a126919ed102763e9d86da2a9ce615ff0b8a2001
[linux-2.6-microblaze.git] / drivers / md / bcache / util.h
1
2 #ifndef _BCACHE_UTIL_H
3 #define _BCACHE_UTIL_H
4
5 #include <linux/blkdev.h>
6 #include <linux/errno.h>
7 #include <linux/blkdev.h>
8 #include <linux/kernel.h>
9 #include <linux/sched/clock.h>
10 #include <linux/llist.h>
11 #include <linux/ratelimit.h>
12 #include <linux/vmalloc.h>
13 #include <linux/workqueue.h>
14
15 #include "closure.h"
16
17 #define PAGE_SECTORS            (PAGE_SIZE / 512)
18
19 struct closure;
20
21 #ifdef CONFIG_BCACHE_DEBUG
22
23 #define EBUG_ON(cond)                   BUG_ON(cond)
24 #define atomic_dec_bug(v)       BUG_ON(atomic_dec_return(v) < 0)
25 #define atomic_inc_bug(v, i)    BUG_ON(atomic_inc_return(v) <= i)
26
27 #else /* DEBUG */
28
29 #define EBUG_ON(cond)                   do { if (cond); } while (0)
30 #define atomic_dec_bug(v)       atomic_dec(v)
31 #define atomic_inc_bug(v, i)    atomic_inc(v)
32
33 #endif
34
35 #define DECLARE_HEAP(type, name)                                        \
36         struct {                                                        \
37                 size_t size, used;                                      \
38                 type *data;                                             \
39         } name
40
41 #define init_heap(heap, _size, gfp)                                     \
42 ({                                                                      \
43         size_t _bytes;                                                  \
44         (heap)->used = 0;                                               \
45         (heap)->size = (_size);                                         \
46         _bytes = (heap)->size * sizeof(*(heap)->data);                  \
47         (heap)->data = NULL;                                            \
48         if (_bytes < KMALLOC_MAX_SIZE)                                  \
49                 (heap)->data = kmalloc(_bytes, (gfp));                  \
50         if ((!(heap)->data) && ((gfp) & GFP_KERNEL))                    \
51                 (heap)->data = vmalloc(_bytes);                         \
52         (heap)->data;                                                   \
53 })
54
55 #define free_heap(heap)                                                 \
56 do {                                                                    \
57         kvfree((heap)->data);                                           \
58         (heap)->data = NULL;                                            \
59 } while (0)
60
61 #define heap_swap(h, i, j)      swap((h)->data[i], (h)->data[j])
62
63 #define heap_sift(h, i, cmp)                                            \
64 do {                                                                    \
65         size_t _r, _j = i;                                              \
66                                                                         \
67         for (; _j * 2 + 1 < (h)->used; _j = _r) {                       \
68                 _r = _j * 2 + 1;                                        \
69                 if (_r + 1 < (h)->used &&                               \
70                     cmp((h)->data[_r], (h)->data[_r + 1]))              \
71                         _r++;                                           \
72                                                                         \
73                 if (cmp((h)->data[_r], (h)->data[_j]))                  \
74                         break;                                          \
75                 heap_swap(h, _r, _j);                                   \
76         }                                                               \
77 } while (0)
78
79 #define heap_sift_down(h, i, cmp)                                       \
80 do {                                                                    \
81         while (i) {                                                     \
82                 size_t p = (i - 1) / 2;                                 \
83                 if (cmp((h)->data[i], (h)->data[p]))                    \
84                         break;                                          \
85                 heap_swap(h, i, p);                                     \
86                 i = p;                                                  \
87         }                                                               \
88 } while (0)
89
90 #define heap_add(h, d, cmp)                                             \
91 ({                                                                      \
92         bool _r = !heap_full(h);                                        \
93         if (_r) {                                                       \
94                 size_t _i = (h)->used++;                                \
95                 (h)->data[_i] = d;                                      \
96                                                                         \
97                 heap_sift_down(h, _i, cmp);                             \
98                 heap_sift(h, _i, cmp);                                  \
99         }                                                               \
100         _r;                                                             \
101 })
102
103 #define heap_pop(h, d, cmp)                                             \
