Merge tag 'trace-v5.12-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[linux-2.6-microblaze.git] / drivers / md / dm-integrity.c
1 /*
2  * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
3  * Copyright (C) 2016-2017 Milan Broz
4  * Copyright (C) 2016-2017 Mikulas Patocka
5  *
6  * This file is released under the GPL.
7  */
8
9 #include "dm-bio-record.h"
10
11 #include <linux/compiler.h>
12 #include <linux/module.h>
13 #include <linux/device-mapper.h>
14 #include <linux/dm-io.h>
15 #include <linux/vmalloc.h>
16 #include <linux/sort.h>
17 #include <linux/rbtree.h>
18 #include <linux/delay.h>
19 #include <linux/random.h>
20 #include <linux/reboot.h>
21 #include <crypto/hash.h>
22 #include <crypto/skcipher.h>
23 #include <linux/async_tx.h>
24 #include <linux/dm-bufio.h>
25
26 #define DM_MSG_PREFIX "integrity"
27
28 #define DEFAULT_INTERLEAVE_SECTORS      32768
29 #define DEFAULT_JOURNAL_SIZE_FACTOR     7
30 #define DEFAULT_SECTORS_PER_BITMAP_BIT  32768
31 #define DEFAULT_BUFFER_SECTORS          128
32 #define DEFAULT_JOURNAL_WATERMARK       50
33 #define DEFAULT_SYNC_MSEC               10000
34 #define DEFAULT_MAX_JOURNAL_SECTORS     131072
35 #define MIN_LOG2_INTERLEAVE_SECTORS     3
36 #define MAX_LOG2_INTERLEAVE_SECTORS     31
37 #define METADATA_WORKQUEUE_MAX_ACTIVE   16
38 #define RECALC_SECTORS                  8192
39 #define RECALC_WRITE_SUPER              16
40 #define BITMAP_BLOCK_SIZE               4096    /* don't change it */
41 #define BITMAP_FLUSH_INTERVAL           (10 * HZ)
42 #define DISCARD_FILLER                  0xf6
43 #define SALT_SIZE                       16
44
45 /*
46  * Warning - DEBUG_PRINT prints security-sensitive data to the log,
47  * so it should not be enabled in the official kernel
48  */
49 //#define DEBUG_PRINT
50 //#define INTERNAL_VERIFY
51
52 /*
53  * On disk structures
54  */
55
56 #define SB_MAGIC                        "integrt"
57 #define SB_VERSION_1                    1
58 #define SB_VERSION_2                    2
59 #define SB_VERSION_3                    3
60 #define SB_VERSION_4                    4
61 #define SB_VERSION_5                    5
62 #define SB_SECTORS                      8
63 #define MAX_SECTORS_PER_BLOCK           8
64
65 struct superblock {
66         __u8 magic[8];
67         __u8 version;
68         __u8 log2_interleave_sectors;
69         __u16 integrity_tag_size;
70         __u32 journal_sections;
71         __u64 provided_data_sectors;    /* userspace uses this value */
72         __u32 flags;
73         __u8 log2_sectors_per_block;
74         __u8 log2_blocks_per_bitmap_bit;
75         __u8 pad[2];
76         __u64 recalc_sector;
77         __u8 pad2[8];
78         __u8 salt[SALT_SIZE];
79 };
80
81 #define SB_FLAG_HAVE_JOURNAL_MAC        0x1
82 #define SB_FLAG_RECALCULATING           0x2
83 #define SB_FLAG_DIRTY_BITMAP            0x4
84 #define SB_FLAG_FIXED_PADDING           0x8
85 #define SB_FLAG_FIXED_HMAC              0x10
86
87 #define JOURNAL_ENTRY_ROUNDUP           8
88
89 typedef __u64 commit_id_t;
90 #define JOURNAL_MAC_PER_SECTOR          8
91
92 struct journal_entry {
93         union {
94                 struct {
95                         __u32 sector_lo;
96                         __u32 sector_hi;
97                 } s;
98                 __u64 sector;
99         } u;
100         commit_id_t last_bytes[];
101         /* __u8 tag[0]; */
102 };
103
104 #define journal_entry_tag(ic, je)               ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
105
106 #if BITS_PER_LONG == 64
107 #define journal_entry_set_sector(je, x)         do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
108 #else
109 #define journal_entry_set_sector(je, x)         do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
110 #endif
111 #define journal_entry_get_sector(je)            le64_to_cpu((je)->u.sector)
112 #define journal_entry_is_unused(je)             ((je)->u.s.sector_hi == cpu_to_le32(-1))
113 #define journal_entry_set_unused(je)            do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
114 #define journal_entry_is_inprogress(je)         ((je)->u.s.sector_hi == cpu_to_le32(-2))
115 #define journal_entry_set_inprogress(je)        do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
116
117 #define JOURNAL_BLOCK_SECTORS           8
118 #define JOURNAL_SECTOR_DATA             ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
119 #define JOURNAL_MAC_SIZE                (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
120
121 struct journal_sector {
122         __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
123         __u8 mac[JOURNAL_MAC_PER_SECTOR];
124         commit_id_t commit_id;
125 };
126
127 #define MAX_TAG_SIZE                    (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
128
129 #define METADATA_PADDING_SECTORS        8
130
131 #define N_COMMIT_IDS                    4
132
133 static unsigned char prev_commit_seq(unsigned char seq)
134 {
135         return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
136 }
137
138 static unsigned char next_commit_seq(unsigned char seq)
139 {
140         return (seq + 1) % N_COMMIT_IDS;
141 }
142
143 /*
144  * In-memory structures
145  */
146
147 struct journal_node {
148         struct rb_node node;
149         sector_t sector;
150 };
151
152 struct alg_spec {
153         char *alg_string;
154         char *key_string;
155         __u8 *key;
156         unsigned key_size;
157 };
158
159 struct dm_integrity_c {
160         struct dm_dev *dev;
161         struct dm_dev *meta_dev;
162         unsigned tag_size;
163         __s8 log2_tag_size;
164         sector_t start;
165         mempool_t journal_io_mempool;
166         struct dm_io_client *io;
167         struct dm_bufio_client *bufio;
168         struct workqueue_struct *metadata_wq;
169         struct superblock *sb;
170         unsigned journal_pages;
171         unsigned n_bitmap_blocks;
172
173         struct page_list *journal;
174         struct page_list *journal_io;
175         struct page_list *journal_xor;
176         struct page_list *recalc_bitmap;
177         struct page_list *may_write_bitmap;
178         struct bitmap_block_status *bbs;
179         unsigned bitmap_flush_interval;
180         int synchronous_mode;
181         struct bio_list synchronous_bios;
182         struct delayed_work bitmap_flush_work;
183
184         struct crypto_skcipher *journal_crypt;
185         struct scatterlist **journal_scatterlist;
186         struct scatterlist **journal_io_scatterlist;
187         struct skcipher_request **sk_requests;
188
189         struct crypto_shash *journal_mac;
190
191         struct journal_node *journal_tree;
192         struct rb_root journal_tree_root;
193
194         sector_t provided_data_sectors;
195
196         unsigned short journal_entry_size;
197         unsigned char journal_entries_per_sector;
198         unsigned char journal_section_entries;
199         unsigned short journal_section_sectors;
200         unsigned journal_sections;
201         unsigned journal_entries;
202         sector_t data_device_sectors;
203         sector_t meta_device_sectors;
204         unsigned initial_sectors;
205         unsigned metadata_run;
206         __s8 log2_metadata_run;
207         __u8 log2_buffer_sectors;
208         __u8 sectors_per_block;
209         __u8 log2_blocks_per_bitmap_bit;
210
211         unsigned char mode;
212
213         int failed;
214
215         struct crypto_shash *internal_hash;
216
217         struct dm_target *ti;
218
219         /* these variables are locked with endio_wait.lock */
220         struct rb_root in_progress;
221         struct list_head wait_list;
222         wait_queue_head_t endio_wait;
223         struct workqueue_struct *wait_wq;
224         struct workqueue_struct *offload_wq;
225
226         unsigned char commit_seq;
227         commit_id_t commit_ids[N_COMMIT_IDS];
228
229         unsigned committed_section;
230         unsigned n_committed_sections;
231
232         unsigned uncommitted_section;
233         unsigned n_uncommitted_sections;
234
235         unsigned free_section;
236         unsigned char free_section_entry;
237         unsigned free_sectors;
238
239         unsigned free_sectors_threshold;
240
241         struct workqueue_struct *commit_wq;
242         struct work_struct commit_work;
243
244         struct workqueue_struct *writer_wq;
245         struct work_struct writer_work;
246
247         struct workqueue_struct *recalc_wq;
248         struct work_struct recalc_work;
249         u8 *recalc_buffer;
250         u8 *recalc_tags;
251
252         struct bio_list flush_bio_list;
253
254         unsigned long autocommit_jiffies;
255         struct timer_list autocommit_timer;
256         unsigned autocommit_msec;
257
258         wait_queue_head_t copy_to_journal_wait;
259
260         struct completion crypto_backoff;
261
262         bool journal_uptodate;
263         bool just_formatted;
264         bool recalculate_flag;
265         bool discard;
266         bool fix_padding;
267         bool fix_hmac;
268         bool legacy_recalculate;
269
270         struct alg_spec internal_hash_alg;
271         struct alg_spec journal_crypt_alg;
272         struct alg_spec journal_mac_alg;
273
274         atomic64_t number_of_mismatches;
275
276         struct notifier_block reboot_notifier;
277 };
278
279 struct dm_integrity_range {
280         sector_t logical_sector;
281         sector_t n_sectors;
282         bool waiting;
283         union {
284                 struct rb_node node;
285                 struct {
286                         struct task_struct *task;
287                         struct list_head wait_entry;
288                 };
289         };
290 };
291
292 struct dm_integrity_io {
293         struct work_struct work;
294
295         struct dm_integrity_c *ic;
296         enum req_opf op;
297         bool fua;
298
299         struct dm_integrity_range range;
300
301         sector_t metadata_block;
302         unsigned metadata_offset;
303
304         atomic_t in_flight;
305         blk_status_t bi_status;
306
307         struct completion *completion;
308
309         struct dm_bio_details bio_details;
310 };
311
312 struct journal_completion {
313         struct dm_integrity_c *ic;
314         atomic_t in_flight;
315         struct completion comp;
316 };
317
318 struct journal_io {
319         struct dm_integrity_range range;
320         struct journal_completion *comp;
321 };
322
323 struct bitmap_block_status {
324         struct work_struct work;
325         struct dm_integrity_c *ic;
326         unsigned idx;
327         unsigned long *bitmap;
328         struct bio_list bio_queue;
329         spinlock_t bio_queue_lock;
330
331 };
332
333 static struct kmem_cache *journal_io_cache;
334
335 #define JOURNAL_IO_MEMPOOL      32
336
337 #ifdef DEBUG_PRINT
338 #define DEBUG_print(x, ...)     printk(KERN_DEBUG x, ##__VA_ARGS__)
339 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
340 {
341         va_list args;
342         va_start(args, msg);
343         vprintk(msg, args);
344         va_end(args);
345         if (len)
346                 pr_cont(":");
347         while (len) {
348                 pr_cont(" %02x", *bytes);
349                 bytes++;
350                 len--;
351         }
352         pr_cont("\n");
353 }
354 #define DEBUG_bytes(bytes, len, msg, ...)       __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
355 #else
356 #define DEBUG_print(x, ...)                     do { } while (0)
357 #define DEBUG_bytes(bytes, len, msg, ...)       do { } while (0)
358 #endif
359
360 static void dm_integrity_prepare(struct request *rq)
361 {
362 }
363
364 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
365 {
366 }
367
368 /*
369  * DM Integrity profile, protection is performed layer above (dm-crypt)
370  */
371 static const struct blk_integrity_profile dm_integrity_profile = {
372         .name                   = "DM-DIF-EXT-TAG",
373         .generate_fn            = NULL,
374         .verify_fn              = NULL,
375         .prepare_fn             = dm_integrity_prepare,
376         .complete_fn            = dm_integrity_complete,
377 };
378
379 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
380 static void integrity_bio_wait(struct work_struct *w);
381 static void dm_integrity_dtr(struct dm_target *ti);
382
383 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
384 {
385         if (err == -EILSEQ)
386                 atomic64_inc(&ic->number_of_mismatches);
387         if (!cmpxchg(&ic->failed, 0, err))
388                 DMERR("Error on %s: %d", msg, err);
389 }
390
391 static int dm_integrity_failed(struct dm_integrity_c *ic)
392 {
393         return READ_ONCE(ic->failed);
394 }
395
396 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
397 {
398         if (ic->legacy_recalculate)
399                 return false;
400         if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
401             ic->internal_hash_alg.key || ic->journal_mac_alg.key :
402             ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
403                 return true;
404         return false;
405 }
406
407 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i,
408                                           unsigned j, unsigned char seq)
409 {
410         /*
411          * Xor the number with section and sector, so that if a piece of
412          * journal is written at wrong place, it is detected.
