Merge tag 'ktest-v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[linux-2.6-microblaze.git] / drivers / md / bcache / writeback.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * background writeback - scan btree for dirty data and write it to the backing
4  * device
5  *
6  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7  * Copyright 2012 Google, Inc.
8  */
9
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "writeback.h"
14
15 #include <linux/delay.h>
16 #include <linux/kthread.h>
17 #include <linux/sched/clock.h>
18 #include <trace/events/bcache.h>
19
20 static void update_gc_after_writeback(struct cache_set *c)
21 {
22         if (c->gc_after_writeback != (BCH_ENABLE_AUTO_GC) ||
23             c->gc_stats.in_use < BCH_AUTO_GC_DIRTY_THRESHOLD)
24                 return;
25
26         c->gc_after_writeback |= BCH_DO_AUTO_GC;
27 }
28
29 /* Rate limiting */
30 static uint64_t __calc_target_rate(struct cached_dev *dc)
31 {
32         struct cache_set *c = dc->disk.c;
33
34         /*
35          * This is the size of the cache, minus the amount used for
36          * flash-only devices
37          */
38         uint64_t cache_sectors = c->nbuckets * c->cache->sb.bucket_size -
39                                 atomic_long_read(&c->flash_dev_dirty_sectors);
40
41         /*
42          * Unfortunately there is no control of global dirty data.  If the
43          * user states that they want 10% dirty data in the cache, and has,
44          * e.g., 5 backing volumes of equal size, we try and ensure each
45          * backing volume uses about 2% of the cache for dirty data.
46          */
47         uint32_t bdev_share =
48                 div64_u64(bdev_sectors(dc->bdev) << WRITEBACK_SHARE_SHIFT,
49                                 c->cached_dev_sectors);
50
51         uint64_t cache_dirty_target =
52                 div_u64(cache_sectors * dc->writeback_percent, 100);
53
54         /* Ensure each backing dev gets at least one dirty share */
55         if (bdev_share < 1)
56                 bdev_share = 1;
57
58         return (cache_dirty_target * bdev_share) >> WRITEBACK_SHARE_SHIFT;
59 }
60
61 static void __update_writeback_rate(struct cached_dev *dc)
62 {
63         /*
64          * PI controller:
65          * Figures out the amount that should be written per second.
66          *
67          * First, the error (number of sectors that are dirty beyond our
68          * target) is calculated.  The error is accumulated (numerically
69          * integrated).
70          *
71          * Then, the proportional value and integral value are scaled
72          * based on configured values.  These are stored as inverses to
73          * avoid fixed point math and to make configuration easy-- e.g.
74          * the default value of 40 for writeback_rate_p_term_inverse
75          * attempts to write at a rate that would retire all the dirty
76          * blocks in 40 seconds.
77          *
78          * The writeback_rate_i_inverse value of 10000 means that 1/10000th
79          * of the error is accumulated in the integral term per second.
80          * This acts as a slow, long-term average that is not subject to
81          * variations in usage like the p term.
82          */
83         int64_t target = __calc_target_rate(dc);
84         int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
85         int64_t error = dirty - target;
86         int64_t proportional_scaled =
87                 div_s64(error, dc->writeback_rate_p_term_inverse);
88         int64_t integral_scaled;
89         uint32_t new_rate;
90
91         /*
92          * We need to consider the number of dirty buckets as well
93          * when calculating the proportional_scaled, Otherwise we might
94          * have an unreasonable small writeback rate at a highly fragmented situation
95          * when very few dirty sectors consumed a lot dirty buckets, the
96          * worst case is when dirty buckets reached cutoff_writeback_sync and
97          * dirty data is still not even reached to writeback percent, so the rate
98          * still will be at the minimum value, which will cause the write
99          * stuck at a non-writeback mode.
