bcache: remove the cache_dev_name field from struct cache
[linux-2.6-microblaze.git] / drivers / md / bcache / super.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * bcache setup/teardown code, and some metadata io - read a superblock and
4  * figure out what to do with it.
5  *
6  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7  * Copyright 2012 Google, Inc.
8  */
9
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "extents.h"
14 #include "request.h"
15 #include "writeback.h"
16 #include "features.h"
17
18 #include <linux/blkdev.h>
19 #include <linux/pagemap.h>
20 #include <linux/debugfs.h>
21 #include <linux/genhd.h>
22 #include <linux/idr.h>
23 #include <linux/kthread.h>
24 #include <linux/workqueue.h>
25 #include <linux/module.h>
26 #include <linux/random.h>
27 #include <linux/reboot.h>
28 #include <linux/sysfs.h>
29
30 unsigned int bch_cutoff_writeback;
31 unsigned int bch_cutoff_writeback_sync;
32
33 static const char bcache_magic[] = {
34         0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
35         0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
36 };
37
38 static const char invalid_uuid[] = {
39         0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
40         0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
41 };
42
43 static struct kobject *bcache_kobj;
44 struct mutex bch_register_lock;
45 bool bcache_is_reboot;
46 LIST_HEAD(bch_cache_sets);
47 static LIST_HEAD(uncached_devices);
48
49 static int bcache_major;
50 static DEFINE_IDA(bcache_device_idx);
51 static wait_queue_head_t unregister_wait;
52 struct workqueue_struct *bcache_wq;
53 struct workqueue_struct *bch_flush_wq;
54 struct workqueue_struct *bch_journal_wq;
55
56
57 #define BTREE_MAX_PAGES         (256 * 1024 / PAGE_SIZE)
58 /* limitation of partitions number on single bcache device */
59 #define BCACHE_MINORS           128
60 /* limitation of bcache devices number on single system */
61 #define BCACHE_DEVICE_IDX_MAX   ((1U << MINORBITS)/BCACHE_MINORS)
62
63 /* Superblock */
64
65 static unsigned int get_bucket_size(struct cache_sb *sb, struct cache_sb_disk *s)
66 {
67         unsigned int bucket_size = le16_to_cpu(s->bucket_size);
68
69         if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) {
70                 if (bch_has_feature_large_bucket(sb)) {
71                         unsigned int max, order;
72
73                         max = sizeof(unsigned int) * BITS_PER_BYTE - 1;
74                         order = le16_to_cpu(s->bucket_size);
75                         /*
76                          * bcache tool will make sure the overflow won't
77                          * happen, an error message here is enough.
78                          */
79                         if (order > max)
80                                 pr_err("Bucket size (1 << %u) overflows\n",
81                                         order);
82                         bucket_size = 1 << order;
83                 } else if (bch_has_feature_obso_large_bucket(sb)) {
84                         bucket_size +=
85                                 le16_to_cpu(s->obso_bucket_size_hi) << 16;
86                 }
87         }
88
89         return bucket_size;
90 }
91
92 static const char *read_super_common(struct cache_sb *sb,  struct block_device *bdev,
93                                      struct cache_sb_disk *s)
94 {
95         const char *err;
96         unsigned int i;
97
98         sb->first_bucket= le16_to_cpu(s->first_bucket);
99         sb->nbuckets    = le64_to_cpu(s->nbuckets);
100         sb->bucket_size = get_bucket_size(sb, s);
101
102         sb->nr_in_set   = le16_to_cpu(s->nr_in_set);
103         sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
104
105         err = "Too many journal buckets";
106         if (sb->keys > SB_JOURNAL_BUCKETS)
107                 goto err;
108
109         err = "Too many buckets";
110         if (sb->nbuckets > LONG_MAX)
111                 goto err;
112
113         err = "Not enough buckets";
114         if (sb->nbuckets < 1 << 7)
115                 goto err;
116
117         err = "Bad block size (not power of 2)";
118         if (!is_power_of_2(sb->block_size))
119                 goto err;
120
121         err = "Bad block size (larger than page size)";
122         if (sb->block_size > PAGE_SECTORS)
123                 goto err;
124
125         err = "Bad bucket size (not power of 2)";
126         if (!is_power_of_2(sb->bucket_size))
127                 goto err;
128
129         err = "Bad bucket size (smaller than page size)";
130         if (sb->bucket_size < PAGE_SECTORS)
131                 goto err;
132
133         err = "Invalid superblock: device too small";
134         if (get_capacity(bdev->bd_disk) <
135             sb->bucket_size * sb->nbuckets)
136                 goto err;
137
138         err = "Bad UUID";
139         if (bch_is_zero(sb->set_uuid, 16))
140                 goto err;
141
142         err = "Bad cache device number in set";
143         if (!sb->nr_in_set ||
144             sb->nr_in_set <= sb->nr_this_dev ||
145             sb->nr_in_set > MAX_CACHES_PER_SET)
146                 goto err;
147
148         err = "Journal buckets not sequential";
149         for (i = 0; i < sb->keys; i++)
150                 if (sb->d[i] != sb->first_bucket + i)
151                         goto err;
152
153         err = "Too many journal buckets";
154         if (sb->first_bucket + sb->keys > sb->nbuckets)
155                 goto err;
156
157         err = "Invalid superblock: first bucket comes before end of super";
158         if (sb->first_bucket * sb->bucket_size < 16)
159                 goto err;
160
161         err = NULL;
162 err:
163         return err;
164 }
165
166
167 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
168                               struct cache_sb_disk **res)
169 {
170         const char *err;
171         struct cache_sb_disk *s;
172         struct page *page;
173         unsigned int i;
174
175         page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
176                                    SB_OFFSET >> PAGE_SHIFT, GFP_KERNEL);
177         if (IS_ERR(page))
178                 return "IO error";
179         s = page_address(page) + offset_in_page(SB_OFFSET);
180
181         sb->offset              = le64_to_cpu(s->offset);
182         sb->version             = le64_to_cpu(s->version);
183
184         memcpy(sb->magic,       s->magic, 16);
185         memcpy(sb->uuid,        s->uuid, 16);
186         memcpy(sb->set_uuid,    s->set_uuid, 16);
187         memcpy(sb->label,       s->label, SB_LABEL_SIZE);
188
189         sb->flags               = le64_to_cpu(s->flags);
190         sb->seq                 = le64_to_cpu(s->seq);
191         sb->last_mount          = le32_to_cpu(s->last_mount);
192         sb->keys                = le16_to_cpu(s->keys);
193
194         for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
195                 sb->d[i] = le64_to_cpu(s->d[i]);
196
197         pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u\n",
198                  sb->version, sb->flags, sb->seq, sb->keys);
199
200         err = "Not a bcache superblock (bad offset)";
201         if (sb->offset != SB_SECTOR)
202                 goto err;
203
204         err = "Not a bcache superblock (bad magic)";
205         if (memcmp(sb->magic, bcache_magic, 16))
206                 goto err;
207
208         err = "Bad checksum";
209         if (s->csum != csum_set(s))
210                 goto err;
211
212         err = "Bad UUID";
213         if (bch_is_zero(sb->uuid, 16))
214                 goto err;
215
216         sb->block_size  = le16_to_cpu(s->block_size);
217
218         err = "Superblock block size smaller than device block size";
219         if (sb->block_size << 9 < bdev_logical_block_size(bdev))
220                 goto err;
221
222         switch (sb->version) {
223         case BCACHE_SB_VERSION_BDEV:
224                 sb->data_offset = BDEV_DATA_START_DEFAULT;
225                 break;
226         case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
227         case BCACHE_SB_VERSION_BDEV_WITH_FEATURES:
228                 sb->data_offset = le64_to_cpu(s->data_offset);
229
230                 err = "Bad data offset";
231                 if (sb->data_offset < BDEV_DATA_START_DEFAULT)
232                         goto err;
233
234                 break;
235         case BCACHE_SB_VERSION_CDEV:
236         case BCACHE_SB_VERSION_CDEV_WITH_UUID:
237                 err = read_super_common(sb, bdev, s);
238                 if (err)
239                         goto err;
240                 break;
241         case BCACHE_SB_VERSION_CDEV_WITH_FEATURES:
242                 /*
243                  * Feature bits are needed in read_super_common(),
244                  * convert them firstly.
245                  */
246                 sb->feature_compat = le64_to_cpu(s->feature_compat);
247                 sb->feature_incompat = le64_to_cpu(s->feature_incompat);
248                 sb->feature_ro_compat = le64_to_cpu(s->feature_ro_compat);
249
250                 /* Check incompatible features */
251                 err = "Unsupported compatible feature found";
252                 if (bch_has_unknown_compat_features(sb))
253                         goto err;
254
255                 err = "Unsupported read-only compatible feature found";
256                 if (bch_has_unknown_ro_compat_features(sb))
257                         goto err;
258
259                 err = "Unsupported incompatible feature found";
260                 if (bch_has_unknown_incompat_features(sb))
261                         goto err;
262
263                 err = read_super_common(sb, bdev, s);
264                 if (err)
265                         goto err;
266                 break;
267         default:
268                 err = "Unsupported superblock version";
269                 goto err;
270         }
271
272         sb->last_mount = (u32)ktime_get_real_seconds();
273         *res = s;
274         return NULL;
275 err:
276         put_page(page);
277         return err;
278 }
279
280 static void write_bdev_super_endio(struct bio *bio)
281 {
282         struct cached_dev *dc = bio->bi_private;
283
284         if (bio->bi_status)
285                 bch_count_backing_io_errors(dc, bio);
286
287         closure_put(&dc->sb_write);
288 }
289
290 static void __write_super(struct cache_sb *sb, struct cache_sb_disk *out,
291                 struct bio *bio)
292 {
293         unsigned int i;
294
295         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META;
296         bio->bi_iter.bi_sector  = SB_SECTOR;
297         __bio_add_page(bio, virt_to_page(out), SB_SIZE,
298                         offset_in_page(out));
299
300         out->offset             = cpu_to_le64(sb->offset);
301
302         memcpy(out->uuid,       sb->uuid, 16);
303         memcpy(out->set_uuid,   sb->set_uuid, 16);
304         memcpy(out->label,      sb->label, SB_LABEL_SIZE);
305
306         out->flags              = cpu_to_le64(sb->flags);
307         out->seq                = cpu_to_le64(sb->seq);
308
309         out->last_mount         = cpu_to_le32(sb->last_mount);
310         out->first_bucket       = cpu_to_le16(sb->first_bucket);
311         out->keys               = cpu_to_le16(sb->keys);
312
313         for (i = 0; i < sb->keys; i++)
314                 out->d[i] = cpu_to_le64(sb->d[i]);
315
316         if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) {
317                 out->feature_compat    = cpu_to_le64(sb->feature_compat);
318                 out->feature_incompat  = cpu_to_le64(sb->feature_incompat);
319                 out->feature_ro_compat = cpu_to_le64(sb->feature_ro_compat);
320         }
321
322         out->version            = cpu_to_le64(sb->version);
323         out->csum = csum_set(out);
324
325         pr_debug("ver %llu, flags %llu, seq %llu\n",
326                  sb->version, sb->flags, sb->seq);
327
328         submit_bio(bio);
329 }
330
331 static void bch_write_bdev_super_unlock(struct closure *cl)
332 {
333         struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
334
335         up(&dc->sb_write_mutex);
336 }
337
338 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
339 {
340         struct closure *cl = &dc->sb_write;
341         struct bio *bio = &dc->sb_bio;
342
343         down(&dc->sb_write_mutex);
344         closure_init(cl, parent);
345
346         bio_init(bio, dc->sb_bv, 1);
347         bio_set_dev(bio, dc->bdev);
348         bio->bi_end_io  = write_bdev_super_endio;
349         bio->bi_private = dc;
350
351         closure_get(cl);
352         /* I/O request sent to backing device */
353         __write_super(&dc->sb, dc->sb_disk, bio);
354
355         closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
356 }
357
358 static void write_super_endio(struct bio *bio)
359 {
360         struct cache *ca = bio->bi_private;
361
362         /* is_read = 0 */
363         bch_count_io_errors(ca, bio->bi_status, 0,
364                             "writing superblock");
365         closure_put(&ca->set->sb_write);
366 }
367
368 static void bcache_write_super_unlock(struct closure *cl)
369 {
370         struct cache_set *c = container_of(cl, struct cache_set, sb_write);
371
372         up(&c->sb_write_mutex);
373 }
374
375 void bcache_write_super(struct cache_set *c)
