Merge tag 'keys-misc-20190619' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowe...
[linux-2.6-microblaze.git] / drivers / md / bcache / writeback.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * background writeback - scan btree for dirty data and write it to the backing
4  * device
5  *
6  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7  * Copyright 2012 Google, Inc.
8  */
9
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "writeback.h"
14
15 #include <linux/delay.h>
16 #include <linux/kthread.h>
17 #include <linux/sched/clock.h>
18 #include <trace/events/bcache.h>
19
20 static void update_gc_after_writeback(struct cache_set *c)
21 {
22         if (c->gc_after_writeback != (BCH_ENABLE_AUTO_GC) ||
23             c->gc_stats.in_use < BCH_AUTO_GC_DIRTY_THRESHOLD)
24                 return;
25
26         c->gc_after_writeback |= BCH_DO_AUTO_GC;
27 }
28
29 /* Rate limiting */
30 static uint64_t __calc_target_rate(struct cached_dev *dc)
31 {
32         struct cache_set *c = dc->disk.c;
33
34         /*
35          * This is the size of the cache, minus the amount used for
36          * flash-only devices
37          */
38         uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size -
39                                 atomic_long_read(&c->flash_dev_dirty_sectors);
40
41         /*
42          * Unfortunately there is no control of global dirty data.  If the
43          * user states that they want 10% dirty data in the cache, and has,
44          * e.g., 5 backing volumes of equal size, we try and ensure each
45          * backing volume uses about 2% of the cache for dirty data.
46          */
47         uint32_t bdev_share =
48                 div64_u64(bdev_sectors(dc->bdev) << WRITEBACK_SHARE_SHIFT,
49                                 c->cached_dev_sectors);
50
51         uint64_t cache_dirty_target =
52                 div_u64(cache_sectors * dc->writeback_percent, 100);
53
54         /* Ensure each backing dev gets at least one dirty share */
55         if (bdev_share < 1)
56                 bdev_share = 1;
57
58         return (cache_dirty_target * bdev_share) >> WRITEBACK_SHARE_SHIFT;
59 }
60
61 static void __update_writeback_rate(struct cached_dev *dc)
62 {
63         /*
64          * PI controller:
65          * Figures out the amount that should be written per second.
66          *
67          * First, the error (number of sectors that are dirty beyond our
68          * target) is calculated.  The error is accumulated (numerically
69          * integrated).
70          *
71          * Then, the proportional value and integral value are scaled
72          * based on configured values.  These are stored as inverses to
73          * avoid fixed point math and to make configuration easy-- e.g.
74          * the default value of 40 for writeback_rate_p_term_inverse
75          * attempts to write at a rate that would retire all the dirty
76          * blocks in 40 seconds.
77          *
78          * The writeback_rate_i_inverse value of 10000 means that 1/10000th
79          * of the error is accumulated in the integral term per second.
80          * This acts as a slow, long-term average that is not subject to
81          * variations in usage like the p term.
82          */
83         int64_t target = __calc_target_rate(dc);
84         int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
85         int64_t error = dirty - target;
86         int64_t proportional_scaled =
87                 div_s64(error, dc->writeback_rate_p_term_inverse);
88         int64_t integral_scaled;
89         uint32_t new_rate;
90
91         if ((error < 0 && dc->writeback_rate_integral > 0) ||
92             (error > 0 && time_before64(local_clock(),
93                          dc->writeback_rate.next + NSEC_PER_MSEC))) {
94                 /*
95                  * Only decrease the integral term if it's more than
96                  * zero.  Only increase the integral term if the device
97                  * is keeping up.  (Don't wind up the integral
98                  * ineffectively in either case).
99                  *
100                  * It's necessary to scale this by
101                  * writeback_rate_update_seconds to keep the integral
102                  * term dimensioned properly.
