Merge tag 'perf-core-for-mingo-5.2-20190517' of git://git.kernel.org/pub/scm/linux...
[linux-2.6-microblaze.git] / drivers / md / dm-integrity.c
1 /*
2  * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
3  * Copyright (C) 2016-2017 Milan Broz
4  * Copyright (C) 2016-2017 Mikulas Patocka
5  *
6  * This file is released under the GPL.
7  */
8
9 #include <linux/compiler.h>
10 #include <linux/module.h>
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/vmalloc.h>
14 #include <linux/sort.h>
15 #include <linux/rbtree.h>
16 #include <linux/delay.h>
17 #include <linux/random.h>
18 #include <crypto/hash.h>
19 #include <crypto/skcipher.h>
20 #include <linux/async_tx.h>
21 #include <linux/dm-bufio.h>
22
23 #define DM_MSG_PREFIX "integrity"
24
25 #define DEFAULT_INTERLEAVE_SECTORS      32768
26 #define DEFAULT_JOURNAL_SIZE_FACTOR     7
27 #define DEFAULT_BUFFER_SECTORS          128
28 #define DEFAULT_JOURNAL_WATERMARK       50
29 #define DEFAULT_SYNC_MSEC               10000
30 #define DEFAULT_MAX_JOURNAL_SECTORS     131072
31 #define MIN_LOG2_INTERLEAVE_SECTORS     3
32 #define MAX_LOG2_INTERLEAVE_SECTORS     31
33 #define METADATA_WORKQUEUE_MAX_ACTIVE   16
34 #define RECALC_SECTORS                  8192
35 #define RECALC_WRITE_SUPER              16
36
37 /*
38  * Warning - DEBUG_PRINT prints security-sensitive data to the log,
39  * so it should not be enabled in the official kernel
40  */
41 //#define DEBUG_PRINT
42 //#define INTERNAL_VERIFY
43
44 /*
45  * On disk structures
46  */
47
48 #define SB_MAGIC                        "integrt"
49 #define SB_VERSION_1                    1
50 #define SB_VERSION_2                    2
51 #define SB_SECTORS                      8
52 #define MAX_SECTORS_PER_BLOCK           8
53
54 struct superblock {
55         __u8 magic[8];
56         __u8 version;
57         __u8 log2_interleave_sectors;
58         __u16 integrity_tag_size;
59         __u32 journal_sections;
60         __u64 provided_data_sectors;    /* userspace uses this value */
61         __u32 flags;
62         __u8 log2_sectors_per_block;
63         __u8 pad[3];
64         __u64 recalc_sector;
65 };
66
67 #define SB_FLAG_HAVE_JOURNAL_MAC        0x1
68 #define SB_FLAG_RECALCULATING           0x2
69
70 #define JOURNAL_ENTRY_ROUNDUP           8
71
72 typedef __u64 commit_id_t;
73 #define JOURNAL_MAC_PER_SECTOR          8
74
75 struct journal_entry {
76         union {
77                 struct {
78                         __u32 sector_lo;
79                         __u32 sector_hi;
80                 } s;
81                 __u64 sector;
82         } u;
83         commit_id_t last_bytes[0];
84         /* __u8 tag[0]; */
85 };
86
87 #define journal_entry_tag(ic, je)               ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
88
89 #if BITS_PER_LONG == 64
90 #define journal_entry_set_sector(je, x)         do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
91 #else
92 #define journal_entry_set_sector(je, x)         do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
93 #endif
94 #define journal_entry_get_sector(je)            le64_to_cpu((je)->u.sector)
95 #define journal_entry_is_unused(je)             ((je)->u.s.sector_hi == cpu_to_le32(-1))
96 #define journal_entry_set_unused(je)            do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
97 #define journal_entry_is_inprogress(je)         ((je)->u.s.sector_hi == cpu_to_le32(-2))
98 #define journal_entry_set_inprogress(je)        do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
99
100 #define JOURNAL_BLOCK_SECTORS           8
101 #define JOURNAL_SECTOR_DATA             ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
102 #define JOURNAL_MAC_SIZE                (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
103
104 struct journal_sector {
105         __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
106         __u8 mac[JOURNAL_MAC_PER_SECTOR];
107         commit_id_t commit_id;
108 };
109
110 #define MAX_TAG_SIZE                    (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
111
112 #define METADATA_PADDING_SECTORS        8
113
114 #define N_COMMIT_IDS                    4
115
116 static unsigned char prev_commit_seq(unsigned char seq)
117 {
118         return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
119 }
120
121 static unsigned char next_commit_seq(unsigned char seq)
122 {
123         return (seq + 1) % N_COMMIT_IDS;
124 }
125
126 /*
127  * In-memory structures
128  */
129
130 struct journal_node {
131         struct rb_node node;
132         sector_t sector;
133 };
134
135 struct alg_spec {
136         char *alg_string;
137         char *key_string;
138         __u8 *key;
139         unsigned key_size;
140 };
141
142 struct dm_integrity_c {
143         struct dm_dev *dev;
144         struct dm_dev *meta_dev;
145         unsigned tag_size;
146         __s8 log2_tag_size;
147         sector_t start;
148         mempool_t journal_io_mempool;
149         struct dm_io_client *io;
150         struct dm_bufio_client *bufio;
151         struct workqueue_struct *metadata_wq;
152         struct superblock *sb;
153         unsigned journal_pages;
154         struct page_list *journal;
155         struct page_list *journal_io;
156         struct page_list *journal_xor;
157
158         struct crypto_skcipher *journal_crypt;
159         struct scatterlist **journal_scatterlist;
160         struct scatterlist **journal_io_scatterlist;
161         struct skcipher_request **sk_requests;
162
163         struct crypto_shash *journal_mac;
164
165         struct journal_node *journal_tree;
166         struct rb_root journal_tree_root;
167
168         sector_t provided_data_sectors;
169
170         unsigned short journal_entry_size;
171         unsigned char journal_entries_per_sector;
172         unsigned char journal_section_entries;
173         unsigned short journal_section_sectors;
174         unsigned journal_sections;
175         unsigned journal_entries;
176         sector_t data_device_sectors;
177         sector_t meta_device_sectors;
178         unsigned initial_sectors;
179         unsigned metadata_run;
180         __s8 log2_metadata_run;
181         __u8 log2_buffer_sectors;
182         __u8 sectors_per_block;
183
184         unsigned char mode;
185         int suspending;
186
187         int failed;
188
189         struct crypto_shash *internal_hash;
190
191         /* these variables are locked with endio_wait.lock */
192         struct rb_root in_progress;
193         struct list_head wait_list;
194         wait_queue_head_t endio_wait;
195         struct workqueue_struct *wait_wq;
196
197         unsigned char commit_seq;
198         commit_id_t commit_ids[N_COMMIT_IDS];
199
200         unsigned committed_section;
201         unsigned n_committed_sections;
202
203         unsigned uncommitted_section;
204         unsigned n_uncommitted_sections;
205
206         unsigned free_section;
207         unsigned char free_section_entry;
208         unsigned free_sectors;
209
210         unsigned free_sectors_threshold;
211
212         struct workqueue_struct *commit_wq;
213         struct work_struct commit_work;
214
215         struct workqueue_struct *writer_wq;
216         struct work_struct writer_work;
217
218         struct workqueue_struct *recalc_wq;
219         struct work_struct recalc_work;
220         u8 *recalc_buffer;
221         u8 *recalc_tags;
222
223         struct bio_list flush_bio_list;
224
225         unsigned long autocommit_jiffies;
226         struct timer_list autocommit_timer;
227         unsigned autocommit_msec;
228
229         wait_queue_head_t copy_to_journal_wait;
230
231         struct completion crypto_backoff;
232
233         bool journal_uptodate;
234         bool just_formatted;
235
236         struct alg_spec internal_hash_alg;
237         struct alg_spec journal_crypt_alg;
238         struct alg_spec journal_mac_alg;
239
240         atomic64_t number_of_mismatches;
241 };
242
243 struct dm_integrity_range {
244         sector_t logical_sector;
245         unsigned n_sectors;
246         bool waiting;
247         union {
248                 struct rb_node node;
249                 struct {
250                         struct task_struct *task;
251                         struct list_head wait_entry;
252                 };
253         };
254 };
255
256 struct dm_integrity_io {
257         struct work_struct work;
258
259         struct dm_integrity_c *ic;
260         bool write;
261         bool fua;
262
263         struct dm_integrity_range range;
264
265         sector_t metadata_block;
266         unsigned metadata_offset;
267
268         atomic_t in_flight;
269         blk_status_t bi_status;
270
271         struct completion *completion;
272
273         struct gendisk *orig_bi_disk;
274         u8 orig_bi_partno;
275         bio_end_io_t *orig_bi_end_io;
276         struct bio_integrity_payload *orig_bi_integrity;
277         struct bvec_iter orig_bi_iter;
278 };
279
280 struct journal_completion {
281         struct dm_integrity_c *ic;
282         atomic_t in_flight;
283         struct completion comp;
284 };
285
286 struct journal_io {
287         struct dm_integrity_range range;
288         struct journal_completion *comp;
289 };
290
291 static struct kmem_cache *journal_io_cache;
292
293 #define JOURNAL_IO_MEMPOOL      32
294
295 #ifdef DEBUG_PRINT
296 #define DEBUG_print(x, ...)     printk(KERN_DEBUG x, ##__VA_ARGS__)
297 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
298 {
299         va_list args;
300         va_start(args, msg);
301         vprintk(msg, args);
302         va_end(args);
303         if (len)
304                 pr_cont(":");
305         while (len) {
306                 pr_cont(" %02x", *bytes);
307                 bytes++;
308                 len--;
309         }
310         pr_cont("\n");
311 }
312 #define DEBUG_bytes(bytes, len, msg, ...)       __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
313 #else
314 #define DEBUG_print(x, ...)                     do { } while (0)
315 #define DEBUG_bytes(bytes, len, msg, ...)       do { } while (0)
316 #endif
317
318 /*
319  * DM Integrity profile, protection is performed layer above (dm-crypt)
320  */
321 static const struct blk_integrity_profile dm_integrity_profile = {
322         .name                   = "DM-DIF-EXT-TAG",
323         .generate_fn            = NULL,
324         .verify_fn              = NULL,
325 };
326
327 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
328 static void integrity_bio_wait(struct work_struct *w);
329 static void dm_integrity_dtr(struct dm_target *ti);
330
331 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
332 {
333         if (err == -EILSEQ)
334                 atomic64_inc(&ic->number_of_mismatches);
335         if (!cmpxchg(&ic->failed, 0, err))
336                 DMERR("Error on %s: %d", msg, err);
337 }
338
339 static int dm_integrity_failed(struct dm_integrity_c *ic)
340 {
341         return READ_ONCE(ic->failed);
342 }
343
344 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i,
345                                           unsigned j, unsigned char seq)
346 {
347         /*
348          * Xor the number with section and sector, so that if a piece of
349          * journal is written at wrong place, it is detected.