376 {
377         struct closure *cl = &c->sb_write;
378         struct cache *ca = c->cache;
379         struct bio *bio = &ca->sb_bio;
380         unsigned int version = BCACHE_SB_VERSION_CDEV_WITH_UUID;
381
382         down(&c->sb_write_mutex);
383         closure_init(cl, &c->cl);
384
385         ca->sb.seq++;
386
387         if (ca->sb.version < version)
388                 ca->sb.version = version;
389
390         bio_init(bio, ca->sb_bv, 1);
391         bio_set_dev(bio, ca->bdev);
392         bio->bi_end_io  = write_super_endio;
393         bio->bi_private = ca;
394
395         closure_get(cl);
396         __write_super(&ca->sb, ca->sb_disk, bio);
397
398         closure_return_with_destructor(cl, bcache_write_super_unlock);
399 }
400
401 /* UUID io */
402
403 static void uuid_endio(struct bio *bio)
404 {
405         struct closure *cl = bio->bi_private;
406         struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
407
408         cache_set_err_on(bio->bi_status, c, "accessing uuids");
409         bch_bbio_free(bio, c);
410         closure_put(cl);
411 }
412
413 static void uuid_io_unlock(struct closure *cl)
414 {
415         struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
416
417         up(&c->uuid_write_mutex);
418 }
419
420 static void uuid_io(struct cache_set *c, int op, unsigned long op_flags,
421                     struct bkey *k, struct closure *parent)
422 {
423         struct closure *cl = &c->uuid_write;
424         struct uuid_entry *u;
425         unsigned int i;
426         char buf[80];
427
428         BUG_ON(!parent);
429         down(&c->uuid_write_mutex);
430         closure_init(cl, parent);
431
432         for (i = 0; i < KEY_PTRS(k); i++) {
433                 struct bio *bio = bch_bbio_alloc(c);
434
435                 bio->bi_opf = REQ_SYNC | REQ_META | op_flags;
436                 bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
437
438                 bio->bi_end_io  = uuid_endio;
439                 bio->bi_private = cl;
440                 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
441                 bch_bio_map(bio, c->uuids);
442
443                 bch_submit_bbio(bio, c, k, i);
444
445                 if (op != REQ_OP_WRITE)
446                         break;
447         }
448
449         bch_extent_to_text(buf, sizeof(buf), k);
450         pr_debug("%s UUIDs at %s\n", op == REQ_OP_WRITE ? "wrote" : "read", buf);
451
452         for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
453                 if (!bch_is_zero(u->uuid, 16))
454                         pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u\n",
455                                  u - c->uuids, u->uuid, u->label,
456                                  u->first_reg, u->last_reg, u->invalidated);
457
458         closure_return_with_destructor(cl, uuid_io_unlock);
459 }
460
461 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
462 {
463         struct bkey *k = &j->uuid_bucket;
464
465         if (__bch_btree_ptr_invalid(c, k))
466                 return "bad uuid pointer";
467
468         bkey_copy(&c->uuid_bucket, k);
469         uuid_io(c, REQ_OP_READ, 0, k, cl);
470
471         if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
472                 struct uuid_entry_v0    *u0 = (void *) c->uuids;
473                 struct uuid_entry       *u1 = (void *) c->uuids;
474                 int i;
475
476                 closure_sync(cl);
477
478                 /*
479                  * Since the new uuid entry is bigger than the old, we have to
480                  * convert starting at the highest memory address and work down
481                  * in order to do it in place
482                  */
483
484                 for (i = c->nr_uuids - 1;
485                      i >= 0;
486                      --i) {
487                         memcpy(u1[i].uuid,      u0[i].uuid, 16);
488                         memcpy(u1[i].label,     u0[i].label, 32);
489
490                         u1[i].first_reg         = u0[i].first_reg;
491                         u1[i].last_reg          = u0[i].last_reg;
492                         u1[i].invalidated       = u0[i].invalidated;
493
494                         u1[i].flags     = 0;
495                         u1[i].sectors   = 0;
496                 }
497         }
498
499         return NULL;
500 }
501
502 static int __uuid_write(struct cache_set *c)
503 {
504         BKEY_PADDED(key) k;
505         struct closure cl;
506         struct cache *ca = c->cache;
507         unsigned int size;
508
509         closure_init_stack(&cl);
510         lockdep_assert_held(&bch_register_lock);
511
512         if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, true))
513                 return 1;
514
515         size =  meta_bucket_pages(&ca->sb) * PAGE_SECTORS;
516         SET_KEY_SIZE(&k.key, size);
517         uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl);
518         closure_sync(&cl);
519
520         /* Only one bucket used for uuid write */
521         atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written);
522
523         bkey_copy(&c->uuid_bucket, &k.key);
524         bkey_put(c, &k.key);
525         return 0;
526 }
527
528 int bch_uuid_write(struct cache_set *c)
529 {
530         int ret = __uuid_write(c);
531
532         if (!ret)
533                 bch_journal_meta(c, NULL);
534
535         return ret;
536 }
537
538 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
539 {
540         struct uuid_entry *u;
541
542         for (u = c->uuids;
543              u < c->uuids + c->nr_uuids; u++)
544                 if (!memcmp(u->uuid, uuid, 16))
545                         return u;
546
547         return NULL;
548 }
549
550 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
551 {
552         static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
553
554         return uuid_find(c, zero_uuid);
555 }
556
557 /*
558  * Bucket priorities/gens:
559  *
560  * For each bucket, we store on disk its
561  *   8 bit gen
562  *  16 bit priority
563  *
564  * See alloc.c for an explanation of the gen. The priority is used to implement
565  * lru (and in the future other) cache replacement policies; for most purposes
566  * it's just an opaque integer.
567  *
568  * The gens and the priorities don't have a whole lot to do with each other, and
569  * it's actually the gens that must be written out at specific times - it's no
570  * big deal if the priorities don't get written, if we lose them we just reuse
571  * buckets in suboptimal order.
572  *
573  * On disk they're stored in a packed array, and in as many buckets are required
574  * to fit them all. The buckets we use to store them form a list; the journal
575  * header points to the first bucket, the first bucket points to the second
576  * bucket, et cetera.
577  *
578  * This code is used by the allocation code; periodically (whenever it runs out
579  * of buckets to allocate from) the allocation code will invalidate some
580  * buckets, but it can't use those buckets until their new gens are safely on
581  * disk.
582  */
583
584 static void prio_endio(struct bio *bio)
585 {
586         struct cache *ca = bio->bi_private;
587
588         cache_set_err_on(bio->bi_status, ca->set, "accessing priorities");
589         bch_bbio_free(bio, ca->set);
590         closure_put(&ca->prio);
591 }
592
593 static void prio_io(struct cache *ca, uint64_t bucket, int op,
594                     unsigned long op_flags)
595 {
596         struct closure *cl = &ca->prio;
597         struct bio *bio = bch_bbio_alloc(ca->set);
598
599         closure_init_stack(cl);
600
601         bio->bi_iter.bi_sector  = bucket * ca->sb.bucket_size;
602         bio_set_dev(bio, ca->bdev);
603         bio->bi_iter.bi_size    = meta_bucket_bytes(&ca->sb);
604
605         bio->bi_end_io  = prio_endio;
606         bio->bi_private = ca;
607         bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
608         bch_bio_map(bio, ca->disk_buckets);
609
610         closure_bio_submit(ca->set, bio, &ca->prio);
611         closure_sync(cl);
612 }
613
614 int bch_prio_write(struct cache *ca, bool wait)
615 {
616         int i;
617         struct bucket *b;
618         struct closure cl;
619
620         pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu\n",
621                  fifo_used(&ca->free[RESERVE_PRIO]),
622                  fifo_used(&ca->free[RESERVE_NONE]),
623                  fifo_used(&ca->free_inc));
624
625         /*
626          * Pre-check if there are enough free buckets. In the non-blocking
627          * scenario it's better to fail early rather than starting to allocate
628          * buckets and do a cleanup later in case of failure.
629          */
630         if (!wait) {
631                 size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) +
632                                fifo_used(&ca->free[RESERVE_NONE]);
633                 if (prio_buckets(ca) > avail)
634                         return -ENOMEM;
635         }
636
637         closure_init_stack(&cl);
638
639         lockdep_assert_held(&ca->set->bucket_lock);
640
641         ca->disk_buckets->seq++;
642
643         atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
644                         &ca->meta_sectors_written);
645
646         for (i = prio_buckets(ca) - 1; i >= 0; --i) {
647                 long bucket;
648                 struct prio_set *p = ca->disk_buckets;
649                 struct bucket_disk *d = p->data;
650                 struct bucket_disk *end = d + prios_per_bucket(ca);
651
652                 for (b = ca->buckets + i * prios_per_bucket(ca);
653                      b < ca->buckets + ca->sb.nbuckets && d < end;
654                      b++, d++) {
655                         d->prio = cpu_to_le16(b->prio);
656                         d->gen = b->gen;
657                 }
658
659                 p->next_bucket  = ca->prio_buckets[i + 1];
660                 p->magic        = pset_magic(&ca->sb);
661                 p->csum         = bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8);
662
663                 bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait);
664                 BUG_ON(bucket == -1);
665
666                 mutex_unlock(&ca->set->bucket_lock);
667                 prio_io(ca, bucket, REQ_OP_WRITE, 0);
668                 mutex_lock(&ca->set->bucket_lock);
669
670                 ca->prio_buckets[i] = bucket;
671                 atomic_dec_bug(&ca->buckets[bucket].pin);
672         }
673
674         mutex_unlock(&ca->set->bucket_lock);
675
676         bch_journal_meta(ca->set, &cl);
677         closure_sync(&cl);
678
679         mutex_lock(&ca->set->bucket_lock);
680
681         /*
682          * Don't want the old priorities to get garbage collected until after we
683          * finish writing the new ones, and they're journalled
684          */
685         for (i = 0; i < prio_buckets(ca); i++) {
686                 if (ca->prio_last_buckets[i])
687                         __bch_bucket_free(ca,
688                                 &ca->buckets[ca->prio_last_buckets[i]]);
689
690                 ca->prio_last_buckets[i] = ca->prio_buckets[i];
691         }
692         return 0;
693 }
694
695 static int prio_read(struct cache *ca, uint64_t bucket)
696 {
697         struct prio_set *p = ca->disk_buckets;
698         struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
699         struct bucket *b;
700         unsigned int bucket_nr = 0;
701         int ret = -EIO;
702
703         for (b = ca->buckets;
704              b < ca->buckets + ca->sb.nbuckets;
705              b++, d++) {
706                 if (d == end) {
707                         ca->prio_buckets[bucket_nr] = bucket;
708                         ca->prio_last_buckets[bucket_nr] = bucket;
709                         bucket_nr++;
710
711                         prio_io(ca, bucket, REQ_OP_READ, 0);
712
713                         if (p->csum !=
714                             bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8)) {
715                                 pr_warn("bad csum reading priorities\n");
716                                 goto out;
717                         }
718
719                         if (p->magic != pset_magic(&ca->sb)) {
720                                 pr_warn("bad magic reading priorities\n");
721                                 goto out;
722                         }
723
724                         bucket = p->next_bucket;
725                         d = p->data;
726                 }
727
728                 b->prio = le16_to_cpu(d->prio);
729                 b->gen = b->last_gc = d->gen;
730         }
731
732         ret = 0;
733 out:
734         return ret;
735 }
736
737 /* Bcache device */
738
739 static int open_dev(struct block_device *b, fmode_t mode)
740 {
741         struct bcache_device *d = b->bd_disk->private_data;
742
743         if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
744                 return -ENXIO;
745
746         closure_get(&d->cl);
747         return 0;
748 }
749
750 static void release_dev(struct gendisk *b, fmode_t mode)
751 {
752         struct bcache_device *d = b->private_data;
753
754         closure_put(&d->cl);
755 }
756
757 static int ioctl_dev(struct block_device *b, fmode_t mode,
758                      unsigned int cmd, unsigned long arg)
