range);
1290 }
1291
1292 static void init_journal_node(struct journal_node *node)
1293 {
1294         RB_CLEAR_NODE(&node->node);
1295         node->sector = (sector_t)-1;
1296 }
1297
1298 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1299 {
1300         struct rb_node **link;
1301         struct rb_node *parent;
1302
1303         node->sector = sector;
1304         BUG_ON(!RB_EMPTY_NODE(&node->node));
1305
1306         link = &ic->journal_tree_root.rb_node;
1307         parent = NULL;
1308
1309         while (*link) {
1310                 struct journal_node *j;
1311                 parent = *link;
1312                 j = container_of(parent, struct journal_node, node);
1313                 if (sector < j->sector)
1314                         link = &j->node.rb_left;
1315                 else
1316                         link = &j->node.rb_right;
1317         }
1318
1319         rb_link_node(&node->node, parent, link);
1320         rb_insert_color(&node->node, &ic->journal_tree_root);
1321 }
1322
1323 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1324 {
1325         BUG_ON(RB_EMPTY_NODE(&node->node));
1326         rb_erase(&node->node, &ic->journal_tree_root);
1327         init_journal_node(node);
1328 }
1329
1330 #define NOT_FOUND       (-1U)
1331
1332 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1333 {
1334         struct rb_node *n = ic->journal_tree_root.rb_node;
1335         unsigned found = NOT_FOUND;
1336         *next_sector = (sector_t)-1;
1337         while (n) {
1338                 struct journal_node *j = container_of(n, struct journal_node, node);
1339                 if (sector == j->sector) {
1340                         found = j - ic->journal_tree;
1341                 }
1342                 if (sector < j->sector) {
1343                         *next_sector = j->sector;
1344                         n = j->node.rb_left;
1345                 } else {
1346                         n = j->node.rb_right;
1347                 }
1348         }
1349
1350         return found;
1351 }
1352
1353 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector)
1354 {
1355         struct journal_node *node, *next_node;
1356         struct rb_node *next;
1357
1358         if (unlikely(pos >= ic->journal_entries))
1359                 return false;
1360         node = &ic->journal_tree[pos];
1361         if (unlikely(RB_EMPTY_NODE(&node->node)))
1362                 return false;
1363         if (unlikely(node->sector != sector))
1364                 return false;
1365
1366         next = rb_next(&node->node);
1367         if (unlikely(!next))
1368                 return true;
1369
1370         next_node = container_of(next, struct journal_node, node);
1371         return next_node->sector != sector;
1372 }
1373
1374 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1375 {
1376         struct rb_node *next;
1377         struct journal_node *next_node;
1378         unsigned next_section;
1379
1380         BUG_ON(RB_EMPTY_NODE(&node->node));
1381
1382         next = rb_next(&node->node);
1383         if (unlikely(!next))
1384                 return false;
1385
1386         next_node = container_of(next, struct journal_node, node);
1387
1388         if (next_node->sector != node->sector)
1389                 return false;
1390
1391         next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries;
1392         if (next_section >= ic->committed_section &&
1393             next_section < ic->committed_section + ic->n_committed_sections)
1394                 return true;
1395         if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1396                 return true;
1397
1398         return false;
1399 }
1400
1401 #define TAG_READ        0
1402 #define TAG_WRITE       1
1403 #define TAG_CMP         2
1404
1405 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1406                                unsigned *metadata_offset, unsigned total_size, int op)
1407 {
1408 #define MAY_BE_FILLER           1
1409 #define MAY_BE_HASH             2
1410         unsigned hash_offset = 0;
1411         unsigned may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1412
1413         do {
1414                 unsigned char *data, *dp;
1415                 struct dm_buffer *b;
1416                 unsigned to_copy;
1417                 int r;
1418
1419                 r = dm_integrity_failed(ic);
1420                 if (unlikely(r))
1421                         return r;
1422
1423                 data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1424                 if (IS_ERR(data))
1425                         return PTR_ERR(data);
1426
1427                 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1428                 dp = data + *metadata_offset;
1429                 if (op == TAG_READ) {
1430                         memcpy(tag, dp, to_copy);
1431                 } else if (op == TAG_WRITE) {
1432                         memcpy(dp, tag, to_copy);
1433                         dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1434                 } else {
1435                         /* e.g.: op == TAG_CMP */
1436
1437                         if (likely(is_power_of_2(ic->tag_size))) {
1438                                 if (unlikely(memcmp(dp, tag, to_copy)))
1439                                         if (unlikely(!ic->discard) ||
1440                                             unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1441                                                 goto thorough_test;
1442                                 }
1443                         } else {
1444                                 unsigned i, ts;
1445 thorough_test:
1446                                 ts = total_size;
1447
1448                                 for (i = 0; i < to_copy; i++, ts--) {
1449                                         if (unlikely(dp[i] != tag[i]))
1450                                                 may_be &= ~MAY_BE_HASH;
1451                                         if (likely(dp[i] != DISCARD_FILLER))
1452                                                 may_be &= ~MAY_BE_FILLER;
1453                                         hash_offset++;
1454                                         if (unlikely(hash_offset == ic->tag_size)) {
1455                                                 if (unlikely(!may_be)) {
1456                                                         dm_bufio_release(b);
1457                                                         return ts;
1458                                                 }
1459                                                 hash_offset = 0;
1460                                                 may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1461                                         }
1462                                 }
1463                         }
1464                 }
1465                 dm_bufio_release(b);
1466
1467                 tag += to_copy;
1468                 *metadata_offset += to_copy;
1469                 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1470                         (*metadata_block)++;
1471                         *metadata_offset = 0;
1472                 }
1473
1474                 if (unlikely(!is_power_of_2(ic->tag_size))) {
1475                         hash_offset = (hash_offset + to_copy) % ic->tag_size;
1476                 }
1477
1478                 total_size -= to_copy;
1479         } while (unlikely(total_size));
1480
1481         return 0;
1482 #undef MAY_BE_FILLER
1483 #undef MAY_BE_HASH
1484 }
1485
1486 struct flush_request {
1487         struct dm_io_request io_req;
1488         struct dm_io_region io_reg;
1489         struct dm_integrity_c *ic;
1490         struct completion comp;
1491 };
1492
1493 static void flush_notify(unsigned long error, void *fr_)
1494 {
1495         struct flush_request *fr = fr_;
1496         if (unlikely(error != 0))
1497                 dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO);
1498         complete(&fr->comp);
1499 }
1500
1501 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1502 {
1503         int r;
1504
1505         struct flush_request fr;
1506
1507         if (!ic->meta_dev)
1508                 flush_data = false;
1509         if (flush_data) {
1510                 fr.io_req.bi_op = REQ_OP_WRITE,
1511                 fr.io_req.bi_op_flags = REQ_PREFLUSH | REQ_SYNC,
1512                 fr.io_req.mem.type = DM_IO_KMEM,
1513                 fr.io_req.mem.ptr.addr = NULL,
1514                 fr.io_req.notify.fn = flush_notify,
1515                 fr.io_req.notify.context = &fr;
1516                 fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio),
1517                 fr.io_reg.bdev = ic->dev->bdev,
1518                 fr.io_reg.sector = 0,
1519                 fr.io_reg.count = 0,
1520                 fr.ic = ic;
1521                 init_completion(&fr.comp);
1522                 r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL);
1523                 BUG_ON(r);
1524         }
1525
1526         r = dm_bufio_write_dirty_buffers(ic->bufio);
1527         if (unlikely(r))
1528                 dm_integrity_io_error(ic, "writing tags", r);
1529
1530         if (flush_data)
1531                 wait_for_completion(&fr.comp);
1532 }
1533
1534 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1535 {
1536         DECLARE_WAITQUEUE(wait, current);
1537         __add_wait_queue(&ic->endio_wait, &wait);
1538         __set_current_state(TASK_UNINTERRUPTIBLE);
1539         spin_unlock_irq(&ic->endio_wait.lock);
1540         io_schedule();
1541         spin_lock_irq(&ic->endio_wait.lock);
1542         __remove_wait_queue(&ic->endio_wait, &wait);
1543 }
1544
1545 static void autocommit_fn(struct timer_list *t)
1546 {
1547         struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1548
1549         if (likely(!dm_integrity_failed(ic)))
1550                 queue_work(ic->commit_wq, &ic->commit_work);
1551 }
1552
1553 static void schedule_autocommit(struct dm_integrity_c *ic)
1554 {
1555         if (!timer_pending(&ic->autocommit_timer))
1556                 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1557 }
1558
1559 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1560 {
1561         struct bio *bio;
1562         unsigned long flags;
1563
1564         spin_lock_irqsave(&ic->endio_wait.lock, flags);
1565         bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1566         bio_list_add(&ic->flush_bio_list, bio);
1567         spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1568
1569         queue_work(ic->commit_wq, &ic->commit_work);
1570 }
1571
1572 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1573 {
1574         int r = dm_integrity_failed(ic);
1575         if (unlikely(r) && !bio->bi_status)
1576                 bio->bi_status = errno_to_blk_status(r);
1577         if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1578                 unsigned long flags;
1579                 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1580                 bio_list_add(&ic->synchronous_bios, bio);
1581                 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1582                 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1583                 return;
1584         }
1585         bio_endio(bio);
1586 }
1587
1588 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1589 {
1590         struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1591
1592         if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1593                 submit_flush_bio(ic, dio);
1594         else
1595                 do_endio(ic, bio);
1596 }
1597
1598 static void dec_in_flight(struct dm_integrity_io *dio)
1599 {
1600         if (atomic_dec_and_test(&dio->in_flight)) {
1601                 struct dm_integrity_c *ic = dio->ic;
1602                 struct bio *bio;
1603
1604                 remove_range(ic, &dio->range);
1605
1606                 if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1607                         schedule_autocommit(ic);
1608
1609                 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1610
1611                 if (unlikely(dio->bi_status) && !bio->bi_status)
1612                         bio->bi_status = dio->bi_status;
1613                 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1614                         dio->range.logical_sector += dio->range.n_sectors;
1615                         bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1616                         INIT_WORK(&dio->work, integrity_bio_wait);
1617                         queue_work(ic->offload_wq, &dio->work);
1618                         return;
1619                 }
1620                 do_endio_flush(ic, dio);
1621         }
1622 }
1623
1624 static void integrity_end_io(struct bio *bio)
1625 {
1626         struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1627
1628         dm_bio_restore(&dio->bio_details, bio);
1629         if (bio->bi_integrity)
1630                 bio->bi_opf |= REQ_INTEGRITY;
1631
1632         if (dio->completion)
1633                 complete(dio->completion);
1634
1635         dec_in_flight(dio);
1636 }
1637
1638 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1639                                       const char *data, char *result)
1640 {
1641         __u64 sector_le = cpu_to_le64(sector);
1642         SHASH_DESC_ON_STACK(req, ic->internal_hash);
1643         int r;
1644         unsigned digest_size;
1645
1646         req->tfm = ic->internal_hash;
1647
1648         r = crypto_shash_init(req);
1649         if (unlikely(r < 0)) {
1650                 dm_integrity_io_error(ic, "crypto_shash_init", r);
1651                 goto failed;
1652         }
1653
1654         if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1655                 r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE);
1656                 if (unlikely(r < 0)) {
1657                         dm_integrity_io_error(ic, "crypto_shash_update", r);
1658                         goto failed;
1659                 }
1660         }
1661
1662         r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof sector_le);
1663         if (unlikely(r < 0)) {
1664                 dm_integrity_io_error(ic, "crypto_shash_update", r);
1665                 goto failed;
1666         }
1667
1668         r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1669         if (unlikely(r < 0)) {
1670                 dm_integrity_io_error(ic, "crypto_shash_update", r);
1671                 goto failed;
1672         }
1673
1674         r = crypto_shash_final(req, result);
1675         if (unlikely(r < 0)) {
1676                 dm_integrity_io_error(ic, "crypto_shash_final", r);
1677                 goto failed;
1678         }
1679
1680         digest_size = crypto_shash_digestsize(ic->internal_hash);
1681         if (unlikely(digest_size < ic->tag_size))
1682                 memset(result + digest_size, 0, ic->tag_size - digest_size);
1683
1684         return;
1685
1686 failed:
1687         /* this shouldn't happen anyway, the hash functions have no reason to fail */
1688         get_random_bytes(result, ic->tag_size);
1689 }
1690
1691 static void integrity_metadata(struct work_struct *w)
1692 {
1693         struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1694         struct dm_integrity_c *ic = dio->ic;
1695
1696         int r;
1697
1698         if (ic->internal_hash) {
1699                 struct bvec_iter iter;
1700                 struct bio_vec bv;
1701                 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1702                 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1703                 char *checksums;
1704                 unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1705                 char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1706                 sector_t sector;
1707                 unsigned sectors_to_process;
1708
1709                 if (unlikely(ic->mode == 'R'))
1710                         goto skip_io;
1711
1712                 if (likely(dio->op != REQ_OP_DISCARD))
1713                         checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1714                                             GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1715                 else
1716                         checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1717                 if (!checksums) {
1718                         checksums = checksums_onstack;
1719                         if (WARN_ON(extra_space &&
1720                                     digest_size > sizeof(checksums_onstack))) {
1721                                 r = -EINVAL;
1722                                 goto error;
1723                         }
1724                 }
1725
1726                 if (unlikely(dio->op == REQ_OP_DISCARD)) {
1727                         sector_t bi_sector = dio->bio_details.bi_iter.bi_sector;
1728                         unsigned bi_size = dio->bio_details.bi_iter.bi_size;
1729                         unsigned max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1730                         unsigned max_blocks = max_size / ic->tag_size;
1731                         memset(checksums, DISCARD_FILLER, max_size);
1732
1733                         while (bi_size) {
1734                                 unsigned this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1735                                 this_step_blocks = min(this_step_blocks, max_blocks);
1736                                 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1737                                                         this_step_blocks * ic->tag_size, TAG_WRITE);
1738                                 if (unlikely(r)) {
1739                                         if (likely(checksums != checksums_onstack))
1740                                                 kfree(checksums);
1741                                         goto error;
1742                                 }
1743
1744                                 /*if (bi_size < this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block)) {
1745                                         printk("BUGG: bi_sector: %llx, bi_size: %u\n", bi_sector, bi_size);
1746                                         printk("BUGG: this_step_blocks: %u\n", this_step_blocks);
1747                                         BUG();
1748                                 }*/
1749                                 bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1750                                 bi_sector += this_step_blocks << ic->sb->log2_sectors_per_block;
1751                         }
1752
1753                         if (likely(checksums != checksums_onstack))
1754                                 kfree(checksums);
1755                         goto skip_io;
1756                 }
1757
1758                 sector = dio->range.logical_sector;
1759                 sectors_to_process = dio->range.n_sectors;
1760
1761                 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1762                         unsigned pos;
1763                         char *mem, *checksums_ptr;
1764
1765 again:
1766                         mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset;
1767                         pos = 0;
1768                         checksums_ptr = checksums;
1769                         do {
1770                                 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1771                                 checksums_ptr += ic->tag_size;
1772                                 sectors_to_process -= ic->sectors_per_block;
1773                                 pos += ic->sectors_per_block << SECTOR_SHIFT;
1774                                 sector += ic->sectors_per_block;
1775                         } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1776                         kunmap_atomic(mem);
1777
1778                         r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1779                                                 checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1780                         if (unlikely(r)) {
1781                                 if (r > 0) {
1782                                         char b[BDEVNAME_SIZE];
1783                                         DMERR_LIMIT("%s: Checksum failed at sector 0x%llx", bio_devname(bio, b),
