Merge tag 'x86-urgent-2022-08-06' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / md / dm-cache-policy-smq.c
1 /*
2  * Copyright (C) 2015 Red Hat. All rights reserved.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-cache-background-tracker.h"
8 #include "dm-cache-policy-internal.h"
9 #include "dm-cache-policy.h"
10 #include "dm.h"
11
12 #include <linux/hash.h>
13 #include <linux/jiffies.h>
14 #include <linux/module.h>
15 #include <linux/mutex.h>
16 #include <linux/vmalloc.h>
17 #include <linux/math64.h>
18
19 #define DM_MSG_PREFIX "cache-policy-smq"
20
21 /*----------------------------------------------------------------*/
22
23 /*
24  * Safe division functions that return zero on divide by zero.
25  */
26 static unsigned safe_div(unsigned n, unsigned d)
27 {
28         return d ? n / d : 0u;
29 }
30
31 static unsigned safe_mod(unsigned n, unsigned d)
32 {
33         return d ? n % d : 0u;
34 }
35
36 /*----------------------------------------------------------------*/
37
38 struct entry {
39         unsigned hash_next:28;
40         unsigned prev:28;
41         unsigned next:28;
42         unsigned level:6;
43         bool dirty:1;
44         bool allocated:1;
45         bool sentinel:1;
46         bool pending_work:1;
47
48         dm_oblock_t oblock;
49 };
50
51 /*----------------------------------------------------------------*/
52
53 #define INDEXER_NULL ((1u << 28u) - 1u)
54
55 /*
56  * An entry_space manages a set of entries that we use for the queues.
57  * The clean and dirty queues share entries, so this object is separate
58  * from the queue itself.
59  */
60 struct entry_space {
61         struct entry *begin;
62         struct entry *end;
63 };
64
65 static int space_init(struct entry_space *es, unsigned nr_entries)
66 {
67         if (!nr_entries) {
68                 es->begin = es->end = NULL;
69                 return 0;
70         }
71
72         es->begin = vzalloc(array_size(nr_entries, sizeof(struct entry)));
73         if (!es->begin)
74                 return -ENOMEM;
75
76         es->end = es->begin + nr_entries;
77         return 0;
78 }
79
80 static void space_exit(struct entry_space *es)
81 {
82         vfree(es->begin);
83 }
84
85 static struct entry *__get_entry(struct entry_space *es, unsigned block)
86 {
87         struct entry *e;
88
89         e = es->begin + block;
90         BUG_ON(e >= es->end);
91
92         return e;
93 }
94
95 static unsigned to_index(struct entry_space *es, struct entry *e)
96 {
97         BUG_ON(e < es->begin || e >= es->end);
98         return e - es->begin;
99 }
100
101 static struct entry *to_entry(struct entry_space *es, unsigned block)
102 {
103         if (block == INDEXER_NULL)
104                 return NULL;
105
106         return __get_entry(es, block);
107 }
108
109 /*----------------------------------------------------------------*/
110
111 struct ilist {
112         unsigned nr_elts;       /* excluding sentinel entries */
113         unsigned head, tail;
114 };
115
116 static void l_init(struct ilist *l)
117 {
118         l->nr_elts = 0;
119         l->head = l->tail = INDEXER_NULL;
120 }
121
122 static struct entry *l_head(struct entry_space *es, struct ilist *l)
123 {
124         return to_entry(es, l->head);
125 }
126
127 static struct entry *l_tail(struct entry_space *es, struct ilist *l)
128 {
129         return to_entry(es, l->tail);
130 }
131
132 static struct entry *l_next(struct entry_space *es, struct entry *e)
133 {
134         return to_entry(es, e->next);
135 }
136
137 static struct entry *l_prev(struct entry_space *es, struct entry *e)
138 {
139         return to_entry(es, e->prev);
140 }
141
142 static bool l_empty(struct ilist *l)
143 {
144         return l->head == INDEXER_NULL;
145 }
146
147 static void l_add_head(struct entry_space *es, struct ilist *l, struct entry *e)
148 {
149         struct entry *head = l_head(es, l);
150
151         e->next = l->head;
152         e->prev = INDEXER_NULL;
153
154         if (head)
155                 head->prev = l->head = to_index(es, e);
156         else
157                 l->head = l->tail = to_index(es, e);
158
159         if (!e->sentinel)
160                 l->nr_elts++;
161 }
162
163 static void l_add_tail(struct entry_space *es, struct ilist *l, struct entry *e)
164 {
165         struct entry *tail = l_tail(es, l);
166
167         e->next = INDEXER_NULL;
168         e->prev = l->tail;
169
170         if (tail)
171                 tail->next = l->tail = to_index(es, e);
172         else
173                 l->head = l->tail = to_index(es, e);
174
175         if (!e->sentinel)
176                 l->nr_elts++;
177 }
178
179 static void l_add_before(struct entry_space *es, struct ilist *l,
180                          struct entry *old, struct entry *e)
181 {
182         struct entry *prev = l_prev(es, old);
183
184         if (!prev)
185                 l_add_head(es, l, e);
186
187         else {
188                 e->prev = old->prev;
189                 e->next = to_index(es, old);
190                 prev->next = old->prev = to_index(es, e);
191
192                 if (!e->sentinel)
193                         l->nr_elts++;
194         }
195 }
196
197 static void l_del(struct entry_space *es, struct ilist *l, struct entry *e)
198 {
199         struct entry *prev = l_prev(es, e);
200         struct entry *next = l_next(es, e);
201
202         if (prev)
203                 prev->next = e->next;
204         else
205                 l->head = e->next;
206
207         if (next)
208                 next->prev = e->prev;
209         else
210                 l->tail = e->prev;
211
212         if (!e->sentinel)
213                 l->nr_elts--;
214 }
215
216 static struct entry *l_pop_head(struct entry_space *es, struct ilist *l)
217 {
218         struct entry *e;
219
220         for (e = l_head(es, l); e; e = l_next(es, e))
221                 if (!e->sentinel) {
222                         l_del(es, l, e);
223                         return e;
224                 }
225
226         return NULL;
227 }
228
229 static struct entry *l_pop_tail(struct entry_space *es, struct ilist *l)
230 {
231         struct entry *e;
232
233         for (e = l_tail(es, l); e; e = l_prev(es, e))
234                 if (!e->sentinel) {
235                         l_del(es, l, e);
236                         return e;
237                 }
238
239         return NULL;
240 }
241
242 /*----------------------------------------------------------------*/
243
244 /*
245  * The stochastic-multi-queue is a set of lru lists stacked into levels.
246  * Entries are moved up levels when they are used, which loosely orders the
247  * most accessed entries in the top levels and least in the bottom.  This
248  * structure is *much* better than a single lru list.
249  */
250 #define MAX_LEVELS 64u
251
252 struct queue {
253         struct entry_space *es;
254
255         unsigned nr_elts;
256         unsigned nr_levels;
257         struct ilist qs[MAX_LEVELS];
258
259         /*
260          * We maintain a count of the number of entries we would like in each
261          * level.
262          */
263         unsigned last_target_nr_elts;
264         unsigned nr_top_levels;
265         unsigned nr_in_top_levels;
266         unsigned target_count[MAX_LEVELS];
267 };
268
269 static void q_init(struct queue *q, struct entry_space *es, unsigned nr_levels)
270 {
271         unsigned i;
272
273         q->es = es;
274         q->nr_elts = 0;
275         q->nr_levels = nr_levels;
276
277         for (i = 0; i < q->nr_levels; i++) {
278                 l_init(q->qs + i);
279                 q->target_count[i] = 0u;
280         }
281
282         q->last_target_nr_elts = 0u;
283         q->nr_top_levels = 0u;
284         q->nr_in_top_levels = 0u;
285 }
286
287 static unsigned q_size(struct queue *q)
288 {
289         return q->nr_elts;
290 }
291
292 /*
293  * Insert an entry to the back of the given level.