350          */
351         return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
352 }
353
354 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
355                                 sector_t *area, sector_t *offset)
356 {
357         if (!ic->meta_dev) {
358                 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
359                 *area = data_sector >> log2_interleave_sectors;
360                 *offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1);
361         } else {
362                 *area = 0;
363                 *offset = data_sector;
364         }
365 }
366
367 #define sector_to_block(ic, n)                                          \
368 do {                                                                    \
369         BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1));          \
370         (n) >>= (ic)->sb->log2_sectors_per_block;                       \
371 } while (0)
372
373 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
374                                             sector_t offset, unsigned *metadata_offset)
375 {
376         __u64 ms;
377         unsigned mo;
378
379         ms = area << ic->sb->log2_interleave_sectors;
380         if (likely(ic->log2_metadata_run >= 0))
381                 ms += area << ic->log2_metadata_run;
382         else
383                 ms += area * ic->metadata_run;
384         ms >>= ic->log2_buffer_sectors;
385
386         sector_to_block(ic, offset);
387
388         if (likely(ic->log2_tag_size >= 0)) {
389                 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
390                 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
391         } else {
392                 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
393                 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
394         }
395         *metadata_offset = mo;
396         return ms;
397 }
398
399 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
400 {
401         sector_t result;
402
403         if (ic->meta_dev)
404                 return offset;
405
406         result = area << ic->sb->log2_interleave_sectors;
407         if (likely(ic->log2_metadata_run >= 0))
408                 result += (area + 1) << ic->log2_metadata_run;
409         else
410                 result += (area + 1) * ic->metadata_run;
411
412         result += (sector_t)ic->initial_sectors + offset;
413         result += ic->start;
414
415         return result;
416 }
417
418 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr)
419 {
420         if (unlikely(*sec_ptr >= ic->journal_sections))
421                 *sec_ptr -= ic->journal_sections;
422 }
423
424 static void sb_set_version(struct dm_integrity_c *ic)
425 {
426         if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
427                 ic->sb->version = SB_VERSION_2;
428         else
429                 ic->sb->version = SB_VERSION_1;
430 }
431
432 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags)
433 {
434         struct dm_io_request io_req;
435         struct dm_io_region io_loc;
436
437         io_req.bi_op = op;
438         io_req.bi_op_flags = op_flags;
439         io_req.mem.type = DM_IO_KMEM;
440         io_req.mem.ptr.addr = ic->sb;
441         io_req.notify.fn = NULL;
442         io_req.client = ic->io;
443         io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
444         io_loc.sector = ic->start;
445         io_loc.count = SB_SECTORS;
446
447         return dm_io(&io_req, 1, &io_loc, NULL);
448 }
449
450 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset,
451                                  bool e, const char *function)
452 {
453 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
454         unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
455
456         if (unlikely(section >= ic->journal_sections) ||
457             unlikely(offset >= limit)) {
458                 printk(KERN_CRIT "%s: invalid access at (%u,%u), limit (%u,%u)\n",
459                         function, section, offset, ic->journal_sections, limit);
460                 BUG();
461         }
462 #endif
463 }
464
465 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset,
466                                unsigned *pl_index, unsigned *pl_offset)
467 {
468         unsigned sector;
469
470         access_journal_check(ic, section, offset, false, "page_list_location");
471
472         sector = section * ic->journal_section_sectors + offset;
473
474         *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
475         *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
476 }
477
478 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
479                                                unsigned section, unsigned offset, unsigned *n_sectors)
480 {
481         unsigned pl_index, pl_offset;
482         char *va;
483
484         page_list_location(ic, section, offset, &pl_index, &pl_offset);
485
486         if (n_sectors)
487                 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
488
489         va = lowmem_page_address(pl[pl_index].page);
490
491         return (struct journal_sector *)(va + pl_offset);
492 }
493
494 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset)
495 {
496         return access_page_list(ic, ic->journal, section, offset, NULL);
497 }
498
499 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n)
500 {
501         unsigned rel_sector, offset;
502         struct journal_sector *js;
503
504         access_journal_check(ic, section, n, true, "access_journal_entry");
505
506         rel_sector = n % JOURNAL_BLOCK_SECTORS;
507         offset = n / JOURNAL_BLOCK_SECTORS;
508
509         js = access_journal(ic, section, rel_sector);
510         return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
511 }
512
513 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n)
514 {
515         n <<= ic->sb->log2_sectors_per_block;
516
517         n += JOURNAL_BLOCK_SECTORS;
518
519         access_journal_check(ic, section, n, false, "access_journal_data");
520
521         return access_journal(ic, section, n);
522 }
523
524 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE])
525 {
526         SHASH_DESC_ON_STACK(desc, ic->journal_mac);
527         int r;
528         unsigned j, size;
529
530         desc->tfm = ic->journal_mac;
531
532         r = crypto_shash_init(desc);
533         if (unlikely(r)) {
534                 dm_integrity_io_error(ic, "crypto_shash_init", r);
535                 goto err;
536         }
537
538         for (j = 0; j < ic->journal_section_entries; j++) {
539                 struct journal_entry *je = access_journal_entry(ic, section, j);
540                 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
541                 if (unlikely(r)) {
542                         dm_integrity_io_error(ic, "crypto_shash_update", r);
543                         goto err;
544                 }
545         }
546
547         size = crypto_shash_digestsize(ic->journal_mac);
548
549         if (likely(size <= JOURNAL_MAC_SIZE)) {
550                 r = crypto_shash_final(desc, result);
551                 if (unlikely(r)) {
552                         dm_integrity_io_error(ic, "crypto_shash_final", r);
553                         goto err;
554                 }
555                 memset(result + size, 0, JOURNAL_MAC_SIZE - size);
556         } else {
557                 __u8 digest[HASH_MAX_DIGESTSIZE];
558
559                 if (WARN_ON(size > sizeof(digest))) {
560                         dm_integrity_io_error(ic, "digest_size", -EINVAL);
561                         goto err;
562                 }
563                 r = crypto_shash_final(desc, digest);
564                 if (unlikely(r)) {
565                         dm_integrity_io_error(ic, "crypto_shash_final", r);
566                         goto err;
567                 }
568                 memcpy(result, digest, JOURNAL_MAC_SIZE);
569         }
570
571         return;
572 err:
573         memset(result, 0, JOURNAL_MAC_SIZE);
574 }
575
576 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr)
577 {
578         __u8 result[JOURNAL_MAC_SIZE];
579         unsigned j;
580
581         if (!ic->journal_mac)
582                 return;
583
584         section_mac(ic, section, result);
585
586         for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
587                 struct journal_sector *js = access_journal(ic, section, j);
588
589                 if (likely(wr))
590                         memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
591                 else {
592                         if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR))
593                                 dm_integrity_io_error(ic, "journal mac", -EILSEQ);
594                 }
595         }
596 }
597
598 static void complete_journal_op(void *context)
599 {
600         struct journal_completion *comp = context;
601         BUG_ON(!atomic_read(&comp->in_flight));
602         if (likely(atomic_dec_and_test(&comp->in_flight)))
603                 complete(&comp->comp);
604 }
605
606 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
607                         unsigned n_sections, struct journal_completion *comp)
608 {
609         struct async_submit_ctl submit;
610         size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
611         unsigned pl_index, pl_offset, section_index;
612         struct page_list *source_pl, *target_pl;
613
614         if (likely(encrypt)) {
615                 source_pl = ic->journal;
616                 target_pl = ic->journal_io;
617         } else {
618                 source_pl = ic->journal_io;
619                 target_pl = ic->journal;
620         }
621
622         page_list_location(ic, section, 0, &pl_index, &pl_offset);
623
624         atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
625
626         init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
627
628         section_index = pl_index;
629
630         do {
631                 size_t this_step;
632                 struct page *src_pages[2];
633                 struct page *dst_page;
634
635                 while (unlikely(pl_index == section_index)) {
636                         unsigned dummy;
637                         if (likely(encrypt))
638                                 rw_section_mac(ic, section, true);
639                         section++;
640                         n_sections--;
641                         if (!n_sections)
642                                 break;
643                         page_list_location(ic, section, 0, &section_index, &dummy);
644                 }
645
646                 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
647                 dst_page = target_pl[pl_index].page;
648                 src_pages[0] = source_pl[pl_index].page;
649                 src_pages[1] = ic->journal_xor[pl_index].page;
650
651                 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
652
653                 pl_index++;
654                 pl_offset = 0;
655                 n_bytes -= this_step;
656         } while (n_bytes);
657
658         BUG_ON(n_sections);
659
660         async_tx_issue_pending_all();
661 }
662
663 static void complete_journal_encrypt(struct crypto_async_request *req, int err)
664 {
665         struct journal_completion *comp = req->data;
666         if (unlikely(err)) {
667                 if (likely(err == -EINPROGRESS)) {
668                         complete(&comp->ic->crypto_backoff);
669                         return;
670                 }
671                 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
672         }
673         complete_journal_op(comp);
674 }
675
676 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
677 {
678         int r;
679         skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
680                                       complete_journal_encrypt, comp);
681         if (likely(encrypt))
682                 r = crypto_skcipher_encrypt(req);
683         else
684                 r = crypto_skcipher_decrypt(req);
685         if (likely(!r))
686                 return false;
687         if (likely(r == -EINPROGRESS))
688                 return true;
689         if (likely(r == -EBUSY)) {
690                 wait_for_completion(&comp->ic->crypto_backoff);
691                 reinit_completion(&comp->ic->crypto_backoff);
692                 return true;
693         }
694         dm_integrity_io_error(comp->ic, "encrypt", r);
695         return false;
696 }
697
698 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
699                           unsigned n_sections, struct journal_completion *comp)
700 {
701         struct scatterlist **source_sg;
702         struct scatterlist **target_sg;
703
704         atomic_add(2, &comp->in_flight);
705
706         if (likely(encrypt)) {
707                 source_sg = ic->journal_scatterlist;
708                 target_sg = ic->journal_io_scatterlist;
709         } else {
710                 source_sg = ic->journal_io_scatterlist;
711                 target_sg = ic->journal_scatterlist;
712         }
713
714         do {
715                 struct skcipher_request *req;
716                 unsigned ivsize;
717                 char *iv;
718
719                 if (likely(encrypt))
720                         rw_section_mac(ic, section, true);
721
722                 req = ic->sk_requests[section];
723                 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
724                 iv = req->iv;
725
726                 memcpy(iv, iv + ivsize, ivsize);
727
728                 req->src = source_sg[section];
729                 req->dst = target_sg[section];
730
731                 if (unlikely(do_crypt(encrypt, req, comp)))
732                         atomic_inc(&comp->in_flight);
733
734                 section++;
735                 n_sections--;
736         } while (n_sections);
737
738         atomic_dec(&comp->in_flight);
739         complete_journal_op(comp);
740 }
741
742 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
743                             unsigned n_sections, struct journal_completion *comp)
744 {
745         if (ic->journal_xor)
746                 return xor_journal(ic, encrypt, section, n_sections, comp);
747         else
748                 return crypt_journal(ic, encrypt, section, n_sections, comp);
749 }
750
751 static void complete_journal_io(unsigned long error, void *context)
752 {
753         struct journal_completion *comp = context;
754         if (unlikely(error != 0))
755                 dm_integrity_io_error(comp->ic, "writing journal", -EIO);
756         complete_journal_op(comp);
757 }
758
759 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section,
760                        unsigned n_sections, struct journal_completion *comp)
761 {
762         struct dm_io_request io_req;
763         struct dm_io_region io_loc;
764         unsigned sector, n_sectors, pl_index, pl_offset;
765         int r;
766
767         if (unlikely(dm_integrity_failed(ic))) {
768                 if (comp)
769                         complete_journal_io(-1UL, comp);
770                 return;
771         }
772
773         sector = section * ic->journal_section_sectors;
774         n_sectors = n_sections * ic->journal_section_sectors;
775
776         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
777         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
778
779         io_req.bi_op = op;
780         io_req.bi_op_flags = op_flags;
781         io_req.mem.type = DM_IO_PAGE_LIST;
782         if (ic->journal_io)
783                 io_req.mem.ptr.pl = &ic->journal_io[pl_index];
784         else
785                 io_req.mem.ptr.pl = &ic->journal[pl_index];
786         io_req.mem.offset = pl_offset;
787         if (likely(comp != NULL)) {
788                 io_req.notify.fn = complete_journal_io;
789                 io_req.notify.context = comp;
790         } else {
791                 io_req.notify.fn = NULL;
792         }
793         io_req.client = ic->io;
794         io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
795         io_loc.sector = ic->start + SB_SECTORS + sector;
796         io_loc.count = n_sectors;
797
798         r = dm_io(&io_req, 1, &io_loc, NULL);
799         if (unlikely(r)) {
800                 dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r);
801                 if (comp) {
802                         WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
803                         complete_journal_io(-1UL, comp);
804                 }
805         }
806 }
807
808 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections)
809 {
810         struct journal_completion io_comp;
811         struct journal_completion crypt_comp_1;
812         struct journal_completion crypt_comp_2;
813         unsigned i;
814
815         io_comp.ic = ic;
816         init_completion(&io_comp.comp);
817
818         if (commit_start + commit_sections <= ic->journal_sections) {
819                 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
820                 if (ic->journal_io) {
821                         crypt_comp_1.ic = ic;
822                         init_completion(&crypt_comp_1.comp);
823                         crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
824                         encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
825                         wait_for_completion_io(&crypt_comp_1.comp);
826                 } else {
827                         for (i = 0; i < commit_sections; i++)
828                                 rw_section_mac(ic, commit_start + i, true);
829                 }
830                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start,
831                            commit_sections, &io_comp);
832         } else {
833                 unsigned to_end;
834                 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
835                 to_end = ic->journal_sections - commit_start;
836                 if (ic->journal_io) {
837                         crypt_comp_1.ic = ic;
838                         init_completion(&crypt_comp_1.comp);
839                         crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
840                         encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
841                         if (try_wait_for_completion(&crypt_comp_1.comp)) {
842                                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
843                                 reinit_completion(&crypt_comp_1.comp);
844                                 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
845                                 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
846                                 wait_for_completion_io(&crypt_comp_1.comp);
847                         } else {
848                                 crypt_comp_2.ic = ic;
849                                 init_completion(&crypt_comp_2.comp);
850                                 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
851                                 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
852                                 wait_for_completion_io(&crypt_comp_1.comp);
853                                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
854                                 wait_for_completion_io(&crypt_comp_2.comp);
855                         }
856                 } else {
857                         for (i = 0; i < to_end; i++)
858                                 rw_section_mac(ic, commit_start + i, true);
859                         rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
860                         for (i = 0; i < commit_sections - to_end; i++)
861                                 rw_section_mac(ic, i, true);
862                 }
863                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp);
864         }
865
866         wait_for_completion_io(&io_comp.comp);
867 }
868
869 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset,
870                               unsigned n_sectors, sector_t target, io_notify_fn fn, void *data)
871 {
872         struct dm_io_request io_req;
873         struct dm_io_region io_loc;
874         int r;
875         unsigned sector, pl_index, pl_offset;
876
877         BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1));
878
879         if (unlikely(dm_integrity_failed(ic))) {
880                 fn(-1UL, data);
881                 return;
882         }
883
884         sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
885
886         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
887         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
888
889         io_req.bi_op = REQ_OP_WRITE;
890         io_req.bi_op_flags = 0;
891         io_req.mem.type = DM_IO_PAGE_LIST;
892         io_req.mem.ptr.pl = &ic->journal[pl_index];
893         io_req.mem.offset = pl_offset;
894         io_req.notify.fn = fn;
895         io_req.notify.context = data;
896         io_req.client = ic->io;
897         io_loc.bdev = ic->dev->bdev;
898         io_loc.sector = target;
899         io_loc.count = n_sectors;
900
