Merge branches 'acpi-cppc', 'acpi-misc', 'acpi-battery' and 'acpi-ac'
[linux-2.6-microblaze.git] / drivers / md / bcache / super.c
1 /*
2  * bcache setup/teardown code, and some metadata io - read a superblock and
3  * figure out what to do with it.
4  *
5  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6  * Copyright 2012 Google, Inc.
7  */
8
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "extents.h"
13 #include "request.h"
14 #include "writeback.h"
15
16 #include <linux/blkdev.h>
17 #include <linux/buffer_head.h>
18 #include <linux/debugfs.h>
19 #include <linux/genhd.h>
20 #include <linux/idr.h>
21 #include <linux/kthread.h>
22 #include <linux/module.h>
23 #include <linux/random.h>
24 #include <linux/reboot.h>
25 #include <linux/sysfs.h>
26
27 MODULE_LICENSE("GPL");
28 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
29
30 static const char bcache_magic[] = {
31         0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
32         0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
33 };
34
35 static const char invalid_uuid[] = {
36         0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
37         0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
38 };
39
40 /* Default is -1; we skip past it for struct cached_dev's cache mode */
41 const char * const bch_cache_modes[] = {
42         "default",
43         "writethrough",
44         "writeback",
45         "writearound",
46         "none",
47         NULL
48 };
49
50 /* Default is -1; we skip past it for stop_when_cache_set_failed */
51 const char * const bch_stop_on_failure_modes[] = {
52         "default",
53         "auto",
54         "always",
55         NULL
56 };
57
58 static struct kobject *bcache_kobj;
59 struct mutex bch_register_lock;
60 LIST_HEAD(bch_cache_sets);
61 static LIST_HEAD(uncached_devices);
62
63 static int bcache_major;
64 static DEFINE_IDA(bcache_device_idx);
65 static wait_queue_head_t unregister_wait;
66 struct workqueue_struct *bcache_wq;
67
68 #define BTREE_MAX_PAGES         (256 * 1024 / PAGE_SIZE)
69 /* limitation of partitions number on single bcache device */
70 #define BCACHE_MINORS           128
71 /* limitation of bcache devices number on single system */
72 #define BCACHE_DEVICE_IDX_MAX   ((1U << MINORBITS)/BCACHE_MINORS)
73
74 /* Superblock */
75
76 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
77                               struct page **res)
78 {
79         const char *err;
80         struct cache_sb *s;
81         struct buffer_head *bh = __bread(bdev, 1, SB_SIZE);
82         unsigned i;
83
84         if (!bh)
85                 return "IO error";
86
87         s = (struct cache_sb *) bh->b_data;
88
89         sb->offset              = le64_to_cpu(s->offset);
90         sb->version             = le64_to_cpu(s->version);
91
92         memcpy(sb->magic,       s->magic, 16);
93         memcpy(sb->uuid,        s->uuid, 16);
94         memcpy(sb->set_uuid,    s->set_uuid, 16);
95         memcpy(sb->label,       s->label, SB_LABEL_SIZE);
96
97         sb->flags               = le64_to_cpu(s->flags);
98         sb->seq                 = le64_to_cpu(s->seq);
99         sb->last_mount          = le32_to_cpu(s->last_mount);
100         sb->first_bucket        = le16_to_cpu(s->first_bucket);
101         sb->keys                = le16_to_cpu(s->keys);
102
103         for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
104                 sb->d[i] = le64_to_cpu(s->d[i]);
105
106         pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
107                  sb->version, sb->flags, sb->seq, sb->keys);
108
109         err = "Not a bcache superblock";
110         if (sb->offset != SB_SECTOR)
111                 goto err;
112
113         if (memcmp(sb->magic, bcache_magic, 16))
114                 goto err;
115
116         err = "Too many journal buckets";
117         if (sb->keys > SB_JOURNAL_BUCKETS)
118                 goto err;
119
120         err = "Bad checksum";
121         if (s->csum != csum_set(s))
122                 goto err;
123
124         err = "Bad UUID";
125         if (bch_is_zero(sb->uuid, 16))
126                 goto err;
127
128         sb->block_size  = le16_to_cpu(s->block_size);
129
130         err = "Superblock block size smaller than device block size";
131         if (sb->block_size << 9 < bdev_logical_block_size(bdev))
132                 goto err;
133
134         switch (sb->version) {
135         case BCACHE_SB_VERSION_BDEV:
136                 sb->data_offset = BDEV_DATA_START_DEFAULT;
137                 break;
138         case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
139                 sb->data_offset = le64_to_cpu(s->data_offset);
140
141                 err = "Bad data offset";
142                 if (sb->data_offset < BDEV_DATA_START_DEFAULT)
143                         goto err;
144
145                 break;
146         case BCACHE_SB_VERSION_CDEV:
147         case BCACHE_SB_VERSION_CDEV_WITH_UUID:
148                 sb->nbuckets    = le64_to_cpu(s->nbuckets);
149                 sb->bucket_size = le16_to_cpu(s->bucket_size);
150
151                 sb->nr_in_set   = le16_to_cpu(s->nr_in_set);
152                 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
153
154                 err = "Too many buckets";
155                 if (sb->nbuckets > LONG_MAX)
156                         goto err;
157
158                 err = "Not enough buckets";
159                 if (sb->nbuckets < 1 << 7)
160                         goto err;
161
162                 err = "Bad block/bucket size";
163                 if (!is_power_of_2(sb->block_size) ||
164                     sb->block_size > PAGE_SECTORS ||
165                     !is_power_of_2(sb->bucket_size) ||
166                     sb->bucket_size < PAGE_SECTORS)
167                         goto err;
168
169                 err = "Invalid superblock: device too small";
170                 if (get_capacity(bdev->bd_disk) < sb->bucket_size * sb->nbuckets)
171                         goto err;
172
173                 err = "Bad UUID";
174                 if (bch_is_zero(sb->set_uuid, 16))
175                         goto err;
176
177                 err = "Bad cache device number in set";
178                 if (!sb->nr_in_set ||
179                     sb->nr_in_set <= sb->nr_this_dev ||
180                     sb->nr_in_set > MAX_CACHES_PER_SET)
181                         goto err;
182
183                 err = "Journal buckets not sequential";
184                 for (i = 0; i < sb->keys; i++)
185                         if (sb->d[i] != sb->first_bucket + i)
186                                 goto err;
187
188                 err = "Too many journal buckets";
189                 if (sb->first_bucket + sb->keys > sb->nbuckets)
190                         goto err;
191
192                 err = "Invalid superblock: first bucket comes before end of super";
193                 if (sb->first_bucket * sb->bucket_size < 16)
194                         goto err;
195
196                 break;
197         default:
198                 err = "Unsupported superblock version";
199                 goto err;
200         }
201
202         sb->last_mount = get_seconds();
203         err = NULL;
204
205         get_page(bh->b_page);
206         *res = bh->b_page;
207 err:
208         put_bh(bh);
209         return err;
210 }
211
212 static void write_bdev_super_endio(struct bio *bio)
213 {
214         struct cached_dev *dc = bio->bi_private;
215         /* XXX: error checking */
216
217         closure_put(&dc->sb_write);
218 }
219
220 static void __write_super(struct cache_sb *sb, struct bio *bio)
221 {
222         struct cache_sb *out = page_address(bio_first_page_all(bio));
223         unsigned i;
224
225         bio->bi_iter.bi_sector  = SB_SECTOR;
226         bio->bi_iter.bi_size    = SB_SIZE;
227         bio_set_op_attrs(bio, REQ_OP_WRITE, REQ_SYNC|REQ_META);
228         bch_bio_map(bio, NULL);
229
230         out->offset             = cpu_to_le64(sb->offset);
231         out->version            = cpu_to_le64(sb->version);
232
233         memcpy(out->uuid,       sb->uuid, 16);
234         memcpy(out->set_uuid,   sb->set_uuid, 16);
235         memcpy(out->label,      sb->label, SB_LABEL_SIZE);
236
237         out->flags              = cpu_to_le64(sb->flags);
238         out->seq                = cpu_to_le64(sb->seq);
239
240         out->last_mount         = cpu_to_le32(sb->last_mount);
241         out->first_bucket       = cpu_to_le16(sb->first_bucket);
242         out->keys               = cpu_to_le16(sb->keys);
243
244         for (i = 0; i < sb->keys; i++)
245                 out->d[i] = cpu_to_le64(sb->d[i]);
246
247         out->csum = csum_set(out);
248
249         pr_debug("ver %llu, flags %llu, seq %llu",
250                  sb->version, sb->flags, sb->seq);
251
252         submit_bio(bio);
253 }
254
255 static void bch_write_bdev_super_unlock(struct closure *cl)
256 {
257         struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
258
259         up(&dc->sb_write_mutex);
260 }
261
262 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
263 {
264         struct closure *cl = &dc->sb_write;
265         struct bio *bio = &dc->sb_bio;
266
267         down(&dc->sb_write_mutex);
268         closure_init(cl, parent);
269
270         bio_reset(bio);
271         bio_set_dev(bio, dc->bdev);
272         bio->bi_end_io  = write_bdev_super_endio;
273         bio->bi_private = dc;
274
275         closure_get(cl);
276         /* I/O request sent to backing device */
277         __write_super(&dc->sb, bio);
278
279         closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
280 }
281
282 static void write_super_endio(struct bio *bio)
283 {
284         struct cache *ca = bio->bi_private;
285
286         /* is_read = 0 */
287         bch_count_io_errors(ca, bio->bi_status, 0,
288                             "writing superblock");
289         closure_put(&ca->set->sb_write);
290 }
291
292 static void bcache_write_super_unlock(struct closure *cl)
293 {
294         struct cache_set *c = container_of(cl, struct cache_set, sb_write);
295
296         up(&c->sb_write_mutex);
297 }
298
299 void bcache_write_super(struct cache_set *c)
300 {
301         struct closure *cl = &c->sb_write;
302         struct cache *ca;
303         unsigned i;
304
305         down(&c->sb_write_mutex);
306         closure_init(cl, &c->cl);
307
308         c->sb.seq++;
309
310         for_each_cache(ca, c, i) {
311                 struct bio *bio = &ca->sb_bio;
312
313                 ca->sb.version          = BCACHE_SB_VERSION_CDEV_WITH_UUID;
314                 ca->sb.seq              = c->sb.seq;