104 ({                                                                      \
105         bool _r = (h)->used;                                            \
106         if (_r) {                                                       \
107                 (d) = (h)->data[0];                                     \
108                 (h)->used--;                                            \
109                 heap_swap(h, 0, (h)->used);                             \
110                 heap_sift(h, 0, cmp);                                   \
111         }                                                               \
112         _r;                                                             \
113 })
114
115 #define heap_peek(h)    ((h)->used ? (h)->data[0] : NULL)
116
117 #define heap_full(h)    ((h)->used == (h)->size)
118
119 #define DECLARE_FIFO(type, name)                                        \
120         struct {                                                        \
121                 size_t front, back, size, mask;                         \
122                 type *data;                                             \
123         } name
124
125 #define fifo_for_each(c, fifo, iter)                                    \
126         for (iter = (fifo)->front;                                      \
127              c = (fifo)->data[iter], iter != (fifo)->back;              \
128              iter = (iter + 1) & (fifo)->mask)
129
130 #define __init_fifo(fifo, gfp)                                          \
131 ({                                                                      \
132         size_t _allocated_size, _bytes;                                 \
133         BUG_ON(!(fifo)->size);                                          \
134                                                                         \
135         _allocated_size = roundup_pow_of_two((fifo)->size + 1);         \
136         _bytes = _allocated_size * sizeof(*(fifo)->data);               \
137                                                                         \
138         (fifo)->mask = _allocated_size - 1;                             \
139         (fifo)->front = (fifo)->back = 0;                               \
140         (fifo)->data = NULL;                                            \
141                                                                         \
142         if (_bytes < KMALLOC_MAX_SIZE)                                  \
143                 (fifo)->data = kmalloc(_bytes, (gfp));                  \
144         if ((!(fifo)->data) && ((gfp) & GFP_KERNEL))                    \
145                 (fifo)->data = vmalloc(_bytes);                         \
146         (fifo)->data;                                                   \
147 })
148
149 #define init_fifo_exact(fifo, _size, gfp)                               \
150 ({                                                                      \
151         (fifo)->size = (_size);                                         \
152         __init_fifo(fifo, gfp);                                         \
153 })
154
155 #define init_fifo(fifo, _size, gfp)                                     \
156 ({                                                                      \
157         (fifo)->size = (_size);                                         \
158         if ((fifo)->size > 4)                                           \
159                 (fifo)->size = roundup_pow_of_two((fifo)->size) - 1;    \
160         __init_fifo(fifo, gfp);                                         \
161 })
162
163 #define free_fifo(fifo)                                                 \
164 do {                                                                    \
165         kvfree((fifo)->data);                                           \
166         (fifo)->data = NULL;                                            \
167 } while (0)
168
169 #define fifo_used(fifo)         (((fifo)->back - (fifo)->front) & (fifo)->mask)
170 #define fifo_free(fifo)         ((fifo)->size - fifo_used(fifo))
171
172 #define fifo_empty(fifo)        (!fifo_used(fifo))
173 #define fifo_full(fifo)         (!fifo_free(fifo))
174
175 #define fifo_front(fifo)        ((fifo)->data[(fifo)->front])
176 #define fifo_back(fifo)                                                 \
177         ((fifo)->data[((fifo)->back - 1) & (fifo)->mask])
178
179 #define fifo_idx(fifo, p)       (((p) - &fifo_front(fifo)) & (fifo)->mask)
180
181 #define fifo_push_back(fifo, i)                                         \
182 ({                                                                      \
183         bool _r = !fifo_full((fifo));                                   \
184         if (_r) {                                                       \
185                 (fifo)->data[(fifo)->back++] = (i);                     \
186                 (fifo)->back &= (fifo)->mask;                           \
187         }                                                               \
188         _r;                                                             \
189 })
190
191 #define fifo_pop_front(fifo, i)                                         \
192 ({                                                                      \
193         bool _r = !fifo_empty((fifo));                                  \
194         if (_r) {                                                       \
