power: supply: axp20x_battery: properly report current when discharging
[linux-2.6-microblaze.git] / drivers / md / dm-integrity.c
1 /*
2  * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
3  * Copyright (C) 2016-2017 Milan Broz
4  * Copyright (C) 2016-2017 Mikulas Patocka
5  *
6  * This file is released under the GPL.
7  */
8
9 #include "dm-bio-record.h"
10
11 #include <linux/compiler.h>
12 #include <linux/module.h>
13 #include <linux/device-mapper.h>
14 #include <linux/dm-io.h>
15 #include <linux/vmalloc.h>
16 #include <linux/sort.h>
17 #include <linux/rbtree.h>
18 #include <linux/delay.h>
19 #include <linux/random.h>
20 #include <linux/reboot.h>
21 #include <crypto/hash.h>
22 #include <crypto/skcipher.h>
23 #include <linux/async_tx.h>
24 #include <linux/dm-bufio.h>
25
26 #include "dm-audit.h"
27
28 #define DM_MSG_PREFIX "integrity"
29
30 #define DEFAULT_INTERLEAVE_SECTORS      32768
31 #define DEFAULT_JOURNAL_SIZE_FACTOR     7
32 #define DEFAULT_SECTORS_PER_BITMAP_BIT  32768
33 #define DEFAULT_BUFFER_SECTORS          128
34 #define DEFAULT_JOURNAL_WATERMARK       50
35 #define DEFAULT_SYNC_MSEC               10000
36 #define DEFAULT_MAX_JOURNAL_SECTORS     131072
37 #define MIN_LOG2_INTERLEAVE_SECTORS     3
38 #define MAX_LOG2_INTERLEAVE_SECTORS     31
39 #define METADATA_WORKQUEUE_MAX_ACTIVE   16
40 #define RECALC_SECTORS                  32768
41 #define RECALC_WRITE_SUPER              16
42 #define BITMAP_BLOCK_SIZE               4096    /* don't change it */
43 #define BITMAP_FLUSH_INTERVAL           (10 * HZ)
44 #define DISCARD_FILLER                  0xf6
45 #define SALT_SIZE                       16
46
47 /*
48  * Warning - DEBUG_PRINT prints security-sensitive data to the log,
49  * so it should not be enabled in the official kernel
50  */
51 //#define DEBUG_PRINT
52 //#define INTERNAL_VERIFY
53
54 /*
55  * On disk structures
56  */
57
58 #define SB_MAGIC                        "integrt"
59 #define SB_VERSION_1                    1
60 #define SB_VERSION_2                    2
61 #define SB_VERSION_3                    3
62 #define SB_VERSION_4                    4
63 #define SB_VERSION_5                    5
64 #define SB_SECTORS                      8
65 #define MAX_SECTORS_PER_BLOCK           8
66
67 struct superblock {
68         __u8 magic[8];
69         __u8 version;
70         __u8 log2_interleave_sectors;
71         __le16 integrity_tag_size;
72         __le32 journal_sections;
73         __le64 provided_data_sectors;   /* userspace uses this value */
74         __le32 flags;
75         __u8 log2_sectors_per_block;
76         __u8 log2_blocks_per_bitmap_bit;
77         __u8 pad[2];
78         __le64 recalc_sector;
79         __u8 pad2[8];
80         __u8 salt[SALT_SIZE];
81 };
82
83 #define SB_FLAG_HAVE_JOURNAL_MAC        0x1
84 #define SB_FLAG_RECALCULATING           0x2
85 #define SB_FLAG_DIRTY_BITMAP            0x4
86 #define SB_FLAG_FIXED_PADDING           0x8
87 #define SB_FLAG_FIXED_HMAC              0x10
88
89 #define JOURNAL_ENTRY_ROUNDUP           8
90
91 typedef __le64 commit_id_t;
92 #define JOURNAL_MAC_PER_SECTOR          8
93
94 struct journal_entry {
95         union {
96                 struct {
97                         __le32 sector_lo;
98                         __le32 sector_hi;
99                 } s;
100                 __le64 sector;
101         } u;
102         commit_id_t last_bytes[];
103         /* __u8 tag[0]; */
104 };
105
106 #define journal_entry_tag(ic, je)               ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
107
108 #if BITS_PER_LONG == 64
109 #define journal_entry_set_sector(je, x)         do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
110 #else
111 #define journal_entry_set_sector(je, x)         do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
112 #endif
113 #define journal_entry_get_sector(je)            le64_to_cpu((je)->u.sector)
114 #define journal_entry_is_unused(je)             ((je)->u.s.sector_hi == cpu_to_le32(-1))
115 #define journal_entry_set_unused(je)            do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
116 #define journal_entry_is_inprogress(je)         ((je)->u.s.sector_hi == cpu_to_le32(-2))
117 #define journal_entry_set_inprogress(je)        do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
118
119 #define JOURNAL_BLOCK_SECTORS           8
120 #define JOURNAL_SECTOR_DATA             ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
121 #define JOURNAL_MAC_SIZE                (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
122
123 struct journal_sector {
124         struct_group(sectors,
125                 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
126                 __u8 mac[JOURNAL_MAC_PER_SECTOR];
127         );
128         commit_id_t commit_id;
129 };
130
131 #define MAX_TAG_SIZE                    (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
132
133 #define METADATA_PADDING_SECTORS        8
134
135 #define N_COMMIT_IDS                    4
136
137 static unsigned char prev_commit_seq(unsigned char seq)
138 {
139         return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
140 }
141
142 static unsigned char next_commit_seq(unsigned char seq)
143 {
144         return (seq + 1) % N_COMMIT_IDS;
145 }
146
147 /*
148  * In-memory structures
149  */
150
151 struct journal_node {
152         struct rb_node node;
153         sector_t sector;
154 };
155
156 struct alg_spec {
157         char *alg_string;
158         char *key_string;
159         __u8 *key;
160         unsigned key_size;
161 };
162
163 struct dm_integrity_c {
164         struct dm_dev *dev;
165         struct dm_dev *meta_dev;
166         unsigned tag_size;
167         __s8 log2_tag_size;
168         sector_t start;
169         mempool_t journal_io_mempool;
170         struct dm_io_client *io;
171         struct dm_bufio_client *bufio;
172         struct workqueue_struct *metadata_wq;
173         struct superblock *sb;
174         unsigned journal_pages;
175         unsigned n_bitmap_blocks;
176
177         struct page_list *journal;
178         struct page_list *journal_io;
179         struct page_list *journal_xor;
180         struct page_list *recalc_bitmap;
181         struct page_list *may_write_bitmap;
182         struct bitmap_block_status *bbs;
183         unsigned bitmap_flush_interval;
184         int synchronous_mode;
185         struct bio_list synchronous_bios;
186         struct delayed_work bitmap_flush_work;
187
188         struct crypto_skcipher *journal_crypt;
189         struct scatterlist **journal_scatterlist;
190         struct scatterlist **journal_io_scatterlist;
191         struct skcipher_request **sk_requests;
192
193         struct crypto_shash *journal_mac;
194
195         struct journal_node *journal_tree;
196         struct rb_root journal_tree_root;
197
198         sector_t provided_data_sectors;
199
200         unsigned short journal_entry_size;
201         unsigned char journal_entries_per_sector;
202         unsigned char journal_section_entries;
203         unsigned short journal_section_sectors;
204         unsigned journal_sections;
205         unsigned journal_entries;
206         sector_t data_device_sectors;
207         sector_t meta_device_sectors;
208         unsigned initial_sectors;
209         unsigned metadata_run;
210         __s8 log2_metadata_run;
211         __u8 log2_buffer_sectors;
212         __u8 sectors_per_block;
213         __u8 log2_blocks_per_bitmap_bit;
214
215         unsigned char mode;
216
217         int failed;
218
219         struct crypto_shash *internal_hash;
220
221         struct dm_target *ti;
222
223         /* these variables are locked with endio_wait.lock */
224         struct rb_root in_progress;
225         struct list_head wait_list;
226         wait_queue_head_t endio_wait;
227         struct workqueue_struct *wait_wq;
228         struct workqueue_struct *offload_wq;
229
230         unsigned char commit_seq;
231         commit_id_t commit_ids[N_COMMIT_IDS];
232
233         unsigned committed_section;
234         unsigned n_committed_sections;
235
236         unsigned uncommitted_section;
237         unsigned n_uncommitted_sections;
238
239         unsigned free_section;
240         unsigned char free_section_entry;
241         unsigned free_sectors;
242
243         unsigned free_sectors_threshold;
244
245         struct workqueue_struct *commit_wq;
246         struct work_struct commit_work;
247
248         struct workqueue_struct *writer_wq;
249         struct work_struct writer_work;
250
251         struct workqueue_struct *recalc_wq;
252         struct work_struct recalc_work;
253         u8 *recalc_buffer;
254         u8 *recalc_tags;
255
256         struct bio_list flush_bio_list;
257
258         unsigned long autocommit_jiffies;
259         struct timer_list autocommit_timer;
260         unsigned autocommit_msec;
261
262         wait_queue_head_t copy_to_journal_wait;
263
264         struct completion crypto_backoff;
265
266         bool journal_uptodate;
267         bool just_formatted;
268         bool recalculate_flag;
269         bool reset_recalculate_flag;
270         bool discard;
271         bool fix_padding;
272         bool fix_hmac;
273         bool legacy_recalculate;
274
275         struct alg_spec internal_hash_alg;
276         struct alg_spec journal_crypt_alg;
277         struct alg_spec journal_mac_alg;
278
279         atomic64_t number_of_mismatches;
280
281         struct notifier_block reboot_notifier;
282 };
283
284 struct dm_integrity_range {
285         sector_t logical_sector;
286         sector_t n_sectors;
287         bool waiting;
288         union {
289                 struct rb_node node;
290                 struct {
291                         struct task_struct *task;
292                         struct list_head wait_entry;
293                 };
294         };
295 };
296
297 struct dm_integrity_io {
298         struct work_struct work;
299
300         struct dm_integrity_c *ic;
301         enum req_opf op;
302         bool fua;
303
304         struct dm_integrity_range range;
305
306         sector_t metadata_block;
307         unsigned metadata_offset;
308
309         atomic_t in_flight;
310         blk_status_t bi_status;
311
312         struct completion *completion;
313
314         struct dm_bio_details bio_details;
315 };
316
317 struct journal_completion {
318         struct dm_integrity_c *ic;
319         atomic_t in_flight;
320         struct completion comp;
321 };
322
323 struct journal_io {
324         struct dm_integrity_range range;
325         struct journal_completion *comp;
326 };
327
328 struct bitmap_block_status {
329         struct work_struct work;
330         struct dm_integrity_c *ic;
331         unsigned idx;
332         unsigned long *bitmap;
333         struct bio_list bio_queue;
334         spinlock_t bio_queue_lock;
335
336 };
337
338 static struct kmem_cache *journal_io_cache;
339
340 #define JOURNAL_IO_MEMPOOL      32
341
342 #ifdef DEBUG_PRINT
343 #define DEBUG_print(x, ...)     printk(KERN_DEBUG x, ##__VA_ARGS__)
344 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
345 {
346         va_list args;
347         va_start(args, msg);
348         vprintk(msg, args);
349         va_end(args);
350         if (len)
351                 pr_cont(":");
352         while (len) {
353                 pr_cont(" %02x", *bytes);
354                 bytes++;
355                 len--;
356         }
357         pr_cont("\n");
358 }
359 #define DEBUG_bytes(bytes, len, msg, ...)       __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
360 #else
361 #define DEBUG_print(x, ...)                     do { } while (0)
362 #define DEBUG_bytes(bytes, len, msg, ...)       do { } while (0)
363 #endif
364
365 static void dm_integrity_prepare(struct request *rq)
366 {
367 }
368
369 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
370 {
371 }
372
373 /*
374  * DM Integrity profile, protection is performed layer above (dm-crypt)
375  */
376 static const struct blk_integrity_profile dm_integrity_profile = {
377         .name                   = "DM-DIF-EXT-TAG",
378         .generate_fn            = NULL,
379         .verify_fn              = NULL,
380         .prepare_fn             = dm_integrity_prepare,
381         .complete_fn            = dm_integrity_complete,
382 };
383
384 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
385 static void integrity_bio_wait(struct work_struct *w);
386 static void dm_integrity_dtr(struct dm_target *ti);
387
388 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
389 {
390         if (err == -EILSEQ)
391                 atomic64_inc(&ic->number_of_mismatches);
392         if (!cmpxchg(&ic->failed, 0, err))
393                 DMERR("Error on %s: %d", msg, err);
394 }
395
396 static int dm_integrity_failed(struct dm_integrity_c *ic)
397 {
398         return READ_ONCE(ic->failed);
399 }
400
401 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
402 {
403         if (ic->legacy_recalculate)
404                 return false;
405         if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
406             ic->internal_hash_alg.key || ic->journal_mac_alg.key :
407             ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
408                 return true;
409         return false;
410 }
411
412 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i,
413                                           unsigned j, unsigned char seq)
414 {
415         /*
416          * Xor the number with section and sector, so that if a piece of
417          * journal is written at wrong place, it is detected.