100          */
101         struct cache_set *c = dc->disk.c;
102
103         int64_t dirty_buckets = c->nbuckets - c->avail_nbuckets;
104
105         if (dc->writeback_consider_fragment &&
106                 c->gc_stats.in_use > BCH_WRITEBACK_FRAGMENT_THRESHOLD_LOW && dirty > 0) {
107                 int64_t fragment =
108                         div_s64((dirty_buckets *  c->cache->sb.bucket_size), dirty);
109                 int64_t fp_term;
110                 int64_t fps;
111
112                 if (c->gc_stats.in_use <= BCH_WRITEBACK_FRAGMENT_THRESHOLD_MID) {
113                         fp_term = (int64_t)dc->writeback_rate_fp_term_low *
114                         (c->gc_stats.in_use - BCH_WRITEBACK_FRAGMENT_THRESHOLD_LOW);
115                 } else if (c->gc_stats.in_use <= BCH_WRITEBACK_FRAGMENT_THRESHOLD_HIGH) {
116                         fp_term = (int64_t)dc->writeback_rate_fp_term_mid *
117                         (c->gc_stats.in_use - BCH_WRITEBACK_FRAGMENT_THRESHOLD_MID);
118                 } else {
119                         fp_term = (int64_t)dc->writeback_rate_fp_term_high *
120                         (c->gc_stats.in_use - BCH_WRITEBACK_FRAGMENT_THRESHOLD_HIGH);
121                 }
122                 fps = div_s64(dirty, dirty_buckets) * fp_term;
123                 if (fragment > 3 && fps > proportional_scaled) {
124                         /* Only overrite the p when fragment > 3 */
125                         proportional_scaled = fps;
126                 }
127         }
128
129         if ((error < 0 && dc->writeback_rate_integral > 0) ||
130             (error > 0 && time_before64(local_clock(),
131                          dc->writeback_rate.next + NSEC_PER_MSEC))) {
132                 /*
133                  * Only decrease the integral term if it's more than
134                  * zero.  Only increase the integral term if the device
135                  * is keeping up.  (Don't wind up the integral
136                  * ineffectively in either case).
137                  *
138                  * It's necessary to scale this by
139                  * writeback_rate_update_seconds to keep the integral
140                  * term dimensioned properly.
141                  */
142                 dc->writeback_rate_integral += error *
143                         dc->writeback_rate_update_seconds;
144         }
145
146         integral_scaled = div_s64(dc->writeback_rate_integral,
147                         dc->writeback_rate_i_term_inverse);
148
149         new_rate = clamp_t(int32_t, (proportional_scaled + integral_scaled),
150                         dc->writeback_rate_minimum, NSEC_PER_SEC);
151
152         dc->writeback_rate_proportional = proportional_scaled;
153         dc->writeback_rate_integral_scaled = integral_scaled;
154         dc->writeback_rate_change = new_rate -
155                         atomic_long_read(&dc->writeback_rate.rate);
156         atomic_long_set(&dc->writeback_rate.rate, new_rate);
157         dc->writeback_rate_target = target;
158 }
159
160 static bool set_at_max_writeback_rate(struct cache_set *c,
161                                        struct cached_dev *dc)
162 {
163         /* Don't sst max writeback rate if it is disabled */
164         if (!c->idle_max_writeback_rate_enabled)
165                 return false;
166
167         /* Don't set max writeback rate if gc is running */
168         if (!c->gc_mark_valid)
169                 return false;
170         /*
171          * Idle_counter is increased everytime when update_writeback_rate() is
172          * called. If all backing devices attached to the same cache set have
173          * identical dc->writeback_rate_update_seconds values, it is about 6
174          * rounds of update_writeback_rate() on each backing device before
175          * c->at_max_writeback_rate is set to 1, and then max wrteback rate set
176          * to each dc->writeback_rate.rate.
177          * In order to avoid extra locking cost for counting exact dirty cached
178          * devices number, c->attached_dev_nr is used to calculate the idle
179          * throushold. It might be bigger if not all cached device are in write-
180          * back mode, but it still works well with limited extra rounds of
181          * update_writeback_rate().
182          */
183         if (atomic_inc_return(&c->idle_counter) <
184             atomic_read(&c->attached_dev_nr) * 6)
185                 return false;
186
187         if (atomic_read(&c->at_max_writeback_rate) != 1)
188                 atomic_set(&c->at_max_writeback_rate, 1);
189
190         atomic_long_set(&dc->writeback_rate.rate, INT_MAX);
191
192         /* keep writeback_rate_target as existing value */
193         dc->writeback_rate_proportional = 0;
194         dc->writeback_rate_integral_scaled = 0;
195         dc->writeback_rate_change = 0;
196
197         /*
198          * Check c->idle_counter and c->at_max_writeback_rate agagain in case
199          * new I/O arrives during before set_at_max_writeback_rate() returns.
200          * Then the writeback rate is set to 1, and its new value should be
201          * decided via __update_writeback_rate().
202          */
203         if ((atomic_read(&c->idle_counter) <
204              atomic_read(&c->attached_dev_nr) * 6) ||
205             !atomic_read(&c->at_max_writeback_rate))
206                 return false;
207
208         return true;
209 }
210
211 static void update_writeback_rate(struct work_struct *work)
212 {
213         struct cached_dev *dc = container_of(to_delayed_work(work),
214                                              struct cached_dev,
215                                              writeback_rate_update);
216         struct cache_set *c = dc->disk.c;
217
218         /*
219          * should check BCACHE_DEV_RATE_DW_RUNNING before calling
220          * cancel_delayed_work_sync().