195                 (i) = (fifo)->data[(fifo)->front++];                    \
196                 (fifo)->front &= (fifo)->mask;                          \
197         }                                                               \
198         _r;                                                             \
199 })
200
201 #define fifo_push_front(fifo, i)                                        \
202 ({                                                                      \
203         bool _r = !fifo_full((fifo));                                   \
204         if (_r) {                                                       \
205                 --(fifo)->front;                                        \
206                 (fifo)->front &= (fifo)->mask;                          \
207                 (fifo)->data[(fifo)->front] = (i);                      \
208         }                                                               \
209         _r;                                                             \
210 })
211
212 #define fifo_pop_back(fifo, i)                                          \
213 ({                                                                      \
214         bool _r = !fifo_empty((fifo));                                  \
215         if (_r) {                                                       \
216                 --(fifo)->back;                                         \
217                 (fifo)->back &= (fifo)->mask;                           \
218                 (i) = (fifo)->data[(fifo)->back]                        \
219         }                                                               \
220         _r;                                                             \
221 })
222
223 #define fifo_push(fifo, i)      fifo_push_back(fifo, (i))
224 #define fifo_pop(fifo, i)       fifo_pop_front(fifo, (i))
225
226 #define fifo_swap(l, r)                                                 \
227 do {                                                                    \
228         swap((l)->front, (r)->front);                                   \
229         swap((l)->back, (r)->back);                                     \
230         swap((l)->size, (r)->size);                                     \
231         swap((l)->mask, (r)->mask);                                     \
232         swap((l)->data, (r)->data);                                     \
233 } while (0)
234
235 #define fifo_move(dest, src)                                            \
236 do {                                                                    \
237         typeof(*((dest)->data)) _t;                                     \
238         while (!fifo_full(dest) &&                                      \
239                fifo_pop(src, _t))                                       \
240                 fifo_push(dest, _t);                                    \
241 } while (0)
242
243 /*
244  * Simple array based allocator - preallocates a number of elements and you can
245  * never allocate more than that, also has no locking.
246  *
247  * Handy because if you know you only need a fixed number of elements you don't
248  * have to worry about memory allocation failure, and sometimes a mempool isn't
249  * what you want.
250  *
251  * We treat the free elements as entries in a singly linked list, and the
252  * freelist as a stack - allocating and freeing push and pop off the freelist.
253  */
254
255 #define DECLARE_ARRAY_ALLOCATOR(type, name, size)                       \
256         struct {                                                        \
257                 type    *freelist;                                      \
258                 type    data[size];                                     \
259         } name
260
261 #define array_alloc(array)                                              \
262 ({                                                                      \
263         typeof((array)->freelist) _ret = (array)->freelist;             \
264                                                                         \
265         if (_ret)                                                       \
266                 (array)->freelist = *((typeof((array)->freelist) *) _ret);\
267                                                                         \
268         _ret;                                                           \
269 })
270
271 #define array_free(array, ptr)                                          \
272 do {                                                                    \
273         typeof((array)->freelist) _ptr = ptr;                           \
274                                                                         \
275         *((typeof((array)->freelist) *) _ptr) = (array)->freelist;      \
276         (array)->freelist = _ptr;                                       \
277 } while (0)
278
279 #define array_allocator_init(array)                                     \
280 do {                                                                    \
281         typeof((array)->freelist) _i;                                   \
282                                                                         \
283         BUILD_BUG_ON(sizeof((array)->data[0]) < sizeof(void *));        \
284         (array)->freelist = NULL;                                       \