1784                                                     (sector - ((r + ic->tag_size - 1) / ic->tag_size)));
1785                                         r = -EILSEQ;
1786                                         atomic64_inc(&ic->number_of_mismatches);
1787                                 }
1788                                 if (likely(checksums != checksums_onstack))
1789                                         kfree(checksums);
1790                                 goto error;
1791                         }
1792
1793                         if (!sectors_to_process)
1794                                 break;
1795
1796                         if (unlikely(pos < bv.bv_len)) {
1797                                 bv.bv_offset += pos;
1798                                 bv.bv_len -= pos;
1799                                 goto again;
1800                         }
1801                 }
1802
1803                 if (likely(checksums != checksums_onstack))
1804                         kfree(checksums);
1805         } else {
1806                 struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1807
1808                 if (bip) {
1809                         struct bio_vec biv;
1810                         struct bvec_iter iter;
1811                         unsigned data_to_process = dio->range.n_sectors;
1812                         sector_to_block(ic, data_to_process);
1813                         data_to_process *= ic->tag_size;
1814
1815                         bip_for_each_vec(biv, bip, iter) {
1816                                 unsigned char *tag;
1817                                 unsigned this_len;
1818
1819                                 BUG_ON(PageHighMem(biv.bv_page));
1820                                 tag = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1821                                 this_len = min(biv.bv_len, data_to_process);
1822                                 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1823                                                         this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1824                                 if (unlikely(r))
1825                                         goto error;
1826                                 data_to_process -= this_len;
1827                                 if (!data_to_process)
1828                                         break;
1829                         }
1830                 }
1831         }
1832 skip_io:
1833         dec_in_flight(dio);
1834         return;
1835 error:
1836         dio->bi_status = errno_to_blk_status(r);
1837         dec_in_flight(dio);
1838 }
1839
1840 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1841 {
1842         struct dm_integrity_c *ic = ti->private;
1843         struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1844         struct bio_integrity_payload *bip;
1845
1846         sector_t area, offset;
1847
1848         dio->ic = ic;
1849         dio->bi_status = 0;
1850         dio->op = bio_op(bio);
1851
1852         if (unlikely(dio->op == REQ_OP_DISCARD)) {
1853                 if (ti->max_io_len) {
1854                         sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1855                         unsigned log2_max_io_len = __fls(ti->max_io_len);
1856                         sector_t start_boundary = sec >> log2_max_io_len;
1857                         sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1858                         if (start_boundary < end_boundary) {
1859                                 sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1860                                 dm_accept_partial_bio(bio, len);
1861                         }
1862                 }
1863         }
1864
1865         if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1866                 submit_flush_bio(ic, dio);
1867                 return DM_MAPIO_SUBMITTED;
1868         }
1869
1870         dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1871         dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1872         if (unlikely(dio->fua)) {
1873                 /*
1874                  * Don't pass down the FUA flag because we have to flush
1875                  * disk cache anyway.
1876                  */
1877                 bio->bi_opf &= ~REQ_FUA;
1878         }
1879         if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1880                 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1881                       dio->range.logical_sector, bio_sectors(bio),
1882                       ic->provided_data_sectors);
1883                 return DM_MAPIO_KILL;
1884         }
1885         if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) {
1886                 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1887                       ic->sectors_per_block,
1888                       dio->range.logical_sector, bio_sectors(bio));
1889                 return DM_MAPIO_KILL;
1890         }
1891
1892         if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) {
1893                 struct bvec_iter iter;
1894                 struct bio_vec bv;
1895                 bio_for_each_segment(bv, bio, iter) {
1896                         if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1897                                 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1898                                         bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1899                                 return DM_MAPIO_KILL;
1900                         }
1901                 }
1902         }
1903
1904         bip = bio_integrity(bio);
1905         if (!ic->internal_hash) {
1906                 if (bip) {
1907                         unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1908                         if (ic->log2_tag_size >= 0)
1909                                 wanted_tag_size <<= ic->log2_tag_size;
1910                         else
1911                                 wanted_tag_size *= ic->tag_size;
1912                         if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1913                                 DMERR("Invalid integrity data size %u, expected %u",
1914                                       bip->bip_iter.bi_size, wanted_tag_size);
1915                                 return DM_MAPIO_KILL;
1916                         }
1917                 }
1918         } else {
1919                 if (unlikely(bip != NULL)) {
1920                         DMERR("Unexpected integrity data when using internal hash");
1921                         return DM_MAPIO_KILL;
1922                 }
1923         }
1924
1925         if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
1926                 return DM_MAPIO_KILL;
1927
1928         get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1929         dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1930         bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1931
1932         dm_integrity_map_continue(dio, true);
1933         return DM_MAPIO_SUBMITTED;
1934 }
1935
1936 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1937                                  unsigned journal_section, unsigned journal_entry)
1938 {
1939         struct dm_integrity_c *ic = dio->ic;
1940         sector_t logical_sector;
1941         unsigned n_sectors;
1942
1943         logical_sector = dio->range.logical_sector;
1944         n_sectors = dio->range.n_sectors;
1945         do {
1946                 struct bio_vec bv = bio_iovec(bio);
1947                 char *mem;
1948
1949                 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1950                         bv.bv_len = n_sectors << SECTOR_SHIFT;
1951                 n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1952                 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1953 retry_kmap:
1954                 mem = kmap_atomic(bv.bv_page);
1955                 if (likely(dio->op == REQ_OP_WRITE))
1956                         flush_dcache_page(bv.bv_page);
1957
1958                 do {
1959                         struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1960
1961                         if (unlikely(dio->op == REQ_OP_READ)) {
1962                                 struct journal_sector *js;
1963                                 char *mem_ptr;
1964                                 unsigned s;
1965
1966                                 if (unlikely(journal_entry_is_inprogress(je))) {
1967                                         flush_dcache_page(bv.bv_page);
1968                                         kunmap_atomic(mem);
1969
1970                                         __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1971                                         goto retry_kmap;
1972                                 }
1973                                 smp_rmb();
1974                                 BUG_ON(journal_entry_get_sector(je) != logical_sector);
1975                                 js = access_journal_data(ic, journal_section, journal_entry);
1976                                 mem_ptr = mem + bv.bv_offset;
1977                                 s = 0;
1978                                 do {
1979                                         memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1980                                         *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1981                                         js++;
1982                                         mem_ptr += 1 << SECTOR_SHIFT;
1983                                 } while (++s < ic->sectors_per_block);
1984 #ifdef INTERNAL_VERIFY
1985                                 if (ic->internal_hash) {
1986                                         char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1987
1988                                         integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
1989                                         if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
1990                                                 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
1991                                                             logical_sector);
1992                                         }
1993                                 }
1994 #endif
1995                         }
1996
1997                         if (!ic->internal_hash) {
1998                                 struct bio_integrity_payload *bip = bio_integrity(bio);
1999                                 unsigned tag_todo = ic->tag_size;
2000                                 char *tag_ptr = journal_entry_tag(ic, je);
2001
2002                                 if (bip) do {
2003                                         struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
2004                                         unsigned tag_now = min(biv.bv_len, tag_todo);
2005                                         char *tag_addr;
2006                                         BUG_ON(PageHighMem(biv.bv_page));
2007                                         tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset;
2008                                         if (likely(dio->op == REQ_OP_WRITE))
2009                                                 memcpy(tag_ptr, tag_addr, tag_now);
2010                                         else
2011                                                 memcpy(tag_addr, tag_ptr, tag_now);
2012                                         bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
2013                                         tag_ptr += tag_now;
2014                                         tag_todo -= tag_now;
2015                                 } while (unlikely(tag_todo)); else {
2016                                         if (likely(dio->op == REQ_OP_WRITE))
2017                                                 memset(tag_ptr, 0, tag_todo);
2018                                 }
2019                         }
2020
2021                         if (likely(dio->op == REQ_OP_WRITE)) {
2022                                 struct journal_sector *js;
2023                                 unsigned s;
2024
2025                                 js = access_journal_data(ic, journal_section, journal_entry);
2026                                 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
2027
2028                                 s = 0;
2029                                 do {
2030                                         je->last_bytes[s] = js[s].commit_id;
2031                                 } while (++s < ic->sectors_per_block);
2032
2033                                 if (ic->internal_hash) {
2034                                         unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
2035                                         if (unlikely(digest_size > ic->tag_size)) {
2036                                                 char checksums_onstack[HASH_MAX_DIGESTSIZE];
2037                                                 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
2038                                                 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
2039                                         } else
2040                                                 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
2041                                 }
2042
2043                                 journal_entry_set_sector(je, logical_sector);
2044                         }
2045                         logical_sector += ic->sectors_per_block;
2046
2047                         journal_entry++;
2048                         if (unlikely(journal_entry == ic->journal_section_entries)) {
2049                                 journal_entry = 0;
2050                                 journal_section++;
2051                                 wraparound_section(ic, &journal_section);
2052                         }
2053
2054                         bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
2055                 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
2056
2057                 if (unlikely(dio->op == REQ_OP_READ))
2058                         flush_dcache_page(bv.bv_page);
2059                 kunmap_atomic(mem);
2060         } while (n_sectors);
2061
2062         if (likely(dio->op == REQ_OP_WRITE)) {
2063                 smp_mb();
2064                 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
2065                         wake_up(&ic->copy_to_journal_wait);
2066                 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
2067                         queue_work(ic->commit_wq, &ic->commit_work);
2068                 } else {
2069                         schedule_autocommit(ic);
2070                 }
2071         } else {
2072                 remove_range(ic, &dio->range);
2073         }
2074
2075         if (unlikely(bio->bi_iter.bi_size)) {
2076                 sector_t area, offset;
2077
2078                 dio->range.logical_sector = logical_sector;
2079                 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2080                 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2081                 return true;
2082         }
2083
2084         return false;
2085 }
2086
2087 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
2088 {
2089         struct dm_integrity_c *ic = dio->ic;
2090         struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2091         unsigned journal_section, journal_entry;
2092         unsigned journal_read_pos;
2093         struct completion read_comp;
2094         bool discard_retried = false;
2095         bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
2096         if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
2097                 need_sync_io = true;
2098
2099         if (need_sync_io && from_map) {
2100                 INIT_WORK(&dio->work, integrity_bio_wait);
2101                 queue_work(ic->offload_wq, &dio->work);
2102                 return;
2103         }
2104
2105 lock_retry:
2106         spin_lock_irq(&ic->endio_wait.lock);
2107 retry:
2108         if (unlikely(dm_integrity_failed(ic))) {
2109                 spin_unlock_irq(&ic->endio_wait.lock);
2110                 do_endio(ic, bio);
2111                 return;
2112         }
2113         dio->range.n_sectors = bio_sectors(bio);
2114         journal_read_pos = NOT_FOUND;
2115         if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2116                 if (dio->op == REQ_OP_WRITE) {
2117                         unsigned next_entry, i, pos;
2118                         unsigned ws, we, range_sectors;
2119
2120                         dio->range.n_sectors = min(dio->range.n_sectors,
2121                                                    (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2122                         if (unlikely(!dio->range.n_sectors)) {
2123                                 if (from_map)
2124                                         goto offload_to_thread;
2125                                 sleep_on_endio_wait(ic);
2126                                 goto retry;
2127                         }
2128                         range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2129                         ic->free_sectors -= range_sectors;
2130                         journal_section = ic->free_section;
2131                         journal_entry = ic->free_section_entry;
2132
2133                         next_entry = ic->free_section_entry + range_sectors;
2134                         ic->free_section_entry = next_entry % ic->journal_section_entries;
2135                         ic->free_section += next_entry / ic->journal_section_entries;
2136                         ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2137                         wraparound_section(ic, &ic->free_section);
2138
2139                         pos = journal_section * ic->journal_section_entries + journal_entry;
2140                         ws = journal_section;
2141                         we = journal_entry;
2142                         i = 0;
2143                         do {
2144                                 struct journal_entry *je;
2145
2146                                 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2147                                 pos++;
2148                                 if (unlikely(pos >= ic->journal_entries))
2149                                         pos = 0;
2150
2151                                 je = access_journal_entry(ic, ws, we);
2152                                 BUG_ON(!journal_entry_is_unused(je));
2153                                 journal_entry_set_inprogress(je);
2154                                 we++;
2155                                 if (unlikely(we == ic->journal_section_entries)) {
2156                                         we = 0;
2157                                         ws++;
2158                                         wraparound_section(ic, &ws);
2159                                 }
2160                         } while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2161
2162                         spin_unlock_irq(&ic->endio_wait.lock);
2163                         goto journal_read_write;
2164                 } else {
2165                         sector_t next_sector;
2166                         journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2167                         if (likely(journal_read_pos == NOT_FOUND)) {
2168                                 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2169                                         dio->range.n_sectors = next_sector - dio->range.logical_sector;
2170                         } else {
2171                                 unsigned i;
2172                                 unsigned jp = journal_read_pos + 1;
2173                                 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2174                                         if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2175                                                 break;
2176                                 }
2177                                 dio->range.n_sectors = i;
2178                         }
2179                 }
2180         }
2181         if (unlikely(!add_new_range(ic, &dio->range, true))) {
2182                 /*
2183                  * We must not sleep in the request routine because it could
2184                  * stall bios on current->bio_list.