103                  */
104                 dc->writeback_rate_integral += error *
105                         dc->writeback_rate_update_seconds;
106         }
107
108         integral_scaled = div_s64(dc->writeback_rate_integral,
109                         dc->writeback_rate_i_term_inverse);
110
111         new_rate = clamp_t(int32_t, (proportional_scaled + integral_scaled),
112                         dc->writeback_rate_minimum, NSEC_PER_SEC);
113
114         dc->writeback_rate_proportional = proportional_scaled;
115         dc->writeback_rate_integral_scaled = integral_scaled;
116         dc->writeback_rate_change = new_rate -
117                         atomic_long_read(&dc->writeback_rate.rate);
118         atomic_long_set(&dc->writeback_rate.rate, new_rate);
119         dc->writeback_rate_target = target;
120 }
121
122 static bool set_at_max_writeback_rate(struct cache_set *c,
123                                        struct cached_dev *dc)
124 {
125         /*
126          * Idle_counter is increased everytime when update_writeback_rate() is
127          * called. If all backing devices attached to the same cache set have
128          * identical dc->writeback_rate_update_seconds values, it is about 6
129          * rounds of update_writeback_rate() on each backing device before
130          * c->at_max_writeback_rate is set to 1, and then max wrteback rate set
131          * to each dc->writeback_rate.rate.
132          * In order to avoid extra locking cost for counting exact dirty cached
133          * devices number, c->attached_dev_nr is used to calculate the idle
134          * throushold. It might be bigger if not all cached device are in write-
135          * back mode, but it still works well with limited extra rounds of
136          * update_writeback_rate().
137          */
138         if (atomic_inc_return(&c->idle_counter) <
139             atomic_read(&c->attached_dev_nr) * 6)
140                 return false;
141
142         if (atomic_read(&c->at_max_writeback_rate) != 1)
143                 atomic_set(&c->at_max_writeback_rate, 1);
144
145         atomic_long_set(&dc->writeback_rate.rate, INT_MAX);
146
147         /* keep writeback_rate_target as existing value */
148         dc->writeback_rate_proportional = 0;
149         dc->writeback_rate_integral_scaled = 0;
150         dc->writeback_rate_change = 0;
151
152         /*
153          * Check c->idle_counter and c->at_max_writeback_rate agagain in case
154          * new I/O arrives during before set_at_max_writeback_rate() returns.
155          * Then the writeback rate is set to 1, and its new value should be
156          * decided via __update_writeback_rate().
157          */
158         if ((atomic_read(&c->idle_counter) <
159              atomic_read(&c->attached_dev_nr) * 6) ||
160             !atomic_read(&c->at_max_writeback_rate))
161                 return false;
162
163         return true;
164 }
165
166 static void update_writeback_rate(struct work_struct *work)
167 {
168         struct cached_dev *dc = container_of(to_delayed_work(work),
169                                              struct cached_dev,
170                                              writeback_rate_update);
171         struct cache_set *c = dc->disk.c;
172
173         /*
174          * should check BCACHE_DEV_RATE_DW_RUNNING before calling
175          * cancel_delayed_work_sync().
176          */
177         set_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
178         /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
179         smp_mb();
180
181         /*
182          * CACHE_SET_IO_DISABLE might be set via sysfs interface,
183          * check it here too.
184          */
185         if (!test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) ||
186             test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
187                 clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
188                 /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
189                 smp_mb();
190                 return;
191         }
192
193         if (atomic_read(&dc->has_dirty) && dc->writeback_percent) {
194                 /*
195                  * If the whole cache set is idle, set_at_max_writeback_rate()
196                  * will set writeback rate to a max number. Then it is
197                  * unncessary to update writeback rate for an idle cache set
198                  * in maximum writeback rate number(s).
199                  */
200                 if (!set_at_max_writeback_rate(c, dc)) {
201                         down_read(&dc->writeback_lock);
202                         __update_writeback_rate(dc);
203                         update_gc_after_writeback(c);
204                         up_read(&dc->writeback_lock);
205                 }
206         }
207
208
209         /*
210          * CACHE_SET_IO_DISABLE might be set via sysfs interface,
211          * check it here too.
212          */
213         if (test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) &&
214             !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
215                 schedule_delayed_work(&dc->writeback_rate_update,
216                               dc->writeback_rate_update_seconds * HZ);
217         }
218
219         /*
220          * should check BCACHE_DEV_RATE_DW_RUNNING before calling
221          * cancel_delayed_work_sync().