221          */
222         set_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
223         /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
224         smp_mb__after_atomic();
225
226         /*
227          * CACHE_SET_IO_DISABLE might be set via sysfs interface,
228          * check it here too.
229          */
230         if (!test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) ||
231             test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
232                 clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
233                 /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
234                 smp_mb__after_atomic();
235                 return;
236         }
237
238         if (atomic_read(&dc->has_dirty) && dc->writeback_percent) {
239                 /*
240                  * If the whole cache set is idle, set_at_max_writeback_rate()
241                  * will set writeback rate to a max number. Then it is
242                  * unncessary to update writeback rate for an idle cache set
243                  * in maximum writeback rate number(s).
244                  */
245                 if (!set_at_max_writeback_rate(c, dc)) {
246                         down_read(&dc->writeback_lock);
247                         __update_writeback_rate(dc);
248                         update_gc_after_writeback(c);
249                         up_read(&dc->writeback_lock);
250                 }
251         }
252
253
254         /*
255          * CACHE_SET_IO_DISABLE might be set via sysfs interface,
256          * check it here too.
257          */
258         if (test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) &&
259             !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
260                 schedule_delayed_work(&dc->writeback_rate_update,
261                               dc->writeback_rate_update_seconds * HZ);
262         }
263
264         /*
265          * should check BCACHE_DEV_RATE_DW_RUNNING before calling
266          * cancel_delayed_work_sync().
267          */
268         clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
269         /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
270         smp_mb__after_atomic();
271 }
272
273 static unsigned int writeback_delay(struct cached_dev *dc,
274                                     unsigned int sectors)
275 {
276         if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
277             !dc->writeback_percent)
278                 return 0;
279
280         return bch_next_delay(&dc->writeback_rate, sectors);
281 }
282
283 struct dirty_io {
284         struct closure          cl;
285         struct cached_dev       *dc;
286         uint16_t                sequence;
287         struct bio              bio;
288 };
289
290 static void dirty_init(struct keybuf_key *w)
291 {
292         struct dirty_io *io = w->private;
293         struct bio *bio = &io->bio;
294
295         bio_init(bio, bio->bi_inline_vecs,
296                  DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS));
297         if (!io->dc->writeback_percent)
298                 bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
299
300         bio->bi_iter.bi_size    = KEY_SIZE(&w->key) << 9;
301         bio->bi_private         = w;
302         bch_bio_map(bio, NULL);
303 }
304
305 static void dirty_io_destructor(struct closure *cl)
306 {
307         struct dirty_io *io = container_of(cl, struct dirty_io, cl);
308
309         kfree(io);
310 }
311
312 static void write_dirty_finish(struct closure *cl)
313 {
314         struct dirty_io *io = container_of(cl, struct dirty_io, cl);
315         struct keybuf_key *w = io->bio.bi_private;
316         struct cached_dev *dc = io->dc;
317
318         bio_free_pages(&io->bio);
319
320         /* This is kind of a dumb way of signalling errors. */
321         if (KEY_DIRTY(&w->key)) {
322                 int ret;
323                 unsigned int i;
324                 struct keylist keys;
325
326                 bch_keylist_init(&keys);
327
328                 bkey_copy(keys.top, &w->key);
329                 SET_KEY_DIRTY(keys.top, false);
330                 bch_keylist_push(&keys);
331
332                 for (i = 0; i < KEY_PTRS(&w->key); i++)
333                         atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
334
335                 ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key);
336
337                 if (ret)
338                         trace_bcache_writeback_collision(&w->key);
339
340                 atomic_long_inc(ret
341                                 ? &dc->disk.c->writeback_keys_failed
342                                 : &dc->disk.c->writeback_keys_done);
343         }
344
345         bch_keybuf_del(&dc->writeback_keys, w);
346         up(&dc->in_flight);
347
348         closure_return_with_destructor(cl, dirty_io_destructor);
349 }
350
351 static void dirty_endio(struct bio *bio)
352 {
353         struct keybuf_key *w = bio->bi_private;
354         struct dirty_io *io = w->private;
355
356         if (bio->bi_status) {
357                 SET_KEY_DIRTY(&w->key, false);
358                 bch_count_backing_io_errors(io->dc, bio);
359         }
360
361         closure_put(&io->cl);
362 }
363
364 static void write_dirty(struct closure *cl)
365 {
366         struct dirty_io *io = container_of(cl, struct dirty_io, cl);
367         struct keybuf_key *w = io->bio.bi_private;
368         struct cached_dev *dc = io->dc;
369
370         uint16_t next_sequence;
371
372         if (atomic_read(&dc->writeback_sequence_next) != io->sequence) {
373                 /* Not our turn to write; wait for a write to complete */
374                 closure_wait(&dc->writeback_ordering_wait, cl);
375
376                 if (atomic_read(&dc->writeback_sequence_next) == io->sequence) {
377                         /*
378                          * Edge case-- it happened in indeterminate order
379                          * relative to when we were added to wait list..