2185                  * So, we offload the bio to a workqueue if we have to sleep.
2186                  */
2187                 if (from_map) {
2188 offload_to_thread:
2189                         spin_unlock_irq(&ic->endio_wait.lock);
2190                         INIT_WORK(&dio->work, integrity_bio_wait);
2191                         queue_work(ic->wait_wq, &dio->work);
2192                         return;
2193                 }
2194                 if (journal_read_pos != NOT_FOUND)
2195                         dio->range.n_sectors = ic->sectors_per_block;
2196                 wait_and_add_new_range(ic, &dio->range);
2197                 /*
2198                  * wait_and_add_new_range drops the spinlock, so the journal
2199                  * may have been changed arbitrarily. We need to recheck.
2200                  * To simplify the code, we restrict I/O size to just one block.
2201                  */
2202                 if (journal_read_pos != NOT_FOUND) {
2203                         sector_t next_sector;
2204                         unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2205                         if (unlikely(new_pos != journal_read_pos)) {
2206                                 remove_range_unlocked(ic, &dio->range);
2207                                 goto retry;
2208                         }
2209                 }
2210         }
2211         if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2212                 sector_t next_sector;
2213                 unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2214                 if (unlikely(new_pos != NOT_FOUND) ||
2215                     unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2216                         remove_range_unlocked(ic, &dio->range);
2217                         spin_unlock_irq(&ic->endio_wait.lock);
2218                         queue_work(ic->commit_wq, &ic->commit_work);
2219                         flush_workqueue(ic->commit_wq);
2220                         queue_work(ic->writer_wq, &ic->writer_work);
2221                         flush_workqueue(ic->writer_wq);
2222                         discard_retried = true;
2223                         goto lock_retry;
2224                 }
2225         }
2226         spin_unlock_irq(&ic->endio_wait.lock);
2227
2228         if (unlikely(journal_read_pos != NOT_FOUND)) {
2229                 journal_section = journal_read_pos / ic->journal_section_entries;
2230                 journal_entry = journal_read_pos % ic->journal_section_entries;
2231                 goto journal_read_write;
2232         }
2233
2234         if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2235                 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2236                                      dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2237                         struct bitmap_block_status *bbs;
2238
2239                         bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2240                         spin_lock(&bbs->bio_queue_lock);
2241                         bio_list_add(&bbs->bio_queue, bio);
2242                         spin_unlock(&bbs->bio_queue_lock);
2243                         queue_work(ic->writer_wq, &bbs->work);
2244                         return;
2245                 }
2246         }
2247
2248         dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2249
2250         if (need_sync_io) {
2251                 init_completion(&read_comp);
2252                 dio->completion = &read_comp;
2253         } else
2254                 dio->completion = NULL;
2255
2256         dm_bio_record(&dio->bio_details, bio);
2257         bio_set_dev(bio, ic->dev->bdev);
2258         bio->bi_integrity = NULL;
2259         bio->bi_opf &= ~REQ_INTEGRITY;
2260         bio->bi_end_io = integrity_end_io;
2261         bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2262
2263         if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2264                 integrity_metadata(&dio->work);
2265                 dm_integrity_flush_buffers(ic, false);
2266
2267                 dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2268                 dio->completion = NULL;
2269
2270                 submit_bio_noacct(bio);
2271
2272                 return;
2273         }
2274
2275         submit_bio_noacct(bio);
2276
2277         if (need_sync_io) {
2278                 wait_for_completion_io(&read_comp);
2279                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2280                     dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2281                         goto skip_check;
2282                 if (ic->mode == 'B') {
2283                         if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2284                                              dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2285                                 goto skip_check;
2286                 }
2287
2288                 if (likely(!bio->bi_status))
2289                         integrity_metadata(&dio->work);
2290                 else
2291 skip_check:
2292                         dec_in_flight(dio);
2293
2294         } else {
2295                 INIT_WORK(&dio->work, integrity_metadata);
2296                 queue_work(ic->metadata_wq, &dio->work);
2297         }
2298
2299         return;
2300
2301 journal_read_write:
2302         if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2303                 goto lock_retry;
2304
2305         do_endio_flush(ic, dio);
2306 }
2307
2308
2309 static void integrity_bio_wait(struct work_struct *w)
2310 {
2311         struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2312
2313         dm_integrity_map_continue(dio, false);
2314 }
2315
2316 static void pad_uncommitted(struct dm_integrity_c *ic)
2317 {
2318         if (ic->free_section_entry) {
2319                 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2320                 ic->free_section_entry = 0;
2321                 ic->free_section++;
2322                 wraparound_section(ic, &ic->free_section);
2323                 ic->n_uncommitted_sections++;
2324         }
2325         if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2326                     (ic->n_uncommitted_sections + ic->n_committed_sections) *
2327                     ic->journal_section_entries + ic->free_sectors)) {
2328                 DMCRIT("journal_sections %u, journal_section_entries %u, "
2329                        "n_uncommitted_sections %u, n_committed_sections %u, "
2330                        "journal_section_entries %u, free_sectors %u",
2331                        ic->journal_sections, ic->journal_section_entries,
2332                        ic->n_uncommitted_sections, ic->n_committed_sections,
2333                        ic->journal_section_entries, ic->free_sectors);
2334         }
2335 }
2336
2337 static void integrity_commit(struct work_struct *w)
2338 {
2339         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2340         unsigned commit_start, commit_sections;
2341         unsigned i, j, n;
2342         struct bio *flushes;
2343
2344         del_timer(&ic->autocommit_timer);
2345
2346         spin_lock_irq(&ic->endio_wait.lock);
2347         flushes = bio_list_get(&ic->flush_bio_list);
2348         if (unlikely(ic->mode != 'J')) {
2349                 spin_unlock_irq(&ic->endio_wait.lock);
2350                 dm_integrity_flush_buffers(ic, true);
2351                 goto release_flush_bios;
2352         }
2353
2354         pad_uncommitted(ic);
2355         commit_start = ic->uncommitted_section;
2356         commit_sections = ic->n_uncommitted_sections;
2357         spin_unlock_irq(&ic->endio_wait.lock);
2358
2359         if (!commit_sections)
2360                 goto release_flush_bios;
2361
2362         i = commit_start;
2363         for (n = 0; n < commit_sections; n++) {
2364                 for (j = 0; j < ic->journal_section_entries; j++) {
2365                         struct journal_entry *je;
2366                         je = access_journal_entry(ic, i, j);
2367                         io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2368                 }
2369                 for (j = 0; j < ic->journal_section_sectors; j++) {
2370                         struct journal_sector *js;
2371                         js = access_journal(ic, i, j);
2372                         js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2373                 }
2374                 i++;
2375                 if (unlikely(i >= ic->journal_sections))
2376                         ic->commit_seq = next_commit_seq(ic->commit_seq);
2377                 wraparound_section(ic, &i);
2378         }
2379         smp_rmb();
2380
2381         write_journal(ic, commit_start, commit_sections);
2382
2383         spin_lock_irq(&ic->endio_wait.lock);
2384         ic->uncommitted_section += commit_sections;
2385         wraparound_section(ic, &ic->uncommitted_section);
2386         ic->n_uncommitted_sections -= commit_sections;
2387         ic->n_committed_sections += commit_sections;
2388         spin_unlock_irq(&ic->endio_wait.lock);
2389
2390         if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2391                 queue_work(ic->writer_wq, &ic->writer_work);
2392
2393 release_flush_bios:
2394         while (flushes) {
2395                 struct bio *next = flushes->bi_next;
2396                 flushes->bi_next = NULL;
2397                 do_endio(ic, flushes);
2398                 flushes = next;
2399         }
2400 }
2401
2402 static void complete_copy_from_journal(unsigned long error, void *context)
2403 {
2404         struct journal_io *io = context;
2405         struct journal_completion *comp = io->comp;
2406         struct dm_integrity_c *ic = comp->ic;
2407         remove_range(ic, &io->range);
2408         mempool_free(io, &ic->journal_io_mempool);
2409         if (unlikely(error != 0))
2410                 dm_integrity_io_error(ic, "copying from journal", -EIO);
2411         complete_journal_op(comp);
2412 }
2413
2414 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2415                                struct journal_entry *je)
2416 {
2417         unsigned s = 0;
2418         do {
2419                 js->commit_id = je->last_bytes[s];
2420                 js++;
2421         } while (++s < ic->sectors_per_block);
2422 }
2423
2424 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start,
2425                              unsigned write_sections, bool from_replay)
2426 {
2427         unsigned i, j, n;
2428         struct journal_completion comp;
2429         struct blk_plug plug;
2430
2431         blk_start_plug(&plug);
2432
2433         comp.ic = ic;
2434         comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2435         init_completion(&comp.comp);
2436
2437         i = write_start;
2438         for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2439 #ifndef INTERNAL_VERIFY
2440                 if (unlikely(from_replay))
2441 #endif
2442                         rw_section_mac(ic, i, false);
2443                 for (j = 0; j < ic->journal_section_entries; j++) {
2444                         struct journal_entry *je = access_journal_entry(ic, i, j);
2445                         sector_t sec, area, offset;
2446                         unsigned k, l, next_loop;
2447                         sector_t metadata_block;
2448                         unsigned metadata_offset;
2449                         struct journal_io *io;
2450
2451                         if (journal_entry_is_unused(je))
2452                                 continue;
2453                         BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2454                         sec = journal_entry_get_sector(je);
2455                         if (unlikely(from_replay)) {
2456                                 if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) {
2457                                         dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2458                                         sec &= ~(sector_t)(ic->sectors_per_block - 1);
2459                                 }
2460                         }
2461                         if (unlikely(sec >= ic->provided_data_sectors))
2462                                 continue;
2463                         get_area_and_offset(ic, sec, &area, &offset);
2464                         restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2465                         for (k = j + 1; k < ic->journal_section_entries; k++) {
2466                                 struct journal_entry *je2 = access_journal_entry(ic, i, k);
2467                                 sector_t sec2, area2, offset2;
2468                                 if (journal_entry_is_unused(je2))
2469                                         break;
2470                                 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2471                                 sec2 = journal_entry_get_sector(je2);
2472                                 if (unlikely(sec2 >= ic->provided_data_sectors))
2473                                         break;
2474                                 get_area_and_offset(ic, sec2, &area2, &offset2);
2475                                 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2476                                         break;
2477                                 restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2478                         }
2479                         next_loop = k - 1;
2480
2481                         io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2482                         io->comp = &comp;
2483                         io->range.logical_sector = sec;
2484                         io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2485
2486                         spin_lock_irq(&ic->endio_wait.lock);
2487                         add_new_range_and_wait(ic, &io->range);
2488
2489                         if (likely(!from_replay)) {
2490                                 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2491
2492                                 /* don't write if there is newer committed sector */
2493                                 while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2494                                         struct journal_entry *je2 = access_journal_entry(ic, i, j);
2495
2496                                         journal_entry_set_unused(je2);
2497                                         remove_journal_node(ic, &section_node[j]);
2498                                         j++;
2499                                         sec += ic->sectors_per_block;
2500                                         offset += ic->sectors_per_block;
2501                                 }
2502                                 while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2503                                         struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2504
2505                                         journal_entry_set_unused(je2);
2506                                         remove_journal_node(ic, &section_node[k - 1]);
2507                                         k--;
2508                                 }
2509                                 if (j == k) {
2510                                         remove_range_unlocked(ic, &io->range);
2511                                         spin_unlock_irq(&ic->endio_wait.lock);
2512                                         mempool_free(io, &ic->journal_io_mempool);
2513                                         goto skip_io;
2514                                 }
2515                                 for (l = j; l < k; l++) {
2516                                         remove_journal_node(ic, &section_node[l]);
2517                                 }
2518                         }
2519                         spin_unlock_irq(&ic->endio_wait.lock);
2520
2521                         metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2522                         for (l = j; l < k; l++) {
2523                                 int r;
2524                                 struct journal_entry *je2 = access_journal_entry(ic, i, l);
2525
2526                                 if (
2527 #ifndef INTERNAL_VERIFY
2528                                     unlikely(from_replay) &&
2529 #endif
2530                                     ic->internal_hash) {
2531                                         char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2532
2533                                         integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2534                                                                   (char *)access_journal_data(ic, i, l), test_tag);
2535                                         if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size)))
2536                                                 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2537                                 }
2538
2539                                 journal_entry_set_unused(je2);
2540                                 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2541                                                         ic->tag_size, TAG_WRITE);
2542                                 if (unlikely(r)) {
2543                                         dm_integrity_io_error(ic, "reading tags", r);
2544                                 }
2545                         }
2546
2547                         atomic_inc(&comp.in_flight);
2548                         copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2549                                           (k - j) << ic->sb->log2_sectors_per_block,