418          */
419         return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
420 }
421
422 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
423                                 sector_t *area, sector_t *offset)
424 {
425         if (!ic->meta_dev) {
426                 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
427                 *area = data_sector >> log2_interleave_sectors;
428                 *offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1);
429         } else {
430                 *area = 0;
431                 *offset = data_sector;
432         }
433 }
434
435 #define sector_to_block(ic, n)                                          \
436 do {                                                                    \
437         BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1));          \
438         (n) >>= (ic)->sb->log2_sectors_per_block;                       \
439 } while (0)
440
441 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
442                                             sector_t offset, unsigned *metadata_offset)
443 {
444         __u64 ms;
445         unsigned mo;
446
447         ms = area << ic->sb->log2_interleave_sectors;
448         if (likely(ic->log2_metadata_run >= 0))
449                 ms += area << ic->log2_metadata_run;
450         else
451                 ms += area * ic->metadata_run;
452         ms >>= ic->log2_buffer_sectors;
453
454         sector_to_block(ic, offset);
455
456         if (likely(ic->log2_tag_size >= 0)) {
457                 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
458                 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
459         } else {
460                 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
461                 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
462         }
463         *metadata_offset = mo;
464         return ms;
465 }
466
467 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
468 {
469         sector_t result;
470
471         if (ic->meta_dev)
472                 return offset;
473
474         result = area << ic->sb->log2_interleave_sectors;
475         if (likely(ic->log2_metadata_run >= 0))
476                 result += (area + 1) << ic->log2_metadata_run;
477         else
478                 result += (area + 1) * ic->metadata_run;
479
480         result += (sector_t)ic->initial_sectors + offset;
481         result += ic->start;
482
483         return result;
484 }
485
486 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr)
487 {
488         if (unlikely(*sec_ptr >= ic->journal_sections))
489                 *sec_ptr -= ic->journal_sections;
490 }
491
492 static void sb_set_version(struct dm_integrity_c *ic)
493 {
494         if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
495                 ic->sb->version = SB_VERSION_5;
496         else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
497                 ic->sb->version = SB_VERSION_4;
498         else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
499                 ic->sb->version = SB_VERSION_3;
500         else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
501                 ic->sb->version = SB_VERSION_2;
502         else
503                 ic->sb->version = SB_VERSION_1;
504 }
505
506 static int sb_mac(struct dm_integrity_c *ic, bool wr)
507 {
508         SHASH_DESC_ON_STACK(desc, ic->journal_mac);
509         int r;
510         unsigned size = crypto_shash_digestsize(ic->journal_mac);
511
512         if (sizeof(struct superblock) + size > 1 << SECTOR_SHIFT) {
513                 dm_integrity_io_error(ic, "digest is too long", -EINVAL);
514                 return -EINVAL;
515         }
516
517         desc->tfm = ic->journal_mac;
518
519         r = crypto_shash_init(desc);
520         if (unlikely(r < 0)) {
521                 dm_integrity_io_error(ic, "crypto_shash_init", r);
522                 return r;
523         }
524
525         r = crypto_shash_update(desc, (__u8 *)ic->sb, (1 << SECTOR_SHIFT) - size);
526         if (unlikely(r < 0)) {
527                 dm_integrity_io_error(ic, "crypto_shash_update", r);
528                 return r;
529         }
530
531         if (likely(wr)) {
532                 r = crypto_shash_final(desc, (__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size);
533                 if (unlikely(r < 0)) {
534                         dm_integrity_io_error(ic, "crypto_shash_final", r);
535                         return r;
536                 }
537         } else {
538                 __u8 result[HASH_MAX_DIGESTSIZE];
539                 r = crypto_shash_final(desc, result);
540                 if (unlikely(r < 0)) {
541                         dm_integrity_io_error(ic, "crypto_shash_final", r);
542                         return r;
543                 }
544                 if (memcmp((__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size, result, size)) {
545                         dm_integrity_io_error(ic, "superblock mac", -EILSEQ);
546                         dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0);
547                         return -EILSEQ;
548                 }
549         }
550
551         return 0;
552 }
553
554 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags)
555 {
556         struct dm_io_request io_req;
557         struct dm_io_region io_loc;
558         int r;
559
560         io_req.bi_op = op;
561         io_req.bi_op_flags = op_flags;
562         io_req.mem.type = DM_IO_KMEM;
563         io_req.mem.ptr.addr = ic->sb;
564         io_req.notify.fn = NULL;
565         io_req.client = ic->io;
566         io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
567         io_loc.sector = ic->start;
568         io_loc.count = SB_SECTORS;
569
570         if (op == REQ_OP_WRITE) {
571                 sb_set_version(ic);
572                 if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
573                         r = sb_mac(ic, true);
574                         if (unlikely(r))
575                                 return r;
576                 }
577         }
578
579         r = dm_io(&io_req, 1, &io_loc, NULL);
580         if (unlikely(r))
581                 return r;
582
583         if (op == REQ_OP_READ) {
584                 if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
585                         r = sb_mac(ic, false);
586                         if (unlikely(r))
587                                 return r;
588                 }
589         }
590
591         return 0;
592 }
593
594 #define BITMAP_OP_TEST_ALL_SET          0
595 #define BITMAP_OP_TEST_ALL_CLEAR        1
596 #define BITMAP_OP_SET                   2
597 #define BITMAP_OP_CLEAR                 3
598
599 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
600                             sector_t sector, sector_t n_sectors, int mode)
601 {
602         unsigned long bit, end_bit, this_end_bit, page, end_page;
603         unsigned long *data;
604
605         if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
606                 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
607                         sector,
608                         n_sectors,
609                         ic->sb->log2_sectors_per_block,
610                         ic->log2_blocks_per_bitmap_bit,
611                         mode);
612                 BUG();
613         }
614
615         if (unlikely(!n_sectors))
616                 return true;
617
618         bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
619         end_bit = (sector + n_sectors - 1) >>
620                 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
621
622         page = bit / (PAGE_SIZE * 8);
623         bit %= PAGE_SIZE * 8;
624
625         end_page = end_bit / (PAGE_SIZE * 8);
626         end_bit %= PAGE_SIZE * 8;
627
628 repeat:
629         if (page < end_page) {
630                 this_end_bit = PAGE_SIZE * 8 - 1;
631         } else {
632                 this_end_bit = end_bit;
633         }
634
635         data = lowmem_page_address(bitmap[page].page);
636
637         if (mode == BITMAP_OP_TEST_ALL_SET) {
638                 while (bit <= this_end_bit) {
639                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
640                                 do {
641                                         if (data[bit / BITS_PER_LONG] != -1)
642                                                 return false;
643                                         bit += BITS_PER_LONG;
644                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
645                                 continue;
646                         }
647                         if (!test_bit(bit, data))
648                                 return false;
649                         bit++;
650                 }
651         } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
652                 while (bit <= this_end_bit) {
653                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
654                                 do {
655                                         if (data[bit / BITS_PER_LONG] != 0)
656                                                 return false;
657                                         bit += BITS_PER_LONG;
658                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
659                                 continue;
660                         }
661                         if (test_bit(bit, data))
662                                 return false;
663                         bit++;
664                 }
665         } else if (mode == BITMAP_OP_SET) {
666                 while (bit <= this_end_bit) {
667                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
668                                 do {
669                                         data[bit / BITS_PER_LONG] = -1;
670                                         bit += BITS_PER_LONG;
671                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
672                                 continue;
673                         }
674                         __set_bit(bit, data);
675                         bit++;
676                 }
677         } else if (mode == BITMAP_OP_CLEAR) {
678                 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
679                         clear_page(data);
680                 else while (bit <= this_end_bit) {
681                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
682                                 do {
683                                         data[bit / BITS_PER_LONG] = 0;
684                                         bit += BITS_PER_LONG;
685                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
686                                 continue;
687                         }
688                         __clear_bit(bit, data);
689                         bit++;
690                 }
691         } else {
692                 BUG();
693         }
694
695         if (unlikely(page < end_page)) {
696                 bit = 0;
697                 page++;
698                 goto repeat;
699         }
700
701         return true;
702 }
703
704 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
705 {
706         unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
707         unsigned i;
708
709         for (i = 0; i < n_bitmap_pages; i++) {
710                 unsigned long *dst_data = lowmem_page_address(dst[i].page);
711                 unsigned long *src_data = lowmem_page_address(src[i].page);
712                 copy_page(dst_data, src_data);
713         }
714 }
715
716 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
717 {
718         unsigned bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
719         unsigned bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
720
721         BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
722         return &ic->bbs[bitmap_block];
723 }
724
725 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset,
726                                  bool e, const char *function)
727 {
728 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
729         unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
730
731         if (unlikely(section >= ic->journal_sections) ||
732             unlikely(offset >= limit)) {
733                 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
734                        function, section, offset, ic->journal_sections, limit);
735                 BUG();
736         }
737 #endif
738 }
739
740 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset,
741                                unsigned *pl_index, unsigned *pl_offset)
742 {
743         unsigned sector;
744
745         access_journal_check(ic, section, offset, false, "page_list_location");
746
747         sector = section * ic->journal_section_sectors + offset;
748
749         *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
750         *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
751 }
752
753 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
754                                                unsigned section, unsigned offset, unsigned *n_sectors)
755 {
756         unsigned pl_index, pl_offset;
757         char *va;
758
759         page_list_location(ic, section, offset, &pl_index, &pl_offset);
760
761         if (n_sectors)
762                 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
763
764         va = lowmem_page_address(pl[pl_index].page);
765
766         return (struct journal_sector *)(va + pl_offset);
767 }
768
769 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset)
770 {
771         return access_page_list(ic, ic->journal, section, offset, NULL);
772 }
773
774 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n)
775 {
776         unsigned rel_sector, offset;
777         struct journal_sector *js;
778
779         access_journal_check(ic, section, n, true, "access_journal_entry");
780
781         rel_sector = n % JOURNAL_BLOCK_SECTORS;
782         offset = n / JOURNAL_BLOCK_SECTORS;
783
784         js = access_journal(ic, section, rel_sector);
785         return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
786 }
787
788 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n)
789 {
790         n <<= ic->sb->log2_sectors_per_block;
791
792         n += JOURNAL_BLOCK_SECTORS;
793
794         access_journal_check(ic, section, n, false, "access_journal_data");
795
796         return access_journal(ic, section, n);
797 }
798
799 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE])
800 {
801         SHASH_DESC_ON_STACK(desc, ic->journal_mac);
802         int r;
803         unsigned j, size;
804
805         desc->tfm = ic->journal_mac;
806
807         r = crypto_shash_init(desc);
808         if (unlikely(r < 0)) {
809                 dm_integrity_io_error(ic, "crypto_shash_init", r);
810                 goto err;
811         }
812
813         if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
814                 __le64 section_le;
815
816                 r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE);
817                 if (unlikely(r < 0)) {
818                         dm_integrity_io_error(ic, "crypto_shash_update", r);
819                         goto err;
820                 }
821
822                 section_le = cpu_to_le64(section);
823                 r = crypto_shash_update(desc, (__u8 *)&section_le, sizeof section_le);
824                 if (unlikely(r < 0)) {
825                         dm_integrity_io_error(ic, "crypto_shash_update", r);
826                         goto err;
827                 }
828         }
829
830         for (j = 0; j < ic->journal_section_entries; j++) {
831                 struct journal_entry *je = access_journal_entry(ic, section, j);
832                 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
833                 if (unlikely(r < 0)) {
834                         dm_integrity_io_error(ic, "crypto_shash_update", r);
835                         goto err;
836                 }
837         }
838
839         size = crypto_shash_digestsize(ic->journal_mac);
840
841         if (likely(size <= JOURNAL_MAC_SIZE)) {
842                 r = crypto_shash_final(desc, result);
843                 if (unlikely(r < 0)) {
844                         dm_integrity_io_error(ic, "crypto_shash_final", r);
845                         goto err;
846                 }
847                 memset(result + size, 0, JOURNAL_MAC_SIZE - size);
848         } else {
849                 __u8 digest[HASH_MAX_DIGESTSIZE];
850
851                 if (WARN_ON(size > sizeof(digest))) {
852                         dm_integrity_io_error(ic, "digest_size", -EINVAL);
853                         goto err;
854                 }
855                 r = crypto_shash_final(desc, digest);
856                 if (unlikely(r < 0)) {
857                         dm_integrity_io_error(ic, "crypto_shash_final", r);
858                         goto err;
859                 }
860                 memcpy(result, digest, JOURNAL_MAC_SIZE);
861         }
862
863         return;
864 err:
865         memset(result, 0, JOURNAL_MAC_SIZE);
866 }
867
868 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr)
869 {
870         __u8 result[JOURNAL_MAC_SIZE];
871         unsigned j;
872
873         if (!ic->journal_mac)
874                 return;
875
876         section_mac(ic, section, result);
877
878         for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
879                 struct journal_sector *js = access_journal(ic, section, j);
880
881                 if (likely(wr))
882                         memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
883                 else {
884                         if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) {
885                                 dm_integrity_io_error(ic, "journal mac", -EILSEQ);
886                                 dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0);
887                         }
888                 }
889         }
890 }
891
892 static void complete_journal_op(void *context)
893 {
894         struct journal_completion *comp = context;
895         BUG_ON(!atomic_read(&comp->in_flight));
896         if (likely(atomic_dec_and_test(&comp->in_flight)))
897                 complete(&comp->comp);
898 }
899
900 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
901                         unsigned n_sections, struct journal_completion *comp)
902 {
903         struct async_submit_ctl submit;
904         size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
905         unsigned pl_index, pl_offset, section_index;
906         struct page_list *source_pl, *target_pl;
907
908         if (likely(encrypt)) {
909                 source_pl = ic->journal;
910                 target_pl = ic->journal_io;
911         } else {
912                 source_pl = ic->journal_io;
913                 target_pl = ic->journal;
914         }
915
916         page_list_location(ic, section, 0, &pl_index, &pl_offset);
917
918         atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
919
920         init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
921
922         section_index = pl_index;
923
924         do {
925                 size_t this_step;
926                 struct page *src_pages[2];
927                 struct page *dst_page;
928
929                 while (unlikely(pl_index == section_index)) {
930                         unsigned dummy;
931                         if (likely(encrypt))
932                                 rw_section_mac(ic, section, true);
933                         section++;
934                         n_sections--;
935                         if (!n_sections)
936                                 break;
937                         page_list_location(ic, section, 0, &section_index, &dummy);
938                 }
939
940                 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
941                 dst_page = target_pl[pl_index].page;
942                 src_pages[0] = source_pl[pl_index].page;
943                 src_pages[1] = ic->journal_xor[pl_index].page;
944
945                 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
946
947                 pl_index++;
948                 pl_offset = 0;
949                 n_bytes -= this_step;
950         } while (n_bytes);
951
952         BUG_ON(n_sections);
953
954         async_tx_issue_pending_all();
955 }
956
957 static void complete_journal_encrypt(struct crypto_async_request *req, int err)
958 {
959         struct journal_completion *comp = req->data;
960         if (unlikely(err)) {
961                 if (likely(err == -EINPROGRESS)) {
962                         complete(&comp->ic->crypto_backoff);
963                         return;
964                 }
965                 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
966         }
967         complete_journal_op(comp);
968 }
969
970 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
971 {
972         int r;
973         skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
974                                       complete_journal_encrypt, comp);
975         if (likely(encrypt))
976                 r = crypto_skcipher_encrypt(req);
977         else
978                 r = crypto_skcipher_decrypt(req);
979         if (likely(!r))
980                 return false;
981         if (likely(r == -EINPROGRESS))
982                 return true;
983         if (likely(r == -EBUSY)) {
984                 wait_for_completion(&comp->ic->crypto_backoff);
985                 reinit_completion(&comp->ic->crypto_backoff);
986                 return true;
987         }
988         dm_integrity_io_error(comp->ic, "encrypt", r);
989         return false;
990 }
991
992 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
993                           unsigned n_sections, struct journal_completion *comp)
994 {
995         struct scatterlist **source_sg;
996         struct scatterlist **target_sg;
997
998         atomic_add(2, &comp->in_flight);
999
1000         if (likely(encrypt)) {
1001                 source_sg = ic->journal_scatterlist;
1002                 target_sg = ic->journal_io_scatterlist;
1003         } else {
1004                 source_sg = ic->journal_io_scatterlist;
1005                 target_sg = ic->journal_scatterlist;
1006         }
1007
1008         do {
1009                 struct skcipher_request *req;
1010                 unsigned ivsize;
1011                 char *iv;
1012
1013                 if (likely(encrypt))
1014                         rw_section_mac(ic, section, true);
1015
1016                 req = ic->sk_requests[section];
1017                 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
1018                 iv = req->iv;
1019
1020                 memcpy(iv, iv + ivsize, ivsize);
1021
1022                 req->src = source_sg[section];
1023                 req->dst = target_sg[section];
1024
1025                 if (unlikely(do_crypt(encrypt, req, comp)))
1026                         atomic_inc(&comp->in_flight);
1027
1028                 section++;
1029                 n_sections--;
1030         } while (n_sections);
1031
1032         atomic_dec(&comp->in_flight);
1033         complete_journal_op(comp);
1034 }
1035
1036 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
1037                             unsigned n_sections, struct journal_completion *comp)
1038 {
1039         if (ic->journal_xor)
1040                 return xor_journal(ic, encrypt, section, n_sections, comp);
1041         else
1042                 return crypt_journal(ic, encrypt, section, n_sections, comp);
1043 }
1044
1045 static void complete_journal_io(unsigned long error, void *context)
1046 {
1047         struct journal_completion *comp = context;
1048         if (unlikely(error != 0))
1049                 dm_integrity_io_error(comp->ic, "writing journal", -EIO);
1050         complete_journal_op(comp);
1051 }
1052
1053 static void rw_journal_sectors(struct dm_integrity_c *ic, int op, int op_flags,
1054                                unsigned sector, unsigned n_sectors, struct journal_completion *comp)
1055 {
1056         struct dm_io_request io_req;
1057         struct dm_io_region io_loc;
1058         unsigned pl_index, pl_offset;
1059         int r;
1060
1061         if (unlikely(dm_integrity_failed(ic))) {
1062                 if (comp)
1063                         complete_journal_io(-1UL, comp);
1064                 return;
1065         }
1066
1067         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1068         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1069
1070         io_req.bi_op = op;
1071         io_req.bi_op_flags = op_flags;
1072         io_req.mem.type = DM_IO_PAGE_LIST;
1073         if (ic->journal_io)
1074                 io_req.mem.ptr.pl = &ic->journal_io[pl_index];
1075         else
1076                 io_req.mem.ptr.pl = &ic->journal[pl_index];
1077         io_req.mem.offset = pl_offset;
1078         if (likely(comp != NULL)) {
1079                 io_req.notify.fn = complete_journal_io;
1080                 io_req.notify.context = comp;
1081         } else {
1082                 io_req.notify.fn = NULL;
1083         }
1084         io_req.client = ic->io;
1085         io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
1086         io_loc.sector = ic->start + SB_SECTORS + sector;
1087         io_loc.count = n_sectors;
1088
1089         r = dm_io(&io_req, 1, &io_loc, NULL);
1090         if (unlikely(r)) {
1091                 dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r);
1092                 if (comp) {
1093                         WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1094                         complete_journal_io(-1UL, comp);
1095                 }
1096         }
1097 }
1098
1099 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section,
1100                        unsigned n_sections, struct journal_completion *comp)
1101 {
1102         unsigned sector, n_sectors;
1103
1104         sector = section * ic->journal_section_sectors;
1105         n_sectors = n_sections * ic->journal_section_sectors;
1106
1107         rw_journal_sectors(ic, op, op_flags, sector, n_sectors, comp);
1108 }
1109
1110 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections)
1111 {
1112         struct journal_completion io_comp;
1113         struct journal_completion crypt_comp_1;
1114         struct journal_completion crypt_comp_2;
1115         unsigned i;
1116
1117         io_comp.ic = ic;
1118         init_completion(&io_comp.comp);
1119
1120         if (commit_start + commit_sections <= ic->journal_sections) {
1121                 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1122                 if (ic->journal_io) {
1123                         crypt_comp_1.ic = ic;
1124                         init_completion(&crypt_comp_1.comp);
1125                         crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1126                         encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1127                         wait_for_completion_io(&crypt_comp_1.comp);
1128                 } else {
1129                         for (i = 0; i < commit_sections; i++)
1130                                 rw_section_mac(ic, commit_start + i, true);
1131                 }
1132                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start,
1133                            commit_sections, &io_comp);
1134         } else {
1135                 unsigned to_end;
1136                 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1137                 to_end = ic->journal_sections - commit_start;
1138                 if (ic->journal_io) {
1139                         crypt_comp_1.ic = ic;
1140                         init_completion(&crypt_comp_1.comp);
1141                         crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1142                         encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1143                         if (try_wait_for_completion(&crypt_comp_1.comp)) {
1144                                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1145                                 reinit_completion(&crypt_comp_1.comp);
1146                                 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1147                                 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1148                                 wait_for_completion_io(&crypt_comp_1.comp);
1149                         } else {
1150                                 crypt_comp_2.ic = ic;
1151                                 init_completion(&crypt_comp_2.comp);
1152                                 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1153                                 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1154                                 wait_for_completion_io(&crypt_comp_1.comp);
1155                                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1156                                 wait_for_completion_io(&crypt_comp_2.comp);
1157                         }
1158                 } else {
1159                         for (i = 0; i < to_end; i++)
1160                                 rw_section_mac(ic, commit_start + i, true);
1161                         rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1162                         for (i = 0; i < commit_sections - to_end; i++)
1163                                 rw_section_mac(ic, i, true);
1164                 }
1165                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp);
1166         }
1167
1168         wait_for_completion_io(&io_comp.comp);
1169 }
1170
1171 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset,