759 {
760         struct bcache_device *d = b->bd_disk->private_data;
761
762         return d->ioctl(d, mode, cmd, arg);
763 }
764
765 static const struct block_device_operations bcache_cached_ops = {
766         .submit_bio     = cached_dev_submit_bio,
767         .open           = open_dev,
768         .release        = release_dev,
769         .ioctl          = ioctl_dev,
770         .owner          = THIS_MODULE,
771 };
772
773 static const struct block_device_operations bcache_flash_ops = {
774         .submit_bio     = flash_dev_submit_bio,
775         .open           = open_dev,
776         .release        = release_dev,
777         .ioctl          = ioctl_dev,
778         .owner          = THIS_MODULE,
779 };
780
781 void bcache_device_stop(struct bcache_device *d)
782 {
783         if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
784                 /*
785                  * closure_fn set to
786                  * - cached device: cached_dev_flush()
787                  * - flash dev: flash_dev_flush()
788                  */
789                 closure_queue(&d->cl);
790 }
791
792 static void bcache_device_unlink(struct bcache_device *d)
793 {
794         lockdep_assert_held(&bch_register_lock);
795
796         if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
797                 struct cache *ca = d->c->cache;
798
799                 sysfs_remove_link(&d->c->kobj, d->name);
800                 sysfs_remove_link(&d->kobj, "cache");
801
802                 bd_unlink_disk_holder(ca->bdev, d->disk);
803         }
804 }
805
806 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
807                                const char *name)
808 {
809         struct cache *ca = c->cache;
810         int ret;
811
812         bd_link_disk_holder(ca->bdev, d->disk);
813
814         snprintf(d->name, BCACHEDEVNAME_SIZE,
815                  "%s%u", name, d->id);
816
817         ret = sysfs_create_link(&d->kobj, &c->kobj, "cache");
818         if (ret < 0)
819                 pr_err("Couldn't create device -> cache set symlink\n");
820
821         ret = sysfs_create_link(&c->kobj, &d->kobj, d->name);
822         if (ret < 0)
823                 pr_err("Couldn't create cache set -> device symlink\n");
824
825         clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
826 }
827
828 static void bcache_device_detach(struct bcache_device *d)
829 {
830         lockdep_assert_held(&bch_register_lock);
831
832         atomic_dec(&d->c->attached_dev_nr);
833
834         if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
835                 struct uuid_entry *u = d->c->uuids + d->id;
836
837                 SET_UUID_FLASH_ONLY(u, 0);
838                 memcpy(u->uuid, invalid_uuid, 16);
839                 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
840                 bch_uuid_write(d->c);
841         }
842
843         bcache_device_unlink(d);
844
845         d->c->devices[d->id] = NULL;
846         closure_put(&d->c->caching);
847         d->c = NULL;
848 }
849
850 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
851                                  unsigned int id)
852 {
853         d->id = id;
854         d->c = c;
855         c->devices[id] = d;
856
857         if (id >= c->devices_max_used)
858                 c->devices_max_used = id + 1;
859
860         closure_get(&c->caching);
861 }
862
863 static inline int first_minor_to_idx(int first_minor)
864 {
865         return (first_minor/BCACHE_MINORS);
866 }
867
868 static inline int idx_to_first_minor(int idx)
869 {
870         return (idx * BCACHE_MINORS);
871 }
872
873 static void bcache_device_free(struct bcache_device *d)
874 {
875         struct gendisk *disk = d->disk;
876
877         lockdep_assert_held(&bch_register_lock);
878
879         if (disk)
880                 pr_info("%s stopped\n", disk->disk_name);
881         else
882                 pr_err("bcache device (NULL gendisk) stopped\n");
883
884         if (d->c)
885                 bcache_device_detach(d);
886
887         if (disk) {
888                 blk_cleanup_disk(disk);
889                 ida_simple_remove(&bcache_device_idx,
890                                   first_minor_to_idx(disk->first_minor));
891         }
892
893         bioset_exit(&d->bio_split);
894         kvfree(d->full_dirty_stripes);
895         kvfree(d->stripe_sectors_dirty);
896
897         closure_debug_destroy(&d->cl);
898 }
899
900 static int bcache_device_init(struct bcache_device *d, unsigned int block_size,
901                 sector_t sectors, struct block_device *cached_bdev,
902                 const struct block_device_operations *ops)
903 {
904         struct request_queue *q;
905         const size_t max_stripes = min_t(size_t, INT_MAX,
906                                          SIZE_MAX / sizeof(atomic_t));
907         uint64_t n;
908         int idx;
909
910         if (!d->stripe_size)
911                 d->stripe_size = 1 << 31;
912
913         n = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
914         if (!n || n > max_stripes) {
915                 pr_err("nr_stripes too large or invalid: %llu (start sector beyond end of disk?)\n",
916                         n);
917                 return -ENOMEM;
918         }
919         d->nr_stripes = n;
920
921         n = d->nr_stripes * sizeof(atomic_t);
922         d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL);
923         if (!d->stripe_sectors_dirty)
924                 return -ENOMEM;
925
926         n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
927         d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL);
928         if (!d->full_dirty_stripes)
929                 goto out_free_stripe_sectors_dirty;
930
931         idx = ida_simple_get(&bcache_device_idx, 0,
932                                 BCACHE_DEVICE_IDX_MAX, GFP_KERNEL);
933         if (idx < 0)
934                 goto out_free_full_dirty_stripes;
935
936         if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio),
937                         BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
938                 goto out_ida_remove;
939
940         d->disk = blk_alloc_disk(NUMA_NO_NODE);
941         if (!d->disk)
942                 goto out_bioset_exit;
943
944         set_capacity(d->disk, sectors);
945         snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx);
946
947         d->disk->major          = bcache_major;
948         d->disk->first_minor    = idx_to_first_minor(idx);
949         d->disk->minors         = BCACHE_MINORS;
950         d->disk->fops           = ops;
951         d->disk->private_data   = d;
952
953         q = d->disk->queue;
954         q->limits.max_hw_sectors        = UINT_MAX;
955         q->limits.max_sectors           = UINT_MAX;
956         q->limits.max_segment_size      = UINT_MAX;
957         q->limits.max_segments          = BIO_MAX_VECS;
958         blk_queue_max_discard_sectors(q, UINT_MAX);
959         q->limits.discard_granularity   = 512;
960         q->limits.io_min                = block_size;
961         q->limits.logical_block_size    = block_size;
962         q->limits.physical_block_size   = block_size;
963
964         if (q->limits.logical_block_size > PAGE_SIZE && cached_bdev) {
965                 /*
966                  * This should only happen with BCACHE_SB_VERSION_BDEV.
967                  * Block/page size is checked for BCACHE_SB_VERSION_CDEV.
968                  */
969                 pr_info("%s: sb/logical block size (%u) greater than page size (%lu) falling back to device logical block size (%u)\n",
970                         d->disk->disk_name, q->limits.logical_block_size,
971                         PAGE_SIZE, bdev_logical_block_size(cached_bdev));
972
973                 /* This also adjusts physical block size/min io size if needed */
974                 blk_queue_logical_block_size(q, bdev_logical_block_size(cached_bdev));
975         }
976
977         blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue);
978         blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue);
979         blk_queue_flag_set(QUEUE_FLAG_DISCARD, d->disk->queue);
980
981         blk_queue_write_cache(q, true, true);
982
983         return 0;
984
985 out_bioset_exit:
986         bioset_exit(&d->bio_split);
987 out_ida_remove:
988         ida_simple_remove(&bcache_device_idx, idx);
989 out_free_full_dirty_stripes:
990         kvfree(d->full_dirty_stripes);
991 out_free_stripe_sectors_dirty:
992         kvfree(d->stripe_sectors_dirty);
993         return -ENOMEM;
994
995 }
996
997 /* Cached device */
998
999 static void calc_cached_dev_sectors(struct cache_set *c)
1000 {
1001         uint64_t sectors = 0;
1002         struct cached_dev *dc;
1003
1004         list_for_each_entry(dc, &c->cached_devs, list)
1005                 sectors += bdev_sectors(dc->bdev);
1006
1007         c->cached_dev_sectors = sectors;
1008 }
1009
1010 #define BACKING_DEV_OFFLINE_TIMEOUT 5
1011 static int cached_dev_status_update(void *arg)
1012 {
1013         struct cached_dev *dc = arg;
1014         struct request_queue *q;
1015
1016         /*
1017          * If this delayed worker is stopping outside, directly quit here.
1018          * dc->io_disable might be set via sysfs interface, so check it
1019          * here too.
1020          */
1021         while (!kthread_should_stop() && !dc->io_disable) {
1022                 q = bdev_get_queue(dc->bdev);
1023                 if (blk_queue_dying(q))
1024                         dc->offline_seconds++;
1025                 else
1026                         dc->offline_seconds = 0;
1027
1028                 if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) {
1029                         pr_err("%s: device offline for %d seconds\n",
1030                                dc->backing_dev_name,
1031                                BACKING_DEV_OFFLINE_TIMEOUT);
1032                         pr_err("%s: disable I/O request due to backing device offline\n",
1033                                dc->disk.name);
1034                         dc->io_disable = true;
1035                         /* let others know earlier that io_disable is true */
1036                         smp_mb();
1037                         bcache_device_stop(&dc->disk);
1038                         break;
1039                 }
1040                 schedule_timeout_interruptible(HZ);
1041         }
1042
1043         wait_for_kthread_stop();
1044         return 0;
1045 }
1046
1047
1048 int bch_cached_dev_run(struct cached_dev *dc)
1049 {
1050         int ret = 0;
1051         struct bcache_device *d = &dc->disk;
1052         char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL);
1053         char *env[] = {
1054                 "DRIVER=bcache",
1055                 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
1056                 kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""),
1057                 NULL,
1058         };
1059
1060         if (dc->io_disable) {
1061                 pr_err("I/O disabled on cached dev %s\n",
1062                        dc->backing_dev_name);
1063                 ret = -EIO;
1064                 goto out;
1065         }
1066
1067         if (atomic_xchg(&dc->running, 1)) {
1068                 pr_info("cached dev %s is running already\n",
1069                        dc->backing_dev_name);
1070                 ret = -EBUSY;
1071                 goto out;
1072         }
1073
1074         if (!d->c &&
1075             BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
1076                 struct closure cl;
1077
1078                 closure_init_stack(&cl);
1079
1080                 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
1081                 bch_write_bdev_super(dc, &cl);
1082                 closure_sync(&cl);
1083         }
1084
1085         add_disk(d->disk);
1086         bd_link_disk_holder(dc->bdev, dc->disk.disk);
1087         /*
1088          * won't show up in the uevent file, use udevadm monitor -e instead
1089          * only class / kset properties are persistent
1090          */
1091         kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
1092
1093         if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
1094             sysfs_create_link(&disk_to_dev(d->disk)->kobj,
1095                               &d->kobj, "bcache")) {
1096                 pr_err("Couldn't create bcache dev <-> disk sysfs symlinks\n");
1097                 ret = -ENOMEM;
1098                 goto out;
1099         }
1100
1101         dc->status_update_thread = kthread_run(cached_dev_status_update,
1102                                                dc, "bcache_status_update");
1103         if (IS_ERR(dc->status_update_thread)) {
1104                 pr_warn("failed to create bcache_status_update kthread, continue to run without monitoring backing device status\n");
1105         }
1106
1107 out:
1108         kfree(env[1]);
1109         kfree(env[2]);
1110         kfree(buf);
1111         return ret;
1112 }
1113
1114 /*
1115  * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed
1116  * work dc->writeback_rate_update is running. Wait until the routine
1117  * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to
1118  * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out
1119  * seconds, give up waiting here and continue to cancel it too.