380                          */
381                         closure_wake_up(&dc->writeback_ordering_wait);
382                 }
383
384                 continue_at(cl, write_dirty, io->dc->writeback_write_wq);
385                 return;
386         }
387
388         next_sequence = io->sequence + 1;
389
390         /*
391          * IO errors are signalled using the dirty bit on the key.
392          * If we failed to read, we should not attempt to write to the
393          * backing device.  Instead, immediately go to write_dirty_finish
394          * to clean up.
395          */
396         if (KEY_DIRTY(&w->key)) {
397                 dirty_init(w);
398                 bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0);
399                 io->bio.bi_iter.bi_sector = KEY_START(&w->key);
400                 bio_set_dev(&io->bio, io->dc->bdev);
401                 io->bio.bi_end_io       = dirty_endio;
402
403                 /* I/O request sent to backing device */
404                 closure_bio_submit(io->dc->disk.c, &io->bio, cl);
405         }
406
407         atomic_set(&dc->writeback_sequence_next, next_sequence);
408         closure_wake_up(&dc->writeback_ordering_wait);
409
410         continue_at(cl, write_dirty_finish, io->dc->writeback_write_wq);
411 }
412
413 static void read_dirty_endio(struct bio *bio)
414 {
415         struct keybuf_key *w = bio->bi_private;
416         struct dirty_io *io = w->private;
417
418         /* is_read = 1 */
419         bch_count_io_errors(io->dc->disk.c->cache,
420                             bio->bi_status, 1,
421                             "reading dirty data from cache");
422
423         dirty_endio(bio);
424 }
425
426 static void read_dirty_submit(struct closure *cl)
427 {
428         struct dirty_io *io = container_of(cl, struct dirty_io, cl);
429
430         closure_bio_submit(io->dc->disk.c, &io->bio, cl);
431
432         continue_at(cl, write_dirty, io->dc->writeback_write_wq);
433 }
434
435 static void read_dirty(struct cached_dev *dc)
436 {
437         unsigned int delay = 0;
438         struct keybuf_key *next, *keys[MAX_WRITEBACKS_IN_PASS], *w;
439         size_t size;
440         int nk, i;
441         struct dirty_io *io;
442         struct closure cl;
443         uint16_t sequence = 0;
444
445         BUG_ON(!llist_empty(&dc->writeback_ordering_wait.list));
446         atomic_set(&dc->writeback_sequence_next, sequence);
447         closure_init_stack(&cl);
448
449         /*
450          * XXX: if we error, background writeback just spins. Should use some
451          * mempools.
452          */
453
454         next = bch_keybuf_next(&dc->writeback_keys);
455
456         while (!kthread_should_stop() &&
457                !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
458                next) {
459                 size = 0;
460                 nk = 0;
461
462                 do {
463                         BUG_ON(ptr_stale(dc->disk.c, &next->key, 0));
464
465                         /*
466                          * Don't combine too many operations, even if they
467                          * are all small.
468                          */
469                         if (nk >= MAX_WRITEBACKS_IN_PASS)
470                                 break;
471
472                         /*
473                          * If the current operation is very large, don't
474                          * further combine operations.
475                          */
476                         if (size >= MAX_WRITESIZE_IN_PASS)
477                                 break;
478
479                         /*
480                          * Operations are only eligible to be combined
481                          * if they are contiguous.
482                          *
483                          * TODO: add a heuristic willing to fire a
484                          * certain amount of non-contiguous IO per pass,
485                          * so that we can benefit from backing device
486                          * command queueing.