222          */
223         clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
224         /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
225         smp_mb();
226 }
227
228 static unsigned int writeback_delay(struct cached_dev *dc,
229                                     unsigned int sectors)
230 {
231         if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
232             !dc->writeback_percent)
233                 return 0;
234
235         return bch_next_delay(&dc->writeback_rate, sectors);
236 }
237
238 struct dirty_io {
239         struct closure          cl;
240         struct cached_dev       *dc;
241         uint16_t                sequence;
242         struct bio              bio;
243 };
244
245 static void dirty_init(struct keybuf_key *w)
246 {
247         struct dirty_io *io = w->private;
248         struct bio *bio = &io->bio;
249
250         bio_init(bio, bio->bi_inline_vecs,
251                  DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS));
252         if (!io->dc->writeback_percent)
253                 bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
254
255         bio->bi_iter.bi_size    = KEY_SIZE(&w->key) << 9;
256         bio->bi_private         = w;
257         bch_bio_map(bio, NULL);
258 }
259
260 static void dirty_io_destructor(struct closure *cl)
261 {
262         struct dirty_io *io = container_of(cl, struct dirty_io, cl);
263
264         kfree(io);
265 }
266
267 static void write_dirty_finish(struct closure *cl)
268 {
269         struct dirty_io *io = container_of(cl, struct dirty_io, cl);
270         struct keybuf_key *w = io->bio.bi_private;
271         struct cached_dev *dc = io->dc;
272
273         bio_free_pages(&io->bio);
274
275         /* This is kind of a dumb way of signalling errors. */
276         if (KEY_DIRTY(&w->key)) {
277                 int ret;
278                 unsigned int i;
279                 struct keylist keys;
280
281                 bch_keylist_init(&keys);
282
283                 bkey_copy(keys.top, &w->key);
284                 SET_KEY_DIRTY(keys.top, false);
285                 bch_keylist_push(&keys);
286
287                 for (i = 0; i < KEY_PTRS(&w->key); i++)
288                         atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
289
290                 ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key);
291
292                 if (ret)
293                         trace_bcache_writeback_collision(&w->key);
294
295                 atomic_long_inc(ret
296                                 ? &dc->disk.c->writeback_keys_failed
297                                 : &dc->disk.c->writeback_keys_done);
298         }
299
300         bch_keybuf_del(&dc->writeback_keys, w);
301         up(&dc->in_flight);
302
303         closure_return_with_destructor(cl, dirty_io_destructor);
304 }
305
306 static void dirty_endio(struct bio *bio)
307 {
308         struct keybuf_key *w = bio->bi_private;
309         struct dirty_io *io = w->private;
310
311         if (bio->bi_status) {
312                 SET_KEY_DIRTY(&w->key, false);
313                 bch_count_backing_io_errors(io->dc, bio);
314         }
315
316         closure_put(&io->cl);
317 }
318
319 static void write_dirty(struct closure *cl)
320 {
321         struct dirty_io *io = container_of(cl, struct dirty_io, cl);
322         struct keybuf_key *w = io->bio.bi_private;
323         struct cached_dev *dc = io->dc;
324
325         uint16_t next_sequence;
326
327         if (atomic_read(&dc->writeback_sequence_next) != io->sequence) {
328                 /* Not our turn to write; wait for a write to complete */
329                 closure_wait(&dc->writeback_ordering_wait, cl);
330
331                 if (atomic_read(&dc->writeback_sequence_next) == io->sequence) {
332                         /*
333                          * Edge case-- it happened in indeterminate order
334                          * relative to when we were added to wait list..
335                          */
336                         closure_wake_up(&dc->writeback_ordering_wait);
337                 }
338
339                 continue_at(cl, write_dirty, io->dc->writeback_write_wq);
340                 return;
341         }
342
343         next_sequence = io->sequence + 1;
344
345         /*
346          * IO errors are signalled using the dirty bit on the key.
347          * If we failed to read, we should not attempt to write to the
348          * backing device.  Instead, immediately go to write_dirty_finish
349          * to clean up.