2550                                           get_data_sector(ic, area, offset),
2551                                           complete_copy_from_journal, io);
2552 skip_io:
2553                         j = next_loop;
2554                 }
2555         }
2556
2557         dm_bufio_write_dirty_buffers_async(ic->bufio);
2558
2559         blk_finish_plug(&plug);
2560
2561         complete_journal_op(&comp);
2562         wait_for_completion_io(&comp.comp);
2563
2564         dm_integrity_flush_buffers(ic, true);
2565 }
2566
2567 static void integrity_writer(struct work_struct *w)
2568 {
2569         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2570         unsigned write_start, write_sections;
2571
2572         unsigned prev_free_sectors;
2573
2574         /* the following test is not needed, but it tests the replay code */
2575         if (unlikely(dm_post_suspending(ic->ti)) && !ic->meta_dev)
2576                 return;
2577
2578         spin_lock_irq(&ic->endio_wait.lock);
2579         write_start = ic->committed_section;
2580         write_sections = ic->n_committed_sections;
2581         spin_unlock_irq(&ic->endio_wait.lock);
2582
2583         if (!write_sections)
2584                 return;
2585
2586         do_journal_write(ic, write_start, write_sections, false);
2587
2588         spin_lock_irq(&ic->endio_wait.lock);
2589
2590         ic->committed_section += write_sections;
2591         wraparound_section(ic, &ic->committed_section);
2592         ic->n_committed_sections -= write_sections;
2593
2594         prev_free_sectors = ic->free_sectors;
2595         ic->free_sectors += write_sections * ic->journal_section_entries;
2596         if (unlikely(!prev_free_sectors))
2597                 wake_up_locked(&ic->endio_wait);
2598
2599         spin_unlock_irq(&ic->endio_wait.lock);
2600 }
2601
2602 static void recalc_write_super(struct dm_integrity_c *ic)
2603 {
2604         int r;
2605
2606         dm_integrity_flush_buffers(ic, false);
2607         if (dm_integrity_failed(ic))
2608                 return;
2609
2610         r = sync_rw_sb(ic, REQ_OP_WRITE, 0);
2611         if (unlikely(r))
2612                 dm_integrity_io_error(ic, "writing superblock", r);
2613 }
2614
2615 static void integrity_recalc(struct work_struct *w)
2616 {
2617         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2618         struct dm_integrity_range range;
2619         struct dm_io_request io_req;
2620         struct dm_io_region io_loc;
2621         sector_t area, offset;
2622         sector_t metadata_block;
2623         unsigned metadata_offset;
2624         sector_t logical_sector, n_sectors;
2625         __u8 *t;
2626         unsigned i;
2627         int r;
2628         unsigned super_counter = 0;
2629
2630         DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2631
2632         spin_lock_irq(&ic->endio_wait.lock);
2633
2634 next_chunk:
2635
2636         if (unlikely(dm_post_suspending(ic->ti)))
2637                 goto unlock_ret;
2638
2639         range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2640         if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2641                 if (ic->mode == 'B') {
2642                         block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2643                         DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2644                         queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2645                 }
2646                 goto unlock_ret;
2647         }
2648
2649         get_area_and_offset(ic, range.logical_sector, &area, &offset);
2650         range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector);
2651         if (!ic->meta_dev)
2652                 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned)offset);
2653
2654         add_new_range_and_wait(ic, &range);
2655         spin_unlock_irq(&ic->endio_wait.lock);
2656         logical_sector = range.logical_sector;
2657         n_sectors = range.n_sectors;
2658
2659         if (ic->mode == 'B') {
2660                 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) {
2661                         goto advance_and_next;
2662                 }
2663                 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2664                                        ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2665                         logical_sector += ic->sectors_per_block;
2666                         n_sectors -= ic->sectors_per_block;
2667                         cond_resched();
2668                 }
2669                 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2670                                        ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2671                         n_sectors -= ic->sectors_per_block;
2672                         cond_resched();
2673                 }
2674                 get_area_and_offset(ic, logical_sector, &area, &offset);
2675         }
2676
2677         DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
2678
2679         if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2680                 recalc_write_super(ic);
2681                 if (ic->mode == 'B') {
2682                         queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2683                 }
2684                 super_counter = 0;
2685         }
2686
2687         if (unlikely(dm_integrity_failed(ic)))
2688                 goto err;
2689
2690         io_req.bi_op = REQ_OP_READ;
2691         io_req.bi_op_flags = 0;
2692         io_req.mem.type = DM_IO_VMA;
2693         io_req.mem.ptr.addr = ic->recalc_buffer;
2694         io_req.notify.fn = NULL;
2695         io_req.client = ic->io;
2696         io_loc.bdev = ic->dev->bdev;
2697         io_loc.sector = get_data_sector(ic, area, offset);
2698         io_loc.count = n_sectors;
2699
2700         r = dm_io(&io_req, 1, &io_loc, NULL);
2701         if (unlikely(r)) {
2702                 dm_integrity_io_error(ic, "reading data", r);
2703                 goto err;
2704         }
2705
2706         t = ic->recalc_tags;
2707         for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2708                 integrity_sector_checksum(ic, logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t);
2709                 t += ic->tag_size;
2710         }
2711
2712         metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2713
2714         r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE);
2715         if (unlikely(r)) {
2716                 dm_integrity_io_error(ic, "writing tags", r);
2717                 goto err;
2718         }
2719
2720         if (ic->mode == 'B') {
2721                 sector_t start, end;
2722                 start = (range.logical_sector >>
2723                          (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2724                         (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2725                 end = ((range.logical_sector + range.n_sectors) >>
2726                        (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2727                         (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2728                 block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
2729         }
2730
2731 advance_and_next:
2732         cond_resched();
2733
2734         spin_lock_irq(&ic->endio_wait.lock);
2735         remove_range_unlocked(ic, &range);
2736         ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2737         goto next_chunk;
2738
2739 err:
2740         remove_range(ic, &range);
2741         return;
2742
2743 unlock_ret:
2744         spin_unlock_irq(&ic->endio_wait.lock);
2745
2746         recalc_write_super(ic);
2747 }
2748
2749 static void bitmap_block_work(struct work_struct *w)
2750 {
2751         struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2752         struct dm_integrity_c *ic = bbs->ic;
2753         struct bio *bio;
2754         struct bio_list bio_queue;
2755         struct bio_list waiting;
2756
2757         bio_list_init(&waiting);
2758
2759         spin_lock(&bbs->bio_queue_lock);
2760         bio_queue = bbs->bio_queue;
2761         bio_list_init(&bbs->bio_queue);
2762         spin_unlock(&bbs->bio_queue_lock);
2763
2764         while ((bio = bio_list_pop(&bio_queue))) {
2765                 struct dm_integrity_io *dio;
2766
2767                 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2768
2769                 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2770                                     dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2771                         remove_range(ic, &dio->range);
2772                         INIT_WORK(&dio->work, integrity_bio_wait);
2773                         queue_work(ic->offload_wq, &dio->work);
2774                 } else {
2775                         block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2776                                         dio->range.n_sectors, BITMAP_OP_SET);
2777                         bio_list_add(&waiting, bio);
2778                 }
2779         }
2780
2781         if (bio_list_empty(&waiting))
2782                 return;
2783
2784         rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC,
2785                            bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2786                            BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2787
2788         while ((bio = bio_list_pop(&waiting))) {
2789                 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2790
2791                 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2792                                 dio->range.n_sectors, BITMAP_OP_SET);
2793
2794                 remove_range(ic, &dio->range);
2795                 INIT_WORK(&dio->work, integrity_bio_wait);
2796                 queue_work(ic->offload_wq, &dio->work);
2797         }
2798
2799         queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2800 }
2801
2802 static void bitmap_flush_work(struct work_struct *work)
2803 {
2804         struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2805         struct dm_integrity_range range;
2806         unsigned long limit;
2807         struct bio *bio;
2808
2809         dm_integrity_flush_buffers(ic, false);
2810
2811         range.logical_sector = 0;
2812         range.n_sectors = ic->provided_data_sectors;
2813
2814         spin_lock_irq(&ic->endio_wait.lock);
2815         add_new_range_and_wait(ic, &range);
2816         spin_unlock_irq(&ic->endio_wait.lock);
2817
2818         dm_integrity_flush_buffers(ic, true);
2819
2820         limit = ic->provided_data_sectors;
2821         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2822                 limit = le64_to_cpu(ic->sb->recalc_sector)
2823                         >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2824                         << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2825         }
2826         /*DEBUG_print("zeroing journal\n");*/
2827         block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2828         block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2829
2830         rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
2831                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2832
2833         spin_lock_irq(&ic->endio_wait.lock);
2834         remove_range_unlocked(ic, &range);
2835         while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2836                 bio_endio(bio);
2837                 spin_unlock_irq(&ic->endio_wait.lock);
2838                 spin_lock_irq(&ic->endio_wait.lock);
2839         }
2840         spin_unlock_irq(&ic->endio_wait.lock);
2841 }
2842
2843
2844 static void init_journal(struct dm_integrity_c *ic, unsigned start_section,
2845                          unsigned n_sections, unsigned char commit_seq)
2846 {
2847         unsigned i, j, n;
2848
2849         if (!n_sections)
2850                 return;
2851
2852         for (n = 0; n < n_sections; n++) {
2853                 i = start_section + n;
2854                 wraparound_section(ic, &i);
2855                 for (j = 0; j < ic->journal_section_sectors; j++) {
2856                         struct journal_sector *js = access_journal(ic, i, j);
2857                         memset(&js->entries, 0, JOURNAL_SECTOR_DATA);
2858                         js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2859                 }
2860                 for (j = 0; j < ic->journal_section_entries; j++) {
2861                         struct journal_entry *je = access_journal_entry(ic, i, j);
2862                         journal_entry_set_unused(je);
2863                 }
2864         }
2865
2866         write_journal(ic, start_section, n_sections);
2867 }
2868
2869 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id)
2870 {
2871         unsigned char k;
2872         for (k = 0; k < N_COMMIT_IDS; k++) {
2873                 if (dm_integrity_commit_id(ic, i, j, k) == id)
2874                         return k;
2875         }
2876         dm_integrity_io_error(ic, "journal commit id", -EIO);
2877         return -EIO;
2878 }
2879
2880 static void replay_journal(struct dm_integrity_c *ic)
2881 {
2882         unsigned i, j;
2883         bool used_commit_ids[N_COMMIT_IDS];
2884         unsigned max_commit_id_sections[N_COMMIT_IDS];
2885         unsigned write_start, write_sections;
2886         unsigned continue_section;
2887         bool journal_empty;
2888         unsigned char unused, last_used, want_commit_seq;
2889
2890         if (ic->mode == 'R')
2891                 return;
2892
2893         if (ic->journal_uptodate)
2894                 return;
2895
2896         last_used = 0;
2897         write_start = 0;
2898
2899         if (!ic->just_formatted) {
2900                 DEBUG_print("reading journal\n");
2901                 rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL);
2902                 if (ic->journal_io)
2903                         DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2904                 if (ic->journal_io) {
2905                         struct journal_completion crypt_comp;
2906                         crypt_comp.ic = ic;
2907                         init_completion(&crypt_comp.comp);
2908                         crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2909                         encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2910                         wait_for_completion(&crypt_comp.comp);
2911                 }
2912                 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2913         }
2914
2915         if (dm_integrity_failed(ic))
2916                 goto clear_journal;
2917
2918         journal_empty = true;
2919         memset(used_commit_ids, 0, sizeof used_commit_ids);
2920         memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
2921         for (i = 0; i < ic->journal_sections; i++) {
2922                 for (j = 0; j < ic->journal_section_sectors; j++) {
2923                         int k;
2924                         struct journal_sector *js = access_journal(ic, i, j);
2925                         k = find_commit_seq(ic, i, j, js->commit_id);
2926                         if (k < 0)
2927                                 goto clear_journal;
2928                         used_commit_ids[k] = true;
2929                         max_commit_id_sections[k] = i;
2930                 }
2931                 if (journal_empty) {
2932                         for (j = 0; j < ic->journal_section_entries; j++) {
2933                                 struct journal_entry *je = access_journal_entry(ic, i, j);
2934                                 if (!journal_entry_is_unused(je)) {
2935                                         journal_empty = false;
2936                                         break;
2937                                 }
2938                         }
2939                 }
2940         }
2941
2942         if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2943                 unused = N_COMMIT_IDS - 1;
2944                 while (unused && !used_commit_ids[unused - 1])
2945                         unused--;
2946         } else {
2947                 for (unused = 0; unused < N_COMMIT_IDS; unused++)
2948                         if (!used_commit_ids[unused])
2949                                 break;
2950                 if (unused == N_COMMIT_IDS) {
2951                         dm_integrity_io_error(ic, "journal commit ids", -EIO);
2952                         goto clear_journal;
2953                 }
2954         }
2955         DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
2956                     unused, used_commit_ids[0], used_commit_ids[1],
2957                     used_commit_ids[2], used_commit_ids[3]);
2958
2959         last_used = prev_commit_seq(unused);
2960         want_commit_seq = prev_commit_seq(last_used);
2961
2962         if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
2963                 journal_empty = true;
2964
2965         write_start = max_commit_id_sections[last_used] + 1;
2966         if (unlikely(write_start >= ic->journal_sections))
2967                 want_commit_seq = next_commit_seq(want_commit_seq);
2968         wraparound_section(ic, &write_start);
2969
2970         i = write_start;
2971         for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
2972                 for (j = 0; j < ic->journal_section_sectors; j++) {
2973                         struct journal_sector *js = access_journal(ic, i, j);
2974
2975                         if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
2976                                 /*
2977                                  * This could be caused by crash during writing.