1172                               unsigned n_sectors, sector_t target, io_notify_fn fn, void *data)
1173 {
1174         struct dm_io_request io_req;
1175         struct dm_io_region io_loc;
1176         int r;
1177         unsigned sector, pl_index, pl_offset;
1178
1179         BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1));
1180
1181         if (unlikely(dm_integrity_failed(ic))) {
1182                 fn(-1UL, data);
1183                 return;
1184         }
1185
1186         sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1187
1188         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1189         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1190
1191         io_req.bi_op = REQ_OP_WRITE;
1192         io_req.bi_op_flags = 0;
1193         io_req.mem.type = DM_IO_PAGE_LIST;
1194         io_req.mem.ptr.pl = &ic->journal[pl_index];
1195         io_req.mem.offset = pl_offset;
1196         io_req.notify.fn = fn;
1197         io_req.notify.context = data;
1198         io_req.client = ic->io;
1199         io_loc.bdev = ic->dev->bdev;
1200         io_loc.sector = target;
1201         io_loc.count = n_sectors;
1202
1203         r = dm_io(&io_req, 1, &io_loc, NULL);
1204         if (unlikely(r)) {
1205                 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1206                 fn(-1UL, data);
1207         }
1208 }
1209
1210 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1211 {
1212         return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1213                range1->logical_sector + range1->n_sectors > range2->logical_sector;
1214 }
1215
1216 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1217 {
1218         struct rb_node **n = &ic->in_progress.rb_node;
1219         struct rb_node *parent;
1220
1221         BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1));
1222
1223         if (likely(check_waiting)) {
1224                 struct dm_integrity_range *range;
1225                 list_for_each_entry(range, &ic->wait_list, wait_entry) {
1226                         if (unlikely(ranges_overlap(range, new_range)))
1227                                 return false;
1228                 }
1229         }
1230
1231         parent = NULL;
1232
1233         while (*n) {
1234                 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1235
1236                 parent = *n;
1237                 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
1238                         n = &range->node.rb_left;
1239                 } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
1240                         n = &range->node.rb_right;
1241                 } else {
1242                         return false;
1243                 }
1244         }
1245
1246         rb_link_node(&new_range->node, parent, n);
1247         rb_insert_color(&new_range->node, &ic->in_progress);
1248
1249         return true;
1250 }
1251
1252 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1253 {
1254         rb_erase(&range->node, &ic->in_progress);
1255         while (unlikely(!list_empty(&ic->wait_list))) {
1256                 struct dm_integrity_range *last_range =
1257                         list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1258                 struct task_struct *last_range_task;
1259                 last_range_task = last_range->task;
1260                 list_del(&last_range->wait_entry);
1261                 if (!add_new_range(ic, last_range, false)) {
1262                         last_range->task = last_range_task;
1263                         list_add(&last_range->wait_entry, &ic->wait_list);
1264                         break;
1265                 }
1266                 last_range->waiting = false;
1267                 wake_up_process(last_range_task);
1268         }
1269 }
1270
1271 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1272 {
1273         unsigned long flags;
1274
1275         spin_lock_irqsave(&ic->endio_wait.lock, flags);
1276         remove_range_unlocked(ic, range);
1277         spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1278 }
1279
1280 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1281 {
1282         new_range->waiting = true;
1283         list_add_tail(&new_range->wait_entry, &ic->wait_list);
1284         new_range->task = current;
1285         do {
1286                 __set_current_state(TASK_UNINTERRUPTIBLE);
1287                 spin_unlock_irq(&ic->endio_wait.lock);
1288                 io_schedule();
1289                 spin_lock_irq(&ic->endio_wait.lock);
1290         } while (unlikely(new_range->waiting));
1291 }
1292
1293 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1294 {
1295         if (unlikely(!add_new_range(ic, new_range, true)))
1296                 wait_and_add_new_range(ic, new_range);
1297 }
1298
1299 static void init_journal_node(struct journal_node *node)
1300 {
1301         RB_CLEAR_NODE(&node->node);
1302         node->sector = (sector_t)-1;
1303 }
1304
1305 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1306 {
1307         struct rb_node **link;
1308         struct rb_node *parent;
1309
1310         node->sector = sector;
1311         BUG_ON(!RB_EMPTY_NODE(&node->node));
1312
1313         link = &ic->journal_tree_root.rb_node;
1314         parent = NULL;
1315
1316         while (*link) {
1317                 struct journal_node *j;
1318                 parent = *link;
1319                 j = container_of(parent, struct journal_node, node);
1320                 if (sector < j->sector)
1321                         link = &j->node.rb_left;
1322                 else
1323                         link = &j->node.rb_right;
1324         }
1325
1326         rb_link_node(&node->node, parent, link);
1327         rb_insert_color(&node->node, &ic->journal_tree_root);
1328 }
1329
1330 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1331 {
1332         BUG_ON(RB_EMPTY_NODE(&node->node));
1333         rb_erase(&node->node, &ic->journal_tree_root);
1334         init_journal_node(node);
1335 }
1336
1337 #define NOT_FOUND       (-1U)
1338
1339 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1340 {
1341         struct rb_node *n = ic->journal_tree_root.rb_node;
1342         unsigned found = NOT_FOUND;
1343         *next_sector = (sector_t)-1;
1344         while (n) {
1345                 struct journal_node *j = container_of(n, struct journal_node, node);
1346                 if (sector == j->sector) {
1347                         found = j - ic->journal_tree;
1348                 }
1349                 if (sector < j->sector) {
1350                         *next_sector = j->sector;
1351                         n = j->node.rb_left;
1352                 } else {
1353                         n = j->node.rb_right;
1354                 }
1355         }
1356
1357         return found;
1358 }
1359
1360 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector)
1361 {
1362         struct journal_node *node, *next_node;
1363         struct rb_node *next;
1364
1365         if (unlikely(pos >= ic->journal_entries))
1366                 return false;
1367         node = &ic->journal_tree[pos];
1368         if (unlikely(RB_EMPTY_NODE(&node->node)))
1369                 return false;
1370         if (unlikely(node->sector != sector))
1371                 return false;
1372
1373         next = rb_next(&node->node);
1374         if (unlikely(!next))
1375                 return true;
1376
1377         next_node = container_of(next, struct journal_node, node);
1378         return next_node->sector != sector;
1379 }
1380
1381 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1382 {
1383         struct rb_node *next;
1384         struct journal_node *next_node;
1385         unsigned next_section;
1386
1387         BUG_ON(RB_EMPTY_NODE(&node->node));
1388
1389         next = rb_next(&node->node);
1390         if (unlikely(!next))
1391                 return false;
1392
1393         next_node = container_of(next, struct journal_node, node);
1394
1395         if (next_node->sector != node->sector)
1396                 return false;
1397
1398         next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries;
1399         if (next_section >= ic->committed_section &&
1400             next_section < ic->committed_section + ic->n_committed_sections)
1401                 return true;
1402         if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1403                 return true;
1404
1405         return false;
1406 }
1407
1408 #define TAG_READ        0
1409 #define TAG_WRITE       1
1410 #define TAG_CMP         2
1411
1412 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1413                                unsigned *metadata_offset, unsigned total_size, int op)
1414 {
1415 #define MAY_BE_FILLER           1
1416 #define MAY_BE_HASH             2
1417         unsigned hash_offset = 0;
1418         unsigned may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1419
1420         do {
1421                 unsigned char *data, *dp;
1422                 struct dm_buffer *b;
1423                 unsigned to_copy;
1424                 int r;
1425
1426                 r = dm_integrity_failed(ic);
1427                 if (unlikely(r))
1428                         return r;
1429
1430                 data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1431                 if (IS_ERR(data))
1432                         return PTR_ERR(data);
1433
1434                 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1435                 dp = data + *metadata_offset;
1436                 if (op == TAG_READ) {
1437                         memcpy(tag, dp, to_copy);
1438                 } else if (op == TAG_WRITE) {
1439                         if (memcmp(dp, tag, to_copy)) {
1440                                 memcpy(dp, tag, to_copy);
1441                                 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1442                         }
1443                 } else {
1444                         /* e.g.: op == TAG_CMP */
1445
1446                         if (likely(is_power_of_2(ic->tag_size))) {
1447                                 if (unlikely(memcmp(dp, tag, to_copy)))
1448                                         if (unlikely(!ic->discard) ||
1449                                             unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1450                                                 goto thorough_test;
1451                                 }
1452                         } else {
1453                                 unsigned i, ts;
1454 thorough_test:
1455                                 ts = total_size;
1456
1457                                 for (i = 0; i < to_copy; i++, ts--) {
1458                                         if (unlikely(dp[i] != tag[i]))
1459                                                 may_be &= ~MAY_BE_HASH;
1460                                         if (likely(dp[i] != DISCARD_FILLER))
1461                                                 may_be &= ~MAY_BE_FILLER;
1462                                         hash_offset++;
1463                                         if (unlikely(hash_offset == ic->tag_size)) {
1464                                                 if (unlikely(!may_be)) {
1465                                                         dm_bufio_release(b);
1466                                                         return ts;
1467                                                 }
1468                                                 hash_offset = 0;
1469                                                 may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1470                                         }
1471                                 }
1472                         }
1473                 }
1474                 dm_bufio_release(b);
1475
1476                 tag += to_copy;
1477                 *metadata_offset += to_copy;
1478                 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1479                         (*metadata_block)++;
1480                         *metadata_offset = 0;
1481                 }
1482
1483                 if (unlikely(!is_power_of_2(ic->tag_size))) {
1484                         hash_offset = (hash_offset + to_copy) % ic->tag_size;
1485                 }
1486
1487                 total_size -= to_copy;
1488         } while (unlikely(total_size));
1489
1490         return 0;
1491 #undef MAY_BE_FILLER
1492 #undef MAY_BE_HASH
1493 }
1494
1495 struct flush_request {
1496         struct dm_io_request io_req;
1497         struct dm_io_region io_reg;
1498         struct dm_integrity_c *ic;
1499         struct completion comp;
1500 };
1501
1502 static void flush_notify(unsigned long error, void *fr_)
1503 {
1504         struct flush_request *fr = fr_;
1505         if (unlikely(error != 0))
1506                 dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO);
1507         complete(&fr->comp);
1508 }
1509
1510 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1511 {
1512         int r;
1513
1514         struct flush_request fr;
1515
1516         if (!ic->meta_dev)
1517                 flush_data = false;
1518         if (flush_data) {
1519                 fr.io_req.bi_op = REQ_OP_WRITE,
1520                 fr.io_req.bi_op_flags = REQ_PREFLUSH | REQ_SYNC,
1521                 fr.io_req.mem.type = DM_IO_KMEM,
1522                 fr.io_req.mem.ptr.addr = NULL,
1523                 fr.io_req.notify.fn = flush_notify,
1524                 fr.io_req.notify.context = &fr;
1525                 fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio),
1526                 fr.io_reg.bdev = ic->dev->bdev,
1527                 fr.io_reg.sector = 0,
1528                 fr.io_reg.count = 0,
1529                 fr.ic = ic;
1530                 init_completion(&fr.comp);
1531                 r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL);
1532                 BUG_ON(r);
1533         }
1534
1535         r = dm_bufio_write_dirty_buffers(ic->bufio);
1536         if (unlikely(r))
1537                 dm_integrity_io_error(ic, "writing tags", r);
1538
1539         if (flush_data)
1540                 wait_for_completion(&fr.comp);
1541 }
1542
1543 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1544 {
1545         DECLARE_WAITQUEUE(wait, current);
1546         __add_wait_queue(&ic->endio_wait, &wait);
1547         __set_current_state(TASK_UNINTERRUPTIBLE);
1548         spin_unlock_irq(&ic->endio_wait.lock);
1549         io_schedule();
1550         spin_lock_irq(&ic->endio_wait.lock);
1551         __remove_wait_queue(&ic->endio_wait, &wait);
1552 }
1553
1554 static void autocommit_fn(struct timer_list *t)
1555 {
1556         struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1557
1558         if (likely(!dm_integrity_failed(ic)))
1559                 queue_work(ic->commit_wq, &ic->commit_work);
1560 }
1561
1562 static void schedule_autocommit(struct dm_integrity_c *ic)
1563 {
1564         if (!timer_pending(&ic->autocommit_timer))
1565                 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1566 }
1567
1568 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1569 {
1570         struct bio *bio;
1571         unsigned long flags;
1572
1573         spin_lock_irqsave(&ic->endio_wait.lock, flags);
1574         bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1575         bio_list_add(&ic->flush_bio_list, bio);
1576         spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1577
1578         queue_work(ic->commit_wq, &ic->commit_work);
1579 }
1580
1581 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1582 {
1583         int r = dm_integrity_failed(ic);
1584         if (unlikely(r) && !bio->bi_status)
1585                 bio->bi_status = errno_to_blk_status(r);
1586         if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1587                 unsigned long flags;
1588                 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1589                 bio_list_add(&ic->synchronous_bios, bio);
1590                 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1591                 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1592                 return;
1593         }
1594         bio_endio(bio);
1595 }
1596
1597 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1598 {
1599         struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1600
1601         if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1602                 submit_flush_bio(ic, dio);
1603         else
1604                 do_endio(ic, bio);
1605 }
1606
1607 static void dec_in_flight(struct dm_integrity_io *dio)
1608 {
1609         if (atomic_dec_and_test(&dio->in_flight)) {
1610                 struct dm_integrity_c *ic = dio->ic;
1611                 struct bio *bio;
1612
1613                 remove_range(ic, &dio->range);
1614
1615                 if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1616                         schedule_autocommit(ic);
1617
1618                 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1619
1620                 if (unlikely(dio->bi_status) && !bio->bi_status)
1621                         bio->bi_status = dio->bi_status;
1622                 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1623                         dio->range.logical_sector += dio->range.n_sectors;
1624                         bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1625                         INIT_WORK(&dio->work, integrity_bio_wait);
1626                         queue_work(ic->offload_wq, &dio->work);
1627                         return;
1628                 }
1629                 do_endio_flush(ic, dio);
1630         }
1631 }
1632
1633 static void integrity_end_io(struct bio *bio)
1634 {
1635         struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1636
1637         dm_bio_restore(&dio->bio_details, bio);
1638         if (bio->bi_integrity)
1639                 bio->bi_opf |= REQ_INTEGRITY;
1640
1641         if (dio->completion)
1642                 complete(dio->completion);
1643
1644         dec_in_flight(dio);
1645 }
1646
1647 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1648                                       const char *data, char *result)
1649 {
1650         __le64 sector_le = cpu_to_le64(sector);
1651         SHASH_DESC_ON_STACK(req, ic->internal_hash);
1652         int r;
1653         unsigned digest_size;
1654
1655         req->tfm = ic->internal_hash;
1656
1657         r = crypto_shash_init(req);
1658         if (unlikely(r < 0)) {
1659                 dm_integrity_io_error(ic, "crypto_shash_init", r);
1660                 goto failed;
1661         }
1662
1663         if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1664                 r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE);
1665                 if (unlikely(r < 0)) {
1666                         dm_integrity_io_error(ic, "crypto_shash_update", r);
1667                         goto failed;
1668                 }
1669         }
1670
1671         r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof sector_le);
1672         if (unlikely(r < 0)) {
1673                 dm_integrity_io_error(ic, "crypto_shash_update", r);
1674                 goto failed;
1675         }
1676
1677         r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1678         if (unlikely(r < 0)) {
1679                 dm_integrity_io_error(ic, "crypto_shash_update", r);
1680                 goto failed;
1681         }
1682
1683         r = crypto_shash_final(req, result);
1684         if (unlikely(r < 0)) {
1685                 dm_integrity_io_error(ic, "crypto_shash_final", r);
1686                 goto failed;
1687         }
1688
1689         digest_size = crypto_shash_digestsize(ic->internal_hash);
1690         if (unlikely(digest_size < ic->tag_size))
1691                 memset(result + digest_size, 0, ic->tag_size - digest_size);
1692
1693         return;
1694
1695 failed:
1696         /* this shouldn't happen anyway, the hash functions have no reason to fail */
1697         get_random_bytes(result, ic->tag_size);
1698 }
1699
1700 static void integrity_metadata(struct work_struct *w)
1701 {
1702         struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1703         struct dm_integrity_c *ic = dio->ic;
1704
1705         int r;
1706
1707         if (ic->internal_hash) {
1708                 struct bvec_iter iter;
1709                 struct bio_vec bv;
1710                 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1711                 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1712                 char *checksums;
1713                 unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1714                 char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1715                 sector_t sector;
1716                 unsigned sectors_to_process;
1717
1718                 if (unlikely(ic->mode == 'R'))
1719                         goto skip_io;
1720
1721                 if (likely(dio->op != REQ_OP_DISCARD))
1722                         checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1723                                             GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1724                 else
1725                         checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1726                 if (!checksums) {
1727                         checksums = checksums_onstack;
1728                         if (WARN_ON(extra_space &&
1729                                     digest_size > sizeof(checksums_onstack))) {
1730                                 r = -EINVAL;
1731                                 goto error;
1732                         }
1733                 }
1734
1735                 if (unlikely(dio->op == REQ_OP_DISCARD)) {
1736                         sector_t bi_sector = dio->bio_details.bi_iter.bi_sector;
1737                         unsigned bi_size = dio->bio_details.bi_iter.bi_size;
1738                         unsigned max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1739                         unsigned max_blocks = max_size / ic->tag_size;
1740                         memset(checksums, DISCARD_FILLER, max_size);
1741
1742                         while (bi_size) {
1743                                 unsigned this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1744                                 this_step_blocks = min(this_step_blocks, max_blocks);
1745                                 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1746                                                         this_step_blocks * ic->tag_size, TAG_WRITE);
1747                                 if (unlikely(r)) {
1748                                         if (likely(checksums != checksums_onstack))
1749                                                 kfree(checksums);
1750                                         goto error;
1751                                 }
1752
1753                                 /*if (bi_size < this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block)) {
1754                                         printk("BUGG: bi_sector: %llx, bi_size: %u\n", bi_sector, bi_size);
1755                                         printk("BUGG: this_step_blocks: %u\n", this_step_blocks);
1756                                         BUG();
1757                                 }*/
1758                                 bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1759                                 bi_sector += this_step_blocks << ic->sb->log2_sectors_per_block;
1760                         }
1761
1762                         if (likely(checksums != checksums_onstack))
1763                                 kfree(checksums);
1764                         goto skip_io;
1765                 }
1766
1767                 sector = dio->range.logical_sector;
1768                 sectors_to_process = dio->range.n_sectors;
1769
1770                 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1771                         unsigned pos;
1772                         char *mem, *checksums_ptr;
1773
1774 again:
1775                         mem = bvec_kmap_local(&bv);
1776                         pos = 0;
1777                         checksums_ptr = checksums;
1778                         do {
1779                                 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1780                                 checksums_ptr += ic->tag_size;
1781                                 sectors_to_process -= ic->sectors_per_block;
1782                                 pos += ic->sectors_per_block << SECTOR_SHIFT;
1783                                 sector += ic->sectors_per_block;
1784                         } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1785                         kunmap_local(mem);
1786
1787                         r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1788                                                 checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1789                         if (unlikely(r)) {
1790                                 if (r > 0) {
1791                                         char b[BDEVNAME_SIZE];
1792                                         sector_t s;
1793
1794                                         s = sector - ((r + ic->tag_size - 1) / ic->tag_size);
1795                                         DMERR_LIMIT("%s: Checksum failed at sector 0x%llx",
1796                                                     bio_devname(bio, b), s);
1797                                         r = -EILSEQ;
1798                                         atomic64_inc(&ic->number_of_mismatches);
1799                                         dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
1800                                                          bio, s, 0);
1801                                 }
1802                                 if (likely(checksums != checksums_onstack))
1803                                         kfree(checksums);
1804                                 goto error;
1805                         }
1806
1807                         if (!sectors_to_process)
1808                                 break;
1809
1810                         if (unlikely(pos < bv.bv_len)) {
1811                                 bv.bv_offset += pos;
1812                                 bv.bv_len -= pos;
1813                                 goto again;
1814                         }
1815                 }
1816
1817                 if (likely(checksums != checksums_onstack))
1818                         kfree(checksums);
1819         } else {
1820                 struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1821
1822                 if (bip) {
1823                         struct bio_vec biv;
1824                         struct bvec_iter iter;
1825                         unsigned data_to_process = dio->range.n_sectors;
1826                         sector_to_block(ic, data_to_process);
1827                         data_to_process *= ic->tag_size;
1828
1829                         bip_for_each_vec(biv, bip, iter) {
1830                                 unsigned char *tag;
1831                                 unsigned this_len;
1832
1833                                 BUG_ON(PageHighMem(biv.bv_page));
1834                                 tag = bvec_virt(&biv);
1835                                 this_len = min(biv.bv_len, data_to_process);
1836                                 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1837                                                         this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1838                                 if (unlikely(r))
1839                                         goto error;
1840                                 data_to_process -= this_len;
1841                                 if (!data_to_process)
1842                                         break;
1843                         }
1844                 }
1845         }
1846 skip_io:
1847         dec_in_flight(dio);
1848         return;
1849 error:
1850         dio->bi_status = errno_to_blk_status(r);
1851         dec_in_flight(dio);
1852 }
1853
1854 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1855 {
1856         struct dm_integrity_c *ic = ti->private;
1857         struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1858         struct bio_integrity_payload *bip;
1859
1860         sector_t area, offset;
1861
1862         dio->ic = ic;
1863         dio->bi_status = 0;
1864         dio->op = bio_op(bio);
1865
1866         if (unlikely(dio->op == REQ_OP_DISCARD)) {
1867                 if (ti->max_io_len) {
1868                         sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1869                         unsigned log2_max_io_len = __fls(ti->max_io_len);
1870                         sector_t start_boundary = sec >> log2_max_io_len;
1871                         sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1872                         if (start_boundary < end_boundary) {
1873                                 sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1874                                 dm_accept_partial_bio(bio, len);
1875                         }
1876                 }
1877         }
1878
1879         if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1880                 submit_flush_bio(ic, dio);
1881                 return DM_MAPIO_SUBMITTED;
1882         }
1883
1884         dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1885         dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1886         if (unlikely(dio->fua)) {
1887                 /*
1888                  * Don't pass down the FUA flag because we have to flush
1889                  * disk cache anyway.