315                 ca->sb.last_mount       = c->sb.last_mount;
316
317                 SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
318
319                 bio_reset(bio);
320                 bio_set_dev(bio, ca->bdev);
321                 bio->bi_end_io  = write_super_endio;
322                 bio->bi_private = ca;
323
324                 closure_get(cl);
325                 __write_super(&ca->sb, bio);
326         }
327
328         closure_return_with_destructor(cl, bcache_write_super_unlock);
329 }
330
331 /* UUID io */
332
333 static void uuid_endio(struct bio *bio)
334 {
335         struct closure *cl = bio->bi_private;
336         struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
337
338         cache_set_err_on(bio->bi_status, c, "accessing uuids");
339         bch_bbio_free(bio, c);
340         closure_put(cl);
341 }
342
343 static void uuid_io_unlock(struct closure *cl)
344 {
345         struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
346
347         up(&c->uuid_write_mutex);
348 }
349
350 static void uuid_io(struct cache_set *c, int op, unsigned long op_flags,
351                     struct bkey *k, struct closure *parent)
352 {
353         struct closure *cl = &c->uuid_write;
354         struct uuid_entry *u;
355         unsigned i;
356         char buf[80];
357
358         BUG_ON(!parent);
359         down(&c->uuid_write_mutex);
360         closure_init(cl, parent);
361
362         for (i = 0; i < KEY_PTRS(k); i++) {
363                 struct bio *bio = bch_bbio_alloc(c);
364
365                 bio->bi_opf = REQ_SYNC | REQ_META | op_flags;
366                 bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
367
368                 bio->bi_end_io  = uuid_endio;
369                 bio->bi_private = cl;
370                 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
371                 bch_bio_map(bio, c->uuids);
372
373                 bch_submit_bbio(bio, c, k, i);
374
375                 if (op != REQ_OP_WRITE)
376                         break;
377         }
378
379         bch_extent_to_text(buf, sizeof(buf), k);
380         pr_debug("%s UUIDs at %s", op == REQ_OP_WRITE ? "wrote" : "read", buf);
381
382         for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
383                 if (!bch_is_zero(u->uuid, 16))
384                         pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
385                                  u - c->uuids, u->uuid, u->label,
386                                  u->first_reg, u->last_reg, u->invalidated);
387
388         closure_return_with_destructor(cl, uuid_io_unlock);
389 }
390
391 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
392 {
393         struct bkey *k = &j->uuid_bucket;
394
395         if (__bch_btree_ptr_invalid(c, k))
396                 return "bad uuid pointer";
397
398         bkey_copy(&c->uuid_bucket, k);
399         uuid_io(c, REQ_OP_READ, 0, k, cl);
400
401         if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
402                 struct uuid_entry_v0    *u0 = (void *) c->uuids;
403                 struct uuid_entry       *u1 = (void *) c->uuids;
404                 int i;
405
406                 closure_sync(cl);
407
408                 /*
409                  * Since the new uuid entry is bigger than the old, we have to
410                  * convert starting at the highest memory address and work down
411                  * in order to do it in place
412                  */
413
414                 for (i = c->nr_uuids - 1;
415                      i >= 0;
416                      --i) {
417                         memcpy(u1[i].uuid,      u0[i].uuid, 16);
418                         memcpy(u1[i].label,     u0[i].label, 32);
419
420                         u1[i].first_reg         = u0[i].first_reg;
421                         u1[i].last_reg          = u0[i].last_reg;
422                         u1[i].invalidated       = u0[i].invalidated;
423
424                         u1[i].flags     = 0;
425                         u1[i].sectors   = 0;
426                 }
427         }
428
429         return NULL;
430 }
431
432 static int __uuid_write(struct cache_set *c)
433 {
434         BKEY_PADDED(key) k;
435         struct closure cl;
436         closure_init_stack(&cl);
437
438         lockdep_assert_held(&bch_register_lock);
439
440         if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, true))
441                 return 1;
442
443         SET_KEY_SIZE(&k.key, c->sb.bucket_size);
444         uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl);
445         closure_sync(&cl);
446
447         bkey_copy(&c->uuid_bucket, &k.key);
448         bkey_put(c, &k.key);
449         return 0;
450 }
451
452 int bch_uuid_write(struct cache_set *c)
453 {
454         int ret = __uuid_write(c);
455
456         if (!ret)
457                 bch_journal_meta(c, NULL);
458
459         return ret;
460 }
461
462 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
463 {
464         struct uuid_entry *u;
465
466         for (u = c->uuids;
467              u < c->uuids + c->nr_uuids; u++)
468                 if (!memcmp(u->uuid, uuid, 16))
469                         return u;
470
471         return NULL;
472 }
473
474 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
475 {
476         static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
477         return uuid_find(c, zero_uuid);
478 }
479
480 /*
481  * Bucket priorities/gens:
482  *
483  * For each bucket, we store on disk its
484    * 8 bit gen
485    * 16 bit priority
486  *
487  * See alloc.c for an explanation of the gen. The priority is used to implement
488  * lru (and in the future other) cache replacement policies; for most purposes
489  * it's just an opaque integer.
490  *
491  * The gens and the priorities don't have a whole lot to do with each other, and
492  * it's actually the gens that must be written out at specific times - it's no
493  * big deal if the priorities don't get written, if we lose them we just reuse
494  * buckets in suboptimal order.
495  *
496  * On disk they're stored in a packed array, and in as many buckets are required
497  * to fit them all. The buckets we use to store them form a list; the journal
498  * header points to the first bucket, the first bucket points to the second
499  * bucket, et cetera.
500  *
501  * This code is used by the allocation code; periodically (whenever it runs out
502  * of buckets to allocate from) the allocation code will invalidate some
503  * buckets, but it can't use those buckets until their new gens are safely on
504  * disk.
505  */
506
507 static void prio_endio(struct bio *bio)
508 {
509         struct cache *ca = bio->bi_private;
510
511         cache_set_err_on(bio->bi_status, ca->set, "accessing priorities");
512         bch_bbio_free(bio, ca->set);
513         closure_put(&ca->prio);
514 }
515
516 static void prio_io(struct cache *ca, uint64_t bucket, int op,
517                     unsigned long op_flags)
518 {
519         struct closure *cl = &ca->prio;
520         struct bio *bio = bch_bbio_alloc(ca->set);
521
522         closure_init_stack(cl);
523
524         bio->bi_iter.bi_sector  = bucket * ca->sb.bucket_size;
525         bio_set_dev(bio, ca->bdev);
526         bio->bi_iter.bi_size    = bucket_bytes(ca);
527
528         bio->bi_end_io  = prio_endio;
529         bio->bi_private = ca;
530         bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
531         bch_bio_map(bio, ca->disk_buckets);
532
533         closure_bio_submit(ca->set, bio, &ca->prio);
534         closure_sync(cl);
535 }
536
537 void bch_prio_write(struct cache *ca)
538 {
539         int i;
540         struct bucket *b;
541         struct closure cl;
542
543         closure_init_stack(&cl);
544
545         lockdep_assert_held(&ca->set->bucket_lock);
546
547         ca->disk_buckets->seq++;
548
549         atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
550                         &ca->meta_sectors_written);
551
552         //pr_debug("free %zu, free_inc %zu, unused %zu", fifo_used(&ca->free),
553         //       fifo_used(&ca->free_inc), fifo_used(&ca->unused));
554
555         for (i = prio_buckets(ca) - 1; i >= 0; --i) {
556                 long bucket;
557                 struct prio_set *p = ca->disk_buckets;
558                 struct bucket_disk *d = p->data;
559                 struct bucket_disk *end = d + prios_per_bucket(ca);
560
561                 for (b = ca->buckets + i * prios_per_bucket(ca);
562                      b < ca->buckets + ca->sb.nbuckets && d < end;
563                      b++, d++) {
564                         d->prio = cpu_to_le16(b->prio);
565                         d->gen = b->gen;
566                 }
567
568                 p->next_bucket  = ca->prio_buckets[i + 1];
569                 p->magic        = pset_magic(&ca->sb);
570                 p->csum         = bch_crc64(&p->magic, bucket_bytes(ca) - 8);
571
572                 bucket = bch_bucket_alloc(ca, RESERVE_PRIO, true);
573                 BUG_ON(bucket == -1);
574
575                 mutex_unlock(&ca->set->bucket_lock);
576                 prio_io(ca, bucket, REQ_OP_WRITE, 0);
577                 mutex_lock(&ca->set->bucket_lock);
578
579                 ca->prio_buckets[i] = bucket;
580                 atomic_dec_bug(&ca->buckets[bucket].pin);
581         }
582
583         mutex_unlock(&ca->set->bucket_lock);
584
585         bch_journal_meta(ca->set, &cl);
586         closure_sync(&cl);
587
588         mutex_lock(&ca->set->bucket_lock);
589
590         /*
591          * Don't want the old priorities to get garbage collected until after we
592          * finish writing the new ones, and they're journalled
593          */
594         for (i = 0; i < prio_buckets(ca); i++) {
595                 if (ca->prio_last_buckets[i])
596                         __bch_bucket_free(ca,
597                                 &ca->buckets[ca->prio_last_buckets[i]]);
598
599                 ca->prio_last_buckets[i] = ca->prio_buckets[i];
600         }
601 }
602
603 static void prio_read(struct cache *ca, uint64_t bucket)
604 {
605         struct prio_set *p = ca->disk_buckets;
606         struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
607         struct bucket *b;
608         unsigned bucket_nr = 0;
609
610         for (b = ca->buckets;
611              b < ca->buckets + ca->sb.nbuckets;
612              b++, d++) {
613                 if (d == end) {
614                         ca->prio_buckets[bucket_nr] = bucket;
615                         ca->prio_last_buckets[bucket_nr] = bucket;