413          */
414         return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
415 }
416
417 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
418                                 sector_t *area, sector_t *offset)
419 {
420         if (!ic->meta_dev) {
421                 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
422                 *area = data_sector >> log2_interleave_sectors;
423                 *offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1);
424         } else {
425                 *area = 0;
426                 *offset = data_sector;
427         }
428 }
429
430 #define sector_to_block(ic, n)                                          \
431 do {                                                                    \
432         BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1));          \
433         (n) >>= (ic)->sb->log2_sectors_per_block;                       \
434 } while (0)
435
436 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
437                                             sector_t offset, unsigned *metadata_offset)
438 {
439         __u64 ms;
440         unsigned mo;
441
442         ms = area << ic->sb->log2_interleave_sectors;
443         if (likely(ic->log2_metadata_run >= 0))
444                 ms += area << ic->log2_metadata_run;
445         else
446                 ms += area * ic->metadata_run;
447         ms >>= ic->log2_buffer_sectors;
448
449         sector_to_block(ic, offset);
450
451         if (likely(ic->log2_tag_size >= 0)) {
452                 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
453                 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
454         } else {
455                 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
456                 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
457         }
458         *metadata_offset = mo;
459         return ms;
460 }
461
462 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
463 {
464         sector_t result;
465
466         if (ic->meta_dev)
467                 return offset;
468
469         result = area << ic->sb->log2_interleave_sectors;
470         if (likely(ic->log2_metadata_run >= 0))
471                 result += (area + 1) << ic->log2_metadata_run;
472         else
473                 result += (area + 1) * ic->metadata_run;
474
475         result += (sector_t)ic->initial_sectors + offset;
476         result += ic->start;
477
478         return result;
479 }
480
481 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr)
482 {
483         if (unlikely(*sec_ptr >= ic->journal_sections))
484                 *sec_ptr -= ic->journal_sections;
485 }
486
487 static void sb_set_version(struct dm_integrity_c *ic)
488 {
489         if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
490                 ic->sb->version = SB_VERSION_5;
491         else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
492                 ic->sb->version = SB_VERSION_4;
493         else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
494                 ic->sb->version = SB_VERSION_3;
495         else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
496                 ic->sb->version = SB_VERSION_2;
497         else
498                 ic->sb->version = SB_VERSION_1;
499 }
500
501 static int sb_mac(struct dm_integrity_c *ic, bool wr)
502 {
503         SHASH_DESC_ON_STACK(desc, ic->journal_mac);
504         int r;
505         unsigned size = crypto_shash_digestsize(ic->journal_mac);
506
507         if (sizeof(struct superblock) + size > 1 << SECTOR_SHIFT) {
508                 dm_integrity_io_error(ic, "digest is too long", -EINVAL);
509                 return -EINVAL;
510         }
511
512         desc->tfm = ic->journal_mac;
513
514         r = crypto_shash_init(desc);
515         if (unlikely(r < 0)) {
516                 dm_integrity_io_error(ic, "crypto_shash_init", r);
517                 return r;
518         }
519
520         r = crypto_shash_update(desc, (__u8 *)ic->sb, (1 << SECTOR_SHIFT) - size);
521         if (unlikely(r < 0)) {
522                 dm_integrity_io_error(ic, "crypto_shash_update", r);
523                 return r;
524         }
525
526         if (likely(wr)) {
527                 r = crypto_shash_final(desc, (__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size);
528                 if (unlikely(r < 0)) {
529                         dm_integrity_io_error(ic, "crypto_shash_final", r);
530                         return r;
531                 }
532         } else {
533                 __u8 result[HASH_MAX_DIGESTSIZE];
534                 r = crypto_shash_final(desc, result);
535                 if (unlikely(r < 0)) {
536                         dm_integrity_io_error(ic, "crypto_shash_final", r);
537                         return r;
538                 }
539                 if (memcmp((__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size, result, size)) {
540                         dm_integrity_io_error(ic, "superblock mac", -EILSEQ);
541                         return -EILSEQ;
542                 }
543         }
544
545         return 0;
546 }
547
548 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags)
549 {
550         struct dm_io_request io_req;
551         struct dm_io_region io_loc;
552         int r;
553
554         io_req.bi_op = op;
555         io_req.bi_op_flags = op_flags;
556         io_req.mem.type = DM_IO_KMEM;
557         io_req.mem.ptr.addr = ic->sb;
558         io_req.notify.fn = NULL;
559         io_req.client = ic->io;
560         io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
561         io_loc.sector = ic->start;
562         io_loc.count = SB_SECTORS;
563
564         if (op == REQ_OP_WRITE) {
565                 sb_set_version(ic);
566                 if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
567                         r = sb_mac(ic, true);
568                         if (unlikely(r))
569                                 return r;
570                 }
571         }
572
573         r = dm_io(&io_req, 1, &io_loc, NULL);
574         if (unlikely(r))
575                 return r;
576
577         if (op == REQ_OP_READ) {
578                 if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
579                         r = sb_mac(ic, false);
580                         if (unlikely(r))
581                                 return r;
582                 }
583         }
584
585         return 0;
586 }
587
588 #define BITMAP_OP_TEST_ALL_SET          0
589 #define BITMAP_OP_TEST_ALL_CLEAR        1
590 #define BITMAP_OP_SET                   2
591 #define BITMAP_OP_CLEAR                 3
592
593 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
594                             sector_t sector, sector_t n_sectors, int mode)
595 {
596         unsigned long bit, end_bit, this_end_bit, page, end_page;
597         unsigned long *data;
598
599         if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
600                 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
601                         sector,
602                         n_sectors,
603                         ic->sb->log2_sectors_per_block,
604                         ic->log2_blocks_per_bitmap_bit,
605                         mode);
606                 BUG();
607         }
608
609         if (unlikely(!n_sectors))
610                 return true;
611
612         bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
613         end_bit = (sector + n_sectors - 1) >>
614                 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
615
616         page = bit / (PAGE_SIZE * 8);
617         bit %= PAGE_SIZE * 8;
618
619         end_page = end_bit / (PAGE_SIZE * 8);
620         end_bit %= PAGE_SIZE * 8;
621
622 repeat:
623         if (page < end_page) {
624                 this_end_bit = PAGE_SIZE * 8 - 1;
625         } else {
626                 this_end_bit = end_bit;
627         }
628
629         data = lowmem_page_address(bitmap[page].page);
630
631         if (mode == BITMAP_OP_TEST_ALL_SET) {
632                 while (bit <= this_end_bit) {
633                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
634                                 do {
635                                         if (data[bit / BITS_PER_LONG] != -1)
636                                                 return false;
637                                         bit += BITS_PER_LONG;
638                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
639                                 continue;
640                         }
641                         if (!test_bit(bit, data))
642                                 return false;
643                         bit++;
644                 }
645         } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
646                 while (bit <= this_end_bit) {
647                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
648                                 do {
649                                         if (data[bit / BITS_PER_LONG] != 0)
650                                                 return false;
651                                         bit += BITS_PER_LONG;
652                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
653                                 continue;
654                         }
655                         if (test_bit(bit, data))
656                                 return false;
657                         bit++;
658                 }
659         } else if (mode == BITMAP_OP_SET) {
660                 while (bit <= this_end_bit) {
661                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
662                                 do {
663                                         data[bit / BITS_PER_LONG] = -1;
664                                         bit += BITS_PER_LONG;
665                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
666                                 continue;
667                         }
668                         __set_bit(bit, data);
669                         bit++;
670                 }
671         } else if (mode == BITMAP_OP_CLEAR) {
672                 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
673                         clear_page(data);
674                 else while (bit <= this_end_bit) {
675                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
676                                 do {
677                                         data[bit / BITS_PER_LONG] = 0;
678                                         bit += BITS_PER_LONG;
679                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
680                                 continue;
681                         }
682                         __clear_bit(bit, data);
683                         bit++;
684                 }
685         } else {
686                 BUG();
687         }
688
689         if (unlikely(page < end_page)) {
690                 bit = 0;
691                 page++;
692                 goto repeat;
693         }
694
695         return true;
696 }
697
698 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
699 {
700         unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
701         unsigned i;
702
703         for (i = 0; i < n_bitmap_pages; i++) {
704                 unsigned long *dst_data = lowmem_page_address(dst[i].page);
705                 unsigned long *src_data = lowmem_page_address(src[i].page);
706                 copy_page(dst_data, src_data);
707         }
708 }
709
710 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
711 {
712         unsigned bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
713         unsigned bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
714
715         BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
716         return &ic->bbs[bitmap_block];
717 }
718
719 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset,
720                                  bool e, const char *function)
721 {
722 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
723         unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
724
725         if (unlikely(section >= ic->journal_sections) ||
726             unlikely(offset >= limit)) {
727                 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
728                        function, section, offset, ic->journal_sections, limit);
729                 BUG();
730         }
731 #endif
732 }
733
734 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset,
735                                unsigned *pl_index, unsigned *pl_offset)
736 {
737         unsigned sector;
738
739         access_journal_check(ic, section, offset, false, "page_list_location");
740
741         sector = section * ic->journal_section_sectors + offset;
742
743         *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
744         *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
745 }
746
747 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
748                                                unsigned section, unsigned offset, unsigned *n_sectors)
749 {
750         unsigned pl_index, pl_offset;
751         char *va;
752
753         page_list_location(ic, section, offset, &pl_index, &pl_offset);
754
755         if (n_sectors)
756                 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
757
758         va = lowmem_page_address(pl[pl_index].page);
759
760         return (struct journal_sector *)(va + pl_offset);
761 }
762
763 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset)
764 {
765         return access_page_list(ic, ic->journal, section, offset, NULL);
766 }
767
768 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n)
769 {
770         unsigned rel_sector, offset;
771         struct journal_sector *js;
772
773         access_journal_check(ic, section, n, true, "access_journal_entry");
774
775         rel_sector = n % JOURNAL_BLOCK_SECTORS;
776         offset = n / JOURNAL_BLOCK_SECTORS;
777
778         js = access_journal(ic, section, rel_sector);
779         return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
780 }
781
782 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n)
783 {
784         n <<= ic->sb->log2_sectors_per_block;
785
786         n += JOURNAL_BLOCK_SECTORS;
787
788         access_journal_check(ic, section, n, false, "access_journal_data");
789
790         return access_journal(ic, section, n);
791 }
792
793 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE])
794 {
795         SHASH_DESC_ON_STACK(desc, ic->journal_mac);
796         int r;
797         unsigned j, size;
798
799         desc->tfm = ic->journal_mac;
800
801         r = crypto_shash_init(desc);
802         if (unlikely(r < 0)) {
803                 dm_integrity_io_error(ic, "crypto_shash_init", r);
804                 goto err;
805         }
806
807         if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
808                 uint64_t section_le;
809
810                 r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE);
811                 if (unlikely(r < 0)) {
812                         dm_integrity_io_error(ic, "crypto_shash_update", r);
813                         goto err;
814                 }
815
816                 section_le = cpu_to_le64(section);
817                 r = crypto_shash_update(desc, (__u8 *)&section_le, sizeof section_le);
818                 if (unlikely(r < 0)) {
819                         dm_integrity_io_error(ic, "crypto_shash_update", r);
820                         goto err;
821                 }
822         }
823
824         for (j = 0; j < ic->journal_section_entries; j++) {
825                 struct journal_entry *je = access_journal_entry(ic, section, j);
826                 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
827                 if (unlikely(r < 0)) {
828                         dm_integrity_io_error(ic, "crypto_shash_update", r);
829                         goto err;
830                 }
831         }
832
833         size = crypto_shash_digestsize(ic->journal_mac);
834
835         if (likely(size <= JOURNAL_MAC_SIZE)) {
836                 r = crypto_shash_final(desc, result);
837                 if (unlikely(r < 0)) {
838                         dm_integrity_io_error(ic, "crypto_shash_final", r);
839                         goto err;
840                 }
841                 memset(result + size, 0, JOURNAL_MAC_SIZE - size);
842         } else {
843                 __u8 digest[HASH_MAX_DIGESTSIZE];
844
845                 if (WARN_ON(size > sizeof(digest))) {
846                         dm_integrity_io_error(ic, "digest_size", -EINVAL);
847                         goto err;
848                 }
849                 r = crypto_shash_final(desc, digest);
850                 if (unlikely(r < 0)) {
851                         dm_integrity_io_error(ic, "crypto_shash_final", r);
852                         goto err;
853                 }
854                 memcpy(result, digest, JOURNAL_MAC_SIZE);
855         }
856
857         return;
858 err:
859         memset(result, 0, JOURNAL_MAC_SIZE);
860 }
861
862 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr)
863 {
864         __u8 result[JOURNAL_MAC_SIZE];
865         unsigned j;
866
867         if (!ic->journal_mac)
868                 return;
869
870         section_mac(ic, section, result);
871
872         for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
873                 struct journal_sector *js = access_journal(ic, section, j);
874
875                 if (likely(wr))
876                         memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
877                 else {
878                         if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR))
879                                 dm_integrity_io_error(ic, "journal mac", -EILSEQ);
880                 }
881         }
882 }
883
884 static void complete_journal_op(void *context)
885 {
886         struct journal_completion *comp = context;
887         BUG_ON(!atomic_read(&comp->in_flight));
888         if (likely(atomic_dec_and_test(&comp->in_flight)))
889                 complete(&comp->comp);
890 }
891
892 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
893                         unsigned n_sections, struct journal_completion *comp)
894 {
895         struct async_submit_ctl submit;
896         size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
897         unsigned pl_index, pl_offset, section_index;
898         struct page_list *source_pl, *target_pl;
899
900         if (likely(encrypt)) {
901                 source_pl = ic->journal;
902                 target_pl = ic->journal_io;
903         } else {
904                 source_pl = ic->journal_io;
905                 target_pl = ic->journal;
906         }
907
908         page_list_location(ic, section, 0, &pl_index, &pl_offset);
909
910         atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
911
912         init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
913
914         section_index = pl_index;
915
916         do {
917                 size_t this_step;
918                 struct page *src_pages[2];
919                 struct page *dst_page;
920
921                 while (unlikely(pl_index == section_index)) {
922                         unsigned dummy;
923                         if (likely(encrypt))
924                                 rw_section_mac(ic, section, true);
925                         section++;
926                         n_sections--;
927                         if (!n_sections)
928                                 break;
929                         page_list_location(ic, section, 0, &section_index, &dummy);
930                 }
931
932                 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
933                 dst_page = target_pl[pl_index].page;
934                 src_pages[0] = source_pl[pl_index].page;
935                 src_pages[1] = ic->journal_xor[pl_index].page;
936
937                 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
938
939                 pl_index++;
940                 pl_offset = 0;
941                 n_bytes -= this_step;
942         } while (n_bytes);
943
944         BUG_ON(n_sections);
945
946         async_tx_issue_pending_all();
947 }
948
949 static void complete_journal_encrypt(struct crypto_async_request *req, int err)
950 {
951         struct journal_completion *comp = req->data;
952         if (unlikely(err)) {
953                 if (likely(err == -EINPROGRESS)) {
954                         complete(&comp->ic->crypto_backoff);
955                         return;
956                 }
957                 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
958         }
959         complete_journal_op(comp);
960 }
961
962 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
963 {
964         int r;
965         skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
966                                       complete_journal_encrypt, comp);
967         if (likely(encrypt))
968                 r = crypto_skcipher_encrypt(req);
969         else
970                 r = crypto_skcipher_decrypt(req);
971         if (likely(!r))
972                 return false;
973         if (likely(r == -EINPROGRESS))
974                 return true;
975         if (likely(r == -EBUSY)) {
976                 wait_for_completion(&comp->ic->crypto_backoff);
977                 reinit_completion(&comp->ic->crypto_backoff);
978                 return true;
979         }
980         dm_integrity_io_error(comp->ic, "encrypt", r);
981         return false;
982 }
983
984 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
985                           unsigned n_sections, struct journal_completion *comp)
986 {
987         struct scatterlist **source_sg;
988         struct scatterlist **target_sg;
989
990         atomic_add(2, &comp->in_flight);
991
992         if (likely(encrypt)) {
993                 source_sg = ic->journal_scatterlist;
994                 target_sg = ic->journal_io_scatterlist;
995         } else {
996                 source_sg = ic->journal_io_scatterlist;
997                 target_sg = ic->journal_scatterlist;
998         }
999
1000         do {
1001                 struct skcipher_request *req;
1002                 unsigned ivsize;
1003                 char *iv;
1004
1005                 if (likely(encrypt))
1006                         rw_section_mac(ic, section, true);
1007
1008                 req = ic->sk_requests[section];
1009                 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
1010                 iv = req->iv;
1011
1012                 memcpy(iv, iv + ivsize, ivsize);
1013
1014                 req->src = source_sg[section];
1015                 req->dst = target_sg[section];
1016
1017                 if (unlikely(do_crypt(encrypt, req, comp)))
1018                         atomic_inc(&comp->in_flight);
1019
1020                 section++;
1021                 n_sections--;
1022         } while (n_sections);
1023
1024         atomic_dec(&comp->in_flight);
1025         complete_journal_op(comp);
1026 }
1027
1028 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
1029                             unsigned n_sections, struct journal_completion *comp)
1030 {
1031         if (ic->journal_xor)
1032                 return xor_journal(ic, encrypt, section, n_sections, comp);
1033         else
1034                 return crypt_journal(ic, encrypt, section, n_sections, comp);
1035 }
1036
1037 static void complete_journal_io(unsigned long error, void *context)
1038 {
1039         struct journal_completion *comp = context;
1040         if (unlikely(error != 0))
1041                 dm_integrity_io_error(comp->ic, "writing journal", -EIO);
1042         complete_journal_op(comp);
1043 }
1044
1045 static void rw_journal_sectors(struct dm_integrity_c *ic, int op, int op_flags,
1046                                unsigned sector, unsigned n_sectors, struct journal_completion *comp)
1047 {
1048         struct dm_io_request io_req;
1049         struct dm_io_region io_loc;
1050         unsigned pl_index, pl_offset;
1051         int r;
1052
1053         if (unlikely(dm_integrity_failed(ic))) {
1054                 if (comp)
1055                         complete_journal_io(-1UL, comp);
1056                 return;
1057         }
1058
1059         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1060         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1061
1062         io_req.bi_op = op;
1063         io_req.bi_op_flags = op_flags;
1064         io_req.mem.type = DM_IO_PAGE_LIST;
1065         if (ic->journal_io)
1066                 io_req.mem.ptr.pl = &ic->journal_io[pl_index];
1067         else
1068                 io_req.mem.ptr.pl = &ic->journal[pl_index];
1069         io_req.mem.offset = pl_offset;
1070         if (likely(comp != NULL)) {
1071                 io_req.notify.fn = complete_journal_io;
1072                 io_req.notify.context = comp;
1073         } else {
1074                 io_req.notify.fn = NULL;
1075         }
1076         io_req.client = ic->io;
1077         io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
1078         io_loc.sector = ic->start + SB_SECTORS + sector;
1079         io_loc.count = n_sectors;
1080
1081         r = dm_io(&io_req, 1, &io_loc, NULL);
1082         if (unlikely(r)) {
1083                 dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r);
1084                 if (comp) {
1085                         WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1086                         complete_journal_io(-1UL, comp);
1087                 }
1088         }
1089 }
1090
1091 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section,
1092                        unsigned n_sections, struct journal_completion *comp)
1093 {
1094         unsigned sector, n_sectors;
1095
1096         sector = section * ic->journal_section_sectors;
1097         n_sectors = n_sections * ic->journal_section_sectors;
1098
1099         rw_journal_sectors(ic, op, op_flags, sector, n_sectors, comp);
1100 }
1101
1102 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections)
1103 {
1104         struct journal_completion io_comp;
1105         struct journal_completion crypt_comp_1;
1106         struct journal_completion crypt_comp_2;
1107         unsigned i;
1108
1109         io_comp.ic = ic;
1110         init_completion(&io_comp.comp);
1111
1112         if (commit_start + commit_sections <= ic->journal_sections) {
1113                 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1114                 if (ic->journal_io) {
1115                         crypt_comp_1.ic = ic;
1116                         init_completion(&crypt_comp_1.comp);
1117                         crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1118                         encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1119                         wait_for_completion_io(&crypt_comp_1.comp);
1120                 } else {
1121                         for (i = 0; i < commit_sections; i++)
1122                                 rw_section_mac(ic, commit_start + i, true);
1123                 }
1124                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start,
1125                            commit_sections, &io_comp);
1126         } else {
1127                 unsigned to_end;
1128                 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1129                 to_end = ic->journal_sections - commit_start;
1130                 if (ic->journal_io) {
1131                         crypt_comp_1.ic = ic;
1132                         init_completion(&crypt_comp_1.comp);
1133                         crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1134                         encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1135                         if (try_wait_for_completion(&crypt_comp_1.comp)) {
1136                                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1137                                 reinit_completion(&crypt_comp_1.comp);
1138                                 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1139                                 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1140                                 wait_for_completion_io(&crypt_comp_1.comp);
1141                         } else {
1142                                 crypt_comp_2.ic = ic;
1143                                 init_completion(&crypt_comp_2.comp);
1144                                 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1145                                 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1146                                 wait_for_completion_io(&crypt_comp_1.comp);
1147                                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1148                                 wait_for_completion_io(&crypt_comp_2.comp);
1149                         }
1150                 } else {
1151                         for (i = 0; i < to_end; i++)
1152                                 rw_section_mac(ic, commit_start + i, true);
1153                         rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1154                         for (i = 0; i < commit_sections - to_end; i++)
1155                                 rw_section_mac(ic, i, true);
1156                 }
1157                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp);
1158         }
1159
1160         wait_for_completion_io(&io_comp.comp);
1161 }
1162