294  */
295 static void q_push(struct queue *q, struct entry *e)
296 {
297         BUG_ON(e->pending_work);
298
299         if (!e->sentinel)
300                 q->nr_elts++;
301
302         l_add_tail(q->es, q->qs + e->level, e);
303 }
304
305 static void q_push_front(struct queue *q, struct entry *e)
306 {
307         BUG_ON(e->pending_work);
308
309         if (!e->sentinel)
310                 q->nr_elts++;
311
312         l_add_head(q->es, q->qs + e->level, e);
313 }
314
315 static void q_push_before(struct queue *q, struct entry *old, struct entry *e)
316 {
317         BUG_ON(e->pending_work);
318
319         if (!e->sentinel)
320                 q->nr_elts++;
321
322         l_add_before(q->es, q->qs + e->level, old, e);
323 }
324
325 static void q_del(struct queue *q, struct entry *e)
326 {
327         l_del(q->es, q->qs + e->level, e);
328         if (!e->sentinel)
329                 q->nr_elts--;
330 }
331
332 /*
333  * Return the oldest entry of the lowest populated level.
334  */
335 static struct entry *q_peek(struct queue *q, unsigned max_level, bool can_cross_sentinel)
336 {
337         unsigned level;
338         struct entry *e;
339
340         max_level = min(max_level, q->nr_levels);
341
342         for (level = 0; level < max_level; level++)
343                 for (e = l_head(q->es, q->qs + level); e; e = l_next(q->es, e)) {
344                         if (e->sentinel) {
345                                 if (can_cross_sentinel)
346                                         continue;
347                                 else
348                                         break;
349                         }
350
351                         return e;
352                 }
353
354         return NULL;
355 }
356
357 static struct entry *q_pop(struct queue *q)
358 {
359         struct entry *e = q_peek(q, q->nr_levels, true);
360
361         if (e)
362                 q_del(q, e);
363
364         return e;
365 }
366
367 /*
368  * This function assumes there is a non-sentinel entry to pop.  It's only
369  * used by redistribute, so we know this is true.  It also doesn't adjust
370  * the q->nr_elts count.
371  */
372 static struct entry *__redist_pop_from(struct queue *q, unsigned level)
373 {
374         struct entry *e;
375
376         for (; level < q->nr_levels; level++)
377                 for (e = l_head(q->es, q->qs + level); e; e = l_next(q->es, e))
378                         if (!e->sentinel) {
379                                 l_del(q->es, q->qs + e->level, e);
380                                 return e;
381                         }
382
383         return NULL;
384 }
385
386 static void q_set_targets_subrange_(struct queue *q, unsigned nr_elts, unsigned lbegin, unsigned lend)
387 {
388         unsigned level, nr_levels, entries_per_level, remainder;
389
390         BUG_ON(lbegin > lend);
391         BUG_ON(lend > q->nr_levels);
392         nr_levels = lend - lbegin;
393         entries_per_level = safe_div(nr_elts, nr_levels);
394         remainder = safe_mod(nr_elts, nr_levels);
395
396         for (level = lbegin; level < lend; level++)
397                 q->target_count[level] =
398                         (level < (lbegin + remainder)) ? entries_per_level + 1u : entries_per_level;
399 }
400
401 /*
402  * Typically we have fewer elements in the top few levels which allows us
403  * to adjust the promote threshold nicely.
404  */
405 static void q_set_targets(struct queue *q)
406 {
407         if (q->last_target_nr_elts == q->nr_elts)
408                 return;
409
410         q->last_target_nr_elts = q->nr_elts;
411
412         if (q->nr_top_levels > q->nr_levels)
413                 q_set_targets_subrange_(q, q->nr_elts, 0, q->nr_levels);
414
415         else {
416                 q_set_targets_subrange_(q, q->nr_in_top_levels,
417                                         q->nr_levels - q->nr_top_levels, q->nr_levels);
418
419                 if (q->nr_in_top_levels < q->nr_elts)
420                         q_set_targets_subrange_(q, q->nr_elts - q->nr_in_top_levels,
421                                                 0, q->nr_levels - q->nr_top_levels);
422                 else
423                         q_set_targets_subrange_(q, 0, 0, q->nr_levels - q->nr_top_levels);
424         }
425 }
426
427 static void q_redistribute(struct queue *q)
428 {
429         unsigned target, level;
430         struct ilist *l, *l_above;
431         struct entry *e;
432
433         q_set_targets(q);
434
435         for (level = 0u; level < q->nr_levels - 1u; level++) {
436                 l = q->qs + level;
437                 target = q->target_count[level];
438
439                 /*
440                  * Pull down some entries from the level above.
441                  */
442                 while (l->nr_elts < target) {
443                         e = __redist_pop_from(q, level + 1u);
444                         if (!e) {
445                                 /* bug in nr_elts */
446                                 break;
447                         }
448
449                         e->level = level;
450                         l_add_tail(q->es, l, e);
451                 }
452
453                 /*
454                  * Push some entries up.
455                  */
456                 l_above = q->qs + level + 1u;
457                 while (l->nr_elts > target) {
458                         e = l_pop_tail(q->es, l);
459
460                         if (!e)
461                                 /* bug in nr_elts */
462                                 break;
463
464                         e->level = level + 1u;
465                         l_add_tail(q->es, l_above, e);
466                 }
467         }
468 }
469
470 static void q_requeue(struct queue *q, struct entry *e, unsigned extra_levels,
471                       struct entry *s1, struct entry *s2)
472 {
473         struct entry *de;
474         unsigned sentinels_passed = 0;
475         unsigned new_level = min(q->nr_levels - 1u, e->level + extra_levels);
476
477         /* try and find an entry to swap with */
478         if (extra_levels && (e->level < q->nr_levels - 1u)) {
479                 for (de = l_head(q->es, q->qs + new_level); de && de->sentinel; de = l_next(q->es, de))
480                         sentinels_passed++;
481
482                 if (de) {
483                         q_del(q, de);
484                         de->level = e->level;
485                         if (s1) {
486                                 switch (sentinels_passed) {
487                                 case 0:
488                                         q_push_before(q, s1, de);
489                                         break;
490
491                                 case 1:
492                                         q_push_before(q, s2, de);
493                                         break;
494
495                                 default:
496                                         q_push(q, de);
497                                 }
498                         } else
499                                 q_push(q, de);
500                 }
501         }
502
503         q_del(q, e);
504         e->level = new_level;
505         q_push(q, e);
506 }
507
508 /*----------------------------------------------------------------*/
509
510 #define FP_SHIFT 8
511 #define SIXTEENTH (1u << (FP_SHIFT - 4u))
512 #define EIGHTH (1u << (FP_SHIFT - 3u))
513
514 struct stats {
515         unsigned hit_threshold;
516         unsigned hits;
517         unsigned misses;
518 };
519
520 enum performance {
521         Q_POOR,
522         Q_FAIR,
523         Q_WELL
524 };
525
526 static void stats_init(struct stats *s, unsigned nr_levels)
527 {
528         s->hit_threshold = (nr_levels * 3u) / 4u;
529         s->hits = 0u;
530         s->misses = 0u;
531 }
532
533 static void stats_reset(struct stats *s)
534 {
535         s->hits = s->misses = 0u;
536 }
537
538 static void stats_level_accessed(struct stats *s, unsigned level)
539 {
540         if (level >= s->hit_threshold)
541                 s->hits++;
542         else
543                 s->misses++;
544 }
545
546 static void stats_miss(struct stats *s)
547 {
548         s->misses++;
549 }
550
551 /*
552  * There are times when we don't have any confidence in the hotspot queue.
553  * Such as when a fresh cache is created and the blocks have been spread
554  * out across the levels, or if an io load changes.  We detect this by
555  * seeing how often a lookup is in the top levels of the hotspot queue.
556  */
557 static enum performance stats_assess(struct stats *s)
558 {
559         unsigned confidence = safe_div(s->hits << FP_SHIFT, s->hits + s->misses);
560
561         if (confidence < SIXTEENTH)
562                 return Q_POOR;
563
564         else if (confidence < EIGHTH)
565                 return Q_FAIR;
566
567         else
568                 return Q_WELL;
569 }
570
571 /*----------------------------------------------------------------*/
572
573 struct smq_hash_table {
574         struct entry_space *es;
575         unsigned long long hash_bits;
576         unsigned *buckets;
577 };
578
579 /*
580  * All cache entries are stored in a chained hash table.  To save space we
581  * use indexing again, and only store indexes to the next entry.
