Merge tag 'v4.18-rc6' into for-4.19/block2
[linux-2.6-microblaze.git] / drivers / md / bcache / request.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Main bcache entry point - handle a read or a write request and decide what to
4  * do with it; the make_request functions are called by the block layer.
5  *
6  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7  * Copyright 2012 Google, Inc.
8  */
9
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "request.h"
14 #include "writeback.h"
15
16 #include <linux/module.h>
17 #include <linux/hash.h>
18 #include <linux/random.h>
19 #include <linux/backing-dev.h>
20
21 #include <trace/events/bcache.h>
22
23 #define CUTOFF_CACHE_ADD        95
24 #define CUTOFF_CACHE_READA      90
25
26 struct kmem_cache *bch_search_cache;
27
28 static void bch_data_insert_start(struct closure *);
29
30 static unsigned cache_mode(struct cached_dev *dc)
31 {
32         return BDEV_CACHE_MODE(&dc->sb);
33 }
34
35 static bool verify(struct cached_dev *dc)
36 {
37         return dc->verify;
38 }
39
40 static void bio_csum(struct bio *bio, struct bkey *k)
41 {
42         struct bio_vec bv;
43         struct bvec_iter iter;
44         uint64_t csum = 0;
45
46         bio_for_each_segment(bv, bio, iter) {
47                 void *d = kmap(bv.bv_page) + bv.bv_offset;
48                 csum = bch_crc64_update(csum, d, bv.bv_len);
49                 kunmap(bv.bv_page);
50         }
51
52         k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
53 }
54
55 /* Insert data into cache */
56
57 static void bch_data_insert_keys(struct closure *cl)
58 {
59         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
60         atomic_t *journal_ref = NULL;
61         struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
62         int ret;
63
64         /*
65          * If we're looping, might already be waiting on
66          * another journal write - can't wait on more than one journal write at
67          * a time
68          *
69          * XXX: this looks wrong
70          */
71 #if 0
72         while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
73                 closure_sync(&s->cl);
74 #endif
75
76         if (!op->replace)
77                 journal_ref = bch_journal(op->c, &op->insert_keys,
78                                           op->flush_journal ? cl : NULL);
79
80         ret = bch_btree_insert(op->c, &op->insert_keys,
81                                journal_ref, replace_key);
82         if (ret == -ESRCH) {
83                 op->replace_collision = true;
84         } else if (ret) {
85                 op->status              = BLK_STS_RESOURCE;
86                 op->insert_data_done    = true;
87         }
88
89         if (journal_ref)
90                 atomic_dec_bug(journal_ref);
91
92         if (!op->insert_data_done) {
93                 continue_at(cl, bch_data_insert_start, op->wq);
94                 return;
95         }
96
97         bch_keylist_free(&op->insert_keys);
98         closure_return(cl);
99 }
100
101 static int bch_keylist_realloc(struct keylist *l, unsigned u64s,
102                                struct cache_set *c)
103 {
104         size_t oldsize = bch_keylist_nkeys(l);
105         size_t newsize = oldsize + u64s;
106
107         /*
108          * The journalling code doesn't handle the case where the keys to insert
109          * is bigger than an empty write: If we just return -ENOMEM here,
110          * bio_insert() and bio_invalidate() will insert the keys created so far
111          * and finish the rest when the keylist is empty.
112          */
113         if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset))
114                 return -ENOMEM;
115
116         return __bch_keylist_realloc(l, u64s);
117 }
118
119 static void bch_data_invalidate(struct closure *cl)
120 {
121         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
122         struct bio *bio = op->bio;
123
124         pr_debug("invalidating %i sectors from %llu",
125                  bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
126
127         while (bio_sectors(bio)) {
128                 unsigned sectors = min(bio_sectors(bio),
129                                        1U << (KEY_SIZE_BITS - 1));
130
131                 if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
132                         goto out;
133
134                 bio->bi_iter.bi_sector  += sectors;
135                 bio->bi_iter.bi_size    -= sectors << 9;
136
137                 bch_keylist_add(&op->insert_keys,
138                                 &KEY(op->inode, bio->bi_iter.bi_sector, sectors));
139         }
140
141         op->insert_data_done = true;
142         /* get in bch_data_insert() */
143         bio_put(bio);
144 out:
145         continue_at(cl, bch_data_insert_keys, op->wq);
146 }
147
148 static void bch_data_insert_error(struct closure *cl)
149 {
150         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
151
152         /*
153          * Our data write just errored, which means we've got a bunch of keys to
154          * insert that point to data that wasn't succesfully written.
155          *
156          * We don't have to insert those keys but we still have to invalidate
157          * that region of the cache - so, if we just strip off all the pointers
158          * from the keys we'll accomplish just that.