1163 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset,
1164                               unsigned n_sectors, sector_t target, io_notify_fn fn, void *data)
1165 {
1166         struct dm_io_request io_req;
1167         struct dm_io_region io_loc;
1168         int r;
1169         unsigned sector, pl_index, pl_offset;
1170
1171         BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1));
1172
1173         if (unlikely(dm_integrity_failed(ic))) {
1174                 fn(-1UL, data);
1175                 return;
1176         }
1177
1178         sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1179
1180         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1181         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1182
1183         io_req.bi_op = REQ_OP_WRITE;
1184         io_req.bi_op_flags = 0;
1185         io_req.mem.type = DM_IO_PAGE_LIST;
1186         io_req.mem.ptr.pl = &ic->journal[pl_index];
1187         io_req.mem.offset = pl_offset;
1188         io_req.notify.fn = fn;
1189         io_req.notify.context = data;
1190         io_req.client = ic->io;
1191         io_loc.bdev = ic->dev->bdev;
1192         io_loc.sector = target;
1193         io_loc.count = n_sectors;
1194
1195         r = dm_io(&io_req, 1, &io_loc, NULL);
1196         if (unlikely(r)) {
1197                 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1198                 fn(-1UL, data);
1199         }
1200 }
1201
1202 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1203 {
1204         return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1205                range1->logical_sector + range1->n_sectors > range2->logical_sector;
1206 }
1207
1208 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1209 {
1210         struct rb_node **n = &ic->in_progress.rb_node;
1211         struct rb_node *parent;
1212
1213         BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1));
1214
1215         if (likely(check_waiting)) {
1216                 struct dm_integrity_range *range;
1217                 list_for_each_entry(range, &ic->wait_list, wait_entry) {
1218                         if (unlikely(ranges_overlap(range, new_range)))
1219                                 return false;
1220                 }
1221         }
1222
1223         parent = NULL;
1224
1225         while (*n) {
1226                 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1227
1228                 parent = *n;
1229                 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
1230                         n = &range->node.rb_left;
1231                 } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
1232                         n = &range->node.rb_right;
1233                 } else {
1234                         return false;
1235                 }
1236         }
1237
1238         rb_link_node(&new_range->node, parent, n);
1239         rb_insert_color(&new_range->node, &ic->in_progress);
1240
1241         return true;
1242 }
1243
1244 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1245 {
1246         rb_erase(&range->node, &ic->in_progress);
1247         while (unlikely(!list_empty(&ic->wait_list))) {
1248                 struct dm_integrity_range *last_range =
1249                         list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1250                 struct task_struct *last_range_task;
1251                 last_range_task = last_range->task;
1252                 list_del(&last_range->wait_entry);
1253                 if (!add_new_range(ic, last_range, false)) {
1254                         last_range->task = last_range_task;
1255                         list_add(&last_range->wait_entry, &ic->wait_list);
1256                         break;
1257                 }
1258                 last_range->waiting = false;
1259                 wake_up_process(last_range_task);
1260         }
1261 }
1262
1263 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1264 {
1265         unsigned long flags;
1266
1267         spin_lock_irqsave(&ic->endio_wait.lock, flags);
1268         remove_range_unlocked(ic, range);
1269         spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1270 }
1271
1272 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1273 {
1274         new_range->waiting = true;
1275         list_add_tail(&new_range->wait_entry, &ic->wait_list);
1276         new_range->task = current;
1277         do {
1278                 __set_current_state(TASK_UNINTERRUPTIBLE);
1279                 spin_unlock_irq(&ic->endio_wait.lock);
1280                 io_schedule();
1281                 spin_lock_irq(&ic->endio_wait.lock);
1282         } while (unlikely(new_range->waiting));
1283 }
1284
1285 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1286 {
1287         if (unlikely(!add_new_range(ic, new_range, true)))
1288                 wait_and_add_new_range(ic, new_range);
1289 }
1290
1291 static void init_journal_node(struct journal_node *node)
1292 {
1293         RB_CLEAR_NODE(&node->node);
1294         node->sector = (sector_t)-1;
1295 }
1296
1297 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1298 {
1299         struct rb_node **link;
1300         struct rb_node *parent;
1301
1302         node->sector = sector;
1303         BUG_ON(!RB_EMPTY_NODE(&node->node));
1304
1305         link = &ic->journal_tree_root.rb_node;
1306         parent = NULL;
1307
1308         while (*link) {
1309                 struct journal_node *j;
1310                 parent = *link;
1311                 j = container_of(parent, struct journal_node, node);
1312                 if (sector < j->sector)
1313                         link = &j->node.rb_left;
1314                 else
1315                         link = &j->node.rb_right;
1316         }
1317
1318         rb_link_node(&node->node, parent, link);
1319         rb_insert_color(&node->node, &ic->journal_tree_root);
1320 }
1321
1322 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1323 {
1324         BUG_ON(RB_EMPTY_NODE(&node->node));
1325         rb_erase(&node->node, &ic->journal_tree_root);
1326         init_journal_node(node);
1327 }
1328
1329 #define NOT_FOUND       (-1U)
1330
1331 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1332 {
1333         struct rb_node *n = ic->journal_tree_root.rb_node;
1334         unsigned found = NOT_FOUND;
1335         *next_sector = (sector_t)-1;
1336         while (n) {
1337                 struct journal_node *j = container_of(n, struct journal_node, node);
1338                 if (sector == j->sector) {
1339                         found = j - ic->journal_tree;
1340                 }
1341                 if (sector < j->sector) {
1342                         *next_sector = j->sector;
1343                         n = j->node.rb_left;
1344                 } else {
1345                         n = j->node.rb_right;
1346                 }
1347         }
1348
1349         return found;
1350 }
1351
1352 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector)
1353 {
1354         struct journal_node *node, *next_node;
1355         struct rb_node *next;
1356
1357         if (unlikely(pos >= ic->journal_entries))
1358                 return false;
1359         node = &ic->journal_tree[pos];
1360         if (unlikely(RB_EMPTY_NODE(&node->node)))
1361                 return false;
1362         if (unlikely(node->sector != sector))
1363                 return false;
1364
1365         next = rb_next(&node->node);
1366         if (unlikely(!next))
1367                 return true;
1368
1369         next_node = container_of(next, struct journal_node, node);
1370         return next_node->sector != sector;
1371 }
1372
1373 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1374 {
1375         struct rb_node *next;
1376         struct journal_node *next_node;
1377         unsigned next_section;
1378
1379         BUG_ON(RB_EMPTY_NODE(&node->node));
1380
1381         next = rb_next(&node->node);
1382         if (unlikely(!next))
1383                 return false;
1384
1385         next_node = container_of(next, struct journal_node, node);
1386
1387         if (next_node->sector != node->sector)
1388                 return false;
1389
1390         next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries;
1391         if (next_section >= ic->committed_section &&
1392             next_section < ic->committed_section + ic->n_committed_sections)
1393                 return true;
1394         if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1395                 return true;
1396
1397         return false;
1398 }
1399
1400 #define TAG_READ        0
1401 #define TAG_WRITE       1
1402 #define TAG_CMP         2
1403
1404 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1405                                unsigned *metadata_offset, unsigned total_size, int op)
1406 {
1407 #define MAY_BE_FILLER           1
1408 #define MAY_BE_HASH             2
1409         unsigned hash_offset = 0;
1410         unsigned may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1411
1412         do {
1413                 unsigned char *data, *dp;
1414                 struct dm_buffer *b;
1415                 unsigned to_copy;
1416                 int r;
1417
1418                 r = dm_integrity_failed(ic);
1419                 if (unlikely(r))
1420                         return r;
1421
1422                 data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1423                 if (IS_ERR(data))
1424                         return PTR_ERR(data);
1425
1426                 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1427                 dp = data + *metadata_offset;
1428                 if (op == TAG_READ) {
1429                         memcpy(tag, dp, to_copy);
1430                 } else if (op == TAG_WRITE) {
1431                         memcpy(dp, tag, to_copy);
1432                         dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1433                 } else {
1434                         /* e.g.: op == TAG_CMP */
1435
1436                         if (likely(is_power_of_2(ic->tag_size))) {
1437                                 if (unlikely(memcmp(dp, tag, to_copy)))
1438                                         if (unlikely(!ic->discard) ||
1439                                             unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1440                                                 goto thorough_test;
1441                                 }
1442                         } else {
1443                                 unsigned i, ts;
1444 thorough_test:
1445                                 ts = total_size;
1446
1447                                 for (i = 0; i < to_copy; i++, ts--) {
1448                                         if (unlikely(dp[i] != tag[i]))
1449                                                 may_be &= ~MAY_BE_HASH;
1450                                         if (likely(dp[i] != DISCARD_FILLER))
1451                                                 may_be &= ~MAY_BE_FILLER;
1452                                         hash_offset++;
1453                                         if (unlikely(hash_offset == ic->tag_size)) {
1454                                                 if (unlikely(!may_be)) {
1455                                                         dm_bufio_release(b);
1456                                                         return ts;
1457                                                 }
1458                                                 hash_offset = 0;
1459                                                 may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1460                                         }
1461                                 }
1462                         }
1463                 }
1464                 dm_bufio_release(b);
1465
1466                 tag += to_copy;
1467                 *metadata_offset += to_copy;
1468                 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1469                         (*metadata_block)++;
1470                         *metadata_offset = 0;
1471                 }
1472
1473                 if (unlikely(!is_power_of_2(ic->tag_size))) {
1474                         hash_offset = (hash_offset + to_copy) % ic->tag_size;
1475                 }
1476
1477                 total_size -= to_copy;
1478         } while (unlikely(total_size));
1479
1480         return 0;
1481 #undef MAY_BE_FILLER
1482 #undef MAY_BE_HASH
1483 }
1484
1485 struct flush_request {
1486         struct dm_io_request io_req;
1487         struct dm_io_region io_reg;
1488         struct dm_integrity_c *ic;
1489         struct completion comp;
1490 };
1491
1492 static void flush_notify(unsigned long error, void *fr_)
1493 {
1494         struct flush_request *fr = fr_;
1495         if (unlikely(error != 0))
1496                 dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO);
1497         complete(&fr->comp);
1498 }
1499
1500 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1501 {
1502         int r;
1503
1504         struct flush_request fr;
1505
1506         if (!ic->meta_dev)
1507                 flush_data = false;
1508         if (flush_data) {
1509                 fr.io_req.bi_op = REQ_OP_WRITE,
1510                 fr.io_req.bi_op_flags = REQ_PREFLUSH | REQ_SYNC,
1511                 fr.io_req.mem.type = DM_IO_KMEM,
1512                 fr.io_req.mem.ptr.addr = NULL,
1513                 fr.io_req.notify.fn = flush_notify,
1514                 fr.io_req.notify.context = &fr;
1515                 fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio),
1516                 fr.io_reg.bdev = ic->dev->bdev,
1517                 fr.io_reg.sector = 0,
1518                 fr.io_reg.count = 0,
1519                 fr.ic = ic;
1520                 init_completion(&fr.comp);
1521                 r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL);
1522                 BUG_ON(r);
1523         }
1524
1525         r = dm_bufio_write_dirty_buffers(ic->bufio);
1526         if (unlikely(r))
1527                 dm_integrity_io_error(ic, "writing tags", r);
1528
1529         if (flush_data)
1530                 wait_for_completion(&fr.comp);
1531 }
1532
1533 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1534 {
1535         DECLARE_WAITQUEUE(wait, current);
1536         __add_wait_queue(&ic->endio_wait, &wait);
1537         __set_current_state(TASK_UNINTERRUPTIBLE);
1538         spin_unlock_irq(&ic->endio_wait.lock);
1539         io_schedule();
1540         spin_lock_irq(&ic->endio_wait.lock);
1541         __remove_wait_queue(&ic->endio_wait, &wait);
1542 }
1543
1544 static void autocommit_fn(struct timer_list *t)
1545 {
1546         struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1547
1548         if (likely(!dm_integrity_failed(ic)))
1549                 queue_work(ic->commit_wq, &ic->commit_work);
1550 }
1551
1552 static void schedule_autocommit(struct dm_integrity_c *ic)
1553 {
1554         if (!timer_pending(&ic->autocommit_timer))
1555                 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1556 }
1557
1558 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1559 {
1560         struct bio *bio;
1561         unsigned long flags;
1562
1563         spin_lock_irqsave(&ic->endio_wait.lock, flags);
1564         bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1565         bio_list_add(&ic->flush_bio_list, bio);
1566         spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1567
1568         queue_work(ic->commit_wq, &ic->commit_work);
1569 }
1570
1571 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1572 {
1573         int r = dm_integrity_failed(ic);
1574         if (unlikely(r) && !bio->bi_status)
1575                 bio->bi_status = errno_to_blk_status(r);
1576         if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1577                 unsigned long flags;
1578                 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1579                 bio_list_add(&ic->synchronous_bios, bio);
1580                 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1581                 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1582                 return;
1583         }
1584         bio_endio(bio);
1585 }
1586
1587 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1588 {
1589         struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1590
1591         if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1592                 submit_flush_bio(ic, dio);
1593         else
1594                 do_endio(ic, bio);
1595 }
1596
1597 static void dec_in_flight(struct dm_integrity_io *dio)
1598 {
1599         if (atomic_dec_and_test(&dio->in_flight)) {
1600                 struct dm_integrity_c *ic = dio->ic;
1601                 struct bio *bio;
1602
1603                 remove_range(ic, &dio->range);
1604
1605                 if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1606                         schedule_autocommit(ic);
1607
1608                 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1609
1610                 if (unlikely(dio->bi_status) && !bio->bi_status)
1611                         bio->bi_status = dio->bi_status;
1612                 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1613                         dio->range.logical_sector += dio->range.n_sectors;
1614                         bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1615                         INIT_WORK(&dio->work, integrity_bio_wait);
1616                         queue_work(ic->offload_wq, &dio->work);
1617                         return;
1618                 }
1619                 do_endio_flush(ic, dio);
1620         }
1621 }
1622
1623 static void integrity_end_io(struct bio *bio)
1624 {
1625         struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1626
1627         dm_bio_restore(&dio->bio_details, bio);
1628         if (bio->bi_integrity)
1629                 bio->bi_opf |= REQ_INTEGRITY;
1630
1631         if (dio->completion)
1632                 complete(dio->completion);
1633
1634         dec_in_flight(dio);
1635 }
1636
1637 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1638                                       const char *data, char *result)
1639 {
1640         __u64 sector_le = cpu_to_le64(sector);
1641         SHASH_DESC_ON_STACK(req, ic->internal_hash);
1642         int r;
1643         unsigned digest_size;
1644
1645         req->tfm = ic->internal_hash;
1646
1647         r = crypto_shash_init(req);
1648         if (unlikely(r < 0)) {
1649                 dm_integrity_io_error(ic, "crypto_shash_init", r);
1650                 goto failed;
1651         }
1652
1653         if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1654                 r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE);
1655                 if (unlikely(r < 0)) {
1656                         dm_integrity_io_error(ic, "crypto_shash_update", r);
1657                         goto failed;
1658                 }
1659         }
1660
1661         r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof sector_le);
1662         if (unlikely(r < 0)) {
1663                 dm_integrity_io_error(ic, "crypto_shash_update", r);
1664                 goto failed;
1665         }
1666
1667         r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1668         if (unlikely(r < 0)) {
1669                 dm_integrity_io_error(ic, "crypto_shash_update", r);
1670                 goto failed;
1671         }
1672
1673         r = crypto_shash_final(req, result);
1674         if (unlikely(r < 0)) {
1675                 dm_integrity_io_error(ic, "crypto_shash_final", r);
1676                 goto failed;
1677         }
1678
1679         digest_size = crypto_shash_digestsize(ic->internal_hash);
1680         if (unlikely(digest_size < ic->tag_size))
1681                 memset(result + digest_size, 0, ic->tag_size - digest_size);
1682
1683         return;
1684
1685 failed:
1686         /* this shouldn't happen anyway, the hash functions have no reason to fail */
1687         get_random_bytes(result, ic->tag_size);
1688 }
1689
1690 static void integrity_metadata(struct work_struct *w)
1691 {
1692         struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1693         struct dm_integrity_c *ic = dio->ic;
1694
1695         int r;
1696
1697         if (ic->internal_hash) {
1698                 struct bvec_iter iter;
1699                 struct bio_vec bv;
1700                 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1701                 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1702                 char *checksums;
1703                 unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1704                 char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1705                 sector_t sector;
1706                 unsigned sectors_to_process;
1707
1708                 if (unlikely(ic->mode == 'R'))
1709                         goto skip_io;
1710
1711                 if (likely(dio->op != REQ_OP_DISCARD))
1712                         checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1713                                             GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1714                 else
1715                         checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1716                 if (!checksums) {
1717                         checksums = checksums_onstack;
1718                         if (WARN_ON(extra_space &&
1719                                     digest_size > sizeof(checksums_onstack))) {
1720                                 r = -EINVAL;
1721                                 goto error;
1722                         }
1723                 }
1724
1725                 if (unlikely(dio->op == REQ_OP_DISCARD)) {
1726                         sector_t bi_sector = dio->bio_details.bi_iter.bi_sector;
1727                         unsigned bi_size = dio->bio_details.bi_iter.bi_size;
1728                         unsigned max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1729                         unsigned max_blocks = max_size / ic->tag_size;
1730                         memset(checksums, DISCARD_FILLER, max_size);
1731
1732                         while (bi_size) {
1733                                 unsigned this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1734                                 this_step_blocks = min(this_step_blocks, max_blocks);
1735                                 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1736                                                         this_step_blocks * ic->tag_size, TAG_WRITE);
1737                                 if (unlikely(r)) {
1738                                         if (likely(checksums != checksums_onstack))
1739                                                 kfree(checksums);
1740                                         goto error;
1741                                 }
1742
1743                                 /*if (bi_size < this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block)) {
1744                                         printk("BUGG: bi_sector: %llx, bi_size: %u\n", bi_sector, bi_size);
1745                                         printk("BUGG: this_step_blocks: %u\n", this_step_blocks);
1746                                         BUG();
1747                                 }*/
1748                                 bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1749                                 bi_sector += this_step_blocks << ic->sb->log2_sectors_per_block;
1750                         }
1751
1752                         if (likely(checksums != checksums_onstack))
1753                                 kfree(checksums);
1754                         goto skip_io;
1755                 }
1756
1757                 sector = dio->range.logical_sector;
1758                 sectors_to_process = dio->range.n_sectors;
1759
1760                 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1761                         unsigned pos;
1762                         char *mem, *checksums_ptr;
1763
1764 again:
1765                         mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset;
1766                         pos = 0;
1767                         checksums_ptr = checksums;
1768                         do {
1769                                 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1770                                 checksums_ptr += ic->tag_size;
1771                                 sectors_to_process -= ic->sectors_per_block;
1772                                 pos += ic->sectors_per_block << SECTOR_SHIFT;
1773                                 sector += ic->sectors_per_block;
1774                         } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1775                         kunmap_atomic(mem);
1776
1777                         r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1778                                                 checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1779                         if (unlikely(r)) {
1780                                 if (r > 0) {
1781                                         char b[BDEVNAME_SIZE];
1782                                         DMERR_LIMIT("%s: Checksum failed at sector 0x%llx", bio_devname(bio, b),
1783                                                     (sector - ((r + ic->tag_size - 1) / ic->tag_size)));
1784                                         r = -EILSEQ;
1785                                         atomic64_inc(&ic->number_of_mismatches);
1786                                 }
1787                                 if (likely(checksums != checksums_onstack))
1788                                         kfree(checksums);
1789                                 goto error;
1790                         }
1791
1792                         if (!sectors_to_process)
1793                                 break;
1794
1795                         if (unlikely(pos < bv.bv_len)) {
1796                                 bv.bv_offset += pos;
1797                                 bv.bv_len -= pos;
1798                                 goto again;
1799                         }
1800                 }
1801
1802                 if (likely(checksums != checksums_onstack))
1803                         kfree(checksums);
1804         } else {
1805                 struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1806
1807                 if (bip) {
1808                         struct bio_vec biv;
1809                         struct bvec_iter iter;
1810                         unsigned data_to_process = dio->range.n_sectors;
1811                         sector_to_block(ic, data_to_process);
1812                         data_to_process *= ic->tag_size;
1813
1814                         bip_for_each_vec(biv, bip, iter) {
1815                                 unsigned char *tag;
1816                                 unsigned this_len;
1817
1818                                 BUG_ON(PageHighMem(biv.bv_page));
1819                                 tag = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1820                                 this_len = min(biv.bv_len, data_to_process);
1821                                 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1822                                                         this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1823                                 if (unlikely(r))
1824                                         goto error;
1825                                 data_to_process -= this_len;
1826                                 if (!data_to_process)
1827                                         break;
1828                         }
1829                 }
1830         }
1831 skip_io:
1832         dec_in_flight(dio);
1833         return;
1834 error:
1835         dio->bi_status = errno_to_blk_status(r);
1836         dec_in_flight(dio);
1837 }
1838
1839 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1840 {
1841         struct dm_integrity_c *ic = ti->private;
1842         struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1843         struct bio_integrity_payload *bip;
1844
1845         sector_t area, offset;
1846
1847         dio->ic = ic;
1848         dio->bi_status = 0;
1849         dio->op = bio_op(bio);
1850
1851         if (unlikely(dio->op == REQ_OP_DISCARD)) {
1852                 if (ti->max_io_len) {
1853                         sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1854                         unsigned log2_max_io_len = __fls(ti->max_io_len);
1855                         sector_t start_boundary = sec >> log2_max_io_len;
1856                         sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1857                         if (start_boundary < end_boundary) {
1858                                 sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1859                                 dm_accept_partial_bio(bio, len);
1860                         }
1861                 }
1862         }
1863
1864         if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1865                 submit_flush_bio(ic, dio);
1866                 return DM_MAPIO_SUBMITTED;
1867         }
1868
1869         dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1870         dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1871         if (unlikely(dio->fua)) {
1872                 /*
1873                  * Don't pass down the FUA flag because we have to flush
1874                  * disk cache anyway.