1890                  */
1891                 bio->bi_opf &= ~REQ_FUA;
1892         }
1893         if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1894                 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1895                       dio->range.logical_sector, bio_sectors(bio),
1896                       ic->provided_data_sectors);
1897                 return DM_MAPIO_KILL;
1898         }
1899         if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) {
1900                 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1901                       ic->sectors_per_block,
1902                       dio->range.logical_sector, bio_sectors(bio));
1903                 return DM_MAPIO_KILL;
1904         }
1905
1906         if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) {
1907                 struct bvec_iter iter;
1908                 struct bio_vec bv;
1909                 bio_for_each_segment(bv, bio, iter) {
1910                         if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1911                                 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1912                                         bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1913                                 return DM_MAPIO_KILL;
1914                         }
1915                 }
1916         }
1917
1918         bip = bio_integrity(bio);
1919         if (!ic->internal_hash) {
1920                 if (bip) {
1921                         unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1922                         if (ic->log2_tag_size >= 0)
1923                                 wanted_tag_size <<= ic->log2_tag_size;
1924                         else
1925                                 wanted_tag_size *= ic->tag_size;
1926                         if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1927                                 DMERR("Invalid integrity data size %u, expected %u",
1928                                       bip->bip_iter.bi_size, wanted_tag_size);
1929                                 return DM_MAPIO_KILL;
1930                         }
1931                 }
1932         } else {
1933                 if (unlikely(bip != NULL)) {
1934                         DMERR("Unexpected integrity data when using internal hash");
1935                         return DM_MAPIO_KILL;
1936                 }
1937         }
1938
1939         if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
1940                 return DM_MAPIO_KILL;
1941
1942         get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1943         dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1944         bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1945
1946         dm_integrity_map_continue(dio, true);
1947         return DM_MAPIO_SUBMITTED;
1948 }
1949
1950 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1951                                  unsigned journal_section, unsigned journal_entry)
1952 {
1953         struct dm_integrity_c *ic = dio->ic;
1954         sector_t logical_sector;
1955         unsigned n_sectors;
1956
1957         logical_sector = dio->range.logical_sector;
1958         n_sectors = dio->range.n_sectors;
1959         do {
1960                 struct bio_vec bv = bio_iovec(bio);
1961                 char *mem;
1962
1963                 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1964                         bv.bv_len = n_sectors << SECTOR_SHIFT;
1965                 n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1966                 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1967 retry_kmap:
1968                 mem = kmap_local_page(bv.bv_page);
1969                 if (likely(dio->op == REQ_OP_WRITE))
1970                         flush_dcache_page(bv.bv_page);
1971
1972                 do {
1973                         struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1974
1975                         if (unlikely(dio->op == REQ_OP_READ)) {
1976                                 struct journal_sector *js;
1977                                 char *mem_ptr;
1978                                 unsigned s;
1979
1980                                 if (unlikely(journal_entry_is_inprogress(je))) {
1981                                         flush_dcache_page(bv.bv_page);
1982                                         kunmap_local(mem);
1983
1984                                         __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1985                                         goto retry_kmap;
1986                                 }
1987                                 smp_rmb();
1988                                 BUG_ON(journal_entry_get_sector(je) != logical_sector);
1989                                 js = access_journal_data(ic, journal_section, journal_entry);
1990                                 mem_ptr = mem + bv.bv_offset;
1991                                 s = 0;
1992                                 do {
1993                                         memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1994                                         *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1995                                         js++;
1996                                         mem_ptr += 1 << SECTOR_SHIFT;
1997                                 } while (++s < ic->sectors_per_block);
1998 #ifdef INTERNAL_VERIFY
1999                                 if (ic->internal_hash) {
2000                                         char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2001
2002                                         integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
2003                                         if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
2004                                                 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
2005                                                             logical_sector);
2006                                                 dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum",
2007                                                                  bio, logical_sector, 0);
2008                                         }
2009                                 }
2010 #endif
2011                         }
2012
2013                         if (!ic->internal_hash) {
2014                                 struct bio_integrity_payload *bip = bio_integrity(bio);
2015                                 unsigned tag_todo = ic->tag_size;
2016                                 char *tag_ptr = journal_entry_tag(ic, je);
2017
2018                                 if (bip) do {
2019                                         struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
2020                                         unsigned tag_now = min(biv.bv_len, tag_todo);
2021                                         char *tag_addr;
2022                                         BUG_ON(PageHighMem(biv.bv_page));
2023                                         tag_addr = bvec_virt(&biv);
2024                                         if (likely(dio->op == REQ_OP_WRITE))
2025                                                 memcpy(tag_ptr, tag_addr, tag_now);
2026                                         else
2027                                                 memcpy(tag_addr, tag_ptr, tag_now);
2028                                         bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
2029                                         tag_ptr += tag_now;
2030                                         tag_todo -= tag_now;
2031                                 } while (unlikely(tag_todo)); else {
2032                                         if (likely(dio->op == REQ_OP_WRITE))
2033                                                 memset(tag_ptr, 0, tag_todo);
2034                                 }
2035                         }
2036
2037                         if (likely(dio->op == REQ_OP_WRITE)) {
2038                                 struct journal_sector *js;
2039                                 unsigned s;
2040
2041                                 js = access_journal_data(ic, journal_section, journal_entry);
2042                                 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
2043
2044                                 s = 0;
2045                                 do {
2046                                         je->last_bytes[s] = js[s].commit_id;
2047                                 } while (++s < ic->sectors_per_block);
2048
2049                                 if (ic->internal_hash) {
2050                                         unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
2051                                         if (unlikely(digest_size > ic->tag_size)) {
2052                                                 char checksums_onstack[HASH_MAX_DIGESTSIZE];
2053                                                 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
2054                                                 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
2055                                         } else
2056                                                 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
2057                                 }
2058
2059                                 journal_entry_set_sector(je, logical_sector);
2060                         }
2061                         logical_sector += ic->sectors_per_block;
2062
2063                         journal_entry++;
2064                         if (unlikely(journal_entry == ic->journal_section_entries)) {
2065                                 journal_entry = 0;
2066                                 journal_section++;
2067                                 wraparound_section(ic, &journal_section);
2068                         }
2069
2070                         bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
2071                 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
2072
2073                 if (unlikely(dio->op == REQ_OP_READ))
2074                         flush_dcache_page(bv.bv_page);
2075                 kunmap_local(mem);
2076         } while (n_sectors);
2077
2078         if (likely(dio->op == REQ_OP_WRITE)) {
2079                 smp_mb();
2080                 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
2081                         wake_up(&ic->copy_to_journal_wait);
2082                 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
2083                         queue_work(ic->commit_wq, &ic->commit_work);
2084                 } else {
2085                         schedule_autocommit(ic);
2086                 }
2087         } else {
2088                 remove_range(ic, &dio->range);
2089         }
2090
2091         if (unlikely(bio->bi_iter.bi_size)) {
2092                 sector_t area, offset;
2093
2094                 dio->range.logical_sector = logical_sector;
2095                 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2096                 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2097                 return true;
2098         }
2099
2100         return false;
2101 }
2102
2103 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
2104 {
2105         struct dm_integrity_c *ic = dio->ic;
2106         struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2107         unsigned journal_section, journal_entry;
2108         unsigned journal_read_pos;
2109         struct completion read_comp;
2110         bool discard_retried = false;
2111         bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
2112         if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
2113                 need_sync_io = true;
2114
2115         if (need_sync_io && from_map) {
2116                 INIT_WORK(&dio->work, integrity_bio_wait);
2117                 queue_work(ic->offload_wq, &dio->work);
2118                 return;
2119         }
2120
2121 lock_retry:
2122         spin_lock_irq(&ic->endio_wait.lock);
2123 retry:
2124         if (unlikely(dm_integrity_failed(ic))) {
2125                 spin_unlock_irq(&ic->endio_wait.lock);
2126                 do_endio(ic, bio);
2127                 return;
2128         }
2129         dio->range.n_sectors = bio_sectors(bio);
2130         journal_read_pos = NOT_FOUND;
2131         if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2132                 if (dio->op == REQ_OP_WRITE) {
2133                         unsigned next_entry, i, pos;
2134                         unsigned ws, we, range_sectors;
2135
2136                         dio->range.n_sectors = min(dio->range.n_sectors,
2137                                                    (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2138                         if (unlikely(!dio->range.n_sectors)) {
2139                                 if (from_map)
2140                                         goto offload_to_thread;
2141                                 sleep_on_endio_wait(ic);
2142                                 goto retry;
2143                         }
2144                         range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2145                         ic->free_sectors -= range_sectors;
2146                         journal_section = ic->free_section;
2147                         journal_entry = ic->free_section_entry;
2148
2149                         next_entry = ic->free_section_entry + range_sectors;
2150                         ic->free_section_entry = next_entry % ic->journal_section_entries;
2151                         ic->free_section += next_entry / ic->journal_section_entries;
2152                         ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2153                         wraparound_section(ic, &ic->free_section);
2154
2155                         pos = journal_section * ic->journal_section_entries + journal_entry;
2156                         ws = journal_section;
2157                         we = journal_entry;
2158                         i = 0;
2159                         do {
2160                                 struct journal_entry *je;
2161
2162                                 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2163                                 pos++;
2164                                 if (unlikely(pos >= ic->journal_entries))
2165                                         pos = 0;
2166
2167                                 je = access_journal_entry(ic, ws, we);
2168                                 BUG_ON(!journal_entry_is_unused(je));
2169                                 journal_entry_set_inprogress(je);
2170                                 we++;
2171                                 if (unlikely(we == ic->journal_section_entries)) {
2172                                         we = 0;
2173                                         ws++;
2174                                         wraparound_section(ic, &ws);
2175                                 }
2176                         } while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2177
2178                         spin_unlock_irq(&ic->endio_wait.lock);
2179                         goto journal_read_write;
2180                 } else {
2181                         sector_t next_sector;
2182                         journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2183                         if (likely(journal_read_pos == NOT_FOUND)) {
2184                                 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2185                                         dio->range.n_sectors = next_sector - dio->range.logical_sector;
2186                         } else {
2187                                 unsigned i;
2188                                 unsigned jp = journal_read_pos + 1;
2189                                 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2190                                         if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2191                                                 break;
2192                                 }
2193                                 dio->range.n_sectors = i;
2194                         }
2195                 }
2196         }
2197         if (unlikely(!add_new_range(ic, &dio->range, true))) {
2198                 /*
2199                  * We must not sleep in the request routine because it could
2200                  * stall bios on current->bio_list.
2201                  * So, we offload the bio to a workqueue if we have to sleep.
2202                  */
2203                 if (from_map) {
2204 offload_to_thread:
2205                         spin_unlock_irq(&ic->endio_wait.lock);
2206                         INIT_WORK(&dio->work, integrity_bio_wait);
2207                         queue_work(ic->wait_wq, &dio->work);
2208                         return;
2209                 }
2210                 if (journal_read_pos != NOT_FOUND)
2211                         dio->range.n_sectors = ic->sectors_per_block;
2212                 wait_and_add_new_range(ic, &dio->range);
2213                 /*
2214                  * wait_and_add_new_range drops the spinlock, so the journal
2215                  * may have been changed arbitrarily. We need to recheck.
2216                  * To simplify the code, we restrict I/O size to just one block.