159          */
160
161         struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
162
163         while (src != op->insert_keys.top) {
164                 struct bkey *n = bkey_next(src);
165
166                 SET_KEY_PTRS(src, 0);
167                 memmove(dst, src, bkey_bytes(src));
168
169                 dst = bkey_next(dst);
170                 src = n;
171         }
172
173         op->insert_keys.top = dst;
174
175         bch_data_insert_keys(cl);
176 }
177
178 static void bch_data_insert_endio(struct bio *bio)
179 {
180         struct closure *cl = bio->bi_private;
181         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
182
183         if (bio->bi_status) {
184                 /* TODO: We could try to recover from this. */
185                 if (op->writeback)
186                         op->status = bio->bi_status;
187                 else if (!op->replace)
188                         set_closure_fn(cl, bch_data_insert_error, op->wq);
189                 else
190                         set_closure_fn(cl, NULL, NULL);
191         }
192
193         bch_bbio_endio(op->c, bio, bio->bi_status, "writing data to cache");
194 }
195
196 static void bch_data_insert_start(struct closure *cl)
197 {
198         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
199         struct bio *bio = op->bio, *n;
200
201         if (op->bypass)
202                 return bch_data_invalidate(cl);
203
204         if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0)
205                 wake_up_gc(op->c);
206
207         /*
208          * Journal writes are marked REQ_PREFLUSH; if the original write was a
209          * flush, it'll wait on the journal write.
210          */
211         bio->bi_opf &= ~(REQ_PREFLUSH|REQ_FUA);
212
213         do {
214                 unsigned i;
215                 struct bkey *k;
216                 struct bio_set *split = &op->c->bio_split;
217
218                 /* 1 for the device pointer and 1 for the chksum */
219                 if (bch_keylist_realloc(&op->insert_keys,
220                                         3 + (op->csum ? 1 : 0),
221                                         op->c)) {
222                         continue_at(cl, bch_data_insert_keys, op->wq);
223                         return;
224                 }
225
226                 k = op->insert_keys.top;
227                 bkey_init(k);
228                 SET_KEY_INODE(k, op->inode);
229                 SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
230
231                 if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
232                                        op->write_point, op->write_prio,
233                                        op->writeback))
234                         goto err;
235
236                 n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
237
238                 n->bi_end_io    = bch_data_insert_endio;
239                 n->bi_private   = cl;
240
241                 if (op->writeback) {
242                         SET_KEY_DIRTY(k, true);
243
244                         for (i = 0; i < KEY_PTRS(k); i++)
245                                 SET_GC_MARK(PTR_BUCKET(op->c, k, i),
246                                             GC_MARK_DIRTY);
247                 }
248
249                 SET_KEY_CSUM(k, op->csum);
250                 if (KEY_CSUM(k))
251                         bio_csum(n, k);
252
253                 trace_bcache_cache_insert(k);
254                 bch_keylist_push(&op->insert_keys);
255
256                 bio_set_op_attrs(n, REQ_OP_WRITE, 0);
257                 bch_submit_bbio(n, op->c, k, 0);
258         } while (n != bio);
259
260         op->insert_data_done = true;
261         continue_at(cl, bch_data_insert_keys, op->wq);
262         return;
263 err:
264         /* bch_alloc_sectors() blocks if s->writeback = true */
265         BUG_ON(op->writeback);
266
267         /*
268          * But if it's not a writeback write we'd rather just bail out if
269          * there aren't any buckets ready to write to - it might take awhile and
270          * we might be starving btree writes for gc or something.
271          */
272
273         if (!op->replace) {
274                 /*
275                  * Writethrough write: We can't complete the write until we've
276                  * updated the index. But we don't want to delay the write while
277                  * we wait for buckets to be freed up, so just invalidate the
278                  * rest of the write.
279                  */
280                 op->bypass = true;
281                 return bch_data_invalidate(cl);
282         } else {
283                 /*
284                  * From a cache miss, we can just insert the keys for the data
285                  * we have written or bail out if we didn't do anything.
286                  */
287                 op->insert_data_done = true;
288                 bio_put(bio);
289
290                 if (!bch_keylist_empty(&op->insert_keys))
291                         continue_at(cl, bch_data_insert_keys, op->wq);
292                 else
293                         closure_return(cl);
294         }
295 }
296
297 /**
298  * bch_data_insert - stick some data in the cache
299  * @cl: closure pointer.
300  *
301  * This is the starting point for any data to end up in a cache device; it could
302  * be from a normal write, or a writeback write, or a write to a flash only
303  * volume - it's also used by the moving garbage collector to compact data in
304  * mostly empty buckets.
305  *
306  * It first writes the data to the cache, creating a list of keys to be inserted
307  * (if the data had to be fragmented there will be multiple keys); after the
308  * data is written it calls bch_journal, and after the keys have been added to
309  * the next journal write they're inserted into the btree.
310  *
311  * It inserts the data in s->cache_bio; bi_sector is used for the key offset,
312  * and op->inode is used for the key inode.
313  *
314  * If s->bypass is true, instead of inserting the data it invalidates the
315  * region of the cache represented by s->cache_bio and op->inode.