582  */
583 static int h_init(struct smq_hash_table *ht, struct entry_space *es, unsigned nr_entries)
584 {
585         unsigned i, nr_buckets;
586
587         ht->es = es;
588         nr_buckets = roundup_pow_of_two(max(nr_entries / 4u, 16u));
589         ht->hash_bits = __ffs(nr_buckets);
590
591         ht->buckets = vmalloc(array_size(nr_buckets, sizeof(*ht->buckets)));
592         if (!ht->buckets)
593                 return -ENOMEM;
594
595         for (i = 0; i < nr_buckets; i++)
596                 ht->buckets[i] = INDEXER_NULL;
597
598         return 0;
599 }
600
601 static void h_exit(struct smq_hash_table *ht)
602 {
603         vfree(ht->buckets);
604 }
605
606 static struct entry *h_head(struct smq_hash_table *ht, unsigned bucket)
607 {
608         return to_entry(ht->es, ht->buckets[bucket]);
609 }
610
611 static struct entry *h_next(struct smq_hash_table *ht, struct entry *e)
612 {
613         return to_entry(ht->es, e->hash_next);
614 }
615
616 static void __h_insert(struct smq_hash_table *ht, unsigned bucket, struct entry *e)
617 {
618         e->hash_next = ht->buckets[bucket];
619         ht->buckets[bucket] = to_index(ht->es, e);
620 }
621
622 static void h_insert(struct smq_hash_table *ht, struct entry *e)
623 {
624         unsigned h = hash_64(from_oblock(e->oblock), ht->hash_bits);
625         __h_insert(ht, h, e);
626 }
627
628 static struct entry *__h_lookup(struct smq_hash_table *ht, unsigned h, dm_oblock_t oblock,
629                                 struct entry **prev)
630 {
631         struct entry *e;
632
633         *prev = NULL;
634         for (e = h_head(ht, h); e; e = h_next(ht, e)) {
635                 if (e->oblock == oblock)
636                         return e;
637
638                 *prev = e;
639         }
640
641         return NULL;
642 }
643
644 static void __h_unlink(struct smq_hash_table *ht, unsigned h,
645                        struct entry *e, struct entry *prev)
646 {
647         if (prev)
648                 prev->hash_next = e->hash_next;
649         else
650                 ht->buckets[h] = e->hash_next;
651 }
652
653 /*
654  * Also moves each entry to the front of the bucket.
655  */
656 static struct entry *h_lookup(struct smq_hash_table *ht, dm_oblock_t oblock)
657 {
658         struct entry *e, *prev;
659         unsigned h = hash_64(from_oblock(oblock), ht->hash_bits);
660
661         e = __h_lookup(ht, h, oblock, &prev);
662         if (e && prev) {
663                 /*
664                  * Move to the front because this entry is likely
665                  * to be hit again.
666                  */
667                 __h_unlink(ht, h, e, prev);
668                 __h_insert(ht, h, e);
669         }
670
671         return e;
672 }
673
674 static void h_remove(struct smq_hash_table *ht, struct entry *e)
675 {
676         unsigned h = hash_64(from_oblock(e->oblock), ht->hash_bits);
677         struct entry *prev;
678
679         /*
680          * The down side of using a singly linked list is we have to
681          * iterate the bucket to remove an item.
682          */
683         e = __h_lookup(ht, h, e->oblock, &prev);
684         if (e)
685                 __h_unlink(ht, h, e, prev);
686 }
687
688 /*----------------------------------------------------------------*/
689
690 struct entry_alloc {
691         struct entry_space *es;
692         unsigned begin;
693
694         unsigned nr_allocated;
695         struct ilist free;
696 };
697
698 static void init_allocator(struct entry_alloc *ea, struct entry_space *es,
699                            unsigned begin, unsigned end)
700 {
701         unsigned i;
702
703         ea->es = es;
704         ea->nr_allocated = 0u;
705         ea->begin = begin;
706
707         l_init(&ea->free);
708         for (i = begin; i != end; i++)
709                 l_add_tail(ea->es, &ea->free, __get_entry(ea->es, i));
710 }
711
712 static void init_entry(struct entry *e)
713 {
714         /*
715          * We can't memset because that would clear the hotspot and
716          * sentinel bits which remain constant.
717          */
718         e->hash_next = INDEXER_NULL;
719         e->next = INDEXER_NULL;
720         e->prev = INDEXER_NULL;
721         e->level = 0u;
722         e->dirty = true;        /* FIXME: audit */
723         e->allocated = true;
724         e->sentinel = false;
725         e->pending_work = false;
726 }
727
728 static struct entry *alloc_entry(struct entry_alloc *ea)
729 {
730         struct entry *e;
731
732         if (l_empty(&ea->free))
733                 return NULL;
734
735         e = l_pop_head(ea->es, &ea->free);
736         init_entry(e);
737         ea->nr_allocated++;
738
739         return e;
740 }
741
742 /*
743  * This assumes the cblock hasn't already been allocated.
744  */
745 static struct entry *alloc_particular_entry(struct entry_alloc *ea, unsigned i)
746 {
747         struct entry *e = __get_entry(ea->es, ea->begin + i);
748
749         BUG_ON(e->allocated);
750
751         l_del(ea->es, &ea->free, e);
752         init_entry(e);
753         ea->nr_allocated++;
754
755         return e;
756 }
757
758 static void free_entry(struct entry_alloc *ea, struct entry *e)
759 {
760         BUG_ON(!ea->nr_allocated);
761         BUG_ON(!e->allocated);
762
763         ea->nr_allocated--;
764         e->allocated = false;
765         l_add_tail(ea->es, &ea->free, e);
766 }
767
768 static bool allocator_empty(struct entry_alloc *ea)
769 {
770         return l_empty(&ea->free);
771 }
772
773 static unsigned get_index(struct entry_alloc *ea, struct entry *e)
774 {
775         return to_index(ea->es, e) - ea->begin;
776 }
777
778 static struct entry *get_entry(struct entry_alloc *ea, unsigned index)
779 {
780         return __get_entry(ea->es, ea->begin + index);
781 }
782
783 /*----------------------------------------------------------------*/
784
785 #define NR_HOTSPOT_LEVELS 64u
786 #define NR_CACHE_LEVELS 64u
787
788 #define WRITEBACK_PERIOD (10ul * HZ)
789 #define DEMOTE_PERIOD (60ul * HZ)
790
791 #define HOTSPOT_UPDATE_PERIOD (HZ)
792 #define CACHE_UPDATE_PERIOD (60ul * HZ)
793
794 struct smq_policy {
795         struct dm_cache_policy policy;
796
797         /* protects everything */
798         spinlock_t lock;
799         dm_cblock_t cache_size;
800         sector_t cache_block_size;
801
802         sector_t hotspot_block_size;
803         unsigned nr_hotspot_blocks;
804         unsigned cache_blocks_per_hotspot_block;
805         unsigned hotspot_level_jump;
806
807         struct entry_space es;
808         struct entry_alloc writeback_sentinel_alloc;
809         struct entry_alloc demote_sentinel_alloc;
810         struct entry_alloc hotspot_alloc;
811         struct entry_alloc cache_alloc;
812
813         unsigned long *hotspot_hit_bits;
814         unsigned long *cache_hit_bits;
815
816         /*
817          * We maintain three queues of entries.  The cache proper,
818          * consisting of a clean and dirty queue, containing the currently
819          * active mappings.  The hotspot queue uses a larger block size to
820          * track blocks that are being hit frequently and potential
821          * candidates for promotion to the cache.
822          */
823         struct queue hotspot;
824         struct queue clean;
825         struct queue dirty;
826
827         struct stats hotspot_stats;
828         struct stats cache_stats;
829
830         /*
831          * Keeps track of time, incremented by the core.  We use this to
832          * avoid attributing multiple hits within the same tick.
833          */
834         unsigned tick;
835
836         /*
837          * The hash tables allows us to quickly find an entry by origin
838          * block.