1120  */
1121 static void cancel_writeback_rate_update_dwork(struct cached_dev *dc)
1122 {
1123         int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ;
1124
1125         do {
1126                 if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING,
1127                               &dc->disk.flags))
1128                         break;
1129                 time_out--;
1130                 schedule_timeout_interruptible(1);
1131         } while (time_out > 0);
1132
1133         if (time_out == 0)
1134                 pr_warn("give up waiting for dc->writeback_write_update to quit\n");
1135
1136         cancel_delayed_work_sync(&dc->writeback_rate_update);
1137 }
1138
1139 static void cached_dev_detach_finish(struct work_struct *w)
1140 {
1141         struct cached_dev *dc = container_of(w, struct cached_dev, detach);
1142
1143         BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
1144         BUG_ON(refcount_read(&dc->count));
1145
1146
1147         if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1148                 cancel_writeback_rate_update_dwork(dc);
1149
1150         if (!IS_ERR_OR_NULL(dc->writeback_thread)) {
1151                 kthread_stop(dc->writeback_thread);
1152                 dc->writeback_thread = NULL;
1153         }
1154
1155         mutex_lock(&bch_register_lock);
1156
1157         bcache_device_detach(&dc->disk);
1158         list_move(&dc->list, &uncached_devices);
1159         calc_cached_dev_sectors(dc->disk.c);
1160
1161         clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
1162         clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
1163
1164         mutex_unlock(&bch_register_lock);
1165
1166         pr_info("Caching disabled for %s\n", dc->backing_dev_name);
1167
1168         /* Drop ref we took in cached_dev_detach() */
1169         closure_put(&dc->disk.cl);
1170 }
1171
1172 void bch_cached_dev_detach(struct cached_dev *dc)
1173 {
1174         lockdep_assert_held(&bch_register_lock);
1175
1176         if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1177                 return;
1178
1179         if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
1180                 return;
1181
1182         /*
1183          * Block the device from being closed and freed until we're finished
1184          * detaching
1185          */
1186         closure_get(&dc->disk.cl);
1187
1188         bch_writeback_queue(dc);
1189
1190         cached_dev_put(dc);
1191 }
1192
1193 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
1194                           uint8_t *set_uuid)
1195 {
1196         uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds());
1197         struct uuid_entry *u;
1198         struct cached_dev *exist_dc, *t;
1199         int ret = 0;
1200
1201         if ((set_uuid && memcmp(set_uuid, c->set_uuid, 16)) ||
1202             (!set_uuid && memcmp(dc->sb.set_uuid, c->set_uuid, 16)))
1203                 return -ENOENT;
1204
1205         if (dc->disk.c) {
1206                 pr_err("Can't attach %s: already attached\n",
1207                        dc->backing_dev_name);
1208                 return -EINVAL;
1209         }
1210
1211         if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
1212                 pr_err("Can't attach %s: shutting down\n",
1213                        dc->backing_dev_name);
1214                 return -EINVAL;
1215         }
1216
1217         if (dc->sb.block_size < c->cache->sb.block_size) {
1218                 /* Will die */
1219                 pr_err("Couldn't attach %s: block size less than set's block size\n",
1220                        dc->backing_dev_name);
1221                 return -EINVAL;
1222         }
1223
1224         /* Check whether already attached */
1225         list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) {
1226                 if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) {
1227                         pr_err("Tried to attach %s but duplicate UUID already attached\n",
1228                                 dc->backing_dev_name);
1229
1230                         return -EINVAL;
1231                 }
1232         }
1233
1234         u = uuid_find(c, dc->sb.uuid);
1235
1236         if (u &&
1237             (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
1238              BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
1239                 memcpy(u->uuid, invalid_uuid, 16);
1240                 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
1241                 u = NULL;
1242         }
1243
1244         if (!u) {
1245                 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1246                         pr_err("Couldn't find uuid for %s in set\n",
1247                                dc->backing_dev_name);
1248                         return -ENOENT;
1249                 }
1250
1251                 u = uuid_find_empty(c);
1252                 if (!u) {
1253                         pr_err("Not caching %s, no room for UUID\n",
1254                                dc->backing_dev_name);
1255                         return -EINVAL;
1256                 }
1257         }
1258
1259         /*
1260          * Deadlocks since we're called via sysfs...
1261          * sysfs_remove_file(&dc->kobj, &sysfs_attach);
1262          */
1263
1264         if (bch_is_zero(u->uuid, 16)) {
1265                 struct closure cl;
1266
1267                 closure_init_stack(&cl);
1268
1269                 memcpy(u->uuid, dc->sb.uuid, 16);
1270                 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1271                 u->first_reg = u->last_reg = rtime;
1272                 bch_uuid_write(c);
1273
1274                 memcpy(dc->sb.set_uuid, c->set_uuid, 16);
1275                 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1276
1277                 bch_write_bdev_super(dc, &cl);
1278                 closure_sync(&cl);
1279         } else {
1280                 u->last_reg = rtime;
1281                 bch_uuid_write(c);
1282         }
1283
1284         bcache_device_attach(&dc->disk, c, u - c->uuids);
1285         list_move(&dc->list, &c->cached_devs);
1286         calc_cached_dev_sectors(c);
1287
1288         /*
1289          * dc->c must be set before dc->count != 0 - paired with the mb in
1290          * cached_dev_get()
1291          */
1292         smp_wmb();
1293         refcount_set(&dc->count, 1);
1294
1295         /* Block writeback thread, but spawn it */
1296         down_write(&dc->writeback_lock);
1297         if (bch_cached_dev_writeback_start(dc)) {
1298                 up_write(&dc->writeback_lock);
1299                 pr_err("Couldn't start writeback facilities for %s\n",
1300                        dc->disk.disk->disk_name);
1301                 return -ENOMEM;
1302         }
1303
1304         if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1305                 atomic_set(&dc->has_dirty, 1);
1306                 bch_writeback_queue(dc);
1307         }
1308
1309         bch_sectors_dirty_init(&dc->disk);
1310
1311         ret = bch_cached_dev_run(dc);
1312         if (ret && (ret != -EBUSY)) {
1313                 up_write(&dc->writeback_lock);
1314                 /*
1315                  * bch_register_lock is held, bcache_device_stop() is not
1316                  * able to be directly called. The kthread and kworker
1317                  * created previously in bch_cached_dev_writeback_start()
1318                  * have to be stopped manually here.
1319                  */
1320                 kthread_stop(dc->writeback_thread);
1321                 cancel_writeback_rate_update_dwork(dc);
1322                 pr_err("Couldn't run cached device %s\n",
1323                        dc->backing_dev_name);
1324                 return ret;
1325         }
1326
1327         bcache_device_link(&dc->disk, c, "bdev");
1328         atomic_inc(&c->attached_dev_nr);
1329
1330         if (bch_has_feature_obso_large_bucket(&(c->cache->sb))) {
1331                 pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n");
1332                 pr_err("Please update to the latest bcache-tools to create the cache device\n");
1333                 set_disk_ro(dc->disk.disk, 1);
1334         }
1335
1336         /* Allow the writeback thread to proceed */
1337         up_write(&dc->writeback_lock);
1338
1339         pr_info("Caching %s as %s on set %pU\n",
1340                 dc->backing_dev_name,
1341                 dc->disk.disk->disk_name,
1342                 dc->disk.c->set_uuid);
1343         return 0;
1344 }
1345
1346 /* when dc->disk.kobj released */
1347 void bch_cached_dev_release(struct kobject *kobj)
1348 {
1349         struct cached_dev *dc = container_of(kobj, struct cached_dev,
1350                                              disk.kobj);
1351         kfree(dc);
1352         module_put(THIS_MODULE);
1353 }
1354
1355 static void cached_dev_free(struct closure *cl)
1356 {
1357         struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1358
1359         if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1360                 cancel_writeback_rate_update_dwork(dc);
1361
1362         if (!IS_ERR_OR_NULL(dc->writeback_thread))
1363                 kthread_stop(dc->writeback_thread);
1364         if (!IS_ERR_OR_NULL(dc->status_update_thread))
1365                 kthread_stop(dc->status_update_thread);
1366
1367         mutex_lock(&bch_register_lock);
1368
1369         if (atomic_read(&dc->running)) {
1370                 bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1371                 del_gendisk(dc->disk.disk);
1372         }
1373         bcache_device_free(&dc->disk);
1374         list_del(&dc->list);
1375
1376         mutex_unlock(&bch_register_lock);
1377
1378         if (dc->sb_disk)
1379                 put_page(virt_to_page(dc->sb_disk));
1380
1381         if (!IS_ERR_OR_NULL(dc->bdev))
1382                 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1383
1384         wake_up(&unregister_wait);
1385
1386         kobject_put(&dc->disk.kobj);
1387 }
1388
1389 static void cached_dev_flush(struct closure *cl)
1390 {
1391         struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1392         struct bcache_device *d = &dc->disk;
1393
1394         mutex_lock(&bch_register_lock);
1395         bcache_device_unlink(d);
1396         mutex_unlock(&bch_register_lock);
1397
1398         bch_cache_accounting_destroy(&dc->accounting);
1399         kobject_del(&d->kobj);
1400
1401         continue_at(cl, cached_dev_free, system_wq);
1402 }
1403
1404 static int cached_dev_init(struct cached_dev *dc, unsigned int block_size)
1405 {
1406         int ret;
1407         struct io *io;
1408         struct request_queue *q = bdev_get_queue(dc->bdev);
1409
1410         __module_get(THIS_MODULE);
1411         INIT_LIST_HEAD(&dc->list);
1412         closure_init(&dc->disk.cl, NULL);
1413         set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1414         kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1415         INIT_WORK(&dc->detach, cached_dev_detach_finish);
1416         sema_init(&dc->sb_write_mutex, 1);
1417         INIT_LIST_HEAD(&dc->io_lru);
1418         spin_lock_init(&dc->io_lock);
1419         bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1420
1421         dc->sequential_cutoff           = 4 << 20;
1422
1423         for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1424                 list_add(&io->lru, &dc->io_lru);
1425                 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1426         }
1427
1428         dc->disk.stripe_size = q->limits.io_opt >> 9;
1429
1430         if (dc->disk.stripe_size)
1431                 dc->partial_stripes_expensive =
1432                         q->limits.raid_partial_stripes_expensive;
1433
1434         ret = bcache_device_init(&dc->disk, block_size,
1435                          bdev_nr_sectors(dc->bdev) - dc->sb.data_offset,
1436                          dc->bdev, &bcache_cached_ops);
1437         if (ret)
1438                 return ret;
1439
1440         blk_queue_io_opt(dc->disk.disk->queue,
1441                 max(queue_io_opt(dc->disk.disk->queue), queue_io_opt(q)));
1442
1443         atomic_set(&dc->io_errors, 0);
1444         dc->io_disable = false;
1445         dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT;
1446         /* default to auto */
1447         dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO;
1448
1449         bch_cached_dev_request_init(dc);
1450         bch_cached_dev_writeback_init(dc);