316  */
317 void bch_data_insert(struct closure *cl)
318 {
319         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
320
321         trace_bcache_write(op->c, op->inode, op->bio,
322                            op->writeback, op->bypass);
323
324         bch_keylist_init(&op->insert_keys);
325         bio_get(op->bio);
326         bch_data_insert_start(cl);
327 }
328
329 /* Congested? */
330
331 unsigned bch_get_congested(struct cache_set *c)
332 {
333         int i;
334         long rand;
335
336         if (!c->congested_read_threshold_us &&
337             !c->congested_write_threshold_us)
338                 return 0;
339
340         i = (local_clock_us() - c->congested_last_us) / 1024;
341         if (i < 0)
342                 return 0;
343
344         i += atomic_read(&c->congested);
345         if (i >= 0)
346                 return 0;
347
348         i += CONGESTED_MAX;
349
350         if (i > 0)
351                 i = fract_exp_two(i, 6);
352
353         rand = get_random_int();
354         i -= bitmap_weight(&rand, BITS_PER_LONG);
355
356         return i > 0 ? i : 1;
357 }
358
359 static void add_sequential(struct task_struct *t)
360 {
361         ewma_add(t->sequential_io_avg,
362                  t->sequential_io, 8, 0);
363
364         t->sequential_io = 0;
365 }
366
367 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
368 {
369         return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
370 }
371
372 static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
373 {
374         struct cache_set *c = dc->disk.c;
375         unsigned mode = cache_mode(dc);
376         unsigned sectors, congested = bch_get_congested(c);
377         struct task_struct *task = current;
378         struct io *i;
379
380         if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
381             c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
382             (bio_op(bio) == REQ_OP_DISCARD))
383                 goto skip;
384
385         if (mode == CACHE_MODE_NONE ||
386             (mode == CACHE_MODE_WRITEAROUND &&
387              op_is_write(bio_op(bio))))
388                 goto skip;
389
390         /*
391          * Flag for bypass if the IO is for read-ahead or background,
392          * unless the read-ahead request is for metadata (eg, for gfs2).
393          */
394         if (bio->bi_opf & (REQ_RAHEAD|REQ_BACKGROUND) &&
395             !(bio->bi_opf & REQ_META))
396                 goto skip;
397
398         if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) ||
399             bio_sectors(bio) & (c->sb.block_size - 1)) {
400                 pr_debug("skipping unaligned io");
401                 goto skip;
402         }
403
404         if (bypass_torture_test(dc)) {
405                 if ((get_random_int() & 3) == 3)
406                         goto skip;
407                 else
408                         goto rescale;
409         }
410
411         if (!congested && !dc->sequential_cutoff)
412                 goto rescale;
413
414         spin_lock(&dc->io_lock);
415
416         hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
417                 if (i->last == bio->bi_iter.bi_sector &&
418                     time_before(jiffies, i->jiffies))
419                         goto found;
420
421         i = list_first_entry(&dc->io_lru, struct io, lru);
422
423         add_sequential(task);
424         i->sequential = 0;
425 found:
426         if (i->sequential + bio->bi_iter.bi_size > i->sequential)
427                 i->sequential   += bio->bi_iter.bi_size;
428
429         i->last                  = bio_end_sector(bio);
430         i->jiffies               = jiffies + msecs_to_jiffies(5000);
431         task->sequential_io      = i->sequential;
432
433         hlist_del(&i->hash);
434         hlist_add_head(&i->hash, iohash(dc, i->last));
435         list_move_tail(&i->lru, &dc->io_lru);
436
437         spin_unlock(&dc->io_lock);
438
439         sectors = max(task->sequential_io,
440                       task->sequential_io_avg) >> 9;
441
442         if (dc->sequential_cutoff &&
443             sectors >= dc->sequential_cutoff >> 9) {
444                 trace_bcache_bypass_sequential(bio);
445                 goto skip;
446         }
447
448         if (congested && sectors >= congested) {
449                 trace_bcache_bypass_congested(bio);
450                 goto skip;
451         }
452
453 rescale:
454         bch_rescale_priorities(c, bio_sectors(bio));
455         return false;
456 skip:
457         bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
458         return true;
459 }
460
461 /* Cache lookup */
462
463 struct search {
464         /* Stack frame for bio_complete */
465         struct closure          cl;
466
467         struct bbio             bio;
468         struct bio              *orig_bio;
469         struct bio              *cache_miss;
470         struct bcache_device    *d;
471
472         unsigned                insert_bio_sectors;
473         unsigned                recoverable:1;
474         unsigned                write:1;
475         unsigned                read_dirty_data:1;
476         unsigned                cache_missed:1;
477
478         unsigned long           start_time;
479
480         struct btree_op         op;
481         struct data_insert_op   iop;
482 };
483
484 static void bch_cache_read_endio(struct bio *bio)
485 {
486         struct bbio *b = container_of(bio, struct bbio, bio);
487         struct closure *cl = bio->bi_private;
488         struct search *s = container_of(cl, struct search, cl);
489
490         /*
491          * If the bucket was reused while our bio was in flight, we might have
492          * read the wrong data. Set s->error but not error so it doesn't get
493          * counted against the cache device, but we'll still reread the data
494          * from the backing device.