616                         bucket_nr++;
617
618                         prio_io(ca, bucket, REQ_OP_READ, 0);
619
620                         if (p->csum != bch_crc64(&p->magic, bucket_bytes(ca) - 8))
621                                 pr_warn("bad csum reading priorities");
622
623                         if (p->magic != pset_magic(&ca->sb))
624                                 pr_warn("bad magic reading priorities");
625
626                         bucket = p->next_bucket;
627                         d = p->data;
628                 }
629
630                 b->prio = le16_to_cpu(d->prio);
631                 b->gen = b->last_gc = d->gen;
632         }
633 }
634
635 /* Bcache device */
636
637 static int open_dev(struct block_device *b, fmode_t mode)
638 {
639         struct bcache_device *d = b->bd_disk->private_data;
640         if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
641                 return -ENXIO;
642
643         closure_get(&d->cl);
644         return 0;
645 }
646
647 static void release_dev(struct gendisk *b, fmode_t mode)
648 {
649         struct bcache_device *d = b->private_data;
650         closure_put(&d->cl);
651 }
652
653 static int ioctl_dev(struct block_device *b, fmode_t mode,
654                      unsigned int cmd, unsigned long arg)
655 {
656         struct bcache_device *d = b->bd_disk->private_data;
657         return d->ioctl(d, mode, cmd, arg);
658 }
659
660 static const struct block_device_operations bcache_ops = {
661         .open           = open_dev,
662         .release        = release_dev,
663         .ioctl          = ioctl_dev,
664         .owner          = THIS_MODULE,
665 };
666
667 void bcache_device_stop(struct bcache_device *d)
668 {
669         if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
670                 closure_queue(&d->cl);
671 }
672
673 static void bcache_device_unlink(struct bcache_device *d)
674 {
675         lockdep_assert_held(&bch_register_lock);
676
677         if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
678                 unsigned i;
679                 struct cache *ca;
680
681                 sysfs_remove_link(&d->c->kobj, d->name);
682                 sysfs_remove_link(&d->kobj, "cache");
683
684                 for_each_cache(ca, d->c, i)
685                         bd_unlink_disk_holder(ca->bdev, d->disk);
686         }
687 }
688
689 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
690                                const char *name)
691 {
692         unsigned i;
693         struct cache *ca;
694
695         for_each_cache(ca, d->c, i)
696                 bd_link_disk_holder(ca->bdev, d->disk);
697
698         snprintf(d->name, BCACHEDEVNAME_SIZE,
699                  "%s%u", name, d->id);
700
701         WARN(sysfs_create_link(&d->kobj, &c->kobj, "cache") ||
702              sysfs_create_link(&c->kobj, &d->kobj, d->name),
703              "Couldn't create device <-> cache set symlinks");
704
705         clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
706 }
707
708 static void bcache_device_detach(struct bcache_device *d)
709 {
710         lockdep_assert_held(&bch_register_lock);
711
712         if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
713                 struct uuid_entry *u = d->c->uuids + d->id;
714
715                 SET_UUID_FLASH_ONLY(u, 0);
716                 memcpy(u->uuid, invalid_uuid, 16);
717                 u->invalidated = cpu_to_le32(get_seconds());
718                 bch_uuid_write(d->c);
719         }
720
721         bcache_device_unlink(d);
722
723         d->c->devices[d->id] = NULL;
724         closure_put(&d->c->caching);
725         d->c = NULL;
726 }
727
728 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
729                                  unsigned id)
730 {
731         d->id = id;
732         d->c = c;
733         c->devices[id] = d;
734
735         if (id >= c->devices_max_used)
736                 c->devices_max_used = id + 1;
737
738         closure_get(&c->caching);
739 }
740
741 static inline int first_minor_to_idx(int first_minor)
742 {
743         return (first_minor/BCACHE_MINORS);
744 }
745
746 static inline int idx_to_first_minor(int idx)
747 {
748         return (idx * BCACHE_MINORS);
749 }
750
751 static void bcache_device_free(struct bcache_device *d)
752 {
753         lockdep_assert_held(&bch_register_lock);
754
755         pr_info("%s stopped", d->disk->disk_name);
756
757         if (d->c)
758                 bcache_device_detach(d);
759         if (d->disk && d->disk->flags & GENHD_FL_UP)
760                 del_gendisk(d->disk);
761         if (d->disk && d->disk->queue)
762                 blk_cleanup_queue(d->disk->queue);
763         if (d->disk) {
764                 ida_simple_remove(&bcache_device_idx,
765                                   first_minor_to_idx(d->disk->first_minor));
766                 put_disk(d->disk);
767         }
768
769         if (d->bio_split)
770                 bioset_free(d->bio_split);
771         kvfree(d->full_dirty_stripes);
772         kvfree(d->stripe_sectors_dirty);
773
774         closure_debug_destroy(&d->cl);
775 }
776
777 static int bcache_device_init(struct bcache_device *d, unsigned block_size,
778                               sector_t sectors)
779 {
780         struct request_queue *q;
781         const size_t max_stripes = min_t(size_t, INT_MAX,
782                                          SIZE_MAX / sizeof(atomic_t));
783         size_t n;
784         int idx;
785
786         if (!d->stripe_size)
787                 d->stripe_size = 1 << 31;
788
789         d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
790
791         if (!d->nr_stripes || d->nr_stripes > max_stripes) {
792                 pr_err("nr_stripes too large or invalid: %u (start sector beyond end of disk?)",
793                         (unsigned)d->nr_stripes);
794                 return -ENOMEM;
795         }
796
797         n = d->nr_stripes * sizeof(atomic_t);
798         d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL);
799         if (!d->stripe_sectors_dirty)
800                 return -ENOMEM;
801
802         n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
803         d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL);
804         if (!d->full_dirty_stripes)
805                 return -ENOMEM;
806
807         idx = ida_simple_get(&bcache_device_idx, 0,
808                                 BCACHE_DEVICE_IDX_MAX, GFP_KERNEL);
809         if (idx < 0)
810                 return idx;
811
812         if (!(d->bio_split = bioset_create(4, offsetof(struct bbio, bio),
813                                            BIOSET_NEED_BVECS |
814                                            BIOSET_NEED_RESCUER)) ||
815             !(d->disk = alloc_disk(BCACHE_MINORS))) {
816                 ida_simple_remove(&bcache_device_idx, idx);
817                 return -ENOMEM;
818         }
819
820         set_capacity(d->disk, sectors);
821         snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx);
822
823         d->disk->major          = bcache_major;
824         d->disk->first_minor    = idx_to_first_minor(idx);
825         d->disk->fops           = &bcache_ops;
826         d->disk->private_data   = d;
827
828         q = blk_alloc_queue(GFP_KERNEL);
829         if (!q)
830                 return -ENOMEM;
831
832         blk_queue_make_request(q, NULL);
833         d->disk->queue                  = q;
834         q->queuedata                    = d;
835         q->backing_dev_info->congested_data = d;
836         q->limits.max_hw_sectors        = UINT_MAX;
837         q->limits.max_sectors           = UINT_MAX;
838         q->limits.max_segment_size      = UINT_MAX;
839         q->limits.max_segments          = BIO_MAX_PAGES;
840         blk_queue_max_discard_sectors(q, UINT_MAX);
841         q->limits.discard_granularity   = 512;
842         q->limits.io_min                = block_size;
843         q->limits.logical_block_size    = block_size;
844         q->limits.physical_block_size   = block_size;
845         blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue);
846         blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue);
847         blk_queue_flag_set(QUEUE_FLAG_DISCARD, d->disk->queue);
848
849         blk_queue_write_cache(q, true, true);
850
851         return 0;
852 }
853
854 /* Cached device */
855
856 static void calc_cached_dev_sectors(struct cache_set *c)
857 {
858         uint64_t sectors = 0;
859         struct cached_dev *dc;
860
861         list_for_each_entry(dc, &c->cached_devs, list)
862                 sectors += bdev_sectors(dc->bdev);
863
864         c->cached_dev_sectors = sectors;
865 }
866
867 void bch_cached_dev_run(struct cached_dev *dc)
868 {
869         struct bcache_device *d = &dc->disk;
870         char buf[SB_LABEL_SIZE + 1];
871         char *env[] = {
872                 "DRIVER=bcache",
873                 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
874                 NULL,
875                 NULL,
876         };
877
878         memcpy(buf, dc->sb.label, SB_LABEL_SIZE);
879         buf[SB_LABEL_SIZE] = '\0';
880         env[2] = kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf);
881
882         if (atomic_xchg(&dc->running, 1)) {
883                 kfree(env[1]);
884                 kfree(env[2]);
885                 return;
886         }
887
888         if (!d->c &&
889             BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
890                 struct closure cl;
891                 closure_init_stack(&cl);
892
893                 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
894                 bch_write_bdev_super(dc, &cl);
895                 closure_sync(&cl);
896         }
897
898         add_disk(d->disk);
899         bd_link_disk_holder(dc->bdev, dc->disk.disk);
900         /* won't show up in the uevent file, use udevadm monitor -e instead
901          * only class / kset properties are persistent */
902         kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
903         kfree(env[1]);
904         kfree(env[2]);
905
906         if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
907             sysfs_create_link(&disk_to_dev(d->disk)->kobj, &d->kobj, "bcache"))
908                 pr_debug("error creating sysfs link");
909 }
910
911 /*
912  * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed
913  * work dc->writeback_rate_update is running. Wait until the routine
914  * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to
915  * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out
916  * seconds, give up waiting here and continue to cancel it too.