839          */
840         struct smq_hash_table table;
841         struct smq_hash_table hotspot_table;
842
843         bool current_writeback_sentinels;
844         unsigned long next_writeback_period;
845
846         bool current_demote_sentinels;
847         unsigned long next_demote_period;
848
849         unsigned write_promote_level;
850         unsigned read_promote_level;
851
852         unsigned long next_hotspot_period;
853         unsigned long next_cache_period;
854
855         struct background_tracker *bg_work;
856
857         bool migrations_allowed;
858 };
859
860 /*----------------------------------------------------------------*/
861
862 static struct entry *get_sentinel(struct entry_alloc *ea, unsigned level, bool which)
863 {
864         return get_entry(ea, which ? level : NR_CACHE_LEVELS + level);
865 }
866
867 static struct entry *writeback_sentinel(struct smq_policy *mq, unsigned level)
868 {
869         return get_sentinel(&mq->writeback_sentinel_alloc, level, mq->current_writeback_sentinels);
870 }
871
872 static struct entry *demote_sentinel(struct smq_policy *mq, unsigned level)
873 {
874         return get_sentinel(&mq->demote_sentinel_alloc, level, mq->current_demote_sentinels);
875 }
876
877 static void __update_writeback_sentinels(struct smq_policy *mq)
878 {
879         unsigned level;
880         struct queue *q = &mq->dirty;
881         struct entry *sentinel;
882
883         for (level = 0; level < q->nr_levels; level++) {
884                 sentinel = writeback_sentinel(mq, level);
885                 q_del(q, sentinel);
886                 q_push(q, sentinel);
887         }
888 }
889
890 static void __update_demote_sentinels(struct smq_policy *mq)
891 {
892         unsigned level;
893         struct queue *q = &mq->clean;
894         struct entry *sentinel;
895
896         for (level = 0; level < q->nr_levels; level++) {
897                 sentinel = demote_sentinel(mq, level);
898                 q_del(q, sentinel);
899                 q_push(q, sentinel);
900         }
901 }
902
903 static void update_sentinels(struct smq_policy *mq)
904 {
905         if (time_after(jiffies, mq->next_writeback_period)) {
906                 mq->next_writeback_period = jiffies + WRITEBACK_PERIOD;
907                 mq->current_writeback_sentinels = !mq->current_writeback_sentinels;
908                 __update_writeback_sentinels(mq);
909         }
910
911         if (time_after(jiffies, mq->next_demote_period)) {
912                 mq->next_demote_period = jiffies + DEMOTE_PERIOD;
913                 mq->current_demote_sentinels = !mq->current_demote_sentinels;
914                 __update_demote_sentinels(mq);
915         }
916 }
917
918 static void __sentinels_init(struct smq_policy *mq)
919 {
920         unsigned level;
921         struct entry *sentinel;
922
923         for (level = 0; level < NR_CACHE_LEVELS; level++) {
924                 sentinel = writeback_sentinel(mq, level);
925                 sentinel->level = level;
926                 q_push(&mq->dirty, sentinel);
927
928                 sentinel = demote_sentinel(mq, level);
929                 sentinel->level = level;
930                 q_push(&mq->clean, sentinel);
931         }
932 }
933
934 static void sentinels_init(struct smq_policy *mq)
935 {
936         mq->next_writeback_period = jiffies + WRITEBACK_PERIOD;
937         mq->next_demote_period = jiffies + DEMOTE_PERIOD;
938
939         mq->current_writeback_sentinels = false;
940         mq->current_demote_sentinels = false;
941         __sentinels_init(mq);
942
943         mq->current_writeback_sentinels = !mq->current_writeback_sentinels;
944         mq->current_demote_sentinels = !mq->current_demote_sentinels;
945         __sentinels_init(mq);
946 }
947
948 /*----------------------------------------------------------------*/
949
950 static void del_queue(struct smq_policy *mq, struct entry *e)
951 {
952         q_del(e->dirty ? &mq->dirty : &mq->clean, e);
953 }
954
955 static void push_queue(struct smq_policy *mq, struct entry *e)
956 {
957         if (e->dirty)
958                 q_push(&mq->dirty, e);
959         else
960                 q_push(&mq->clean, e);
961 }
962
963 // !h, !q, a -> h, q, a
964 static void push(struct smq_policy *mq, struct entry *e)
965 {
966         h_insert(&mq->table, e);
967         if (!e->pending_work)
968                 push_queue(mq, e);
969 }
970
971 static void push_queue_front(struct smq_policy *mq, struct entry *e)
972 {
973         if (e->dirty)
974                 q_push_front(&mq->dirty, e);
975         else
976                 q_push_front(&mq->clean, e);
977 }
978
979 static void push_front(struct smq_policy *mq, struct entry *e)
980 {
981         h_insert(&mq->table, e);
982         if (!e->pending_work)
983                 push_queue_front(mq, e);
984 }
985
986 static dm_cblock_t infer_cblock(struct smq_policy *mq, struct entry *e)
987 {
988         return to_cblock(get_index(&mq->cache_alloc, e));
989 }
990
991 static void requeue(struct smq_policy *mq, struct entry *e)
992 {
993         /*
994          * Pending work has temporarily been taken out of the queues.
995          */
996         if (e->pending_work)
997                 return;
998
999         if (!test_and_set_bit(from_cblock(infer_cblock(mq, e)), mq->cache_hit_bits)) {
1000                 if (!e->dirty) {
1001                         q_requeue(&mq->clean, e, 1u, NULL, NULL);
1002                         return;
1003                 }
1004
1005                 q_requeue(&mq->dirty, e, 1u,
1006                           get_sentinel(&mq->writeback_sentinel_alloc, e->level, !mq->current_writeback_sentinels),
1007                           get_sentinel(&mq->writeback_sentinel_alloc, e->level, mq->current_writeback_sentinels));
1008         }
1009 }
1010
1011 static unsigned default_promote_level(struct smq_policy *mq)
1012 {
1013         /*
1014          * The promote level depends on the current performance of the
1015          * cache.
1016          *
1017          * If the cache is performing badly, then we can't afford
1018          * to promote much without causing performance to drop below that
1019          * of the origin device.
1020          *
1021          * If the cache is performing well, then we don't need to promote
1022          * much.  If it isn't broken, don't fix it.
1023          *
1024          * If the cache is middling then we promote more.
1025          *
1026          * This scheme reminds me of a graph of entropy vs probability of a
1027          * binary variable.
1028          */
1029         static const unsigned int table[] = {
1030                 1, 1, 1, 2, 4, 6, 7, 8, 7, 6, 4, 4, 3, 3, 2, 2, 1
1031         };
1032
1033         unsigned hits = mq->cache_stats.hits;
1034         unsigned misses = mq->cache_stats.misses;
1035         unsigned index = safe_div(hits << 4u, hits + misses);
1036         return table[index];
1037 }
1038
1039 static void update_promote_levels(struct smq_policy *mq)
1040 {
1041         /*
1042          * If there are unused cache entries then we want to be really
1043          * eager to promote.
1044          */
1045         unsigned threshold_level = allocator_empty(&mq->cache_alloc) ?
1046                 default_promote_level(mq) : (NR_HOTSPOT_LEVELS / 2u);
1047
1048         threshold_level = max(threshold_level, NR_HOTSPOT_LEVELS);
1049
1050         /*
1051          * If the hotspot queue is performing badly then we have little
1052          * confidence that we know which blocks to promote.  So we cut down
1053          * the amount of promotions.
1054          */
1055         switch (stats_assess(&mq->hotspot_stats)) {
1056         case Q_POOR:
1057                 threshold_level /= 4u;
1058                 break;
1059
1060         case Q_FAIR:
1061                 threshold_level /= 2u;
1062                 break;
1063
1064         case Q_WELL:
1065                 break;
1066         }
1067
1068         mq->read_promote_level = NR_HOTSPOT_LEVELS - threshold_level;
1069         mq->write_promote_level = (NR_HOTSPOT_LEVELS - threshold_level);
1070 }
1071
1072 /*
1073  * If the hotspot queue is performing badly, then we try and move entries
1074  * around more quickly.