487                          */
488                         if ((nk != 0) && bkey_cmp(&keys[nk-1]->key,
489                                                 &START_KEY(&next->key)))
490                                 break;
491
492                         size += KEY_SIZE(&next->key);
493                         keys[nk++] = next;
494                 } while ((next = bch_keybuf_next(&dc->writeback_keys)));
495
496                 /* Now we have gathered a set of 1..5 keys to write back. */
497                 for (i = 0; i < nk; i++) {
498                         w = keys[i];
499
500                         io = kzalloc(struct_size(io, bio.bi_inline_vecs,
501                                                 DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS)),
502                                      GFP_KERNEL);
503                         if (!io)
504                                 goto err;
505
506                         w->private      = io;
507                         io->dc          = dc;
508                         io->sequence    = sequence++;
509
510                         dirty_init(w);
511                         bio_set_op_attrs(&io->bio, REQ_OP_READ, 0);
512                         io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0);
513                         bio_set_dev(&io->bio, dc->disk.c->cache->bdev);
514                         io->bio.bi_end_io       = read_dirty_endio;
515
516                         if (bch_bio_alloc_pages(&io->bio, GFP_KERNEL))
517                                 goto err_free;
518
519                         trace_bcache_writeback(&w->key);
520
521                         down(&dc->in_flight);
522
523                         /*
524                          * We've acquired a semaphore for the maximum
525                          * simultaneous number of writebacks; from here
526                          * everything happens asynchronously.
527                          */
528                         closure_call(&io->cl, read_dirty_submit, NULL, &cl);
529                 }
530
531                 delay = writeback_delay(dc, size);
532
533                 while (!kthread_should_stop() &&
534                        !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
535                        delay) {
536                         schedule_timeout_interruptible(delay);
537                         delay = writeback_delay(dc, 0);
538                 }
539         }
540
541         if (0) {
542 err_free:
543                 kfree(w->private);
544 err:
545                 bch_keybuf_del(&dc->writeback_keys, w);
546         }
547
548         /*
549          * Wait for outstanding writeback IOs to finish (and keybuf slots to be
550          * freed) before refilling again
551          */
552         closure_sync(&cl);
553 }
554
555 /* Scan for dirty data */
556
557 void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned int inode,
558                                   uint64_t offset, int nr_sectors)
559 {
560         struct bcache_device *d = c->devices[inode];
561         unsigned int stripe_offset, sectors_dirty;
562         int stripe;
563
564         if (!d)
565                 return;
566
567         stripe = offset_to_stripe(d, offset);
568         if (stripe < 0)
569                 return;
570
571         if (UUID_FLASH_ONLY(&c->uuids[inode]))
572                 atomic_long_add(nr_sectors, &c->flash_dev_dirty_sectors);
573
574         stripe_offset = offset & (d->stripe_size - 1);
575
576         while (nr_sectors) {
577                 int s = min_t(unsigned int, abs(nr_sectors),
578                               d->stripe_size - stripe_offset);
579
580                 if (nr_sectors < 0)
581                         s = -s;
582
583                 if (stripe >= d->nr_stripes)
584                         return;
585
586                 sectors_dirty = atomic_add_return(s,
587                                         d->stripe_sectors_dirty + stripe);
588                 if (sectors_dirty == d->stripe_size)
589                         set_bit(stripe, d->full_dirty_stripes);
590                 else
591                         clear_bit(stripe, d->full_dirty_stripes);
592
593                 nr_sectors -= s;
594                 stripe_offset = 0;
595                 stripe++;
596         }
597 }
598
599 static bool dirty_pred(struct keybuf *buf, struct bkey *k)
600 {
601         struct cached_dev *dc = container_of(buf,
602                                              struct cached_dev,
603                                              writeback_keys);
604
605         BUG_ON(KEY_INODE(k) != dc->disk.id);
606
607         return KEY_DIRTY(k);
608 }
609
610 static void refill_full_stripes(struct cached_dev *dc)
611 {
612         struct keybuf *buf = &dc->writeback_keys;
613         unsigned int start_stripe, next_stripe;
614         int stripe;
615         bool wrapped = false;
616
617         stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned));
618         if (stripe < 0)
619                 stripe = 0;
620
621         start_stripe = stripe;
622
623         while (1) {
624                 stripe = find_next_bit(dc->disk.full_dirty_stripes,
625                                        dc->disk.nr_stripes, stripe);
626
627                 if (stripe == dc->disk.nr_stripes)
628                         goto next;
629
630                 next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
631                                                  dc->disk.nr_stripes, stripe);
632
633                 buf->last_scanned = KEY(dc->disk.id,
634                                         stripe * dc->disk.stripe_size, 0);
635
636                 bch_refill_keybuf(dc->disk.c, buf,
637                                   &KEY(dc->disk.id,