2978                                  * We won't replay the inconsistent part of the
2979                                  * journal.
2980                                  */
2981                                 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
2982                                             i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
2983                                 goto brk;
2984                         }
2985                 }
2986                 i++;
2987                 if (unlikely(i >= ic->journal_sections))
2988                         want_commit_seq = next_commit_seq(want_commit_seq);
2989                 wraparound_section(ic, &i);
2990         }
2991 brk:
2992
2993         if (!journal_empty) {
2994                 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
2995                             write_sections, write_start, want_commit_seq);
2996                 do_journal_write(ic, write_start, write_sections, true);
2997         }
2998
2999         if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
3000                 continue_section = write_start;
3001                 ic->commit_seq = want_commit_seq;
3002                 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
3003         } else {
3004                 unsigned s;
3005                 unsigned char erase_seq;
3006 clear_journal:
3007                 DEBUG_print("clearing journal\n");
3008
3009                 erase_seq = prev_commit_seq(prev_commit_seq(last_used));
3010                 s = write_start;
3011                 init_journal(ic, s, 1, erase_seq);
3012                 s++;
3013                 wraparound_section(ic, &s);
3014                 if (ic->journal_sections >= 2) {
3015                         init_journal(ic, s, ic->journal_sections - 2, erase_seq);
3016                         s += ic->journal_sections - 2;
3017                         wraparound_section(ic, &s);
3018                         init_journal(ic, s, 1, erase_seq);
3019                 }
3020
3021                 continue_section = 0;
3022                 ic->commit_seq = next_commit_seq(erase_seq);
3023         }
3024
3025         ic->committed_section = continue_section;
3026         ic->n_committed_sections = 0;
3027
3028         ic->uncommitted_section = continue_section;
3029         ic->n_uncommitted_sections = 0;
3030
3031         ic->free_section = continue_section;
3032         ic->free_section_entry = 0;
3033         ic->free_sectors = ic->journal_entries;
3034
3035         ic->journal_tree_root = RB_ROOT;
3036         for (i = 0; i < ic->journal_entries; i++)
3037                 init_journal_node(&ic->journal_tree[i]);
3038 }
3039
3040 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
3041 {
3042         DEBUG_print("dm_integrity_enter_synchronous_mode\n");
3043
3044         if (ic->mode == 'B') {
3045                 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
3046                 ic->synchronous_mode = 1;
3047
3048                 cancel_delayed_work_sync(&ic->bitmap_flush_work);
3049                 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3050                 flush_workqueue(ic->commit_wq);
3051         }
3052 }
3053
3054 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
3055 {
3056         struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
3057
3058         DEBUG_print("dm_integrity_reboot\n");
3059
3060         dm_integrity_enter_synchronous_mode(ic);
3061
3062         return NOTIFY_DONE;
3063 }
3064
3065 static void dm_integrity_postsuspend(struct dm_target *ti)
3066 {
3067         struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3068         int r;
3069
3070         WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
3071
3072         del_timer_sync(&ic->autocommit_timer);
3073
3074         if (ic->recalc_wq)
3075                 drain_workqueue(ic->recalc_wq);
3076
3077         if (ic->mode == 'B')
3078                 cancel_delayed_work_sync(&ic->bitmap_flush_work);
3079
3080         queue_work(ic->commit_wq, &ic->commit_work);
3081         drain_workqueue(ic->commit_wq);
3082
3083         if (ic->mode == 'J') {
3084                 if (ic->meta_dev)
3085                         queue_work(ic->writer_wq, &ic->writer_work);
3086                 drain_workqueue(ic->writer_wq);
3087                 dm_integrity_flush_buffers(ic, true);
3088         }
3089
3090         if (ic->mode == 'B') {
3091                 dm_integrity_flush_buffers(ic, true);
3092 #if 1
3093                 /* set to 0 to test bitmap replay code */
3094                 init_journal(ic, 0, ic->journal_sections, 0);
3095                 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3096                 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3097                 if (unlikely(r))
3098                         dm_integrity_io_error(ic, "writing superblock", r);
3099 #endif
3100         }
3101
3102         BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3103
3104         ic->journal_uptodate = true;
3105 }
3106
3107 static void dm_integrity_resume(struct dm_target *ti)
3108 {
3109         struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3110         __u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3111         int r;
3112
3113         DEBUG_print("resume\n");
3114
3115         if (ic->provided_data_sectors != old_provided_data_sectors) {
3116                 if (ic->provided_data_sectors > old_provided_data_sectors &&
3117                     ic->mode == 'B' &&
3118                     ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3119                         rw_journal_sectors(ic, REQ_OP_READ, 0, 0,
3120                                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3121                         block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3122                                         ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3123                         rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3124                                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3125                 }
3126
3127                 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3128                 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3129                 if (unlikely(r))
3130                         dm_integrity_io_error(ic, "writing superblock", r);
3131         }
3132
3133         if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3134                 DEBUG_print("resume dirty_bitmap\n");
3135                 rw_journal_sectors(ic, REQ_OP_READ, 0, 0,
3136                                    ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3137                 if (ic->mode == 'B') {
3138                         if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3139                             !ic->reset_recalculate_flag) {
3140                                 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3141                                 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3142                                 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3143                                                      BITMAP_OP_TEST_ALL_CLEAR)) {
3144                                         ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3145                                         ic->sb->recalc_sector = cpu_to_le64(0);
3146                                 }
3147                         } else {
3148                                 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3149                                             ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3150                                 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3151                                 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3152                                 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3153                                 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3154                                 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3155                                                    ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3156                                 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3157                                 ic->sb->recalc_sector = cpu_to_le64(0);
3158                         }
3159                 } else {
3160                         if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3161                               block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) ||
3162                             ic->reset_recalculate_flag) {
3163                                 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3164                                 ic->sb->recalc_sector = cpu_to_le64(0);
3165                         }
3166                         init_journal(ic, 0, ic->journal_sections, 0);
3167                         replay_journal(ic);
3168                         ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3169                 }
3170                 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3171                 if (unlikely(r))
3172                         dm_integrity_io_error(ic, "writing superblock", r);
3173         } else {
3174                 replay_journal(ic);
3175                 if (ic->reset_recalculate_flag) {
3176                         ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3177                         ic->sb->recalc_sector = cpu_to_le64(0);
3178                 }
3179                 if (ic->mode == 'B') {
3180                         ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3181                         ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3182                         r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3183                         if (unlikely(r))
3184                                 dm_integrity_io_error(ic, "writing superblock", r);
3185
3186                         block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3187                         block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3188                         block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3189                         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3190                             le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3191                                 block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3192                                                 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3193                                 block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3194                                                 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3195                                 block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3196                                                 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3197                         }
3198                         rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3199                                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3200                 }
3201         }
3202
3203         DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3204         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3205                 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3206                 DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3207                 if (recalc_pos < ic->provided_data_sectors) {
3208                         queue_work(ic->recalc_wq, &ic->recalc_work);
3209                 } else if (recalc_pos > ic->provided_data_sectors) {
3210                         ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3211                         recalc_write_super(ic);
3212                 }
3213         }
3214
3215         ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3216         ic->reboot_notifier.next = NULL;
3217         ic->reboot_notifier.priority = INT_MAX - 1;     /* be notified after md and before hardware drivers */
3218         WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3219
3220 #if 0
3221         /* set to 1 to stress test synchronous mode */
3222         dm_integrity_enter_synchronous_mode(ic);
3223 #endif
3224 }
3225
3226 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3227                                 unsigned status_flags, char *result, unsigned maxlen)
3228 {
3229         struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3230         unsigned arg_count;
3231         size_t sz = 0;
3232
3233         switch (type) {
3234         case STATUSTYPE_INFO:
3235                 DMEMIT("%llu %llu",
3236                         (unsigned long long)atomic64_read(&ic->number_of_mismatches),
3237                         ic->provided_data_sectors);
3238                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3239                         DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3240                 else
3241                         DMEMIT(" -");
3242                 break;
3243
3244         case STATUSTYPE_TABLE: {
3245                 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3246                 watermark_percentage += ic->journal_entries / 2;
3247                 do_div(watermark_percentage, ic->journal_entries);
3248                 arg_count = 3;
3249                 arg_count += !!ic->meta_dev;
3250                 arg_count += ic->sectors_per_block != 1;
3251                 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3252                 arg_count += ic->reset_recalculate_flag;
3253                 arg_count += ic->discard;
3254                 arg_count += ic->mode == 'J';
3255                 arg_count += ic->mode == 'J';
3256                 arg_count += ic->mode == 'B';
3257                 arg_count += ic->mode == 'B';
3258                 arg_count += !!ic->internal_hash_alg.alg_string;
3259                 arg_count += !!ic->journal_crypt_alg.alg_string;
3260                 arg_count += !!ic->journal_mac_alg.alg_string;
3261                 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3262                 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
3263                 arg_count += ic->legacy_recalculate;
3264                 DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3265                        ic->tag_size, ic->mode, arg_count);
3266                 if (ic->meta_dev)
3267                         DMEMIT(" meta_device:%s", ic->meta_dev->name);
3268                 if (ic->sectors_per_block != 1)
3269                         DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3270                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3271                         DMEMIT(" recalculate");
3272                 if (ic->reset_recalculate_flag)
3273                         DMEMIT(" reset_recalculate");
3274                 if (ic->discard)
3275                         DMEMIT(" allow_discards");
3276                 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3277                 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3278                 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3279                 if (ic->mode == 'J') {
3280                         DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage);
3281                         DMEMIT(" commit_time:%u", ic->autocommit_msec);
3282                 }
3283                 if (ic->mode == 'B') {
3284                         DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3285                         DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3286                 }
3287                 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3288                         DMEMIT(" fix_padding");
3289                 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
3290                         DMEMIT(" fix_hmac");
3291                 if (ic->legacy_recalculate)
3292                         DMEMIT(" legacy_recalculate");
3293
3294 #define EMIT_ALG(a, n)                                                  \
3295                 do {                                                    \
3296                         if (ic->a.alg_string) {                         \
3297                                 DMEMIT(" %s:%s", n, ic->a.alg_string);  \
3298                                 if (ic->a.key_string)                   \
3299                                         DMEMIT(":%s", ic->a.key_string);\
3300                         }                                               \
3301                 } while (0)
3302                 EMIT_ALG(internal_hash_alg, "internal_hash");
3303                 EMIT_ALG(journal_crypt_alg, "journal_crypt");
3304                 EMIT_ALG(journal_mac_alg, "journal_mac");
3305                 break;
3306         }
3307         }
3308 }
3309
3310 static int dm_integrity_iterate_devices(struct dm_target *ti,
3311                                         iterate_devices_callout_fn fn, void *data)
3312 {
3313         struct dm_integrity_c *ic = ti->private;
3314
3315         if (!ic->meta_dev)
3316                 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3317         else
3318                 return fn(ti, ic->dev, 0, ti->len, data);
3319 }
3320
3321 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3322 {
3323         struct dm_integrity_c *ic = ti->private;
3324
3325         if (ic->sectors_per_block > 1) {
3326                 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3327                 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3328                 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3329         }
3330 }
3331
3332 static void calculate_journal_section_size(struct dm_integrity_c *ic)
3333 {
3334         unsigned sector_space = JOURNAL_SECTOR_DATA;
3335
3336         ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3337         ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3338                                          JOURNAL_ENTRY_ROUNDUP);
3339
3340         if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3341                 sector_space -= JOURNAL_MAC_PER_SECTOR;