1075  */
1076 static void update_level_jump(struct smq_policy *mq)
1077 {
1078         switch (stats_assess(&mq->hotspot_stats)) {
1079         case Q_POOR:
1080                 mq->hotspot_level_jump = 4u;
1081                 break;
1082
1083         case Q_FAIR:
1084                 mq->hotspot_level_jump = 2u;
1085                 break;
1086
1087         case Q_WELL:
1088                 mq->hotspot_level_jump = 1u;
1089                 break;
1090         }
1091 }
1092
1093 static void end_hotspot_period(struct smq_policy *mq)
1094 {
1095         clear_bitset(mq->hotspot_hit_bits, mq->nr_hotspot_blocks);
1096         update_promote_levels(mq);
1097
1098         if (time_after(jiffies, mq->next_hotspot_period)) {
1099                 update_level_jump(mq);
1100                 q_redistribute(&mq->hotspot);
1101                 stats_reset(&mq->hotspot_stats);
1102                 mq->next_hotspot_period = jiffies + HOTSPOT_UPDATE_PERIOD;
1103         }
1104 }
1105
1106 static void end_cache_period(struct smq_policy *mq)
1107 {
1108         if (time_after(jiffies, mq->next_cache_period)) {
1109                 clear_bitset(mq->cache_hit_bits, from_cblock(mq->cache_size));
1110
1111                 q_redistribute(&mq->dirty);
1112                 q_redistribute(&mq->clean);
1113                 stats_reset(&mq->cache_stats);
1114
1115                 mq->next_cache_period = jiffies + CACHE_UPDATE_PERIOD;
1116         }
1117 }
1118
1119 /*----------------------------------------------------------------*/
1120
1121 /*
1122  * Targets are given as a percentage.
1123  */
1124 #define CLEAN_TARGET 25u
1125 #define FREE_TARGET 25u
1126
1127 static unsigned percent_to_target(struct smq_policy *mq, unsigned p)
1128 {
1129         return from_cblock(mq->cache_size) * p / 100u;
1130 }
1131
1132 static bool clean_target_met(struct smq_policy *mq, bool idle)
1133 {
1134         /*
1135          * Cache entries may not be populated.  So we cannot rely on the
1136          * size of the clean queue.
1137          */
1138         if (idle) {
1139                 /*
1140                  * We'd like to clean everything.
1141                  */
1142                 return q_size(&mq->dirty) == 0u;
1143         }
1144
1145         /*
1146          * If we're busy we don't worry about cleaning at all.
1147          */
1148         return true;
1149 }
1150
1151 static bool free_target_met(struct smq_policy *mq)
1152 {
1153         unsigned nr_free;
1154
1155         nr_free = from_cblock(mq->cache_size) - mq->cache_alloc.nr_allocated;
1156         return (nr_free + btracker_nr_demotions_queued(mq->bg_work)) >=
1157                 percent_to_target(mq, FREE_TARGET);
1158 }
1159
1160 /*----------------------------------------------------------------*/
1161
1162 static void mark_pending(struct smq_policy *mq, struct entry *e)
1163 {
1164         BUG_ON(e->sentinel);
1165         BUG_ON(!e->allocated);
1166         BUG_ON(e->pending_work);
1167         e->pending_work = true;
1168 }
1169
1170 static void clear_pending(struct smq_policy *mq, struct entry *e)
1171 {
1172         BUG_ON(!e->pending_work);
1173         e->pending_work = false;
1174 }
1175
1176 static void queue_writeback(struct smq_policy *mq, bool idle)
1177 {
1178         int r;
1179         struct policy_work work;
1180         struct entry *e;
1181
1182         e = q_peek(&mq->dirty, mq->dirty.nr_levels, idle);
1183         if (e) {
1184                 mark_pending(mq, e);
1185                 q_del(&mq->dirty, e);
1186
1187                 work.op = POLICY_WRITEBACK;
1188                 work.oblock = e->oblock;
1189                 work.cblock = infer_cblock(mq, e);
1190
1191                 r = btracker_queue(mq->bg_work, &work, NULL);
1192                 if (r) {
1193                         clear_pending(mq, e);
1194                         q_push_front(&mq->dirty, e);
1195                 }
1196         }
1197 }
1198
1199 static void queue_demotion(struct smq_policy *mq)
1200 {
1201         int r;
1202         struct policy_work work;
1203         struct entry *e;
1204
1205         if (WARN_ON_ONCE(!mq->migrations_allowed))
1206                 return;
1207
1208         e = q_peek(&mq->clean, mq->clean.nr_levels / 2, true);
1209         if (!e) {
1210                 if (!clean_target_met(mq, true))
1211                         queue_writeback(mq, false);
1212                 return;
1213         }
1214
1215         mark_pending(mq, e);
1216         q_del(&mq->clean, e);
1217
1218         work.op = POLICY_DEMOTE;
1219         work.oblock = e->oblock;
1220         work.cblock = infer_cblock(mq, e);
1221         r = btracker_queue(mq->bg_work, &work, NULL);
1222         if (r) {
1223                 clear_pending(mq, e);
1224                 q_push_front(&mq->clean, e);
1225         }
1226 }
1227
1228 static void queue_promotion(struct smq_policy *mq, dm_oblock_t oblock,
1229                             struct policy_work **workp)
1230 {
1231         int r;
1232         struct entry *e;
1233         struct policy_work work;
1234
1235         if (!mq->migrations_allowed)
1236                 return;
1237
1238         if (allocator_empty(&mq->cache_alloc)) {
1239                 /*
1240                  * We always claim to be 'idle' to ensure some demotions happen
1241                  * with continuous loads.
1242                  */
1243                 if (!free_target_met(mq))
1244                         queue_demotion(mq);
1245                 return;
1246         }
1247
1248         if (btracker_promotion_already_present(mq->bg_work, oblock))
1249                 return;
1250
1251         /*
1252          * We allocate the entry now to reserve the cblock.  If the
1253          * background work is aborted we must remember to free it.
1254          */
1255         e = alloc_entry(&mq->cache_alloc);
1256         BUG_ON(!e);
1257         e->pending_work = true;
1258         work.op = POLICY_PROMOTE;
1259         work.oblock = oblock;
1260         work.cblock = infer_cblock(mq, e);
1261         r = btracker_queue(mq->bg_work, &work, workp);
1262         if (r)
1263                 free_entry(&mq->cache_alloc, e);
1264 }
1265
1266 /*----------------------------------------------------------------*/
1267
1268 enum promote_result {
1269         PROMOTE_NOT,
1270         PROMOTE_TEMPORARY,
1271         PROMOTE_PERMANENT
1272 };
1273
1274 /*
1275  * Converts a boolean into a promote result.
1276  */
1277 static enum promote_result maybe_promote(bool promote)
1278 {
1279         return promote ? PROMOTE_PERMANENT : PROMOTE_NOT;
1280 }
1281
1282 static enum promote_result should_promote(struct smq_policy *mq, struct entry *hs_e,
1283                                           int data_dir, bool fast_promote)
1284 {
1285         if (data_dir == WRITE) {
1286                 if (!allocator_empty(&mq->cache_alloc) && fast_promote)
1287                         return PROMOTE_TEMPORARY;
1288
1289                 return maybe_promote(hs_e->level >= mq->write_promote_level);
1290         } else
1291                 return maybe_promote(hs_e->level >= mq->read_promote_level);
1292 }
1293
1294 static dm_oblock_t to_hblock(struct smq_policy *mq, dm_oblock_t b)
1295 {
1296         sector_t r = from_oblock(b);
1297         (void) sector_div(r, mq->cache_blocks_per_hotspot_block);
1298         return to_oblock(r);
1299 }
1300
1301 static struct entry *update_hotspot_queue(struct smq_policy *mq, dm_oblock_t b)
1302 {
1303         unsigned hi;
1304         dm_oblock_t hb = to_hblock(mq, b);
1305         struct entry *e = h_lookup(&mq->hotspot_table, hb);
1306
1307         if (e) {
1308                 stats_level_accessed(&mq->hotspot_stats, e->level);
1309
1310                 hi = get_index(&mq->hotspot_alloc, e);
1311                 q_requeue(&mq->hotspot, e,
1312                           test_and_set_bit(hi, mq->hotspot_hit_bits) ?