350          */
351         if (KEY_DIRTY(&w->key)) {
352                 dirty_init(w);
353                 bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0);
354                 io->bio.bi_iter.bi_sector = KEY_START(&w->key);
355                 bio_set_dev(&io->bio, io->dc->bdev);
356                 io->bio.bi_end_io       = dirty_endio;
357
358                 /* I/O request sent to backing device */
359                 closure_bio_submit(io->dc->disk.c, &io->bio, cl);
360         }
361
362         atomic_set(&dc->writeback_sequence_next, next_sequence);
363         closure_wake_up(&dc->writeback_ordering_wait);
364
365         continue_at(cl, write_dirty_finish, io->dc->writeback_write_wq);
366 }
367
368 static void read_dirty_endio(struct bio *bio)
369 {
370         struct keybuf_key *w = bio->bi_private;
371         struct dirty_io *io = w->private;
372
373         /* is_read = 1 */
374         bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
375                             bio->bi_status, 1,
376                             "reading dirty data from cache");
377
378         dirty_endio(bio);
379 }
380
381 static void read_dirty_submit(struct closure *cl)
382 {
383         struct dirty_io *io = container_of(cl, struct dirty_io, cl);
384
385         closure_bio_submit(io->dc->disk.c, &io->bio, cl);
386
387         continue_at(cl, write_dirty, io->dc->writeback_write_wq);
388 }
389
390 static void read_dirty(struct cached_dev *dc)
391 {
392         unsigned int delay = 0;
393         struct keybuf_key *next, *keys[MAX_WRITEBACKS_IN_PASS], *w;
394         size_t size;
395         int nk, i;
396         struct dirty_io *io;
397         struct closure cl;
398         uint16_t sequence = 0;
399
400         BUG_ON(!llist_empty(&dc->writeback_ordering_wait.list));
401         atomic_set(&dc->writeback_sequence_next, sequence);
402         closure_init_stack(&cl);
403
404         /*
405          * XXX: if we error, background writeback just spins. Should use some
406          * mempools.
407          */
408
409         next = bch_keybuf_next(&dc->writeback_keys);
410
411         while (!kthread_should_stop() &&
412                !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
413                next) {
414                 size = 0;
415                 nk = 0;
416
417                 do {
418                         BUG_ON(ptr_stale(dc->disk.c, &next->key, 0));
419
420                         /*
421                          * Don't combine too many operations, even if they
422                          * are all small.
423                          */
424                         if (nk >= MAX_WRITEBACKS_IN_PASS)
425                                 break;
426
427                         /*
428                          * If the current operation is very large, don't
429                          * further combine operations.
430                          */
431                         if (size >= MAX_WRITESIZE_IN_PASS)
432                                 break;
433
434                         /*
435                          * Operations are only eligible to be combined
436                          * if they are contiguous.
437                          *
438                          * TODO: add a heuristic willing to fire a
439                          * certain amount of non-contiguous IO per pass,
440                          * so that we can benefit from backing device
441                          * command queueing.
442                          */
443                         if ((nk != 0) && bkey_cmp(&keys[nk-1]->key,
444                                                 &START_KEY(&next->key)))
445                                 break;
446
447                         size += KEY_SIZE(&next->key);
448                         keys[nk++] = next;
449                 } while ((next = bch_keybuf_next(&dc->writeback_keys)));
450
451                 /* Now we have gathered a set of 1..5 keys to write back. */
452                 for (i = 0; i < nk; i++) {
453                         w = keys[i];
454
455                         io = kzalloc(sizeof(struct dirty_io) +
456                                      sizeof(struct bio_vec) *
457                                      DIV_ROUND_UP(KEY_SIZE(&w->key),
458                                                   PAGE_SECTORS),
459                                      GFP_KERNEL);
460                         if (!io)
461                                 goto err;
462
463                         w->private      = io;
464                         io->dc          = dc;
465                         io->sequence    = sequence++;
466
467                         dirty_init(w);
468                         bio_set_op_attrs(&io->bio, REQ_OP_READ, 0);
469                         io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0);
470                         bio_set_dev(&io->bio,
471                                     PTR_CACHE(dc->disk.c, &w->key, 0)->bdev);
472                         io->bio.bi_end_io       = read_dirty_endio;
473
474                         if (bch_bio_alloc_pages(&io->bio, GFP_KERNEL))
475                                 goto err_free;
476
477                         trace_bcache_writeback(&w->key);
478
479                         down(&dc->in_flight);
480
481                         /*
482                          * We've acquired a semaphore for the maximum
483                          * simultaneous number of writebacks; from here
484                          * everything happens asynchronously.