3342         ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3343         ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3344         ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3345         ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3346 }
3347
3348 static int calculate_device_limits(struct dm_integrity_c *ic)
3349 {
3350         __u64 initial_sectors;
3351
3352         calculate_journal_section_size(ic);
3353         initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3354         if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3355                 return -EINVAL;
3356         ic->initial_sectors = initial_sectors;
3357
3358         if (!ic->meta_dev) {
3359                 sector_t last_sector, last_area, last_offset;
3360
3361                 /* we have to maintain excessive padding for compatibility with existing volumes */
3362                 __u64 metadata_run_padding =
3363                         ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3364                         (__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3365                         (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3366
3367                 ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3368                                             metadata_run_padding) >> SECTOR_SHIFT;
3369                 if (!(ic->metadata_run & (ic->metadata_run - 1)))
3370                         ic->log2_metadata_run = __ffs(ic->metadata_run);
3371                 else
3372                         ic->log2_metadata_run = -1;
3373
3374                 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3375                 last_sector = get_data_sector(ic, last_area, last_offset);
3376                 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3377                         return -EINVAL;
3378         } else {
3379                 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3380                 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3381                                 >> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3382                 meta_size <<= ic->log2_buffer_sectors;
3383                 if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3384                     ic->initial_sectors + meta_size > ic->meta_device_sectors)
3385                         return -EINVAL;
3386                 ic->metadata_run = 1;
3387                 ic->log2_metadata_run = 0;
3388         }
3389
3390         return 0;
3391 }
3392
3393 static void get_provided_data_sectors(struct dm_integrity_c *ic)
3394 {
3395         if (!ic->meta_dev) {
3396                 int test_bit;
3397                 ic->provided_data_sectors = 0;
3398                 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3399                         __u64 prev_data_sectors = ic->provided_data_sectors;
3400
3401                         ic->provided_data_sectors |= (sector_t)1 << test_bit;
3402                         if (calculate_device_limits(ic))
3403                                 ic->provided_data_sectors = prev_data_sectors;
3404                 }
3405         } else {
3406                 ic->provided_data_sectors = ic->data_device_sectors;
3407                 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3408         }
3409 }
3410
3411 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors)
3412 {
3413         unsigned journal_sections;
3414         int test_bit;
3415
3416         memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3417         memcpy(ic->sb->magic, SB_MAGIC, 8);
3418         ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3419         ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3420         if (ic->journal_mac_alg.alg_string)
3421                 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3422
3423         calculate_journal_section_size(ic);
3424         journal_sections = journal_sectors / ic->journal_section_sectors;
3425         if (!journal_sections)
3426                 journal_sections = 1;
3427
3428         if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
3429                 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
3430                 get_random_bytes(ic->sb->salt, SALT_SIZE);
3431         }
3432
3433         if (!ic->meta_dev) {
3434                 if (ic->fix_padding)
3435                         ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3436                 ic->sb->journal_sections = cpu_to_le32(journal_sections);
3437                 if (!interleave_sectors)
3438                         interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3439                 ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3440                 ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3441                 ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3442
3443                 get_provided_data_sectors(ic);
3444                 if (!ic->provided_data_sectors)
3445                         return -EINVAL;
3446         } else {
3447                 ic->sb->log2_interleave_sectors = 0;
3448
3449                 get_provided_data_sectors(ic);
3450                 if (!ic->provided_data_sectors)
3451                         return -EINVAL;
3452
3453 try_smaller_buffer:
3454                 ic->sb->journal_sections = cpu_to_le32(0);
3455                 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3456                         __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3457                         __u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3458                         if (test_journal_sections > journal_sections)
3459                                 continue;
3460                         ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3461                         if (calculate_device_limits(ic))
3462                                 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3463
3464                 }
3465                 if (!le32_to_cpu(ic->sb->journal_sections)) {
3466                         if (ic->log2_buffer_sectors > 3) {
3467                                 ic->log2_buffer_sectors--;
3468                                 goto try_smaller_buffer;
3469                         }
3470                         return -EINVAL;
3471                 }
3472         }
3473
3474         ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3475
3476         sb_set_version(ic);
3477
3478         return 0;
3479 }
3480
3481 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3482 {
3483         struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3484         struct blk_integrity bi;
3485
3486         memset(&bi, 0, sizeof(bi));
3487         bi.profile = &dm_integrity_profile;
3488         bi.tuple_size = ic->tag_size;
3489         bi.tag_size = bi.tuple_size;
3490         bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3491
3492         blk_integrity_register(disk, &bi);
3493         blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3494 }
3495
3496 static void dm_integrity_free_page_list(struct page_list *pl)
3497 {
3498         unsigned i;
3499
3500         if (!pl)
3501                 return;
3502         for (i = 0; pl[i].page; i++)
3503                 __free_page(pl[i].page);
3504         kvfree(pl);
3505 }
3506
3507 static struct page_list *dm_integrity_alloc_page_list(unsigned n_pages)
3508 {
3509         struct page_list *pl;
3510         unsigned i;
3511
3512         pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3513         if (!pl)
3514                 return NULL;
3515
3516         for (i = 0; i < n_pages; i++) {
3517                 pl[i].page = alloc_page(GFP_KERNEL);
3518                 if (!pl[i].page) {
3519                         dm_integrity_free_page_list(pl);
3520                         return NULL;
3521                 }
3522                 if (i)
3523                         pl[i - 1].next = &pl[i];
3524         }
3525         pl[i].page = NULL;
3526         pl[i].next = NULL;
3527
3528         return pl;
3529 }
3530
3531 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3532 {
3533         unsigned i;
3534         for (i = 0; i < ic->journal_sections; i++)
3535                 kvfree(sl[i]);
3536         kvfree(sl);
3537 }
3538
3539 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3540                                                                    struct page_list *pl)
3541 {
3542         struct scatterlist **sl;
3543         unsigned i;
3544
3545         sl = kvmalloc_array(ic->journal_sections,
3546                             sizeof(struct scatterlist *),
3547                             GFP_KERNEL | __GFP_ZERO);
3548         if (!sl)
3549                 return NULL;
3550
3551         for (i = 0; i < ic->journal_sections; i++) {
3552                 struct scatterlist *s;
3553                 unsigned start_index, start_offset;
3554                 unsigned end_index, end_offset;
3555                 unsigned n_pages;
3556                 unsigned idx;
3557
3558                 page_list_location(ic, i, 0, &start_index, &start_offset);
3559                 page_list_location(ic, i, ic->journal_section_sectors - 1,
3560                                    &end_index, &end_offset);
3561
3562                 n_pages = (end_index - start_index + 1);
3563
3564                 s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3565                                    GFP_KERNEL);
3566                 if (!s) {
3567                         dm_integrity_free_journal_scatterlist(ic, sl);
3568                         return NULL;
3569                 }
3570
3571                 sg_init_table(s, n_pages);
3572                 for (idx = start_index; idx <= end_index; idx++) {
3573                         char *va = lowmem_page_address(pl[idx].page);
3574                         unsigned start = 0, end = PAGE_SIZE;
3575                         if (idx == start_index)
3576                                 start = start_offset;
3577                         if (idx == end_index)
3578                                 end = end_offset + (1 << SECTOR_SHIFT);
3579                         sg_set_buf(&s[idx - start_index], va + start, end - start);
3580                 }
3581
3582                 sl[i] = s;
3583         }
3584
3585         return sl;
3586 }
3587
3588 static void free_alg(struct alg_spec *a)
3589 {
3590         kfree_sensitive(a->alg_string);
3591         kfree_sensitive(a->key);
3592         memset(a, 0, sizeof *a);
3593 }
3594
3595 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3596 {
3597         char *k;
3598
3599         free_alg(a);
3600
3601         a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3602         if (!a->alg_string)
3603                 goto nomem;
3604
3605         k = strchr(a->alg_string, ':');
3606         if (k) {
3607                 *k = 0;
3608                 a->key_string = k + 1;
3609                 if (strlen(a->key_string) & 1)
3610                         goto inval;
3611
3612                 a->key_size = strlen(a->key_string) / 2;
3613                 a->key = kmalloc(a->key_size, GFP_KERNEL);
3614                 if (!a->key)
3615                         goto nomem;
3616                 if (hex2bin(a->key, a->key_string, a->key_size))
3617                         goto inval;
3618         }
3619
3620         return 0;
3621 inval:
3622         *error = error_inval;
3623         return -EINVAL;
3624 nomem:
3625         *error = "Out of memory for an argument";
3626         return -ENOMEM;
3627 }
3628
3629 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3630                    char *error_alg, char *error_key)
3631 {
3632         int r;
3633
3634         if (a->alg_string) {
3635                 *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3636                 if (IS_ERR(*hash)) {
3637                         *error = error_alg;
3638                         r = PTR_ERR(*hash);
3639                         *hash = NULL;
3640                         return r;
3641                 }
3642
3643                 if (a->key) {
3644                         r = crypto_shash_setkey(*hash, a->key, a->key_size);
3645                         if (r) {
3646                                 *error = error_key;
3647                                 return r;
3648                         }
3649                 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3650                         *error = error_key;
3651                         return -ENOKEY;
3652                 }
3653         }
3654
3655         return 0;
3656 }
3657
3658 static int create_journal(struct dm_integrity_c *ic, char **error)
3659 {
3660         int r = 0;
3661         unsigned i;
3662         __u64 journal_pages, journal_desc_size, journal_tree_size;
3663         unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3664         struct skcipher_request *req = NULL;
3665
3666         ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3667         ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3668         ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3669         ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3670
3671         journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3672                                 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3673         journal_desc_size = journal_pages * sizeof(struct page_list);
3674         if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3675                 *error = "Journal doesn't fit into memory";
3676                 r = -ENOMEM;
3677                 goto bad;
3678         }
3679         ic->journal_pages = journal_pages;
3680
3681         ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3682         if (!ic->journal) {
3683                 *error = "Could not allocate memory for journal";
3684                 r = -ENOMEM;
3685                 goto bad;
3686         }
3687         if (ic->journal_crypt_alg.alg_string) {
3688                 unsigned ivsize, blocksize;
3689                 struct journal_completion comp;
3690
3691                 comp.ic = ic;
3692                 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3693                 if (IS_ERR(ic->journal_crypt)) {
3694                         *error = "Invalid journal cipher";
3695                         r = PTR_ERR(ic->journal_crypt);
3696                         ic->journal_crypt = NULL;
3697                         goto bad;
3698                 }
3699                 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3700                 blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3701
3702                 if (ic->journal_crypt_alg.key) {
3703                         r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3704                                                    ic->journal_crypt_alg.key_size);
3705                         if (r) {
3706                                 *error = "Error setting encryption key";
3707                                 goto bad;
3708                         }
3709                 }
3710                 DEBUG_print("cipher %s, block size %u iv size %u\n",
3711                             ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3712
3713                 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3714                 if (!ic->journal_io) {
3715                         *error = "Could not allocate memory for journal io";
3716                         r = -ENOMEM;
3717                         goto bad;
3718                 }
3719
3720                 if (blocksize == 1) {
3721                         struct scatterlist *sg;
3722
3723                         req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3724                         if (!req) {
3725                                 *error = "Could not allocate crypt request";
3726                                 r = -ENOMEM;
3727                                 goto bad;
3728                         }
3729
3730                         crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3731                         if (!crypt_iv) {
3732                                 *error = "Could not allocate iv";
3733                                 r = -ENOMEM;
3734                                 goto bad;
3735                         }
3736
3737                         ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3738                         if (!ic->journal_xor) {
3739                                 *error = "Could not allocate memory for journal xor";
3740                                 r = -ENOMEM;
3741                                 goto bad;
3742                         }
3743
3744                         sg = kvmalloc_array(ic->journal_pages + 1,
3745                                             sizeof(struct scatterlist),
3746                                             GFP_KERNEL);
3747                         if (!sg) {
3748                                 *error = "Unable to allocate sg list";
3749                                 r = -ENOMEM;
3750                                 goto bad;
3751                         }
3752                         sg_init_table(sg, ic->journal_pages + 1);
3753                         for (i = 0; i < ic->journal_pages; i++) {
3754                                 char *va = lowmem_page_address(ic->journal_xor[i].page);
3755                                 clear_page(va);
3756                                 sg_set_buf(&sg[i], va, PAGE_SIZE);
3757                         }
3758                         sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids);
3759
3760                         skcipher_request_set_crypt(req, sg, sg,
3761                                                    PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv);
3762                         init_completion(&comp.comp);
3763                         comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3764                         if (do_crypt(true, req, &comp))
3765                                 wait_for_completion(&comp.comp);
3766                         kvfree(sg);
3767                         r = dm_integrity_failed(ic);
3768                         if (r) {
3769                                 *error = "Unable to encrypt journal";
3770                                 goto bad;
3771                         }
3772                         DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3773
3774                         crypto_free_skcipher(ic->journal_crypt);
3775                         ic->journal_crypt = NULL;