638                                        next_stripe * dc->disk.stripe_size, 0),
639                                   dirty_pred);
640
641                 if (array_freelist_empty(&buf->freelist))
642                         return;
643
644                 stripe = next_stripe;
645 next:
646                 if (wrapped && stripe > start_stripe)
647                         return;
648
649                 if (stripe == dc->disk.nr_stripes) {
650                         stripe = 0;
651                         wrapped = true;
652                 }
653         }
654 }
655
656 /*
657  * Returns true if we scanned the entire disk
658  */
659 static bool refill_dirty(struct cached_dev *dc)
660 {
661         struct keybuf *buf = &dc->writeback_keys;
662         struct bkey start = KEY(dc->disk.id, 0, 0);
663         struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0);
664         struct bkey start_pos;
665
666         /*
667          * make sure keybuf pos is inside the range for this disk - at bringup
668          * we might not be attached yet so this disk's inode nr isn't
669          * initialized then
670          */
671         if (bkey_cmp(&buf->last_scanned, &start) < 0 ||
672             bkey_cmp(&buf->last_scanned, &end) > 0)
673                 buf->last_scanned = start;
674
675         if (dc->partial_stripes_expensive) {
676                 refill_full_stripes(dc);
677                 if (array_freelist_empty(&buf->freelist))
678                         return false;
679         }
680
681         start_pos = buf->last_scanned;
682         bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
683
684         if (bkey_cmp(&buf->last_scanned, &end) < 0)
685                 return false;
686
687         /*
688          * If we get to the end start scanning again from the beginning, and
689          * only scan up to where we initially started scanning from:
690          */
691         buf->last_scanned = start;
692         bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred);
693
694         return bkey_cmp(&buf->last_scanned, &start_pos) >= 0;
695 }
696
697 static int bch_writeback_thread(void *arg)
698 {
699         struct cached_dev *dc = arg;
700         struct cache_set *c = dc->disk.c;
701         bool searched_full_index;
702
703         bch_ratelimit_reset(&dc->writeback_rate);
704
705         while (!kthread_should_stop() &&
706                !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
707                 down_write(&dc->writeback_lock);
708                 set_current_state(TASK_INTERRUPTIBLE);
709                 /*
710                  * If the bache device is detaching, skip here and continue
711                  * to perform writeback. Otherwise, if no dirty data on cache,
712                  * or there is dirty data on cache but writeback is disabled,
713                  * the writeback thread should sleep here and wait for others
714                  * to wake up it.
715                  */
716                 if (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
717                     (!atomic_read(&dc->has_dirty) || !dc->writeback_running)) {
718                         up_write(&dc->writeback_lock);
719
720                         if (kthread_should_stop() ||
721                             test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
722                                 set_current_state(TASK_RUNNING);
723                                 break;
724                         }
725
726                         schedule();
727                         continue;
728                 }
729                 set_current_state(TASK_RUNNING);
730
731                 searched_full_index = refill_dirty(dc);
732
733                 if (searched_full_index &&
734                     RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
735                         atomic_set(&dc->has_dirty, 0);
736                         SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
737                         bch_write_bdev_super(dc, NULL);
738                         /*
739                          * If bcache device is detaching via sysfs interface,
740                          * writeback thread should stop after there is no dirty
741                          * data on cache. BCACHE_DEV_DETACHING flag is set in
742                          * bch_cached_dev_detach().
743                          */
744                         if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) {
745                                 struct closure cl;
746
747                                 closure_init_stack(&cl);
748                                 memset(&dc->sb.set_uuid, 0, 16);
749                                 SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
750
751                                 bch_write_bdev_super(dc, &cl);
752                                 closure_sync(&cl);
753
754                                 up_write(&dc->writeback_lock);
755                                 break;
756                         }
757
758                         /*
759                          * When dirty data rate is high (e.g. 50%+), there might
760                          * be heavy buckets fragmentation after writeback
761                          * finished, which hurts following write performance.
762                          * If users really care about write performance they
763                          * may set BCH_ENABLE_AUTO_GC via sysfs, then when
764                          * BCH_DO_AUTO_GC is set, garbage collection thread
765                          * will be wake up here. After moving gc, the shrunk
766                          * btree and discarded free buckets SSD space may be
767                          * helpful for following write requests.