1313                           0u : mq->hotspot_level_jump,
1314                           NULL, NULL);
1315
1316         } else {
1317                 stats_miss(&mq->hotspot_stats);
1318
1319                 e = alloc_entry(&mq->hotspot_alloc);
1320                 if (!e) {
1321                         e = q_pop(&mq->hotspot);
1322                         if (e) {
1323                                 h_remove(&mq->hotspot_table, e);
1324                                 hi = get_index(&mq->hotspot_alloc, e);
1325                                 clear_bit(hi, mq->hotspot_hit_bits);
1326                         }
1327
1328                 }
1329
1330                 if (e) {
1331                         e->oblock = hb;
1332                         q_push(&mq->hotspot, e);
1333                         h_insert(&mq->hotspot_table, e);
1334                 }
1335         }
1336
1337         return e;
1338 }
1339
1340 /*----------------------------------------------------------------*/
1341
1342 /*
1343  * Public interface, via the policy struct.  See dm-cache-policy.h for a
1344  * description of these.
1345  */
1346
1347 static struct smq_policy *to_smq_policy(struct dm_cache_policy *p)
1348 {
1349         return container_of(p, struct smq_policy, policy);
1350 }
1351
1352 static void smq_destroy(struct dm_cache_policy *p)
1353 {
1354         struct smq_policy *mq = to_smq_policy(p);
1355
1356         btracker_destroy(mq->bg_work);
1357         h_exit(&mq->hotspot_table);
1358         h_exit(&mq->table);
1359         free_bitset(mq->hotspot_hit_bits);
1360         free_bitset(mq->cache_hit_bits);
1361         space_exit(&mq->es);
1362         kfree(mq);
1363 }
1364
1365 /*----------------------------------------------------------------*/
1366
1367 static int __lookup(struct smq_policy *mq, dm_oblock_t oblock, dm_cblock_t *cblock,
1368                     int data_dir, bool fast_copy,
1369                     struct policy_work **work, bool *background_work)
1370 {
1371         struct entry *e, *hs_e;
1372         enum promote_result pr;
1373
1374         *background_work = false;
1375
1376         e = h_lookup(&mq->table, oblock);
1377         if (e) {
1378                 stats_level_accessed(&mq->cache_stats, e->level);
1379
1380                 requeue(mq, e);
1381                 *cblock = infer_cblock(mq, e);
1382                 return 0;
1383
1384         } else {
1385                 stats_miss(&mq->cache_stats);
1386
1387                 /*
1388                  * The hotspot queue only gets updated with misses.
1389                  */
1390                 hs_e = update_hotspot_queue(mq, oblock);
1391
1392                 pr = should_promote(mq, hs_e, data_dir, fast_copy);
1393                 if (pr != PROMOTE_NOT) {
1394                         queue_promotion(mq, oblock, work);
1395                         *background_work = true;
1396                 }
1397
1398                 return -ENOENT;
1399         }
1400 }
1401
1402 static int smq_lookup(struct dm_cache_policy *p, dm_oblock_t oblock, dm_cblock_t *cblock,
1403                       int data_dir, bool fast_copy,
1404                       bool *background_work)
1405 {
1406         int r;
1407         unsigned long flags;
1408         struct smq_policy *mq = to_smq_policy(p);
1409
1410         spin_lock_irqsave(&mq->lock, flags);
1411         r = __lookup(mq, oblock, cblock,
1412                      data_dir, fast_copy,
1413                      NULL, background_work);
1414         spin_unlock_irqrestore(&mq->lock, flags);
1415
1416         return r;
1417 }
1418
1419 static int smq_lookup_with_work(struct dm_cache_policy *p,
1420                                 dm_oblock_t oblock, dm_cblock_t *cblock,
1421                                 int data_dir, bool fast_copy,
1422                                 struct policy_work **work)
1423 {
1424         int r;
1425         bool background_queued;
1426         unsigned long flags;
1427         struct smq_policy *mq = to_smq_policy(p);
1428
1429         spin_lock_irqsave(&mq->lock, flags);
1430         r = __lookup(mq, oblock, cblock, data_dir, fast_copy, work, &background_queued);
1431         spin_unlock_irqrestore(&mq->lock, flags);
1432
1433         return r;
1434 }
1435
1436 static int smq_get_background_work(struct dm_cache_policy *p, bool idle,
1437                                    struct policy_work **result)
1438 {
1439         int r;
1440         unsigned long flags;
1441         struct smq_policy *mq = to_smq_policy(p);
1442
1443         spin_lock_irqsave(&mq->lock, flags);
1444         r = btracker_issue(mq->bg_work, result);
1445         if (r == -ENODATA) {
1446                 if (!clean_target_met(mq, idle)) {
1447                         queue_writeback(mq, idle);
1448                         r = btracker_issue(mq->bg_work, result);
1449                 }
1450         }
1451         spin_unlock_irqrestore(&mq->lock, flags);
1452
1453         return r;
1454 }
1455
1456 /*
1457  * We need to clear any pending work flags that have been set, and in the
1458  * case of promotion free the entry for the destination cblock.
1459  */
1460 static void __complete_background_work(struct smq_policy *mq,
1461                                        struct policy_work *work,
1462                                        bool success)
1463 {
1464         struct entry *e = get_entry(&mq->cache_alloc,
1465                                     from_cblock(work->cblock));
1466
1467         switch (work->op) {
1468         case POLICY_PROMOTE:
1469                 // !h, !q, a
1470                 clear_pending(mq, e);
1471                 if (success) {
1472                         e->oblock = work->oblock;
1473                         e->level = NR_CACHE_LEVELS - 1;
1474                         push(mq, e);
1475                         // h, q, a
1476                 } else {
1477                         free_entry(&mq->cache_alloc, e);
1478                         // !h, !q, !a
1479                 }
1480                 break;
1481
1482         case POLICY_DEMOTE:
1483                 // h, !q, a
1484                 if (success) {
1485                         h_remove(&mq->table, e);
1486                         free_entry(&mq->cache_alloc, e);
1487                         // !h, !q, !a
1488                 } else {
1489                         clear_pending(mq, e);
1490                         push_queue(mq, e);
1491                         // h, q, a
1492                 }
1493                 break;
1494
1495         case POLICY_WRITEBACK:
1496                 // h, !q, a
1497                 clear_pending(mq, e);
1498                 push_queue(mq, e);
1499                 // h, q, a
1500                 break;
1501         }
1502
1503         btracker_complete(mq->bg_work, work);
1504 }
1505
1506 static void smq_complete_background_work(struct dm_cache_policy *p,
1507                                          struct policy_work *work,
1508                                          bool success)
1509 {
1510         unsigned long flags;
1511         struct smq_policy *mq = to_smq_policy(p);
1512
1513         spin_lock_irqsave(&mq->lock, flags);
1514         __complete_background_work(mq, work, success);
1515         spin_unlock_irqrestore(&mq->lock, flags);
1516 }
1517
1518 // in_hash(oblock) -> in_hash(oblock)
1519 static void __smq_set_clear_dirty(struct smq_policy *mq, dm_cblock_t cblock, bool set)
1520 {
1521         struct entry *e = get_entry(&mq->cache_alloc, from_cblock(cblock));
1522
1523         if (e->pending_work)
1524                 e->dirty = set;
1525         else {
1526                 del_queue(mq, e);
1527                 e->dirty = set;
1528                 push_queue(mq, e);
1529         }
1530 }
1531
1532 static void smq_set_dirty(struct dm_cache_policy *p, dm_cblock_t cblock)
1533 {
1534         unsigned long flags;
1535         struct smq_policy *mq = to_smq_policy(p);
1536
1537         spin_lock_irqsave(&mq->lock, flags);
1538         __smq_set_clear_dirty(mq, cblock, true);
1539         spin_unlock_irqrestore(&mq->lock, flags);
1540 }
1541
1542 static void smq_clear_dirty(struct dm_cache_policy *p, dm_cblock_t cblock)
1543 {
1544         struct smq_policy *mq = to_smq_policy(p);
1545         unsigned long flags;
1546
1547         spin_lock_irqsave(&mq->lock, flags);
1548         __smq_set_clear_dirty(mq, cblock, false);
1549         spin_unlock_irqrestore(&mq->lock, flags);
1550 }
1551
1552 static unsigned random_level(dm_cblock_t cblock)
1553 {
1554         return hash_32(from_cblock(cblock), 9) & (NR_CACHE_LEVELS - 1);
1555 }
1556
1557 static int smq_load_mapping(struct dm_cache_policy *p,
1558                             dm_oblock_t oblock, dm_cblock_t cblock,
1559                             bool dirty, uint32_t hint, bool hint_valid)
1560 {
1561         struct smq_policy *mq = to_smq_policy(p);
1562         struct entry *e;
1563
1564         e = alloc_particular_entry(&mq->cache_alloc, from_cblock(cblock));
1565         e->oblock = oblock;
1566         e->dirty = dirty;
1567         e->level = hint_valid ? min(hint, NR_CACHE_LEVELS - 1) : random_level(cblock);
1568         e->pending_work = false;
1569
1570         /*
1571          * When we load mappings we push ahead of both sentinels in order to
1572          * allow demotions and cleaning to occur immediately.