917  */
918 static void cancel_writeback_rate_update_dwork(struct cached_dev *dc)
919 {
920         int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ;
921
922         do {
923                 if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING,
924                               &dc->disk.flags))
925                         break;
926                 time_out--;
927                 schedule_timeout_interruptible(1);
928         } while (time_out > 0);
929
930         if (time_out == 0)
931                 pr_warn("give up waiting for dc->writeback_write_update to quit");
932
933         cancel_delayed_work_sync(&dc->writeback_rate_update);
934 }
935
936 static void cached_dev_detach_finish(struct work_struct *w)
937 {
938         struct cached_dev *dc = container_of(w, struct cached_dev, detach);
939         struct closure cl;
940         closure_init_stack(&cl);
941
942         BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
943         BUG_ON(refcount_read(&dc->count));
944
945         mutex_lock(&bch_register_lock);
946
947         if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
948                 cancel_writeback_rate_update_dwork(dc);
949
950         if (!IS_ERR_OR_NULL(dc->writeback_thread)) {
951                 kthread_stop(dc->writeback_thread);
952                 dc->writeback_thread = NULL;
953         }
954
955         memset(&dc->sb.set_uuid, 0, 16);
956         SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
957
958         bch_write_bdev_super(dc, &cl);
959         closure_sync(&cl);
960
961         bcache_device_detach(&dc->disk);
962         list_move(&dc->list, &uncached_devices);
963
964         clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
965         clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
966
967         mutex_unlock(&bch_register_lock);
968
969         pr_info("Caching disabled for %s", dc->backing_dev_name);
970
971         /* Drop ref we took in cached_dev_detach() */
972         closure_put(&dc->disk.cl);
973 }
974
975 void bch_cached_dev_detach(struct cached_dev *dc)
976 {
977         lockdep_assert_held(&bch_register_lock);
978
979         if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
980                 return;
981
982         if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
983                 return;
984
985         /*
986          * Block the device from being closed and freed until we're finished
987          * detaching
988          */
989         closure_get(&dc->disk.cl);
990
991         bch_writeback_queue(dc);
992
993         cached_dev_put(dc);
994 }
995
996 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
997                           uint8_t *set_uuid)
998 {
999         uint32_t rtime = cpu_to_le32(get_seconds());
1000         struct uuid_entry *u;
1001         struct cached_dev *exist_dc, *t;
1002
1003         if ((set_uuid && memcmp(set_uuid, c->sb.set_uuid, 16)) ||
1004             (!set_uuid && memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16)))
1005                 return -ENOENT;
1006
1007         if (dc->disk.c) {
1008                 pr_err("Can't attach %s: already attached",
1009                        dc->backing_dev_name);
1010                 return -EINVAL;
1011         }
1012
1013         if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
1014                 pr_err("Can't attach %s: shutting down",
1015                        dc->backing_dev_name);
1016                 return -EINVAL;
1017         }
1018
1019         if (dc->sb.block_size < c->sb.block_size) {
1020                 /* Will die */
1021                 pr_err("Couldn't attach %s: block size less than set's block size",
1022                        dc->backing_dev_name);
1023                 return -EINVAL;
1024         }
1025
1026         /* Check whether already attached */
1027         list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) {
1028                 if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) {
1029                         pr_err("Tried to attach %s but duplicate UUID already attached",
1030                                 dc->backing_dev_name);
1031
1032                         return -EINVAL;
1033                 }
1034         }
1035
1036         u = uuid_find(c, dc->sb.uuid);
1037
1038         if (u &&
1039             (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
1040              BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
1041                 memcpy(u->uuid, invalid_uuid, 16);
1042                 u->invalidated = cpu_to_le32(get_seconds());
1043                 u = NULL;
1044         }
1045
1046         if (!u) {
1047                 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1048                         pr_err("Couldn't find uuid for %s in set",
1049                                dc->backing_dev_name);
1050                         return -ENOENT;
1051                 }
1052
1053                 u = uuid_find_empty(c);
1054                 if (!u) {
1055                         pr_err("Not caching %s, no room for UUID",
1056                                dc->backing_dev_name);
1057                         return -EINVAL;
1058                 }
1059         }
1060
1061         /* Deadlocks since we're called via sysfs...
1062         sysfs_remove_file(&dc->kobj, &sysfs_attach);
1063          */
1064
1065         if (bch_is_zero(u->uuid, 16)) {
1066                 struct closure cl;
1067                 closure_init_stack(&cl);
1068
1069                 memcpy(u->uuid, dc->sb.uuid, 16);
1070                 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1071                 u->first_reg = u->last_reg = rtime;
1072                 bch_uuid_write(c);
1073
1074                 memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
1075                 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1076
1077                 bch_write_bdev_super(dc, &cl);
1078                 closure_sync(&cl);
1079         } else {
1080                 u->last_reg = rtime;
1081                 bch_uuid_write(c);
1082         }
1083
1084         bcache_device_attach(&dc->disk, c, u - c->uuids);
1085         list_move(&dc->list, &c->cached_devs);
1086         calc_cached_dev_sectors(c);
1087
1088         smp_wmb();
1089         /*
1090          * dc->c must be set before dc->count != 0 - paired with the mb in
1091          * cached_dev_get()
1092          */
1093         refcount_set(&dc->count, 1);
1094
1095         /* Block writeback thread, but spawn it */
1096         down_write(&dc->writeback_lock);
1097         if (bch_cached_dev_writeback_start(dc)) {
1098                 up_write(&dc->writeback_lock);
1099                 return -ENOMEM;
1100         }
1101
1102         if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1103                 bch_sectors_dirty_init(&dc->disk);
1104                 atomic_set(&dc->has_dirty, 1);
1105                 bch_writeback_queue(dc);
1106         }
1107
1108         bch_cached_dev_run(dc);
1109         bcache_device_link(&dc->disk, c, "bdev");
1110
1111         /* Allow the writeback thread to proceed */
1112         up_write(&dc->writeback_lock);
1113
1114         pr_info("Caching %s as %s on set %pU",
1115                 dc->backing_dev_name,
1116                 dc->disk.disk->disk_name,
1117                 dc->disk.c->sb.set_uuid);
1118         return 0;
1119 }
1120
1121 void bch_cached_dev_release(struct kobject *kobj)
1122 {
1123         struct cached_dev *dc = container_of(kobj, struct cached_dev,
1124                                              disk.kobj);
1125         kfree(dc);
1126         module_put(THIS_MODULE);
1127 }
1128
1129 static void cached_dev_free(struct closure *cl)
1130 {
1131         struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1132
1133         mutex_lock(&bch_register_lock);
1134
1135         if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1136                 cancel_writeback_rate_update_dwork(dc);
1137
1138         if (!IS_ERR_OR_NULL(dc->writeback_thread))
1139                 kthread_stop(dc->writeback_thread);
1140         if (dc->writeback_write_wq)
1141                 destroy_workqueue(dc->writeback_write_wq);
1142
1143         if (atomic_read(&dc->running))
1144                 bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1145         bcache_device_free(&dc->disk);
1146         list_del(&dc->list);
1147
1148         mutex_unlock(&bch_register_lock);
1149
1150         if (!IS_ERR_OR_NULL(dc->bdev))
1151                 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1152
1153         wake_up(&unregister_wait);
1154
1155         kobject_put(&dc->disk.kobj);
1156 }
1157
1158 static void cached_dev_flush(struct closure *cl)
1159 {
1160         struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1161         struct bcache_device *d = &dc->disk;
1162
1163         mutex_lock(&bch_register_lock);
1164         bcache_device_unlink(d);
1165         mutex_unlock(&bch_register_lock);
1166
1167         bch_cache_accounting_destroy(&dc->accounting);
1168         kobject_del(&d->kobj);
1169
1170         continue_at(cl, cached_dev_free, system_wq);
1171 }
1172
1173 static int cached_dev_init(struct cached_dev *dc, unsigned block_size)
1174 {
1175         int ret;
1176         struct io *io;
1177         struct request_queue *q = bdev_get_queue(dc->bdev);
1178
1179         __module_get(THIS_MODULE);
1180         INIT_LIST_HEAD(&dc->list);
1181         closure_init(&dc->disk.cl, NULL);
1182         set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1183         kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1184         INIT_WORK(&dc->detach, cached_dev_detach_finish);
1185         sema_init(&dc->sb_write_mutex, 1);
1186         INIT_LIST_HEAD(&dc->io_lru);
1187         spin_lock_init(&dc->io_lock);
1188         bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1189
1190         dc->sequential_cutoff           = 4 << 20;
1191
1192         for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1193                 list_add(&io->lru, &dc->io_lru);
1194                 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1195         }
1196
1197         dc->disk.stripe_size = q->limits.io_opt >> 9;
1198
1199         if (dc->disk.stripe_size)
1200                 dc->partial_stripes_expensive =
1201                         q->limits.raid_partial_stripes_expensive;
1202
1203         ret = bcache_device_init(&dc->disk, block_size,
1204                          dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1205         if (ret)
1206                 return ret;
1207
1208         dc->disk.disk->queue->backing_dev_info->ra_pages =
1209                 max(dc->disk.disk->queue->backing_dev_info->ra_pages,
1210                     q->backing_dev_info->ra_pages);
1211
1212         atomic_set(&dc->io_errors, 0);
1213         dc->io_disable = false;
1214         dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT;
1215         /* default to auto */
1216         dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO;
1217
1218         bch_cached_dev_request_init(dc);
1219         bch_cached_dev_writeback_init(dc);
1220         return 0;
1221 }
1222