1875                  */
1876                 bio->bi_opf &= ~REQ_FUA;
1877         }
1878         if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1879                 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1880                       dio->range.logical_sector, bio_sectors(bio),
1881                       ic->provided_data_sectors);
1882                 return DM_MAPIO_KILL;
1883         }
1884         if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) {
1885                 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1886                       ic->sectors_per_block,
1887                       dio->range.logical_sector, bio_sectors(bio));
1888                 return DM_MAPIO_KILL;
1889         }
1890
1891         if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) {
1892                 struct bvec_iter iter;
1893                 struct bio_vec bv;
1894                 bio_for_each_segment(bv, bio, iter) {
1895                         if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1896                                 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1897                                         bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1898                                 return DM_MAPIO_KILL;
1899                         }
1900                 }
1901         }
1902
1903         bip = bio_integrity(bio);
1904         if (!ic->internal_hash) {
1905                 if (bip) {
1906                         unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1907                         if (ic->log2_tag_size >= 0)
1908                                 wanted_tag_size <<= ic->log2_tag_size;
1909                         else
1910                                 wanted_tag_size *= ic->tag_size;
1911                         if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1912                                 DMERR("Invalid integrity data size %u, expected %u",
1913                                       bip->bip_iter.bi_size, wanted_tag_size);
1914                                 return DM_MAPIO_KILL;
1915                         }
1916                 }
1917         } else {
1918                 if (unlikely(bip != NULL)) {
1919                         DMERR("Unexpected integrity data when using internal hash");
1920                         return DM_MAPIO_KILL;
1921                 }
1922         }
1923
1924         if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
1925                 return DM_MAPIO_KILL;
1926
1927         get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1928         dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1929         bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1930
1931         dm_integrity_map_continue(dio, true);
1932         return DM_MAPIO_SUBMITTED;
1933 }
1934
1935 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1936                                  unsigned journal_section, unsigned journal_entry)
1937 {
1938         struct dm_integrity_c *ic = dio->ic;
1939         sector_t logical_sector;
1940         unsigned n_sectors;
1941
1942         logical_sector = dio->range.logical_sector;
1943         n_sectors = dio->range.n_sectors;
1944         do {
1945                 struct bio_vec bv = bio_iovec(bio);
1946                 char *mem;
1947
1948                 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1949                         bv.bv_len = n_sectors << SECTOR_SHIFT;
1950                 n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1951                 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1952 retry_kmap:
1953                 mem = kmap_atomic(bv.bv_page);
1954                 if (likely(dio->op == REQ_OP_WRITE))
1955                         flush_dcache_page(bv.bv_page);
1956
1957                 do {
1958                         struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1959
1960                         if (unlikely(dio->op == REQ_OP_READ)) {
1961                                 struct journal_sector *js;
1962                                 char *mem_ptr;
1963                                 unsigned s;
1964
1965                                 if (unlikely(journal_entry_is_inprogress(je))) {
1966                                         flush_dcache_page(bv.bv_page);
1967                                         kunmap_atomic(mem);
1968
1969                                         __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1970                                         goto retry_kmap;
1971                                 }
1972                                 smp_rmb();
1973                                 BUG_ON(journal_entry_get_sector(je) != logical_sector);
1974                                 js = access_journal_data(ic, journal_section, journal_entry);
1975                                 mem_ptr = mem + bv.bv_offset;
1976                                 s = 0;
1977                                 do {
1978                                         memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1979                                         *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1980                                         js++;
1981                                         mem_ptr += 1 << SECTOR_SHIFT;
1982                                 } while (++s < ic->sectors_per_block);
1983 #ifdef INTERNAL_VERIFY
1984                                 if (ic->internal_hash) {
1985                                         char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1986
1987                                         integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
1988                                         if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
1989                                                 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
1990                                                             logical_sector);
1991                                         }
1992                                 }
1993 #endif
1994                         }
1995
1996                         if (!ic->internal_hash) {
1997                                 struct bio_integrity_payload *bip = bio_integrity(bio);
1998                                 unsigned tag_todo = ic->tag_size;
1999                                 char *tag_ptr = journal_entry_tag(ic, je);
2000
2001                                 if (bip) do {
2002                                         struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
2003                                         unsigned tag_now = min(biv.bv_len, tag_todo);
2004                                         char *tag_addr;
2005                                         BUG_ON(PageHighMem(biv.bv_page));
2006                                         tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset;
2007                                         if (likely(dio->op == REQ_OP_WRITE))
2008                                                 memcpy(tag_ptr, tag_addr, tag_now);
2009                                         else
2010                                                 memcpy(tag_addr, tag_ptr, tag_now);
2011                                         bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
2012                                         tag_ptr += tag_now;
2013                                         tag_todo -= tag_now;
2014                                 } while (unlikely(tag_todo)); else {
2015                                         if (likely(dio->op == REQ_OP_WRITE))
2016                                                 memset(tag_ptr, 0, tag_todo);
2017                                 }
2018                         }
2019
2020                         if (likely(dio->op == REQ_OP_WRITE)) {
2021                                 struct journal_sector *js;
2022                                 unsigned s;
2023
2024                                 js = access_journal_data(ic, journal_section, journal_entry);
2025                                 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
2026
2027                                 s = 0;
2028                                 do {
2029                                         je->last_bytes[s] = js[s].commit_id;
2030                                 } while (++s < ic->sectors_per_block);
2031
2032                                 if (ic->internal_hash) {
2033                                         unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
2034                                         if (unlikely(digest_size > ic->tag_size)) {
2035                                                 char checksums_onstack[HASH_MAX_DIGESTSIZE];
2036                                                 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
2037                                                 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
2038                                         } else
2039                                                 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
2040                                 }
2041
2042                                 journal_entry_set_sector(je, logical_sector);
2043                         }
2044                         logical_sector += ic->sectors_per_block;
2045
2046                         journal_entry++;
2047                         if (unlikely(journal_entry == ic->journal_section_entries)) {
2048                                 journal_entry = 0;
2049                                 journal_section++;
2050                                 wraparound_section(ic, &journal_section);
2051                         }
2052
2053                         bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
2054                 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
2055
2056                 if (unlikely(dio->op == REQ_OP_READ))
2057                         flush_dcache_page(bv.bv_page);
2058                 kunmap_atomic(mem);
2059         } while (n_sectors);
2060
2061         if (likely(dio->op == REQ_OP_WRITE)) {
2062                 smp_mb();
2063                 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
2064                         wake_up(&ic->copy_to_journal_wait);
2065                 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
2066                         queue_work(ic->commit_wq, &ic->commit_work);
2067                 } else {
2068                         schedule_autocommit(ic);
2069                 }
2070         } else {
2071                 remove_range(ic, &dio->range);
2072         }
2073
2074         if (unlikely(bio->bi_iter.bi_size)) {
2075                 sector_t area, offset;
2076
2077                 dio->range.logical_sector = logical_sector;
2078                 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2079                 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2080                 return true;
2081         }
2082
2083         return false;
2084 }
2085
2086 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
2087 {
2088         struct dm_integrity_c *ic = dio->ic;
2089         struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2090         unsigned journal_section, journal_entry;
2091         unsigned journal_read_pos;
2092         struct completion read_comp;
2093         bool discard_retried = false;
2094         bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
2095         if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
2096                 need_sync_io = true;
2097
2098         if (need_sync_io && from_map) {
2099                 INIT_WORK(&dio->work, integrity_bio_wait);
2100                 queue_work(ic->offload_wq, &dio->work);
2101                 return;
2102         }
2103
2104 lock_retry:
2105         spin_lock_irq(&ic->endio_wait.lock);
2106 retry:
2107         if (unlikely(dm_integrity_failed(ic))) {
2108                 spin_unlock_irq(&ic->endio_wait.lock);
2109                 do_endio(ic, bio);
2110                 return;
2111         }
2112         dio->range.n_sectors = bio_sectors(bio);
2113         journal_read_pos = NOT_FOUND;
2114         if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2115                 if (dio->op == REQ_OP_WRITE) {
2116                         unsigned next_entry, i, pos;
2117                         unsigned ws, we, range_sectors;
2118
2119                         dio->range.n_sectors = min(dio->range.n_sectors,
2120                                                    (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2121                         if (unlikely(!dio->range.n_sectors)) {
2122                                 if (from_map)
2123                                         goto offload_to_thread;
2124                                 sleep_on_endio_wait(ic);
2125                                 goto retry;
2126                         }
2127                         range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2128                         ic->free_sectors -= range_sectors;
2129                         journal_section = ic->free_section;
2130                         journal_entry = ic->free_section_entry;
2131
2132                         next_entry = ic->free_section_entry + range_sectors;
2133                         ic->free_section_entry = next_entry % ic->journal_section_entries;
2134                         ic->free_section += next_entry / ic->journal_section_entries;
2135                         ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2136                         wraparound_section(ic, &ic->free_section);
2137
2138                         pos = journal_section * ic->journal_section_entries + journal_entry;
2139                         ws = journal_section;
2140                         we = journal_entry;
2141                         i = 0;
2142                         do {
2143                                 struct journal_entry *je;
2144
2145                                 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2146                                 pos++;
2147                                 if (unlikely(pos >= ic->journal_entries))
2148                                         pos = 0;
2149
2150                                 je = access_journal_entry(ic, ws, we);
2151                                 BUG_ON(!journal_entry_is_unused(je));
2152                                 journal_entry_set_inprogress(je);
2153                                 we++;
2154                                 if (unlikely(we == ic->journal_section_entries)) {
2155                                         we = 0;
2156                                         ws++;
2157                                         wraparound_section(ic, &ws);
2158                                 }
2159                         } while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2160
2161                         spin_unlock_irq(&ic->endio_wait.lock);
2162                         goto journal_read_write;
2163                 } else {
2164                         sector_t next_sector;
2165                         journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2166                         if (likely(journal_read_pos == NOT_FOUND)) {
2167                                 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2168                                         dio->range.n_sectors = next_sector - dio->range.logical_sector;
2169                         } else {
2170                                 unsigned i;
2171                                 unsigned jp = journal_read_pos + 1;
2172                                 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2173                                         if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2174                                                 break;
2175                                 }
2176                                 dio->range.n_sectors = i;
2177                         }
2178                 }
2179         }
2180         if (unlikely(!add_new_range(ic, &dio->range, true))) {
2181                 /*
2182                  * We must not sleep in the request routine because it could
2183                  * stall bios on current->bio_list.
2184                  * So, we offload the bio to a workqueue if we have to sleep.
2185                  */
2186                 if (from_map) {
2187 offload_to_thread:
2188                         spin_unlock_irq(&ic->endio_wait.lock);
2189                         INIT_WORK(&dio->work, integrity_bio_wait);
2190                         queue_work(ic->wait_wq, &dio->work);
2191                         return;
2192                 }
2193                 if (journal_read_pos != NOT_FOUND)
2194                         dio->range.n_sectors = ic->sectors_per_block;
2195                 wait_and_add_new_range(ic, &dio->range);
2196                 /*
2197                  * wait_and_add_new_range drops the spinlock, so the journal
2198                  * may have been changed arbitrarily. We need to recheck.
2199                  * To simplify the code, we restrict I/O size to just one block.