2217                  */
2218                 if (journal_read_pos != NOT_FOUND) {
2219                         sector_t next_sector;
2220                         unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2221                         if (unlikely(new_pos != journal_read_pos)) {
2222                                 remove_range_unlocked(ic, &dio->range);
2223                                 goto retry;
2224                         }
2225                 }
2226         }
2227         if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2228                 sector_t next_sector;
2229                 unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2230                 if (unlikely(new_pos != NOT_FOUND) ||
2231                     unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2232                         remove_range_unlocked(ic, &dio->range);
2233                         spin_unlock_irq(&ic->endio_wait.lock);
2234                         queue_work(ic->commit_wq, &ic->commit_work);
2235                         flush_workqueue(ic->commit_wq);
2236                         queue_work(ic->writer_wq, &ic->writer_work);
2237                         flush_workqueue(ic->writer_wq);
2238                         discard_retried = true;
2239                         goto lock_retry;
2240                 }
2241         }
2242         spin_unlock_irq(&ic->endio_wait.lock);
2243
2244         if (unlikely(journal_read_pos != NOT_FOUND)) {
2245                 journal_section = journal_read_pos / ic->journal_section_entries;
2246                 journal_entry = journal_read_pos % ic->journal_section_entries;
2247                 goto journal_read_write;
2248         }
2249
2250         if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2251                 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2252                                      dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2253                         struct bitmap_block_status *bbs;
2254
2255                         bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2256                         spin_lock(&bbs->bio_queue_lock);
2257                         bio_list_add(&bbs->bio_queue, bio);
2258                         spin_unlock(&bbs->bio_queue_lock);
2259                         queue_work(ic->writer_wq, &bbs->work);
2260                         return;
2261                 }
2262         }
2263
2264         dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2265
2266         if (need_sync_io) {
2267                 init_completion(&read_comp);
2268                 dio->completion = &read_comp;
2269         } else
2270                 dio->completion = NULL;
2271
2272         dm_bio_record(&dio->bio_details, bio);
2273         bio_set_dev(bio, ic->dev->bdev);
2274         bio->bi_integrity = NULL;
2275         bio->bi_opf &= ~REQ_INTEGRITY;
2276         bio->bi_end_io = integrity_end_io;
2277         bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2278
2279         if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2280                 integrity_metadata(&dio->work);
2281                 dm_integrity_flush_buffers(ic, false);
2282
2283                 dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2284                 dio->completion = NULL;
2285
2286                 submit_bio_noacct(bio);
2287
2288                 return;
2289         }
2290
2291         submit_bio_noacct(bio);
2292
2293         if (need_sync_io) {
2294                 wait_for_completion_io(&read_comp);
2295                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2296                     dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2297                         goto skip_check;
2298                 if (ic->mode == 'B') {
2299                         if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2300                                              dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2301                                 goto skip_check;
2302                 }
2303
2304                 if (likely(!bio->bi_status))
2305                         integrity_metadata(&dio->work);
2306                 else
2307 skip_check:
2308                         dec_in_flight(dio);
2309
2310         } else {
2311                 INIT_WORK(&dio->work, integrity_metadata);
2312                 queue_work(ic->metadata_wq, &dio->work);
2313         }
2314
2315         return;
2316
2317 journal_read_write:
2318         if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2319                 goto lock_retry;
2320
2321         do_endio_flush(ic, dio);
2322 }
2323
2324
2325 static void integrity_bio_wait(struct work_struct *w)
2326 {
2327         struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2328
2329         dm_integrity_map_continue(dio, false);
2330 }
2331
2332 static void pad_uncommitted(struct dm_integrity_c *ic)
2333 {
2334         if (ic->free_section_entry) {
2335                 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2336                 ic->free_section_entry = 0;
2337                 ic->free_section++;
2338                 wraparound_section(ic, &ic->free_section);
2339                 ic->n_uncommitted_sections++;
2340         }
2341         if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2342                     (ic->n_uncommitted_sections + ic->n_committed_sections) *
2343                     ic->journal_section_entries + ic->free_sectors)) {
2344                 DMCRIT("journal_sections %u, journal_section_entries %u, "
2345                        "n_uncommitted_sections %u, n_committed_sections %u, "
2346                        "journal_section_entries %u, free_sectors %u",
2347                        ic->journal_sections, ic->journal_section_entries,
2348                        ic->n_uncommitted_sections, ic->n_committed_sections,
2349                        ic->journal_section_entries, ic->free_sectors);
2350         }
2351 }
2352
2353 static void integrity_commit(struct work_struct *w)
2354 {
2355         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2356         unsigned commit_start, commit_sections;
2357         unsigned i, j, n;
2358         struct bio *flushes;
2359
2360         del_timer(&ic->autocommit_timer);
2361
2362         spin_lock_irq(&ic->endio_wait.lock);
2363         flushes = bio_list_get(&ic->flush_bio_list);
2364         if (unlikely(ic->mode != 'J')) {
2365                 spin_unlock_irq(&ic->endio_wait.lock);
2366                 dm_integrity_flush_buffers(ic, true);
2367                 goto release_flush_bios;
2368         }
2369
2370         pad_uncommitted(ic);
2371         commit_start = ic->uncommitted_section;
2372         commit_sections = ic->n_uncommitted_sections;
2373         spin_unlock_irq(&ic->endio_wait.lock);
2374
2375         if (!commit_sections)
2376                 goto release_flush_bios;
2377
2378         i = commit_start;
2379         for (n = 0; n < commit_sections; n++) {
2380                 for (j = 0; j < ic->journal_section_entries; j++) {
2381                         struct journal_entry *je;
2382                         je = access_journal_entry(ic, i, j);
2383                         io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2384                 }
2385                 for (j = 0; j < ic->journal_section_sectors; j++) {
2386                         struct journal_sector *js;
2387                         js = access_journal(ic, i, j);
2388                         js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2389                 }
2390                 i++;
2391                 if (unlikely(i >= ic->journal_sections))
2392                         ic->commit_seq = next_commit_seq(ic->commit_seq);
2393                 wraparound_section(ic, &i);
2394         }
2395         smp_rmb();
2396
2397         write_journal(ic, commit_start, commit_sections);
2398
2399         spin_lock_irq(&ic->endio_wait.lock);
2400         ic->uncommitted_section += commit_sections;
2401         wraparound_section(ic, &ic->uncommitted_section);
2402         ic->n_uncommitted_sections -= commit_sections;
2403         ic->n_committed_sections += commit_sections;
2404         spin_unlock_irq(&ic->endio_wait.lock);
2405
2406         if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2407                 queue_work(ic->writer_wq, &ic->writer_work);
2408
2409 release_flush_bios:
2410         while (flushes) {
2411                 struct bio *next = flushes->bi_next;
2412                 flushes->bi_next = NULL;
2413                 do_endio(ic, flushes);
2414                 flushes = next;
2415         }
2416 }
2417
2418 static void complete_copy_from_journal(unsigned long error, void *context)
2419 {
2420         struct journal_io *io = context;
2421         struct journal_completion *comp = io->comp;
2422         struct dm_integrity_c *ic = comp->ic;
2423         remove_range(ic, &io->range);
2424         mempool_free(io, &ic->journal_io_mempool);
2425         if (unlikely(error != 0))
2426                 dm_integrity_io_error(ic, "copying from journal", -EIO);
2427         complete_journal_op(comp);
2428 }
2429
2430 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2431                                struct journal_entry *je)
2432 {
2433         unsigned s = 0;
2434         do {
2435                 js->commit_id = je->last_bytes[s];
2436                 js++;
2437         } while (++s < ic->sectors_per_block);
2438 }
2439
2440 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start,
2441                              unsigned write_sections, bool from_replay)
2442 {
2443         unsigned i, j, n;
2444         struct journal_completion comp;
2445         struct blk_plug plug;
2446
2447         blk_start_plug(&plug);
2448
2449         comp.ic = ic;
2450         comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2451         init_completion(&comp.comp);
2452
2453         i = write_start;
2454         for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2455 #ifndef INTERNAL_VERIFY
2456                 if (unlikely(from_replay))
2457 #endif
2458                         rw_section_mac(ic, i, false);
2459                 for (j = 0; j < ic->journal_section_entries; j++) {
2460                         struct journal_entry *je = access_journal_entry(ic, i, j);
2461                         sector_t sec, area, offset;
2462                         unsigned k, l, next_loop;
2463                         sector_t metadata_block;
2464                         unsigned metadata_offset;
2465                         struct journal_io *io;
2466
2467                         if (journal_entry_is_unused(je))
2468                                 continue;
2469                         BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2470                         sec = journal_entry_get_sector(je);
2471                         if (unlikely(from_replay)) {
2472                                 if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) {
2473                                         dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2474                                         sec &= ~(sector_t)(ic->sectors_per_block - 1);
2475                                 }
2476                         }
2477                         if (unlikely(sec >= ic->provided_data_sectors))
2478                                 continue;
2479                         get_area_and_offset(ic, sec, &area, &offset);
2480                         restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2481                         for (k = j + 1; k < ic->journal_section_entries; k++) {
2482                                 struct journal_entry *je2 = access_journal_entry(ic, i, k);
2483                                 sector_t sec2, area2, offset2;
2484                                 if (journal_entry_is_unused(je2))
2485                                         break;
2486                                 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2487                                 sec2 = journal_entry_get_sector(je2);
2488                                 if (unlikely(sec2 >= ic->provided_data_sectors))
2489                                         break;
2490                                 get_area_and_offset(ic, sec2, &area2, &offset2);
2491                                 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2492                                         break;
2493                                 restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2494                         }
2495                         next_loop = k - 1;
2496
2497                         io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2498                         io->comp = &comp;
2499                         io->range.logical_sector = sec;
2500                         io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2501
2502                         spin_lock_irq(&ic->endio_wait.lock);
2503                         add_new_range_and_wait(ic, &io->range);
2504
2505                         if (likely(!from_replay)) {
2506                                 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2507
2508                                 /* don't write if there is newer committed sector */
2509                                 while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2510                                         struct journal_entry *je2 = access_journal_entry(ic, i, j);
2511
2512                                         journal_entry_set_unused(je2);
2513                                         remove_journal_node(ic, &section_node[j]);
2514                                         j++;
2515                                         sec += ic->sectors_per_block;
2516                                         offset += ic->sectors_per_block;
2517                                 }
2518                                 while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2519                                         struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2520
2521                                         journal_entry_set_unused(je2);
2522                                         remove_journal_node(ic, &section_node[k - 1]);
2523                                         k--;
2524                                 }
2525                                 if (j == k) {
2526                                         remove_range_unlocked(ic, &io->range);
2527                                         spin_unlock_irq(&ic->endio_wait.lock);
2528                                         mempool_free(io, &ic->journal_io_mempool);
2529                                         goto skip_io;
2530                                 }
2531                                 for (l = j; l < k; l++) {
2532                                         remove_journal_node(ic, &section_node[l]);
2533                                 }
2534                         }
2535                         spin_unlock_irq(&ic->endio_wait.lock);
2536
2537                         metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2538                         for (l = j; l < k; l++) {
2539                                 int r;
2540                                 struct journal_entry *je2 = access_journal_entry(ic, i, l);
2541
2542                                 if (
2543 #ifndef INTERNAL_VERIFY
2544                                     unlikely(from_replay) &&
2545 #endif
2546                                     ic->internal_hash) {
2547                                         char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2548
2549                                         integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2550                                                                   (char *)access_journal_data(ic, i, l), test_tag);
2551                                         if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) {
2552                                                 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2553                                                 dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0);
2554                                         }
2555                                 }
2556
2557                                 journal_entry_set_unused(je2);
2558                                 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2559                                                         ic->tag_size, TAG_WRITE);
2560                                 if (unlikely(r)) {
2561                                         dm_integrity_io_error(ic, "reading tags", r);
2562                                 }
2563                         }
2564
2565                         atomic_inc(&comp.in_flight);
2566                         copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2567                                           (k - j) << ic->sb->log2_sectors_per_block,
2568                                           get_data_sector(ic, area, offset),
2569                                           complete_copy_from_journal, io);
2570 skip_io:
2571                         j = next_loop;
2572                 }
2573         }
2574
2575         dm_bufio_write_dirty_buffers_async(ic->bufio);
2576
2577         blk_finish_plug(&plug);
2578
2579         complete_journal_op(&comp);
2580         wait_for_completion_io(&comp.comp);
2581
2582         dm_integrity_flush_buffers(ic, true);
2583 }
2584
2585 static void integrity_writer(struct work_struct *w)
2586 {
2587         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2588         unsigned write_start, write_sections;
2589
2590         unsigned prev_free_sectors;
2591
2592         /* the following test is not needed, but it tests the replay code */
2593         if (unlikely(dm_post_suspending(ic->ti)) && !ic->meta_dev)
2594                 return;
2595
2596         spin_lock_irq(&ic->endio_wait.lock);
2597         write_start = ic->committed_section;
2598         write_sections = ic->n_committed_sections;
2599         spin_unlock_irq(&ic->endio_wait.lock);
2600
2601         if (!write_sections)
2602                 return;
2603
2604         do_journal_write(ic, write_start, write_sections, false);
2605
2606         spin_lock_irq(&ic->endio_wait.lock);
2607
2608         ic->committed_section += write_sections;
2609         wraparound_section(ic, &ic->committed_section);
2610         ic->n_committed_sections -= write_sections;
2611
2612         prev_free_sectors = ic->free_sectors;
2613         ic->free_sectors += write_sections * ic->journal_section_entries;
2614         if (unlikely(!prev_free_sectors))
2615                 wake_up_locked(&ic->endio_wait);
2616
2617         spin_unlock_irq(&ic->endio_wait.lock);
2618 }
2619
2620 static void recalc_write_super(struct dm_integrity_c *ic)
2621 {
2622         int r;
2623
2624         dm_integrity_flush_buffers(ic, false);
2625         if (dm_integrity_failed(ic))
2626                 return;
2627
2628         r = sync_rw_sb(ic, REQ_OP_WRITE, 0);
2629         if (unlikely(r))
2630                 dm_integrity_io_error(ic, "writing superblock", r);
2631 }
2632
2633 static void integrity_recalc(struct work_struct *w)
2634 {
2635         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2636         struct dm_integrity_range range;
2637         struct dm_io_request io_req;
2638         struct dm_io_region io_loc;
2639         sector_t area, offset;
2640         sector_t metadata_block;
2641         unsigned metadata_offset;
2642         sector_t logical_sector, n_sectors;
2643         __u8 *t;
2644         unsigned i;
2645         int r;
2646         unsigned super_counter = 0;
2647
2648         DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2649
2650         spin_lock_irq(&ic->endio_wait.lock);
2651
2652 next_chunk:
2653
2654         if (unlikely(dm_post_suspending(ic->ti)))
2655                 goto unlock_ret;
2656
2657         range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2658         if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2659                 if (ic->mode == 'B') {
2660                         block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2661                         DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2662                         queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2663                 }
2664                 goto unlock_ret;
2665         }
2666
2667         get_area_and_offset(ic, range.logical_sector, &area, &offset);
2668         range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector);
2669         if (!ic->meta_dev)
2670                 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned)offset);
2671
2672         add_new_range_and_wait(ic, &range);
2673         spin_unlock_irq(&ic->endio_wait.lock);
2674         logical_sector = range.logical_sector;
2675         n_sectors = range.n_sectors;
2676
2677         if (ic->mode == 'B') {
2678                 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) {
2679                         goto advance_and_next;
2680                 }
2681                 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2682                                        ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2683                         logical_sector += ic->sectors_per_block;
2684                         n_sectors -= ic->sectors_per_block;
2685                         cond_resched();
2686                 }
2687                 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2688                                        ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2689                         n_sectors -= ic->sectors_per_block;
2690                         cond_resched();
2691                 }
2692                 get_area_and_offset(ic, logical_sector, &area, &offset);
2693         }
2694
2695         DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
2696
2697         if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2698                 recalc_write_super(ic);
2699                 if (ic->mode == 'B') {
2700                         queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2701                 }
2702                 super_counter = 0;
2703         }
2704
2705         if (unlikely(dm_integrity_failed(ic)))
2706                 goto err;
2707
2708         io_req.bi_op = REQ_OP_READ;
2709         io_req.bi_op_flags = 0;
2710         io_req.mem.type = DM_IO_VMA;
2711         io_req.mem.ptr.addr = ic->recalc_buffer;
2712         io_req.notify.fn = NULL;
2713         io_req.client = ic->io;
2714         io_loc.bdev = ic->dev->bdev;
2715         io_loc.sector = get_data_sector(ic, area, offset);
2716         io_loc.count = n_sectors;
2717
2718         r = dm_io(&io_req, 1, &io_loc, NULL);
2719         if (unlikely(r)) {
2720                 dm_integrity_io_error(ic, "reading data", r);
2721                 goto err;
2722         }
2723
2724         t = ic->recalc_tags;
2725         for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2726                 integrity_sector_checksum(ic, logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t);
2727                 t += ic->tag_size;
2728         }
2729
2730         metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2731
2732         r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE);
2733         if (unlikely(r)) {
2734                 dm_integrity_io_error(ic, "writing tags", r);
2735                 goto err;
2736         }
2737
2738         if (ic->mode == 'B') {
2739                 sector_t start, end;
2740                 start = (range.logical_sector >>
2741                          (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2742                         (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2743                 end = ((range.logical_sector + range.n_sectors) >>
2744                        (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2745                         (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2746                 block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
2747         }
2748
2749 advance_and_next:
2750         cond_resched();
2751
2752         spin_lock_irq(&ic->endio_wait.lock);
2753         remove_range_unlocked(ic, &range);
2754         ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2755         goto next_chunk;
2756
2757 err:
2758         remove_range(ic, &range);
2759         return;
2760
2761 unlock_ret:
2762         spin_unlock_irq(&ic->endio_wait.lock);
2763
2764         recalc_write_super(ic);
2765 }
2766
2767 static void bitmap_block_work(struct work_struct *w)
2768 {
2769         struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2770         struct dm_integrity_c *ic = bbs->ic;
2771         struct bio *bio;
2772         struct bio_list bio_queue;
2773         struct bio_list waiting;
2774
2775         bio_list_init(&waiting);
2776
2777         spin_lock(&bbs->bio_queue_lock);
2778         bio_queue = bbs->bio_queue;
2779         bio_list_init(&bbs->bio_queue);
2780         spin_unlock(&bbs->bio_queue_lock);
2781
2782         while ((bio = bio_list_pop(&bio_queue))) {
2783                 struct dm_integrity_io *dio;
2784
2785                 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2786
2787                 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2788                                     dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2789                         remove_range(ic, &dio->range);
2790                         INIT_WORK(&dio->work, integrity_bio_wait);
2791                         queue_work(ic->offload_wq, &dio->work);
2792                 } else {
2793                         block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2794                                         dio->range.n_sectors, BITMAP_OP_SET);
2795                         bio_list_add(&waiting, bio);
2796                 }
2797         }
2798
2799         if (bio_list_empty(&waiting))
2800                 return;
2801
2802         rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC,
2803                            bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2804                            BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2805
2806         while ((bio = bio_list_pop(&waiting))) {
2807                 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2808
2809                 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2810                                 dio->range.n_sectors, BITMAP_OP_SET);
2811
2812                 remove_range(ic, &dio->range);
2813                 INIT_WORK(&dio->work, integrity_bio_wait);
2814                 queue_work(ic->offload_wq, &dio->work);
2815         }
2816
2817         queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2818 }
2819
2820 static void bitmap_flush_work(struct work_struct *work)
2821 {
2822         struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2823         struct dm_integrity_range range;
2824         unsigned long limit;
2825         struct bio *bio;
2826
2827         dm_integrity_flush_buffers(ic, false);
2828
2829         range.logical_sector = 0;
2830         range.n_sectors = ic->provided_data_sectors;
2831
2832         spin_lock_irq(&ic->endio_wait.lock);
2833         add_new_range_and_wait(ic, &range);
2834         spin_unlock_irq(&ic->endio_wait.lock);
2835
2836         dm_integrity_flush_buffers(ic, true);
2837
2838         limit = ic->provided_data_sectors;
2839         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2840                 limit = le64_to_cpu(ic->sb->recalc_sector)
2841                         >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2842                         << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2843         }
2844         /*DEBUG_print("zeroing journal\n");*/
2845         block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2846         block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2847
2848         rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
2849                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2850
2851         spin_lock_irq(&ic->endio_wait.lock);
2852         remove_range_unlocked(ic, &range);
2853         while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2854                 bio_endio(bio);
2855                 spin_unlock_irq(&ic->endio_wait.lock);
2856                 spin_lock_irq(&ic->endio_wait.lock);
2857         }
2858         spin_unlock_irq(&ic->endio_wait.lock);
2859 }
2860
2861
2862 static void init_journal(struct dm_integrity_c *ic, unsigned start_section,
2863                          unsigned n_sections, unsigned char commit_seq)
2864 {
2865         unsigned i, j, n;
2866
2867         if (!n_sections)
2868                 return;
2869
2870         for (n = 0; n < n_sections; n++) {
2871                 i = start_section + n;
2872                 wraparound_section(ic, &i);
2873                 for (j = 0; j < ic->journal_section_sectors; j++) {
2874                         struct journal_sector *js = access_journal(ic, i, j);
2875                         BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA);
2876                         memset(&js->sectors, 0, sizeof(js->sectors));
2877                         js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2878                 }
2879                 for (j = 0; j < ic->journal_section_entries; j++) {
2880                         struct journal_entry *je = access_journal_entry(ic, i, j);
2881                         journal_entry_set_unused(je);
2882                 }
2883         }
2884
2885         write_journal(ic, start_section, n_sections);
2886 }
2887
2888 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id)
2889 {
2890         unsigned char k;
2891         for (k = 0; k < N_COMMIT_IDS; k++) {
2892                 if (dm_integrity_commit_id(ic, i, j, k) == id)
2893                         return k;
2894         }
2895         dm_integrity_io_error(ic, "journal commit id", -EIO);
2896         return -EIO;
2897 }
2898
2899 static void replay_journal(struct dm_integrity_c *ic)
2900 {
2901         unsigned i, j;
2902         bool used_commit_ids[N_COMMIT_IDS];
2903         unsigned max_commit_id_sections[N_COMMIT_IDS];
2904         unsigned write_start, write_sections;
2905         unsigned continue_section;
2906         bool journal_empty;
2907         unsigned char unused, last_used, want_commit_seq;
2908
2909         if (ic->mode == 'R')
2910                 return;
2911
2912         if (ic->journal_uptodate)
2913                 return;
2914
2915         last_used = 0;
2916         write_start = 0;
2917
2918         if (!ic->just_formatted) {
2919                 DEBUG_print("reading journal\n");
2920                 rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL);
2921                 if (ic->journal_io)
2922                         DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2923                 if (ic->journal_io) {
2924                         struct journal_completion crypt_comp;
2925                         crypt_comp.ic = ic;
2926                         init_completion(&crypt_comp.comp);
2927                         crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2928                         encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2929                         wait_for_completion(&crypt_comp.comp);
2930                 }
2931                 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2932         }
2933
2934         if (dm_integrity_failed(ic))
2935                 goto clear_journal;
2936
2937         journal_empty = true;
2938         memset(used_commit_ids, 0, sizeof used_commit_ids);
2939         memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
2940         for (i = 0; i < ic->journal_sections; i++) {
2941                 for (j = 0; j < ic->journal_section_sectors; j++) {
2942                         int k;
2943                         struct journal_sector *js = access_journal(ic, i, j);
2944                         k = find_commit_seq(ic, i, j, js->commit_id);
2945                         if (k < 0)
2946                                 goto clear_journal;
2947                         used_commit_ids[k] = true;
2948                         max_commit_id_sections[k] = i;
2949                 }
2950                 if (journal_empty) {
2951                         for (j = 0; j < ic->journal_section_entries; j++) {
2952                                 struct journal_entry *je = access_journal_entry(ic, i, j);
2953                                 if (!journal_entry_is_unused(je)) {
2954                                         journal_empty = false;
2955                                         break;
2956                                 }
2957                         }
2958                 }
2959         }
2960
2961         if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2962                 unused = N_COMMIT_IDS - 1;
2963                 while (unused && !used_commit_ids[unused - 1])
2964                         unused--;
2965         } else {
2966                 for (unused = 0; unused < N_COMMIT_IDS; unused++)
2967                         if (!used_commit_ids[unused])
2968                                 break;
2969                 if (unused == N_COMMIT_IDS) {
2970                         dm_integrity_io_error(ic, "journal commit ids", -EIO);
2971                         goto clear_journal;
2972                 }
2973         }
2974         DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
2975                     unused, used_commit_ids[0], used_commit_ids[1],
2976                     used_commit_ids[2], used_commit_ids[3]);
2977
2978         last_used = prev_commit_seq(unused);
2979         want_commit_seq = prev_commit_seq(last_used);
2980
2981         if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
2982                 journal_empty = true;
2983
2984         write_start = max_commit_id_sections[last_used] + 1;
2985         if (unlikely(write_start >= ic->journal_sections))
2986                 want_commit_seq = next_commit_seq(want_commit_seq);
2987         wraparound_section(ic, &write_start);
2988
2989         i = write_start;
2990         for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
2991                 for (j = 0; j < ic->journal_section_sectors; j++) {
2992                         struct journal_sector *js = access_journal(ic, i, j);
2993
2994                         if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
2995                                 /*
2996                                  * This could be caused by crash during writing.