768                          */
769                         if (c->gc_after_writeback ==
770                             (BCH_ENABLE_AUTO_GC|BCH_DO_AUTO_GC)) {
771                                 c->gc_after_writeback &= ~BCH_DO_AUTO_GC;
772                                 force_wake_up_gc(c);
773                         }
774                 }
775
776                 up_write(&dc->writeback_lock);
777
778                 read_dirty(dc);
779
780                 if (searched_full_index) {
781                         unsigned int delay = dc->writeback_delay * HZ;
782
783                         while (delay &&
784                                !kthread_should_stop() &&
785                                !test_bit(CACHE_SET_IO_DISABLE, &c->flags) &&
786                                !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
787                                 delay = schedule_timeout_interruptible(delay);
788
789                         bch_ratelimit_reset(&dc->writeback_rate);
790                 }
791         }
792
793         if (dc->writeback_write_wq) {
794                 flush_workqueue(dc->writeback_write_wq);
795                 destroy_workqueue(dc->writeback_write_wq);
796         }
797         cached_dev_put(dc);
798         wait_for_kthread_stop();
799
800         return 0;
801 }
802
803 /* Init */
804 #define INIT_KEYS_EACH_TIME     500000
805 #define INIT_KEYS_SLEEP_MS      100
806
807 struct sectors_dirty_init {
808         struct btree_op op;
809         unsigned int    inode;
810         size_t          count;
811         struct bkey     start;
812 };
813
814 static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b,
815                                  struct bkey *k)
816 {
817         struct sectors_dirty_init *op = container_of(_op,
818                                                 struct sectors_dirty_init, op);
819         if (KEY_INODE(k) > op->inode)
820                 return MAP_DONE;
821
822         if (KEY_DIRTY(k))
823                 bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
824                                              KEY_START(k), KEY_SIZE(k));
825
826         op->count++;
827         if (atomic_read(&b->c->search_inflight) &&
828             !(op->count % INIT_KEYS_EACH_TIME)) {
829                 bkey_copy_key(&op->start, k);
830                 return -EAGAIN;
831         }
832
833         return MAP_CONTINUE;
834 }
835
836 static int bch_root_node_dirty_init(struct cache_set *c,
837                                      struct bcache_device *d,
838                                      struct bkey *k)
839 {
840         struct sectors_dirty_init op;
841         int ret;
842
843         bch_btree_op_init(&op.op, -1);
844         op.inode = d->id;
845         op.count = 0;
846         op.start = KEY(op.inode, 0, 0);
847
848         do {
849                 ret = bcache_btree(map_keys_recurse,
850                                    k,
851                                    c->root,
852                                    &op.op,
853                                    &op.start,
854                                    sectors_dirty_init_fn,
855                                    0);
856                 if (ret == -EAGAIN)
857                         schedule_timeout_interruptible(
858                                 msecs_to_jiffies(INIT_KEYS_SLEEP_MS));
859                 else if (ret < 0) {
860                         pr_warn("sectors dirty init failed, ret=%d!\n", ret);
861                         break;
862                 }
863         } while (ret == -EAGAIN);
864
865         return ret;
866 }
867
868 static int bch_dirty_init_thread(void *arg)
869 {
870         struct dirty_init_thrd_info *info = arg;
871         struct bch_dirty_init_state *state = info->state;
872         struct cache_set *c = state->c;
873         struct btree_iter iter;
874         struct bkey *k, *p;
875         int cur_idx, prev_idx, skip_nr;
876
877         k = p = NULL;
878         cur_idx = prev_idx = 0;
879
880         bch_btree_iter_init(&c->root->keys, &iter, NULL);
881         k = bch_btree_iter_next_filter(&iter, &c->root->keys, bch_ptr_bad);
882         BUG_ON(!k);
883
884         p = k;
885
886         while (k) {
887                 spin_lock(&state->idx_lock);
888                 cur_idx = state->key_idx;
889                 state->key_idx++;
890                 spin_unlock(&state->idx_lock);
891
892                 skip_nr = cur_idx - prev_idx;
893
894                 while (skip_nr) {
895                         k = bch_btree_iter_next_filter(&iter,
896                                                        &c->root->keys,
897                                                        bch_ptr_bad);
898                         if (k)
899                                 p = k;
900                         else {
901                                 atomic_set(&state->enough, 1);
902                                 /* Update state->enough earlier */
903                                 smp_mb__after_atomic();
904                                 goto out;
905                         }
906                         skip_nr--;
907                         cond_resched();
908                 }
909
910                 if (p) {
911                         if (bch_root_node_dirty_init(c, state->d, p) < 0)
912                                 goto out;
913                 }
914