1223 /* Cached device - bcache superblock */
1224
1225 static void register_bdev(struct cache_sb *sb, struct page *sb_page,
1226                                  struct block_device *bdev,
1227                                  struct cached_dev *dc)
1228 {
1229         const char *err = "cannot allocate memory";
1230         struct cache_set *c;
1231
1232         bdevname(bdev, dc->backing_dev_name);
1233         memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1234         dc->bdev = bdev;
1235         dc->bdev->bd_holder = dc;
1236
1237         bio_init(&dc->sb_bio, dc->sb_bio.bi_inline_vecs, 1);
1238         bio_first_bvec_all(&dc->sb_bio)->bv_page = sb_page;
1239         get_page(sb_page);
1240
1241
1242         if (cached_dev_init(dc, sb->block_size << 9))
1243                 goto err;
1244
1245         err = "error creating kobject";
1246         if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1247                         "bcache"))
1248                 goto err;
1249         if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1250                 goto err;
1251
1252         pr_info("registered backing device %s", dc->backing_dev_name);
1253
1254         list_add(&dc->list, &uncached_devices);
1255         list_for_each_entry(c, &bch_cache_sets, list)
1256                 bch_cached_dev_attach(dc, c, NULL);
1257
1258         if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1259             BDEV_STATE(&dc->sb) == BDEV_STATE_STALE)
1260                 bch_cached_dev_run(dc);
1261
1262         return;
1263 err:
1264         pr_notice("error %s: %s", dc->backing_dev_name, err);
1265         bcache_device_stop(&dc->disk);
1266 }
1267
1268 /* Flash only volumes */
1269
1270 void bch_flash_dev_release(struct kobject *kobj)
1271 {
1272         struct bcache_device *d = container_of(kobj, struct bcache_device,
1273                                                kobj);
1274         kfree(d);
1275 }
1276
1277 static void flash_dev_free(struct closure *cl)
1278 {
1279         struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1280         mutex_lock(&bch_register_lock);
1281         bcache_device_free(d);
1282         mutex_unlock(&bch_register_lock);
1283         kobject_put(&d->kobj);
1284 }
1285
1286 static void flash_dev_flush(struct closure *cl)
1287 {
1288         struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1289
1290         mutex_lock(&bch_register_lock);
1291         bcache_device_unlink(d);
1292         mutex_unlock(&bch_register_lock);
1293         kobject_del(&d->kobj);
1294         continue_at(cl, flash_dev_free, system_wq);
1295 }
1296
1297 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1298 {
1299         struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1300                                           GFP_KERNEL);
1301         if (!d)
1302                 return -ENOMEM;
1303
1304         closure_init(&d->cl, NULL);
1305         set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1306
1307         kobject_init(&d->kobj, &bch_flash_dev_ktype);
1308
1309         if (bcache_device_init(d, block_bytes(c), u->sectors))
1310                 goto err;
1311
1312         bcache_device_attach(d, c, u - c->uuids);
1313         bch_sectors_dirty_init(d);
1314         bch_flash_dev_request_init(d);
1315         add_disk(d->disk);
1316
1317         if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1318                 goto err;
1319
1320         bcache_device_link(d, c, "volume");
1321
1322         return 0;
1323 err:
1324         kobject_put(&d->kobj);
1325         return -ENOMEM;
1326 }
1327
1328 static int flash_devs_run(struct cache_set *c)
1329 {
1330         int ret = 0;
1331         struct uuid_entry *u;
1332
1333         for (u = c->uuids;
1334              u < c->uuids + c->nr_uuids && !ret;
1335              u++)
1336                 if (UUID_FLASH_ONLY(u))
1337                         ret = flash_dev_run(c, u);
1338
1339         return ret;
1340 }
1341
1342 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1343 {
1344         struct uuid_entry *u;
1345
1346         if (test_bit(CACHE_SET_STOPPING, &c->flags))
1347                 return -EINTR;
1348
1349         if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1350                 return -EPERM;
1351
1352         u = uuid_find_empty(c);
1353         if (!u) {
1354                 pr_err("Can't create volume, no room for UUID");
1355                 return -EINVAL;
1356         }
1357
1358         get_random_bytes(u->uuid, 16);
1359         memset(u->label, 0, 32);
1360         u->first_reg = u->last_reg = cpu_to_le32(get_seconds());
1361
1362         SET_UUID_FLASH_ONLY(u, 1);
1363         u->sectors = size >> 9;
1364
1365         bch_uuid_write(c);
1366
1367         return flash_dev_run(c, u);
1368 }
1369
1370 bool bch_cached_dev_error(struct cached_dev *dc)
1371 {
1372         struct cache_set *c;
1373
1374         if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1375                 return false;
1376
1377         dc->io_disable = true;
1378         /* make others know io_disable is true earlier */
1379         smp_mb();
1380
1381         pr_err("stop %s: too many IO errors on backing device %s\n",
1382                 dc->disk.disk->disk_name, dc->backing_dev_name);
1383
1384         /*
1385          * If the cached device is still attached to a cache set,
1386          * even dc->io_disable is true and no more I/O requests
1387          * accepted, cache device internal I/O (writeback scan or
1388          * garbage collection) may still prevent bcache device from
1389          * being stopped. So here CACHE_SET_IO_DISABLE should be
1390          * set to c->flags too, to make the internal I/O to cache
1391          * device rejected and stopped immediately.
1392          * If c is NULL, that means the bcache device is not attached
1393          * to any cache set, then no CACHE_SET_IO_DISABLE bit to set.
1394          */
1395         c = dc->disk.c;
1396         if (c && test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags))
1397                 pr_info("CACHE_SET_IO_DISABLE already set");
1398
1399         bcache_device_stop(&dc->disk);
1400         return true;
1401 }
1402
1403 /* Cache set */
1404
1405 __printf(2, 3)
1406 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1407 {
1408         va_list args;
1409
1410         if (c->on_error != ON_ERROR_PANIC &&
1411             test_bit(CACHE_SET_STOPPING, &c->flags))
1412                 return false;
1413
1414         if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags))
1415                 pr_info("CACHE_SET_IO_DISABLE already set");
1416
1417         /* XXX: we can be called from atomic context
1418         acquire_console_sem();
1419         */
1420
1421         printk(KERN_ERR "bcache: error on %pU: ", c->sb.set_uuid);
1422
1423         va_start(args, fmt);
1424         vprintk(fmt, args);
1425         va_end(args);
1426
1427         printk(", disabling caching\n");
1428
1429         if (c->on_error == ON_ERROR_PANIC)
1430                 panic("panic forced after error\n");
1431
1432         bch_cache_set_unregister(c);
1433         return true;
1434 }
1435
1436 void bch_cache_set_release(struct kobject *kobj)
1437 {
1438         struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1439         kfree(c);
1440         module_put(THIS_MODULE);
1441 }
1442
1443 static void cache_set_free(struct closure *cl)
1444 {
1445         struct cache_set *c = container_of(cl, struct cache_set, cl);
1446         struct cache *ca;
1447         unsigned i;
1448
1449         if (!IS_ERR_OR_NULL(c->debug))
1450                 debugfs_remove(c->debug);
1451
1452         bch_open_buckets_free(c);
1453         bch_btree_cache_free(c);
1454         bch_journal_free(c);
1455
1456         for_each_cache(ca, c, i)
1457                 if (ca) {
1458                         ca->set = NULL;
1459                         c->cache[ca->sb.nr_this_dev] = NULL;
1460                         kobject_put(&ca->kobj);
1461                 }
1462
1463         bch_bset_sort_state_free(&c->sort);
1464         free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
1465
1466         if (c->moving_gc_wq)
1467                 destroy_workqueue(c->moving_gc_wq);
1468         if (c->bio_split)
1469                 bioset_free(c->bio_split);
1470         if (c->fill_iter)
1471                 mempool_destroy(c->fill_iter);
1472         if (c->bio_meta)
1473                 mempool_destroy(c->bio_meta);
1474         if (c->search)
1475                 mempool_destroy(c->search);
1476         kfree(c->devices);
1477
1478         mutex_lock(&bch_register_lock);
1479         list_del(&c->list);
1480         mutex_unlock(&bch_register_lock);
1481
1482         pr_info("Cache set %pU unregistered", c->sb.set_uuid);
1483         wake_up(&unregister_wait);
1484
1485         closure_debug_destroy(&c->cl);
1486         kobject_put(&c->kobj);
1487 }
1488
1489 static void cache_set_flush(struct closure *cl)
1490 {
1491         struct cache_set *c = container_of(cl, struct cache_set, caching);
1492         struct cache *ca;
1493         struct btree *b;
1494         unsigned i;
1495
1496         bch_cache_accounting_destroy(&c->accounting);
1497
1498         kobject_put(&c->internal);
1499         kobject_del(&c->kobj);
1500
1501         if (c->gc_thread)
1502                 kthread_stop(c->gc_thread);
1503
1504         if (!IS_ERR_OR_NULL(c->root))
1505                 list_add(&c->root->list, &c->btree_cache);
1506
1507         /* Should skip this if we're unregistering because of an error */
1508         list_for_each_entry(b, &c->btree_cache, list) {
1509                 mutex_lock(&b->write_lock);
1510                 if (btree_node_dirty(b))
1511                         __bch_btree_node_write(b, NULL);
1512                 mutex_unlock(&b->write_lock);
1513         }
1514
1515         for_each_cache(ca, c, i)
1516                 if (ca->alloc_thread)
1517                         kthread_stop(ca->alloc_thread);
1518
1519         if (c->journal.cur) {
1520                 cancel_delayed_work_sync(&c->journal.work);
1521                 /* flush last journal entry if needed */
1522                 c->journal.work.work.func(&c->journal.work.work);
1523         }
1524
1525         closure_return(cl);
1526 }
1527
1528 /*
1529  * This function is only called when CACHE_SET_IO_DISABLE is set, which means
1530  * cache set is unregistering due to too many I/O errors. In this condition,
1531  * the bcache device might be stopped, it depends on stop_when_cache_set_failed
1532  * value and whether the broken cache has dirty data:
1533  *
1534  * dc->stop_when_cache_set_failed    dc->has_dirty   stop bcache device
1535  *  BCH_CACHED_STOP_AUTO               0               NO
1536  *  BCH_CACHED_STOP_AUTO               1               YES
1537  *  BCH_CACHED_DEV_STOP_ALWAYS         0               YES
1538  *  BCH_CACHED_DEV_STOP_ALWAYS         1               YES
1539  *
1540  * The expected behavior is, if stop_when_cache_set_failed is configured to
1541  * "auto" via sysfs interface, the bcache device will not be stopped if the
1542  * backing device is clean on the broken cache device.