285                                                                         \
286         for (_i = (array)->data;                                        \
287              _i < (array)->data + ARRAY_SIZE((array)->data);            \
288              _i++)                                                      \
289                 array_free(array, _i);                                  \
290 } while (0)
291
292 #define array_freelist_empty(array)     ((array)->freelist == NULL)
293
294 #define ANYSINT_MAX(t)                                                  \
295         ((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1)
296
297 int bch_strtoint_h(const char *, int *);
298 int bch_strtouint_h(const char *, unsigned int *);
299 int bch_strtoll_h(const char *, long long *);
300 int bch_strtoull_h(const char *, unsigned long long *);
301
302 static inline int bch_strtol_h(const char *cp, long *res)
303 {
304 #if BITS_PER_LONG == 32
305         return bch_strtoint_h(cp, (int *) res);
306 #else
307         return bch_strtoll_h(cp, (long long *) res);
308 #endif
309 }
310
311 static inline int bch_strtoul_h(const char *cp, long *res)
312 {
313 #if BITS_PER_LONG == 32
314         return bch_strtouint_h(cp, (unsigned int *) res);
315 #else
316         return bch_strtoull_h(cp, (unsigned long long *) res);
317 #endif
318 }
319
320 #define strtoi_h(cp, res)                                               \
321         (__builtin_types_compatible_p(typeof(*res), int)                \
322         ? bch_strtoint_h(cp, (void *) res)                              \
323         : __builtin_types_compatible_p(typeof(*res), long)              \
324         ? bch_strtol_h(cp, (void *) res)                                \
325         : __builtin_types_compatible_p(typeof(*res), long long)         \
326         ? bch_strtoll_h(cp, (void *) res)                               \
327         : __builtin_types_compatible_p(typeof(*res), unsigned int)      \
328         ? bch_strtouint_h(cp, (void *) res)                             \
329         : __builtin_types_compatible_p(typeof(*res), unsigned long)     \
330         ? bch_strtoul_h(cp, (void *) res)                               \
331         : __builtin_types_compatible_p(typeof(*res), unsigned long long)\
332         ? bch_strtoull_h(cp, (void *) res) : -EINVAL)
333
334 #define strtoul_safe(cp, var)                                           \
335 ({                                                                      \
336         unsigned long _v;                                               \
337         int _r = kstrtoul(cp, 10, &_v);                                 \
338         if (!_r)                                                        \
339                 var = _v;                                               \
340         _r;                                                             \
341 })
342
343 #define strtoul_safe_clamp(cp, var, min, max)                           \
344 ({                                                                      \
345         unsigned long _v;                                               \
346         int _r = kstrtoul(cp, 10, &_v);                                 \
347         if (!_r)                                                        \
348                 var = clamp_t(typeof(var), _v, min, max);               \
349         _r;                                                             \
350 })
351
352 #define snprint(buf, size, var)                                         \
353         snprintf(buf, size,                                             \
354                 __builtin_types_compatible_p(typeof(var), int)          \
355                      ? "%i\n" :                                         \
356                 __builtin_types_compatible_p(typeof(var), unsigned)     \
357                      ? "%u\n" :                                         \
358                 __builtin_types_compatible_p(typeof(var), long)         \
359                      ? "%li\n" :                                        \
360                 __builtin_types_compatible_p(typeof(var), unsigned long)\
361                      ? "%lu\n" :                                        \
362                 __builtin_types_compatible_p(typeof(var), int64_t)      \
363                      ? "%lli\n" :                                       \
364                 __builtin_types_compatible_p(typeof(var), uint64_t)     \
365                      ? "%llu\n" :                                       \
366                 __builtin_types_compatible_p(typeof(var), const char *) \
367                      ? "%s\n" : "%i\n", var)
368
369 ssize_t bch_hprint(char *buf, int64_t v);
370
371 bool bch_is_zero(const char *p, size_t n);
372 int bch_parse_uuid(const char *s, char *uuid);
373
374 ssize_t bch_snprint_string_list(char *buf, size_t size, const char * const list[],
375                             size_t selected);
376
377 ssize_t bch_read_string_list(const char *buf, const char * const list[]);
378
379 struct time_stats {
380         spinlock_t      lock;
381         /*
382          * all fields are in nanoseconds, averages are ewmas stored left shifted
383          * by 8
384          */
385         uint64_t        max_duration;
386         uint64_t        average_duration;
387         uint64_t        average_frequency;
388         uint64_t        last;
389 };