1573          */
1574         push_front(mq, e);
1575
1576         return 0;
1577 }
1578
1579 static int smq_invalidate_mapping(struct dm_cache_policy *p, dm_cblock_t cblock)
1580 {
1581         struct smq_policy *mq = to_smq_policy(p);
1582         struct entry *e = get_entry(&mq->cache_alloc, from_cblock(cblock));
1583
1584         if (!e->allocated)
1585                 return -ENODATA;
1586
1587         // FIXME: what if this block has pending background work?
1588         del_queue(mq, e);
1589         h_remove(&mq->table, e);
1590         free_entry(&mq->cache_alloc, e);
1591         return 0;
1592 }
1593
1594 static uint32_t smq_get_hint(struct dm_cache_policy *p, dm_cblock_t cblock)
1595 {
1596         struct smq_policy *mq = to_smq_policy(p);
1597         struct entry *e = get_entry(&mq->cache_alloc, from_cblock(cblock));
1598
1599         if (!e->allocated)
1600                 return 0;
1601
1602         return e->level;
1603 }
1604
1605 static dm_cblock_t smq_residency(struct dm_cache_policy *p)
1606 {
1607         dm_cblock_t r;
1608         unsigned long flags;
1609         struct smq_policy *mq = to_smq_policy(p);
1610
1611         spin_lock_irqsave(&mq->lock, flags);
1612         r = to_cblock(mq->cache_alloc.nr_allocated);
1613         spin_unlock_irqrestore(&mq->lock, flags);
1614
1615         return r;
1616 }
1617
1618 static void smq_tick(struct dm_cache_policy *p, bool can_block)
1619 {
1620         struct smq_policy *mq = to_smq_policy(p);
1621         unsigned long flags;
1622
1623         spin_lock_irqsave(&mq->lock, flags);
1624         mq->tick++;
1625         update_sentinels(mq);
1626         end_hotspot_period(mq);
1627         end_cache_period(mq);
1628         spin_unlock_irqrestore(&mq->lock, flags);
1629 }
1630
1631 static void smq_allow_migrations(struct dm_cache_policy *p, bool allow)
1632 {
1633         struct smq_policy *mq = to_smq_policy(p);
1634         mq->migrations_allowed = allow;
1635 }
1636
1637 /*
1638  * smq has no config values, but the old mq policy did.  To avoid breaking
1639  * software we continue to accept these configurables for the mq policy,
1640  * but they have no effect.
1641  */
1642 static int mq_set_config_value(struct dm_cache_policy *p,
1643                                const char *key, const char *value)
1644 {
1645         unsigned long tmp;
1646
1647         if (kstrtoul(value, 10, &tmp))
1648                 return -EINVAL;
1649
1650         if (!strcasecmp(key, "random_threshold") ||
1651             !strcasecmp(key, "sequential_threshold") ||
1652             !strcasecmp(key, "discard_promote_adjustment") ||
1653             !strcasecmp(key, "read_promote_adjustment") ||
1654             !strcasecmp(key, "write_promote_adjustment")) {
1655                 DMWARN("tunable '%s' no longer has any effect, mq policy is now an alias for smq", key);
1656                 return 0;
1657         }
1658
1659         return -EINVAL;
1660 }
1661
1662 static int mq_emit_config_values(struct dm_cache_policy *p, char *result,
1663                                  unsigned maxlen, ssize_t *sz_ptr)
1664 {
1665         ssize_t sz = *sz_ptr;
1666
1667         DMEMIT("10 random_threshold 0 "
1668                "sequential_threshold 0 "
1669                "discard_promote_adjustment 0 "
1670                "read_promote_adjustment 0 "
1671                "write_promote_adjustment 0 ");
1672
1673         *sz_ptr = sz;
1674         return 0;
1675 }
1676
1677 /* Init the policy plugin interface function pointers. */
1678 static void init_policy_functions(struct smq_policy *mq, bool mimic_mq)
1679 {
1680         mq->policy.destroy = smq_destroy;
1681         mq->policy.lookup = smq_lookup;
1682         mq->policy.lookup_with_work = smq_lookup_with_work;
1683         mq->policy.get_background_work = smq_get_background_work;
1684         mq->policy.complete_background_work = smq_complete_background_work;
1685         mq->policy.set_dirty = smq_set_dirty;
1686         mq->policy.clear_dirty = smq_clear_dirty;
1687         mq->policy.load_mapping = smq_load_mapping;
1688         mq->policy.invalidate_mapping = smq_invalidate_mapping;
1689         mq->policy.get_hint = smq_get_hint;
1690         mq->policy.residency = smq_residency;
1691         mq->policy.tick = smq_tick;
1692         mq->policy.allow_migrations = smq_allow_migrations;
1693
1694         if (mimic_mq) {
1695                 mq->policy.set_config_value = mq_set_config_value;
1696                 mq->policy.emit_config_values = mq_emit_config_values;
1697         }
1698 }
1699
1700 static bool too_many_hotspot_blocks(sector_t origin_size,
1701                                     sector_t hotspot_block_size,
1702                                     unsigned nr_hotspot_blocks)
1703 {
1704         return (hotspot_block_size * nr_hotspot_blocks) > origin_size;
1705 }
1706
1707 static void calc_hotspot_params(sector_t origin_size,
1708                                 sector_t cache_block_size,
1709                                 unsigned nr_cache_blocks,
1710                                 sector_t *hotspot_block_size,
1711                                 unsigned *nr_hotspot_blocks)
1712 {
1713         *hotspot_block_size = cache_block_size * 16u;
1714         *nr_hotspot_blocks = max(nr_cache_blocks / 4u, 1024u);
1715
1716         while ((*hotspot_block_size > cache_block_size) &&
1717                too_many_hotspot_blocks(origin_size, *hotspot_block_size, *nr_hotspot_blocks))
1718                 *hotspot_block_size /= 2u;
1719 }
1720
1721 static struct dm_cache_policy *__smq_create(dm_cblock_t cache_size,
1722                                             sector_t origin_size,
1723                                             sector_t cache_block_size,
1724                                             bool mimic_mq,
1725                                             bool migrations_allowed)
1726 {
1727         unsigned i;
1728         unsigned nr_sentinels_per_queue = 2u * NR_CACHE_LEVELS;
1729         unsigned total_sentinels = 2u * nr_sentinels_per_queue;
1730         struct smq_policy *mq = kzalloc(sizeof(*mq), GFP_KERNEL);
1731
1732         if (!mq)
1733                 return NULL;
1734
1735         init_policy_functions(mq, mimic_mq);
1736         mq->cache_size = cache_size;
1737         mq->cache_block_size = cache_block_size;
1738
1739         calc_hotspot_params(origin_size, cache_block_size, from_cblock(cache_size),
1740                             &mq->hotspot_block_size, &mq->nr_hotspot_blocks);
1741
1742         mq->cache_blocks_per_hotspot_block = div64_u64(mq->hotspot_block_size, mq->cache_block_size);
1743         mq->hotspot_level_jump = 1u;
1744         if (space_init(&mq->es, total_sentinels + mq->nr_hotspot_blocks + from_cblock(cache_size))) {
1745                 DMERR("couldn't initialize entry space");
1746                 goto bad_pool_init;
1747         }
1748
1749         init_allocator(&mq->writeback_sentinel_alloc, &mq->es, 0, nr_sentinels_per_queue);
1750         for (i = 0; i < nr_sentinels_per_queue; i++)