495          */
496
497         if (bio->bi_status)
498                 s->iop.status = bio->bi_status;
499         else if (!KEY_DIRTY(&b->key) &&
500                  ptr_stale(s->iop.c, &b->key, 0)) {
501                 atomic_long_inc(&s->iop.c->cache_read_races);
502                 s->iop.status = BLK_STS_IOERR;
503         }
504
505         bch_bbio_endio(s->iop.c, bio, bio->bi_status, "reading from cache");
506 }
507
508 /*
509  * Read from a single key, handling the initial cache miss if the key starts in
510  * the middle of the bio
511  */
512 static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
513 {
514         struct search *s = container_of(op, struct search, op);
515         struct bio *n, *bio = &s->bio.bio;
516         struct bkey *bio_key;
517         unsigned ptr;
518
519         if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
520                 return MAP_CONTINUE;
521
522         if (KEY_INODE(k) != s->iop.inode ||
523             KEY_START(k) > bio->bi_iter.bi_sector) {
524                 unsigned bio_sectors = bio_sectors(bio);
525                 unsigned sectors = KEY_INODE(k) == s->iop.inode
526                         ? min_t(uint64_t, INT_MAX,
527                                 KEY_START(k) - bio->bi_iter.bi_sector)
528                         : INT_MAX;
529
530                 int ret = s->d->cache_miss(b, s, bio, sectors);
531                 if (ret != MAP_CONTINUE)
532                         return ret;
533
534                 /* if this was a complete miss we shouldn't get here */
535                 BUG_ON(bio_sectors <= sectors);
536         }
537
538         if (!KEY_SIZE(k))
539                 return MAP_CONTINUE;
540
541         /* XXX: figure out best pointer - for multiple cache devices */
542         ptr = 0;
543
544         PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
545
546         if (KEY_DIRTY(k))
547                 s->read_dirty_data = true;
548
549         n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
550                                       KEY_OFFSET(k) - bio->bi_iter.bi_sector),
551                            GFP_NOIO, &s->d->bio_split);
552
553         bio_key = &container_of(n, struct bbio, bio)->key;
554         bch_bkey_copy_single_ptr(bio_key, k, ptr);
555
556         bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
557         bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
558
559         n->bi_end_io    = bch_cache_read_endio;
560         n->bi_private   = &s->cl;
561
562         /*
563          * The bucket we're reading from might be reused while our bio
564          * is in flight, and we could then end up reading the wrong
565          * data.
566          *
567          * We guard against this by checking (in cache_read_endio()) if
568          * the pointer is stale again; if so, we treat it as an error
569          * and reread from the backing device (but we don't pass that
570          * error up anywhere).
571          */
572
573         __bch_submit_bbio(n, b->c);
574         return n == bio ? MAP_DONE : MAP_CONTINUE;
575 }
576
577 static void cache_lookup(struct closure *cl)
578 {
579         struct search *s = container_of(cl, struct search, iop.cl);
580         struct bio *bio = &s->bio.bio;
581         struct cached_dev *dc;
582         int ret;
583
584         bch_btree_op_init(&s->op, -1);
585
586         ret = bch_btree_map_keys(&s->op, s->iop.c,
587                                  &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
588                                  cache_lookup_fn, MAP_END_KEY);
589         if (ret == -EAGAIN) {
590                 continue_at(cl, cache_lookup, bcache_wq);
591                 return;
592         }
593
594         /*
595          * We might meet err when searching the btree, If that happens, we will
596          * get negative ret, in this scenario we should not recover data from
597          * backing device (when cache device is dirty) because we don't know
598          * whether bkeys the read request covered are all clean.
599          *
600          * And after that happened, s->iop.status is still its initial value
601          * before we submit s->bio.bio
602          */
603         if (ret < 0) {
604                 BUG_ON(ret == -EINTR);
605                 if (s->d && s->d->c &&
606                                 !UUID_FLASH_ONLY(&s->d->c->uuids[s->d->id])) {
607                         dc = container_of(s->d, struct cached_dev, disk);
608                         if (dc && atomic_read(&dc->has_dirty))
609                                 s->recoverable = false;
610                 }
611                 if (!s->iop.status)
612                         s->iop.status = BLK_STS_IOERR;
613         }
614
615         closure_return(cl);
616 }
617
618 /* Common code for the make_request functions */
619
620 static void request_endio(struct bio *bio)
621 {
622         struct closure *cl = bio->bi_private;
623
624         if (bio->bi_status) {
625                 struct search *s = container_of(cl, struct search, cl);
626                 s->iop.status = bio->bi_status;
627                 /* Only cache read errors are recoverable */
628                 s->recoverable = false;
629         }
630
631         bio_put(bio);
632         closure_put(cl);
633 }
634
635 static void backing_request_endio(struct bio *bio)
636 {
637         struct closure *cl = bio->bi_private;
638
639         if (bio->bi_status) {
640                 struct search *s = container_of(cl, struct search, cl);
641                 struct cached_dev *dc = container_of(s->d,
642                                                      struct cached_dev, disk);
643                 /*
644                  * If a bio has REQ_PREFLUSH for writeback mode, it is
645                  * speically assembled in cached_dev_write() for a non-zero
646                  * write request which has REQ_PREFLUSH. we don't set
647                  * s->iop.status by this failure, the status will be decided
648                  * by result of bch_data_insert() operation.