3776                 } else {
3777                         unsigned crypt_len = roundup(ivsize, blocksize);
3778
3779                         req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3780                         if (!req) {
3781                                 *error = "Could not allocate crypt request";
3782                                 r = -ENOMEM;
3783                                 goto bad;
3784                         }
3785
3786                         crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3787                         if (!crypt_iv) {
3788                                 *error = "Could not allocate iv";
3789                                 r = -ENOMEM;
3790                                 goto bad;
3791                         }
3792
3793                         crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3794                         if (!crypt_data) {
3795                                 *error = "Unable to allocate crypt data";
3796                                 r = -ENOMEM;
3797                                 goto bad;
3798                         }
3799
3800                         ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3801                         if (!ic->journal_scatterlist) {
3802                                 *error = "Unable to allocate sg list";
3803                                 r = -ENOMEM;
3804                                 goto bad;
3805                         }
3806                         ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3807                         if (!ic->journal_io_scatterlist) {
3808                                 *error = "Unable to allocate sg list";
3809                                 r = -ENOMEM;
3810                                 goto bad;
3811                         }
3812                         ic->sk_requests = kvmalloc_array(ic->journal_sections,
3813                                                          sizeof(struct skcipher_request *),
3814                                                          GFP_KERNEL | __GFP_ZERO);
3815                         if (!ic->sk_requests) {
3816                                 *error = "Unable to allocate sk requests";
3817                                 r = -ENOMEM;
3818                                 goto bad;
3819                         }
3820                         for (i = 0; i < ic->journal_sections; i++) {
3821                                 struct scatterlist sg;
3822                                 struct skcipher_request *section_req;
3823                                 __u32 section_le = cpu_to_le32(i);
3824
3825                                 memset(crypt_iv, 0x00, ivsize);
3826                                 memset(crypt_data, 0x00, crypt_len);
3827                                 memcpy(crypt_data, &section_le, min((size_t)crypt_len, sizeof(section_le)));
3828
3829                                 sg_init_one(&sg, crypt_data, crypt_len);
3830                                 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3831                                 init_completion(&comp.comp);
3832                                 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3833                                 if (do_crypt(true, req, &comp))
3834                                         wait_for_completion(&comp.comp);
3835
3836                                 r = dm_integrity_failed(ic);
3837                                 if (r) {
3838                                         *error = "Unable to generate iv";
3839                                         goto bad;
3840                                 }
3841
3842                                 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3843                                 if (!section_req) {
3844                                         *error = "Unable to allocate crypt request";
3845                                         r = -ENOMEM;
3846                                         goto bad;
3847                                 }
3848                                 section_req->iv = kmalloc_array(ivsize, 2,
3849                                                                 GFP_KERNEL);
3850                                 if (!section_req->iv) {
3851                                         skcipher_request_free(section_req);
3852                                         *error = "Unable to allocate iv";
3853                                         r = -ENOMEM;
3854                                         goto bad;
3855                                 }
3856                                 memcpy(section_req->iv + ivsize, crypt_data, ivsize);
3857                                 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
3858                                 ic->sk_requests[i] = section_req;
3859                                 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
3860                         }
3861                 }
3862         }
3863
3864         for (i = 0; i < N_COMMIT_IDS; i++) {
3865                 unsigned j;
3866 retest_commit_id:
3867                 for (j = 0; j < i; j++) {
3868                         if (ic->commit_ids[j] == ic->commit_ids[i]) {
3869                                 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
3870                                 goto retest_commit_id;
3871                         }
3872                 }
3873                 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
3874         }
3875
3876         journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
3877         if (journal_tree_size > ULONG_MAX) {
3878                 *error = "Journal doesn't fit into memory";
3879                 r = -ENOMEM;
3880                 goto bad;
3881         }
3882         ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
3883         if (!ic->journal_tree) {
3884                 *error = "Could not allocate memory for journal tree";
3885                 r = -ENOMEM;
3886         }
3887 bad:
3888         kfree(crypt_data);
3889         kfree(crypt_iv);
3890         skcipher_request_free(req);
3891
3892         return r;
3893 }
3894
3895 /*
3896  * Construct a integrity mapping
3897  *
3898  * Arguments:
3899  *      device
3900  *      offset from the start of the device
3901  *      tag size
3902  *      D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
3903  *      number of optional arguments
3904  *      optional arguments:
3905  *              journal_sectors
3906  *              interleave_sectors
3907  *              buffer_sectors
3908  *              journal_watermark
3909  *              commit_time
3910  *              meta_device
3911  *              block_size
3912  *              sectors_per_bit
3913  *              bitmap_flush_interval
3914  *              internal_hash
3915  *              journal_crypt
3916  *              journal_mac
3917  *              recalculate
3918  */
3919 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
3920 {
3921         struct dm_integrity_c *ic;
3922         char dummy;
3923         int r;
3924         unsigned extra_args;
3925         struct dm_arg_set as;
3926         static const struct dm_arg _args[] = {
3927                 {0, 18, "Invalid number of feature args"},
3928         };
3929         unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
3930         bool should_write_sb;
3931         __u64 threshold;
3932         unsigned long long start;
3933         __s8 log2_sectors_per_bitmap_bit = -1;
3934         __s8 log2_blocks_per_bitmap_bit;
3935         __u64 bits_in_journal;
3936         __u64 n_bitmap_bits;
3937
3938 #define DIRECT_ARGUMENTS        4
3939
3940         if (argc <= DIRECT_ARGUMENTS) {
3941                 ti->error = "Invalid argument count";
3942                 return -EINVAL;
3943         }
3944
3945         ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
3946         if (!ic) {
3947                 ti->error = "Cannot allocate integrity context";
3948                 return -ENOMEM;
3949         }
3950         ti->private = ic;
3951         ti->per_io_data_size = sizeof(struct dm_integrity_io);
3952         ic->ti = ti;
3953
3954         ic->in_progress = RB_ROOT;
3955         INIT_LIST_HEAD(&ic->wait_list);
3956         init_waitqueue_head(&ic->endio_wait);
3957         bio_list_init(&ic->flush_bio_list);
3958         init_waitqueue_head(&ic->copy_to_journal_wait);
3959         init_completion(&ic->crypto_backoff);
3960         atomic64_set(&ic->number_of_mismatches, 0);
3961         ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
3962
3963         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
3964         if (r) {
3965                 ti->error = "Device lookup failed";
3966                 goto bad;
3967         }
3968
3969         if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
3970                 ti->error = "Invalid starting offset";
3971                 r = -EINVAL;
3972                 goto bad;
3973         }
3974         ic->start = start;
3975
3976         if (strcmp(argv[2], "-")) {
3977                 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
3978                         ti->error = "Invalid tag size";
3979                         r = -EINVAL;
3980                         goto bad;
3981                 }
3982         }
3983
3984         if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
3985             !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
3986                 ic->mode = argv[3][0];
3987         } else {
3988                 ti->error = "Invalid mode (expecting J, B, D, R)";
3989                 r = -EINVAL;
3990                 goto bad;
3991         }
3992
3993         journal_sectors = 0;
3994         interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3995         buffer_sectors = DEFAULT_BUFFER_SECTORS;
3996         journal_watermark = DEFAULT_JOURNAL_WATERMARK;
3997         sync_msec = DEFAULT_SYNC_MSEC;
3998         ic->sectors_per_block = 1;
3999
4000         as.argc = argc - DIRECT_ARGUMENTS;
4001         as.argv = argv + DIRECT_ARGUMENTS;
4002         r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
4003         if (r)
4004                 goto bad;
4005
4006         while (extra_args--) {
4007                 const char *opt_string;
4008                 unsigned val;
4009                 unsigned long long llval;
4010                 opt_string = dm_shift_arg(&as);
4011                 if (!opt_string) {
4012                         r = -EINVAL;
4013                         ti->error = "Not enough feature arguments";
4014                         goto bad;
4015                 }
4016                 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
4017                         journal_sectors = val ? val : 1;
4018                 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
4019                         interleave_sectors = val;
4020                 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
4021                         buffer_sectors = val;
4022                 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
4023                         journal_watermark = val;
4024                 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
4025                         sync_msec = val;
4026                 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
4027                         if (ic->meta_dev) {
4028                                 dm_put_device(ti, ic->meta_dev);
4029                                 ic->meta_dev = NULL;
4030                         }
4031                         r = dm_get_device(ti, strchr(opt_string, ':') + 1,
4032                                           dm_table_get_mode(ti->table), &ic->meta_dev);
4033                         if (r) {
4034                                 ti->error = "Device lookup failed";
4035                                 goto bad;
4036                         }
4037                 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
4038                         if (val < 1 << SECTOR_SHIFT ||
4039                             val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
4040                             (val & (val -1))) {
4041                                 r = -EINVAL;
4042                                 ti->error = "Invalid block_size argument";
4043                                 goto bad;
4044                         }
4045                         ic->sectors_per_block = val >> SECTOR_SHIFT;
4046                 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
4047                         log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
4048                 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
4049                         if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
4050                                 r = -EINVAL;
4051                                 ti->error = "Invalid bitmap_flush_interval argument";
4052                                 goto bad;
4053                         }
4054                         ic->bitmap_flush_interval = msecs_to_jiffies(val);
4055                 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
4056                         r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
4057                                             "Invalid internal_hash argument");
4058                         if (r)
4059                                 goto bad;
4060                 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
4061                         r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
4062                                             "Invalid journal_crypt argument");
4063                         if (r)
4064                                 goto bad;
4065                 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
4066                         r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
4067                                             "Invalid journal_mac argument");
4068                         if (r)
4069                                 goto bad;
4070                 } else if (!strcmp(opt_string, "recalculate")) {
4071                         ic->recalculate_flag = true;
4072                 } else if (!strcmp(opt_string, "reset_recalculate")) {
4073                         ic->recalculate_flag = true;
4074                         ic->reset_recalculate_flag = true;
4075                 } else if (!strcmp(opt_string, "allow_discards")) {
4076                         ic->discard = true;
4077                 } else if (!strcmp(opt_string, "fix_padding")) {
4078                         ic->fix_padding = true;
4079                 } else if (!strcmp(opt_string, "fix_hmac")) {
4080                         ic->fix_hmac = true;
4081                 } else if (!strcmp(opt_string, "legacy_recalculate")) {
4082                         ic->legacy_recalculate = true;
4083                 } else {
4084                         r = -EINVAL;
4085                         ti->error = "Invalid argument";
4086                         goto bad;
4087                 }
4088         }
4089
4090         ic->data_device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT;
4091         if (!ic->meta_dev)
4092                 ic->meta_device_sectors = ic->data_device_sectors;
4093         else
4094                 ic->meta_device_sectors = i_size_read(ic->meta_dev->bdev->bd_inode) >> SECTOR_SHIFT;
4095
4096         if (!journal_sectors) {
4097                 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
4098                                       ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
4099         }
4100
4101         if (!buffer_sectors)
4102                 buffer_sectors = 1;
4103         ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
4104
4105         r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
4106                     "Invalid internal hash", "Error setting internal hash key");
4107         if (r)
4108                 goto bad;
4109
4110         r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
4111                     "Invalid journal mac", "Error setting journal mac key");
4112         if (r)
4113                 goto bad;
4114
4115         if (!ic->tag_size) {
4116                 if (!ic->internal_hash) {
4117                         ti->error = "Unknown tag size";
4118                         r = -EINVAL;
4119                         goto bad;
4120                 }
4121                 ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
4122         }
4123         if (ic->tag_size > MAX_TAG_SIZE) {
4124                 ti->error = "Too big tag size";
4125                 r = -EINVAL;
4126                 goto bad;
4127         }
4128         if (!(ic->tag_size & (ic->tag_size - 1)))
4129                 ic->log2_tag_size = __ffs(ic->tag_size);
4130         else
4131                 ic->log2_tag_size = -1;
4132
4133         if (ic->mode == 'B' && !ic->internal_hash) {
4134                 r = -EINVAL;
4135                 ti->error = "Bitmap mode can be only used with internal hash";
4136                 goto bad;
4137         }
4138
4139         if (ic->discard && !ic->internal_hash) {
4140                 r = -EINVAL;
4141                 ti->error = "Discard can be only used with internal hash";
4142                 goto bad;
4143         }
4144
4145         ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4146         ic->autocommit_msec = sync_msec;
4147         timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4148
4149         ic->io = dm_io_client_create();
4150         if (IS_ERR(ic->io)) {
4151                 r = PTR_ERR(ic->io);
4152                 ic->io = NULL;
4153                 ti->error = "Cannot allocate dm io";
4154                 goto bad;
4155         }
4156
4157         r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4158         if (r) {
4159                 ti->error = "Cannot allocate mempool";
4160                 goto bad;
4161         }
4162
4163         ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
4164                                           WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4165         if (!ic->metadata_wq) {
4166                 ti->error = "Cannot allocate workqueue";
4167                 r = -ENOMEM;
4168                 goto bad;
4169         }
4170
4171         /*
4172          * If this workqueue were percpu, it would cause bio reordering
4173          * and reduced performance.