1751                 get_entry(&mq->writeback_sentinel_alloc, i)->sentinel = true;
1752
1753         init_allocator(&mq->demote_sentinel_alloc, &mq->es, nr_sentinels_per_queue, total_sentinels);
1754         for (i = 0; i < nr_sentinels_per_queue; i++)
1755                 get_entry(&mq->demote_sentinel_alloc, i)->sentinel = true;
1756
1757         init_allocator(&mq->hotspot_alloc, &mq->es, total_sentinels,
1758                        total_sentinels + mq->nr_hotspot_blocks);
1759
1760         init_allocator(&mq->cache_alloc, &mq->es,
1761                        total_sentinels + mq->nr_hotspot_blocks,
1762                        total_sentinels + mq->nr_hotspot_blocks + from_cblock(cache_size));
1763
1764         mq->hotspot_hit_bits = alloc_bitset(mq->nr_hotspot_blocks);
1765         if (!mq->hotspot_hit_bits) {
1766                 DMERR("couldn't allocate hotspot hit bitset");
1767                 goto bad_hotspot_hit_bits;
1768         }
1769         clear_bitset(mq->hotspot_hit_bits, mq->nr_hotspot_blocks);
1770
1771         if (from_cblock(cache_size)) {
1772                 mq->cache_hit_bits = alloc_bitset(from_cblock(cache_size));
1773                 if (!mq->cache_hit_bits) {
1774                         DMERR("couldn't allocate cache hit bitset");
1775                         goto bad_cache_hit_bits;
1776                 }
1777                 clear_bitset(mq->cache_hit_bits, from_cblock(mq->cache_size));
1778         } else
1779                 mq->cache_hit_bits = NULL;
1780
1781         mq->tick = 0;
1782         spin_lock_init(&mq->lock);
1783
1784         q_init(&mq->hotspot, &mq->es, NR_HOTSPOT_LEVELS);
1785         mq->hotspot.nr_top_levels = 8;
1786         mq->hotspot.nr_in_top_levels = min(mq->nr_hotspot_blocks / NR_HOTSPOT_LEVELS,
1787                                            from_cblock(mq->cache_size) / mq->cache_blocks_per_hotspot_block);
1788
1789         q_init(&mq->clean, &mq->es, NR_CACHE_LEVELS);
1790         q_init(&mq->dirty, &mq->es, NR_CACHE_LEVELS);
1791
1792         stats_init(&mq->hotspot_stats, NR_HOTSPOT_LEVELS);
1793         stats_init(&mq->cache_stats, NR_CACHE_LEVELS);
1794
1795         if (h_init(&mq->table, &mq->es, from_cblock(cache_size)))
1796                 goto bad_alloc_table;
1797
1798         if (h_init(&mq->hotspot_table, &mq->es, mq->nr_hotspot_blocks))
1799                 goto bad_alloc_hotspot_table;
1800
1801         sentinels_init(mq);
1802         mq->write_promote_level = mq->read_promote_level = NR_HOTSPOT_LEVELS;
1803
1804         mq->next_hotspot_period = jiffies;
1805         mq->next_cache_period = jiffies;
1806
1807         mq->bg_work = btracker_create(4096); /* FIXME: hard coded value */
1808         if (!mq->bg_work)
1809                 goto bad_btracker;
1810
1811         mq->migrations_allowed = migrations_allowed;
1812
1813         return &mq->policy;
1814
1815 bad_btracker:
1816         h_exit(&mq->hotspot_table);
1817 bad_alloc_hotspot_table:
1818         h_exit(&mq->table);
1819 bad_alloc_table:
1820         free_bitset(mq->cache_hit_bits);
1821 bad_cache_hit_bits:
1822         free_bitset(mq->hotspot_hit_bits);
1823 bad_hotspot_hit_bits:
1824         space_exit(&mq->es);
1825 bad_pool_init:
1826         kfree(mq);
1827
1828         return NULL;
1829 }
1830
1831 static struct dm_cache_policy *smq_create(dm_cblock_t cache_size,
1832                                           sector_t origin_size,
1833                                           sector_t cache_block_size)
1834 {
1835         return __smq_create(cache_size, origin_size, cache_block_size, false, true);
1836 }
1837
1838 static struct dm_cache_policy *mq_create(dm_cblock_t cache_size,
1839                                          sector_t origin_size,
1840                                          sector_t cache_block_size)
1841 {
1842         return __smq_create(cache_size, origin_size, cache_block_size, true, true);
1843 }
1844
1845 static struct dm_cache_policy *cleaner_create(dm_cblock_t cache_size,
1846                                               sector_t origin_size,
1847                                               sector_t cache_block_size)
1848 {
1849         return __smq_create(cache_size, origin_size, cache_block_size, false, false);
1850 }
1851
1852 /*----------------------------------------------------------------*/
1853
1854 static struct dm_cache_policy_type smq_policy_type = {
1855         .name = "smq",
1856         .version = {2, 0, 0},
1857         .hint_size = 4,
1858         .owner = THIS_MODULE,
1859         .create = smq_create
1860 };
1861
1862 static struct dm_cache_policy_type mq_policy_type = {
1863         .name = "mq",
1864         .version = {2, 0, 0},
1865         .hint_size = 4,
1866         .owner = THIS_MODULE,
1867         .create = mq_create,
1868 };
1869
1870 static struct dm_cache_policy_type cleaner_policy_type = {
1871         .name = "cleaner",
1872         .version = {2, 0, 0},
1873         .hint_size = 4,
1874         .owner = THIS_MODULE,
1875         .create = cleaner_create,
1876 };
1877
1878 static struct dm_cache_policy_type default_policy_type = {
1879         .name = "default",
1880         .version = {2, 0, 0},
1881         .hint_size = 4,
1882         .owner = THIS_MODULE,
1883         .create = smq_create,
1884         .real = &smq_policy_type
1885 };
1886
1887 static int __init smq_init(void)
1888 {
1889         int r;
1890
1891         r = dm_cache_policy_register(&smq_policy_type);
1892         if (r) {
1893                 DMERR("register failed %d", r);
1894                 return -ENOMEM;
1895         }
1896
1897         r = dm_cache_policy_register(&mq_policy_type);
1898         if (r) {
1899                 DMERR("register failed (as mq) %d", r);
1900                 goto out_mq;
1901         }
1902
1903         r = dm_cache_policy_register(&cleaner_policy_type);
1904         if (r) {
1905                 DMERR("register failed (as cleaner) %d", r);
1906                 goto out_cleaner;
1907         }
1908
1909         r = dm_cache_policy_register(&default_policy_type);
1910         if (r) {
1911                 DMERR("register failed (as default) %d", r);
1912                 goto out_default;
1913         }
1914
1915         return 0;
1916
1917 out_default:
1918         dm_cache_policy_unregister(&cleaner_policy_type);
1919 out_cleaner:
1920         dm_cache_policy_unregister(&mq_policy_type);
1921 out_mq:
1922         dm_cache_policy_unregister(&smq_policy_type);
1923
1924         return -ENOMEM;
1925 }
1926
1927 static void __exit smq_exit(void)
1928 {
1929         dm_cache_policy_unregister(&cleaner_policy_type);
1930         dm_cache_policy_unregister(&smq_policy_type);
1931         dm_cache_policy_unregister(&mq_policy_type);
1932         dm_cache_policy_unregister(&default_policy_type);
1933 }
1934
1935 module_init(smq_init);
1936 module_exit(smq_exit);
1937
1938 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1939 MODULE_LICENSE("GPL");
1940 MODULE_DESCRIPTION("smq cache policy");
1941
1942 MODULE_ALIAS("dm-cache-default");
1943 MODULE_ALIAS("dm-cache-mq");
1944 MODULE_ALIAS("dm-cache-cleaner");