485                          */
486                         closure_call(&io->cl, read_dirty_submit, NULL, &cl);
487                 }
488
489                 delay = writeback_delay(dc, size);
490
491                 while (!kthread_should_stop() &&
492                        !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
493                        delay) {
494                         schedule_timeout_interruptible(delay);
495                         delay = writeback_delay(dc, 0);
496                 }
497         }
498
499         if (0) {
500 err_free:
501                 kfree(w->private);
502 err:
503                 bch_keybuf_del(&dc->writeback_keys, w);
504         }
505
506         /*
507          * Wait for outstanding writeback IOs to finish (and keybuf slots to be
508          * freed) before refilling again
509          */
510         closure_sync(&cl);
511 }
512
513 /* Scan for dirty data */
514
515 void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned int inode,
516                                   uint64_t offset, int nr_sectors)
517 {
518         struct bcache_device *d = c->devices[inode];
519         unsigned int stripe_offset, stripe, sectors_dirty;
520
521         if (!d)
522                 return;
523
524         if (UUID_FLASH_ONLY(&c->uuids[inode]))
525                 atomic_long_add(nr_sectors, &c->flash_dev_dirty_sectors);
526
527         stripe = offset_to_stripe(d, offset);
528         stripe_offset = offset & (d->stripe_size - 1);
529
530         while (nr_sectors) {
531                 int s = min_t(unsigned int, abs(nr_sectors),
532                               d->stripe_size - stripe_offset);
533
534                 if (nr_sectors < 0)
535                         s = -s;
536
537                 if (stripe >= d->nr_stripes)
538                         return;
539
540                 sectors_dirty = atomic_add_return(s,
541                                         d->stripe_sectors_dirty + stripe);
542                 if (sectors_dirty == d->stripe_size)
543                         set_bit(stripe, d->full_dirty_stripes);
544                 else
545                         clear_bit(stripe, d->full_dirty_stripes);
546
547                 nr_sectors -= s;
548                 stripe_offset = 0;
549                 stripe++;
550         }
551 }
552
553 static bool dirty_pred(struct keybuf *buf, struct bkey *k)
554 {
555         struct cached_dev *dc = container_of(buf,
556                                              struct cached_dev,
557                                              writeback_keys);
558
559         BUG_ON(KEY_INODE(k) != dc->disk.id);
560
561         return KEY_DIRTY(k);
562 }
563
564 static void refill_full_stripes(struct cached_dev *dc)
565 {
566         struct keybuf *buf = &dc->writeback_keys;
567         unsigned int start_stripe, stripe, next_stripe;
568         bool wrapped = false;
569
570         stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned));
571
572         if (stripe >= dc->disk.nr_stripes)
573                 stripe = 0;
574
575         start_stripe = stripe;
576
577         while (1) {
578                 stripe = find_next_bit(dc->disk.full_dirty_stripes,
579                                        dc->disk.nr_stripes, stripe);
580
581                 if (stripe == dc->disk.nr_stripes)
582                         goto next;
583
584                 next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
585                                                  dc->disk.nr_stripes, stripe);
586
587                 buf->last_scanned = KEY(dc->disk.id,
588                                         stripe * dc->disk.stripe_size, 0);
589
590                 bch_refill_keybuf(dc->disk.c, buf,
591                                   &KEY(dc->disk.id,
592                                        next_stripe * dc->disk.stripe_size, 0),
593                                   dirty_pred);
594
595                 if (array_freelist_empty(&buf->freelist))
596                         return;
597
598                 stripe = next_stripe;
599 next:
600                 if (wrapped && stripe > start_stripe)
601                         return;
602
603                 if (stripe == dc->disk.nr_stripes) {
604                         stripe = 0;
605                         wrapped = true;
606                 }
607         }
608 }
609
610 /*
611  * Returns true if we scanned the entire disk
612  */
613 static bool refill_dirty(struct cached_dev *dc)
614 {
615         struct keybuf *buf = &dc->writeback_keys;
616         struct bkey start = KEY(dc->disk.id, 0, 0);