1451         return 0;
1452 }
1453
1454 /* Cached device - bcache superblock */
1455
1456 static int register_bdev(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
1457                                  struct block_device *bdev,
1458                                  struct cached_dev *dc)
1459 {
1460         const char *err = "cannot allocate memory";
1461         struct cache_set *c;
1462         int ret = -ENOMEM;
1463
1464         bdevname(bdev, dc->backing_dev_name);
1465         memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1466         dc->bdev = bdev;
1467         dc->bdev->bd_holder = dc;
1468         dc->sb_disk = sb_disk;
1469
1470         if (cached_dev_init(dc, sb->block_size << 9))
1471                 goto err;
1472
1473         err = "error creating kobject";
1474         if (kobject_add(&dc->disk.kobj, bdev_kobj(bdev), "bcache"))
1475                 goto err;
1476         if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1477                 goto err;
1478
1479         pr_info("registered backing device %s\n", dc->backing_dev_name);
1480
1481         list_add(&dc->list, &uncached_devices);
1482         /* attach to a matched cache set if it exists */
1483         list_for_each_entry(c, &bch_cache_sets, list)
1484                 bch_cached_dev_attach(dc, c, NULL);
1485
1486         if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1487             BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) {
1488                 err = "failed to run cached device";
1489                 ret = bch_cached_dev_run(dc);
1490                 if (ret)
1491                         goto err;
1492         }
1493
1494         return 0;
1495 err:
1496         pr_notice("error %s: %s\n", dc->backing_dev_name, err);
1497         bcache_device_stop(&dc->disk);
1498         return ret;
1499 }
1500
1501 /* Flash only volumes */
1502
1503 /* When d->kobj released */
1504 void bch_flash_dev_release(struct kobject *kobj)
1505 {
1506         struct bcache_device *d = container_of(kobj, struct bcache_device,
1507                                                kobj);
1508         kfree(d);
1509 }
1510
1511 static void flash_dev_free(struct closure *cl)
1512 {
1513         struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1514
1515         mutex_lock(&bch_register_lock);
1516         atomic_long_sub(bcache_dev_sectors_dirty(d),
1517                         &d->c->flash_dev_dirty_sectors);
1518         del_gendisk(d->disk);
1519         bcache_device_free(d);
1520         mutex_unlock(&bch_register_lock);
1521         kobject_put(&d->kobj);
1522 }
1523
1524 static void flash_dev_flush(struct closure *cl)
1525 {
1526         struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1527
1528         mutex_lock(&bch_register_lock);
1529         bcache_device_unlink(d);
1530         mutex_unlock(&bch_register_lock);
1531         kobject_del(&d->kobj);
1532         continue_at(cl, flash_dev_free, system_wq);
1533 }
1534
1535 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1536 {
1537         struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1538                                           GFP_KERNEL);
1539         if (!d)
1540                 return -ENOMEM;
1541
1542         closure_init(&d->cl, NULL);
1543         set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1544
1545         kobject_init(&d->kobj, &bch_flash_dev_ktype);
1546
1547         if (bcache_device_init(d, block_bytes(c->cache), u->sectors,
1548                         NULL, &bcache_flash_ops))
1549                 goto err;
1550
1551         bcache_device_attach(d, c, u - c->uuids);
1552         bch_sectors_dirty_init(d);
1553         bch_flash_dev_request_init(d);
1554         add_disk(d->disk);
1555
1556         if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1557                 goto err;
1558
1559         bcache_device_link(d, c, "volume");
1560
1561         if (bch_has_feature_obso_large_bucket(&c->cache->sb)) {
1562                 pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n");
1563                 pr_err("Please update to the latest bcache-tools to create the cache device\n");
1564                 set_disk_ro(d->disk, 1);
1565         }
1566
1567         return 0;
1568 err:
1569         kobject_put(&d->kobj);
1570         return -ENOMEM;
1571 }
1572
1573 static int flash_devs_run(struct cache_set *c)
1574 {
1575         int ret = 0;
1576         struct uuid_entry *u;
1577
1578         for (u = c->uuids;
1579              u < c->uuids + c->nr_uuids && !ret;
1580              u++)
1581                 if (UUID_FLASH_ONLY(u))
1582                         ret = flash_dev_run(c, u);
1583
1584         return ret;
1585 }
1586
1587 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1588 {
1589         struct uuid_entry *u;
1590
1591         if (test_bit(CACHE_SET_STOPPING, &c->flags))
1592                 return -EINTR;
1593
1594         if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1595                 return -EPERM;
1596
1597         u = uuid_find_empty(c);
1598         if (!u) {
1599                 pr_err("Can't create volume, no room for UUID\n");
1600                 return -EINVAL;
1601         }
1602
1603         get_random_bytes(u->uuid, 16);
1604         memset(u->label, 0, 32);
1605         u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds());
1606
1607         SET_UUID_FLASH_ONLY(u, 1);
1608         u->sectors = size >> 9;
1609
1610         bch_uuid_write(c);
1611
1612         return flash_dev_run(c, u);
1613 }
1614
1615 bool bch_cached_dev_error(struct cached_dev *dc)
1616 {
1617         if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1618                 return false;
1619
1620         dc->io_disable = true;
1621         /* make others know io_disable is true earlier */
1622         smp_mb();
1623
1624         pr_err("stop %s: too many IO errors on backing device %s\n",
1625                dc->disk.disk->disk_name, dc->backing_dev_name);
1626
1627         bcache_device_stop(&dc->disk);
1628         return true;
1629 }
1630
1631 /* Cache set */
1632
1633 __printf(2, 3)
1634 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1635 {
1636         struct va_format vaf;
1637         va_list args;
1638
1639         if (c->on_error != ON_ERROR_PANIC &&
1640             test_bit(CACHE_SET_STOPPING, &c->flags))
1641                 return false;
1642
1643         if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags))
1644                 pr_info("CACHE_SET_IO_DISABLE already set\n");
1645
1646         /*
1647          * XXX: we can be called from atomic context
1648          * acquire_console_sem();
1649          */
1650
1651         va_start(args, fmt);
1652
1653         vaf.fmt = fmt;
1654         vaf.va = &args;
1655
1656         pr_err("error on %pU: %pV, disabling caching\n",
1657                c->set_uuid, &vaf);
1658
1659         va_end(args);
1660
1661         if (c->on_error == ON_ERROR_PANIC)
1662                 panic("panic forced after error\n");
1663
1664         bch_cache_set_unregister(c);
1665         return true;
1666 }
1667
1668 /* When c->kobj released */
1669 void bch_cache_set_release(struct kobject *kobj)
1670 {
1671         struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1672
1673         kfree(c);
1674         module_put(THIS_MODULE);
1675 }
1676
1677 static void cache_set_free(struct closure *cl)
1678 {
1679         struct cache_set *c = container_of(cl, struct cache_set, cl);
1680         struct cache *ca;
1681
1682         debugfs_remove(c->debug);
1683
1684         bch_open_buckets_free(c);
1685         bch_btree_cache_free(c);
1686         bch_journal_free(c);
1687
1688         mutex_lock(&bch_register_lock);
1689         bch_bset_sort_state_free(&c->sort);
1690         free_pages((unsigned long) c->uuids, ilog2(meta_bucket_pages(&c->cache->sb)));
1691
1692         ca = c->cache;
1693         if (ca) {
1694                 ca->set = NULL;
1695                 c->cache = NULL;
1696                 kobject_put(&ca->kobj);
1697         }
1698
1699
1700         if (c->moving_gc_wq)
1701                 destroy_workqueue(c->moving_gc_wq);
1702         bioset_exit(&c->bio_split);
1703         mempool_exit(&c->fill_iter);
1704         mempool_exit(&c->bio_meta);
1705         mempool_exit(&c->search);
1706         kfree(c->devices);
1707
1708         list_del(&c->list);
1709         mutex_unlock(&bch_register_lock);
1710
1711         pr_info("Cache set %pU unregistered\n", c->set_uuid);
1712         wake_up(&unregister_wait);
1713
1714         closure_debug_destroy(&c->cl);
1715         kobject_put(&c->kobj);
1716 }
1717
1718 static void cache_set_flush(struct closure *cl)
1719 {
1720         struct cache_set *c = container_of(cl, struct cache_set, caching);
1721         struct cache *ca = c->cache;
1722         struct btree *b;
1723
1724         bch_cache_accounting_destroy(&c->accounting);
1725
1726         kobject_put(&c->internal);
1727         kobject_del(&c->kobj);
1728
1729         if (!IS_ERR_OR_NULL(c->gc_thread))
1730                 kthread_stop(c->gc_thread);
1731
1732         if (!IS_ERR_OR_NULL(c->root))
1733                 list_add(&c->root->list, &c->btree_cache);
1734
1735         /*
1736          * Avoid flushing cached nodes if cache set is retiring
1737          * due to too many I/O errors detected.
1738          */
1739         if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1740                 list_for_each_entry(b, &c->btree_cache, list) {
1741                         mutex_lock(&b->write_lock);
1742                         if (btree_node_dirty(b))
1743                                 __bch_btree_node_write(b, NULL);
1744                         mutex_unlock(&b->write_lock);
1745                 }
1746
1747         if (ca->alloc_thread)
1748                 kthread_stop(ca->alloc_thread);
1749
1750         if (c->journal.cur) {
1751                 cancel_delayed_work_sync(&c->journal.work);
1752                 /* flush last journal entry if needed */
1753                 c->journal.work.work.func(&c->journal.work.work);
1754         }
1755
1756         closure_return(cl);
1757 }
1758
1759 /*
1760  * This function is only called when CACHE_SET_IO_DISABLE is set, which means
1761  * cache set is unregistering due to too many I/O errors. In this condition,
1762  * the bcache device might be stopped, it depends on stop_when_cache_set_failed
1763  * value and whether the broken cache has dirty data:
1764  *
1765  * dc->stop_when_cache_set_failed    dc->has_dirty   stop bcache device
1766  *  BCH_CACHED_STOP_AUTO               0               NO
1767  *  BCH_CACHED_STOP_AUTO               1               YES
1768  *  BCH_CACHED_DEV_STOP_ALWAYS         0               YES
1769  *  BCH_CACHED_DEV_STOP_ALWAYS         1               YES
1770  *
1771  * The expected behavior is, if stop_when_cache_set_failed is configured to
1772  * "auto" via sysfs interface, the bcache device will not be stopped if the
1773  * backing device is clean on the broken cache device.
1774  */
1775 static void conditional_stop_bcache_device(struct cache_set *c,
1776                                            struct bcache_device *d,
1777                                            struct cached_dev *dc)
1778 {
1779         if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) {
1780                 pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.\n",
1781                         d->disk->disk_name, c->set_uuid);
1782                 bcache_device_stop(d);
1783         } else if (atomic_read(&dc->has_dirty)) {
1784                 /*
1785                  * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1786                  * and dc->has_dirty == 1
1787                  */
1788                 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.\n",
1789                         d->disk->disk_name);
1790                 /*
1791                  * There might be a small time gap that cache set is
1792                  * released but bcache device is not. Inside this time
1793                  * gap, regular I/O requests will directly go into
1794                  * backing device as no cache set attached to. This
1795                  * behavior may also introduce potential inconsistence
1796                  * data in writeback mode while cache is dirty.
1797                  * Therefore before calling bcache_device_stop() due
1798                  * to a broken cache device, dc->io_disable should be
1799                  * explicitly set to true.