2200                  */
2201                 if (journal_read_pos != NOT_FOUND) {
2202                         sector_t next_sector;
2203                         unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2204                         if (unlikely(new_pos != journal_read_pos)) {
2205                                 remove_range_unlocked(ic, &dio->range);
2206                                 goto retry;
2207                         }
2208                 }
2209         }
2210         if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2211                 sector_t next_sector;
2212                 unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2213                 if (unlikely(new_pos != NOT_FOUND) ||
2214                     unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2215                         remove_range_unlocked(ic, &dio->range);
2216                         spin_unlock_irq(&ic->endio_wait.lock);
2217                         queue_work(ic->commit_wq, &ic->commit_work);
2218                         flush_workqueue(ic->commit_wq);
2219                         queue_work(ic->writer_wq, &ic->writer_work);
2220                         flush_workqueue(ic->writer_wq);
2221                         discard_retried = true;
2222                         goto lock_retry;
2223                 }
2224         }
2225         spin_unlock_irq(&ic->endio_wait.lock);
2226
2227         if (unlikely(journal_read_pos != NOT_FOUND)) {
2228                 journal_section = journal_read_pos / ic->journal_section_entries;
2229                 journal_entry = journal_read_pos % ic->journal_section_entries;
2230                 goto journal_read_write;
2231         }
2232
2233         if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2234                 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2235                                      dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2236                         struct bitmap_block_status *bbs;
2237
2238                         bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2239                         spin_lock(&bbs->bio_queue_lock);
2240                         bio_list_add(&bbs->bio_queue, bio);
2241                         spin_unlock(&bbs->bio_queue_lock);
2242                         queue_work(ic->writer_wq, &bbs->work);
2243                         return;
2244                 }
2245         }
2246
2247         dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2248
2249         if (need_sync_io) {
2250                 init_completion(&read_comp);
2251                 dio->completion = &read_comp;
2252         } else
2253                 dio->completion = NULL;
2254
2255         dm_bio_record(&dio->bio_details, bio);
2256         bio_set_dev(bio, ic->dev->bdev);
2257         bio->bi_integrity = NULL;
2258         bio->bi_opf &= ~REQ_INTEGRITY;
2259         bio->bi_end_io = integrity_end_io;
2260         bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2261
2262         if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2263                 integrity_metadata(&dio->work);
2264                 dm_integrity_flush_buffers(ic, false);
2265
2266                 dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2267                 dio->completion = NULL;
2268
2269                 submit_bio_noacct(bio);
2270
2271                 return;
2272         }
2273
2274         submit_bio_noacct(bio);
2275
2276         if (need_sync_io) {
2277                 wait_for_completion_io(&read_comp);
2278                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2279                     dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2280                         goto skip_check;
2281                 if (ic->mode == 'B') {
2282                         if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2283                                              dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2284                                 goto skip_check;
2285                 }
2286
2287                 if (likely(!bio->bi_status))
2288                         integrity_metadata(&dio->work);
2289                 else
2290 skip_check:
2291                         dec_in_flight(dio);
2292
2293         } else {
2294                 INIT_WORK(&dio->work, integrity_metadata);
2295                 queue_work(ic->metadata_wq, &dio->work);
2296         }
2297
2298         return;
2299
2300 journal_read_write:
2301         if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2302                 goto lock_retry;
2303
2304         do_endio_flush(ic, dio);
2305 }
2306
2307
2308 static void integrity_bio_wait(struct work_struct *w)
2309 {
2310         struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2311
2312         dm_integrity_map_continue(dio, false);
2313 }
2314
2315 static void pad_uncommitted(struct dm_integrity_c *ic)
2316 {
2317         if (ic->free_section_entry) {
2318                 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2319                 ic->free_section_entry = 0;
2320                 ic->free_section++;
2321                 wraparound_section(ic, &ic->free_section);
2322                 ic->n_uncommitted_sections++;
2323         }
2324         if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2325                     (ic->n_uncommitted_sections + ic->n_committed_sections) *
2326                     ic->journal_section_entries + ic->free_sectors)) {
2327                 DMCRIT("journal_sections %u, journal_section_entries %u, "
2328                        "n_uncommitted_sections %u, n_committed_sections %u, "
2329                        "journal_section_entries %u, free_sectors %u",
2330                        ic->journal_sections, ic->journal_section_entries,
2331                        ic->n_uncommitted_sections, ic->n_committed_sections,
2332                        ic->journal_section_entries, ic->free_sectors);
2333         }
2334 }
2335
2336 static void integrity_commit(struct work_struct *w)
2337 {
2338         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2339         unsigned commit_start, commit_sections;
2340         unsigned i, j, n;
2341         struct bio *flushes;
2342
2343         del_timer(&ic->autocommit_timer);
2344
2345         spin_lock_irq(&ic->endio_wait.lock);
2346         flushes = bio_list_get(&ic->flush_bio_list);
2347         if (unlikely(ic->mode != 'J')) {
2348                 spin_unlock_irq(&ic->endio_wait.lock);
2349                 dm_integrity_flush_buffers(ic, true);
2350                 goto release_flush_bios;
2351         }
2352
2353         pad_uncommitted(ic);
2354         commit_start = ic->uncommitted_section;
2355         commit_sections = ic->n_uncommitted_sections;
2356         spin_unlock_irq(&ic->endio_wait.lock);
2357
2358         if (!commit_sections)
2359                 goto release_flush_bios;
2360
2361         i = commit_start;
2362         for (n = 0; n < commit_sections; n++) {
2363                 for (j = 0; j < ic->journal_section_entries; j++) {
2364                         struct journal_entry *je;
2365                         je = access_journal_entry(ic, i, j);
2366                         io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2367                 }
2368                 for (j = 0; j < ic->journal_section_sectors; j++) {
2369                         struct journal_sector *js;
2370                         js = access_journal(ic, i, j);
2371                         js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2372                 }
2373                 i++;
2374                 if (unlikely(i >= ic->journal_sections))
2375                         ic->commit_seq = next_commit_seq(ic->commit_seq);
2376                 wraparound_section(ic, &i);
2377         }
2378         smp_rmb();
2379
2380         write_journal(ic, commit_start, commit_sections);
2381
2382         spin_lock_irq(&ic->endio_wait.lock);
2383         ic->uncommitted_section += commit_sections;
2384         wraparound_section(ic, &ic->uncommitted_section);
2385         ic->n_uncommitted_sections -= commit_sections;
2386         ic->n_committed_sections += commit_sections;
2387         spin_unlock_irq(&ic->endio_wait.lock);
2388
2389         if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2390                 queue_work(ic->writer_wq, &ic->writer_work);
2391
2392 release_flush_bios:
2393         while (flushes) {
2394                 struct bio *next = flushes->bi_next;
2395                 flushes->bi_next = NULL;
2396                 do_endio(ic, flushes);
2397                 flushes = next;
2398         }
2399 }
2400
2401 static void complete_copy_from_journal(unsigned long error, void *context)
2402 {
2403         struct journal_io *io = context;
2404         struct journal_completion *comp = io->comp;
2405         struct dm_integrity_c *ic = comp->ic;
2406         remove_range(ic, &io->range);
2407         mempool_free(io, &ic->journal_io_mempool);
2408         if (unlikely(error != 0))
2409                 dm_integrity_io_error(ic, "copying from journal", -EIO);
2410         complete_journal_op(comp);
2411 }
2412
2413 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2414                                struct journal_entry *je)
2415 {
2416         unsigned s = 0;
2417         do {
2418                 js->commit_id = je->last_bytes[s];
2419                 js++;
2420         } while (++s < ic->sectors_per_block);
2421 }
2422
2423 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start,
2424                              unsigned write_sections, bool from_replay)
2425 {
2426         unsigned i, j, n;
2427         struct journal_completion comp;
2428         struct blk_plug plug;
2429
2430         blk_start_plug(&plug);
2431
2432         comp.ic = ic;
2433         comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2434         init_completion(&comp.comp);
2435
2436         i = write_start;
2437         for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2438 #ifndef INTERNAL_VERIFY
2439                 if (unlikely(from_replay))
2440 #endif
2441                         rw_section_mac(ic, i, false);
2442                 for (j = 0; j < ic->journal_section_entries; j++) {
2443                         struct journal_entry *je = access_journal_entry(ic, i, j);
2444                         sector_t sec, area, offset;
2445                         unsigned k, l, next_loop;
2446                         sector_t metadata_block;
2447                         unsigned metadata_offset;
2448                         struct journal_io *io;
2449
2450                         if (journal_entry_is_unused(je))
2451                                 continue;
2452                         BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2453                         sec = journal_entry_get_sector(je);
2454                         if (unlikely(from_replay)) {
2455                                 if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) {
2456                                         dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2457                                         sec &= ~(sector_t)(ic->sectors_per_block - 1);
2458                                 }
2459                         }
2460                         if (unlikely(sec >= ic->provided_data_sectors))
2461                                 continue;
2462                         get_area_and_offset(ic, sec, &area, &offset);
2463                         restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2464                         for (k = j + 1; k < ic->journal_section_entries; k++) {
2465                                 struct journal_entry *je2 = access_journal_entry(ic, i, k);
2466                                 sector_t sec2, area2, offset2;
2467                                 if (journal_entry_is_unused(je2))
2468                                         break;
2469                                 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2470                                 sec2 = journal_entry_get_sector(je2);
2471                                 if (unlikely(sec2 >= ic->provided_data_sectors))
2472                                         break;
2473                                 get_area_and_offset(ic, sec2, &area2, &offset2);
2474                                 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2475                                         break;
2476                                 restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2477                         }
2478                         next_loop = k - 1;
2479
2480                         io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2481                         io->comp = &comp;
2482                         io->range.logical_sector = sec;
2483                         io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2484
2485                         spin_lock_irq(&ic->endio_wait.lock);
2486                         add_new_range_and_wait(ic, &io->range);
2487
2488                         if (likely(!from_replay)) {
2489                                 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2490
2491                                 /* don't write if there is newer committed sector */
2492                                 while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2493                                         struct journal_entry *je2 = access_journal_entry(ic, i, j);
2494
2495                                         journal_entry_set_unused(je2);
2496                                         remove_journal_node(ic, &section_node[j]);
2497                                         j++;
2498                                         sec += ic->sectors_per_block;
2499                                         offset += ic->sectors_per_block;
2500                                 }
2501                                 while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2502                                         struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2503
2504                                         journal_entry_set_unused(je2);
2505                                         remove_journal_node(ic, &section_node[k - 1]);
2506                                         k--;
2507                                 }
2508                                 if (j == k) {
2509                                         remove_range_unlocked(ic, &io->range);
2510                                         spin_unlock_irq(&ic->endio_wait.lock);
2511                                         mempool_free(io, &ic->journal_io_mempool);
2512                                         goto skip_io;
2513                                 }
2514                                 for (l = j; l < k; l++) {
2515                                         remove_journal_node(ic, &section_node[l]);
2516                                 }
2517                         }
2518                         spin_unlock_irq(&ic->endio_wait.lock);
2519
2520                         metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2521                         for (l = j; l < k; l++) {
2522                                 int r;
2523                                 struct journal_entry *je2 = access_journal_entry(ic, i, l);
2524
2525                                 if (
2526 #ifndef INTERNAL_VERIFY
2527                                     unlikely(from_replay) &&
2528 #endif
2529                                     ic->internal_hash) {
2530                                         char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2531
2532                                         integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2533                                                                   (char *)access_journal_data(ic, i, l), test_tag);
2534                                         if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size)))
2535                                                 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2536                                 }
2537
2538                                 journal_entry_set_unused(je2);
2539                                 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2540                                                         ic->tag_size, TAG_WRITE);
2541                                 if (unlikely(r)) {
2542                                         dm_integrity_io_error(ic, "reading tags", r);
2543                                 }
2544                         }
2545
2546                         atomic_inc(&comp.in_flight);
2547                         copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2548                                           (k - j) << ic->sb->log2_sectors_per_block,
2549                                           get_data_sector(ic, area, offset),
2550                                           complete_copy_from_journal, io);
2551 skip_io:
2552                         j = next_loop;
2553                 }
2554         }
2555
2556         dm_bufio_write_dirty_buffers_async(ic->bufio);
2557
2558         blk_finish_plug(&plug);
2559
2560         complete_journal_op(&comp);
2561         wait_for_completion_io(&comp.comp);
2562
2563         dm_integrity_flush_buffers(ic, true);
2564 }
2565
2566 static void integrity_writer(struct work_struct *w)
2567 {
2568         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2569         unsigned write_start, write_sections;
2570
2571         unsigned prev_free_sectors;
2572
2573         /* the following test is not needed, but it tests the replay code */
2574         if (unlikely(dm_post_suspending(ic->ti)) && !ic->meta_dev)
2575                 return;
2576
2577         spin_lock_irq(&ic->endio_wait.lock);
2578         write_start = ic->committed_section;
2579         write_sections = ic->n_committed_sections;
2580         spin_unlock_irq(&ic->endio_wait.lock);
2581
2582         if (!write_sections)
2583                 return;
2584
2585         do_journal_write(ic, write_start, write_sections, false);
2586
2587         spin_lock_irq(&ic->endio_wait.lock);
2588
2589         ic->committed_section += write_sections;
2590         wraparound_section(ic, &ic->committed_section);
2591         ic->n_committed_sections -= write_sections;
2592
2593         prev_free_sectors = ic->free_sectors;
2594         ic->free_sectors += write_sections * ic->journal_section_entries;
2595         if (unlikely(!prev_free_sectors))
2596                 wake_up_locked(&ic->endio_wait);
2597
2598         spin_unlock_irq(&ic->endio_wait.lock);
2599 }
2600
2601 static void recalc_write_super(struct dm_integrity_c *ic)
2602 {
2603         int r;
2604
2605         dm_integrity_flush_buffers(ic, false);
2606         if (dm_integrity_failed(ic))
2607                 return;
2608
2609         r = sync_rw_sb(ic, REQ_OP_WRITE, 0);
2610         if (unlikely(r))
2611                 dm_integrity_io_error(ic, "writing superblock", r);
2612 }
2613
2614 static void integrity_recalc(struct work_struct *w)
2615 {
2616         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2617         struct dm_integrity_range range;
2618         struct dm_io_request io_req;
2619         struct dm_io_region io_loc;
2620         sector_t area, offset;
2621         sector_t metadata_block;
2622         unsigned metadata_offset;
2623         sector_t logical_sector, n_sectors;
2624         __u8 *t;
2625         unsigned i;
2626         int r;
2627         unsigned super_counter = 0;
2628
2629         DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2630
2631         spin_lock_irq(&ic->endio_wait.lock);
2632
2633 next_chunk:
2634
2635         if (unlikely(dm_post_suspending(ic->ti)))
2636                 goto unlock_ret;
2637
2638         range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2639         if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2640                 if (ic->mode == 'B') {
2641                         block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2642                         DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2643                         queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2644                 }
2645                 goto unlock_ret;
2646         }
2647
2648         get_area_and_offset(ic, range.logical_sector, &area, &offset);
2649         range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector);
2650         if (!ic->meta_dev)
2651                 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned)offset);
2652
2653         add_new_range_and_wait(ic, &range);
2654         spin_unlock_irq(&ic->endio_wait.lock);
2655         logical_sector = range.logical_sector;
2656         n_sectors = range.n_sectors;
2657
2658         if (ic->mode == 'B') {
2659                 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) {
2660                         goto advance_and_next;
2661                 }
2662                 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2663                                        ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2664                         logical_sector += ic->sectors_per_block;
2665                         n_sectors -= ic->sectors_per_block;
2666                         cond_resched();
2667                 }
2668                 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2669                                        ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2670                         n_sectors -= ic->sectors_per_block;
2671                         cond_resched();
2672                 }
2673                 get_area_and_offset(ic, logical_sector, &area, &offset);
2674         }
2675
2676         DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
2677
2678         if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2679                 recalc_write_super(ic);
2680                 if (ic->mode == 'B') {
2681                         queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2682                 }
2683                 super_counter = 0;
2684         }
2685
2686         if (unlikely(dm_integrity_failed(ic)))
2687                 goto err;
2688
2689         io_req.bi_op = REQ_OP_READ;
2690         io_req.bi_op_flags = 0;
2691         io_req.mem.type = DM_IO_VMA;
2692         io_req.mem.ptr.addr = ic->recalc_buffer;
2693         io_req.notify.fn = NULL;
2694         io_req.client = ic->io;
2695         io_loc.bdev = ic->dev->bdev;
2696         io_loc.sector = get_data_sector(ic, area, offset);
2697         io_loc.count = n_sectors;
2698
2699         r = dm_io(&io_req, 1, &io_loc, NULL);
2700         if (unlikely(r)) {
2701                 dm_integrity_io_error(ic, "reading data", r);
2702                 goto err;
2703         }
2704
2705         t = ic->recalc_tags;
2706         for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2707                 integrity_sector_checksum(ic, logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t);
2708                 t += ic->tag_size;
2709         }
2710
2711         metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2712
2713         r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE);
2714         if (unlikely(r)) {
2715                 dm_integrity_io_error(ic, "writing tags", r);
2716                 goto err;
2717         }
2718
2719         if (ic->mode == 'B') {
2720                 sector_t start, end;
2721                 start = (range.logical_sector >>
2722                          (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2723                         (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2724                 end = ((range.logical_sector + range.n_sectors) >>
2725                        (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2726                         (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2727                 block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
2728         }
2729
2730 advance_and_next:
2731         cond_resched();
2732
2733         spin_lock_irq(&ic->endio_wait.lock);
2734         remove_range_unlocked(ic, &range);
2735         ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2736         goto next_chunk;
2737
2738 err:
2739         remove_range(ic, &range);
2740         return;
2741
2742 unlock_ret:
2743         spin_unlock_irq(&ic->endio_wait.lock);
2744
2745         recalc_write_super(ic);
2746 }
2747
2748 static void bitmap_block_work(struct work_struct *w)
2749 {
2750         struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2751         struct dm_integrity_c *ic = bbs->ic;
2752         struct bio *bio;
2753         struct bio_list bio_queue;
2754         struct bio_list waiting;
2755
2756         bio_list_init(&waiting);
2757
2758         spin_lock(&bbs->bio_queue_lock);
2759         bio_queue = bbs->bio_queue;
2760         bio_list_init(&bbs->bio_queue);
2761         spin_unlock(&bbs->bio_queue_lock);
2762
2763         while ((bio = bio_list_pop(&bio_queue))) {
2764                 struct dm_integrity_io *dio;
2765
2766                 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2767
2768                 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2769                                     dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2770                         remove_range(ic, &dio->range);
2771                         INIT_WORK(&dio->work, integrity_bio_wait);
2772                         queue_work(ic->offload_wq, &dio->work);
2773                 } else {
2774                         block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2775                                         dio->range.n_sectors, BITMAP_OP_SET);
2776                         bio_list_add(&waiting, bio);
2777                 }
2778         }
2779
2780         if (bio_list_empty(&waiting))
2781                 return;
2782
2783         rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC,
2784                            bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2785                            BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2786
2787         while ((bio = bio_list_pop(&waiting))) {
2788                 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2789
2790                 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2791                                 dio->range.n_sectors, BITMAP_OP_SET);
2792
2793                 remove_range(ic, &dio->range);
2794                 INIT_WORK(&dio->work, integrity_bio_wait);
2795                 queue_work(ic->offload_wq, &dio->work);
2796         }
2797
2798         queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2799 }
2800
2801 static void bitmap_flush_work(struct work_struct *work)
2802 {
2803         struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2804         struct dm_integrity_range range;
2805         unsigned long limit;
2806         struct bio *bio;
2807
2808         dm_integrity_flush_buffers(ic, false);
2809
2810         range.logical_sector = 0;
2811         range.n_sectors = ic->provided_data_sectors;
2812
2813         spin_lock_irq(&ic->endio_wait.lock);
2814         add_new_range_and_wait(ic, &range);
2815         spin_unlock_irq(&ic->endio_wait.lock);
2816
2817         dm_integrity_flush_buffers(ic, true);
2818
2819         limit = ic->provided_data_sectors;
2820         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2821                 limit = le64_to_cpu(ic->sb->recalc_sector)
2822                         >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2823                         << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2824         }
2825         /*DEBUG_print("zeroing journal\n");*/
2826         block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2827         block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2828
2829         rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
2830                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2831
2832         spin_lock_irq(&ic->endio_wait.lock);
2833         remove_range_unlocked(ic, &range);
2834         while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2835                 bio_endio(bio);
2836                 spin_unlock_irq(&ic->endio_wait.lock);
2837                 spin_lock_irq(&ic->endio_wait.lock);
2838         }
2839         spin_unlock_irq(&ic->endio_wait.lock);
2840 }
2841
2842
2843 static void init_journal(struct dm_integrity_c *ic, unsigned start_section,
2844                          unsigned n_sections, unsigned char commit_seq)
2845 {
2846         unsigned i, j, n;
2847
2848         if (!n_sections)
2849                 return;
2850
2851         for (n = 0; n < n_sections; n++) {
2852                 i = start_section + n;
2853                 wraparound_section(ic, &i);
2854                 for (j = 0; j < ic->journal_section_sectors; j++) {
2855                         struct journal_sector *js = access_journal(ic, i, j);
2856                         memset(&js->entries, 0, JOURNAL_SECTOR_DATA);
2857                         js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2858                 }
2859                 for (j = 0; j < ic->journal_section_entries; j++) {
2860                         struct journal_entry *je = access_journal_entry(ic, i, j);
2861                         journal_entry_set_unused(je);
2862                 }
2863         }
2864
2865         write_journal(ic, start_section, n_sections);
2866 }
2867
2868 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id)
2869 {
2870         unsigned char k;
2871         for (k = 0; k < N_COMMIT_IDS; k++) {
2872                 if (dm_integrity_commit_id(ic, i, j, k) == id)
2873                         return k;
2874         }
2875         dm_integrity_io_error(ic, "journal commit id", -EIO);
2876         return -EIO;
2877 }
2878
2879 static void replay_journal(struct dm_integrity_c *ic)
2880 {
2881         unsigned i, j;
2882         bool used_commit_ids[N_COMMIT_IDS];
2883         unsigned max_commit_id_sections[N_COMMIT_IDS];
2884         unsigned write_start, write_sections;
2885         unsigned continue_section;
2886         bool journal_empty;
2887         unsigned char unused, last_used, want_commit_seq;
2888
2889         if (ic->mode == 'R')
2890                 return;
2891
2892         if (ic->journal_uptodate)
2893                 return;
2894
2895         last_used = 0;
2896         write_start = 0;
2897
2898         if (!ic->just_formatted) {
2899                 DEBUG_print("reading journal\n");
2900                 rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL);
2901                 if (ic->journal_io)
2902                         DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2903                 if (ic->journal_io) {
2904                         struct journal_completion crypt_comp;
2905                         crypt_comp.ic = ic;
2906                         init_completion(&crypt_comp.comp);
2907                         crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2908                         encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2909                         wait_for_completion(&crypt_comp.comp);
2910                 }
2911                 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2912         }
2913
2914         if (dm_integrity_failed(ic))
2915                 goto clear_journal;
2916
2917         journal_empty = true;
2918         memset(used_commit_ids, 0, sizeof used_commit_ids);
2919         memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
2920         for (i = 0; i < ic->journal_sections; i++) {
2921                 for (j = 0; j < ic->journal_section_sectors; j++) {
2922                         int k;
2923                         struct journal_sector *js = access_journal(ic, i, j);
2924                         k = find_commit_seq(ic, i, j, js->commit_id);
2925                         if (k < 0)
2926                                 goto clear_journal;
2927                         used_commit_ids[k] = true;
2928                         max_commit_id_sections[k] = i;
2929                 }
2930                 if (journal_empty) {
2931                         for (j = 0; j < ic->journal_section_entries; j++) {
2932                                 struct journal_entry *je = access_journal_entry(ic, i, j);
2933                                 if (!journal_entry_is_unused(je)) {
2934                                         journal_empty = false;
2935                                         break;
2936                                 }
2937                         }
2938                 }
2939         }
2940
2941         if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2942                 unused = N_COMMIT_IDS - 1;
2943                 while (unused && !used_commit_ids[unused - 1])
2944                         unused--;
2945         } else {
2946                 for (unused = 0; unused < N_COMMIT_IDS; unused++)
2947                         if (!used_commit_ids[unused])
2948                                 break;
2949                 if (unused == N_COMMIT_IDS) {
2950                         dm_integrity_io_error(ic, "journal commit ids", -EIO);
2951                         goto clear_journal;
2952                 }
2953         }
2954         DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
2955                     unused, used_commit_ids[0], used_commit_ids[1],
2956                     used_commit_ids[2], used_commit_ids[3]);
2957
2958         last_used = prev_commit_seq(unused);
2959         want_commit_seq = prev_commit_seq(last_used);
2960
2961         if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
2962                 journal_empty = true;
2963
2964         write_start = max_commit_id_sections[last_used] + 1;
2965         if (unlikely(write_start >= ic->journal_sections))
2966                 want_commit_seq = next_commit_seq(want_commit_seq);
2967         wraparound_section(ic, &write_start);
2968
2969         i = write_start;
2970         for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
2971                 for (j = 0; j < ic->journal_section_sectors; j++) {
2972                         struct journal_sector *js = access_journal(ic, i, j);
2973
2974                         if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
2975                                 /*
2976                                  * This could be caused by crash during writing.