390
391 void bch_time_stats_update(struct time_stats *stats, uint64_t time);
392
393 static inline unsigned local_clock_us(void)
394 {
395         return local_clock() >> 10;
396 }
397
398 #define NSEC_PER_ns                     1L
399 #define NSEC_PER_us                     NSEC_PER_USEC
400 #define NSEC_PER_ms                     NSEC_PER_MSEC
401 #define NSEC_PER_sec                    NSEC_PER_SEC
402
403 #define __print_time_stat(stats, name, stat, units)                     \
404         sysfs_print(name ## _ ## stat ## _ ## units,                    \
405                     div_u64((stats)->stat >> 8, NSEC_PER_ ## units))
406
407 #define sysfs_print_time_stats(stats, name,                             \
408                                frequency_units,                         \
409                                duration_units)                          \
410 do {                                                                    \
411         __print_time_stat(stats, name,                                  \
412                           average_frequency,    frequency_units);       \
413         __print_time_stat(stats, name,                                  \
414                           average_duration,     duration_units);        \
415         sysfs_print(name ## _ ##max_duration ## _ ## duration_units,    \
416                         div_u64((stats)->max_duration, NSEC_PER_ ## duration_units));\
417                                                                         \
418         sysfs_print(name ## _last_ ## frequency_units, (stats)->last    \
419                     ? div_s64(local_clock() - (stats)->last,            \
420                               NSEC_PER_ ## frequency_units)             \
421                     : -1LL);                                            \
422 } while (0)
423
424 #define sysfs_time_stats_attribute(name,                                \
425                                    frequency_units,                     \
426                                    duration_units)                      \
427 read_attribute(name ## _average_frequency_ ## frequency_units);         \
428 read_attribute(name ## _average_duration_ ## duration_units);           \
429 read_attribute(name ## _max_duration_ ## duration_units);               \
430 read_attribute(name ## _last_ ## frequency_units)
431
432 #define sysfs_time_stats_attribute_list(name,                           \
433                                         frequency_units,                \
434                                         duration_units)                 \
435 &sysfs_ ## name ## _average_frequency_ ## frequency_units,              \
436 &sysfs_ ## name ## _average_duration_ ## duration_units,                \
437 &sysfs_ ## name ## _max_duration_ ## duration_units,                    \
438 &sysfs_ ## name ## _last_ ## frequency_units,
439
440 #define ewma_add(ewma, val, weight, factor)                             \
441 ({                                                                      \
442         (ewma) *= (weight) - 1;                                         \
443         (ewma) += (val) << factor;                                      \
444         (ewma) /= (weight);                                             \
445         (ewma) >> factor;                                               \
446 })
447
448 struct bch_ratelimit {
449         /* Next time we want to do some work, in nanoseconds */
450         uint64_t                next;
451
452         /*
453          * Rate at which we want to do work, in units per nanosecond
454          * The units here correspond to the units passed to bch_next_delay()
455          */
456         unsigned                rate;
457 };
458
459 static inline void bch_ratelimit_reset(struct bch_ratelimit *d)
460 {
461         d->next = local_clock();
462 }
463
464 uint64_t bch_next_delay(struct bch_ratelimit *d, uint64_t done);
465
466 #define __DIV_SAFE(n, d, zero)                                          \
467 ({                                                                      \
468         typeof(n) _n = (n);                                             \
469         typeof(d) _d = (d);                                             \
470         _d ? _n / _d : zero;                                            \
471 })
472
473 #define DIV_SAFE(n, d)  __DIV_SAFE(n, d, 0)
474
475 #define container_of_or_null(ptr, type, member)                         \
476 ({                                                                      \
477         typeof(ptr) _ptr = ptr;                                         \
478         _ptr ? container_of(_ptr, type, member) : NULL;                 \
479 })
480
481 #define RB_INSERT(root, new, member, cmp)                               \
482 ({                                                                      \
483         __label__ dup;                                                  \
484         struct rb_node **n = &(root)->rb_node, *parent = NULL;          \
485         typeof(new) this;                                               \
486         int res, ret = -1;                                              \
487                                                                         \
488         while (*n) {                                                    \
489                 parent = *n;                                            \