1800                  */
1801                 dc->io_disable = true;
1802                 /* make others know io_disable is true earlier */
1803                 smp_mb();
1804                 bcache_device_stop(d);
1805         } else {
1806                 /*
1807                  * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1808                  * and dc->has_dirty == 0
1809                  */
1810                 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.\n",
1811                         d->disk->disk_name);
1812         }
1813 }
1814
1815 static void __cache_set_unregister(struct closure *cl)
1816 {
1817         struct cache_set *c = container_of(cl, struct cache_set, caching);
1818         struct cached_dev *dc;
1819         struct bcache_device *d;
1820         size_t i;
1821
1822         mutex_lock(&bch_register_lock);
1823
1824         for (i = 0; i < c->devices_max_used; i++) {
1825                 d = c->devices[i];
1826                 if (!d)
1827                         continue;
1828
1829                 if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1830                     test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1831                         dc = container_of(d, struct cached_dev, disk);
1832                         bch_cached_dev_detach(dc);
1833                         if (test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1834                                 conditional_stop_bcache_device(c, d, dc);
1835                 } else {
1836                         bcache_device_stop(d);
1837                 }
1838         }
1839
1840         mutex_unlock(&bch_register_lock);
1841
1842         continue_at(cl, cache_set_flush, system_wq);
1843 }
1844
1845 void bch_cache_set_stop(struct cache_set *c)
1846 {
1847         if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1848                 /* closure_fn set to __cache_set_unregister() */
1849                 closure_queue(&c->caching);
1850 }
1851
1852 void bch_cache_set_unregister(struct cache_set *c)
1853 {
1854         set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1855         bch_cache_set_stop(c);
1856 }
1857
1858 #define alloc_meta_bucket_pages(gfp, sb)                \
1859         ((void *) __get_free_pages(__GFP_ZERO|__GFP_COMP|gfp, ilog2(meta_bucket_pages(sb))))
1860
1861 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1862 {
1863         int iter_size;
1864         struct cache *ca = container_of(sb, struct cache, sb);
1865         struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1866
1867         if (!c)
1868                 return NULL;
1869
1870         __module_get(THIS_MODULE);
1871         closure_init(&c->cl, NULL);
1872         set_closure_fn(&c->cl, cache_set_free, system_wq);
1873
1874         closure_init(&c->caching, &c->cl);
1875         set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1876
1877         /* Maybe create continue_at_noreturn() and use it here? */
1878         closure_set_stopped(&c->cl);
1879         closure_put(&c->cl);
1880
1881         kobject_init(&c->kobj, &bch_cache_set_ktype);
1882         kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1883
1884         bch_cache_accounting_init(&c->accounting, &c->cl);
1885
1886         memcpy(c->set_uuid, sb->set_uuid, 16);
1887
1888         c->cache                = ca;
1889         c->cache->set           = c;
1890         c->bucket_bits          = ilog2(sb->bucket_size);
1891         c->block_bits           = ilog2(sb->block_size);
1892         c->nr_uuids             = meta_bucket_bytes(sb) / sizeof(struct uuid_entry);
1893         c->devices_max_used     = 0;
1894         atomic_set(&c->attached_dev_nr, 0);
1895         c->btree_pages          = meta_bucket_pages(sb);
1896         if (c->btree_pages > BTREE_MAX_PAGES)
1897                 c->btree_pages = max_t(int, c->btree_pages / 4,
1898                                        BTREE_MAX_PAGES);
1899
1900         sema_init(&c->sb_write_mutex, 1);
1901         mutex_init(&c->bucket_lock);
1902         init_waitqueue_head(&c->btree_cache_wait);
1903         spin_lock_init(&c->btree_cannibalize_lock);
1904         init_waitqueue_head(&c->bucket_wait);
1905         init_waitqueue_head(&c->gc_wait);
1906         sema_init(&c->uuid_write_mutex, 1);
1907
1908         spin_lock_init(&c->btree_gc_time.lock);
1909         spin_lock_init(&c->btree_split_time.lock);
1910         spin_lock_init(&c->btree_read_time.lock);
1911
1912         bch_moving_init_cache_set(c);
1913
1914         INIT_LIST_HEAD(&c->list);
1915         INIT_LIST_HEAD(&c->cached_devs);
1916         INIT_LIST_HEAD(&c->btree_cache);
1917         INIT_LIST_HEAD(&c->btree_cache_freeable);
1918         INIT_LIST_HEAD(&c->btree_cache_freed);
1919         INIT_LIST_HEAD(&c->data_buckets);
1920
1921         iter_size = ((meta_bucket_pages(sb) * PAGE_SECTORS) / sb->block_size + 1) *
1922                 sizeof(struct btree_iter_set);
1923
1924         c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL);
1925         if (!c->devices)
1926                 goto err;
1927
1928         if (mempool_init_slab_pool(&c->search, 32, bch_search_cache))
1929                 goto err;
1930
1931         if (mempool_init_kmalloc_pool(&c->bio_meta, 2,
1932                         sizeof(struct bbio) +
1933                         sizeof(struct bio_vec) * meta_bucket_pages(sb)))
1934                 goto err;
1935
1936         if (mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size))
1937                 goto err;
1938
1939         if (bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio),
1940                         BIOSET_NEED_RESCUER))
1941                 goto err;
1942
1943         c->uuids = alloc_meta_bucket_pages(GFP_KERNEL, sb);
1944         if (!c->uuids)
1945                 goto err;
1946
1947         c->moving_gc_wq = alloc_workqueue("bcache_gc", WQ_MEM_RECLAIM, 0);
1948         if (!c->moving_gc_wq)
1949                 goto err;
1950
1951         if (bch_journal_alloc(c))
1952                 goto err;
1953
1954         if (bch_btree_cache_alloc(c))
1955                 goto err;
1956
1957         if (bch_open_buckets_alloc(c))
1958                 goto err;
1959
1960         if (bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1961                 goto err;
1962
1963         c->congested_read_threshold_us  = 2000;
1964         c->congested_write_threshold_us = 20000;
1965         c->error_limit  = DEFAULT_IO_ERROR_LIMIT;
1966         c->idle_max_writeback_rate_enabled = 1;
1967         WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags));
1968
1969         return c;
1970 err:
1971         bch_cache_set_unregister(c);
1972         return NULL;
1973 }
1974
1975 static int run_cache_set(struct cache_set *c)
1976 {
1977         const char *err = "cannot allocate memory";
1978         struct cached_dev *dc, *t;
1979         struct cache *ca = c->cache;
1980         struct closure cl;
1981         LIST_HEAD(journal);
1982         struct journal_replay *l;
1983
1984         closure_init_stack(&cl);
1985
1986         c->nbuckets = ca->sb.nbuckets;
1987         set_gc_sectors(c);
1988
1989         if (CACHE_SYNC(&c->cache->sb)) {
1990                 struct bkey *k;
1991                 struct jset *j;
1992
1993                 err = "cannot allocate memory for journal";
1994                 if (bch_journal_read(c, &journal))
1995                         goto err;
1996
1997                 pr_debug("btree_journal_read() done\n");
1998
1999                 err = "no journal entries found";
2000                 if (list_empty(&journal))
2001                         goto err;
2002
2003                 j = &list_entry(journal.prev, struct journal_replay, list)->j;
2004
2005                 err = "IO error reading priorities";
2006                 if (prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]))
2007                         goto err;
2008
2009                 /*
2010                  * If prio_read() fails it'll call cache_set_error and we'll
2011                  * tear everything down right away, but if we perhaps checked
2012                  * sooner we could avoid journal replay.
2013                  */
2014
2015                 k = &j->btree_root;
2016
2017                 err = "bad btree root";
2018                 if (__bch_btree_ptr_invalid(c, k))
2019                         goto err;
2020
2021                 err = "error reading btree root";
2022                 c->root = bch_btree_node_get(c, NULL, k,
2023                                              j->btree_level,
2024                                              true, NULL);
2025                 if (IS_ERR_OR_NULL(c->root))
2026                         goto err;
2027
2028                 list_del_init(&c->root->list);
2029                 rw_unlock(true, c->root);
2030
2031                 err = uuid_read(c, j, &cl);
2032                 if (err)
2033                         goto err;
2034
2035                 err = "error in recovery";
2036                 if (bch_btree_check(c))
2037                         goto err;
2038
2039                 bch_journal_mark(c, &journal);
2040                 bch_initial_gc_finish(c);
2041                 pr_debug("btree_check() done\n");
2042
2043                 /*
2044                  * bcache_journal_next() can't happen sooner, or
2045                  * btree_gc_finish() will give spurious errors about last_gc >
2046                  * gc_gen - this is a hack but oh well.
2047                  */
2048                 bch_journal_next(&c->journal);
2049
2050                 err = "error starting allocator thread";
2051                 if (bch_cache_allocator_start(ca))
2052                         goto err;
2053
2054                 /*
2055                  * First place it's safe to allocate: btree_check() and
2056                  * btree_gc_finish() have to run before we have buckets to
2057                  * allocate, and bch_bucket_alloc_set() might cause a journal
2058                  * entry to be written so bcache_journal_next() has to be called
2059                  * first.
2060                  *
2061                  * If the uuids were in the old format we have to rewrite them
2062                  * before the next journal entry is written:
2063                  */
2064                 if (j->version < BCACHE_JSET_VERSION_UUID)
2065                         __uuid_write(c);
2066
2067                 err = "bcache: replay journal failed";
2068                 if (bch_journal_replay(c, &journal))
2069                         goto err;
2070         } else {
2071                 unsigned int j;
2072
2073                 pr_notice("invalidating existing data\n");
2074                 ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
2075                                         2, SB_JOURNAL_BUCKETS);
2076
2077                 for (j = 0; j < ca->sb.keys; j++)
2078                         ca->sb.d[j] = ca->sb.first_bucket + j;
2079
2080                 bch_initial_gc_finish(c);
2081
2082                 err = "error starting allocator thread";
2083                 if (bch_cache_allocator_start(ca))
2084                         goto err;
2085
2086                 mutex_lock(&c->bucket_lock);
2087                 bch_prio_write(ca, true);
2088                 mutex_unlock(&c->bucket_lock);
2089
2090                 err = "cannot allocate new UUID bucket";
2091                 if (__uuid_write(c))
2092                         goto err;
2093
2094                 err = "cannot allocate new btree root";
2095                 c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
2096                 if (IS_ERR_OR_NULL(c->root))
2097                         goto err;
2098
2099                 mutex_lock(&c->root->write_lock);
2100                 bkey_copy_key(&c->root->key, &MAX_KEY);
2101                 bch_btree_node_write(c->root, &cl);
2102                 mutex_unlock(&c->root->write_lock);
2103
2104                 bch_btree_set_root(c->root);
2105                 rw_unlock(true, c->root);
2106
2107                 /*
2108                  * We don't want to write the first journal entry until
2109                  * everything is set up - fortunately journal entries won't be
2110                  * written until the SET_CACHE_SYNC() here:
2111                  */
2112                 SET_CACHE_SYNC(&c->cache->sb, true);
2113
2114                 bch_journal_next(&c->journal);
2115                 bch_journal_meta(c, &cl);
2116         }
2117
2118         err = "error starting gc thread";
2119         if (bch_gc_thread_start(c))
2120                 goto err;
2121
2122         closure_sync(&cl);
2123         c->cache->sb.last_mount = (u32)ktime_get_real_seconds();
2124         bcache_write_super(c);
2125
2126         if (bch_has_feature_obso_large_bucket(&c->cache->sb))
2127                 pr_err("Detect obsoleted large bucket layout, all attached bcache device will be read-only\n");
2128
2129         list_for_each_entry_safe(dc, t, &uncached_devices, list)
2130                 bch_cached_dev_attach(dc, c, NULL);
2131
2132         flash_devs_run(c);
2133
2134         set_bit(CACHE_SET_RUNNING, &c->flags);
2135         return 0;
2136 err:
2137         while (!list_empty(&journal)) {
2138                 l = list_first_entry(&journal, struct journal_replay, list);
2139                 list_del(&l->list);
2140                 kfree(l);
2141         }
2142
2143         closure_sync(&cl);
2144
2145         bch_cache_set_error(c, "%s", err);
2146
2147         return -EIO;
2148 }
2149
2150 static const char *register_cache_set(struct cache *ca)
2151 {
2152         char buf[12];
2153         const char *err = "cannot allocate memory";
2154         struct cache_set *c;
2155
2156         list_for_each_entry(c, &bch_cache_sets, list)
2157                 if (!memcmp(c->set_uuid, ca->sb.set_uuid, 16)) {
2158                         if (c->cache)
2159                                 return "duplicate cache set member";
2160
2161                         goto found;
2162                 }
2163
2164         c = bch_cache_set_alloc(&ca->sb);
2165         if (!c)
2166                 return err;
2167
2168         err = "error creating kobject";