2977                                  * We won't replay the inconsistent part of the
2978                                  * journal.
2979                                  */
2980                                 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
2981                                             i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
2982                                 goto brk;
2983                         }
2984                 }
2985                 i++;
2986                 if (unlikely(i >= ic->journal_sections))
2987                         want_commit_seq = next_commit_seq(want_commit_seq);
2988                 wraparound_section(ic, &i);
2989         }
2990 brk:
2991
2992         if (!journal_empty) {
2993                 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
2994                             write_sections, write_start, want_commit_seq);
2995                 do_journal_write(ic, write_start, write_sections, true);
2996         }
2997
2998         if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
2999                 continue_section = write_start;
3000                 ic->commit_seq = want_commit_seq;
3001                 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
3002         } else {
3003                 unsigned s;
3004                 unsigned char erase_seq;
3005 clear_journal:
3006                 DEBUG_print("clearing journal\n");
3007
3008                 erase_seq = prev_commit_seq(prev_commit_seq(last_used));
3009                 s = write_start;
3010                 init_journal(ic, s, 1, erase_seq);
3011                 s++;
3012                 wraparound_section(ic, &s);
3013                 if (ic->journal_sections >= 2) {
3014                         init_journal(ic, s, ic->journal_sections - 2, erase_seq);
3015                         s += ic->journal_sections - 2;
3016                         wraparound_section(ic, &s);
3017                         init_journal(ic, s, 1, erase_seq);
3018                 }
3019
3020                 continue_section = 0;
3021                 ic->commit_seq = next_commit_seq(erase_seq);
3022         }
3023
3024         ic->committed_section = continue_section;
3025         ic->n_committed_sections = 0;
3026
3027         ic->uncommitted_section = continue_section;
3028         ic->n_uncommitted_sections = 0;
3029
3030         ic->free_section = continue_section;
3031         ic->free_section_entry = 0;
3032         ic->free_sectors = ic->journal_entries;
3033
3034         ic->journal_tree_root = RB_ROOT;
3035         for (i = 0; i < ic->journal_entries; i++)
3036                 init_journal_node(&ic->journal_tree[i]);
3037 }
3038
3039 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
3040 {
3041         DEBUG_print("dm_integrity_enter_synchronous_mode\n");
3042
3043         if (ic->mode == 'B') {
3044                 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
3045                 ic->synchronous_mode = 1;
3046
3047                 cancel_delayed_work_sync(&ic->bitmap_flush_work);
3048                 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3049                 flush_workqueue(ic->commit_wq);
3050         }
3051 }
3052
3053 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
3054 {
3055         struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
3056
3057         DEBUG_print("dm_integrity_reboot\n");
3058
3059         dm_integrity_enter_synchronous_mode(ic);
3060
3061         return NOTIFY_DONE;
3062 }
3063
3064 static void dm_integrity_postsuspend(struct dm_target *ti)
3065 {
3066         struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3067         int r;
3068
3069         WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
3070
3071         del_timer_sync(&ic->autocommit_timer);
3072
3073         if (ic->recalc_wq)
3074                 drain_workqueue(ic->recalc_wq);
3075
3076         if (ic->mode == 'B')
3077                 cancel_delayed_work_sync(&ic->bitmap_flush_work);
3078
3079         queue_work(ic->commit_wq, &ic->commit_work);
3080         drain_workqueue(ic->commit_wq);
3081
3082         if (ic->mode == 'J') {
3083                 if (ic->meta_dev)
3084                         queue_work(ic->writer_wq, &ic->writer_work);
3085                 drain_workqueue(ic->writer_wq);
3086                 dm_integrity_flush_buffers(ic, true);
3087         }
3088
3089         if (ic->mode == 'B') {
3090                 dm_integrity_flush_buffers(ic, true);
3091 #if 1
3092                 /* set to 0 to test bitmap replay code */
3093                 init_journal(ic, 0, ic->journal_sections, 0);
3094                 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3095                 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3096                 if (unlikely(r))
3097                         dm_integrity_io_error(ic, "writing superblock", r);
3098 #endif
3099         }
3100
3101         BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3102
3103         ic->journal_uptodate = true;
3104 }
3105
3106 static void dm_integrity_resume(struct dm_target *ti)
3107 {
3108         struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3109         __u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3110         int r;
3111
3112         DEBUG_print("resume\n");
3113
3114         if (ic->provided_data_sectors != old_provided_data_sectors) {
3115                 if (ic->provided_data_sectors > old_provided_data_sectors &&
3116                     ic->mode == 'B' &&
3117                     ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3118                         rw_journal_sectors(ic, REQ_OP_READ, 0, 0,
3119                                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3120                         block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3121                                         ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3122                         rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3123                                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3124                 }
3125
3126                 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3127                 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3128                 if (unlikely(r))
3129                         dm_integrity_io_error(ic, "writing superblock", r);
3130         }
3131
3132         if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3133                 DEBUG_print("resume dirty_bitmap\n");
3134                 rw_journal_sectors(ic, REQ_OP_READ, 0, 0,
3135                                    ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3136                 if (ic->mode == 'B') {
3137                         if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3138                                 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3139                                 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3140                                 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3141                                                      BITMAP_OP_TEST_ALL_CLEAR)) {
3142                                         ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3143                                         ic->sb->recalc_sector = cpu_to_le64(0);
3144                                 }
3145                         } else {
3146                                 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3147                                             ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3148                                 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3149                                 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3150                                 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3151                                 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3152                                 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3153                                                    ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3154                                 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3155                                 ic->sb->recalc_sector = cpu_to_le64(0);
3156                         }
3157                 } else {
3158                         if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3159                               block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR))) {
3160                                 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3161                                 ic->sb->recalc_sector = cpu_to_le64(0);
3162                         }
3163                         init_journal(ic, 0, ic->journal_sections, 0);
3164                         replay_journal(ic);
3165                         ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3166                 }
3167                 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3168                 if (unlikely(r))
3169                         dm_integrity_io_error(ic, "writing superblock", r);
3170         } else {
3171                 replay_journal(ic);
3172                 if (ic->mode == 'B') {
3173                         ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3174                         ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3175                         r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3176                         if (unlikely(r))
3177                                 dm_integrity_io_error(ic, "writing superblock", r);
3178
3179                         block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3180                         block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3181                         block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3182                         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3183                             le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3184                                 block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3185                                                 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3186                                 block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3187                                                 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3188                                 block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3189                                                 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3190                         }
3191                         rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3192                                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3193                 }
3194         }
3195
3196         DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3197         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3198                 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3199                 DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3200                 if (recalc_pos < ic->provided_data_sectors) {
3201                         queue_work(ic->recalc_wq, &ic->recalc_work);
3202                 } else if (recalc_pos > ic->provided_data_sectors) {
3203                         ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3204                         recalc_write_super(ic);
3205                 }
3206         }
3207
3208         ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3209         ic->reboot_notifier.next = NULL;
3210         ic->reboot_notifier.priority = INT_MAX - 1;     /* be notified after md and before hardware drivers */
3211         WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3212
3213 #if 0
3214         /* set to 1 to stress test synchronous mode */
3215         dm_integrity_enter_synchronous_mode(ic);
3216 #endif
3217 }
3218
3219 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3220                                 unsigned status_flags, char *result, unsigned maxlen)
3221 {
3222         struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3223         unsigned arg_count;
3224         size_t sz = 0;
3225
3226         switch (type) {
3227         case STATUSTYPE_INFO:
3228                 DMEMIT("%llu %llu",
3229                         (unsigned long long)atomic64_read(&ic->number_of_mismatches),
3230                         ic->provided_data_sectors);
3231                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3232                         DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3233                 else
3234                         DMEMIT(" -");
3235                 break;
3236
3237         case STATUSTYPE_TABLE: {
3238                 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3239                 watermark_percentage += ic->journal_entries / 2;
3240                 do_div(watermark_percentage, ic->journal_entries);
3241                 arg_count = 3;
3242                 arg_count += !!ic->meta_dev;
3243                 arg_count += ic->sectors_per_block != 1;
3244                 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3245                 arg_count += ic->discard;
3246                 arg_count += ic->mode == 'J';
3247                 arg_count += ic->mode == 'J';
3248                 arg_count += ic->mode == 'B';
3249                 arg_count += ic->mode == 'B';
3250                 arg_count += !!ic->internal_hash_alg.alg_string;
3251                 arg_count += !!ic->journal_crypt_alg.alg_string;
3252                 arg_count += !!ic->journal_mac_alg.alg_string;
3253                 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3254                 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
3255                 arg_count += ic->legacy_recalculate;
3256                 DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3257                        ic->tag_size, ic->mode, arg_count);
3258                 if (ic->meta_dev)
3259                         DMEMIT(" meta_device:%s", ic->meta_dev->name);
3260                 if (ic->sectors_per_block != 1)
3261                         DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3262                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3263                         DMEMIT(" recalculate");
3264                 if (ic->discard)
3265                         DMEMIT(" allow_discards");
3266                 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3267                 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3268                 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3269                 if (ic->mode == 'J') {
3270                         DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage);
3271                         DMEMIT(" commit_time:%u", ic->autocommit_msec);
3272                 }
3273                 if (ic->mode == 'B') {
3274                         DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3275                         DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3276                 }
3277                 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3278                         DMEMIT(" fix_padding");
3279                 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
3280                         DMEMIT(" fix_hmac");
3281                 if (ic->legacy_recalculate)
3282                         DMEMIT(" legacy_recalculate");
3283
3284 #define EMIT_ALG(a, n)                                                  \
3285                 do {                                                    \
3286                         if (ic->a.alg_string) {                         \
3287                                 DMEMIT(" %s:%s", n, ic->a.alg_string);  \
3288                                 if (ic->a.key_string)                   \
3289                                         DMEMIT(":%s", ic->a.key_string);\
3290                         }                                               \
3291                 } while (0)
3292                 EMIT_ALG(internal_hash_alg, "internal_hash");
3293                 EMIT_ALG(journal_crypt_alg, "journal_crypt");
3294                 EMIT_ALG(journal_mac_alg, "journal_mac");
3295                 break;
3296         }
3297         }
3298 }
3299
3300 static int dm_integrity_iterate_devices(struct dm_target *ti,
3301                                         iterate_devices_callout_fn fn, void *data)
3302 {
3303         struct dm_integrity_c *ic = ti->private;
3304
3305         if (!ic->meta_dev)
3306                 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3307         else
3308                 return fn(ti, ic->dev, 0, ti->len, data);
3309 }
3310
3311 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3312 {
3313         struct dm_integrity_c *ic = ti->private;
3314
3315         if (ic->sectors_per_block > 1) {
3316                 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3317                 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3318                 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3319         }
3320 }
3321
3322 static void calculate_journal_section_size(struct dm_integrity_c *ic)
3323 {
3324         unsigned sector_space = JOURNAL_SECTOR_DATA;
3325
3326         ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3327         ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3328                                          JOURNAL_ENTRY_ROUNDUP);
3329
3330         if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3331                 sector_space -= JOURNAL_MAC_PER_SECTOR;
3332         ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3333         ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3334         ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3335         ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3336 }
3337
3338 static int calculate_device_limits(struct dm_integrity_c *ic)
3339 {
3340         __u64 initial_sectors;
3341
3342         calculate_journal_section_size(ic);
3343         initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3344         if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3345                 return -EINVAL;
3346         ic->initial_sectors = initial_sectors;
3347
3348         if (!ic->meta_dev) {
3349                 sector_t last_sector, last_area, last_offset;
3350
3351                 /* we have to maintain excessive padding for compatibility with existing volumes */
3352                 __u64 metadata_run_padding =
3353                         ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3354                         (__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3355                         (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3356
3357                 ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3358                                             metadata_run_padding) >> SECTOR_SHIFT;
3359                 if (!(ic->metadata_run & (ic->metadata_run - 1)))
3360                         ic->log2_metadata_run = __ffs(ic->metadata_run);
3361                 else
3362                         ic->log2_metadata_run = -1;
3363
3364                 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3365                 last_sector = get_data_sector(ic, last_area, last_offset);
3366                 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3367                         return -EINVAL;
3368         } else {
3369                 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3370                 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3371                                 >> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3372                 meta_size <<= ic->log2_buffer_sectors;
3373                 if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3374                     ic->initial_sectors + meta_size > ic->meta_device_sectors)
3375                         return -EINVAL;
3376                 ic->metadata_run = 1;
3377                 ic->log2_metadata_run = 0;
3378         }
3379
3380         return 0;
3381 }
3382
3383 static void get_provided_data_sectors(struct dm_integrity_c *ic)
3384 {
3385         if (!ic->meta_dev) {
3386                 int test_bit;
3387                 ic->provided_data_sectors = 0;
3388                 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3389                         __u64 prev_data_sectors = ic->provided_data_sectors;
3390
3391                         ic->provided_data_sectors |= (sector_t)1 << test_bit;
3392                         if (calculate_device_limits(ic))
3393                                 ic->provided_data_sectors = prev_data_sectors;
3394                 }
3395         } else {
3396                 ic->provided_data_sectors = ic->data_device_sectors;
3397                 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3398         }
3399 }
3400
3401 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors)
3402 {
3403         unsigned journal_sections;
3404         int test_bit;
3405
3406         memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3407         memcpy(ic->sb->magic, SB_MAGIC, 8);
3408         ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3409         ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3410         if (ic->journal_mac_alg.alg_string)
3411                 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3412
3413         calculate_journal_section_size(ic);
3414         journal_sections = journal_sectors / ic->journal_section_sectors;
3415         if (!journal_sections)
3416                 journal_sections = 1;
3417
3418         if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
3419                 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
3420                 get_random_bytes(ic->sb->salt, SALT_SIZE);
3421         }
3422
3423         if (!ic->meta_dev) {
3424                 if (ic->fix_padding)
3425                         ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3426                 ic->sb->journal_sections = cpu_to_le32(journal_sections);
3427                 if (!interleave_sectors)
3428                         interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3429                 ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3430                 ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3431                 ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3432
3433                 get_provided_data_sectors(ic);
3434                 if (!ic->provided_data_sectors)
3435                         return -EINVAL;
3436         } else {
3437                 ic->sb->log2_interleave_sectors = 0;
3438
3439                 get_provided_data_sectors(ic);
3440                 if (!ic->provided_data_sectors)
3441                         return -EINVAL;
3442
3443 try_smaller_buffer:
3444                 ic->sb->journal_sections = cpu_to_le32(0);
3445                 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3446                         __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3447                         __u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3448                         if (test_journal_sections > journal_sections)
3449                                 continue;
3450                         ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3451                         if (calculate_device_limits(ic))
3452                                 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3453
3454                 }
3455                 if (!le32_to_cpu(ic->sb->journal_sections)) {
3456                         if (ic->log2_buffer_sectors > 3) {
3457                                 ic->log2_buffer_sectors--;
3458                                 goto try_smaller_buffer;
3459                         }
3460                         return -EINVAL;
3461                 }
3462         }
3463
3464         ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3465
3466         sb_set_version(ic);
3467
3468         return 0;
3469 }
3470
3471 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3472 {
3473         struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3474         struct blk_integrity bi;
3475
3476         memset(&bi, 0, sizeof(bi));
3477         bi.profile = &dm_integrity_profile;
3478         bi.tuple_size = ic->tag_size;
3479         bi.tag_size = bi.tuple_size;
3480         bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3481
3482         blk_integrity_register(disk, &bi);
3483         blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3484 }
3485
3486 static void dm_integrity_free_page_list(struct page_list *pl)
3487 {
3488         unsigned i;
3489
3490         if (!pl)
3491                 return;
3492         for (i = 0; pl[i].page; i++)
3493                 __free_page(pl[i].page);
3494         kvfree(pl);
3495 }
3496
3497 static struct page_list *dm_integrity_alloc_page_list(unsigned n_pages)
3498 {
3499         struct page_list *pl;
3500         unsigned i;
3501
3502         pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3503         if (!pl)
3504                 return NULL;
3505
3506         for (i = 0; i < n_pages; i++) {
3507                 pl[i].page = alloc_page(GFP_KERNEL);
3508                 if (!pl[i].page) {
3509                         dm_integrity_free_page_list(pl);
3510                         return NULL;
3511                 }
3512                 if (i)
3513                         pl[i - 1].next = &pl[i];
3514         }
3515         pl[i].page = NULL;
3516         pl[i].next = NULL;
3517
3518         return pl;
3519 }
3520
3521 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3522 {
3523         unsigned i;
3524         for (i = 0; i < ic->journal_sections; i++)
3525                 kvfree(sl[i]);
3526         kvfree(sl);
3527 }
3528
3529 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3530                                                                    struct page_list *pl)
3531 {
3532         struct scatterlist **sl;
3533         unsigned i;
3534
3535         sl = kvmalloc_array(ic->journal_sections,
3536                             sizeof(struct scatterlist *),
3537                             GFP_KERNEL | __GFP_ZERO);
3538         if (!sl)
3539                 return NULL;
3540
3541         for (i = 0; i < ic->journal_sections; i++) {
3542                 struct scatterlist *s;
3543                 unsigned start_index, start_offset;
3544                 unsigned end_index, end_offset;
3545                 unsigned n_pages;
3546                 unsigned idx;
3547
3548                 page_list_location(ic, i, 0, &start_index, &start_offset);
3549                 page_list_location(ic, i, ic->journal_section_sectors - 1,
3550                                    &end_index, &end_offset);
3551
3552                 n_pages = (end_index - start_index + 1);
3553
3554                 s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3555                                    GFP_KERNEL);
3556                 if (!s) {