901         r = dm_io(&io_req, 1, &io_loc, NULL);
902         if (unlikely(r)) {
903                 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
904                 fn(-1UL, data);
905         }
906 }
907
908 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
909 {
910         return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
911                range1->logical_sector + range1->n_sectors > range2->logical_sector;
912 }
913
914 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
915 {
916         struct rb_node **n = &ic->in_progress.rb_node;
917         struct rb_node *parent;
918
919         BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1));
920
921         if (likely(check_waiting)) {
922                 struct dm_integrity_range *range;
923                 list_for_each_entry(range, &ic->wait_list, wait_entry) {
924                         if (unlikely(ranges_overlap(range, new_range)))
925                                 return false;
926                 }
927         }
928
929         parent = NULL;
930
931         while (*n) {
932                 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
933
934                 parent = *n;
935                 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
936                         n = &range->node.rb_left;
937                 } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
938                         n = &range->node.rb_right;
939                 } else {
940                         return false;
941                 }
942         }
943
944         rb_link_node(&new_range->node, parent, n);
945         rb_insert_color(&new_range->node, &ic->in_progress);
946
947         return true;
948 }
949
950 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
951 {
952         rb_erase(&range->node, &ic->in_progress);
953         while (unlikely(!list_empty(&ic->wait_list))) {
954                 struct dm_integrity_range *last_range =
955                         list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
956                 struct task_struct *last_range_task;
957                 last_range_task = last_range->task;
958                 list_del(&last_range->wait_entry);
959                 if (!add_new_range(ic, last_range, false)) {
960                         last_range->task = last_range_task;
961                         list_add(&last_range->wait_entry, &ic->wait_list);
962                         break;
963                 }
964                 last_range->waiting = false;
965                 wake_up_process(last_range_task);
966         }
967 }
968
969 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
970 {
971         unsigned long flags;
972
973         spin_lock_irqsave(&ic->endio_wait.lock, flags);
974         remove_range_unlocked(ic, range);
975         spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
976 }
977
978 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
979 {
980         new_range->waiting = true;
981         list_add_tail(&new_range->wait_entry, &ic->wait_list);
982         new_range->task = current;
983         do {
984                 __set_current_state(TASK_UNINTERRUPTIBLE);
985                 spin_unlock_irq(&ic->endio_wait.lock);
986                 io_schedule();
987                 spin_lock_irq(&ic->endio_wait.lock);
988         } while (unlikely(new_range->waiting));
989 }
990
991 static void init_journal_node(struct journal_node *node)
992 {
993         RB_CLEAR_NODE(&node->node);
994         node->sector = (sector_t)-1;
995 }
996
997 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
998 {
999         struct rb_node **link;
1000         struct rb_node *parent;
1001
1002         node->sector = sector;
1003         BUG_ON(!RB_EMPTY_NODE(&node->node));
1004
1005         link = &ic->journal_tree_root.rb_node;
1006         parent = NULL;
1007
1008         while (*link) {
1009                 struct journal_node *j;
1010                 parent = *link;
1011                 j = container_of(parent, struct journal_node, node);
1012                 if (sector < j->sector)
1013                         link = &j->node.rb_left;
1014                 else
1015                         link = &j->node.rb_right;
1016         }
1017
1018         rb_link_node(&node->node, parent, link);
1019         rb_insert_color(&node->node, &ic->journal_tree_root);
1020 }
1021
1022 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1023 {
1024         BUG_ON(RB_EMPTY_NODE(&node->node));
1025         rb_erase(&node->node, &ic->journal_tree_root);
1026         init_journal_node(node);
1027 }
1028
1029 #define NOT_FOUND       (-1U)
1030
1031 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1032 {
1033         struct rb_node *n = ic->journal_tree_root.rb_node;
1034         unsigned found = NOT_FOUND;
1035         *next_sector = (sector_t)-1;
1036         while (n) {
1037                 struct journal_node *j = container_of(n, struct journal_node, node);
1038                 if (sector == j->sector) {
1039                         found = j - ic->journal_tree;
1040                 }
1041                 if (sector < j->sector) {
1042                         *next_sector = j->sector;
1043                         n = j->node.rb_left;
1044                 } else {
1045                         n = j->node.rb_right;
1046                 }
1047         }
1048
1049         return found;
1050 }
1051
1052 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector)
1053 {
1054         struct journal_node *node, *next_node;
1055         struct rb_node *next;
1056
1057         if (unlikely(pos >= ic->journal_entries))
1058                 return false;
1059         node = &ic->journal_tree[pos];
1060         if (unlikely(RB_EMPTY_NODE(&node->node)))
1061                 return false;
1062         if (unlikely(node->sector != sector))
1063                 return false;
1064
1065         next = rb_next(&node->node);
1066         if (unlikely(!next))
1067                 return true;
1068
1069         next_node = container_of(next, struct journal_node, node);
1070         return next_node->sector != sector;
1071 }
1072
1073 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1074 {
1075         struct rb_node *next;
1076         struct journal_node *next_node;
1077         unsigned next_section;
1078
1079         BUG_ON(RB_EMPTY_NODE(&node->node));
1080
1081         next = rb_next(&node->node);
1082         if (unlikely(!next))
1083                 return false;
1084
1085         next_node = container_of(next, struct journal_node, node);
1086
1087         if (next_node->sector != node->sector)
1088                 return false;
1089
1090         next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries;
1091         if (next_section >= ic->committed_section &&
1092             next_section < ic->committed_section + ic->n_committed_sections)
1093                 return true;
1094         if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1095                 return true;
1096
1097         return false;
1098 }
1099
1100 #define TAG_READ        0
1101 #define TAG_WRITE       1
1102 #define TAG_CMP         2
1103
1104 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1105                                unsigned *metadata_offset, unsigned total_size, int op)
1106 {
1107         do {
1108                 unsigned char *data, *dp;
1109                 struct dm_buffer *b;
1110                 unsigned to_copy;
1111                 int r;
1112
1113                 r = dm_integrity_failed(ic);
1114                 if (unlikely(r))
1115                         return r;
1116
1117                 data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1118                 if (IS_ERR(data))
1119                         return PTR_ERR(data);
1120
1121                 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1122                 dp = data + *metadata_offset;
1123                 if (op == TAG_READ) {
1124                         memcpy(tag, dp, to_copy);
1125                 } else if (op == TAG_WRITE) {
1126                         memcpy(dp, tag, to_copy);
1127                         dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1128                 } else  {
1129                         /* e.g.: op == TAG_CMP */
1130                         if (unlikely(memcmp(dp, tag, to_copy))) {
1131                                 unsigned i;
1132
1133                                 for (i = 0; i < to_copy; i++) {
1134                                         if (dp[i] != tag[i])
1135                                                 break;
1136                                         total_size--;
1137                                 }
1138                                 dm_bufio_release(b);
1139                                 return total_size;
1140                         }
1141                 }
1142                 dm_bufio_release(b);
1143
1144                 tag += to_copy;
1145                 *metadata_offset += to_copy;
1146                 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1147                         (*metadata_block)++;
1148                         *metadata_offset = 0;
1149                 }
1150                 total_size -= to_copy;
1151         } while (unlikely(total_size));
1152
1153         return 0;
1154 }
1155
1156 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic)
1157 {
1158         int r;
1159         r = dm_bufio_write_dirty_buffers(ic->bufio);
1160         if (unlikely(r))
1161                 dm_integrity_io_error(ic, "writing tags", r);
1162 }
1163
1164 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1165 {
1166         DECLARE_WAITQUEUE(wait, current);
1167         __add_wait_queue(&ic->endio_wait, &wait);
1168         __set_current_state(TASK_UNINTERRUPTIBLE);
1169         spin_unlock_irq(&ic->endio_wait.lock);
1170         io_schedule();
1171         spin_lock_irq(&ic->endio_wait.lock);
1172         __remove_wait_queue(&ic->endio_wait, &wait);
1173 }
1174
1175 static void autocommit_fn(struct timer_list *t)
1176 {
1177         struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1178
1179         if (likely(!dm_integrity_failed(ic)))
1180                 queue_work(ic->commit_wq, &ic->commit_work);
1181 }
1182
1183 static void schedule_autocommit(struct dm_integrity_c *ic)
1184 {
1185         if (!timer_pending(&ic->autocommit_timer))
1186                 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1187 }
1188
1189 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1190 {
1191         struct bio *bio;
1192         unsigned long flags;
1193
1194         spin_lock_irqsave(&ic->endio_wait.lock, flags);
1195         bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1196         bio_list_add(&ic->flush_bio_list, bio);
1197         spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1198
1199         queue_work(ic->commit_wq, &ic->commit_work);
1200 }
1201
1202 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1203 {
1204         int r = dm_integrity_failed(ic);
1205         if (unlikely(r) && !bio->bi_status)
1206                 bio->bi_status = errno_to_blk_status(r);
1207         bio_endio(bio);
1208 }
1209
1210 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1211 {
1212         struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1213
1214         if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1215                 submit_flush_bio(ic, dio);
1216         else
1217                 do_endio(ic, bio);
1218 }
1219
1220 static void dec_in_flight(struct dm_integrity_io *dio)
1221 {
1222         if (atomic_dec_and_test(&dio->in_flight)) {
1223                 struct dm_integrity_c *ic = dio->ic;
1224                 struct bio *bio;
1225
1226                 remove_range(ic, &dio->range);
1227
1228                 if (unlikely(dio->write))
1229                         schedule_autocommit(ic);
1230
1231                 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1232
1233                 if (unlikely(dio->bi_status) && !bio->bi_status)
1234                         bio->bi_status = dio->bi_status;
1235                 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1236                         dio->range.logical_sector += dio->range.n_sectors;
1237                         bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1238                         INIT_WORK(&dio->work, integrity_bio_wait);
1239                         queue_work(ic->wait_wq, &dio->work);
1240                         return;
1241                 }
1242                 do_endio_flush(ic, dio);
1243         }
1244 }
1245
1246 static void integrity_end_io(struct bio *bio)
1247 {
1248         struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1249
1250         bio->bi_iter = dio->orig_bi_iter;
1251         bio->bi_disk = dio->orig_bi_disk;
1252         bio->bi_partno = dio->orig_bi_partno;
1253         if (dio->orig_bi_integrity) {
1254                 bio->bi_integrity = dio->orig_bi_integrity;
1255                 bio->bi_opf |= REQ_INTEGRITY;
1256         }
1257         bio->bi_end_io = dio->orig_bi_end_io;
1258
1259         if (dio->completion)
1260                 complete(dio->completion);
1261
1262         dec_in_flight(dio);
1263 }
1264
1265 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1266                                       const char *data, char *result)
1267 {
1268         __u64 sector_le = cpu_to_le64(sector);
1269         SHASH_DESC_ON_STACK(req, ic->internal_hash);
1270         int r;
1271         unsigned digest_size;
1272
1273         req->tfm = ic->internal_hash;
1274
1275         r = crypto_shash_init(req);
1276         if (unlikely(r < 0)) {
1277                 dm_integrity_io_error(ic, "crypto_shash_init", r);
1278                 goto failed;
1279         }
1280
1281         r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof sector_le);
1282         if (unlikely(r < 0)) {
1283                 dm_integrity_io_error(ic, "crypto_shash_update", r);
1284                 goto failed;
1285         }
1286
1287         r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1288         if (unlikely(r < 0)) {
1289                 dm_integrity_io_error(ic, "crypto_shash_update", r);
1290                 goto failed;
1291         }
1292
1293         r = crypto_shash_final(req, result);
1294         if (unlikely(r < 0)) {
1295                 dm_integrity_io_error(ic, "crypto_shash_final", r);
1296                 goto failed;
1297         }
1298
1299         digest_size = crypto_shash_digestsize(ic->internal_hash);
1300         if (unlikely(digest_size < ic->tag_size))
1301                 memset(result + digest_size, 0, ic->tag_size - digest_size);
1302
1303         return;
1304
1305 failed:
1306         /* this shouldn't happen anyway, the hash functions have no reason to fail */
1307         get_random_bytes(result, ic->tag_size);
1308 }
1309
1310 static void integrity_metadata(struct work_struct *w)
1311 {
1312         struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1313         struct dm_integrity_c *ic = dio->ic;
1314
1315         int r;
1316
1317         if (ic->internal_hash) {
1318                 struct bvec_iter iter;
1319                 struct bio_vec bv;
1320                 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1321                 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1322                 char *checksums;
1323                 unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1324                 char checksums_onstack[HASH_MAX_DIGESTSIZE];
1325                 unsigned sectors_to_process = dio->range.n_sectors;
1326                 sector_t sector = dio->range.logical_sector;
1327
1328                 if (unlikely(ic->mode == 'R'))
1329                         goto skip_io;
1330
1331                 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1332                                     GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1333                 if (!checksums) {
1334                         checksums = checksums_onstack;
1335                         if (WARN_ON(extra_space &&
1336                                     digest_size > sizeof(checksums_onstack))) {
1337                                 r = -EINVAL;
1338                                 goto error;
1339                         }
1340                 }
1341
1342                 __bio_for_each_segment(bv, bio, iter, dio->orig_bi_iter) {
1343                         unsigned pos;
1344                         char *mem, *checksums_ptr;
1345
1346 again:
1347                         mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset;
1348                         pos = 0;
1349                         checksums_ptr = checksums;
1350                         do {
1351                                 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1352                                 checksums_ptr += ic->tag_size;
1353                                 sectors_to_process -= ic->sectors_per_block;
1354                                 pos += ic->sectors_per_block << SECTOR_SHIFT;
1355                                 sector += ic->sectors_per_block;
1356                         } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1357                         kunmap_atomic(mem);
1358
1359                         r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1360                                                 checksums_ptr - checksums, !dio->write ? TAG_CMP : TAG_WRITE);
1361                         if (unlikely(r)) {
1362                                 if (r > 0) {
1363                                         DMERR_LIMIT("Checksum failed at sector 0x%llx",
1364                                                     (unsigned long long)(sector - ((r + ic->tag_size - 1) / ic->tag_size)));
1365                                         r = -EILSEQ;
1366                                         atomic64_inc(&ic->number_of_mismatches);
1367                                 }
1368                                 if (likely(checksums != checksums_onstack))
1369                                         kfree(checksums);
1370                                 goto error;
1371                         }
1372
1373                         if (!sectors_to_process)
1374                                 break;
1375
1376                         if (unlikely(pos < bv.bv_len)) {
1377                                 bv.bv_offset += pos;
1378                                 bv.bv_len -= pos;
1379                                 goto again;
1380                         }
1381                 }
1382
1383                 if (likely(checksums != checksums_onstack))
1384                         kfree(checksums);
1385         } else {
1386                 struct bio_integrity_payload *bip = dio->orig_bi_integrity;
1387
1388                 if (bip) {
1389                         struct bio_vec biv;
1390                         struct bvec_iter iter;
1391                         unsigned data_to_process = dio->range.n_sectors;
1392                         sector_to_block(ic, data_to_process);
1393                         data_to_process *= ic->tag_size;
1394
1395                         bip_for_each_vec(biv, bip, iter) {
1396                                 unsigned char *tag;
1397                                 unsigned this_len;
1398
1399                                 BUG_ON(PageHighMem(biv.bv_page));
1400                                 tag = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1401                                 this_len = min(biv.bv_len, data_to_process);
1402                                 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1403                                                         this_len, !dio->write ? TAG_READ : TAG_WRITE);
1404                                 if (unlikely(r))
1405                                         goto error;
1406                                 data_to_process -= this_len;
1407                                 if (!data_to_process)
1408                                         break;
1409                         }
1410                 }
1411         }
1412 skip_io:
1413         dec_in_flight(dio);
1414         return;
1415 error:
1416         dio->bi_status = errno_to_blk_status(r);
1417         dec_in_flight(dio);
1418 }
1419
1420 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1421 {
1422         struct dm_integrity_c *ic = ti->private;
1423         struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1424         struct bio_integrity_payload *bip;
1425
1426         sector_t area, offset;
1427
1428         dio->ic = ic;
1429         dio->bi_status = 0;
1430
1431         if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1432                 submit_flush_bio(ic, dio);
1433                 return DM_MAPIO_SUBMITTED;
1434         }
1435
1436         dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1437         dio->write = bio_op(bio) == REQ_OP_WRITE;
1438         dio->fua = dio->write && bio->bi_opf & REQ_FUA;
1439         if (unlikely(dio->fua)) {
1440                 /*
1441                  * Don't pass down the FUA flag because we have to flush
1442                  * disk cache anyway.