2169         if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->set_uuid) ||
2170             kobject_add(&c->internal, &c->kobj, "internal"))
2171                 goto err;
2172
2173         if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
2174                 goto err;
2175
2176         bch_debug_init_cache_set(c);
2177
2178         list_add(&c->list, &bch_cache_sets);
2179 found:
2180         sprintf(buf, "cache%i", ca->sb.nr_this_dev);
2181         if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
2182             sysfs_create_link(&c->kobj, &ca->kobj, buf))
2183                 goto err;
2184
2185         kobject_get(&ca->kobj);
2186         ca->set = c;
2187         ca->set->cache = ca;
2188
2189         err = "failed to run cache set";
2190         if (run_cache_set(c) < 0)
2191                 goto err;
2192
2193         return NULL;
2194 err:
2195         bch_cache_set_unregister(c);
2196         return err;
2197 }
2198
2199 /* Cache device */
2200
2201 /* When ca->kobj released */
2202 void bch_cache_release(struct kobject *kobj)
2203 {
2204         struct cache *ca = container_of(kobj, struct cache, kobj);
2205         unsigned int i;
2206
2207         if (ca->set) {
2208                 BUG_ON(ca->set->cache != ca);
2209                 ca->set->cache = NULL;
2210         }
2211
2212         free_pages((unsigned long) ca->disk_buckets, ilog2(meta_bucket_pages(&ca->sb)));
2213         kfree(ca->prio_buckets);
2214         vfree(ca->buckets);
2215
2216         free_heap(&ca->heap);
2217         free_fifo(&ca->free_inc);
2218
2219         for (i = 0; i < RESERVE_NR; i++)
2220                 free_fifo(&ca->free[i]);
2221
2222         if (ca->sb_disk)
2223                 put_page(virt_to_page(ca->sb_disk));
2224
2225         if (!IS_ERR_OR_NULL(ca->bdev))
2226                 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2227
2228         kfree(ca);
2229         module_put(THIS_MODULE);
2230 }
2231
2232 static int cache_alloc(struct cache *ca)
2233 {
2234         size_t free;
2235         size_t btree_buckets;
2236         struct bucket *b;
2237         int ret = -ENOMEM;
2238         const char *err = NULL;
2239
2240         __module_get(THIS_MODULE);
2241         kobject_init(&ca->kobj, &bch_cache_ktype);
2242
2243         bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8);
2244
2245         /*
2246          * when ca->sb.njournal_buckets is not zero, journal exists,
2247          * and in bch_journal_replay(), tree node may split,
2248          * so bucket of RESERVE_BTREE type is needed,
2249          * the worst situation is all journal buckets are valid journal,
2250          * and all the keys need to replay,
2251          * so the number of  RESERVE_BTREE type buckets should be as much
2252          * as journal buckets
2253          */
2254         btree_buckets = ca->sb.njournal_buckets ?: 8;
2255         free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
2256         if (!free) {
2257                 ret = -EPERM;
2258                 err = "ca->sb.nbuckets is too small";
2259                 goto err_free;
2260         }
2261
2262         if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets,
2263                                                 GFP_KERNEL)) {
2264                 err = "ca->free[RESERVE_BTREE] alloc failed";
2265                 goto err_btree_alloc;
2266         }
2267
2268         if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca),
2269                                                         GFP_KERNEL)) {
2270                 err = "ca->free[RESERVE_PRIO] alloc failed";
2271                 goto err_prio_alloc;
2272         }
2273
2274         if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) {
2275                 err = "ca->free[RESERVE_MOVINGGC] alloc failed";
2276                 goto err_movinggc_alloc;
2277         }
2278
2279         if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) {
2280                 err = "ca->free[RESERVE_NONE] alloc failed";
2281                 goto err_none_alloc;
2282         }
2283
2284         if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) {
2285                 err = "ca->free_inc alloc failed";
2286                 goto err_free_inc_alloc;
2287         }
2288
2289         if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) {
2290                 err = "ca->heap alloc failed";
2291                 goto err_heap_alloc;
2292         }
2293
2294         ca->buckets = vzalloc(array_size(sizeof(struct bucket),
2295                               ca->sb.nbuckets));
2296         if (!ca->buckets) {
2297                 err = "ca->buckets alloc failed";
2298                 goto err_buckets_alloc;
2299         }
2300
2301         ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t),
2302                                    prio_buckets(ca), 2),
2303                                    GFP_KERNEL);
2304         if (!ca->prio_buckets) {
2305                 err = "ca->prio_buckets alloc failed";
2306                 goto err_prio_buckets_alloc;
2307         }
2308
2309         ca->disk_buckets = alloc_meta_bucket_pages(GFP_KERNEL, &ca->sb);
2310         if (!ca->disk_buckets) {
2311                 err = "ca->disk_buckets alloc failed";
2312                 goto err_disk_buckets_alloc;
2313         }
2314
2315         ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
2316
2317         for_each_bucket(b, ca)
2318                 atomic_set(&b->pin, 0);
2319         return 0;
2320
2321 err_disk_buckets_alloc:
2322         kfree(ca->prio_buckets);
2323 err_prio_buckets_alloc:
2324         vfree(ca->buckets);
2325 err_buckets_alloc:
2326         free_heap(&ca->heap);
2327 err_heap_alloc:
2328         free_fifo(&ca->free_inc);
2329 err_free_inc_alloc:
2330         free_fifo(&ca->free[RESERVE_NONE]);
2331 err_none_alloc:
2332         free_fifo(&ca->free[RESERVE_MOVINGGC]);
2333 err_movinggc_alloc:
2334         free_fifo(&ca->free[RESERVE_PRIO]);
2335 err_prio_alloc:
2336         free_fifo(&ca->free[RESERVE_BTREE]);
2337 err_btree_alloc:
2338 err_free:
2339         module_put(THIS_MODULE);
2340         if (err)
2341                 pr_notice("error %pg: %s\n", ca->bdev, err);
2342         return ret;
2343 }
2344
2345 static int register_cache(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
2346                                 struct block_device *bdev, struct cache *ca)
2347 {
2348         const char *err = NULL; /* must be set for any error case */
2349         int ret = 0;
2350
2351         memcpy(&ca->sb, sb, sizeof(struct cache_sb));
2352         ca->bdev = bdev;
2353         ca->bdev->bd_holder = ca;
2354         ca->sb_disk = sb_disk;
2355
2356         if (blk_queue_discard(bdev_get_queue(bdev)))
2357                 ca->discard = CACHE_DISCARD(&ca->sb);
2358
2359         ret = cache_alloc(ca);
2360         if (ret != 0) {
2361                 /*
2362                  * If we failed here, it means ca->kobj is not initialized yet,
2363                  * kobject_put() won't be called and there is no chance to
2364                  * call blkdev_put() to bdev in bch_cache_release(). So we
2365                  * explicitly call blkdev_put() here.
2366                  */
2367                 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2368                 if (ret == -ENOMEM)
2369                         err = "cache_alloc(): -ENOMEM";
2370                 else if (ret == -EPERM)
2371                         err = "cache_alloc(): cache device is too small";
2372                 else
2373                         err = "cache_alloc(): unknown error";
2374                 goto err;
2375         }
2376
2377         if (kobject_add(&ca->kobj, bdev_kobj(bdev), "bcache")) {
2378                 err = "error calling kobject_add";
2379                 ret = -ENOMEM;
2380                 goto out;
2381         }
2382
2383         mutex_lock(&bch_register_lock);
2384         err = register_cache_set(ca);
2385         mutex_unlock(&bch_register_lock);
2386
2387         if (err) {
2388                 ret = -ENODEV;
2389                 goto out;
2390         }
2391
2392         pr_info("registered cache device %pg\n", ca->bdev);
2393
2394 out:
2395         kobject_put(&ca->kobj);
2396
2397 err:
2398         if (err)
2399                 pr_notice("error %pg: %s\n", ca->bdev, err);
2400
2401         return ret;
2402 }
2403
2404 /* Global interfaces/init */
2405
2406 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2407                                const char *buffer, size_t size);
2408 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2409                                          struct kobj_attribute *attr,
2410                                          const char *buffer, size_t size);
2411
2412 kobj_attribute_write(register,          register_bcache);
2413 kobj_attribute_write(register_quiet,    register_bcache);
2414 kobj_attribute_write(pendings_cleanup,  bch_pending_bdevs_cleanup);
2415
2416 static bool bch_is_open_backing(dev_t dev)
2417 {
2418         struct cache_set *c, *tc;
2419         struct cached_dev *dc, *t;
2420
2421         list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2422                 list_for_each_entry_safe(dc, t, &c->cached_devs, list)
2423                         if (dc->bdev->bd_dev == dev)
2424                                 return true;
2425         list_for_each_entry_safe(dc, t, &uncached_devices, list)
2426                 if (dc->bdev->bd_dev == dev)
2427                         return true;
2428         return false;
2429 }
2430
2431 static bool bch_is_open_cache(dev_t dev)
2432 {
2433         struct cache_set *c, *tc;
2434
2435         list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2436                 struct cache *ca = c->cache;
2437
2438                 if (ca->bdev->bd_dev == dev)
2439                         return true;
2440         }
2441
2442         return false;
2443 }
2444
2445 static bool bch_is_open(dev_t dev)
2446 {
2447         return bch_is_open_cache(dev) || bch_is_open_backing(dev);
2448 }
2449
2450 struct async_reg_args {
2451         struct delayed_work reg_work;
2452         char *path;
2453         struct cache_sb *sb;
2454         struct cache_sb_disk *sb_disk;
2455         struct block_device *bdev;
2456 };
2457
2458 static void register_bdev_worker(struct work_struct *work)
2459 {
2460         int fail = false;
2461         struct async_reg_args *args =
2462                 container_of(work, struct async_reg_args, reg_work.work);
2463         struct cached_dev *dc;
2464
2465         dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2466         if (!dc) {
2467                 fail = true;
2468                 put_page(virt_to_page(args->sb_disk));
2469                 blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2470                 goto out;
2471         }
2472
2473         mutex_lock(&bch_register_lock);
2474         if (register_bdev(args->sb, args->sb_disk, args->bdev, dc) < 0)
2475                 fail = true;
2476         mutex_unlock(&bch_register_lock);
2477
2478 out:
2479         if (fail)
2480                 pr_info("error %s: fail to register backing device\n",
2481                         args->path);
2482         kfree(args->sb);
2483         kfree(args->path);
2484         kfree(args);
2485         module_put(THIS_MODULE);
2486 }
2487
2488 static void register_cache_worker(struct work_struct *work)
2489 {
2490         int fail = false;
2491         struct async_reg_args *args =
2492                 container_of(work, struct async_reg_args, reg_work.work);
2493         struct cache *ca;
2494
2495         ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2496         if (!ca) {
2497                 fail = true;
2498                 put_page(virt_to_page(args->sb_disk));
2499                 blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2500                 goto out;
2501         }
2502
2503         /* blkdev_put() will be called in bch_cache_release() */
2504         if (register_cache(args->sb, args->sb_disk, args->bdev, ca) != 0)
2505                 fail = true;
2506
2507 out:
2508         if (fail)
2509                 pr_info("error %s: fail to register cache device\n",
2510                         args->path);
2511         kfree(args->sb);
2512         kfree(args->path);
2513         kfree(args);
2514         module_put(THIS_MODULE);
2515 }
2516
2517 static void register_device_async(struct async_reg_args *args)
2518 {
2519         if (SB_IS_BDEV(args->sb))
2520                 INIT_DELAYED_WORK(&args->reg_work, register_bdev_worker);
2521         else
2522                 INIT_DELAYED_WORK(&args->reg_work, register_cache_worker);
2523
2524         /* 10 jiffies is enough for a delay */
2525         queue_delayed_work(system_wq, &args->reg_work, 10);
2526 }
2527
2528 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2529                                const char *buffer, size_t size)
2530 {
2531         const char *err;
2532         char *path = NULL;
2533         struct cache_sb *sb;
2534         struct cache_sb_disk *sb_disk;
2535         struct block_device *bdev;
2536         ssize_t ret;
2537         bool async_registration = false;
2538
2539 #ifdef CONFIG_BCACHE_ASYNC_REGISTRATION
2540         async_registration = true;
2541 #endif
2542
2543         ret = -EBUSY;
2544         err = "failed to reference bcache module";
2545         if (!try_module_get(THIS_MODULE))
2546                 goto out;
2547
2548         /* For latest state of bcache_is_reboot */
2549         smp_mb();
2550         err = "bcache is in reboot";
2551         if (bcache_is_reboot)
2552                 goto out_module_put;
2553
2554         ret = -ENOMEM;
2555         err = "cannot allocate memory";
2556         path = kstrndup(buffer, size, GFP_KERNEL);
2557         if (!path)
2558                 goto out_module_put;
2559
2560         sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL);
2561         if (!sb)
2562                 goto out_free_path;
2563
2564         ret = -EINVAL;
2565         err = "failed to open device";
2566         bdev = blkdev_get_by_path(strim(path),