3557                         dm_integrity_free_journal_scatterlist(ic, sl);
3558                         return NULL;
3559                 }
3560
3561                 sg_init_table(s, n_pages);
3562                 for (idx = start_index; idx <= end_index; idx++) {
3563                         char *va = lowmem_page_address(pl[idx].page);
3564                         unsigned start = 0, end = PAGE_SIZE;
3565                         if (idx == start_index)
3566                                 start = start_offset;
3567                         if (idx == end_index)
3568                                 end = end_offset + (1 << SECTOR_SHIFT);
3569                         sg_set_buf(&s[idx - start_index], va + start, end - start);
3570                 }
3571
3572                 sl[i] = s;
3573         }
3574
3575         return sl;
3576 }
3577
3578 static void free_alg(struct alg_spec *a)
3579 {
3580         kfree_sensitive(a->alg_string);
3581         kfree_sensitive(a->key);
3582         memset(a, 0, sizeof *a);
3583 }
3584
3585 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3586 {
3587         char *k;
3588
3589         free_alg(a);
3590
3591         a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3592         if (!a->alg_string)
3593                 goto nomem;
3594
3595         k = strchr(a->alg_string, ':');
3596         if (k) {
3597                 *k = 0;
3598                 a->key_string = k + 1;
3599                 if (strlen(a->key_string) & 1)
3600                         goto inval;
3601
3602                 a->key_size = strlen(a->key_string) / 2;
3603                 a->key = kmalloc(a->key_size, GFP_KERNEL);
3604                 if (!a->key)
3605                         goto nomem;
3606                 if (hex2bin(a->key, a->key_string, a->key_size))
3607                         goto inval;
3608         }
3609
3610         return 0;
3611 inval:
3612         *error = error_inval;
3613         return -EINVAL;
3614 nomem:
3615         *error = "Out of memory for an argument";
3616         return -ENOMEM;
3617 }
3618
3619 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3620                    char *error_alg, char *error_key)
3621 {
3622         int r;
3623
3624         if (a->alg_string) {
3625                 *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3626                 if (IS_ERR(*hash)) {
3627                         *error = error_alg;
3628                         r = PTR_ERR(*hash);
3629                         *hash = NULL;
3630                         return r;
3631                 }
3632
3633                 if (a->key) {
3634                         r = crypto_shash_setkey(*hash, a->key, a->key_size);
3635                         if (r) {
3636                                 *error = error_key;
3637                                 return r;
3638                         }
3639                 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3640                         *error = error_key;
3641                         return -ENOKEY;
3642                 }
3643         }
3644
3645         return 0;
3646 }
3647
3648 static int create_journal(struct dm_integrity_c *ic, char **error)
3649 {
3650         int r = 0;
3651         unsigned i;
3652         __u64 journal_pages, journal_desc_size, journal_tree_size;
3653         unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3654         struct skcipher_request *req = NULL;
3655
3656         ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3657         ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3658         ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3659         ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3660
3661         journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3662                                 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3663         journal_desc_size = journal_pages * sizeof(struct page_list);
3664         if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3665                 *error = "Journal doesn't fit into memory";
3666                 r = -ENOMEM;
3667                 goto bad;
3668         }
3669         ic->journal_pages = journal_pages;
3670
3671         ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3672         if (!ic->journal) {
3673                 *error = "Could not allocate memory for journal";
3674                 r = -ENOMEM;
3675                 goto bad;
3676         }
3677         if (ic->journal_crypt_alg.alg_string) {
3678                 unsigned ivsize, blocksize;
3679                 struct journal_completion comp;
3680
3681                 comp.ic = ic;
3682                 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3683                 if (IS_ERR(ic->journal_crypt)) {
3684                         *error = "Invalid journal cipher";
3685                         r = PTR_ERR(ic->journal_crypt);
3686                         ic->journal_crypt = NULL;
3687                         goto bad;
3688                 }
3689                 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3690                 blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3691
3692                 if (ic->journal_crypt_alg.key) {
3693                         r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3694                                                    ic->journal_crypt_alg.key_size);
3695                         if (r) {
3696                                 *error = "Error setting encryption key";
3697                                 goto bad;
3698                         }
3699                 }
3700                 DEBUG_print("cipher %s, block size %u iv size %u\n",
3701                             ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3702
3703                 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3704                 if (!ic->journal_io) {
3705                         *error = "Could not allocate memory for journal io";
3706                         r = -ENOMEM;
3707                         goto bad;
3708                 }
3709
3710                 if (blocksize == 1) {
3711                         struct scatterlist *sg;
3712
3713                         req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3714                         if (!req) {
3715                                 *error = "Could not allocate crypt request";
3716                                 r = -ENOMEM;
3717                                 goto bad;
3718                         }
3719
3720                         crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3721                         if (!crypt_iv) {
3722                                 *error = "Could not allocate iv";
3723                                 r = -ENOMEM;
3724                                 goto bad;
3725                         }
3726
3727                         ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3728                         if (!ic->journal_xor) {
3729                                 *error = "Could not allocate memory for journal xor";
3730                                 r = -ENOMEM;
3731                                 goto bad;
3732                         }
3733
3734                         sg = kvmalloc_array(ic->journal_pages + 1,
3735                                             sizeof(struct scatterlist),
3736                                             GFP_KERNEL);
3737                         if (!sg) {
3738                                 *error = "Unable to allocate sg list";
3739                                 r = -ENOMEM;
3740                                 goto bad;
3741                         }
3742                         sg_init_table(sg, ic->journal_pages + 1);
3743                         for (i = 0; i < ic->journal_pages; i++) {
3744                                 char *va = lowmem_page_address(ic->journal_xor[i].page);
3745                                 clear_page(va);
3746                                 sg_set_buf(&sg[i], va, PAGE_SIZE);
3747                         }
3748                         sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids);
3749
3750                         skcipher_request_set_crypt(req, sg, sg,
3751                                                    PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv);
3752                         init_completion(&comp.comp);
3753                         comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3754                         if (do_crypt(true, req, &comp))
3755                                 wait_for_completion(&comp.comp);
3756                         kvfree(sg);
3757                         r = dm_integrity_failed(ic);
3758                         if (r) {
3759                                 *error = "Unable to encrypt journal";
3760                                 goto bad;
3761                         }
3762                         DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3763
3764                         crypto_free_skcipher(ic->journal_crypt);
3765                         ic->journal_crypt = NULL;
3766                 } else {
3767                         unsigned crypt_len = roundup(ivsize, blocksize);
3768
3769                         req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3770                         if (!req) {
3771                                 *error = "Could not allocate crypt request";
3772                                 r = -ENOMEM;
3773                                 goto bad;
3774                         }
3775
3776                         crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3777                         if (!crypt_iv) {
3778                                 *error = "Could not allocate iv";
3779                                 r = -ENOMEM;
3780                                 goto bad;
3781                         }
3782
3783                         crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3784                         if (!crypt_data) {
3785                                 *error = "Unable to allocate crypt data";
3786                                 r = -ENOMEM;
3787                                 goto bad;
3788                         }
3789
3790                         ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3791                         if (!ic->journal_scatterlist) {
3792                                 *error = "Unable to allocate sg list";
3793                                 r = -ENOMEM;
3794                                 goto bad;
3795                         }
3796                         ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3797                         if (!ic->journal_io_scatterlist) {
3798                                 *error = "Unable to allocate sg list";
3799                                 r = -ENOMEM;
3800                                 goto bad;
3801                         }
3802                         ic->sk_requests = kvmalloc_array(ic->journal_sections,
3803                                                          sizeof(struct skcipher_request *),
3804                                                          GFP_KERNEL | __GFP_ZERO);
3805                         if (!ic->sk_requests) {
3806                                 *error = "Unable to allocate sk requests";
3807                                 r = -ENOMEM;
3808                                 goto bad;
3809                         }
3810                         for (i = 0; i < ic->journal_sections; i++) {
3811                                 struct scatterlist sg;
3812                                 struct skcipher_request *section_req;
3813                                 __u32 section_le = cpu_to_le32(i);
3814
3815                                 memset(crypt_iv, 0x00, ivsize);
3816                                 memset(crypt_data, 0x00, crypt_len);
3817                                 memcpy(crypt_data, &section_le, min((size_t)crypt_len, sizeof(section_le)));
3818
3819                                 sg_init_one(&sg, crypt_data, crypt_len);
3820                                 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3821                                 init_completion(&comp.comp);
3822                                 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3823                                 if (do_crypt(true, req, &comp))
3824                                         wait_for_completion(&comp.comp);
3825
3826                                 r = dm_integrity_failed(ic);
3827                                 if (r) {
3828                                         *error = "Unable to generate iv";
3829                                         goto bad;
3830                                 }
3831
3832                                 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3833                                 if (!section_req) {
3834                                         *error = "Unable to allocate crypt request";
3835                                         r = -ENOMEM;
3836                                         goto bad;
3837                                 }
3838                                 section_req->iv = kmalloc_array(ivsize, 2,
3839                                                                 GFP_KERNEL);
3840                                 if (!section_req->iv) {
3841                                         skcipher_request_free(section_req);
3842                                         *error = "Unable to allocate iv";
3843                                         r = -ENOMEM;
3844                                         goto bad;
3845                                 }
3846                                 memcpy(section_req->iv + ivsize, crypt_data, ivsize);
3847                                 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
3848                                 ic->sk_requests[i] = section_req;
3849                                 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
3850                         }
3851                 }
3852         }
3853
3854         for (i = 0; i < N_COMMIT_IDS; i++) {
3855                 unsigned j;
3856 retest_commit_id:
3857                 for (j = 0; j < i; j++) {
3858                         if (ic->commit_ids[j] == ic->commit_ids[i]) {
3859                                 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
3860                                 goto retest_commit_id;
3861                         }
3862                 }
3863                 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
3864         }
3865
3866         journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
3867         if (journal_tree_size > ULONG_MAX) {
3868                 *error = "Journal doesn't fit into memory";
3869                 r = -ENOMEM;
3870                 goto bad;
3871         }
3872         ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
3873         if (!ic->journal_tree) {
3874                 *error = "Could not allocate memory for journal tree";
3875                 r = -ENOMEM;
3876         }
3877 bad:
3878         kfree(crypt_data);
3879         kfree(crypt_iv);
3880         skcipher_request_free(req);
3881
3882         return r;
3883 }
3884
3885 /*
3886  * Construct a integrity mapping
3887  *
3888  * Arguments:
3889  *      device
3890  *      offset from the start of the device
3891  *      tag size
3892  *      D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
3893  *      number of optional arguments
3894  *      optional arguments:
3895  *              journal_sectors
3896  *              interleave_sectors
3897  *              buffer_sectors
3898  *              journal_watermark
3899  *              commit_time
3900  *              meta_device
3901  *              block_size
3902  *              sectors_per_bit
3903  *              bitmap_flush_interval
3904  *              internal_hash
3905  *              journal_crypt
3906  *              journal_mac
3907  *              recalculate
3908  */
3909 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
3910 {
3911         struct dm_integrity_c *ic;
3912         char dummy;
3913         int r;
3914         unsigned extra_args;
3915         struct dm_arg_set as;
3916         static const struct dm_arg _args[] = {
3917                 {0, 17, "Invalid number of feature args"},
3918         };
3919         unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
3920         bool should_write_sb;
3921         __u64 threshold;
3922         unsigned long long start;
3923         __s8 log2_sectors_per_bitmap_bit = -1;
3924         __s8 log2_blocks_per_bitmap_bit;
3925         __u64 bits_in_journal;
3926         __u64 n_bitmap_bits;
3927
3928 #define DIRECT_ARGUMENTS        4
3929
3930         if (argc <= DIRECT_ARGUMENTS) {
3931                 ti->error = "Invalid argument count";
3932                 return -EINVAL;
3933         }
3934
3935         ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
3936         if (!ic) {
3937                 ti->error = "Cannot allocate integrity context";
3938                 return -ENOMEM;
3939         }
3940         ti->private = ic;
3941         ti->per_io_data_size = sizeof(struct dm_integrity_io);
3942         ic->ti = ti;
3943
3944         ic->in_progress = RB_ROOT;
3945         INIT_LIST_HEAD(&ic->wait_list);
3946         init_waitqueue_head(&ic->endio_wait);
3947         bio_list_init(&ic->flush_bio_list);
3948         init_waitqueue_head(&ic->copy_to_journal_wait);
3949         init_completion(&ic->crypto_backoff);
3950         atomic64_set(&ic->number_of_mismatches, 0);
3951         ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
3952
3953         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
3954         if (r) {
3955                 ti->error = "Device lookup failed";
3956                 goto bad;
3957         }
3958
3959         if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
3960                 ti->error = "Invalid starting offset";
3961                 r = -EINVAL;
3962                 goto bad;
3963         }
3964         ic->start = start;
3965
3966         if (strcmp(argv[2], "-")) {
3967                 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
3968                         ti->error = "Invalid tag size";
3969                         r = -EINVAL;
3970                         goto bad;
3971                 }
3972         }
3973
3974         if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
3975             !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
3976                 ic->mode = argv[3][0];
3977         } else {
3978                 ti->error = "Invalid mode (expecting J, B, D, R)";
3979                 r = -EINVAL;
3980                 goto bad;
3981         }
3982
3983         journal_sectors = 0;
3984         interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3985         buffer_sectors = DEFAULT_BUFFER_SECTORS;
3986         journal_watermark = DEFAULT_JOURNAL_WATERMARK;
3987         sync_msec = DEFAULT_SYNC_MSEC;
3988         ic->sectors_per_block = 1;
3989
3990         as.argc = argc - DIRECT_ARGUMENTS;
3991         as.argv = argv + DIRECT_ARGUMENTS;
3992         r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
3993         if (r)
3994                 goto bad;
3995
3996         while (extra_args--) {
3997                 const char *opt_string;
3998                 unsigned val;
3999                 unsigned long long llval;
4000                 opt_string = dm_shift_arg(&as);
4001                 if (!opt_string) {
4002                         r = -EINVAL;
4003                         ti->error = "Not enough feature arguments";
4004                         goto bad;
4005                 }
4006                 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
4007                         journal_sectors = val ? val : 1;
4008                 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
4009                         interleave_sectors = val;
4010                 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
4011                         buffer_sectors = val;
4012                 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
4013                         journal_watermark = val;
4014                 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
4015                         sync_msec = val;
4016                 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
4017                         if (ic->meta_dev) {
4018                                 dm_put_device(ti, ic->meta_dev);
4019                                 ic->meta_dev = NULL;
4020                         }
4021                         r = dm_get_device(ti, strchr(opt_string, ':') + 1,
4022                                           dm_table_get_mode(ti->table), &ic->meta_dev);
4023                         if (r) {
4024                                 ti->error = "Device lookup failed";
4025                                 goto bad;
4026                         }
4027                 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
4028                         if (val < 1 << SECTOR_SHIFT ||
4029                             val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
4030                             (val & (val -1))) {
4031                                 r = -EINVAL;
4032                                 ti->error = "Invalid block_size argument";
4033                                 goto bad;
4034                         }
4035                         ic->sectors_per_block = val >> SECTOR_SHIFT;
4036                 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
4037                         log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
4038                 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
4039                         if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
4040                                 r = -EINVAL;
4041                                 ti->error = "Invalid bitmap_flush_interval argument";
4042                         }
4043                         ic->bitmap_flush_interval = msecs_to_jiffies(val);
4044                 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
4045                         r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
4046                                             "Invalid internal_hash argument");
4047                         if (r)
4048                                 goto bad;
4049                 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
4050                         r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
4051                                             "Invalid journal_crypt argument");
4052                         if (r)
4053                                 goto bad;
4054                 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
4055                         r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
4056                                             "Invalid journal_mac argument");
4057                         if (r)
4058                                 goto bad;
4059                 } else if (!strcmp(opt_string, "recalculate")) {
4060                         ic->recalculate_flag = true;
4061                 } else if (!strcmp(opt_string, "allow_discards")) {
4062                         ic->discard = true;
4063                 } else if (!strcmp(opt_string, "fix_padding")) {
4064                         ic->fix_padding = true;
4065                 } else if (!strcmp(opt_string, "fix_hmac")) {
4066                         ic->fix_hmac = true;
4067                 } else if (!strcmp(opt_string, "legacy_recalculate")) {
4068                         ic->legacy_recalculate = true;
4069                 } else {
4070                         r = -EINVAL;
4071                         ti->error = "Invalid argument";
4072                         goto bad;
4073                 }
4074         }
4075
4076         ic->data_device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT;
4077         if (!ic->meta_dev)
4078                 ic->meta_device_sectors = ic->data_device_sectors;
4079         else
4080                 ic->meta_device_sectors = i_size_read(ic->meta_dev->bdev->bd_inode) >> SECTOR_SHIFT;
4081
4082         if (!journal_sectors) {
4083                 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
4084                                       ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
4085         }
4086
4087         if (!buffer_sectors)
4088                 buffer_sectors = 1;
4089         ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
4090
4091         r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
4092                     "Invalid internal hash", "Error setting internal hash key");
4093         if (r)
4094                 goto bad;
4095
4096         r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
4097                     "Invalid journal mac", "Error setting journal mac key");
4098         if (r)
4099                 goto bad;
4100
4101         if (!ic->tag_size) {
4102                 if (!ic->internal_hash) {
4103                         ti->error = "Unknown tag size";
4104                         r = -EINVAL;
4105                         goto bad;
4106                 }
4107                 ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
4108         }
4109         if (ic->tag_size > MAX_TAG_SIZE) {
4110                 ti->error = "Too big tag size";
4111                 r = -EINVAL;
4112                 goto bad;
4113         }
4114         if (!(ic->tag_size & (ic->tag_size - 1)))
4115                 ic->log2_tag_size = __ffs(ic->tag_size);
4116         else
4117                 ic->log2_tag_size = -1;
4118
4119         if (ic->mode == 'B' && !ic->internal_hash) {
4120                 r = -EINVAL;
4121                 ti->error = "Bitmap mode can be only used with internal hash";
4122                 goto bad;
4123         }
4124
4125         if (ic->discard && !ic->internal_hash) {
4126                 r = -EINVAL;
4127                 ti->error = "Discard can be only used with internal hash";
4128                 goto bad;
4129         }
4130
4131         ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4132         ic->autocommit_msec = sync_msec;
4133         timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4134
4135         ic->io = dm_io_client_create();
4136         if (IS_ERR(ic->io)) {
4137                 r = PTR_ERR(ic->io);
4138                 ic->io = NULL;
4139                 ti->error = "Cannot allocate dm io";
4140                 goto bad;
4141         }
4142
4143         r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4144         if (r) {
4145                 ti->error = "Cannot allocate mempool";
4146                 goto bad;
4147         }
4148
4149         ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
4150                                           WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4151         if (!ic->metadata_wq) {
4152                 ti->error = "Cannot allocate workqueue";
4153                 r = -ENOMEM;
4154                 goto bad;
4155         }
4156
4157         /*
4158          * If this workqueue were percpu, it would cause bio reordering
4159          * and reduced performance.