490                 this = container_of(*n, typeof(*(new)), member);        \
491                 res = cmp(new, this);                                   \
492                 if (!res)                                               \
493                         goto dup;                                       \
494                 n = res < 0                                             \
495                         ? &(*n)->rb_left                                \
496                         : &(*n)->rb_right;                              \
497         }                                                               \
498                                                                         \
499         rb_link_node(&(new)->member, parent, n);                        \
500         rb_insert_color(&(new)->member, root);                          \
501         ret = 0;                                                        \
502 dup:                                                                    \
503         ret;                                                            \
504 })
505
506 #define RB_SEARCH(root, search, member, cmp)                            \
507 ({                                                                      \
508         struct rb_node *n = (root)->rb_node;                            \
509         typeof(&(search)) this, ret = NULL;                             \
510         int res;                                                        \
511                                                                         \
512         while (n) {                                                     \
513                 this = container_of(n, typeof(search), member);         \
514                 res = cmp(&(search), this);                             \
515                 if (!res) {                                             \
516                         ret = this;                                     \
517                         break;                                          \
518                 }                                                       \
519                 n = res < 0                                             \
520                         ? n->rb_left                                    \
521                         : n->rb_right;                                  \
522         }                                                               \
523         ret;                                                            \
524 })
525
526 #define RB_GREATER(root, search, member, cmp)                           \
527 ({                                                                      \
528         struct rb_node *n = (root)->rb_node;                            \
529         typeof(&(search)) this, ret = NULL;                             \
530         int res;                                                        \
531                                                                         \
532         while (n) {                                                     \
533                 this = container_of(n, typeof(search), member);         \
534                 res = cmp(&(search), this);                             \
535                 if (res < 0) {                                          \
536                         ret = this;                                     \
537                         n = n->rb_left;                                 \
538                 } else                                                  \
539                         n = n->rb_right;                                \
540         }                                                               \
541         ret;                                                            \
542 })
543
544 #define RB_FIRST(root, type, member)                                    \
545         container_of_or_null(rb_first(root), type, member)
546
547 #define RB_LAST(root, type, member)                                     \
548         container_of_or_null(rb_last(root), type, member)
549
550 #define RB_NEXT(ptr, member)                                            \
551         container_of_or_null(rb_next(&(ptr)->member), typeof(*ptr), member)
552
553 #define RB_PREV(ptr, member)                                            \
554         container_of_or_null(rb_prev(&(ptr)->member), typeof(*ptr), member)
555
556 /* Does linear interpolation between powers of two */
557 static inline unsigned fract_exp_two(unsigned x, unsigned fract_bits)
558 {
559         unsigned fract = x & ~(~0 << fract_bits);
560
561         x >>= fract_bits;
562         x   = 1 << x;
563         x  += (x * fract) >> fract_bits;
564
565         return x;
566 }
567
568 void bch_bio_map(struct bio *bio, void *base);
569
570 static inline sector_t bdev_sectors(struct block_device *bdev)
571 {
572         return bdev->bd_inode->i_size >> 9;
573 }
574
575 #define closure_bio_submit(bio, cl)                                     \
576 do {                                                                    \
577         closure_get(cl);                                                \
578         generic_make_request(bio);                                      \
579 } while (0)
580
581 uint64_t bch_crc64_update(uint64_t, const void *, size_t);
582 uint64_t bch_crc64(const void *, size_t);
583
584 #endif /* _BCACHE_UTIL_H */