1543  */
1544 static void conditional_stop_bcache_device(struct cache_set *c,
1545                                            struct bcache_device *d,
1546                                            struct cached_dev *dc)
1547 {
1548         if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) {
1549                 pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.",
1550                         d->disk->disk_name, c->sb.set_uuid);
1551                 bcache_device_stop(d);
1552         } else if (atomic_read(&dc->has_dirty)) {
1553                 /*
1554                  * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1555                  * and dc->has_dirty == 1
1556                  */
1557                 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.",
1558                         d->disk->disk_name);
1559                         /*
1560                          * There might be a small time gap that cache set is
1561                          * released but bcache device is not. Inside this time
1562                          * gap, regular I/O requests will directly go into
1563                          * backing device as no cache set attached to. This
1564                          * behavior may also introduce potential inconsistence
1565                          * data in writeback mode while cache is dirty.
1566                          * Therefore before calling bcache_device_stop() due
1567                          * to a broken cache device, dc->io_disable should be
1568                          * explicitly set to true.
1569                          */
1570                         dc->io_disable = true;
1571                         /* make others know io_disable is true earlier */
1572                         smp_mb();
1573                         bcache_device_stop(d);
1574         } else {
1575                 /*
1576                  * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1577                  * and dc->has_dirty == 0
1578                  */
1579                 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.",
1580                         d->disk->disk_name);
1581         }
1582 }
1583
1584 static void __cache_set_unregister(struct closure *cl)
1585 {
1586         struct cache_set *c = container_of(cl, struct cache_set, caching);
1587         struct cached_dev *dc;
1588         struct bcache_device *d;
1589         size_t i;
1590
1591         mutex_lock(&bch_register_lock);
1592
1593         for (i = 0; i < c->devices_max_used; i++) {
1594                 d = c->devices[i];
1595                 if (!d)
1596                         continue;
1597
1598                 if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1599                     test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1600                         dc = container_of(d, struct cached_dev, disk);
1601                         bch_cached_dev_detach(dc);
1602                         if (test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1603                                 conditional_stop_bcache_device(c, d, dc);
1604                 } else {
1605                         bcache_device_stop(d);
1606                 }
1607         }
1608
1609         mutex_unlock(&bch_register_lock);
1610
1611         continue_at(cl, cache_set_flush, system_wq);
1612 }
1613
1614 void bch_cache_set_stop(struct cache_set *c)
1615 {
1616         if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1617                 closure_queue(&c->caching);
1618 }
1619
1620 void bch_cache_set_unregister(struct cache_set *c)
1621 {
1622         set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1623         bch_cache_set_stop(c);
1624 }
1625
1626 #define alloc_bucket_pages(gfp, c)                      \
1627         ((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
1628
1629 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1630 {
1631         int iter_size;
1632         struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1633         if (!c)
1634                 return NULL;
1635
1636         __module_get(THIS_MODULE);
1637         closure_init(&c->cl, NULL);
1638         set_closure_fn(&c->cl, cache_set_free, system_wq);
1639
1640         closure_init(&c->caching, &c->cl);
1641         set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1642
1643         /* Maybe create continue_at_noreturn() and use it here? */
1644         closure_set_stopped(&c->cl);
1645         closure_put(&c->cl);
1646
1647         kobject_init(&c->kobj, &bch_cache_set_ktype);
1648         kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1649
1650         bch_cache_accounting_init(&c->accounting, &c->cl);
1651
1652         memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1653         c->sb.block_size        = sb->block_size;
1654         c->sb.bucket_size       = sb->bucket_size;
1655         c->sb.nr_in_set         = sb->nr_in_set;
1656         c->sb.last_mount        = sb->last_mount;
1657         c->bucket_bits          = ilog2(sb->bucket_size);
1658         c->block_bits           = ilog2(sb->block_size);
1659         c->nr_uuids             = bucket_bytes(c) / sizeof(struct uuid_entry);
1660         c->devices_max_used     = 0;
1661         c->btree_pages          = bucket_pages(c);
1662         if (c->btree_pages > BTREE_MAX_PAGES)
1663                 c->btree_pages = max_t(int, c->btree_pages / 4,
1664                                        BTREE_MAX_PAGES);
1665
1666         sema_init(&c->sb_write_mutex, 1);
1667         mutex_init(&c->bucket_lock);
1668         init_waitqueue_head(&c->btree_cache_wait);
1669         init_waitqueue_head(&c->bucket_wait);
1670         init_waitqueue_head(&c->gc_wait);
1671         sema_init(&c->uuid_write_mutex, 1);
1672
1673         spin_lock_init(&c->btree_gc_time.lock);
1674         spin_lock_init(&c->btree_split_time.lock);
1675         spin_lock_init(&c->btree_read_time.lock);
1676
1677         bch_moving_init_cache_set(c);
1678
1679         INIT_LIST_HEAD(&c->list);
1680         INIT_LIST_HEAD(&c->cached_devs);
1681         INIT_LIST_HEAD(&c->btree_cache);
1682         INIT_LIST_HEAD(&c->btree_cache_freeable);
1683         INIT_LIST_HEAD(&c->btree_cache_freed);
1684         INIT_LIST_HEAD(&c->data_buckets);
1685
1686         c->search = mempool_create_slab_pool(32, bch_search_cache);
1687         if (!c->search)
1688                 goto err;
1689
1690         iter_size = (sb->bucket_size / sb->block_size + 1) *
1691                 sizeof(struct btree_iter_set);
1692
1693         if (!(c->devices = kzalloc(c->nr_uuids * sizeof(void *), GFP_KERNEL)) ||
1694             !(c->bio_meta = mempool_create_kmalloc_pool(2,
1695                                 sizeof(struct bbio) + sizeof(struct bio_vec) *
1696                                 bucket_pages(c))) ||
1697             !(c->fill_iter = mempool_create_kmalloc_pool(1, iter_size)) ||
1698             !(c->bio_split = bioset_create(4, offsetof(struct bbio, bio),
1699                                            BIOSET_NEED_BVECS |
1700                                            BIOSET_NEED_RESCUER)) ||
1701             !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
1702             !(c->moving_gc_wq = alloc_workqueue("bcache_gc",
1703                                                 WQ_MEM_RECLAIM, 0)) ||
1704             bch_journal_alloc(c) ||
1705             bch_btree_cache_alloc(c) ||
1706             bch_open_buckets_alloc(c) ||
1707             bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1708                 goto err;
1709
1710         c->congested_read_threshold_us  = 2000;
1711         c->congested_write_threshold_us = 20000;
1712         c->error_limit  = DEFAULT_IO_ERROR_LIMIT;
1713         WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags));
1714
1715         return c;
1716 err:
1717         bch_cache_set_unregister(c);
1718         return NULL;
1719 }
1720
1721 static void run_cache_set(struct cache_set *c)
1722 {
1723         const char *err = "cannot allocate memory";
1724         struct cached_dev *dc, *t;
1725         struct cache *ca;
1726         struct closure cl;
1727         unsigned i;
1728
1729         closure_init_stack(&cl);
1730
1731         for_each_cache(ca, c, i)
1732                 c->nbuckets += ca->sb.nbuckets;
1733         set_gc_sectors(c);
1734
1735         if (CACHE_SYNC(&c->sb)) {
1736                 LIST_HEAD(journal);
1737                 struct bkey *k;
1738                 struct jset *j;
1739
1740                 err = "cannot allocate memory for journal";
1741                 if (bch_journal_read(c, &journal))
1742                         goto err;
1743
1744                 pr_debug("btree_journal_read() done");
1745
1746                 err = "no journal entries found";
1747                 if (list_empty(&journal))
1748                         goto err;
1749
1750                 j = &list_entry(journal.prev, struct journal_replay, list)->j;
1751
1752                 err = "IO error reading priorities";
1753                 for_each_cache(ca, c, i)
1754                         prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]);
1755
1756                 /*
1757                  * If prio_read() fails it'll call cache_set_error and we'll
1758                  * tear everything down right away, but if we perhaps checked
1759                  * sooner we could avoid journal replay.