649                  */
650                 if (unlikely(s->iop.writeback &&
651                              bio->bi_opf & REQ_PREFLUSH)) {
652                         pr_err("Can't flush %s: returned bi_status %i",
653                                 dc->backing_dev_name, bio->bi_status);
654                 } else {
655                         /* set to orig_bio->bi_status in bio_complete() */
656                         s->iop.status = bio->bi_status;
657                 }
658                 s->recoverable = false;
659                 /* should count I/O error for backing device here */
660                 bch_count_backing_io_errors(dc, bio);
661         }
662
663         bio_put(bio);
664         closure_put(cl);
665 }
666
667 static void bio_complete(struct search *s)
668 {
669         if (s->orig_bio) {
670                 generic_end_io_acct(s->d->disk->queue, bio_op(s->orig_bio),
671                                     &s->d->disk->part0, s->start_time);
672
673                 trace_bcache_request_end(s->d, s->orig_bio);
674                 s->orig_bio->bi_status = s->iop.status;
675                 bio_endio(s->orig_bio);
676                 s->orig_bio = NULL;
677         }
678 }
679
680 static void do_bio_hook(struct search *s,
681                         struct bio *orig_bio,
682                         bio_end_io_t *end_io_fn)
683 {
684         struct bio *bio = &s->bio.bio;
685
686         bio_init(bio, NULL, 0);
687         __bio_clone_fast(bio, orig_bio);
688         /*
689          * bi_end_io can be set separately somewhere else, e.g. the
690          * variants in,
691          * - cache_bio->bi_end_io from cached_dev_cache_miss()
692          * - n->bi_end_io from cache_lookup_fn()
693          */
694         bio->bi_end_io          = end_io_fn;
695         bio->bi_private         = &s->cl;
696
697         bio_cnt_set(bio, 3);
698 }
699
700 static void search_free(struct closure *cl)
701 {
702         struct search *s = container_of(cl, struct search, cl);
703
704         atomic_dec(&s->d->c->search_inflight);
705
706         if (s->iop.bio)
707                 bio_put(s->iop.bio);
708
709         bio_complete(s);
710         closure_debug_destroy(cl);
711         mempool_free(s, &s->d->c->search);
712 }
713
714 static inline struct search *search_alloc(struct bio *bio,
715                                           struct bcache_device *d)
716 {
717         struct search *s;
718
719         s = mempool_alloc(&d->c->search, GFP_NOIO);
720
721         closure_init(&s->cl, NULL);
722         do_bio_hook(s, bio, request_endio);
723         atomic_inc(&d->c->search_inflight);
724
725         s->orig_bio             = bio;
726         s->cache_miss           = NULL;
727         s->cache_missed         = 0;
728         s->d                    = d;
729         s->recoverable          = 1;
730         s->write                = op_is_write(bio_op(bio));
731         s->read_dirty_data      = 0;
732         s->start_time           = jiffies;
733
734         s->iop.c                = d->c;
735         s->iop.bio              = NULL;
736         s->iop.inode            = d->id;
737         s->iop.write_point      = hash_long((unsigned long) current, 16);
738         s->iop.write_prio       = 0;
739         s->iop.status           = 0;
740         s->iop.flags            = 0;
741         s->iop.flush_journal    = op_is_flush(bio->bi_opf);
742         s->iop.wq               = bcache_wq;
743
744         return s;
745 }
746
747 /* Cached devices */
748
749 static void cached_dev_bio_complete(struct closure *cl)
750 {
751         struct search *s = container_of(cl, struct search, cl);
752         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
753
754         search_free(cl);
755         cached_dev_put(dc);
756 }
757
758 /* Process reads */
759
760 static void cached_dev_cache_miss_done(struct closure *cl)
761 {
762         struct search *s = container_of(cl, struct search, cl);
763
764         if (s->iop.replace_collision)
765                 bch_mark_cache_miss_collision(s->iop.c, s->d);
766
767         if (s->iop.bio)
768                 bio_free_pages(s->iop.bio);
769
770         cached_dev_bio_complete(cl);
771 }
772
773 static void cached_dev_read_error(struct closure *cl)
774 {
775         struct search *s = container_of(cl, struct search, cl);
776         struct bio *bio = &s->bio.bio;
777
778         /*
779          * If read request hit dirty data (s->read_dirty_data is true),
780          * then recovery a failed read request from cached device may
781          * get a stale data back. So read failure recovery is only
782          * permitted when read request hit clean data in cache device,
783          * or when cache read race happened.
784          */
785         if (s->recoverable && !s->read_dirty_data) {
786                 /* Retry from the backing device: */
787                 trace_bcache_read_retry(s->orig_bio);
788
789                 s->iop.status = 0;
790                 do_bio_hook(s, s->orig_bio, backing_request_endio);
791
792                 /* XXX: invalidate cache */
793
794                 /* I/O request sent to backing device */
795                 closure_bio_submit(s->iop.c, bio, cl);
796         }
797
798         continue_at(cl, cached_dev_cache_miss_done, NULL);
799 }
800
801 static void cached_dev_read_done(struct closure *cl)
802 {
803         struct search *s = container_of(cl, struct search, cl);
804         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
805
806         /*
807          * We had a cache miss; cache_bio now contains data ready to be inserted
808          * into the cache.