617         struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0);
618         struct bkey start_pos;
619
620         /*
621          * make sure keybuf pos is inside the range for this disk - at bringup
622          * we might not be attached yet so this disk's inode nr isn't
623          * initialized then
624          */
625         if (bkey_cmp(&buf->last_scanned, &start) < 0 ||
626             bkey_cmp(&buf->last_scanned, &end) > 0)
627                 buf->last_scanned = start;
628
629         if (dc->partial_stripes_expensive) {
630                 refill_full_stripes(dc);
631                 if (array_freelist_empty(&buf->freelist))
632                         return false;
633         }
634
635         start_pos = buf->last_scanned;
636         bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
637
638         if (bkey_cmp(&buf->last_scanned, &end) < 0)
639                 return false;
640
641         /*
642          * If we get to the end start scanning again from the beginning, and
643          * only scan up to where we initially started scanning from:
644          */
645         buf->last_scanned = start;
646         bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred);
647
648         return bkey_cmp(&buf->last_scanned, &start_pos) >= 0;
649 }
650
651 static int bch_writeback_thread(void *arg)
652 {
653         struct cached_dev *dc = arg;
654         struct cache_set *c = dc->disk.c;
655         bool searched_full_index;
656
657         bch_ratelimit_reset(&dc->writeback_rate);
658
659         while (!kthread_should_stop() &&
660                !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
661                 down_write(&dc->writeback_lock);
662                 set_current_state(TASK_INTERRUPTIBLE);
663                 /*
664                  * If the bache device is detaching, skip here and continue
665                  * to perform writeback. Otherwise, if no dirty data on cache,
666                  * or there is dirty data on cache but writeback is disabled,
667                  * the writeback thread should sleep here and wait for others
668                  * to wake up it.
669                  */
670                 if (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
671                     (!atomic_read(&dc->has_dirty) || !dc->writeback_running)) {
672                         up_write(&dc->writeback_lock);
673
674                         if (kthread_should_stop() ||
675                             test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
676                                 set_current_state(TASK_RUNNING);
677                                 break;
678                         }
679
680                         schedule();
681                         continue;
682                 }
683                 set_current_state(TASK_RUNNING);
684
685                 searched_full_index = refill_dirty(dc);
686
687                 if (searched_full_index &&
688                     RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
689                         atomic_set(&dc->has_dirty, 0);
690                         SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
691                         bch_write_bdev_super(dc, NULL);
692                         /*
693                          * If bcache device is detaching via sysfs interface,
694                          * writeback thread should stop after there is no dirty
695                          * data on cache. BCACHE_DEV_DETACHING flag is set in
696                          * bch_cached_dev_detach().
697                          */
698                         if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) {
699                                 up_write(&dc->writeback_lock);
700                                 break;
701                         }
702
703                         /*
704                          * When dirty data rate is high (e.g. 50%+), there might
705                          * be heavy buckets fragmentation after writeback
706                          * finished, which hurts following write performance.
707                          * If users really care about write performance they
708                          * may set BCH_ENABLE_AUTO_GC via sysfs, then when
709                          * BCH_DO_AUTO_GC is set, garbage collection thread
710                          * will be wake up here. After moving gc, the shrunk
711                          * btree and discarded free buckets SSD space may be
712                          * helpful for following write requests.