1443                  */
1444                 bio->bi_opf &= ~REQ_FUA;
1445         }
1446         if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1447                 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1448                       (unsigned long long)dio->range.logical_sector, bio_sectors(bio),
1449                       (unsigned long long)ic->provided_data_sectors);
1450                 return DM_MAPIO_KILL;
1451         }
1452         if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) {
1453                 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1454                       ic->sectors_per_block,
1455                       (unsigned long long)dio->range.logical_sector, bio_sectors(bio));
1456                 return DM_MAPIO_KILL;
1457         }
1458
1459         if (ic->sectors_per_block > 1) {
1460                 struct bvec_iter iter;
1461                 struct bio_vec bv;
1462                 bio_for_each_segment(bv, bio, iter) {
1463                         if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1464                                 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1465                                         bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1466                                 return DM_MAPIO_KILL;
1467                         }
1468                 }
1469         }
1470
1471         bip = bio_integrity(bio);
1472         if (!ic->internal_hash) {
1473                 if (bip) {
1474                         unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1475                         if (ic->log2_tag_size >= 0)
1476                                 wanted_tag_size <<= ic->log2_tag_size;
1477                         else
1478                                 wanted_tag_size *= ic->tag_size;
1479                         if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1480                                 DMERR("Invalid integrity data size %u, expected %u", bip->bip_iter.bi_size, wanted_tag_size);
1481                                 return DM_MAPIO_KILL;
1482                         }
1483                 }
1484         } else {
1485                 if (unlikely(bip != NULL)) {
1486                         DMERR("Unexpected integrity data when using internal hash");
1487                         return DM_MAPIO_KILL;
1488                 }
1489         }
1490
1491         if (unlikely(ic->mode == 'R') && unlikely(dio->write))
1492                 return DM_MAPIO_KILL;
1493
1494         get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1495         dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1496         bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1497
1498         dm_integrity_map_continue(dio, true);
1499         return DM_MAPIO_SUBMITTED;
1500 }
1501
1502 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1503                                  unsigned journal_section, unsigned journal_entry)
1504 {
1505         struct dm_integrity_c *ic = dio->ic;
1506         sector_t logical_sector;
1507         unsigned n_sectors;
1508
1509         logical_sector = dio->range.logical_sector;
1510         n_sectors = dio->range.n_sectors;
1511         do {
1512                 struct bio_vec bv = bio_iovec(bio);
1513                 char *mem;
1514
1515                 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1516                         bv.bv_len = n_sectors << SECTOR_SHIFT;
1517                 n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1518                 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1519 retry_kmap:
1520                 mem = kmap_atomic(bv.bv_page);
1521                 if (likely(dio->write))
1522                         flush_dcache_page(bv.bv_page);
1523
1524                 do {
1525                         struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1526
1527                         if (unlikely(!dio->write)) {
1528                                 struct journal_sector *js;
1529                                 char *mem_ptr;
1530                                 unsigned s;
1531
1532                                 if (unlikely(journal_entry_is_inprogress(je))) {
1533                                         flush_dcache_page(bv.bv_page);
1534                                         kunmap_atomic(mem);
1535
1536                                         __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1537                                         goto retry_kmap;
1538                                 }
1539                                 smp_rmb();
1540                                 BUG_ON(journal_entry_get_sector(je) != logical_sector);
1541                                 js = access_journal_data(ic, journal_section, journal_entry);
1542                                 mem_ptr = mem + bv.bv_offset;
1543                                 s = 0;
1544                                 do {
1545                                         memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1546                                         *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1547                                         js++;
1548                                         mem_ptr += 1 << SECTOR_SHIFT;
1549                                 } while (++s < ic->sectors_per_block);
1550 #ifdef INTERNAL_VERIFY
1551                                 if (ic->internal_hash) {
1552                                         char checksums_onstack[max(HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1553
1554                                         integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
1555                                         if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
1556                                                 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
1557                                                             (unsigned long long)logical_sector);
1558                                         }
1559                                 }
1560 #endif
1561                         }
1562
1563                         if (!ic->internal_hash) {
1564                                 struct bio_integrity_payload *bip = bio_integrity(bio);
1565                                 unsigned tag_todo = ic->tag_size;
1566                                 char *tag_ptr = journal_entry_tag(ic, je);
1567
1568                                 if (bip) do {
1569                                         struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
1570                                         unsigned tag_now = min(biv.bv_len, tag_todo);
1571                                         char *tag_addr;
1572                                         BUG_ON(PageHighMem(biv.bv_page));
1573                                         tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1574                                         if (likely(dio->write))
1575                                                 memcpy(tag_ptr, tag_addr, tag_now);
1576                                         else
1577                                                 memcpy(tag_addr, tag_ptr, tag_now);
1578                                         bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
1579                                         tag_ptr += tag_now;
1580                                         tag_todo -= tag_now;
1581                                 } while (unlikely(tag_todo)); else {
1582                                         if (likely(dio->write))
1583                                                 memset(tag_ptr, 0, tag_todo);
1584                                 }
1585                         }
1586
1587                         if (likely(dio->write)) {
1588                                 struct journal_sector *js;
1589                                 unsigned s;
1590
1591                                 js = access_journal_data(ic, journal_section, journal_entry);
1592                                 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
1593
1594                                 s = 0;
1595                                 do {
1596                                         je->last_bytes[s] = js[s].commit_id;
1597                                 } while (++s < ic->sectors_per_block);
1598
1599                                 if (ic->internal_hash) {
1600                                         unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1601                                         if (unlikely(digest_size > ic->tag_size)) {
1602                                                 char checksums_onstack[HASH_MAX_DIGESTSIZE];
1603                                                 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
1604                                                 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
1605                                         } else
1606                                                 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
1607                                 }
1608
1609                                 journal_entry_set_sector(je, logical_sector);
1610                         }
1611                         logical_sector += ic->sectors_per_block;
1612
1613                         journal_entry++;
1614                         if (unlikely(journal_entry == ic->journal_section_entries)) {
1615                                 journal_entry = 0;
1616                                 journal_section++;
1617                                 wraparound_section(ic, &journal_section);
1618                         }
1619
1620                         bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
1621                 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
1622
1623                 if (unlikely(!dio->write))
1624                         flush_dcache_page(bv.bv_page);
1625                 kunmap_atomic(mem);
1626         } while (n_sectors);
1627
1628         if (likely(dio->write)) {
1629                 smp_mb();
1630                 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
1631                         wake_up(&ic->copy_to_journal_wait);
1632                 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
1633                         queue_work(ic->commit_wq, &ic->commit_work);
1634                 } else {
1635                         schedule_autocommit(ic);
1636                 }
1637         } else {
1638                 remove_range(ic, &dio->range);
1639         }
1640
1641         if (unlikely(bio->bi_iter.bi_size)) {
1642                 sector_t area, offset;
1643
1644                 dio->range.logical_sector = logical_sector;
1645                 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1646                 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1647                 return true;
1648         }
1649
1650         return false;
1651 }
1652
1653 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
1654 {
1655         struct dm_integrity_c *ic = dio->ic;
1656         struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1657         unsigned journal_section, journal_entry;
1658         unsigned journal_read_pos;
1659         struct completion read_comp;
1660         bool need_sync_io = ic->internal_hash && !dio->write;
1661
1662         if (need_sync_io && from_map) {
1663                 INIT_WORK(&dio->work, integrity_bio_wait);
1664                 queue_work(ic->metadata_wq, &dio->work);
1665                 return;
1666         }
1667
1668 lock_retry:
1669         spin_lock_irq(&ic->endio_wait.lock);
1670 retry:
1671         if (unlikely(dm_integrity_failed(ic))) {
1672                 spin_unlock_irq(&ic->endio_wait.lock);
1673                 do_endio(ic, bio);
1674                 return;
1675         }
1676         dio->range.n_sectors = bio_sectors(bio);
1677         journal_read_pos = NOT_FOUND;
1678         if (likely(ic->mode == 'J')) {
1679                 if (dio->write) {
1680                         unsigned next_entry, i, pos;
1681                         unsigned ws, we, range_sectors;
1682
1683                         dio->range.n_sectors = min(dio->range.n_sectors,
1684                                                    ic->free_sectors << ic->sb->log2_sectors_per_block);
1685                         if (unlikely(!dio->range.n_sectors)) {
1686                                 if (from_map)
1687                                         goto offload_to_thread;
1688                                 sleep_on_endio_wait(ic);
1689                                 goto retry;
1690                         }
1691                         range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
1692                         ic->free_sectors -= range_sectors;
1693                         journal_section = ic->free_section;
1694                         journal_entry = ic->free_section_entry;
1695
1696                         next_entry = ic->free_section_entry + range_sectors;
1697                         ic->free_section_entry = next_entry % ic->journal_section_entries;
1698                         ic->free_section += next_entry / ic->journal_section_entries;
1699                         ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
1700                         wraparound_section(ic, &ic->free_section);
1701
1702                         pos = journal_section * ic->journal_section_entries + journal_entry;
1703                         ws = journal_section;
1704                         we = journal_entry;
1705                         i = 0;
1706                         do {
1707                                 struct journal_entry *je;
1708
1709                                 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
1710                                 pos++;
1711                                 if (unlikely(pos >= ic->journal_entries))
1712                                         pos = 0;
1713
1714                                 je = access_journal_entry(ic, ws, we);
1715                                 BUG_ON(!journal_entry_is_unused(je));
1716                                 journal_entry_set_inprogress(je);
1717                                 we++;
1718                                 if (unlikely(we == ic->journal_section_entries)) {
1719                                         we = 0;
1720                                         ws++;
1721                                         wraparound_section(ic, &ws);
1722                                 }
1723                         } while ((i += ic->sectors_per_block) < dio->range.n_sectors);
1724
1725                         spin_unlock_irq(&ic->endio_wait.lock);
1726                         goto journal_read_write;
1727                 } else {
1728                         sector_t next_sector;
1729                         journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
1730                         if (likely(journal_read_pos == NOT_FOUND)) {
1731                                 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
1732                                         dio->range.n_sectors = next_sector - dio->range.logical_sector;
1733                         } else {
1734                                 unsigned i;
1735                                 unsigned jp = journal_read_pos + 1;
1736                                 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
1737                                         if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
1738                                                 break;
1739                                 }
1740                                 dio->range.n_sectors = i;
1741                         }
1742                 }
1743         }
1744         if (unlikely(!add_new_range(ic, &dio->range, true))) {
1745                 /*
1746                  * We must not sleep in the request routine because it could
1747                  * stall bios on current->bio_list.
1748                  * So, we offload the bio to a workqueue if we have to sleep.
1749                  */
1750                 if (from_map) {
1751 offload_to_thread:
1752                         spin_unlock_irq(&ic->endio_wait.lock);
1753                         INIT_WORK(&dio->work, integrity_bio_wait);
1754                         queue_work(ic->wait_wq, &dio->work);
1755                         return;
1756                 }
1757                 wait_and_add_new_range(ic, &dio->range);
1758         }
1759         spin_unlock_irq(&ic->endio_wait.lock);
1760
1761         if (unlikely(journal_read_pos != NOT_FOUND)) {
1762                 journal_section = journal_read_pos / ic->journal_section_entries;
1763                 journal_entry = journal_read_pos % ic->journal_section_entries;
1764                 goto journal_read_write;
1765         }
1766
1767         dio->in_flight = (atomic_t)ATOMIC_INIT(2);
1768
1769         if (need_sync_io) {
1770                 init_completion(&read_comp);
1771                 dio->completion = &read_comp;
1772         } else
1773                 dio->completion = NULL;
1774
1775         dio->orig_bi_iter = bio->bi_iter;
1776
1777         dio->orig_bi_disk = bio->bi_disk;
1778         dio->orig_bi_partno = bio->bi_partno;
1779         bio_set_dev(bio, ic->dev->bdev);
1780
1781         dio->orig_bi_integrity = bio_integrity(bio);
1782         bio->bi_integrity = NULL;
1783         bio->bi_opf &= ~REQ_INTEGRITY;
1784
1785         dio->orig_bi_end_io = bio->bi_end_io;
1786         bio->bi_end_io = integrity_end_io;
1787
1788         bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
1789         generic_make_request(bio);
1790
1791         if (need_sync_io) {
1792                 wait_for_completion_io(&read_comp);
1793                 if (unlikely(ic->recalc_wq != NULL) &&
1794                     ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
1795                     dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
1796                         goto skip_check;
1797                 if (likely(!bio->bi_status))
1798                         integrity_metadata(&dio->work);
1799                 else
1800 skip_check:
1801                         dec_in_flight(dio);
1802
1803         } else {
1804                 INIT_WORK(&dio->work, integrity_metadata);
1805                 queue_work(ic->metadata_wq, &dio->work);
1806         }
1807
1808         return;
1809
1810 journal_read_write:
1811         if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
1812                 goto lock_retry;
1813
1814         do_endio_flush(ic, dio);
1815 }
1816
1817
1818 static void integrity_bio_wait(struct work_struct *w)
1819 {
1820         struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1821
1822         dm_integrity_map_continue(dio, false);
1823 }
1824
1825 static void pad_uncommitted(struct dm_integrity_c *ic)
1826 {
1827         if (ic->free_section_entry) {
1828                 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
1829                 ic->free_section_entry = 0;
1830                 ic->free_section++;
1831                 wraparound_section(ic, &ic->free_section);
1832                 ic->n_uncommitted_sections++;
1833         }
1834         WARN_ON(ic->journal_sections * ic->journal_section_entries !=
1835                 (ic->n_uncommitted_sections + ic->n_committed_sections) * ic->journal_section_entries + ic->free_sectors);
1836 }
1837
1838 static void integrity_commit(struct work_struct *w)
1839 {
1840         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
1841         unsigned commit_start, commit_sections;
1842         unsigned i, j, n;
1843         struct bio *flushes;
1844
1845         del_timer(&ic->autocommit_timer);
1846
1847         spin_lock_irq(&ic->endio_wait.lock);
1848         flushes = bio_list_get(&ic->flush_bio_list);
1849         if (unlikely(ic->mode != 'J')) {
1850                 spin_unlock_irq(&ic->endio_wait.lock);
1851                 dm_integrity_flush_buffers(ic);
1852                 goto release_flush_bios;
1853         }
1854
1855         pad_uncommitted(ic);
1856         commit_start = ic->uncommitted_section;
1857         commit_sections = ic->n_uncommitted_sections;
1858         spin_unlock_irq(&ic->endio_wait.lock);
1859
1860         if (!commit_sections)
1861                 goto release_flush_bios;
1862
1863         i = commit_start;
1864         for (n = 0; n < commit_sections; n++) {
1865                 for (j = 0; j < ic->journal_section_entries; j++) {
1866                         struct journal_entry *je;
1867                         je = access_journal_entry(ic, i, j);
1868                         io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1869                 }