809          *
810          * First, we copy the data we just read from cache_bio's bounce buffers
811          * to the buffers the original bio pointed to:
812          */
813
814         if (s->iop.bio) {
815                 bio_reset(s->iop.bio);
816                 s->iop.bio->bi_iter.bi_sector = s->cache_miss->bi_iter.bi_sector;
817                 bio_copy_dev(s->iop.bio, s->cache_miss);
818                 s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
819                 bch_bio_map(s->iop.bio, NULL);
820
821                 bio_copy_data(s->cache_miss, s->iop.bio);
822
823                 bio_put(s->cache_miss);
824                 s->cache_miss = NULL;
825         }
826
827         if (verify(dc) && s->recoverable && !s->read_dirty_data)
828                 bch_data_verify(dc, s->orig_bio);
829
830         bio_complete(s);
831
832         if (s->iop.bio &&
833             !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
834                 BUG_ON(!s->iop.replace);
835                 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
836         }
837
838         continue_at(cl, cached_dev_cache_miss_done, NULL);
839 }
840
841 static void cached_dev_read_done_bh(struct closure *cl)
842 {
843         struct search *s = container_of(cl, struct search, cl);
844         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
845
846         bch_mark_cache_accounting(s->iop.c, s->d,
847                                   !s->cache_missed, s->iop.bypass);
848         trace_bcache_read(s->orig_bio, !s->cache_miss, s->iop.bypass);
849
850         if (s->iop.status)
851                 continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
852         else if (s->iop.bio || verify(dc))
853                 continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
854         else
855                 continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
856 }
857
858 static int cached_dev_cache_miss(struct btree *b, struct search *s,
859                                  struct bio *bio, unsigned sectors)
860 {
861         int ret = MAP_CONTINUE;
862         unsigned reada = 0;
863         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
864         struct bio *miss, *cache_bio;
865
866         s->cache_missed = 1;
867
868         if (s->cache_miss || s->iop.bypass) {
869                 miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split);
870                 ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
871                 goto out_submit;
872         }
873
874         if (!(bio->bi_opf & REQ_RAHEAD) &&
875             !(bio->bi_opf & REQ_META) &&
876             s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA)
877                 reada = min_t(sector_t, dc->readahead >> 9,
878                               get_capacity(bio->bi_disk) - bio_end_sector(bio));
879
880         s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
881
882         s->iop.replace_key = KEY(s->iop.inode,
883                                  bio->bi_iter.bi_sector + s->insert_bio_sectors,
884                                  s->insert_bio_sectors);
885
886         ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
887         if (ret)
888                 return ret;
889
890         s->iop.replace = true;
891
892         miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split);
893
894         /* btree_search_recurse()'s btree iterator is no good anymore */
895         ret = miss == bio ? MAP_DONE : -EINTR;
896
897         cache_bio = bio_alloc_bioset(GFP_NOWAIT,
898                         DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
899                         &dc->disk.bio_split);
900         if (!cache_bio)
901                 goto out_submit;
902
903         cache_bio->bi_iter.bi_sector    = miss->bi_iter.bi_sector;
904         bio_copy_dev(cache_bio, miss);
905         cache_bio->bi_iter.bi_size      = s->insert_bio_sectors << 9;
906
907         cache_bio->bi_end_io    = backing_request_endio;
908         cache_bio->bi_private   = &s->cl;
909
910         bch_bio_map(cache_bio, NULL);
911         if (bch_bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
912                 goto out_put;
913
914         if (reada)
915                 bch_mark_cache_readahead(s->iop.c, s->d);
916
917         s->cache_miss   = miss;
918         s->iop.bio      = cache_bio;
919         bio_get(cache_bio);
920         /* I/O request sent to backing device */
921         closure_bio_submit(s->iop.c, cache_bio, &s->cl);
922
923         return ret;
924 out_put:
925         bio_put(cache_bio);
926 out_submit:
927         miss->bi_end_io         = backing_request_endio;
928         miss->bi_private        = &s->cl;
929         /* I/O request sent to backing device */
930         closure_bio_submit(s->iop.c, miss, &s->cl);
931         return ret;
932 }
933
934 static void cached_dev_read(struct cached_dev *dc, struct search *s)
935 {
936         struct closure *cl = &s->cl;
937
938         closure_call(&s->iop.cl, cache_lookup, NULL, cl);
939         continue_at(cl, cached_dev_read_done_bh, NULL);
940 }
941
942 /* Process writes */
943
944 static void cached_dev_write_complete(struct closure *cl)
945 {
946         struct search *s = container_of(cl, struct search, cl);
947         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
948
949         up_read_non_owner(&dc->writeback_lock);
950         cached_dev_bio_complete(cl);
951 }
952
953 static void cached_dev_write(struct cached_dev *dc, struct search *s)
954 {
955         struct closure *cl = &s->cl;
956         struct bio *bio = &s->bio.bio;
957         struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
958         struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
959
960         bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
961
962         down_read_non_owner(&dc->writeback_lock);
963         if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
964                 /*
965                  * We overlap with some dirty data undergoing background
966                  * writeback, force this write to writeback
967                  */
968                 s->iop.bypass = false;
969                 s->iop.writeback = true;
970         }
971
972         /*
973          * Discards aren't _required_ to do anything, so skipping if
974          * check_overlapping returned true is ok
975          *
976          * But check_overlapping drops dirty keys for which io hasn't started,
977          * so we still want to call it.
978          */
979         if (bio_op(bio) == REQ_OP_DISCARD)
980                 s->iop.bypass = true;
981
982         if (should_writeback(dc, s->orig_bio,
983                              cache_mode(dc),
984                              s->iop.bypass)) {
985                 s->iop.bypass = false;
986                 s->iop.writeback = true;
987         }
988
989         if (s->iop.bypass) {
990                 s->iop.bio = s->orig_bio;
991                 bio_get(s->iop.bio);
992
993                 if (bio_op(bio) == REQ_OP_DISCARD &&
994                     !blk_queue_discard(bdev_get_queue(dc->bdev)))
995                         goto insert_data;
996
997                 /* I/O request sent to backing device */
998                 bio->bi_end_io = backing_request_endio;
999                 closure_bio_submit(s->iop.c, bio, cl);
1000
1001         } else if (s->iop.writeback) {
1002                 bch_writeback_add(dc);
1003                 s->iop.bio = bio;
1004
1005                 if (bio->bi_opf & REQ_PREFLUSH) {
1006                         /*
1007                          * Also need to send a flush to the backing
1008                          * device.