915                 p = NULL;
916                 prev_idx = cur_idx;
917                 cond_resched();
918         }
919
920 out:
921         /* In order to wake up state->wait in time */
922         smp_mb__before_atomic();
923         if (atomic_dec_and_test(&state->started))
924                 wake_up(&state->wait);
925
926         return 0;
927 }
928
929 static int bch_btre_dirty_init_thread_nr(void)
930 {
931         int n = num_online_cpus()/2;
932
933         if (n == 0)
934                 n = 1;
935         else if (n > BCH_DIRTY_INIT_THRD_MAX)
936                 n = BCH_DIRTY_INIT_THRD_MAX;
937
938         return n;
939 }
940
941 void bch_sectors_dirty_init(struct bcache_device *d)
942 {
943         int i;
944         struct bkey *k = NULL;
945         struct btree_iter iter;
946         struct sectors_dirty_init op;
947         struct cache_set *c = d->c;
948         struct bch_dirty_init_state *state;
949         char name[32];
950
951         /* Just count root keys if no leaf node */
952         if (c->root->level == 0) {
953                 bch_btree_op_init(&op.op, -1);
954                 op.inode = d->id;
955                 op.count = 0;
956                 op.start = KEY(op.inode, 0, 0);
957
958                 for_each_key_filter(&c->root->keys,
959                                     k, &iter, bch_ptr_invalid)
960                         sectors_dirty_init_fn(&op.op, c->root, k);
961                 return;
962         }
963
964         state = kzalloc(sizeof(struct bch_dirty_init_state), GFP_KERNEL);
965         if (!state) {
966                 pr_warn("sectors dirty init failed: cannot allocate memory\n");
967                 return;
968         }
969
970         state->c = c;
971         state->d = d;
972         state->total_threads = bch_btre_dirty_init_thread_nr();
973         state->key_idx = 0;
974         spin_lock_init(&state->idx_lock);
975         atomic_set(&state->started, 0);
976         atomic_set(&state->enough, 0);
977         init_waitqueue_head(&state->wait);
978
979         for (i = 0; i < state->total_threads; i++) {
980                 /* Fetch latest state->enough earlier */
981                 smp_mb__before_atomic();
982                 if (atomic_read(&state->enough))
983                         break;
984
985                 state->infos[i].state = state;
986                 atomic_inc(&state->started);
987                 snprintf(name, sizeof(name), "bch_dirty_init[%d]", i);
988
989                 state->infos[i].thread =
990                         kthread_run(bch_dirty_init_thread,
991                                     &state->infos[i],
992                                     name);
993                 if (IS_ERR(state->infos[i].thread)) {
994                         pr_err("fails to run thread bch_dirty_init[%d]\n", i);
995                         for (--i; i >= 0; i--)
996                                 kthread_stop(state->infos[i].thread);
997                         goto out;
998                 }
999         }
1000
1001         wait_event_interruptible(state->wait,
1002                  atomic_read(&state->started) == 0 ||
1003                  test_bit(CACHE_SET_IO_DISABLE, &c->flags));
1004
1005 out:
1006         kfree(state);
1007 }
1008
1009 void bch_cached_dev_writeback_init(struct cached_dev *dc)
1010 {
1011         sema_init(&dc->in_flight, 64);
1012         init_rwsem(&dc->writeback_lock);
1013         bch_keybuf_init(&dc->writeback_keys);
1014
1015         dc->writeback_metadata          = true;
1016         dc->writeback_running           = false;
1017         dc->writeback_consider_fragment = true;
1018         dc->writeback_percent           = 10;
1019         dc->writeback_delay             = 30;
1020         atomic_long_set(&dc->writeback_rate.rate, 1024);
1021         dc->writeback_rate_minimum      = 8;
1022
1023         dc->writeback_rate_update_seconds = WRITEBACK_RATE_UPDATE_SECS_DEFAULT;
1024         dc->writeback_rate_p_term_inverse = 40;
1025         dc->writeback_rate_fp_term_low = 1;
1026         dc->writeback_rate_fp_term_mid = 10;
1027         dc->writeback_rate_fp_term_high = 1000;
1028         dc->writeback_rate_i_term_inverse = 10000;
1029
1030         WARN_ON(test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
1031         INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
1032 }
1033
1034 int bch_cached_dev_writeback_start(struct cached_dev *dc)
1035 {
1036         dc->writeback_write_wq = alloc_workqueue("bcache_writeback_wq",
1037                                                 WQ_MEM_RECLAIM, 0);
1038         if (!dc->writeback_write_wq)
1039                 return -ENOMEM;
1040
1041         cached_dev_get(dc);
1042         dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
1043                                               "bcache_writeback");
1044         if (IS_ERR(dc->writeback_thread)) {
1045                 cached_dev_put(dc);
1046                 destroy_workqueue(dc->writeback_write_wq);
1047                 return PTR_ERR(dc->writeback_thread);
1048         }
1049         dc->writeback_running = true;
1050
1051         WARN_ON(test_and_set_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
1052         schedule_delayed_work(&dc->writeback_rate_update,
1053                               dc->writeback_rate_update_seconds * HZ);
1054
1055         bch_writeback_queue(dc);
1056
1057         return 0;
1058 }