1870                 for (j = 0; j < ic->journal_section_sectors; j++) {
1871                         struct journal_sector *js;
1872                         js = access_journal(ic, i, j);
1873                         js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
1874                 }
1875                 i++;
1876                 if (unlikely(i >= ic->journal_sections))
1877                         ic->commit_seq = next_commit_seq(ic->commit_seq);
1878                 wraparound_section(ic, &i);
1879         }
1880         smp_rmb();
1881
1882         write_journal(ic, commit_start, commit_sections);
1883
1884         spin_lock_irq(&ic->endio_wait.lock);
1885         ic->uncommitted_section += commit_sections;
1886         wraparound_section(ic, &ic->uncommitted_section);
1887         ic->n_uncommitted_sections -= commit_sections;
1888         ic->n_committed_sections += commit_sections;
1889         spin_unlock_irq(&ic->endio_wait.lock);
1890
1891         if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
1892                 queue_work(ic->writer_wq, &ic->writer_work);
1893
1894 release_flush_bios:
1895         while (flushes) {
1896                 struct bio *next = flushes->bi_next;
1897                 flushes->bi_next = NULL;
1898                 do_endio(ic, flushes);
1899                 flushes = next;
1900         }
1901 }
1902
1903 static void complete_copy_from_journal(unsigned long error, void *context)
1904 {
1905         struct journal_io *io = context;
1906         struct journal_completion *comp = io->comp;
1907         struct dm_integrity_c *ic = comp->ic;
1908         remove_range(ic, &io->range);
1909         mempool_free(io, &ic->journal_io_mempool);
1910         if (unlikely(error != 0))
1911                 dm_integrity_io_error(ic, "copying from journal", -EIO);
1912         complete_journal_op(comp);
1913 }
1914
1915 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
1916                                struct journal_entry *je)
1917 {
1918         unsigned s = 0;
1919         do {
1920                 js->commit_id = je->last_bytes[s];
1921                 js++;
1922         } while (++s < ic->sectors_per_block);
1923 }
1924
1925 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start,
1926                              unsigned write_sections, bool from_replay)
1927 {
1928         unsigned i, j, n;
1929         struct journal_completion comp;
1930         struct blk_plug plug;
1931
1932         blk_start_plug(&plug);
1933
1934         comp.ic = ic;
1935         comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1936         init_completion(&comp.comp);
1937
1938         i = write_start;
1939         for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
1940 #ifndef INTERNAL_VERIFY
1941                 if (unlikely(from_replay))
1942 #endif
1943                         rw_section_mac(ic, i, false);
1944                 for (j = 0; j < ic->journal_section_entries; j++) {
1945                         struct journal_entry *je = access_journal_entry(ic, i, j);
1946                         sector_t sec, area, offset;
1947                         unsigned k, l, next_loop;
1948                         sector_t metadata_block;
1949                         unsigned metadata_offset;
1950                         struct journal_io *io;
1951
1952                         if (journal_entry_is_unused(je))
1953                                 continue;
1954                         BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
1955                         sec = journal_entry_get_sector(je);
1956                         if (unlikely(from_replay)) {
1957                                 if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) {
1958                                         dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
1959                                         sec &= ~(sector_t)(ic->sectors_per_block - 1);
1960                                 }
1961                         }
1962                         get_area_and_offset(ic, sec, &area, &offset);
1963                         restore_last_bytes(ic, access_journal_data(ic, i, j), je);
1964                         for (k = j + 1; k < ic->journal_section_entries; k++) {
1965                                 struct journal_entry *je2 = access_journal_entry(ic, i, k);
1966                                 sector_t sec2, area2, offset2;
1967                                 if (journal_entry_is_unused(je2))
1968                                         break;
1969                                 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
1970                                 sec2 = journal_entry_get_sector(je2);
1971                                 get_area_and_offset(ic, sec2, &area2, &offset2);
1972                                 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
1973                                         break;
1974                                 restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
1975                         }
1976                         next_loop = k - 1;
1977
1978                         io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
1979                         io->comp = &comp;
1980                         io->range.logical_sector = sec;
1981                         io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
1982
1983                         spin_lock_irq(&ic->endio_wait.lock);
1984                         if (unlikely(!add_new_range(ic, &io->range, true)))
1985                                 wait_and_add_new_range(ic, &io->range);
1986
1987                         if (likely(!from_replay)) {
1988                                 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
1989
1990                                 /* don't write if there is newer committed sector */
1991                                 while (j < k && find_newer_committed_node(ic, &section_node[j])) {
1992                                         struct journal_entry *je2 = access_journal_entry(ic, i, j);
1993
1994                                         journal_entry_set_unused(je2);
1995                                         remove_journal_node(ic, &section_node[j]);
1996                                         j++;
1997                                         sec += ic->sectors_per_block;
1998                                         offset += ic->sectors_per_block;
1999                                 }
2000                                 while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2001                                         struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2002
2003                                         journal_entry_set_unused(je2);
2004                                         remove_journal_node(ic, &section_node[k - 1]);
2005                                         k--;
2006                                 }
2007                                 if (j == k) {
2008                                         remove_range_unlocked(ic, &io->range);
2009                                         spin_unlock_irq(&ic->endio_wait.lock);
2010                                         mempool_free(io, &ic->journal_io_mempool);
2011                                         goto skip_io;
2012                                 }
2013                                 for (l = j; l < k; l++) {
2014                                         remove_journal_node(ic, &section_node[l]);
2015                                 }
2016                         }
2017                         spin_unlock_irq(&ic->endio_wait.lock);
2018
2019                         metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2020                         for (l = j; l < k; l++) {
2021                                 int r;
2022                                 struct journal_entry *je2 = access_journal_entry(ic, i, l);
2023
2024                                 if (
2025 #ifndef INTERNAL_VERIFY
2026                                     unlikely(from_replay) &&
2027 #endif
2028                                     ic->internal_hash) {
2029                                         char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2030
2031                                         integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2032                                                                   (char *)access_journal_data(ic, i, l), test_tag);
2033                                         if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size)))
2034                                                 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2035                                 }
2036
2037                                 journal_entry_set_unused(je2);
2038                                 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2039                                                         ic->tag_size, TAG_WRITE);
2040                                 if (unlikely(r)) {
2041                                         dm_integrity_io_error(ic, "reading tags", r);
2042                                 }
2043                         }
2044
2045                         atomic_inc(&comp.in_flight);
2046                         copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2047                                           (k - j) << ic->sb->log2_sectors_per_block,
2048                                           get_data_sector(ic, area, offset),
2049                                           complete_copy_from_journal, io);
2050 skip_io:
2051                         j = next_loop;
2052                 }
2053         }
2054
2055         dm_bufio_write_dirty_buffers_async(ic->bufio);
2056
2057         blk_finish_plug(&plug);
2058
2059         complete_journal_op(&comp);
2060         wait_for_completion_io(&comp.comp);
2061
2062         dm_integrity_flush_buffers(ic);
2063 }
2064
2065 static void integrity_writer(struct work_struct *w)
2066 {
2067         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2068         unsigned write_start, write_sections;
2069
2070         unsigned prev_free_sectors;
2071
2072         /* the following test is not needed, but it tests the replay code */
2073         if (READ_ONCE(ic->suspending) && !ic->meta_dev)
2074                 return;
2075
2076         spin_lock_irq(&ic->endio_wait.lock);
2077         write_start = ic->committed_section;
2078         write_sections = ic->n_committed_sections;
2079         spin_unlock_irq(&ic->endio_wait.lock);
2080
2081         if (!write_sections)
2082                 return;
2083
2084         do_journal_write(ic, write_start, write_sections, false);
2085
2086         spin_lock_irq(&ic->endio_wait.lock);
2087
2088         ic->committed_section += write_sections;
2089         wraparound_section(ic, &ic->committed_section);
2090         ic->n_committed_sections -= write_sections;
2091
2092         prev_free_sectors = ic->free_sectors;
2093         ic->free_sectors += write_sections * ic->journal_section_entries;
2094         if (unlikely(!prev_free_sectors))
2095                 wake_up_locked(&ic->endio_wait);
2096
2097         spin_unlock_irq(&ic->endio_wait.lock);
2098 }
2099
2100 static void recalc_write_super(struct dm_integrity_c *ic)
2101 {
2102         int r;
2103
2104         dm_integrity_flush_buffers(ic);
2105         if (dm_integrity_failed(ic))
2106                 return;
2107
2108         sb_set_version(ic);
2109         r = sync_rw_sb(ic, REQ_OP_WRITE, 0);
2110         if (unlikely(r))
2111                 dm_integrity_io_error(ic, "writing superblock", r);
2112 }
2113
2114 static void integrity_recalc(struct work_struct *w)
2115 {
2116         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2117         struct dm_integrity_range range;
2118         struct dm_io_request io_req;
2119         struct dm_io_region io_loc;
2120         sector_t area, offset;
2121         sector_t metadata_block;
2122         unsigned metadata_offset;
2123         __u8 *t;
2124         unsigned i;
2125         int r;
2126         unsigned super_counter = 0;
2127
2128         spin_lock_irq(&ic->endio_wait.lock);
2129
2130 next_chunk:
2131
2132         if (unlikely(READ_ONCE(ic->suspending)))
2133                 goto unlock_ret;
2134
2135         range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2136         if (unlikely(range.logical_sector >= ic->provided_data_sectors))
2137                 goto unlock_ret;
2138
2139         get_area_and_offset(ic, range.logical_sector, &area, &offset);
2140         range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector);
2141         if (!ic->meta_dev)
2142                 range.n_sectors = min(range.n_sectors, (1U << ic->sb->log2_interleave_sectors) - (unsigned)offset);
2143
2144         if (unlikely(!add_new_range(ic, &range, true)))
2145                 wait_and_add_new_range(ic, &range);
2146
2147         spin_unlock_irq(&ic->endio_wait.lock);
2148
2149         if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2150                 recalc_write_super(ic);
2151                 super_counter = 0;
2152         }
2153
2154         if (unlikely(dm_integrity_failed(ic)))
2155                 goto err;
2156
2157         io_req.bi_op = REQ_OP_READ;
2158         io_req.bi_op_flags = 0;
2159         io_req.mem.type = DM_IO_VMA;
2160         io_req.mem.ptr.addr = ic->recalc_buffer;
2161         io_req.notify.fn = NULL;
2162         io_req.client = ic->io;
2163         io_loc.bdev = ic->dev->bdev;
2164         io_loc.sector = get_data_sector(ic, area, offset);
2165         io_loc.count = range.n_sectors;
2166
2167         r = dm_io(&io_req, 1, &io_loc, NULL);
2168         if (unlikely(r)) {
2169                 dm_integrity_io_error(ic, "reading data", r);
2170                 goto err;
2171         }
2172
2173         t = ic->recalc_tags;
2174         for (i = 0; i < range.n_sectors; i += ic->sectors_per_block) {
2175                 integrity_sector_checksum(ic, range.logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t);
2176                 t += ic->tag_size;
2177         }
2178
2179         metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2180
2181         r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE);
2182         if (unlikely(r)) {
2183                 dm_integrity_io_error(ic, "writing tags", r);
2184                 goto err;
2185         }
2186
2187         spin_lock_irq(&ic->endio_wait.lock);
2188         remove_range_unlocked(ic, &range);
2189         ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2190         goto next_chunk;
2191
2192 err:
2193         remove_range(ic, &range);
2194         return;
2195
2196 unlock_ret:
2197         spin_unlock_irq(&ic->endio_wait.lock);
2198
2199         recalc_write_super(ic);
2200 }
2201
2202 static void init_journal(struct dm_integrity_c *ic, unsigned start_section,
2203                          unsigned n_sections, unsigned char commit_seq)
2204 {
2205         unsigned i, j, n;
2206
2207         if (!n_sections)
2208                 return;
2209
2210         for (n = 0; n < n_sections; n++) {
2211                 i = start_section + n;
2212                 wraparound_section(ic, &i);
2213                 for (j = 0; j < ic->journal_section_sectors; j++) {
2214                         struct journal_sector *js = access_journal(ic, i, j);
2215                         memset(&js->entries, 0, JOURNAL_SECTOR_DATA);
2216                         js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2217                 }
2218                 for (j = 0; j < ic->journal_section_entries; j++) {
2219                         struct journal_entry *je = access_journal_entry(ic, i, j);
2220                         journal_entry_set_unused(je);
2221                 }
2222         }
2223
2224         write_journal(ic, start_section, n_sections);
2225 }
2226
2227 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id)
2228 {
2229         unsigned char k;
2230         for (k = 0; k < N_COMMIT_IDS; k++) {
2231                 if (dm_integrity_commit_id(ic, i, j, k) == id)
2232                         return k;
2233         }
2234         dm_integrity_io_error(ic, "journal commit id", -EIO);
2235         return -EIO;
2236 }
2237
2238 static void replay_journal(struct dm_integrity_c *ic)
2239 {
2240         unsigned i, j;
2241         bool used_commit_ids[N_COMMIT_IDS];
2242         unsigned max_commit_id_sections[N_COMMIT_IDS];
2243         unsigned write_start, write_sections;
2244         unsigned continue_section;
2245         bool journal_empty;
2246         unsigned char unused, last_used, want_commit_seq;
2247
2248         if (ic->mode == 'R')
2249                 return;
2250
2251         if (ic->journal_uptodate)
2252                 return;
2253
2254         last_used = 0;
2255         write_start = 0;
2256
2257         if (!ic->just_formatted) {
2258                 DEBUG_print("reading journal\n");
2259                 rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL);
2260                 if (ic->journal_io)
2261                         DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2262                 if (ic->journal_io) {
2263                         struct journal_completion crypt_comp;
2264                         crypt_comp.ic = ic;
2265                         init_completion(&crypt_comp.comp);
2266                         crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2267                         encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2268                         wait_for_completion(&crypt_comp.comp);
2269                 }
2270                 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2271         }
2272
2273         if (dm_integrity_failed(ic))
2274                 goto clear_journal;
2275
2276         journal_empty = true;
2277         memset(used_commit_ids, 0, sizeof used_commit_ids);
2278         memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
2279         for (i = 0; i < ic->journal_sections; i++) {
2280                 for (j = 0; j < ic->journal_section_sectors; j++) {
2281                         int k;
2282                         struct journal_sector *js = access_journal(ic, i, j);
2283                         k = find_commit_seq(ic, i, j, js->commit_id);
2284                         if (k < 0)
2285                                 goto clear_journal;
2286                         used_commit_ids[k] = true;
2287                         max_commit_id_sections[k] = i;
2288                 }
2289                 if (journal_empty) {
2290                         for (j = 0; j < ic->journal_section_entries; j++) {
2291                                 struct journal_entry *je = access_journal_entry(ic, i, j);
2292                                 if (!journal_entry_is_unused(je)) {
2293                                         journal_empty = false;
2294                                         break;
2295                                 }
2296                         }
2297                 }
2298         }
2299
2300         if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2301                 unused = N_COMMIT_IDS - 1;
2302                 while (unused && !used_commit_ids[unused - 1])
2303                         unused--;
2304         } else {
2305                 for (unused = 0; unused < N_COMMIT_IDS; unused++)
2306                         if (!used_commit_ids[unused])
2307                                 break;
2308                 if (unused == N_COMMIT_IDS) {
2309                         dm_integrity_io_error(ic, "journal commit ids", -EIO);
2310                         goto clear_journal;
2311                 }
2312         }
2313         DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
2314                     unused, used_commit_ids[0], used_commit_ids[1],
2315                     used_commit_ids[2], used_commit_ids[3]);
2316
2317         last_used = prev_commit_seq(unused);
2318         want_commit_seq = prev_commit_seq(last_used);
2319
2320         if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
2321                 journal_empty = true;
2322
2323         write_start = max_commit_id_sections[last_used] + 1;
2324         if (unlikely(write_start >= ic->journal_sections))
2325                 want_commit_seq = next_commit_seq(want_commit_seq);
2326         wraparound_section(ic, &write_start);
2327
2328         i = write_start;
2329         for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
2330                 for (j = 0; j < ic->journal_section_sectors; j++) {
2331                         struct journal_sector *js = access_journal(ic, i, j);
2332
2333                         if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
2334                                 /*
2335                                  * This could be caused by crash during writing.