1009                          */
1010                         struct bio *flush;
1011
1012                         flush = bio_alloc_bioset(GFP_NOIO, 0,
1013                                                  &dc->disk.bio_split);
1014                         if (!flush) {
1015                                 s->iop.status = BLK_STS_RESOURCE;
1016                                 goto insert_data;
1017                         }
1018                         bio_copy_dev(flush, bio);
1019                         flush->bi_end_io = backing_request_endio;
1020                         flush->bi_private = cl;
1021                         flush->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
1022                         /* I/O request sent to backing device */
1023                         closure_bio_submit(s->iop.c, flush, cl);
1024                 }
1025         } else {
1026                 s->iop.bio = bio_clone_fast(bio, GFP_NOIO, &dc->disk.bio_split);
1027                 /* I/O request sent to backing device */
1028                 bio->bi_end_io = backing_request_endio;
1029                 closure_bio_submit(s->iop.c, bio, cl);
1030         }
1031
1032 insert_data:
1033         closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1034         continue_at(cl, cached_dev_write_complete, NULL);
1035 }
1036
1037 static void cached_dev_nodata(struct closure *cl)
1038 {
1039         struct search *s = container_of(cl, struct search, cl);
1040         struct bio *bio = &s->bio.bio;
1041
1042         if (s->iop.flush_journal)
1043                 bch_journal_meta(s->iop.c, cl);
1044
1045         /* If it's a flush, we send the flush to the backing device too */
1046         bio->bi_end_io = backing_request_endio;
1047         closure_bio_submit(s->iop.c, bio, cl);
1048
1049         continue_at(cl, cached_dev_bio_complete, NULL);
1050 }
1051
1052 struct detached_dev_io_private {
1053         struct bcache_device    *d;
1054         unsigned long           start_time;
1055         bio_end_io_t            *bi_end_io;
1056         void                    *bi_private;
1057 };
1058
1059 static void detached_dev_end_io(struct bio *bio)
1060 {
1061         struct detached_dev_io_private *ddip;
1062
1063         ddip = bio->bi_private;
1064         bio->bi_end_io = ddip->bi_end_io;
1065         bio->bi_private = ddip->bi_private;
1066
1067         generic_end_io_acct(ddip->d->disk->queue, bio_op(bio),
1068                             &ddip->d->disk->part0, ddip->start_time);
1069
1070         if (bio->bi_status) {
1071                 struct cached_dev *dc = container_of(ddip->d,
1072                                                      struct cached_dev, disk);
1073                 /* should count I/O error for backing device here */
1074                 bch_count_backing_io_errors(dc, bio);
1075         }
1076
1077         kfree(ddip);
1078         bio->bi_end_io(bio);
1079 }
1080
1081 static void detached_dev_do_request(struct bcache_device *d, struct bio *bio)
1082 {
1083         struct detached_dev_io_private *ddip;
1084         struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1085
1086         /*
1087          * no need to call closure_get(&dc->disk.cl),
1088          * because upper layer had already opened bcache device,
1089          * which would call closure_get(&dc->disk.cl)
1090          */
1091         ddip = kzalloc(sizeof(struct detached_dev_io_private), GFP_NOIO);
1092         ddip->d = d;
1093         ddip->start_time = jiffies;
1094         ddip->bi_end_io = bio->bi_end_io;
1095         ddip->bi_private = bio->bi_private;
1096         bio->bi_end_io = detached_dev_end_io;
1097         bio->bi_private = ddip;
1098
1099         if ((bio_op(bio) == REQ_OP_DISCARD) &&
1100             !blk_queue_discard(bdev_get_queue(dc->bdev)))
1101                 bio->bi_end_io(bio);
1102         else
1103                 generic_make_request(bio);
1104 }
1105
1106 /* Cached devices - read & write stuff */
1107
1108 static blk_qc_t cached_dev_make_request(struct request_queue *q,
1109                                         struct bio *bio)
1110 {
1111         struct search *s;
1112         struct bcache_device *d = bio->bi_disk->private_data;
1113         struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1114         int rw = bio_data_dir(bio);
1115
1116         if (unlikely((d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags)) ||
1117                      dc->io_disable)) {
1118                 bio->bi_status = BLK_STS_IOERR;
1119                 bio_endio(bio);
1120                 return BLK_QC_T_NONE;
1121         }
1122
1123         atomic_set(&dc->backing_idle, 0);
1124         generic_start_io_acct(q, bio_op(bio), bio_sectors(bio), &d->disk->part0);
1125
1126         bio_set_dev(bio, dc->bdev);
1127         bio->bi_iter.bi_sector += dc->sb.data_offset;
1128
1129         if (cached_dev_get(dc)) {
1130                 s = search_alloc(bio, d);
1131                 trace_bcache_request_start(s->d, bio);
1132
1133                 if (!bio->bi_iter.bi_size) {
1134                         /*
1135                          * can't call bch_journal_meta from under
1136                          * generic_make_request
1137                          */
1138                         continue_at_nobarrier(&s->cl,
1139                                               cached_dev_nodata,
1140                                               bcache_wq);
1141                 } else {
1142                         s->iop.bypass = check_should_bypass(dc, bio);
1143
1144                         if (rw)
1145                                 cached_dev_write(dc, s);
1146                         else
1147                                 cached_dev_read(dc, s);
1148                 }
1149         } else
1150                 /* I/O request sent to backing device */