2997                                  * We won't replay the inconsistent part of the
2998                                  * journal.
2999                                  */
3000                                 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
3001                                             i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
3002                                 goto brk;
3003                         }
3004                 }
3005                 i++;
3006                 if (unlikely(i >= ic->journal_sections))
3007                         want_commit_seq = next_commit_seq(want_commit_seq);
3008                 wraparound_section(ic, &i);
3009         }
3010 brk:
3011
3012         if (!journal_empty) {
3013                 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
3014                             write_sections, write_start, want_commit_seq);
3015                 do_journal_write(ic, write_start, write_sections, true);
3016         }
3017
3018         if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
3019                 continue_section = write_start;
3020                 ic->commit_seq = want_commit_seq;
3021                 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
3022         } else {
3023                 unsigned s;
3024                 unsigned char erase_seq;
3025 clear_journal:
3026                 DEBUG_print("clearing journal\n");
3027
3028                 erase_seq = prev_commit_seq(prev_commit_seq(last_used));
3029                 s = write_start;
3030                 init_journal(ic, s, 1, erase_seq);
3031                 s++;
3032                 wraparound_section(ic, &s);
3033                 if (ic->journal_sections >= 2) {
3034                         init_journal(ic, s, ic->journal_sections - 2, erase_seq);
3035                         s += ic->journal_sections - 2;
3036                         wraparound_section(ic, &s);
3037                         init_journal(ic, s, 1, erase_seq);
3038                 }
3039
3040                 continue_section = 0;
3041                 ic->commit_seq = next_commit_seq(erase_seq);
3042         }
3043
3044         ic->committed_section = continue_section;
3045         ic->n_committed_sections = 0;
3046
3047         ic->uncommitted_section = continue_section;
3048         ic->n_uncommitted_sections = 0;
3049
3050         ic->free_section = continue_section;
3051         ic->free_section_entry = 0;
3052         ic->free_sectors = ic->journal_entries;
3053
3054         ic->journal_tree_root = RB_ROOT;
3055         for (i = 0; i < ic->journal_entries; i++)
3056                 init_journal_node(&ic->journal_tree[i]);
3057 }
3058
3059 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
3060 {
3061         DEBUG_print("dm_integrity_enter_synchronous_mode\n");
3062
3063         if (ic->mode == 'B') {
3064                 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
3065                 ic->synchronous_mode = 1;
3066
3067                 cancel_delayed_work_sync(&ic->bitmap_flush_work);
3068                 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3069                 flush_workqueue(ic->commit_wq);
3070         }
3071 }
3072
3073 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
3074 {
3075         struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
3076
3077         DEBUG_print("dm_integrity_reboot\n");
3078
3079         dm_integrity_enter_synchronous_mode(ic);
3080
3081         return NOTIFY_DONE;
3082 }
3083
3084 static void dm_integrity_postsuspend(struct dm_target *ti)
3085 {
3086         struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3087         int r;
3088
3089         WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
3090
3091         del_timer_sync(&ic->autocommit_timer);
3092
3093         if (ic->recalc_wq)
3094                 drain_workqueue(ic->recalc_wq);
3095
3096         if (ic->mode == 'B')
3097                 cancel_delayed_work_sync(&ic->bitmap_flush_work);
3098
3099         queue_work(ic->commit_wq, &ic->commit_work);
3100         drain_workqueue(ic->commit_wq);
3101
3102         if (ic->mode == 'J') {
3103                 if (ic->meta_dev)
3104                         queue_work(ic->writer_wq, &ic->writer_work);
3105                 drain_workqueue(ic->writer_wq);
3106                 dm_integrity_flush_buffers(ic, true);
3107         }
3108
3109         if (ic->mode == 'B') {
3110                 dm_integrity_flush_buffers(ic, true);
3111 #if 1
3112                 /* set to 0 to test bitmap replay code */
3113                 init_journal(ic, 0, ic->journal_sections, 0);
3114                 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3115                 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3116                 if (unlikely(r))
3117                         dm_integrity_io_error(ic, "writing superblock", r);
3118 #endif
3119         }
3120
3121         BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3122
3123         ic->journal_uptodate = true;
3124 }
3125
3126 static void dm_integrity_resume(struct dm_target *ti)
3127 {
3128         struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3129         __u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3130         int r;
3131
3132         DEBUG_print("resume\n");
3133
3134         if (ic->provided_data_sectors != old_provided_data_sectors) {
3135                 if (ic->provided_data_sectors > old_provided_data_sectors &&
3136                     ic->mode == 'B' &&
3137                     ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3138                         rw_journal_sectors(ic, REQ_OP_READ, 0, 0,
3139                                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3140                         block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3141                                         ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3142                         rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3143                                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3144                 }
3145
3146                 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3147                 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3148                 if (unlikely(r))
3149                         dm_integrity_io_error(ic, "writing superblock", r);
3150         }
3151
3152         if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3153                 DEBUG_print("resume dirty_bitmap\n");
3154                 rw_journal_sectors(ic, REQ_OP_READ, 0, 0,
3155                                    ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3156                 if (ic->mode == 'B') {
3157                         if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3158                             !ic->reset_recalculate_flag) {
3159                                 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3160                                 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3161                                 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3162                                                      BITMAP_OP_TEST_ALL_CLEAR)) {
3163                                         ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3164                                         ic->sb->recalc_sector = cpu_to_le64(0);
3165                                 }
3166                         } else {
3167                                 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3168                                             ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3169                                 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3170                                 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3171                                 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3172                                 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3173                                 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3174                                                    ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3175                                 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3176                                 ic->sb->recalc_sector = cpu_to_le64(0);
3177                         }
3178                 } else {
3179                         if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3180                               block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) ||
3181                             ic->reset_recalculate_flag) {
3182                                 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3183                                 ic->sb->recalc_sector = cpu_to_le64(0);
3184                         }
3185                         init_journal(ic, 0, ic->journal_sections, 0);
3186                         replay_journal(ic);
3187                         ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3188                 }
3189                 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3190                 if (unlikely(r))
3191                         dm_integrity_io_error(ic, "writing superblock", r);
3192         } else {
3193                 replay_journal(ic);
3194                 if (ic->reset_recalculate_flag) {
3195                         ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3196                         ic->sb->recalc_sector = cpu_to_le64(0);
3197                 }
3198                 if (ic->mode == 'B') {
3199                         ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3200                         ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3201                         r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3202                         if (unlikely(r))
3203                                 dm_integrity_io_error(ic, "writing superblock", r);
3204
3205                         block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3206                         block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3207                         block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3208                         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3209                             le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3210                                 block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3211                                                 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3212                                 block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3213                                                 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3214                                 block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3215                                                 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3216                         }
3217                         rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3218                                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3219                 }
3220         }
3221
3222         DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3223         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3224                 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3225                 DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3226                 if (recalc_pos < ic->provided_data_sectors) {
3227                         queue_work(ic->recalc_wq, &ic->recalc_work);
3228                 } else if (recalc_pos > ic->provided_data_sectors) {
3229                         ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3230                         recalc_write_super(ic);
3231                 }
3232         }
3233
3234         ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3235         ic->reboot_notifier.next = NULL;
3236         ic->reboot_notifier.priority = INT_MAX - 1;     /* be notified after md and before hardware drivers */
3237         WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3238
3239 #if 0
3240         /* set to 1 to stress test synchronous mode */
3241         dm_integrity_enter_synchronous_mode(ic);
3242 #endif
3243 }
3244
3245 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3246                                 unsigned status_flags, char *result, unsigned maxlen)
3247 {
3248         struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3249         unsigned arg_count;
3250         size_t sz = 0;
3251
3252         switch (type) {
3253         case STATUSTYPE_INFO:
3254                 DMEMIT("%llu %llu",
3255                         (unsigned long long)atomic64_read(&ic->number_of_mismatches),
3256                         ic->provided_data_sectors);
3257                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3258                         DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3259                 else
3260                         DMEMIT(" -");
3261                 break;
3262
3263         case STATUSTYPE_TABLE: {
3264                 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3265                 watermark_percentage += ic->journal_entries / 2;
3266                 do_div(watermark_percentage, ic->journal_entries);
3267                 arg_count = 3;
3268                 arg_count += !!ic->meta_dev;
3269                 arg_count += ic->sectors_per_block != 1;
3270                 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3271                 arg_count += ic->reset_recalculate_flag;
3272                 arg_count += ic->discard;
3273                 arg_count += ic->mode == 'J';
3274                 arg_count += ic->mode == 'J';
3275                 arg_count += ic->mode == 'B';
3276                 arg_count += ic->mode == 'B';
3277                 arg_count += !!ic->internal_hash_alg.alg_string;
3278                 arg_count += !!ic->journal_crypt_alg.alg_string;
3279                 arg_count += !!ic->journal_mac_alg.alg_string;
3280                 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3281                 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
3282                 arg_count += ic->legacy_recalculate;
3283                 DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3284                        ic->tag_size, ic->mode, arg_count);
3285                 if (ic->meta_dev)
3286                         DMEMIT(" meta_device:%s", ic->meta_dev->name);
3287                 if (ic->sectors_per_block != 1)
3288                         DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3289                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3290                         DMEMIT(" recalculate");
3291                 if (ic->reset_recalculate_flag)
3292                         DMEMIT(" reset_recalculate");
3293                 if (ic->discard)
3294                         DMEMIT(" allow_discards");
3295                 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3296                 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3297                 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3298                 if (ic->mode == 'J') {
3299                         DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage);
3300                         DMEMIT(" commit_time:%u", ic->autocommit_msec);
3301                 }
3302                 if (ic->mode == 'B') {
3303                         DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3304                         DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3305                 }
3306                 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3307                         DMEMIT(" fix_padding");
3308                 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
3309                         DMEMIT(" fix_hmac");
3310                 if (ic->legacy_recalculate)
3311                         DMEMIT(" legacy_recalculate");
3312
3313 #define EMIT_ALG(a, n)                                                  \
3314                 do {                                                    \
3315                         if (ic->a.alg_string) {                         \
3316                                 DMEMIT(" %s:%s", n, ic->a.alg_string);  \
3317                                 if (ic->a.key_string)                   \
3318                                         DMEMIT(":%s", ic->a.key_string);\
3319                         }                                               \
3320                 } while (0)
3321                 EMIT_ALG(internal_hash_alg, "internal_hash");
3322                 EMIT_ALG(journal_crypt_alg, "journal_crypt");
3323                 EMIT_ALG(journal_mac_alg, "journal_mac");
3324                 break;
3325         }
3326         case STATUSTYPE_IMA:
3327                 DMEMIT_TARGET_NAME_VERSION(ti->type);
3328                 DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c",
3329                         ic->dev->name, ic->start, ic->tag_size, ic->mode);
3330
3331                 if (ic->meta_dev)
3332                         DMEMIT(",meta_device=%s", ic->meta_dev->name);
3333                 if (ic->sectors_per_block != 1)