2336                                  * We won't replay the inconsistent part of the
2337                                  * journal.
2338                                  */
2339                                 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
2340                                             i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
2341                                 goto brk;
2342                         }
2343                 }
2344                 i++;
2345                 if (unlikely(i >= ic->journal_sections))
2346                         want_commit_seq = next_commit_seq(want_commit_seq);
2347                 wraparound_section(ic, &i);
2348         }
2349 brk:
2350
2351         if (!journal_empty) {
2352                 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
2353                             write_sections, write_start, want_commit_seq);
2354                 do_journal_write(ic, write_start, write_sections, true);
2355         }
2356
2357         if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
2358                 continue_section = write_start;
2359                 ic->commit_seq = want_commit_seq;
2360                 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
2361         } else {
2362                 unsigned s;
2363                 unsigned char erase_seq;
2364 clear_journal:
2365                 DEBUG_print("clearing journal\n");
2366
2367                 erase_seq = prev_commit_seq(prev_commit_seq(last_used));
2368                 s = write_start;
2369                 init_journal(ic, s, 1, erase_seq);
2370                 s++;
2371                 wraparound_section(ic, &s);
2372                 if (ic->journal_sections >= 2) {
2373                         init_journal(ic, s, ic->journal_sections - 2, erase_seq);
2374                         s += ic->journal_sections - 2;
2375                         wraparound_section(ic, &s);
2376                         init_journal(ic, s, 1, erase_seq);
2377                 }
2378
2379                 continue_section = 0;
2380                 ic->commit_seq = next_commit_seq(erase_seq);
2381         }
2382
2383         ic->committed_section = continue_section;
2384         ic->n_committed_sections = 0;
2385
2386         ic->uncommitted_section = continue_section;
2387         ic->n_uncommitted_sections = 0;
2388
2389         ic->free_section = continue_section;
2390         ic->free_section_entry = 0;
2391         ic->free_sectors = ic->journal_entries;
2392
2393         ic->journal_tree_root = RB_ROOT;
2394         for (i = 0; i < ic->journal_entries; i++)
2395                 init_journal_node(&ic->journal_tree[i]);
2396 }
2397
2398 static void dm_integrity_postsuspend(struct dm_target *ti)
2399 {
2400         struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2401
2402         del_timer_sync(&ic->autocommit_timer);
2403
2404         WRITE_ONCE(ic->suspending, 1);
2405
2406         if (ic->recalc_wq)
2407                 drain_workqueue(ic->recalc_wq);
2408
2409         queue_work(ic->commit_wq, &ic->commit_work);
2410         drain_workqueue(ic->commit_wq);
2411
2412         if (ic->mode == 'J') {
2413                 if (ic->meta_dev)
2414                         queue_work(ic->writer_wq, &ic->writer_work);
2415                 drain_workqueue(ic->writer_wq);
2416                 dm_integrity_flush_buffers(ic);
2417         }
2418
2419         WRITE_ONCE(ic->suspending, 0);
2420
2421         BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
2422
2423         ic->journal_uptodate = true;
2424 }
2425
2426 static void dm_integrity_resume(struct dm_target *ti)
2427 {
2428         struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2429
2430         replay_journal(ic);
2431
2432         if (ic->recalc_wq && ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2433                 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
2434                 if (recalc_pos < ic->provided_data_sectors) {
2435                         queue_work(ic->recalc_wq, &ic->recalc_work);
2436                 } else if (recalc_pos > ic->provided_data_sectors) {
2437                         ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
2438                         recalc_write_super(ic);
2439                 }
2440         }
2441 }
2442
2443 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
2444                                 unsigned status_flags, char *result, unsigned maxlen)
2445 {
2446         struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2447         unsigned arg_count;
2448         size_t sz = 0;
2449
2450         switch (type) {
2451         case STATUSTYPE_INFO:
2452                 DMEMIT("%llu %llu",
2453                         (unsigned long long)atomic64_read(&ic->number_of_mismatches),
2454                         (unsigned long long)ic->provided_data_sectors);
2455                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
2456                         DMEMIT(" %llu", (unsigned long long)le64_to_cpu(ic->sb->recalc_sector));
2457                 else
2458                         DMEMIT(" -");
2459                 break;
2460
2461         case STATUSTYPE_TABLE: {
2462                 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
2463                 watermark_percentage += ic->journal_entries / 2;
2464                 do_div(watermark_percentage, ic->journal_entries);
2465                 arg_count = 5;
2466                 arg_count += !!ic->meta_dev;
2467                 arg_count += ic->sectors_per_block != 1;
2468                 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
2469                 arg_count += !!ic->internal_hash_alg.alg_string;
2470                 arg_count += !!ic->journal_crypt_alg.alg_string;
2471                 arg_count += !!ic->journal_mac_alg.alg_string;
2472                 DMEMIT("%s %llu %u %c %u", ic->dev->name, (unsigned long long)ic->start,
2473                        ic->tag_size, ic->mode, arg_count);
2474                 if (ic->meta_dev)
2475                         DMEMIT(" meta_device:%s", ic->meta_dev->name);
2476                 if (ic->sectors_per_block != 1)
2477                         DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
2478                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
2479                         DMEMIT(" recalculate");
2480                 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
2481                 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
2482                 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
2483                 DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage);
2484                 DMEMIT(" commit_time:%u", ic->autocommit_msec);
2485
2486 #define EMIT_ALG(a, n)                                                  \
2487                 do {                                                    \
2488                         if (ic->a.alg_string) {                         \
2489                                 DMEMIT(" %s:%s", n, ic->a.alg_string);  \
2490                                 if (ic->a.key_string)                   \
2491                                         DMEMIT(":%s", ic->a.key_string);\
2492                         }                                               \
2493                 } while (0)
2494                 EMIT_ALG(internal_hash_alg, "internal_hash");
2495                 EMIT_ALG(journal_crypt_alg, "journal_crypt");
2496                 EMIT_ALG(journal_mac_alg, "journal_mac");
2497                 break;
2498         }
2499         }
2500 }
2501
2502 static int dm_integrity_iterate_devices(struct dm_target *ti,
2503                                         iterate_devices_callout_fn fn, void *data)
2504 {
2505         struct dm_integrity_c *ic = ti->private;
2506
2507         if (!ic->meta_dev)
2508                 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
2509         else
2510                 return fn(ti, ic->dev, 0, ti->len, data);
2511 }
2512
2513 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
2514 {
2515         struct dm_integrity_c *ic = ti->private;
2516
2517         if (ic->sectors_per_block > 1) {
2518                 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
2519                 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
2520                 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
2521         }
2522 }
2523
2524 static void calculate_journal_section_size(struct dm_integrity_c *ic)
2525 {
2526         unsigned sector_space = JOURNAL_SECTOR_DATA;
2527
2528         ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
2529         ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
2530                                          JOURNAL_ENTRY_ROUNDUP);
2531
2532         if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
2533                 sector_space -= JOURNAL_MAC_PER_SECTOR;
2534         ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
2535         ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
2536         ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
2537         ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
2538 }
2539
2540 static int calculate_device_limits(struct dm_integrity_c *ic)
2541 {
2542         __u64 initial_sectors;
2543
2544         calculate_journal_section_size(ic);
2545         initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
2546         if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
2547                 return -EINVAL;
2548         ic->initial_sectors = initial_sectors;
2549
2550         if (!ic->meta_dev) {
2551                 sector_t last_sector, last_area, last_offset;
2552
2553                 ic->metadata_run = roundup((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
2554                                            (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS)) >> SECTOR_SHIFT;
2555                 if (!(ic->metadata_run & (ic->metadata_run - 1)))
2556                         ic->log2_metadata_run = __ffs(ic->metadata_run);
2557                 else
2558                         ic->log2_metadata_run = -1;
2559
2560                 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
2561                 last_sector = get_data_sector(ic, last_area, last_offset);
2562                 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
2563                         return -EINVAL;
2564         } else {
2565                 __u64 meta_size = ic->provided_data_sectors * ic->tag_size;
2566                 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
2567                                 >> (ic->log2_buffer_sectors + SECTOR_SHIFT);
2568                 meta_size <<= ic->log2_buffer_sectors;
2569                 if (ic->initial_sectors + meta_size < ic->initial_sectors ||
2570                     ic->initial_sectors + meta_size > ic->meta_device_sectors)
2571                         return -EINVAL;
2572                 ic->metadata_run = 1;
2573                 ic->log2_metadata_run = 0;
2574         }
2575
2576         return 0;
2577 }
2578
2579 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors)
2580 {
2581         unsigned journal_sections;
2582         int test_bit;
2583
2584         memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
2585         memcpy(ic->sb->magic, SB_MAGIC, 8);
2586         ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
2587         ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
2588         if (ic->journal_mac_alg.alg_string)
2589                 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
2590
2591         calculate_journal_section_size(ic);
2592         journal_sections = journal_sectors / ic->journal_section_sectors;
2593         if (!journal_sections)
2594                 journal_sections = 1;
2595
2596         if (!ic->meta_dev) {
2597                 ic->sb->journal_sections = cpu_to_le32(journal_sections);
2598                 if (!interleave_sectors)
2599                         interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
2600                 ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
2601                 ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
2602                 ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
2603
2604                 ic->provided_data_sectors = 0;
2605                 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
2606                         __u64 prev_data_sectors = ic->provided_data_sectors;
2607
2608                         ic->provided_data_sectors |= (sector_t)1 << test_bit;
2609                         if (calculate_device_limits(ic))
2610                                 ic->provided_data_sectors = prev_data_sectors;
2611                 }
2612                 if (!ic->provided_data_sectors)
2613                         return -EINVAL;
2614         } else {
2615                 ic->sb->log2_interleave_sectors = 0;
2616                 ic->provided_data_sectors = ic->data_device_sectors;
2617                 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
2618
2619 try_smaller_buffer:
2620                 ic->sb->journal_sections = cpu_to_le32(0);
2621                 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
2622                         __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
2623                         __u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
2624                         if (test_journal_sections > journal_sections)
2625                                 continue;
2626                         ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
2627                         if (calculate_device_limits(ic))
2628                                 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
2629
2630                 }
2631                 if (!le32_to_cpu(ic->sb->journal_sections)) {
2632                         if (ic->log2_buffer_sectors > 3) {
2633                                 ic->log2_buffer_sectors--;
2634                                 goto try_smaller_buffer;
2635                         }
2636                         return -EINVAL;
2637                 }
2638         }
2639
2640         ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
2641
2642         sb_set_version(ic);
2643
2644         return 0;
2645 }
2646
2647 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
2648 {
2649         struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
2650         struct blk_integrity bi;
2651
2652         memset(&bi, 0, sizeof(bi));
2653         bi.profile = &dm_integrity_profile;
2654         bi.tuple_size = ic->tag_size;
2655         bi.tag_size = bi.tuple_size;
2656         bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
2657
2658         blk_integrity_register(disk, &bi);
2659         blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
2660 }
2661
2662 static void dm_integrity_free_page_list(struct dm_integrity_c *ic, struct page_list *pl)
2663 {
2664         unsigned i;
2665
2666         if (!pl)
2667                 return;
2668         for (i = 0; i < ic->journal_pages; i++)
2669                 if (pl[i].page)
2670                         __free_page(pl[i].page);
2671         kvfree(pl);
2672 }
2673
2674 static struct page_list *dm_integrity_alloc_page_list(struct dm_integrity_c *ic)
2675 {
2676         size_t page_list_desc_size = ic->journal_pages * sizeof(struct page_list);
2677         struct page_list *pl;
2678         unsigned i;
2679
2680         pl = kvmalloc(page_list_desc_size, GFP_KERNEL | __GFP_ZERO);
2681         if (!pl)
2682                 return NULL;
2683
2684         for (i = 0; i < ic->journal_pages; i++) {
2685                 pl[i].page = alloc_page(GFP_KERNEL);
2686                 if (!pl[i].page) {
2687                         dm_integrity_free_page_list(ic, pl);
2688                         return NULL;
2689                 }
2690                 if (i)
2691                         pl[i - 1].next = &pl[i];
2692         }
2693
2694         return pl;
2695 }
2696
2697 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
2698 {
2699         unsigned i;
2700         for (i = 0; i < ic->journal_sections; i++)
2701                 kvfree(sl[i]);
2702         kvfree(sl);
2703 }
2704
2705 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic, struct page_list *pl)
2706 {
2707         struct scatterlist **sl;
2708         unsigned i;
2709
2710         sl = kvmalloc_array(ic->journal_sections,
2711                             sizeof(struct scatterlist *),
2712                             GFP_KERNEL | __GFP_ZERO);
2713         if (!sl)
2714                 return NULL;
2715
2716         for (i = 0; i < ic->journal_sections; i++) {
2717                 struct scatterlist *s;
2718                 unsigned start_index, start_offset;
2719                 unsigned end_index, end_offset;
2720                 unsigned n_pages;
2721                 unsigned idx;
2722
2723                 page_list_location(ic, i, 0, &start_index, &start_offset);
2724                 page_list_location(ic, i, ic->journal_section_sectors - 1, &end_index, &end_offset);
2725
2726                 n_pages = (end_index - start_index + 1);
2727
2728                 s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
2729                                    GFP_KERNEL);
2730                 if (!s) {
2731                         dm_integrity_free_journal_scatterlist(ic, sl);
2732                         return NULL;
2733                 }
2734
2735                 sg_init_table(s, n_pages);
2736                 for (idx = start_index; idx <= end_index; idx++) {
2737                         char *va = lowmem_page_address(pl[idx].page);
2738                         unsigned start = 0, end = PAGE_SIZE;
2739                         if (idx == start_index)
2740                                 start = start_offset;
2741                         if (idx == end_index)
2742                                 end = end_offset + (1 << SECTOR_SHIFT);
2743                         sg_set_buf(&s[idx - start_index], va + start, end - start);
2744                 }
2745
2746                 sl[i] = s;
2747         }
2748
2749         return sl;
2750 }
2751
2752 static void free_alg(struct alg_spec *a)
2753 {
2754         kzfree(a->alg_string);
2755         kzfree(a->key);
2756         memset(a, 0, sizeof *a);
2757 }
2758
2759 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
2760 {
2761         char *k;
2762
2763         free_alg(a);
2764
2765         a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
2766         if (!a->alg_string)
2767                 goto nomem;
2768
2769         k = strchr(a->alg_string, ':');
2770         if (k) {
2771                 *k = 0;
2772                 a->key_string = k + 1;
2773                 if (strlen(a->key_string) & 1)
2774                         goto inval;
2775
2776                 a->key_size = strlen(a->key_string) / 2;
2777                 a->key = kmalloc(a->key_size, GFP_KERNEL);
2778                 if (!a->key)
2779                         goto nomem;
2780                 if (hex2bin(a->key, a->key_string, a->key_size))
2781                         goto inval;
2782         }
2783
2784         return 0;
2785 inval:
2786         *error = error_inval;
2787         return -EINVAL;
2788 nomem:
2789         *error = "Out of memory for an argument";
2790         return -ENOMEM;
2791 }
2792
2793 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
2794                    char *error_alg, char *error_key)
2795 {
2796         int r;
2797
2798         if (a->alg_string) {
2799                 *hash = crypto_alloc_shash(a->alg_string, 0, 0);
2800                 if (IS_ERR(*hash)) {
2801                         *error = error_alg;
2802                         r = PTR_ERR(*hash);
2803                         *hash = NULL;
2804                         return r;
2805                 }
2806
2807                 if (a->key) {
2808                         r = crypto_shash_setkey(*hash, a->key, a->key_size);
2809                         if (r) {
2810                                 *error = error_key;
2811                                 return r;
2812                         }
2813                 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
2814                         *error = error_key;
2815                         return -ENOKEY;
2816                 }
2817         }
2818
2819         return 0;
2820 }
2821
2822 static int create_journal(struct dm_integrity_c *ic, char **error)
2823 {
2824         int r = 0;
2825         unsigned i;
2826         __u64 journal_pages, journal_desc_size, journal_tree_size;
2827         unsigned char *crypt_data = NULL, *crypt_iv = NULL;
2828         struct skcipher_request *req = NULL;
2829
2830         ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
2831         ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
2832         ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
2833         ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
2834
2835         journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
2836                                 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
2837         journal_desc_size = journal_pages * sizeof(struct page_list);
2838         if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