1151                 detached_dev_do_request(d, bio);
1152
1153         return BLK_QC_T_NONE;
1154 }
1155
1156 static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
1157                             unsigned int cmd, unsigned long arg)
1158 {
1159         struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1160         return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
1161 }
1162
1163 static int cached_dev_congested(void *data, int bits)
1164 {
1165         struct bcache_device *d = data;
1166         struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1167         struct request_queue *q = bdev_get_queue(dc->bdev);
1168         int ret = 0;
1169
1170         if (bdi_congested(q->backing_dev_info, bits))
1171                 return 1;
1172
1173         if (cached_dev_get(dc)) {
1174                 unsigned i;
1175                 struct cache *ca;
1176
1177                 for_each_cache(ca, d->c, i) {
1178                         q = bdev_get_queue(ca->bdev);
1179                         ret |= bdi_congested(q->backing_dev_info, bits);
1180                 }
1181
1182                 cached_dev_put(dc);
1183         }
1184
1185         return ret;
1186 }
1187
1188 void bch_cached_dev_request_init(struct cached_dev *dc)
1189 {
1190         struct gendisk *g = dc->disk.disk;
1191
1192         g->queue->make_request_fn               = cached_dev_make_request;
1193         g->queue->backing_dev_info->congested_fn = cached_dev_congested;
1194         dc->disk.cache_miss                     = cached_dev_cache_miss;
1195         dc->disk.ioctl                          = cached_dev_ioctl;
1196 }
1197
1198 /* Flash backed devices */
1199
1200 static int flash_dev_cache_miss(struct btree *b, struct search *s,
1201                                 struct bio *bio, unsigned sectors)
1202 {
1203         unsigned bytes = min(sectors, bio_sectors(bio)) << 9;
1204
1205         swap(bio->bi_iter.bi_size, bytes);
1206         zero_fill_bio(bio);
1207         swap(bio->bi_iter.bi_size, bytes);
1208
1209         bio_advance(bio, bytes);
1210
1211         if (!bio->bi_iter.bi_size)
1212                 return MAP_DONE;
1213
1214         return MAP_CONTINUE;
1215 }
1216
1217 static void flash_dev_nodata(struct closure *cl)
1218 {
1219         struct search *s = container_of(cl, struct search, cl);
1220
1221         if (s->iop.flush_journal)
1222                 bch_journal_meta(s->iop.c, cl);
1223
1224         continue_at(cl, search_free, NULL);
1225 }
1226
1227 static blk_qc_t flash_dev_make_request(struct request_queue *q,
1228                                              struct bio *bio)
1229 {
1230         struct search *s;
1231         struct closure *cl;
1232         struct bcache_device *d = bio->bi_disk->private_data;
1233
1234         if (unlikely(d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags))) {
1235                 bio->bi_status = BLK_STS_IOERR;
1236                 bio_endio(bio);
1237                 return BLK_QC_T_NONE;
1238         }
1239
1240         generic_start_io_acct(q, bio_op(bio), bio_sectors(bio), &d->disk->part0);
1241
1242         s = search_alloc(bio, d);
1243         cl = &s->cl;
1244         bio = &s->bio.bio;
1245
1246         trace_bcache_request_start(s->d, bio);
1247
1248         if (!bio->bi_iter.bi_size) {
1249                 /*
1250                  * can't call bch_journal_meta from under
1251                  * generic_make_request
1252                  */
1253                 continue_at_nobarrier(&s->cl,
1254                                       flash_dev_nodata,
1255                                       bcache_wq);
1256                 return BLK_QC_T_NONE;
1257         } else if (bio_data_dir(bio)) {
1258                 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
1259                                         &KEY(d->id, bio->bi_iter.bi_sector, 0),
1260                                         &KEY(d->id, bio_end_sector(bio), 0));
1261
1262                 s->iop.bypass           = (bio_op(bio) == REQ_OP_DISCARD) != 0;
1263                 s->iop.writeback        = true;
1264                 s->iop.bio              = bio;
1265
1266                 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1267         } else {
1268                 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1269         }
1270
1271         continue_at(cl, search_free, NULL);
1272         return BLK_QC_T_NONE;
1273 }
1274
1275 static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1276                            unsigned int cmd, unsigned long arg)
1277 {
1278         return -ENOTTY;
1279 }
1280
1281 static int flash_dev_congested(void *data, int bits)
1282 {
1283         struct bcache_device *d = data;
1284         struct request_queue *q;
1285         struct cache *ca;
1286         unsigned i;
1287         int ret = 0;
1288
1289         for_each_cache(ca, d->c, i) {
1290                 q = bdev_get_queue(ca->bdev);
1291                 ret |= bdi_congested(q->backing_dev_info, bits);
1292         }
1293
1294         return ret;
1295 }
1296
1297 void bch_flash_dev_request_init(struct bcache_device *d)
1298 {
1299         struct gendisk *g = d->disk;
1300
1301         g->queue->make_request_fn               = flash_dev_make_request;
1302         g->queue->backing_dev_info->congested_fn = flash_dev_congested;
1303         d->cache_miss                           = flash_dev_cache_miss;
1304         d->ioctl                                = flash_dev_ioctl;
1305 }
1306
1307 void bch_request_exit(void)
1308 {
1309         if (bch_search_cache)
1310                 kmem_cache_destroy(bch_search_cache);
1311 }
1312
1313 int __init bch_request_init(void)
1314 {
1315         bch_search_cache = KMEM_CACHE(search, 0);
1316         if (!bch_search_cache)
1317                 return -ENOMEM;
1318
1319         return 0;
1320 }