2567                                   FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2568                                   sb);
2569         if (IS_ERR(bdev)) {
2570                 if (bdev == ERR_PTR(-EBUSY)) {
2571                         dev_t dev;
2572
2573                         mutex_lock(&bch_register_lock);
2574                         if (lookup_bdev(strim(path), &dev) == 0 &&
2575                             bch_is_open(dev))
2576                                 err = "device already registered";
2577                         else
2578                                 err = "device busy";
2579                         mutex_unlock(&bch_register_lock);
2580                         if (attr == &ksysfs_register_quiet)
2581                                 goto done;
2582                 }
2583                 goto out_free_sb;
2584         }
2585
2586         err = "failed to set blocksize";
2587         if (set_blocksize(bdev, 4096))
2588                 goto out_blkdev_put;
2589
2590         err = read_super(sb, bdev, &sb_disk);
2591         if (err)
2592                 goto out_blkdev_put;
2593
2594         err = "failed to register device";
2595
2596         if (async_registration) {
2597                 /* register in asynchronous way */
2598                 struct async_reg_args *args =
2599                         kzalloc(sizeof(struct async_reg_args), GFP_KERNEL);
2600
2601                 if (!args) {
2602                         ret = -ENOMEM;
2603                         err = "cannot allocate memory";
2604                         goto out_put_sb_page;
2605                 }
2606
2607                 args->path      = path;
2608                 args->sb        = sb;
2609                 args->sb_disk   = sb_disk;
2610                 args->bdev      = bdev;
2611                 register_device_async(args);
2612                 /* No wait and returns to user space */
2613                 goto async_done;
2614         }
2615
2616         if (SB_IS_BDEV(sb)) {
2617                 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2618
2619                 if (!dc) {
2620                         ret = -ENOMEM;
2621                         err = "cannot allocate memory";
2622                         goto out_put_sb_page;
2623                 }
2624
2625                 mutex_lock(&bch_register_lock);
2626                 ret = register_bdev(sb, sb_disk, bdev, dc);
2627                 mutex_unlock(&bch_register_lock);
2628                 /* blkdev_put() will be called in cached_dev_free() */
2629                 if (ret < 0)
2630                         goto out_free_sb;
2631         } else {
2632                 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2633
2634                 if (!ca) {
2635                         ret = -ENOMEM;
2636                         err = "cannot allocate memory";
2637                         goto out_put_sb_page;
2638                 }
2639
2640                 /* blkdev_put() will be called in bch_cache_release() */
2641                 ret = register_cache(sb, sb_disk, bdev, ca);
2642                 if (ret)
2643                         goto out_free_sb;
2644         }
2645
2646 done:
2647         kfree(sb);
2648         kfree(path);
2649         module_put(THIS_MODULE);
2650 async_done:
2651         return size;
2652
2653 out_put_sb_page:
2654         put_page(virt_to_page(sb_disk));
2655 out_blkdev_put:
2656         blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2657 out_free_sb:
2658         kfree(sb);
2659 out_free_path:
2660         kfree(path);
2661         path = NULL;
2662 out_module_put:
2663         module_put(THIS_MODULE);
2664 out:
2665         pr_info("error %s: %s\n", path?path:"", err);
2666         return ret;
2667 }
2668
2669
2670 struct pdev {
2671         struct list_head list;
2672         struct cached_dev *dc;
2673 };
2674
2675 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2676                                          struct kobj_attribute *attr,
2677                                          const char *buffer,
2678                                          size_t size)
2679 {
2680         LIST_HEAD(pending_devs);
2681         ssize_t ret = size;
2682         struct cached_dev *dc, *tdc;
2683         struct pdev *pdev, *tpdev;
2684         struct cache_set *c, *tc;
2685
2686         mutex_lock(&bch_register_lock);
2687         list_for_each_entry_safe(dc, tdc, &uncached_devices, list) {
2688                 pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL);
2689                 if (!pdev)
2690                         break;
2691                 pdev->dc = dc;
2692                 list_add(&pdev->list, &pending_devs);
2693         }
2694
2695         list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2696                 char *pdev_set_uuid = pdev->dc->sb.set_uuid;
2697                 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2698                         char *set_uuid = c->set_uuid;
2699
2700                         if (!memcmp(pdev_set_uuid, set_uuid, 16)) {
2701                                 list_del(&pdev->list);
2702                                 kfree(pdev);
2703                                 break;
2704                         }
2705                 }
2706         }
2707         mutex_unlock(&bch_register_lock);
2708
2709         list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2710                 pr_info("delete pdev %p\n", pdev);
2711                 list_del(&pdev->list);
2712                 bcache_device_stop(&pdev->dc->disk);
2713                 kfree(pdev);
2714         }
2715
2716         return ret;
2717 }
2718
2719 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2720 {
2721         if (bcache_is_reboot)
2722                 return NOTIFY_DONE;
2723
2724         if (code == SYS_DOWN ||
2725             code == SYS_HALT ||
2726             code == SYS_POWER_OFF) {
2727                 DEFINE_WAIT(wait);
2728                 unsigned long start = jiffies;
2729                 bool stopped = false;
2730
2731                 struct cache_set *c, *tc;
2732                 struct cached_dev *dc, *tdc;
2733
2734                 mutex_lock(&bch_register_lock);
2735
2736                 if (bcache_is_reboot)
2737                         goto out;
2738
2739                 /* New registration is rejected since now */
2740                 bcache_is_reboot = true;
2741                 /*
2742                  * Make registering caller (if there is) on other CPU
2743                  * core know bcache_is_reboot set to true earlier
2744                  */
2745                 smp_mb();
2746
2747                 if (list_empty(&bch_cache_sets) &&
2748                     list_empty(&uncached_devices))
2749                         goto out;
2750
2751                 mutex_unlock(&bch_register_lock);
2752
2753                 pr_info("Stopping all devices:\n");
2754
2755                 /*
2756                  * The reason bch_register_lock is not held to call
2757                  * bch_cache_set_stop() and bcache_device_stop() is to
2758                  * avoid potential deadlock during reboot, because cache
2759                  * set or bcache device stopping process will acquire
2760                  * bch_register_lock too.
2761                  *
2762                  * We are safe here because bcache_is_reboot sets to
2763                  * true already, register_bcache() will reject new
2764                  * registration now. bcache_is_reboot also makes sure
2765                  * bcache_reboot() won't be re-entered on by other thread,
2766                  * so there is no race in following list iteration by
2767                  * list_for_each_entry_safe().
2768                  */
2769                 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2770                         bch_cache_set_stop(c);
2771
2772                 list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2773                         bcache_device_stop(&dc->disk);
2774
2775
2776                 /*
2777                  * Give an early chance for other kthreads and
2778                  * kworkers to stop themselves
2779                  */
2780                 schedule();
2781
2782                 /* What's a condition variable? */
2783                 while (1) {
2784                         long timeout = start + 10 * HZ - jiffies;
2785
2786                         mutex_lock(&bch_register_lock);
2787                         stopped = list_empty(&bch_cache_sets) &&
2788                                 list_empty(&uncached_devices);
2789
2790                         if (timeout < 0 || stopped)
2791                                 break;
2792
2793                         prepare_to_wait(&unregister_wait, &wait,
2794                                         TASK_UNINTERRUPTIBLE);
2795
2796                         mutex_unlock(&bch_register_lock);
2797                         schedule_timeout(timeout);
2798                 }
2799
2800                 finish_wait(&unregister_wait, &wait);
2801
2802                 if (stopped)
2803                         pr_info("All devices stopped\n");
2804                 else
2805                         pr_notice("Timeout waiting for devices to be closed\n");
2806 out:
2807                 mutex_unlock(&bch_register_lock);
2808         }
2809
2810         return NOTIFY_DONE;
2811 }
2812
2813 static struct notifier_block reboot = {
2814         .notifier_call  = bcache_reboot,
2815         .priority       = INT_MAX, /* before any real devices */
2816 };
2817
2818 static void bcache_exit(void)
2819 {
2820         bch_debug_exit();
2821         bch_request_exit();
2822         if (bcache_kobj)
2823                 kobject_put(bcache_kobj);
2824         if (bcache_wq)
2825                 destroy_workqueue(bcache_wq);
2826         if (bch_journal_wq)
2827                 destroy_workqueue(bch_journal_wq);
2828         if (bch_flush_wq)
2829                 destroy_workqueue(bch_flush_wq);
2830         bch_btree_exit();
2831
2832         if (bcache_major)
2833                 unregister_blkdev(bcache_major, "bcache");
2834         unregister_reboot_notifier(&reboot);
2835         mutex_destroy(&bch_register_lock);
2836 }
2837
2838 /* Check and fixup module parameters */
2839 static void check_module_parameters(void)
2840 {
2841         if (bch_cutoff_writeback_sync == 0)
2842                 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC;
2843         else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) {
2844                 pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u\n",
2845                         bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX);
2846                 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX;
2847         }
2848
2849         if (bch_cutoff_writeback == 0)
2850                 bch_cutoff_writeback = CUTOFF_WRITEBACK;
2851         else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) {
2852                 pr_warn("set bch_cutoff_writeback (%u) to max value %u\n",
2853                         bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX);
2854                 bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX;
2855         }
2856
2857         if (bch_cutoff_writeback > bch_cutoff_writeback_sync) {
2858                 pr_warn("set bch_cutoff_writeback (%u) to %u\n",
2859                         bch_cutoff_writeback, bch_cutoff_writeback_sync);
2860                 bch_cutoff_writeback = bch_cutoff_writeback_sync;
2861         }
2862 }
2863
2864 static int __init bcache_init(void)
2865 {
2866         static const struct attribute *files[] = {
2867                 &ksysfs_register.attr,
2868                 &ksysfs_register_quiet.attr,
2869                 &ksysfs_pendings_cleanup.attr,
2870                 NULL
2871         };
2872
2873         check_module_parameters();
2874
2875         mutex_init(&bch_register_lock);
2876         init_waitqueue_head(&unregister_wait);
2877         register_reboot_notifier(&reboot);
2878
2879         bcache_major = register_blkdev(0, "bcache");
2880         if (bcache_major < 0) {
2881                 unregister_reboot_notifier(&reboot);
2882                 mutex_destroy(&bch_register_lock);
2883                 return bcache_major;
2884         }
2885
2886         if (bch_btree_init())
2887                 goto err;
2888
2889         bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0);
2890         if (!bcache_wq)
2891                 goto err;
2892
2893         /*
2894          * Let's not make this `WQ_MEM_RECLAIM` for the following reasons:
2895          *
2896          * 1. It used `system_wq` before which also does no memory reclaim.
2897          * 2. With `WQ_MEM_RECLAIM` desktop stalls, increased boot times, and
2898          *    reduced throughput can be observed.
2899          *
2900          * We still want to user our own queue to not congest the `system_wq`.
2901          */
2902         bch_flush_wq = alloc_workqueue("bch_flush", 0, 0);
2903         if (!bch_flush_wq)
2904                 goto err;
2905
2906         bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0);
2907         if (!bch_journal_wq)
2908                 goto err;
2909
2910         bcache_kobj = kobject_create_and_add("bcache", fs_kobj);
2911         if (!bcache_kobj)
2912                 goto err;
2913
2914         if (bch_request_init() ||
2915             sysfs_create_files(bcache_kobj, files))
2916                 goto err;
2917
2918         bch_debug_init();
2919         closure_debug_init();
2920
2921         bcache_is_reboot = false;
2922
2923         return 0;
2924 err:
2925         bcache_exit();
2926         return -ENOMEM;
2927 }
2928
2929 /*
2930  * Module hooks
2931  */
2932 module_exit(bcache_exit);
2933 module_init(bcache_init);
2934
2935 module_param(bch_cutoff_writeback, uint, 0);
2936 MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback");
2937
2938 module_param(bch_cutoff_writeback_sync, uint, 0);
2939 MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback");
2940
2941 MODULE_DESCRIPTION("Bcache: a Linux block layer cache");
2942 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
2943 MODULE_LICENSE("GPL");