3334                         DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT);
3335
3336                 DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ?
3337                        'y' : 'n');
3338                 DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n');
3339                 DMEMIT(",fix_padding=%c",
3340                        ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n');
3341                 DMEMIT(",fix_hmac=%c",
3342                        ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n');
3343                 DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n');
3344
3345                 DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS);
3346                 DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors);
3347                 DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors);
3348                 DMEMIT(";");
3349                 break;
3350         }
3351 }
3352
3353 static int dm_integrity_iterate_devices(struct dm_target *ti,
3354                                         iterate_devices_callout_fn fn, void *data)
3355 {
3356         struct dm_integrity_c *ic = ti->private;
3357
3358         if (!ic->meta_dev)
3359                 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3360         else
3361                 return fn(ti, ic->dev, 0, ti->len, data);
3362 }
3363
3364 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3365 {
3366         struct dm_integrity_c *ic = ti->private;
3367
3368         if (ic->sectors_per_block > 1) {
3369                 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3370                 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3371                 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3372         }
3373 }
3374
3375 static void calculate_journal_section_size(struct dm_integrity_c *ic)
3376 {
3377         unsigned sector_space = JOURNAL_SECTOR_DATA;
3378
3379         ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3380         ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3381                                          JOURNAL_ENTRY_ROUNDUP);
3382
3383         if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3384                 sector_space -= JOURNAL_MAC_PER_SECTOR;
3385         ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3386         ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3387         ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3388         ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3389 }
3390
3391 static int calculate_device_limits(struct dm_integrity_c *ic)
3392 {
3393         __u64 initial_sectors;
3394
3395         calculate_journal_section_size(ic);
3396         initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3397         if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3398                 return -EINVAL;
3399         ic->initial_sectors = initial_sectors;
3400
3401         if (!ic->meta_dev) {
3402                 sector_t last_sector, last_area, last_offset;
3403
3404                 /* we have to maintain excessive padding for compatibility with existing volumes */
3405                 __u64 metadata_run_padding =
3406                         ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3407                         (__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3408                         (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3409
3410                 ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3411                                             metadata_run_padding) >> SECTOR_SHIFT;
3412                 if (!(ic->metadata_run & (ic->metadata_run - 1)))
3413                         ic->log2_metadata_run = __ffs(ic->metadata_run);
3414                 else
3415                         ic->log2_metadata_run = -1;
3416
3417                 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3418                 last_sector = get_data_sector(ic, last_area, last_offset);
3419                 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3420                         return -EINVAL;
3421         } else {
3422                 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3423                 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3424                                 >> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3425                 meta_size <<= ic->log2_buffer_sectors;
3426                 if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3427                     ic->initial_sectors + meta_size > ic->meta_device_sectors)
3428                         return -EINVAL;
3429                 ic->metadata_run = 1;
3430                 ic->log2_metadata_run = 0;
3431         }
3432
3433         return 0;
3434 }
3435
3436 static void get_provided_data_sectors(struct dm_integrity_c *ic)
3437 {
3438         if (!ic->meta_dev) {
3439                 int test_bit;
3440                 ic->provided_data_sectors = 0;
3441                 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3442                         __u64 prev_data_sectors = ic->provided_data_sectors;
3443
3444                         ic->provided_data_sectors |= (sector_t)1 << test_bit;
3445                         if (calculate_device_limits(ic))
3446                                 ic->provided_data_sectors = prev_data_sectors;
3447                 }
3448         } else {
3449                 ic->provided_data_sectors = ic->data_device_sectors;
3450                 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3451         }
3452 }
3453
3454 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors)
3455 {
3456         unsigned journal_sections;
3457         int test_bit;
3458
3459         memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3460         memcpy(ic->sb->magic, SB_MAGIC, 8);
3461         ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3462         ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3463         if (ic->journal_mac_alg.alg_string)
3464                 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3465
3466         calculate_journal_section_size(ic);
3467         journal_sections = journal_sectors / ic->journal_section_sectors;
3468         if (!journal_sections)
3469                 journal_sections = 1;
3470
3471         if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
3472                 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
3473                 get_random_bytes(ic->sb->salt, SALT_SIZE);
3474         }
3475
3476         if (!ic->meta_dev) {
3477                 if (ic->fix_padding)
3478                         ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3479                 ic->sb->journal_sections = cpu_to_le32(journal_sections);
3480                 if (!interleave_sectors)
3481                         interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3482                 ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3483                 ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3484                 ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3485
3486                 get_provided_data_sectors(ic);
3487                 if (!ic->provided_data_sectors)
3488                         return -EINVAL;
3489         } else {
3490                 ic->sb->log2_interleave_sectors = 0;
3491
3492                 get_provided_data_sectors(ic);
3493                 if (!ic->provided_data_sectors)
3494                         return -EINVAL;
3495
3496 try_smaller_buffer:
3497                 ic->sb->journal_sections = cpu_to_le32(0);
3498                 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3499                         __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3500                         __u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3501                         if (test_journal_sections > journal_sections)
3502                                 continue;
3503                         ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3504                         if (calculate_device_limits(ic))
3505                                 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3506
3507                 }
3508                 if (!le32_to_cpu(ic->sb->journal_sections)) {
3509                         if (ic->log2_buffer_sectors > 3) {
3510                                 ic->log2_buffer_sectors--;
3511                                 goto try_smaller_buffer;
3512                         }
3513                         return -EINVAL;
3514                 }
3515         }
3516
3517         ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3518
3519         sb_set_version(ic);
3520
3521         return 0;
3522 }
3523
3524 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3525 {
3526         struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3527         struct blk_integrity bi;
3528
3529         memset(&bi, 0, sizeof(bi));
3530         bi.profile = &dm_integrity_profile;
3531         bi.tuple_size = ic->tag_size;
3532         bi.tag_size = bi.tuple_size;
3533         bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3534
3535         blk_integrity_register(disk, &bi);
3536         blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3537 }
3538
3539 static void dm_integrity_free_page_list(struct page_list *pl)
3540 {
3541         unsigned i;
3542
3543         if (!pl)
3544                 return;
3545         for (i = 0; pl[i].page; i++)
3546                 __free_page(pl[i].page);
3547         kvfree(pl);
3548 }
3549
3550 static struct page_list *dm_integrity_alloc_page_list(unsigned n_pages)
3551 {
3552         struct page_list *pl;
3553         unsigned i;
3554
3555         pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3556         if (!pl)
3557                 return NULL;
3558
3559         for (i = 0; i < n_pages; i++) {
3560                 pl[i].page = alloc_page(GFP_KERNEL);
3561                 if (!pl[i].page) {
3562                         dm_integrity_free_page_list(pl);
3563                         return NULL;
3564                 }
3565                 if (i)
3566                         pl[i - 1].next = &pl[i];
3567         }
3568         pl[i].page = NULL;
3569         pl[i].next = NULL;
3570
3571         return pl;
3572 }
3573
3574 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3575 {
3576         unsigned i;
3577         for (i = 0; i < ic->journal_sections; i++)
3578                 kvfree(sl[i]);
3579         kvfree(sl);
3580 }
3581
3582 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3583                                                                    struct page_list *pl)
3584 {
3585         struct scatterlist **sl;
3586         unsigned i;
3587
3588         sl = kvmalloc_array(ic->journal_sections,
3589                             sizeof(struct scatterlist *),
3590                             GFP_KERNEL | __GFP_ZERO);
3591         if (!sl)
3592                 return NULL;
3593
3594         for (i = 0; i < ic->journal_sections; i++) {
3595                 struct scatterlist *s;
3596                 unsigned start_index, start_offset;
3597                 unsigned end_index, end_offset;
3598                 unsigned n_pages;
3599                 unsigned idx;
3600
3601                 page_list_location(ic, i, 0, &start_index, &start_offset);
3602                 page_list_location(ic, i, ic->journal_section_sectors - 1,
3603                                    &end_index, &end_offset);
3604
3605                 n_pages = (end_index - start_index + 1);
3606
3607                 s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3608                                    GFP_KERNEL);
3609                 if (!s) {
3610                         dm_integrity_free_journal_scatterlist(ic, sl);
3611                         return NULL;
3612                 }
3613
3614                 sg_init_table(s, n_pages);
3615                 for (idx = start_index; idx <= end_index; idx++) {
3616                         char *va = lowmem_page_address(pl[idx].page);
3617                         unsigned start = 0, end = PAGE_SIZE;
3618                         if (idx == start_index)
3619                                 start = start_offset;
3620                         if (idx == end_index)
3621                                 end = end_offset + (1 << SECTOR_SHIFT);
3622                         sg_set_buf(&s[idx - start_index], va + start, end - start);
3623                 }
3624
3625                 sl[i] = s;
3626         }
3627
3628         return sl;
3629 }
3630
3631 static void free_alg(struct alg_spec *a)
3632 {
3633         kfree_sensitive(a->alg_string);
3634         kfree_sensitive(a->key);
3635         memset(a, 0, sizeof *a);
3636 }
3637
3638 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3639 {
3640         char *k;
3641
3642         free_alg(a);
3643
3644         a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3645         if (!a->alg_string)
3646                 goto nomem;
3647
3648         k = strchr(a->alg_string, ':');
3649         if (k) {
3650                 *k = 0;
3651                 a->key_string = k + 1;
3652                 if (strlen(a->key_string) & 1)
3653                         goto inval;
3654
3655                 a->key_size = strlen(a->key_string) / 2;
3656                 a->key = kmalloc(a->key_size, GFP_KERNEL);
3657                 if (!a->key)
3658                         goto nomem;
3659                 if (hex2bin(a->key, a->key_string, a->key_size))
3660                         goto inval;
3661         }
3662
3663         return 0;
3664 inval:
3665         *error = error_inval;
3666         return -EINVAL;
3667 nomem:
3668         *error = "Out of memory for an argument";
3669         return -ENOMEM;
3670 }
3671
3672 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3673                    char *error_alg, char *error_key)
3674 {
3675         int r;
3676
3677         if (a->alg_string) {
3678                 *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3679                 if (IS_ERR(*hash)) {
3680                         *error = error_alg;
3681                         r = PTR_ERR(*hash);
3682                         *hash = NULL;
3683                         return r;
3684                 }
3685
3686                 if (a->key) {
3687                         r = crypto_shash_setkey(*hash, a->key, a->key_size);
3688                         if (r) {
3689                                 *error = error_key;
3690                                 return r;
3691                         }
3692                 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3693                         *error = error_key;
3694                         return -ENOKEY;
3695                 }
3696         }
3697
3698         return 0;
3699 }
3700
3701 static int create_journal(struct dm_integrity_c *ic, char **error)
3702 {
3703         int r = 0;
3704         unsigned i;
3705         __u64 journal_pages, journal_desc_size, journal_tree_size;
3706         unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3707         struct skcipher_request *req = NULL;
3708
3709         ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3710         ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3711         ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3712         ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3713
3714         journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3715                                 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3716         journal_desc_size = journal_pages * sizeof(struct page_list);
3717         if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3718                 *error = "Journal doesn't fit into memory";
3719                 r = -ENOMEM;
3720                 goto bad;
3721         }
3722         ic->journal_pages = journal_pages;
3723
3724         ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3725         if (!ic->journal) {
3726                 *error = "Could not allocate memory for journal";
3727                 r = -ENOMEM;
3728                 goto bad;
3729         }
3730         if (ic->journal_crypt_alg.alg_string) {
3731                 unsigned ivsize, blocksize;
3732                 struct journal_completion comp;
3733
3734                 comp.ic = ic;
3735                 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3736                 if (IS_ERR(ic->journal_crypt)) {
3737                         *error = "Invalid journal cipher";
3738                         r = PTR_ERR(ic->journal_crypt);
3739                         ic->journal_crypt = NULL;
3740                         goto bad;
3741                 }
3742                 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3743                 blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3744
3745                 if (ic->journal_crypt_alg.key) {
3746                         r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3747                                                    ic->journal_crypt_alg.key_size);
3748                         if (r) {
3749                                 *error = "Error setting encryption key";
3750                                 goto bad;
3751                         }
3752                 }
3753                 DEBUG_print("cipher %s, block size %u iv size %u\n",
3754                             ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3755
3756                 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3757                 if (!ic->journal_io) {
3758                         *error = "Could not allocate memory for journal io";
3759                         r = -ENOMEM;
3760                         goto bad;
3761                 }
3762
3763                 if (blocksize == 1) {
3764                         struct scatterlist *sg;
3765
3766                         req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3767                         if (!req) {
3768                                 *error = "Could not allocate crypt request";
3769                                 r = -ENOMEM;
3770                                 goto bad;
3771                         }
3772
3773                         crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3774                         if (!crypt_iv) {
3775                                 *error = "Could not allocate iv";
3776                                 r = -ENOMEM;
3777                                 goto bad;
3778                         }
3779
3780                         ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3781                         if (!ic->journal_xor) {
3782                                 *error = "Could not allocate memory for journal xor";
3783                                 r = -ENOMEM;
3784                                 goto bad;
3785                         }
3786
3787                         sg = kvmalloc_array(ic->journal_pages + 1,
3788                                             sizeof(struct scatterlist),
3789                                             GFP_KERNEL);
3790                         if (!sg) {
3791                                 *error = "Unable to allocate sg list";
3792                                 r = -ENOMEM;
3793                                 goto bad;
3794                         }
3795                         sg_init_table(sg, ic->journal_pages + 1);
3796                         for (i = 0; i < ic->journal_pages; i++) {
3797                                 char *va = lowmem_page_address(ic->journal_xor[i].page);
3798                                 clear_page(va);
3799                                 sg_set_buf(&sg[i], va, PAGE_SIZE);
3800                         }
3801                         sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids);
3802
3803                         skcipher_request_set_crypt(req, sg, sg,
3804                                                    PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv);
3805                         init_completion(&comp.comp);
3806                         comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3807                         if (do_crypt(true, req, &comp))
3808                                 wait_for_completion(&comp.comp);
3809                         kvfree(sg);
3810                         r = dm_integrity_failed(ic);
3811                         if (r) {
3812                                 *error = "Unable to encrypt journal";
3813                                 goto bad;
3814                         }
3815                         DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3816
3817                         crypto_free_skcipher(ic->journal_crypt);
3818                         ic->journal_crypt = NULL;
3819                 } else {
3820                         unsigned crypt_len = roundup(ivsize, blocksize);
3821
3822                         req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3823                         if (!req) {
3824                                 *error = "Could not allocate crypt request";
3825                                 r = -ENOMEM;
3826                                 goto bad;
3827                         }
3828
3829                         crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3830                         if (!crypt_iv) {
3831                                 *error = "Could not allocate iv";
3832                                 r = -ENOMEM;
3833                                 goto bad;
3834                         }
3835
3836                         crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3837                         if (!crypt_data) {
3838                                 *error = "Unable to allocate crypt data";
3839                                 r = -ENOMEM;
3840                                 goto bad;
3841                         }
3842
3843                         ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3844                         if (!ic->journal_scatterlist) {
3845                                 *error = "Unable to allocate sg list";
3846                                 r = -ENOMEM;
3847                                 goto bad;
3848                         }
3849                         ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3850                         if (!ic->journal_io_scatterlist) {
3851                                 *error = "Unable to allocate sg list";
3852                                 r = -ENOMEM;
3853                                 goto bad;
3854                         }
3855                         ic->sk_requests = kvmalloc_array(ic->journal_sections,
3856                                                          sizeof(struct skcipher_request *),
3857                                                          GFP_KERNEL | __GFP_ZERO);
3858                         if (!ic->sk_requests) {
3859                                 *error = "Unable to allocate sk requests";
3860                                 r = -ENOMEM;
3861                                 goto bad;
3862                         }
3863                         for (i = 0; i < ic->journal_sections; i++) {
3864                                 struct scatterlist sg;
3865                                 struct skcipher_request *section_req;
3866                                 __le32 section_le = cpu_to_le32(i);
3867
3868                                 memset(crypt_iv, 0x00, ivsize);
3869                                 memset(crypt_data, 0x00, crypt_len);
3870                                 memcpy(crypt_data, &section_le, min((size_t)crypt_len, sizeof(section_le)));
3871
3872                                 sg_init_one(&sg, crypt_data, crypt_len);
3873                                 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3874                                 init_completion(&comp.comp);
3875                                 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3876                                 if (do_crypt(true, req, &comp))
3877                                         wait_for_completion(&comp.comp);
3878
3879                                 r = dm_integrity_failed(ic);
3880                                 if (r) {
3881                                         *error = "Unable to generate iv";
3882                                         goto bad;
3883                                 }
3884
3885                                 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3886                                 if (!section_req) {
3887                                         *error = "Unable to allocate crypt request";
3888                                         r = -ENOMEM;
3889                                         goto bad;
3890                                 }
3891                                 section_req->iv = kmalloc_array(ivsize, 2,
3892                                                                 GFP_KERNEL);
3893                                 if (!section_req->iv) {
3894                                         skcipher_request_free(section_req);
3895                                         *error = "Unable to allocate iv";
3896                                         r = -ENOMEM;
3897                                         goto bad;
3898                                 }
3899                                 memcpy(section_req->iv + ivsize, crypt_data, ivsize);
3900                                 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
3901                                 ic->sk_requests[i] = section_req;
3902                                 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
3903                         }
3904                 }
3905         }
3906
3907         for (i = 0; i < N_COMMIT_IDS; i++) {
3908                 unsigned j;
3909 retest_commit_id:
3910                 for (j = 0; j < i; j++) {
3911                         if (ic->commit_ids[j] == ic->commit_ids[i]) {
3912                                 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
3913                                 goto retest_commit_id;
3914                         }
3915                 }
3916                 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
3917         }
3918
3919         journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
3920         if (journal_tree_size > ULONG_MAX) {
3921                 *error = "Journal doesn't fit into memory";
3922                 r = -ENOMEM;
3923                 goto bad;
3924         }
3925         ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
3926         if (!ic->journal_tree) {
3927                 *error = "Could not allocate memory for journal tree";
3928                 r = -ENOMEM;
3929         }
3930 bad:
3931         kfree(crypt_data);
3932         kfree(crypt_iv);
3933         skcipher_request_free(req);
3934
3935         return r;
3936 }
3937
3938 /*
3939  * Construct a integrity mapping
3940  *
3941  * Arguments:
3942  *      device
3943  *      offset from the start of the device
3944  *      tag size
3945  *      D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
3946  *      number of optional arguments
3947  *      optional arguments:
3948  *              journal_sectors
3949  *              interleave_sectors
3950  *              buffer_sectors
3951  *              journal_watermark
3952  *              commit_time
3953  *              meta_device
3954  *              block_size
3955  *              sectors_per_bit
3956  *              bitmap_flush_interval
3957  *              internal_hash
3958  *              journal_crypt
3959  *              journal_mac
3960  *              recalculate
3961  */
3962 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
3963 {
3964         struct dm_integrity_c *ic;
3965         char dummy;
3966         int r;
3967         unsigned extra_args;
3968         struct dm_arg_set as;
3969         static const struct dm_arg _args[] = {
3970                 {0, 18, "Invalid number of feature args"},
3971         };
3972         unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
3973         bool should_write_sb;
3974         __u64 threshold;
3975         unsigned long long start;
3976         __s8 log2_sectors_per_bitmap_bit = -1;
3977         __s8 log2_blocks_per_bitmap_bit;
3978         __u64 bits_in_journal;
3979         __u64 n_bitmap_bits;
3980
3981 #define DIRECT_ARGUMENTS        4
3982
3983         if (argc <= DIRECT_ARGUMENTS) {
3984                 ti->error = "Invalid argument count";
3985                 return -EINVAL;
3986         }
3987
3988         ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
3989         if (!ic) {
3990                 ti->error = "Cannot allocate integrity context";
3991                 return -ENOMEM;
3992         }
3993         ti->private = ic;
3994         ti->per_io_data_size = sizeof(struct dm_integrity_io);
3995         ic->ti = ti;
3996
3997         ic->in_progress = RB_ROOT;
3998         INIT_LIST_HEAD(&ic->wait_list);
3999         init_waitqueue_head(&ic->endio_wait);
4000         bio_list_init(&ic->flush_bio_list);
4001         init_waitqueue_head(&ic->copy_to_journal_wait);
4002         init_completion(&ic->crypto_backoff);
4003         atomic64_set(&ic->number_of_mismatches, 0);
4004         ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
4005
4006         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
4007         if (r) {
4008                 ti->error = "Device lookup failed";
4009                 goto bad;
4010         }
4011
4012         if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
4013                 ti->error = "Invalid starting offset";
4014                 r = -EINVAL;
4015                 goto bad;
4016         }
4017         ic->start = start;
4018
4019         if (strcmp(argv[2], "-")) {
4020                 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
4021                         ti->error = "Invalid tag size";
4022                         r = -EINVAL;
4023                         goto bad;
4024                 }
4025         }
4026
4027         if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
4028             !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
4029                 ic->mode = argv[3][0];
4030         } else {
4031                 ti->error = "Invalid mode (expecting J, B, D, R)";
4032                 r = -EINVAL;
4033                 goto bad;
4034         }
4035
4036         journal_sectors = 0;
4037         interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4038         buffer_sectors = DEFAULT_BUFFER_SECTORS;
4039         journal_watermark = DEFAULT_JOURNAL_WATERMARK;
4040         sync_msec = DEFAULT_SYNC_MSEC;
4041         ic->sectors_per_block = 1;
4042
4043         as.argc = argc - DIRECT_ARGUMENTS;
4044         as.argv = argv + DIRECT_ARGUMENTS;
4045         r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
4046         if (r)
4047                 goto bad;
4048
4049         while (extra_args--) {
4050                 const char *opt_string;
4051                 unsigned val;
4052                 unsigned long long llval;
4053                 opt_string = dm_shift_arg(&as);
4054                 if (!opt_string) {
4055                         r = -EINVAL;
4056                         ti->error = "Not enough feature arguments";
4057                         goto bad;
4058                 }
4059                 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
4060                         journal_sectors = val ? val : 1;
4061                 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
4062                         interleave_sectors = val;
4063                 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
4064                         buffer_sectors = val;
4065                 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
4066                         journal_watermark = val;
4067                 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
4068                         sync_msec = val;
4069                 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
4070                         if (ic->meta_dev) {
4071                                 dm_put_device(ti, ic->meta_dev);
4072                                 ic->meta_dev = NULL;
4073                         }
4074                         r = dm_get_device(ti, strchr(opt_string, ':') + 1,
4075                                           dm_table_get_mode(ti->table), &ic->meta_dev);
4076                         if (r) {
4077                                 ti->error = "Device lookup failed";
4078                                 goto bad;
4079                         }
4080                 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
4081                         if (val < 1 << SECTOR_SHIFT ||
4082                             val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
4083                             (val & (val -1))) {
4084                                 r = -EINVAL;
4085                                 ti->error = "Invalid block_size argument";
4086                                 goto bad;
4087                         }
4088                         ic->sectors_per_block = val >> SECTOR_SHIFT;
4089                 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
4090                         log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
4091                 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
4092                         if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
4093                                 r = -EINVAL;
4094                                 ti->error = "Invalid bitmap_flush_interval argument";
4095                                 goto bad;
4096                         }
4097                         ic->bitmap_flush_interval = msecs_to_jiffies(val);
4098                 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
4099                         r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
4100                                             "Invalid internal_hash argument");
4101                         if (r)
4102                                 goto bad;
4103                 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
4104                         r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
4105                                             "Invalid journal_crypt argument");
4106                         if (r)
4107                                 goto bad;
4108                 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
4109                         r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
4110                                             "Invalid journal_mac argument");
4111                         if (r)
4112                                 goto bad;
4113                 } else if (!strcmp(opt_string, "recalculate")) {
4114                         ic->recalculate_flag = true;
4115                 } else if (!strcmp(opt_string, "reset_recalculate")) {
4116                         ic->recalculate_flag = true;
4117                         ic->reset_recalculate_flag = true;
4118                 } else if (!strcmp(opt_string, "allow_discards")) {
4119                         ic->discard = true;
4120                 } else if (!strcmp(opt_string, "fix_padding")) {
4121                         ic->fix_padding = true;
4122                 } else if (!strcmp(opt_string, "fix_hmac")) {
4123                         ic->fix_hmac = true;
4124                 } else if (!strcmp(opt_string, "legacy_recalculate")) {
4125                         ic->legacy_recalculate = true;
4126                 } else {
4127                         r = -EINVAL;
4128                         ti->error = "Invalid argument";
4129                         goto bad;
4130                 }
4131         }
4132
4133         ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev);
4134         if (!ic->meta_dev)
4135                 ic->meta_device_sectors = ic->data_device_sectors;
4136         else
4137                 ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev);
4138
4139         if (!journal_sectors) {
4140                 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
4141                                       ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
4142         }
4143
4144         if (!buffer_sectors)
4145                 buffer_sectors = 1;
4146         ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
4147
4148         r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
4149                     "Invalid internal hash", "Error setting internal hash key");
4150         if (r)
4151                 goto bad;
4152
4153         r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
4154                     "Invalid journal mac", "Error setting journal mac key");
4155         if (r)
4156                 goto bad;
4157
4158         if (!ic->tag_size) {
4159                 if (!ic->internal_hash) {
4160                         ti->error = "Unknown tag size";
4161                         r = -EINVAL;
4162                         goto bad;
4163                 }
4164                 ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
4165         }
4166         if (ic->tag_size > MAX_TAG_SIZE) {
4167                 ti->error = "Too big tag size";
4168                 r = -EINVAL;
4169                 goto bad;
4170         }
4171         if (!(ic->tag_size & (ic->tag_size - 1)))
4172                 ic->log2_tag_size = __ffs(ic->tag_size);
4173         else
4174                 ic->log2_tag_size = -1;
4175
4176         if (ic->mode == 'B' && !ic->internal_hash) {
4177                 r = -EINVAL;
4178                 ti->error = "Bitmap mode can be only used with internal hash";
4179                 goto bad;
4180         }
4181
4182         if (ic->discard && !ic->internal_hash) {
4183                 r = -EINVAL;
4184                 ti->error = "Discard can be only used with internal hash";
4185                 goto bad;
4186         }
4187
4188         ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4189         ic->autocommit_msec = sync_msec;
4190         timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4191
4192         ic->io = dm_io_client_create();
4193         if (IS_ERR(ic->io)) {
4194                 r = PTR_ERR(ic->io);
4195                 ic->io = NULL;
4196                 ti->error = "Cannot allocate dm io";
4197                 goto bad;
4198         }
4199
4200         r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4201         if (r) {
4202                 ti->error = "Cannot allocate mempool";
4203                 goto bad;
4204         }
4205
4206         ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
4207                                           WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4208         if (!ic->metadata_wq) {
4209                 ti->error = "Cannot allocate workqueue";
4210                 r = -ENOMEM;
4211                 goto bad;
4212         }
4213
4214         /*
4215          * If this workqueue were percpu, it would cause bio reordering
4216          * and reduced performance.