2839                 *error = "Journal doesn't fit into memory";
2840                 r = -ENOMEM;
2841                 goto bad;
2842         }
2843         ic->journal_pages = journal_pages;
2844
2845         ic->journal = dm_integrity_alloc_page_list(ic);
2846         if (!ic->journal) {
2847                 *error = "Could not allocate memory for journal";
2848                 r = -ENOMEM;
2849                 goto bad;
2850         }
2851         if (ic->journal_crypt_alg.alg_string) {
2852                 unsigned ivsize, blocksize;
2853                 struct journal_completion comp;
2854
2855                 comp.ic = ic;
2856                 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, 0);
2857                 if (IS_ERR(ic->journal_crypt)) {
2858                         *error = "Invalid journal cipher";
2859                         r = PTR_ERR(ic->journal_crypt);
2860                         ic->journal_crypt = NULL;
2861                         goto bad;
2862                 }
2863                 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
2864                 blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
2865
2866                 if (ic->journal_crypt_alg.key) {
2867                         r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
2868                                                    ic->journal_crypt_alg.key_size);
2869                         if (r) {
2870                                 *error = "Error setting encryption key";
2871                                 goto bad;
2872                         }
2873                 }
2874                 DEBUG_print("cipher %s, block size %u iv size %u\n",
2875                             ic->journal_crypt_alg.alg_string, blocksize, ivsize);
2876
2877                 ic->journal_io = dm_integrity_alloc_page_list(ic);
2878                 if (!ic->journal_io) {
2879                         *error = "Could not allocate memory for journal io";
2880                         r = -ENOMEM;
2881                         goto bad;
2882                 }
2883
2884                 if (blocksize == 1) {
2885                         struct scatterlist *sg;
2886
2887                         req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
2888                         if (!req) {
2889                                 *error = "Could not allocate crypt request";
2890                                 r = -ENOMEM;
2891                                 goto bad;
2892                         }
2893
2894                         crypt_iv = kmalloc(ivsize, GFP_KERNEL);
2895                         if (!crypt_iv) {
2896                                 *error = "Could not allocate iv";
2897                                 r = -ENOMEM;
2898                                 goto bad;
2899                         }
2900
2901                         ic->journal_xor = dm_integrity_alloc_page_list(ic);
2902                         if (!ic->journal_xor) {
2903                                 *error = "Could not allocate memory for journal xor";
2904                                 r = -ENOMEM;
2905                                 goto bad;
2906                         }
2907
2908                         sg = kvmalloc_array(ic->journal_pages + 1,
2909                                             sizeof(struct scatterlist),
2910                                             GFP_KERNEL);
2911                         if (!sg) {
2912                                 *error = "Unable to allocate sg list";
2913                                 r = -ENOMEM;
2914                                 goto bad;
2915                         }
2916                         sg_init_table(sg, ic->journal_pages + 1);
2917                         for (i = 0; i < ic->journal_pages; i++) {
2918                                 char *va = lowmem_page_address(ic->journal_xor[i].page);
2919                                 clear_page(va);
2920                                 sg_set_buf(&sg[i], va, PAGE_SIZE);
2921                         }
2922                         sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids);
2923                         memset(crypt_iv, 0x00, ivsize);
2924
2925                         skcipher_request_set_crypt(req, sg, sg, PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv);
2926                         init_completion(&comp.comp);
2927                         comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2928                         if (do_crypt(true, req, &comp))
2929                                 wait_for_completion(&comp.comp);
2930                         kvfree(sg);
2931                         r = dm_integrity_failed(ic);
2932                         if (r) {
2933                                 *error = "Unable to encrypt journal";
2934                                 goto bad;
2935                         }
2936                         DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
2937
2938                         crypto_free_skcipher(ic->journal_crypt);
2939                         ic->journal_crypt = NULL;
2940                 } else {
2941                         unsigned crypt_len = roundup(ivsize, blocksize);
2942
2943                         req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
2944                         if (!req) {
2945                                 *error = "Could not allocate crypt request";
2946                                 r = -ENOMEM;
2947                                 goto bad;
2948                         }
2949
2950                         crypt_iv = kmalloc(ivsize, GFP_KERNEL);
2951                         if (!crypt_iv) {
2952                                 *error = "Could not allocate iv";
2953                                 r = -ENOMEM;
2954                                 goto bad;
2955                         }
2956
2957                         crypt_data = kmalloc(crypt_len, GFP_KERNEL);
2958                         if (!crypt_data) {
2959                                 *error = "Unable to allocate crypt data";
2960                                 r = -ENOMEM;
2961                                 goto bad;
2962                         }
2963
2964                         ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
2965                         if (!ic->journal_scatterlist) {
2966                                 *error = "Unable to allocate sg list";
2967                                 r = -ENOMEM;
2968                                 goto bad;
2969                         }
2970                         ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
2971                         if (!ic->journal_io_scatterlist) {
2972                                 *error = "Unable to allocate sg list";
2973                                 r = -ENOMEM;
2974                                 goto bad;
2975                         }
2976                         ic->sk_requests = kvmalloc_array(ic->journal_sections,
2977                                                          sizeof(struct skcipher_request *),
2978                                                          GFP_KERNEL | __GFP_ZERO);
2979                         if (!ic->sk_requests) {
2980                                 *error = "Unable to allocate sk requests";
2981                                 r = -ENOMEM;
2982                                 goto bad;
2983                         }
2984                         for (i = 0; i < ic->journal_sections; i++) {
2985                                 struct scatterlist sg;
2986                                 struct skcipher_request *section_req;
2987                                 __u32 section_le = cpu_to_le32(i);
2988
2989                                 memset(crypt_iv, 0x00, ivsize);
2990                                 memset(crypt_data, 0x00, crypt_len);
2991                                 memcpy(crypt_data, &section_le, min((size_t)crypt_len, sizeof(section_le)));
2992
2993                                 sg_init_one(&sg, crypt_data, crypt_len);
2994                                 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
2995                                 init_completion(&comp.comp);
2996                                 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2997                                 if (do_crypt(true, req, &comp))
2998                                         wait_for_completion(&comp.comp);
2999
3000                                 r = dm_integrity_failed(ic);
3001                                 if (r) {
3002                                         *error = "Unable to generate iv";
3003                                         goto bad;
3004                                 }
3005
3006                                 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3007                                 if (!section_req) {
3008                                         *error = "Unable to allocate crypt request";
3009                                         r = -ENOMEM;
3010                                         goto bad;
3011                                 }
3012                                 section_req->iv = kmalloc_array(ivsize, 2,
3013                                                                 GFP_KERNEL);
3014                                 if (!section_req->iv) {
3015                                         skcipher_request_free(section_req);
3016                                         *error = "Unable to allocate iv";
3017                                         r = -ENOMEM;
3018                                         goto bad;
3019                                 }
3020                                 memcpy(section_req->iv + ivsize, crypt_data, ivsize);
3021                                 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
3022                                 ic->sk_requests[i] = section_req;
3023                                 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
3024                         }
3025                 }
3026         }
3027
3028         for (i = 0; i < N_COMMIT_IDS; i++) {
3029                 unsigned j;
3030 retest_commit_id:
3031                 for (j = 0; j < i; j++) {
3032                         if (ic->commit_ids[j] == ic->commit_ids[i]) {
3033                                 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
3034                                 goto retest_commit_id;
3035                         }
3036                 }
3037                 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
3038         }
3039
3040         journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
3041         if (journal_tree_size > ULONG_MAX) {
3042                 *error = "Journal doesn't fit into memory";
3043                 r = -ENOMEM;
3044                 goto bad;
3045         }
3046         ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
3047         if (!ic->journal_tree) {
3048                 *error = "Could not allocate memory for journal tree";
3049                 r = -ENOMEM;
3050         }
3051 bad:
3052         kfree(crypt_data);
3053         kfree(crypt_iv);
3054         skcipher_request_free(req);
3055
3056         return r;
3057 }
3058
3059 /*
3060  * Construct a integrity mapping
3061  *
3062  * Arguments:
3063  *      device
3064  *      offset from the start of the device
3065  *      tag size
3066  *      D - direct writes, J - journal writes, R - recovery mode
3067  *      number of optional arguments
3068  *      optional arguments:
3069  *              journal_sectors
3070  *              interleave_sectors
3071  *              buffer_sectors
3072  *              journal_watermark
3073  *              commit_time
3074  *              internal_hash
3075  *              journal_crypt
3076  *              journal_mac
3077  *              block_size
3078  */
3079 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
3080 {
3081         struct dm_integrity_c *ic;
3082         char dummy;
3083         int r;
3084         unsigned extra_args;
3085         struct dm_arg_set as;
3086         static const struct dm_arg _args[] = {
3087                 {0, 9, "Invalid number of feature args"},
3088         };
3089         unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
3090         bool recalculate;
3091         bool should_write_sb;
3092         __u64 threshold;
3093         unsigned long long start;
3094
3095 #define DIRECT_ARGUMENTS        4
3096
3097         if (argc <= DIRECT_ARGUMENTS) {
3098                 ti->error = "Invalid argument count";
3099                 return -EINVAL;
3100         }
3101
3102         ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
3103         if (!ic) {
3104                 ti->error = "Cannot allocate integrity context";
3105                 return -ENOMEM;
3106         }
3107         ti->private = ic;
3108         ti->per_io_data_size = sizeof(struct dm_integrity_io);
3109
3110         ic->in_progress = RB_ROOT;
3111         INIT_LIST_HEAD(&ic->wait_list);
3112         init_waitqueue_head(&ic->endio_wait);
3113         bio_list_init(&ic->flush_bio_list);
3114         init_waitqueue_head(&ic->copy_to_journal_wait);
3115         init_completion(&ic->crypto_backoff);
3116         atomic64_set(&ic->number_of_mismatches, 0);
3117
3118         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
3119         if (r) {
3120                 ti->error = "Device lookup failed";
3121                 goto bad;
3122         }
3123
3124         if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
3125                 ti->error = "Invalid starting offset";
3126                 r = -EINVAL;
3127                 goto bad;
3128         }
3129         ic->start = start;
3130
3131         if (strcmp(argv[2], "-")) {
3132                 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
3133                         ti->error = "Invalid tag size";
3134                         r = -EINVAL;
3135                         goto bad;
3136                 }
3137         }
3138
3139         if (!strcmp(argv[3], "J") || !strcmp(argv[3], "D") || !strcmp(argv[3], "R"))
3140                 ic->mode = argv[3][0];
3141         else {
3142                 ti->error = "Invalid mode (expecting J, D, R)";
3143                 r = -EINVAL;
3144                 goto bad;
3145         }
3146
3147         journal_sectors = 0;
3148         interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3149         buffer_sectors = DEFAULT_BUFFER_SECTORS;
3150         journal_watermark = DEFAULT_JOURNAL_WATERMARK;
3151         sync_msec = DEFAULT_SYNC_MSEC;
3152         recalculate = false;
3153         ic->sectors_per_block = 1;
3154
3155         as.argc = argc - DIRECT_ARGUMENTS;
3156         as.argv = argv + DIRECT_ARGUMENTS;
3157         r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
3158         if (r)
3159                 goto bad;
3160
3161         while (extra_args--) {
3162                 const char *opt_string;
3163                 unsigned val;
3164                 opt_string = dm_shift_arg(&as);
3165                 if (!opt_string) {
3166                         r = -EINVAL;
3167                         ti->error = "Not enough feature arguments";
3168                         goto bad;
3169                 }
3170                 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
3171                         journal_sectors = val ? val : 1;
3172                 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
3173                         interleave_sectors = val;
3174                 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
3175                         buffer_sectors = val;
3176                 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
3177                         journal_watermark = val;
3178                 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
3179                         sync_msec = val;
3180                 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
3181                         if (ic->meta_dev) {
3182                                 dm_put_device(ti, ic->meta_dev);
3183                                 ic->meta_dev = NULL;
3184                         }
3185                         r = dm_get_device(ti, strchr(opt_string, ':') + 1, dm_table_get_mode(ti->table), &ic->meta_dev);
3186                         if (r) {
3187                                 ti->error = "Device lookup failed";
3188                                 goto bad;
3189                         }
3190                 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
3191                         if (val < 1 << SECTOR_SHIFT ||
3192                             val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
3193                             (val & (val -1))) {
3194                                 r = -EINVAL;
3195                                 ti->error = "Invalid block_size argument";
3196                                 goto bad;
3197                         }
3198                         ic->sectors_per_block = val >> SECTOR_SHIFT;
3199                 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
3200                         r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
3201                                             "Invalid internal_hash argument");
3202                         if (r)
3203                                 goto bad;
3204                 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
3205                         r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
3206                                             "Invalid journal_crypt argument");
3207                         if (r)
3208                                 goto bad;
3209                 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
3210                         r = get_alg_and_key(opt_string, &ic->journal_mac_alg,  &ti->error,
3211                                             "Invalid journal_mac argument");
3212                         if (r)
3213                                 goto bad;
3214                 } else if (!strcmp(opt_string, "recalculate")) {
3215                         recalculate = true;
3216                 } else {
3217                         r = -EINVAL;
3218                         ti->error = "Invalid argument";
3219                         goto bad;
3220                 }
3221         }
3222
3223         ic->data_device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT;
3224         if (!ic->meta_dev)
3225                 ic->meta_device_sectors = ic->data_device_sectors;
3226         else
3227                 ic->meta_device_sectors = i_size_read(ic->meta_dev->bdev->bd_inode) >> SECTOR_SHIFT;
3228
3229         if (!journal_sectors) {
3230                 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
3231                         ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
3232         }
3233
3234         if (!buffer_sectors)
3235                 buffer_sectors = 1;
3236         ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
3237
3238         r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
3239                     "Invalid internal hash", "Error setting internal hash key");
3240         if (r)
3241                 goto bad;
3242
3243         r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
3244                     "Invalid journal mac", "Error setting journal mac key");
3245         if (r)
3246                 goto bad;
3247
3248         if (!ic->tag_size) {
3249                 if (!ic->internal_hash) {
3250                         ti->error = "Unknown tag size";
3251                         r = -EINVAL;
3252                         goto bad;
3253                 }
3254                 ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
3255         }
3256         if (ic->tag_size > MAX_TAG_SIZE) {
3257                 ti->error = "Too big tag size";
3258                 r = -EINVAL;
3259                 goto bad;
3260         }
3261         if (!(ic->tag_size & (ic->tag_size - 1)))
3262                 ic->log2_tag_size = __ffs(ic->tag_size);
3263         else
3264                 ic->log2_tag_size = -1;
3265
3266         ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
3267         ic->autocommit_msec = sync_msec;
3268         timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
3269
3270         ic->io = dm_io_client_create();
3271         if (IS_ERR(ic->io)) {
3272                 r = PTR_ERR(ic->io);
3273                 ic->io = NULL;
3274                 ti->error = "Cannot allocate dm io";
3275                 goto bad;
3276         }
3277
3278         r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
3279         if (r) {
3280                 ti->error = "Cannot allocate mempool";
3281                 goto bad;
3282         }
3283
3284         ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
3285                                           WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
3286         if (!ic->metadata_wq) {
3287                 ti->error = "Cannot allocate workqueue";
3288                 r = -ENOMEM;
3289                 goto bad;
3290         }
3291
3292         /*
3293          * If this workqueue were percpu, it would cause bio reordering
3294          * and reduced performance.