4174          */
4175         ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4176         if (!ic->wait_wq) {
4177                 ti->error = "Cannot allocate workqueue";
4178                 r = -ENOMEM;
4179                 goto bad;
4180         }
4181
4182         ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4183                                           METADATA_WORKQUEUE_MAX_ACTIVE);
4184         if (!ic->offload_wq) {
4185                 ti->error = "Cannot allocate workqueue";
4186                 r = -ENOMEM;
4187                 goto bad;
4188         }
4189
4190         ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4191         if (!ic->commit_wq) {
4192                 ti->error = "Cannot allocate workqueue";
4193                 r = -ENOMEM;
4194                 goto bad;
4195         }
4196         INIT_WORK(&ic->commit_work, integrity_commit);
4197
4198         if (ic->mode == 'J' || ic->mode == 'B') {
4199                 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4200                 if (!ic->writer_wq) {
4201                         ti->error = "Cannot allocate workqueue";
4202                         r = -ENOMEM;
4203                         goto bad;
4204                 }
4205                 INIT_WORK(&ic->writer_work, integrity_writer);
4206         }
4207
4208         ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4209         if (!ic->sb) {
4210                 r = -ENOMEM;
4211                 ti->error = "Cannot allocate superblock area";
4212                 goto bad;
4213         }
4214
4215         r = sync_rw_sb(ic, REQ_OP_READ, 0);
4216         if (r) {
4217                 ti->error = "Error reading superblock";
4218                 goto bad;
4219         }
4220         should_write_sb = false;
4221         if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4222                 if (ic->mode != 'R') {
4223                         if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4224                                 r = -EINVAL;
4225                                 ti->error = "The device is not initialized";
4226                                 goto bad;
4227                         }
4228                 }
4229
4230                 r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4231                 if (r) {
4232                         ti->error = "Could not initialize superblock";
4233                         goto bad;
4234                 }
4235                 if (ic->mode != 'R')
4236                         should_write_sb = true;
4237         }
4238
4239         if (!ic->sb->version || ic->sb->version > SB_VERSION_5) {
4240                 r = -EINVAL;
4241                 ti->error = "Unknown version";
4242                 goto bad;
4243         }
4244         if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4245                 r = -EINVAL;
4246                 ti->error = "Tag size doesn't match the information in superblock";
4247                 goto bad;
4248         }
4249         if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4250                 r = -EINVAL;
4251                 ti->error = "Block size doesn't match the information in superblock";
4252                 goto bad;
4253         }
4254         if (!le32_to_cpu(ic->sb->journal_sections)) {
4255                 r = -EINVAL;
4256                 ti->error = "Corrupted superblock, journal_sections is 0";
4257                 goto bad;
4258         }
4259         /* make sure that ti->max_io_len doesn't overflow */
4260         if (!ic->meta_dev) {
4261                 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4262                     ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4263                         r = -EINVAL;
4264                         ti->error = "Invalid interleave_sectors in the superblock";
4265                         goto bad;
4266                 }
4267         } else {
4268                 if (ic->sb->log2_interleave_sectors) {
4269                         r = -EINVAL;
4270                         ti->error = "Invalid interleave_sectors in the superblock";
4271                         goto bad;
4272                 }
4273         }
4274         if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4275                 r = -EINVAL;
4276                 ti->error = "Journal mac mismatch";
4277                 goto bad;
4278         }
4279
4280         get_provided_data_sectors(ic);
4281         if (!ic->provided_data_sectors) {
4282                 r = -EINVAL;
4283                 ti->error = "The device is too small";
4284                 goto bad;
4285         }
4286
4287 try_smaller_buffer:
4288         r = calculate_device_limits(ic);
4289         if (r) {
4290                 if (ic->meta_dev) {
4291                         if (ic->log2_buffer_sectors > 3) {
4292                                 ic->log2_buffer_sectors--;
4293                                 goto try_smaller_buffer;
4294                         }
4295                 }
4296                 ti->error = "The device is too small";
4297                 goto bad;
4298         }
4299
4300         if (log2_sectors_per_bitmap_bit < 0)
4301                 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4302         if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4303                 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4304
4305         bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4306         if (bits_in_journal > UINT_MAX)
4307                 bits_in_journal = UINT_MAX;
4308         while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4309                 log2_sectors_per_bitmap_bit++;
4310
4311         log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4312         ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4313         if (should_write_sb) {
4314                 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4315         }
4316         n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4317                                 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4318         ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4319
4320         if (!ic->meta_dev)
4321                 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4322
4323         if (ti->len > ic->provided_data_sectors) {
4324                 r = -EINVAL;
4325                 ti->error = "Not enough provided sectors for requested mapping size";
4326                 goto bad;
4327         }
4328
4329
4330         threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4331         threshold += 50;
4332         do_div(threshold, 100);
4333         ic->free_sectors_threshold = threshold;
4334
4335         DEBUG_print("initialized:\n");
4336         DEBUG_print("   integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4337         DEBUG_print("   journal_entry_size %u\n", ic->journal_entry_size);
4338         DEBUG_print("   journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4339         DEBUG_print("   journal_section_entries %u\n", ic->journal_section_entries);
4340         DEBUG_print("   journal_section_sectors %u\n", ic->journal_section_sectors);
4341         DEBUG_print("   journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections));
4342         DEBUG_print("   journal_entries %u\n", ic->journal_entries);
4343         DEBUG_print("   log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4344         DEBUG_print("   data_device_sectors 0x%llx\n", i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT);
4345         DEBUG_print("   initial_sectors 0x%x\n", ic->initial_sectors);
4346         DEBUG_print("   metadata_run 0x%x\n", ic->metadata_run);
4347         DEBUG_print("   log2_metadata_run %d\n", ic->log2_metadata_run);
4348         DEBUG_print("   provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
4349         DEBUG_print("   log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4350         DEBUG_print("   bits_in_journal %llu\n", bits_in_journal);
4351
4352         if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4353                 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4354                 ic->sb->recalc_sector = cpu_to_le64(0);
4355         }
4356
4357         if (ic->internal_hash) {
4358                 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4359                 if (!ic->recalc_wq ) {
4360                         ti->error = "Cannot allocate workqueue";
4361                         r = -ENOMEM;
4362                         goto bad;
4363                 }
4364                 INIT_WORK(&ic->recalc_work, integrity_recalc);
4365                 ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT);
4366                 if (!ic->recalc_buffer) {
4367                         ti->error = "Cannot allocate buffer for recalculating";
4368                         r = -ENOMEM;
4369                         goto bad;
4370                 }
4371                 ic->recalc_tags = kvmalloc_array(RECALC_SECTORS >> ic->sb->log2_sectors_per_block,
4372                                                  ic->tag_size, GFP_KERNEL);
4373                 if (!ic->recalc_tags) {
4374                         ti->error = "Cannot allocate tags for recalculating";
4375                         r = -ENOMEM;
4376                         goto bad;
4377                 }
4378         } else {
4379                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
4380                         ti->error = "Recalculate can only be specified with internal_hash";
4381                         r = -EINVAL;
4382                         goto bad;
4383                 }
4384         }
4385
4386         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
4387             le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
4388             dm_integrity_disable_recalculate(ic)) {
4389                 ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
4390                 r = -EOPNOTSUPP;
4391                 goto bad;
4392         }
4393
4394         ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4395                         1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL);
4396         if (IS_ERR(ic->bufio)) {
4397                 r = PTR_ERR(ic->bufio);
4398                 ti->error = "Cannot initialize dm-bufio";
4399                 ic->bufio = NULL;
4400                 goto bad;
4401         }
4402         dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4403
4404         if (ic->mode != 'R') {
4405                 r = create_journal(ic, &ti->error);
4406                 if (r)
4407                         goto bad;
4408
4409         }
4410
4411         if (ic->mode == 'B') {
4412                 unsigned i;
4413                 unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4414
4415                 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4416                 if (!ic->recalc_bitmap) {
4417                         r = -ENOMEM;
4418                         goto bad;
4419                 }
4420                 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4421                 if (!ic->may_write_bitmap) {
4422                         r = -ENOMEM;
4423                         goto bad;
4424                 }
4425                 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4426                 if (!ic->bbs) {
4427                         r = -ENOMEM;
4428                         goto bad;
4429                 }
4430                 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4431                 for (i = 0; i < ic->n_bitmap_blocks; i++) {
4432                         struct bitmap_block_status *bbs = &ic->bbs[i];
4433                         unsigned sector, pl_index, pl_offset;
4434
4435                         INIT_WORK(&bbs->work, bitmap_block_work);
4436                         bbs->ic = ic;
4437                         bbs->idx = i;
4438                         bio_list_init(&bbs->bio_queue);
4439                         spin_lock_init(&bbs->bio_queue_lock);
4440
4441                         sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4442                         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4443                         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4444
4445                         bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4446                 }
4447         }
4448
4449         if (should_write_sb) {
4450                 int r;
4451
4452                 init_journal(ic, 0, ic->journal_sections, 0);
4453                 r = dm_integrity_failed(ic);
4454                 if (unlikely(r)) {
4455                         ti->error = "Error initializing journal";
4456                         goto bad;
4457                 }
4458                 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
4459                 if (r) {
4460                         ti->error = "Error initializing superblock";
4461                         goto bad;
4462                 }
4463                 ic->just_formatted = true;
4464         }
4465
4466         if (!ic->meta_dev) {
4467                 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4468                 if (r)
4469                         goto bad;
4470         }
4471         if (ic->mode == 'B') {
4472                 unsigned max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4473                 if (!max_io_len)
4474                         max_io_len = 1U << 31;
4475                 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4476                 if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4477                         r = dm_set_target_max_io_len(ti, max_io_len);
4478                         if (r)
4479                                 goto bad;
4480                 }
4481         }
4482
4483         if (!ic->internal_hash)
4484                 dm_integrity_set(ti, ic);
4485
4486         ti->num_flush_bios = 1;
4487         ti->flush_supported = true;
4488         if (ic->discard)
4489                 ti->num_discard_bios = 1;
4490
4491         return 0;
4492
4493 bad:
4494         dm_integrity_dtr(ti);
4495         return r;
4496 }
4497
4498 static void dm_integrity_dtr(struct dm_target *ti)
4499 {
4500         struct dm_integrity_c *ic = ti->private;
4501
4502         BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4503         BUG_ON(!list_empty(&ic->wait_list));
4504
4505         if (ic->metadata_wq)
4506                 destroy_workqueue(ic->metadata_wq);
4507         if (ic->wait_wq)
4508                 destroy_workqueue(ic->wait_wq);
4509         if (ic->offload_wq)
4510                 destroy_workqueue(ic->offload_wq);
4511         if (ic->commit_wq)
4512                 destroy_workqueue(ic->commit_wq);
4513         if (ic->writer_wq)
4514                 destroy_workqueue(ic->writer_wq);
4515         if (ic->recalc_wq)
4516                 destroy_workqueue(ic->recalc_wq);
4517         vfree(ic->recalc_buffer);
4518         kvfree(ic->recalc_tags);
4519         kvfree(ic->bbs);
4520         if (ic->bufio)
4521                 dm_bufio_client_destroy(ic->bufio);
4522         mempool_exit(&ic->journal_io_mempool);
4523         if (ic->io)
4524                 dm_io_client_destroy(ic->io);
4525         if (ic->dev)
4526                 dm_put_device(ti, ic->dev);
4527         if (ic->meta_dev)
4528                 dm_put_device(ti, ic->meta_dev);
4529         dm_integrity_free_page_list(ic->journal);
4530         dm_integrity_free_page_list(ic->journal_io);
4531         dm_integrity_free_page_list(ic->journal_xor);
4532         dm_integrity_free_page_list(ic->recalc_bitmap);
4533         dm_integrity_free_page_list(ic->may_write_bitmap);
4534         if (ic->journal_scatterlist)
4535                 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4536         if (ic->journal_io_scatterlist)
4537                 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4538         if (ic->sk_requests) {
4539                 unsigned i;
4540
4541                 for (i = 0; i < ic->journal_sections; i++) {
4542                         struct skcipher_request *req = ic->sk_requests[i];
4543                         if (req) {
4544                                 kfree_sensitive(req->iv);
4545                                 skcipher_request_free(req);
4546                         }
4547                 }
4548                 kvfree(ic->sk_requests);
4549         }
4550         kvfree(ic->journal_tree);
4551         if (ic->sb)
4552                 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4553
4554         if (ic->internal_hash)
4555                 crypto_free_shash(ic->internal_hash);
4556         free_alg(&ic->internal_hash_alg);
4557
4558         if (ic->journal_crypt)
4559                 crypto_free_skcipher(ic->journal_crypt);
4560         free_alg(&ic->journal_crypt_alg);
4561
4562         if (ic->journal_mac)
4563                 crypto_free_shash(ic->journal_mac);
4564         free_alg(&ic->journal_mac_alg);
4565
4566         kfree(ic);
4567 }
4568
4569 static struct target_type integrity_target = {
4570         .name                   = "integrity",
4571         .version                = {1, 8, 0},
4572         .module                 = THIS_MODULE,
4573         .features               = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4574         .ctr                    = dm_integrity_ctr,
4575         .dtr                    = dm_integrity_dtr,
4576         .map                    = dm_integrity_map,
4577         .postsuspend            = dm_integrity_postsuspend,
4578         .resume                 = dm_integrity_resume,
4579         .status                 = dm_integrity_status,
4580         .iterate_devices        = dm_integrity_iterate_devices,
4581         .io_hints               = dm_integrity_io_hints,
4582 };
4583
4584 static int __init dm_integrity_init(void)
4585 {
4586         int r;
4587
4588         journal_io_cache = kmem_cache_create("integrity_journal_io",
4589                                              sizeof(struct journal_io), 0, 0, NULL);
4590         if (!journal_io_cache) {
4591                 DMERR("can't allocate journal io cache");
4592                 return -ENOMEM;
4593         }
4594
4595         r = dm_register_target(&integrity_target);
4596
4597         if (r < 0)
4598                 DMERR("register failed %d", r);
4599
4600         return r;
4601 }
4602
4603 static void __exit dm_integrity_exit(void)
4604 {
4605         dm_unregister_target(&integrity_target);
4606         kmem_cache_destroy(journal_io_cache);
4607 }
4608
4609 module_init(dm_integrity_init);
4610 module_exit(dm_integrity_exit);
4611
4612 MODULE_AUTHOR("Milan Broz");
4613 MODULE_AUTHOR("Mikulas Patocka");
4614 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4615 MODULE_LICENSE("GPL");