1760                  */
1761
1762                 k = &j->btree_root;
1763
1764                 err = "bad btree root";
1765                 if (__bch_btree_ptr_invalid(c, k))
1766                         goto err;
1767
1768                 err = "error reading btree root";
1769                 c->root = bch_btree_node_get(c, NULL, k, j->btree_level, true, NULL);
1770                 if (IS_ERR_OR_NULL(c->root))
1771                         goto err;
1772
1773                 list_del_init(&c->root->list);
1774                 rw_unlock(true, c->root);
1775
1776                 err = uuid_read(c, j, &cl);
1777                 if (err)
1778                         goto err;
1779
1780                 err = "error in recovery";
1781                 if (bch_btree_check(c))
1782                         goto err;
1783
1784                 bch_journal_mark(c, &journal);
1785                 bch_initial_gc_finish(c);
1786                 pr_debug("btree_check() done");
1787
1788                 /*
1789                  * bcache_journal_next() can't happen sooner, or
1790                  * btree_gc_finish() will give spurious errors about last_gc >
1791                  * gc_gen - this is a hack but oh well.
1792                  */
1793                 bch_journal_next(&c->journal);
1794
1795                 err = "error starting allocator thread";
1796                 for_each_cache(ca, c, i)
1797                         if (bch_cache_allocator_start(ca))
1798                                 goto err;
1799
1800                 /*
1801                  * First place it's safe to allocate: btree_check() and
1802                  * btree_gc_finish() have to run before we have buckets to
1803                  * allocate, and bch_bucket_alloc_set() might cause a journal
1804                  * entry to be written so bcache_journal_next() has to be called
1805                  * first.
1806                  *
1807                  * If the uuids were in the old format we have to rewrite them
1808                  * before the next journal entry is written:
1809                  */
1810                 if (j->version < BCACHE_JSET_VERSION_UUID)
1811                         __uuid_write(c);
1812
1813                 bch_journal_replay(c, &journal);
1814         } else {
1815                 pr_notice("invalidating existing data");
1816
1817                 for_each_cache(ca, c, i) {
1818                         unsigned j;
1819
1820                         ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
1821                                               2, SB_JOURNAL_BUCKETS);
1822
1823                         for (j = 0; j < ca->sb.keys; j++)
1824                                 ca->sb.d[j] = ca->sb.first_bucket + j;
1825                 }
1826
1827                 bch_initial_gc_finish(c);
1828
1829                 err = "error starting allocator thread";
1830                 for_each_cache(ca, c, i)
1831                         if (bch_cache_allocator_start(ca))
1832                                 goto err;
1833
1834                 mutex_lock(&c->bucket_lock);
1835                 for_each_cache(ca, c, i)
1836                         bch_prio_write(ca);
1837                 mutex_unlock(&c->bucket_lock);
1838
1839                 err = "cannot allocate new UUID bucket";
1840                 if (__uuid_write(c))
1841                         goto err;
1842
1843                 err = "cannot allocate new btree root";
1844                 c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
1845                 if (IS_ERR_OR_NULL(c->root))
1846                         goto err;
1847
1848                 mutex_lock(&c->root->write_lock);
1849                 bkey_copy_key(&c->root->key, &MAX_KEY);
1850                 bch_btree_node_write(c->root, &cl);
1851                 mutex_unlock(&c->root->write_lock);
1852
1853                 bch_btree_set_root(c->root);
1854                 rw_unlock(true, c->root);
1855
1856                 /*
1857                  * We don't want to write the first journal entry until
1858                  * everything is set up - fortunately journal entries won't be
1859                  * written until the SET_CACHE_SYNC() here:
1860                  */
1861                 SET_CACHE_SYNC(&c->sb, true);
1862
1863                 bch_journal_next(&c->journal);
1864                 bch_journal_meta(c, &cl);
1865         }
1866
1867         err = "error starting gc thread";
1868         if (bch_gc_thread_start(c))
1869                 goto err;
1870
1871         closure_sync(&cl);
1872         c->sb.last_mount = get_seconds();
1873         bcache_write_super(c);
1874
1875         list_for_each_entry_safe(dc, t, &uncached_devices, list)
1876                 bch_cached_dev_attach(dc, c, NULL);
1877
1878         flash_devs_run(c);
1879
1880         set_bit(CACHE_SET_RUNNING, &c->flags);
1881         return;
1882 err:
1883         closure_sync(&cl);
1884         /* XXX: test this, it's broken */
1885         bch_cache_set_error(c, "%s", err);
1886 }
1887
1888 static bool can_attach_cache(struct cache *ca, struct cache_set *c)
1889 {
1890         return ca->sb.block_size        == c->sb.block_size &&
1891                 ca->sb.bucket_size      == c->sb.bucket_size &&
1892                 ca->sb.nr_in_set        == c->sb.nr_in_set;
1893 }
1894
1895 static const char *register_cache_set(struct cache *ca)
1896 {
1897         char buf[12];
1898         const char *err = "cannot allocate memory";
1899         struct cache_set *c;
1900
1901         list_for_each_entry(c, &bch_cache_sets, list)
1902                 if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
1903                         if (c->cache[ca->sb.nr_this_dev])
1904                                 return "duplicate cache set member";
1905
1906                         if (!can_attach_cache(ca, c))
1907                                 return "cache sb does not match set";
1908
1909                         if (!CACHE_SYNC(&ca->sb))
1910                                 SET_CACHE_SYNC(&c->sb, false);
1911
1912                         goto found;
1913                 }
1914
1915         c = bch_cache_set_alloc(&ca->sb);
1916         if (!c)
1917                 return err;
1918
1919         err = "error creating kobject";
1920         if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
1921             kobject_add(&c->internal, &c->kobj, "internal"))
1922                 goto err;
1923
1924         if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
1925                 goto err;
1926
1927         bch_debug_init_cache_set(c);
1928
1929         list_add(&c->list, &bch_cache_sets);
1930 found:
1931         sprintf(buf, "cache%i", ca->sb.nr_this_dev);
1932         if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
1933             sysfs_create_link(&c->kobj, &ca->kobj, buf))
1934                 goto err;
1935
1936         if (ca->sb.seq > c->sb.seq) {
1937                 c->sb.version           = ca->sb.version;
1938                 memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
1939                 c->sb.flags             = ca->sb.flags;
1940                 c->sb.seq               = ca->sb.seq;
1941                 pr_debug("set version = %llu", c->sb.version);
1942         }
1943
1944         kobject_get(&ca->kobj);
1945         ca->set = c;
1946         ca->set->cache[ca->sb.nr_this_dev] = ca;
1947         c->cache_by_alloc[c->caches_loaded++] = ca;
1948
1949         if (c->caches_loaded == c->sb.nr_in_set)
1950                 run_cache_set(c);
1951
1952         return NULL;
1953 err:
1954         bch_cache_set_unregister(c);
1955         return err;
1956 }
1957
1958 /* Cache device */
1959
1960 void bch_cache_release(struct kobject *kobj)
1961 {
1962         struct cache *ca = container_of(kobj, struct cache, kobj);
1963         unsigned i;
1964
1965         if (ca->set) {
1966                 BUG_ON(ca->set->cache[ca->sb.nr_this_dev] != ca);
1967                 ca->set->cache[ca->sb.nr_this_dev] = NULL;
1968         }
1969
1970         free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
1971         kfree(ca->prio_buckets);
1972         vfree(ca->buckets);
1973
1974         free_heap(&ca->heap);
1975         free_fifo(&ca->free_inc);
1976
1977         for (i = 0; i < RESERVE_NR; i++)
1978                 free_fifo(&ca->free[i]);
1979
1980         if (ca->sb_bio.bi_inline_vecs[0].bv_page)
1981                 put_page(bio_first_page_all(&ca->sb_bio));
1982
1983         if (!IS_ERR_OR_NULL(ca->bdev))
1984                 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1985
1986         kfree(ca);
1987         module_put(THIS_MODULE);
1988 }
1989
1990 static int cache_alloc(struct cache *ca)
1991 {
1992         size_t free;
1993         size_t btree_buckets;
1994         struct bucket *b;
1995
1996         __module_get(THIS_MODULE);
1997         kobject_init(&ca->kobj, &bch_cache_ktype);
1998
1999         bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8);
2000
2001         /*
2002          * when ca->sb.njournal_buckets is not zero, journal exists,
2003          * and in bch_journal_replay(), tree node may split,
2004          * so bucket of RESERVE_BTREE type is needed,
2005          * the worst situation is all journal buckets are valid journal,
2006          * and all the keys need to replay,
2007          * so the number of  RESERVE_BTREE type buckets should be as much
2008          * as journal buckets
2009          */
2010         btree_buckets = ca->sb.njournal_buckets ?: 8;
2011         free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
2012
2013         if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets, GFP_KERNEL) ||
2014             !init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca), GFP_KERNEL) ||
2015             !init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL) ||
2016             !init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL) ||
2017             !init_fifo(&ca->free_inc,   free << 2, GFP_KERNEL) ||
2018             !init_heap(&ca->heap,       free << 3, GFP_KERNEL) ||
2019             !(ca->buckets       = vzalloc(sizeof(struct bucket) *
2020                                           ca->sb.nbuckets)) ||
2021             !(ca->prio_buckets  = kzalloc(sizeof(uint64_t) * prio_buckets(ca) *
2022                                           2, GFP_KERNEL)) ||
2023             !(ca->disk_buckets  = alloc_bucket_pages(GFP_KERNEL, ca)))
2024                 return -ENOMEM;