3295          */
3296         ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3297         if (!ic->wait_wq) {
3298                 ti->error = "Cannot allocate workqueue";
3299                 r = -ENOMEM;
3300                 goto bad;
3301         }
3302
3303         ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
3304         if (!ic->commit_wq) {
3305                 ti->error = "Cannot allocate workqueue";
3306                 r = -ENOMEM;
3307                 goto bad;
3308         }
3309         INIT_WORK(&ic->commit_work, integrity_commit);
3310
3311         if (ic->mode == 'J') {
3312                 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
3313                 if (!ic->writer_wq) {
3314                         ti->error = "Cannot allocate workqueue";
3315                         r = -ENOMEM;
3316                         goto bad;
3317                 }
3318                 INIT_WORK(&ic->writer_work, integrity_writer);
3319         }
3320
3321         ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
3322         if (!ic->sb) {
3323                 r = -ENOMEM;
3324                 ti->error = "Cannot allocate superblock area";
3325                 goto bad;
3326         }
3327
3328         r = sync_rw_sb(ic, REQ_OP_READ, 0);
3329         if (r) {
3330                 ti->error = "Error reading superblock";
3331                 goto bad;
3332         }
3333         should_write_sb = false;
3334         if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
3335                 if (ic->mode != 'R') {
3336                         if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
3337                                 r = -EINVAL;
3338                                 ti->error = "The device is not initialized";
3339                                 goto bad;
3340                         }
3341                 }
3342
3343                 r = initialize_superblock(ic, journal_sectors, interleave_sectors);
3344                 if (r) {
3345                         ti->error = "Could not initialize superblock";
3346                         goto bad;
3347                 }
3348                 if (ic->mode != 'R')
3349                         should_write_sb = true;
3350         }
3351
3352         if (!ic->sb->version || ic->sb->version > SB_VERSION_2) {
3353                 r = -EINVAL;
3354                 ti->error = "Unknown version";
3355                 goto bad;
3356         }
3357         if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
3358                 r = -EINVAL;
3359                 ti->error = "Tag size doesn't match the information in superblock";
3360                 goto bad;
3361         }
3362         if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
3363                 r = -EINVAL;
3364                 ti->error = "Block size doesn't match the information in superblock";
3365                 goto bad;
3366         }
3367         if (!le32_to_cpu(ic->sb->journal_sections)) {
3368                 r = -EINVAL;
3369                 ti->error = "Corrupted superblock, journal_sections is 0";
3370                 goto bad;
3371         }
3372         /* make sure that ti->max_io_len doesn't overflow */
3373         if (!ic->meta_dev) {
3374                 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
3375                     ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
3376                         r = -EINVAL;
3377                         ti->error = "Invalid interleave_sectors in the superblock";
3378                         goto bad;
3379                 }
3380         } else {
3381                 if (ic->sb->log2_interleave_sectors) {
3382                         r = -EINVAL;
3383                         ti->error = "Invalid interleave_sectors in the superblock";
3384                         goto bad;
3385                 }
3386         }
3387         ic->provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3388         if (ic->provided_data_sectors != le64_to_cpu(ic->sb->provided_data_sectors)) {
3389                 /* test for overflow */
3390                 r = -EINVAL;
3391                 ti->error = "The superblock has 64-bit device size, but the kernel was compiled with 32-bit sectors";
3392                 goto bad;
3393         }
3394         if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
3395                 r = -EINVAL;
3396                 ti->error = "Journal mac mismatch";
3397                 goto bad;
3398         }
3399
3400 try_smaller_buffer:
3401         r = calculate_device_limits(ic);
3402         if (r) {
3403                 if (ic->meta_dev) {
3404                         if (ic->log2_buffer_sectors > 3) {
3405                                 ic->log2_buffer_sectors--;
3406                                 goto try_smaller_buffer;
3407                         }
3408                 }
3409                 ti->error = "The device is too small";
3410                 goto bad;
3411         }
3412         if (!ic->meta_dev)
3413                 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
3414
3415         if (ti->len > ic->provided_data_sectors) {
3416                 r = -EINVAL;
3417                 ti->error = "Not enough provided sectors for requested mapping size";
3418                 goto bad;
3419         }
3420
3421
3422         threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
3423         threshold += 50;
3424         do_div(threshold, 100);
3425         ic->free_sectors_threshold = threshold;
3426
3427         DEBUG_print("initialized:\n");
3428         DEBUG_print("   integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
3429         DEBUG_print("   journal_entry_size %u\n", ic->journal_entry_size);
3430         DEBUG_print("   journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
3431         DEBUG_print("   journal_section_entries %u\n", ic->journal_section_entries);
3432         DEBUG_print("   journal_section_sectors %u\n", ic->journal_section_sectors);
3433         DEBUG_print("   journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections));
3434         DEBUG_print("   journal_entries %u\n", ic->journal_entries);
3435         DEBUG_print("   log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
3436         DEBUG_print("   device_sectors 0x%llx\n", (unsigned long long)ic->device_sectors);
3437         DEBUG_print("   initial_sectors 0x%x\n", ic->initial_sectors);
3438         DEBUG_print("   metadata_run 0x%x\n", ic->metadata_run);
3439         DEBUG_print("   log2_metadata_run %d\n", ic->log2_metadata_run);
3440         DEBUG_print("   provided_data_sectors 0x%llx (%llu)\n", (unsigned long long)ic->provided_data_sectors,
3441                     (unsigned long long)ic->provided_data_sectors);
3442         DEBUG_print("   log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
3443
3444         if (recalculate && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
3445                 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3446                 ic->sb->recalc_sector = cpu_to_le64(0);
3447         }
3448
3449         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3450                 if (!ic->internal_hash) {
3451                         r = -EINVAL;
3452                         ti->error = "Recalculate is only valid with internal hash";
3453                         goto bad;
3454                 }
3455                 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
3456                 if (!ic->recalc_wq ) {
3457                         ti->error = "Cannot allocate workqueue";
3458                         r = -ENOMEM;
3459                         goto bad;
3460                 }
3461                 INIT_WORK(&ic->recalc_work, integrity_recalc);
3462                 ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT);
3463                 if (!ic->recalc_buffer) {
3464                         ti->error = "Cannot allocate buffer for recalculating";
3465                         r = -ENOMEM;
3466                         goto bad;
3467                 }
3468                 ic->recalc_tags = kvmalloc_array(RECALC_SECTORS >> ic->sb->log2_sectors_per_block,
3469                                                  ic->tag_size, GFP_KERNEL);
3470                 if (!ic->recalc_tags) {
3471                         ti->error = "Cannot allocate tags for recalculating";
3472                         r = -ENOMEM;
3473                         goto bad;
3474                 }
3475         }
3476
3477         ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
3478                         1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL);
3479         if (IS_ERR(ic->bufio)) {
3480                 r = PTR_ERR(ic->bufio);
3481                 ti->error = "Cannot initialize dm-bufio";
3482                 ic->bufio = NULL;
3483                 goto bad;
3484         }
3485         dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
3486
3487         if (ic->mode != 'R') {
3488                 r = create_journal(ic, &ti->error);
3489                 if (r)
3490                         goto bad;
3491         }
3492
3493         if (should_write_sb) {
3494                 int r;
3495
3496                 init_journal(ic, 0, ic->journal_sections, 0);
3497                 r = dm_integrity_failed(ic);
3498                 if (unlikely(r)) {
3499                         ti->error = "Error initializing journal";
3500                         goto bad;
3501                 }
3502                 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3503                 if (r) {
3504                         ti->error = "Error initializing superblock";
3505                         goto bad;
3506                 }
3507                 ic->just_formatted = true;
3508         }
3509
3510         if (!ic->meta_dev) {
3511                 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
3512                 if (r)
3513                         goto bad;
3514         }
3515
3516         if (!ic->internal_hash)
3517                 dm_integrity_set(ti, ic);
3518
3519         ti->num_flush_bios = 1;
3520         ti->flush_supported = true;
3521
3522         return 0;
3523 bad:
3524         dm_integrity_dtr(ti);
3525         return r;
3526 }
3527
3528 static void dm_integrity_dtr(struct dm_target *ti)
3529 {
3530         struct dm_integrity_c *ic = ti->private;
3531
3532         BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3533         BUG_ON(!list_empty(&ic->wait_list));
3534
3535         if (ic->metadata_wq)
3536                 destroy_workqueue(ic->metadata_wq);
3537         if (ic->wait_wq)
3538                 destroy_workqueue(ic->wait_wq);
3539         if (ic->commit_wq)
3540                 destroy_workqueue(ic->commit_wq);
3541         if (ic->writer_wq)
3542                 destroy_workqueue(ic->writer_wq);
3543         if (ic->recalc_wq)
3544                 destroy_workqueue(ic->recalc_wq);
3545         if (ic->recalc_buffer)
3546                 vfree(ic->recalc_buffer);
3547         if (ic->recalc_tags)
3548                 kvfree(ic->recalc_tags);
3549         if (ic->bufio)
3550                 dm_bufio_client_destroy(ic->bufio);
3551         mempool_exit(&ic->journal_io_mempool);
3552         if (ic->io)
3553                 dm_io_client_destroy(ic->io);
3554         if (ic->dev)
3555                 dm_put_device(ti, ic->dev);
3556         if (ic->meta_dev)
3557                 dm_put_device(ti, ic->meta_dev);
3558         dm_integrity_free_page_list(ic, ic->journal);
3559         dm_integrity_free_page_list(ic, ic->journal_io);
3560         dm_integrity_free_page_list(ic, ic->journal_xor);
3561         if (ic->journal_scatterlist)
3562                 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
3563         if (ic->journal_io_scatterlist)
3564                 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
3565         if (ic->sk_requests) {
3566                 unsigned i;
3567
3568                 for (i = 0; i < ic->journal_sections; i++) {
3569                         struct skcipher_request *req = ic->sk_requests[i];
3570                         if (req) {
3571                                 kzfree(req->iv);
3572                                 skcipher_request_free(req);
3573                         }
3574                 }
3575                 kvfree(ic->sk_requests);
3576         }
3577         kvfree(ic->journal_tree);
3578         if (ic->sb)
3579                 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
3580
3581         if (ic->internal_hash)
3582                 crypto_free_shash(ic->internal_hash);
3583         free_alg(&ic->internal_hash_alg);
3584
3585         if (ic->journal_crypt)
3586                 crypto_free_skcipher(ic->journal_crypt);
3587         free_alg(&ic->journal_crypt_alg);
3588
3589         if (ic->journal_mac)
3590                 crypto_free_shash(ic->journal_mac);
3591         free_alg(&ic->journal_mac_alg);
3592
3593         kfree(ic);
3594 }
3595
3596 static struct target_type integrity_target = {
3597         .name                   = "integrity",
3598         .version                = {1, 2, 0},
3599         .module                 = THIS_MODULE,
3600         .features               = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
3601         .ctr                    = dm_integrity_ctr,
3602         .dtr                    = dm_integrity_dtr,
3603         .map                    = dm_integrity_map,
3604         .postsuspend            = dm_integrity_postsuspend,
3605         .resume                 = dm_integrity_resume,
3606         .status                 = dm_integrity_status,
3607         .iterate_devices        = dm_integrity_iterate_devices,
3608         .io_hints               = dm_integrity_io_hints,
3609 };
3610
3611 static int __init dm_integrity_init(void)
3612 {
3613         int r;
3614
3615         journal_io_cache = kmem_cache_create("integrity_journal_io",
3616                                              sizeof(struct journal_io), 0, 0, NULL);
3617         if (!journal_io_cache) {
3618                 DMERR("can't allocate journal io cache");
3619                 return -ENOMEM;
3620         }
3621
3622         r = dm_register_target(&integrity_target);
3623
3624         if (r < 0)
3625                 DMERR("register failed %d", r);
3626
3627         return r;
3628 }
3629
3630 static void __exit dm_integrity_exit(void)
3631 {
3632         dm_unregister_target(&integrity_target);
3633         kmem_cache_destroy(journal_io_cache);
3634 }
3635
3636 module_init(dm_integrity_init);
3637 module_exit(dm_integrity_exit);
3638
3639 MODULE_AUTHOR("Milan Broz");
3640 MODULE_AUTHOR("Mikulas Patocka");
3641 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
3642 MODULE_LICENSE("GPL");