713                          */
714                         if (c->gc_after_writeback ==
715                             (BCH_ENABLE_AUTO_GC|BCH_DO_AUTO_GC)) {
716                                 c->gc_after_writeback &= ~BCH_DO_AUTO_GC;
717                                 force_wake_up_gc(c);
718                         }
719                 }
720
721                 up_write(&dc->writeback_lock);
722
723                 read_dirty(dc);
724
725                 if (searched_full_index) {
726                         unsigned int delay = dc->writeback_delay * HZ;
727
728                         while (delay &&
729                                !kthread_should_stop() &&
730                                !test_bit(CACHE_SET_IO_DISABLE, &c->flags) &&
731                                !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
732                                 delay = schedule_timeout_interruptible(delay);
733
734                         bch_ratelimit_reset(&dc->writeback_rate);
735                 }
736         }
737
738         cached_dev_put(dc);
739         wait_for_kthread_stop();
740
741         return 0;
742 }
743
744 /* Init */
745 #define INIT_KEYS_EACH_TIME     500000
746 #define INIT_KEYS_SLEEP_MS      100
747
748 struct sectors_dirty_init {
749         struct btree_op op;
750         unsigned int    inode;
751         size_t          count;
752         struct bkey     start;
753 };
754
755 static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b,
756                                  struct bkey *k)
757 {
758         struct sectors_dirty_init *op = container_of(_op,
759                                                 struct sectors_dirty_init, op);
760         if (KEY_INODE(k) > op->inode)
761                 return MAP_DONE;
762
763         if (KEY_DIRTY(k))
764                 bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
765                                              KEY_START(k), KEY_SIZE(k));
766
767         op->count++;
768         if (atomic_read(&b->c->search_inflight) &&
769             !(op->count % INIT_KEYS_EACH_TIME)) {
770                 bkey_copy_key(&op->start, k);
771                 return -EAGAIN;
772         }
773
774         return MAP_CONTINUE;
775 }
776
777 void bch_sectors_dirty_init(struct bcache_device *d)
778 {
779         struct sectors_dirty_init op;
780         int ret;
781
782         bch_btree_op_init(&op.op, -1);
783         op.inode = d->id;
784         op.count = 0;
785         op.start = KEY(op.inode, 0, 0);
786
787         do {
788                 ret = bch_btree_map_keys(&op.op, d->c, &op.start,
789                                          sectors_dirty_init_fn, 0);
790                 if (ret == -EAGAIN)
791                         schedule_timeout_interruptible(
792                                 msecs_to_jiffies(INIT_KEYS_SLEEP_MS));
793                 else if (ret < 0) {
794                         pr_warn("sectors dirty init failed, ret=%d!", ret);
795                         break;
796                 }
797         } while (ret == -EAGAIN);
798 }
799
800 void bch_cached_dev_writeback_init(struct cached_dev *dc)
801 {
802         sema_init(&dc->in_flight, 64);
803         init_rwsem(&dc->writeback_lock);
804         bch_keybuf_init(&dc->writeback_keys);
805
806         dc->writeback_metadata          = true;
807         dc->writeback_running           = false;
808         dc->writeback_percent           = 10;
809         dc->writeback_delay             = 30;
810         atomic_long_set(&dc->writeback_rate.rate, 1024);
811         dc->writeback_rate_minimum      = 8;
812
813         dc->writeback_rate_update_seconds = WRITEBACK_RATE_UPDATE_SECS_DEFAULT;
814         dc->writeback_rate_p_term_inverse = 40;
815         dc->writeback_rate_i_term_inverse = 10000;
816
817         WARN_ON(test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
818         INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
819 }
820
821 int bch_cached_dev_writeback_start(struct cached_dev *dc)
822 {
823         dc->writeback_write_wq = alloc_workqueue("bcache_writeback_wq",
824                                                 WQ_MEM_RECLAIM, 0);
825         if (!dc->writeback_write_wq)
826                 return -ENOMEM;
827
828         cached_dev_get(dc);
829         dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
830                                               "bcache_writeback");
831         if (IS_ERR(dc->writeback_thread)) {
832                 cached_dev_put(dc);
833                 return PTR_ERR(dc->writeback_thread);
834         }
835         dc->writeback_running = true;
836
837         WARN_ON(test_and_set_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
838         schedule_delayed_work(&dc->writeback_rate_update,
839                               dc->writeback_rate_update_seconds * HZ);
840
841         bch_writeback_queue(dc);
842
843         return 0;
844 }