4160          */
4161         ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4162         if (!ic->wait_wq) {
4163                 ti->error = "Cannot allocate workqueue";
4164                 r = -ENOMEM;
4165                 goto bad;
4166         }
4167
4168         ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4169                                           METADATA_WORKQUEUE_MAX_ACTIVE);
4170         if (!ic->offload_wq) {
4171                 ti->error = "Cannot allocate workqueue";
4172                 r = -ENOMEM;
4173                 goto bad;
4174         }
4175
4176         ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4177         if (!ic->commit_wq) {
4178                 ti->error = "Cannot allocate workqueue";
4179                 r = -ENOMEM;
4180                 goto bad;
4181         }
4182         INIT_WORK(&ic->commit_work, integrity_commit);
4183
4184         if (ic->mode == 'J' || ic->mode == 'B') {
4185                 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4186                 if (!ic->writer_wq) {
4187                         ti->error = "Cannot allocate workqueue";
4188                         r = -ENOMEM;
4189                         goto bad;
4190                 }
4191                 INIT_WORK(&ic->writer_work, integrity_writer);
4192         }
4193
4194         ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4195         if (!ic->sb) {
4196                 r = -ENOMEM;
4197                 ti->error = "Cannot allocate superblock area";
4198                 goto bad;
4199         }
4200
4201         r = sync_rw_sb(ic, REQ_OP_READ, 0);
4202         if (r) {
4203                 ti->error = "Error reading superblock";
4204                 goto bad;
4205         }
4206         should_write_sb = false;
4207         if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4208                 if (ic->mode != 'R') {
4209                         if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4210                                 r = -EINVAL;
4211                                 ti->error = "The device is not initialized";
4212                                 goto bad;
4213                         }
4214                 }
4215
4216                 r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4217                 if (r) {
4218                         ti->error = "Could not initialize superblock";
4219                         goto bad;
4220                 }
4221                 if (ic->mode != 'R')
4222                         should_write_sb = true;
4223         }
4224
4225         if (!ic->sb->version || ic->sb->version > SB_VERSION_5) {
4226                 r = -EINVAL;
4227                 ti->error = "Unknown version";
4228                 goto bad;
4229         }
4230         if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4231                 r = -EINVAL;
4232                 ti->error = "Tag size doesn't match the information in superblock";
4233                 goto bad;
4234         }
4235         if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4236                 r = -EINVAL;
4237                 ti->error = "Block size doesn't match the information in superblock";
4238                 goto bad;
4239         }
4240         if (!le32_to_cpu(ic->sb->journal_sections)) {
4241                 r = -EINVAL;
4242                 ti->error = "Corrupted superblock, journal_sections is 0";
4243                 goto bad;
4244         }
4245         /* make sure that ti->max_io_len doesn't overflow */
4246         if (!ic->meta_dev) {
4247                 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4248                     ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4249                         r = -EINVAL;
4250                         ti->error = "Invalid interleave_sectors in the superblock";
4251                         goto bad;
4252                 }
4253         } else {
4254                 if (ic->sb->log2_interleave_sectors) {
4255                         r = -EINVAL;
4256                         ti->error = "Invalid interleave_sectors in the superblock";
4257                         goto bad;
4258                 }
4259         }
4260         if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4261                 r = -EINVAL;
4262                 ti->error = "Journal mac mismatch";
4263                 goto bad;
4264         }
4265
4266         get_provided_data_sectors(ic);
4267         if (!ic->provided_data_sectors) {
4268                 r = -EINVAL;
4269                 ti->error = "The device is too small";
4270                 goto bad;
4271         }
4272
4273 try_smaller_buffer:
4274         r = calculate_device_limits(ic);
4275         if (r) {
4276                 if (ic->meta_dev) {
4277                         if (ic->log2_buffer_sectors > 3) {
4278                                 ic->log2_buffer_sectors--;
4279                                 goto try_smaller_buffer;
4280                         }
4281                 }
4282                 ti->error = "The device is too small";
4283                 goto bad;
4284         }
4285
4286         if (log2_sectors_per_bitmap_bit < 0)
4287                 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4288         if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4289                 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4290
4291         bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4292         if (bits_in_journal > UINT_MAX)
4293                 bits_in_journal = UINT_MAX;
4294         while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4295                 log2_sectors_per_bitmap_bit++;
4296
4297         log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4298         ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4299         if (should_write_sb) {
4300                 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4301         }
4302         n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4303                                 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4304         ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4305
4306         if (!ic->meta_dev)
4307                 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4308
4309         if (ti->len > ic->provided_data_sectors) {
4310                 r = -EINVAL;
4311                 ti->error = "Not enough provided sectors for requested mapping size";
4312                 goto bad;
4313         }
4314
4315
4316         threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4317         threshold += 50;
4318         do_div(threshold, 100);
4319         ic->free_sectors_threshold = threshold;
4320
4321         DEBUG_print("initialized:\n");
4322         DEBUG_print("   integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4323         DEBUG_print("   journal_entry_size %u\n", ic->journal_entry_size);
4324         DEBUG_print("   journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4325         DEBUG_print("   journal_section_entries %u\n", ic->journal_section_entries);
4326         DEBUG_print("   journal_section_sectors %u\n", ic->journal_section_sectors);
4327         DEBUG_print("   journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections));
4328         DEBUG_print("   journal_entries %u\n", ic->journal_entries);
4329         DEBUG_print("   log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4330         DEBUG_print("   data_device_sectors 0x%llx\n", i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT);
4331         DEBUG_print("   initial_sectors 0x%x\n", ic->initial_sectors);
4332         DEBUG_print("   metadata_run 0x%x\n", ic->metadata_run);
4333         DEBUG_print("   log2_metadata_run %d\n", ic->log2_metadata_run);
4334         DEBUG_print("   provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
4335         DEBUG_print("   log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4336         DEBUG_print("   bits_in_journal %llu\n", bits_in_journal);
4337
4338         if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4339                 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4340                 ic->sb->recalc_sector = cpu_to_le64(0);
4341         }
4342
4343         if (ic->internal_hash) {
4344                 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4345                 if (!ic->recalc_wq ) {
4346                         ti->error = "Cannot allocate workqueue";
4347                         r = -ENOMEM;
4348                         goto bad;
4349                 }
4350                 INIT_WORK(&ic->recalc_work, integrity_recalc);
4351                 ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT);
4352                 if (!ic->recalc_buffer) {
4353                         ti->error = "Cannot allocate buffer for recalculating";
4354                         r = -ENOMEM;
4355                         goto bad;
4356                 }
4357                 ic->recalc_tags = kvmalloc_array(RECALC_SECTORS >> ic->sb->log2_sectors_per_block,
4358                                                  ic->tag_size, GFP_KERNEL);
4359                 if (!ic->recalc_tags) {
4360                         ti->error = "Cannot allocate tags for recalculating";
4361                         r = -ENOMEM;
4362                         goto bad;
4363                 }
4364         } else {
4365                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
4366                         ti->error = "Recalculate can only be specified with internal_hash";
4367                         r = -EINVAL;
4368                         goto bad;
4369                 }
4370         }
4371
4372         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
4373             le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
4374             dm_integrity_disable_recalculate(ic)) {
4375                 ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
4376                 r = -EOPNOTSUPP;
4377                 goto bad;
4378         }
4379
4380         ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4381                         1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL);
4382         if (IS_ERR(ic->bufio)) {
4383                 r = PTR_ERR(ic->bufio);
4384                 ti->error = "Cannot initialize dm-bufio";
4385                 ic->bufio = NULL;
4386                 goto bad;
4387         }
4388         dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4389
4390         if (ic->mode != 'R') {
4391                 r = create_journal(ic, &ti->error);
4392                 if (r)
4393                         goto bad;
4394
4395         }
4396
4397         if (ic->mode == 'B') {
4398                 unsigned i;
4399                 unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4400
4401                 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4402                 if (!ic->recalc_bitmap) {
4403                         r = -ENOMEM;
4404                         goto bad;
4405                 }
4406                 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4407                 if (!ic->may_write_bitmap) {
4408                         r = -ENOMEM;
4409                         goto bad;
4410                 }
4411                 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4412                 if (!ic->bbs) {
4413                         r = -ENOMEM;
4414                         goto bad;
4415                 }
4416                 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4417                 for (i = 0; i < ic->n_bitmap_blocks; i++) {
4418                         struct bitmap_block_status *bbs = &ic->bbs[i];
4419                         unsigned sector, pl_index, pl_offset;
4420
4421                         INIT_WORK(&bbs->work, bitmap_block_work);
4422                         bbs->ic = ic;
4423                         bbs->idx = i;
4424                         bio_list_init(&bbs->bio_queue);
4425                         spin_lock_init(&bbs->bio_queue_lock);
4426
4427                         sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4428                         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4429                         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4430
4431                         bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4432                 }
4433         }
4434
4435         if (should_write_sb) {
4436                 int r;
4437
4438                 init_journal(ic, 0, ic->journal_sections, 0);
4439                 r = dm_integrity_failed(ic);
4440                 if (unlikely(r)) {
4441                         ti->error = "Error initializing journal";
4442                         goto bad;
4443                 }
4444                 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
4445                 if (r) {
4446                         ti->error = "Error initializing superblock";
4447                         goto bad;
4448                 }
4449                 ic->just_formatted = true;
4450         }
4451
4452         if (!ic->meta_dev) {
4453                 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4454                 if (r)
4455                         goto bad;
4456         }
4457         if (ic->mode == 'B') {
4458                 unsigned max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4459                 if (!max_io_len)
4460                         max_io_len = 1U << 31;
4461                 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4462                 if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4463                         r = dm_set_target_max_io_len(ti, max_io_len);
4464                         if (r)
4465                                 goto bad;
4466                 }
4467         }
4468
4469         if (!ic->internal_hash)
4470                 dm_integrity_set(ti, ic);
4471
4472         ti->num_flush_bios = 1;
4473         ti->flush_supported = true;
4474         if (ic->discard)
4475                 ti->num_discard_bios = 1;
4476
4477         return 0;
4478
4479 bad:
4480         dm_integrity_dtr(ti);
4481         return r;
4482 }
4483
4484 static void dm_integrity_dtr(struct dm_target *ti)
4485 {
4486         struct dm_integrity_c *ic = ti->private;
4487
4488         BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4489         BUG_ON(!list_empty(&ic->wait_list));
4490
4491         if (ic->metadata_wq)
4492                 destroy_workqueue(ic->metadata_wq);
4493         if (ic->wait_wq)
4494                 destroy_workqueue(ic->wait_wq);
4495         if (ic->offload_wq)
4496                 destroy_workqueue(ic->offload_wq);
4497         if (ic->commit_wq)
4498                 destroy_workqueue(ic->commit_wq);
4499         if (ic->writer_wq)
4500                 destroy_workqueue(ic->writer_wq);
4501         if (ic->recalc_wq)
4502                 destroy_workqueue(ic->recalc_wq);
4503         vfree(ic->recalc_buffer);
4504         kvfree(ic->recalc_tags);
4505         kvfree(ic->bbs);
4506         if (ic->bufio)
4507                 dm_bufio_client_destroy(ic->bufio);
4508         mempool_exit(&ic->journal_io_mempool);
4509         if (ic->io)
4510                 dm_io_client_destroy(ic->io);
4511         if (ic->dev)
4512                 dm_put_device(ti, ic->dev);
4513         if (ic->meta_dev)
4514                 dm_put_device(ti, ic->meta_dev);
4515         dm_integrity_free_page_list(ic->journal);
4516         dm_integrity_free_page_list(ic->journal_io);
4517         dm_integrity_free_page_list(ic->journal_xor);
4518         dm_integrity_free_page_list(ic->recalc_bitmap);
4519         dm_integrity_free_page_list(ic->may_write_bitmap);
4520         if (ic->journal_scatterlist)
4521                 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4522         if (ic->journal_io_scatterlist)
4523                 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4524         if (ic->sk_requests) {
4525                 unsigned i;
4526
4527                 for (i = 0; i < ic->journal_sections; i++) {
4528                         struct skcipher_request *req = ic->sk_requests[i];
4529                         if (req) {
4530                                 kfree_sensitive(req->iv);
4531                                 skcipher_request_free(req);
4532                         }
4533                 }
4534                 kvfree(ic->sk_requests);
4535         }
4536         kvfree(ic->journal_tree);
4537         if (ic->sb)
4538                 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4539
4540         if (ic->internal_hash)
4541                 crypto_free_shash(ic->internal_hash);
4542         free_alg(&ic->internal_hash_alg);
4543
4544         if (ic->journal_crypt)
4545                 crypto_free_skcipher(ic->journal_crypt);
4546         free_alg(&ic->journal_crypt_alg);
4547
4548         if (ic->journal_mac)
4549                 crypto_free_shash(ic->journal_mac);
4550         free_alg(&ic->journal_mac_alg);
4551
4552         kfree(ic);
4553 }
4554
4555 static struct target_type integrity_target = {
4556         .name                   = "integrity",
4557         .version                = {1, 7, 0},
4558         .module                 = THIS_MODULE,
4559         .features               = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4560         .ctr                    = dm_integrity_ctr,
4561         .dtr                    = dm_integrity_dtr,
4562         .map                    = dm_integrity_map,
4563         .postsuspend            = dm_integrity_postsuspend,
4564         .resume                 = dm_integrity_resume,
4565         .status                 = dm_integrity_status,
4566         .iterate_devices        = dm_integrity_iterate_devices,
4567         .io_hints               = dm_integrity_io_hints,
4568 };
4569
4570 static int __init dm_integrity_init(void)
4571 {
4572         int r;
4573
4574         journal_io_cache = kmem_cache_create("integrity_journal_io",
4575                                              sizeof(struct journal_io), 0, 0, NULL);
4576         if (!journal_io_cache) {
4577                 DMERR("can't allocate journal io cache");
4578                 return -ENOMEM;
4579         }
4580
4581         r = dm_register_target(&integrity_target);
4582
4583         if (r < 0)
4584                 DMERR("register failed %d", r);
4585
4586         return r;
4587 }
4588
4589 static void __exit dm_integrity_exit(void)
4590 {
4591         dm_unregister_target(&integrity_target);
4592         kmem_cache_destroy(journal_io_cache);
4593 }
4594
4595 module_init(dm_integrity_init);
4596 module_exit(dm_integrity_exit);
4597
4598 MODULE_AUTHOR("Milan Broz");
4599 MODULE_AUTHOR("Mikulas Patocka");
4600 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4601 MODULE_LICENSE("GPL");