2025
2026         ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
2027
2028         for_each_bucket(b, ca)
2029                 atomic_set(&b->pin, 0);
2030
2031         return 0;
2032 }
2033
2034 static int register_cache(struct cache_sb *sb, struct page *sb_page,
2035                                 struct block_device *bdev, struct cache *ca)
2036 {
2037         const char *err = NULL; /* must be set for any error case */
2038         int ret = 0;
2039
2040         bdevname(bdev, ca->cache_dev_name);
2041         memcpy(&ca->sb, sb, sizeof(struct cache_sb));
2042         ca->bdev = bdev;
2043         ca->bdev->bd_holder = ca;
2044
2045         bio_init(&ca->sb_bio, ca->sb_bio.bi_inline_vecs, 1);
2046         bio_first_bvec_all(&ca->sb_bio)->bv_page = sb_page;
2047         get_page(sb_page);
2048
2049         if (blk_queue_discard(bdev_get_queue(bdev)))
2050                 ca->discard = CACHE_DISCARD(&ca->sb);
2051
2052         ret = cache_alloc(ca);
2053         if (ret != 0) {
2054                 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2055                 if (ret == -ENOMEM)
2056                         err = "cache_alloc(): -ENOMEM";
2057                 else
2058                         err = "cache_alloc(): unknown error";
2059                 goto err;
2060         }
2061
2062         if (kobject_add(&ca->kobj, &part_to_dev(bdev->bd_part)->kobj, "bcache")) {
2063                 err = "error calling kobject_add";
2064                 ret = -ENOMEM;
2065                 goto out;
2066         }
2067
2068         mutex_lock(&bch_register_lock);
2069         err = register_cache_set(ca);
2070         mutex_unlock(&bch_register_lock);
2071
2072         if (err) {
2073                 ret = -ENODEV;
2074                 goto out;
2075         }
2076
2077         pr_info("registered cache device %s", ca->cache_dev_name);
2078
2079 out:
2080         kobject_put(&ca->kobj);
2081
2082 err:
2083         if (err)
2084                 pr_notice("error %s: %s", ca->cache_dev_name, err);
2085
2086         return ret;
2087 }
2088
2089 /* Global interfaces/init */
2090
2091 static ssize_t register_bcache(struct kobject *, struct kobj_attribute *,
2092                                const char *, size_t);
2093
2094 kobj_attribute_write(register,          register_bcache);
2095 kobj_attribute_write(register_quiet,    register_bcache);
2096
2097 static bool bch_is_open_backing(struct block_device *bdev) {
2098         struct cache_set *c, *tc;
2099         struct cached_dev *dc, *t;
2100
2101         list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2102                 list_for_each_entry_safe(dc, t, &c->cached_devs, list)
2103                         if (dc->bdev == bdev)
2104                                 return true;
2105         list_for_each_entry_safe(dc, t, &uncached_devices, list)
2106                 if (dc->bdev == bdev)
2107                         return true;
2108         return false;
2109 }
2110
2111 static bool bch_is_open_cache(struct block_device *bdev) {
2112         struct cache_set *c, *tc;
2113         struct cache *ca;
2114         unsigned i;
2115
2116         list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2117                 for_each_cache(ca, c, i)
2118                         if (ca->bdev == bdev)
2119                                 return true;
2120         return false;
2121 }
2122
2123 static bool bch_is_open(struct block_device *bdev) {
2124         return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
2125 }
2126
2127 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2128                                const char *buffer, size_t size)
2129 {
2130         ssize_t ret = size;
2131         const char *err = "cannot allocate memory";
2132         char *path = NULL;
2133         struct cache_sb *sb = NULL;
2134         struct block_device *bdev = NULL;
2135         struct page *sb_page = NULL;
2136
2137         if (!try_module_get(THIS_MODULE))
2138                 return -EBUSY;
2139
2140         if (!(path = kstrndup(buffer, size, GFP_KERNEL)) ||
2141             !(sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL)))
2142                 goto err;
2143
2144         err = "failed to open device";
2145         bdev = blkdev_get_by_path(strim(path),
2146                                   FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2147                                   sb);
2148         if (IS_ERR(bdev)) {
2149                 if (bdev == ERR_PTR(-EBUSY)) {
2150                         bdev = lookup_bdev(strim(path));
2151                         mutex_lock(&bch_register_lock);
2152                         if (!IS_ERR(bdev) && bch_is_open(bdev))
2153                                 err = "device already registered";
2154                         else
2155                                 err = "device busy";
2156                         mutex_unlock(&bch_register_lock);
2157                         if (!IS_ERR(bdev))
2158                                 bdput(bdev);
2159                         if (attr == &ksysfs_register_quiet)
2160                                 goto out;
2161                 }
2162                 goto err;
2163         }
2164
2165         err = "failed to set blocksize";
2166         if (set_blocksize(bdev, 4096))
2167                 goto err_close;
2168
2169         err = read_super(sb, bdev, &sb_page);
2170         if (err)
2171                 goto err_close;
2172
2173         err = "failed to register device";
2174         if (SB_IS_BDEV(sb)) {
2175                 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2176                 if (!dc)
2177                         goto err_close;
2178
2179                 mutex_lock(&bch_register_lock);
2180                 register_bdev(sb, sb_page, bdev, dc);
2181                 mutex_unlock(&bch_register_lock);
2182         } else {
2183                 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2184                 if (!ca)
2185                         goto err_close;
2186
2187                 if (register_cache(sb, sb_page, bdev, ca) != 0)
2188                         goto err;
2189         }
2190 out:
2191         if (sb_page)
2192                 put_page(sb_page);
2193         kfree(sb);
2194         kfree(path);
2195         module_put(THIS_MODULE);
2196         return ret;
2197
2198 err_close:
2199         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2200 err:
2201         pr_info("error %s: %s", path, err);
2202         ret = -EINVAL;
2203         goto out;
2204 }
2205
2206 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2207 {
2208         if (code == SYS_DOWN ||
2209             code == SYS_HALT ||
2210             code == SYS_POWER_OFF) {
2211                 DEFINE_WAIT(wait);
2212                 unsigned long start = jiffies;
2213                 bool stopped = false;
2214
2215                 struct cache_set *c, *tc;
2216                 struct cached_dev *dc, *tdc;
2217
2218                 mutex_lock(&bch_register_lock);
2219
2220                 if (list_empty(&bch_cache_sets) &&
2221                     list_empty(&uncached_devices))
2222                         goto out;
2223
2224                 pr_info("Stopping all devices:");
2225
2226                 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2227                         bch_cache_set_stop(c);
2228
2229                 list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2230                         bcache_device_stop(&dc->disk);
2231
2232                 /* What's a condition variable? */
2233                 while (1) {
2234                         long timeout = start + 2 * HZ - jiffies;
2235
2236                         stopped = list_empty(&bch_cache_sets) &&
2237                                 list_empty(&uncached_devices);
2238
2239                         if (timeout < 0 || stopped)
2240                                 break;
2241
2242                         prepare_to_wait(&unregister_wait, &wait,
2243                                         TASK_UNINTERRUPTIBLE);
2244
2245                         mutex_unlock(&bch_register_lock);
2246                         schedule_timeout(timeout);
2247                         mutex_lock(&bch_register_lock);
2248                 }
2249
2250                 finish_wait(&unregister_wait, &wait);
2251
2252                 if (stopped)
2253                         pr_info("All devices stopped");
2254                 else
2255                         pr_notice("Timeout waiting for devices to be closed");
2256 out:
2257                 mutex_unlock(&bch_register_lock);
2258         }
2259
2260         return NOTIFY_DONE;
2261 }
2262
2263 static struct notifier_block reboot = {
2264         .notifier_call  = bcache_reboot,
2265         .priority       = INT_MAX, /* before any real devices */
2266 };
2267
2268 static void bcache_exit(void)
2269 {
2270         bch_debug_exit();
2271         bch_request_exit();
2272         if (bcache_kobj)
2273                 kobject_put(bcache_kobj);
2274         if (bcache_wq)
2275                 destroy_workqueue(bcache_wq);
2276         if (bcache_major)
2277                 unregister_blkdev(bcache_major, "bcache");
2278         unregister_reboot_notifier(&reboot);
2279         mutex_destroy(&bch_register_lock);
2280 }
2281
2282 static int __init bcache_init(void)
2283 {
2284         static const struct attribute *files[] = {
2285                 &ksysfs_register.attr,
2286                 &ksysfs_register_quiet.attr,
2287                 NULL
2288         };
2289
2290         mutex_init(&bch_register_lock);
2291         init_waitqueue_head(&unregister_wait);
2292         register_reboot_notifier(&reboot);
2293
2294         bcache_major = register_blkdev(0, "bcache");
2295         if (bcache_major < 0) {
2296                 unregister_reboot_notifier(&reboot);
2297                 mutex_destroy(&bch_register_lock);
2298                 return bcache_major;
2299         }
2300
2301         if (!(bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0)) ||
2302             !(bcache_kobj = kobject_create_and_add("bcache", fs_kobj)) ||
2303             bch_request_init() ||
2304             bch_debug_init(bcache_kobj) || closure_debug_init() ||
2305             sysfs_create_files(bcache_kobj, files))
2306                 goto err;
2307
2308         return 0;
2309 err:
2310         bcache_exit();
2311         return -ENOMEM;
2312 }
2313
2314 module_exit(bcache_exit);
2315 module_init(bcache_init);