4217          */
4218         ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4219         if (!ic->wait_wq) {
4220                 ti->error = "Cannot allocate workqueue";
4221                 r = -ENOMEM;
4222                 goto bad;
4223         }
4224
4225         ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4226                                           METADATA_WORKQUEUE_MAX_ACTIVE);
4227         if (!ic->offload_wq) {
4228                 ti->error = "Cannot allocate workqueue";
4229                 r = -ENOMEM;
4230                 goto bad;
4231         }
4232
4233         ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4234         if (!ic->commit_wq) {
4235                 ti->error = "Cannot allocate workqueue";
4236                 r = -ENOMEM;
4237                 goto bad;
4238         }
4239         INIT_WORK(&ic->commit_work, integrity_commit);
4240
4241         if (ic->mode == 'J' || ic->mode == 'B') {
4242                 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4243                 if (!ic->writer_wq) {
4244                         ti->error = "Cannot allocate workqueue";
4245                         r = -ENOMEM;
4246                         goto bad;
4247                 }
4248                 INIT_WORK(&ic->writer_work, integrity_writer);
4249         }
4250
4251         ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4252         if (!ic->sb) {
4253                 r = -ENOMEM;
4254                 ti->error = "Cannot allocate superblock area";
4255                 goto bad;
4256         }
4257
4258         r = sync_rw_sb(ic, REQ_OP_READ, 0);
4259         if (r) {
4260                 ti->error = "Error reading superblock";
4261                 goto bad;
4262         }
4263         should_write_sb = false;
4264         if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4265                 if (ic->mode != 'R') {
4266                         if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4267                                 r = -EINVAL;
4268                                 ti->error = "The device is not initialized";
4269                                 goto bad;
4270                         }
4271                 }
4272
4273                 r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4274                 if (r) {
4275                         ti->error = "Could not initialize superblock";
4276                         goto bad;
4277                 }
4278                 if (ic->mode != 'R')
4279                         should_write_sb = true;
4280         }
4281
4282         if (!ic->sb->version || ic->sb->version > SB_VERSION_5) {
4283                 r = -EINVAL;
4284                 ti->error = "Unknown version";
4285                 goto bad;
4286         }
4287         if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4288                 r = -EINVAL;
4289                 ti->error = "Tag size doesn't match the information in superblock";
4290                 goto bad;
4291         }
4292         if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4293                 r = -EINVAL;
4294                 ti->error = "Block size doesn't match the information in superblock";
4295                 goto bad;
4296         }
4297         if (!le32_to_cpu(ic->sb->journal_sections)) {
4298                 r = -EINVAL;
4299                 ti->error = "Corrupted superblock, journal_sections is 0";
4300                 goto bad;
4301         }
4302         /* make sure that ti->max_io_len doesn't overflow */
4303         if (!ic->meta_dev) {
4304                 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4305                     ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4306                         r = -EINVAL;
4307                         ti->error = "Invalid interleave_sectors in the superblock";
4308                         goto bad;
4309                 }
4310         } else {
4311                 if (ic->sb->log2_interleave_sectors) {
4312                         r = -EINVAL;
4313                         ti->error = "Invalid interleave_sectors in the superblock";
4314                         goto bad;
4315                 }
4316         }
4317         if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4318                 r = -EINVAL;
4319                 ti->error = "Journal mac mismatch";
4320                 goto bad;
4321         }
4322
4323         get_provided_data_sectors(ic);
4324         if (!ic->provided_data_sectors) {
4325                 r = -EINVAL;
4326                 ti->error = "The device is too small";
4327                 goto bad;
4328         }
4329
4330 try_smaller_buffer:
4331         r = calculate_device_limits(ic);
4332         if (r) {
4333                 if (ic->meta_dev) {
4334                         if (ic->log2_buffer_sectors > 3) {
4335                                 ic->log2_buffer_sectors--;
4336                                 goto try_smaller_buffer;
4337                         }
4338                 }
4339                 ti->error = "The device is too small";
4340                 goto bad;
4341         }
4342
4343         if (log2_sectors_per_bitmap_bit < 0)
4344                 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4345         if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4346                 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4347
4348         bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4349         if (bits_in_journal > UINT_MAX)
4350                 bits_in_journal = UINT_MAX;
4351         while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4352                 log2_sectors_per_bitmap_bit++;
4353
4354         log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4355         ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4356         if (should_write_sb) {
4357                 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4358         }
4359         n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4360                                 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4361         ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4362
4363         if (!ic->meta_dev)
4364                 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4365
4366         if (ti->len > ic->provided_data_sectors) {
4367                 r = -EINVAL;
4368                 ti->error = "Not enough provided sectors for requested mapping size";
4369                 goto bad;
4370         }
4371
4372
4373         threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4374         threshold += 50;
4375         do_div(threshold, 100);
4376         ic->free_sectors_threshold = threshold;
4377
4378         DEBUG_print("initialized:\n");
4379         DEBUG_print("   integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4380         DEBUG_print("   journal_entry_size %u\n", ic->journal_entry_size);
4381         DEBUG_print("   journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4382         DEBUG_print("   journal_section_entries %u\n", ic->journal_section_entries);
4383         DEBUG_print("   journal_section_sectors %u\n", ic->journal_section_sectors);
4384         DEBUG_print("   journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections));
4385         DEBUG_print("   journal_entries %u\n", ic->journal_entries);
4386         DEBUG_print("   log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4387         DEBUG_print("   data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev));
4388         DEBUG_print("   initial_sectors 0x%x\n", ic->initial_sectors);
4389         DEBUG_print("   metadata_run 0x%x\n", ic->metadata_run);
4390         DEBUG_print("   log2_metadata_run %d\n", ic->log2_metadata_run);
4391         DEBUG_print("   provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
4392         DEBUG_print("   log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4393         DEBUG_print("   bits_in_journal %llu\n", bits_in_journal);
4394
4395         if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4396                 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4397                 ic->sb->recalc_sector = cpu_to_le64(0);
4398         }
4399
4400         if (ic->internal_hash) {
4401                 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4402                 if (!ic->recalc_wq ) {
4403                         ti->error = "Cannot allocate workqueue";
4404                         r = -ENOMEM;
4405                         goto bad;
4406                 }
4407                 INIT_WORK(&ic->recalc_work, integrity_recalc);
4408                 ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT);
4409                 if (!ic->recalc_buffer) {
4410                         ti->error = "Cannot allocate buffer for recalculating";
4411                         r = -ENOMEM;
4412                         goto bad;
4413                 }
4414                 ic->recalc_tags = kvmalloc_array(RECALC_SECTORS >> ic->sb->log2_sectors_per_block,
4415                                                  ic->tag_size, GFP_KERNEL);
4416                 if (!ic->recalc_tags) {
4417                         ti->error = "Cannot allocate tags for recalculating";
4418                         r = -ENOMEM;
4419                         goto bad;
4420                 }
4421         } else {
4422                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
4423                         ti->error = "Recalculate can only be specified with internal_hash";
4424                         r = -EINVAL;
4425                         goto bad;
4426                 }
4427         }
4428
4429         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
4430             le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
4431             dm_integrity_disable_recalculate(ic)) {
4432                 ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
4433                 r = -EOPNOTSUPP;
4434                 goto bad;
4435         }
4436
4437         ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4438                         1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL);
4439         if (IS_ERR(ic->bufio)) {
4440                 r = PTR_ERR(ic->bufio);
4441                 ti->error = "Cannot initialize dm-bufio";
4442                 ic->bufio = NULL;
4443                 goto bad;
4444         }
4445         dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4446
4447         if (ic->mode != 'R') {
4448                 r = create_journal(ic, &ti->error);
4449                 if (r)
4450                         goto bad;
4451
4452         }
4453
4454         if (ic->mode == 'B') {
4455                 unsigned i;
4456                 unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4457
4458                 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4459                 if (!ic->recalc_bitmap) {
4460                         r = -ENOMEM;
4461                         goto bad;
4462                 }
4463                 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4464                 if (!ic->may_write_bitmap) {
4465                         r = -ENOMEM;
4466                         goto bad;
4467                 }
4468                 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4469                 if (!ic->bbs) {
4470                         r = -ENOMEM;
4471                         goto bad;
4472                 }
4473                 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4474                 for (i = 0; i < ic->n_bitmap_blocks; i++) {
4475                         struct bitmap_block_status *bbs = &ic->bbs[i];
4476                         unsigned sector, pl_index, pl_offset;
4477
4478                         INIT_WORK(&bbs->work, bitmap_block_work);
4479                         bbs->ic = ic;
4480                         bbs->idx = i;
4481                         bio_list_init(&bbs->bio_queue);
4482                         spin_lock_init(&bbs->bio_queue_lock);
4483
4484                         sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4485                         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4486                         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4487
4488                         bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4489                 }
4490         }
4491
4492         if (should_write_sb) {
4493                 int r;
4494
4495                 init_journal(ic, 0, ic->journal_sections, 0);
4496                 r = dm_integrity_failed(ic);
4497                 if (unlikely(r)) {
4498                         ti->error = "Error initializing journal";
4499                         goto bad;
4500                 }
4501                 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
4502                 if (r) {
4503                         ti->error = "Error initializing superblock";
4504                         goto bad;
4505                 }
4506                 ic->just_formatted = true;
4507         }
4508
4509         if (!ic->meta_dev) {
4510                 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4511                 if (r)
4512                         goto bad;
4513         }
4514         if (ic->mode == 'B') {
4515                 unsigned max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4516                 if (!max_io_len)
4517                         max_io_len = 1U << 31;
4518                 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4519                 if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4520                         r = dm_set_target_max_io_len(ti, max_io_len);
4521                         if (r)
4522                                 goto bad;
4523                 }
4524         }
4525
4526         if (!ic->internal_hash)
4527                 dm_integrity_set(ti, ic);
4528
4529         ti->num_flush_bios = 1;
4530         ti->flush_supported = true;
4531         if (ic->discard)
4532                 ti->num_discard_bios = 1;
4533
4534         dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
4535         return 0;
4536
4537 bad:
4538         dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
4539         dm_integrity_dtr(ti);
4540         return r;
4541 }
4542
4543 static void dm_integrity_dtr(struct dm_target *ti)
4544 {
4545         struct dm_integrity_c *ic = ti->private;
4546
4547         BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4548         BUG_ON(!list_empty(&ic->wait_list));
4549
4550         if (ic->metadata_wq)
4551                 destroy_workqueue(ic->metadata_wq);
4552         if (ic->wait_wq)
4553                 destroy_workqueue(ic->wait_wq);
4554         if (ic->offload_wq)
4555                 destroy_workqueue(ic->offload_wq);
4556         if (ic->commit_wq)
4557                 destroy_workqueue(ic->commit_wq);
4558         if (ic->writer_wq)
4559                 destroy_workqueue(ic->writer_wq);
4560         if (ic->recalc_wq)
4561                 destroy_workqueue(ic->recalc_wq);
4562         vfree(ic->recalc_buffer);
4563         kvfree(ic->recalc_tags);
4564         kvfree(ic->bbs);
4565         if (ic->bufio)
4566                 dm_bufio_client_destroy(ic->bufio);
4567         mempool_exit(&ic->journal_io_mempool);
4568         if (ic->io)
4569                 dm_io_client_destroy(ic->io);
4570         if (ic->dev)
4571                 dm_put_device(ti, ic->dev);
4572         if (ic->meta_dev)
4573                 dm_put_device(ti, ic->meta_dev);
4574         dm_integrity_free_page_list(ic->journal);
4575         dm_integrity_free_page_list(ic->journal_io);
4576         dm_integrity_free_page_list(ic->journal_xor);
4577         dm_integrity_free_page_list(ic->recalc_bitmap);
4578         dm_integrity_free_page_list(ic->may_write_bitmap);
4579         if (ic->journal_scatterlist)
4580                 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4581         if (ic->journal_io_scatterlist)
4582                 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4583         if (ic->sk_requests) {
4584                 unsigned i;
4585
4586                 for (i = 0; i < ic->journal_sections; i++) {
4587                         struct skcipher_request *req = ic->sk_requests[i];
4588                         if (req) {
4589                                 kfree_sensitive(req->iv);
4590                                 skcipher_request_free(req);
4591                         }
4592                 }
4593                 kvfree(ic->sk_requests);
4594         }
4595         kvfree(ic->journal_tree);
4596         if (ic->sb)
4597                 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4598
4599         if (ic->internal_hash)
4600                 crypto_free_shash(ic->internal_hash);
4601         free_alg(&ic->internal_hash_alg);
4602
4603         if (ic->journal_crypt)
4604                 crypto_free_skcipher(ic->journal_crypt);
4605         free_alg(&ic->journal_crypt_alg);
4606
4607         if (ic->journal_mac)
4608                 crypto_free_shash(ic->journal_mac);
4609         free_alg(&ic->journal_mac_alg);
4610
4611         kfree(ic);
4612         dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
4613 }
4614
4615 static struct target_type integrity_target = {
4616         .name                   = "integrity",
4617         .version                = {1, 10, 0},
4618         .module                 = THIS_MODULE,
4619         .features               = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4620         .ctr                    = dm_integrity_ctr,
4621         .dtr                    = dm_integrity_dtr,
4622         .map                    = dm_integrity_map,
4623         .postsuspend            = dm_integrity_postsuspend,
4624         .resume                 = dm_integrity_resume,
4625         .status                 = dm_integrity_status,
4626         .iterate_devices        = dm_integrity_iterate_devices,
4627         .io_hints               = dm_integrity_io_hints,
4628 };
4629
4630 static int __init dm_integrity_init(void)
4631 {
4632         int r;
4633
4634         journal_io_cache = kmem_cache_create("integrity_journal_io",
4635                                              sizeof(struct journal_io), 0, 0, NULL);
4636         if (!journal_io_cache) {
4637                 DMERR("can't allocate journal io cache");
4638                 return -ENOMEM;
4639         }
4640
4641         r = dm_register_target(&integrity_target);
4642
4643         if (r < 0)
4644                 DMERR("register failed %d", r);
4645
4646         return r;
4647 }
4648
4649 static void __exit dm_integrity_exit(void)
4650 {
4651         dm_unregister_target(&integrity_target);
4652         kmem_cache_destroy(journal_io_cache);
4653 }
4654
4655 module_init(dm_integrity_init);
4656 module_exit(dm_integrity_exit);
4657
4658 MODULE_AUTHOR("Milan Broz");
4659 MODULE_AUTHOR("Mikulas Patocka");
4660 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4661 MODULE_LICENSE("GPL");