Merge tag 'soundwire-5.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/vkoul...
[linux-2.6-microblaze.git] / drivers / isdn / hardware / mISDN / hfcsusb.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* hfcsusb.c
3  * mISDN driver for Colognechip HFC-S USB chip
4  *
5  * Copyright 2001 by Peter Sprenger (sprenger@moving-bytes.de)
6  * Copyright 2008 by Martin Bachem (info@bachem-it.com)
7  *
8  * module params
9  *   debug=<n>, default=0, with n=0xHHHHGGGG
10  *      H - l1 driver flags described in hfcsusb.h
11  *      G - common mISDN debug flags described at mISDNhw.h
12  *
13  *   poll=<n>, default 128
14  *     n : burst size of PH_DATA_IND at transparent rx data
15  *
16  * Revision: 0.3.3 (socket), 2008-11-05
17  */
18
19 #include <linux/module.h>
20 #include <linux/delay.h>
21 #include <linux/usb.h>
22 #include <linux/mISDNhw.h>
23 #include <linux/slab.h>
24 #include "hfcsusb.h"
25
26 static unsigned int debug;
27 static int poll = DEFAULT_TRANSP_BURST_SZ;
28
29 static LIST_HEAD(HFClist);
30 static DEFINE_RWLOCK(HFClock);
31
32
33 MODULE_AUTHOR("Martin Bachem");
34 MODULE_LICENSE("GPL");
35 module_param(debug, uint, S_IRUGO | S_IWUSR);
36 module_param(poll, int, 0);
37
38 static int hfcsusb_cnt;
39
40 /* some function prototypes */
41 static void hfcsusb_ph_command(struct hfcsusb *hw, u_char command);
42 static void release_hw(struct hfcsusb *hw);
43 static void reset_hfcsusb(struct hfcsusb *hw);
44 static void setPortMode(struct hfcsusb *hw);
45 static void hfcsusb_start_endpoint(struct hfcsusb *hw, int channel);
46 static void hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel);
47 static int  hfcsusb_setup_bch(struct bchannel *bch, int protocol);
48 static void deactivate_bchannel(struct bchannel *bch);
49 static void hfcsusb_ph_info(struct hfcsusb *hw);
50
51 /* start next background transfer for control channel */
52 static void
53 ctrl_start_transfer(struct hfcsusb *hw)
54 {
55         if (debug & DBG_HFC_CALL_TRACE)
56                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
57
58         if (hw->ctrl_cnt) {
59                 hw->ctrl_urb->pipe = hw->ctrl_out_pipe;
60                 hw->ctrl_urb->setup_packet = (u_char *)&hw->ctrl_write;
61                 hw->ctrl_urb->transfer_buffer = NULL;
62                 hw->ctrl_urb->transfer_buffer_length = 0;
63                 hw->ctrl_write.wIndex =
64                         cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].hfcs_reg);
65                 hw->ctrl_write.wValue =
66                         cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].reg_val);
67
68                 usb_submit_urb(hw->ctrl_urb, GFP_ATOMIC);
69         }
70 }
71
72 /*
73  * queue a control transfer request to write HFC-S USB
74  * chip register using CTRL resuest queue
75  */
76 static int write_reg(struct hfcsusb *hw, __u8 reg, __u8 val)
77 {
78         struct ctrl_buf *buf;
79
80         if (debug & DBG_HFC_CALL_TRACE)
81                 printk(KERN_DEBUG "%s: %s reg(0x%02x) val(0x%02x)\n",
82                        hw->name, __func__, reg, val);
83
84         spin_lock(&hw->ctrl_lock);
85         if (hw->ctrl_cnt >= HFC_CTRL_BUFSIZE) {
86                 spin_unlock(&hw->ctrl_lock);
87                 return 1;
88         }
89         buf = &hw->ctrl_buff[hw->ctrl_in_idx];
90         buf->hfcs_reg = reg;
91         buf->reg_val = val;
92         if (++hw->ctrl_in_idx >= HFC_CTRL_BUFSIZE)
93                 hw->ctrl_in_idx = 0;
94         if (++hw->ctrl_cnt == 1)
95                 ctrl_start_transfer(hw);
96         spin_unlock(&hw->ctrl_lock);
97
98         return 0;
99 }
100
101 /* control completion routine handling background control cmds */
102 static void
103 ctrl_complete(struct urb *urb)
104 {
105         struct hfcsusb *hw = (struct hfcsusb *) urb->context;
106
107         if (debug & DBG_HFC_CALL_TRACE)
108                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
109
110         urb->dev = hw->dev;
111         if (hw->ctrl_cnt) {
112                 hw->ctrl_cnt--; /* decrement actual count */
113                 if (++hw->ctrl_out_idx >= HFC_CTRL_BUFSIZE)
114                         hw->ctrl_out_idx = 0;   /* pointer wrap */
115
116                 ctrl_start_transfer(hw); /* start next transfer */
117         }
118 }
119
120 /* handle LED bits   */
121 static void
122 set_led_bit(struct hfcsusb *hw, signed short led_bits, int set_on)
123 {
124         if (set_on) {
125                 if (led_bits < 0)
126                         hw->led_state &= ~abs(led_bits);
127                 else
128                         hw->led_state |= led_bits;
129         } else {
130                 if (led_bits < 0)
131                         hw->led_state |= abs(led_bits);
132                 else
133                         hw->led_state &= ~led_bits;
134         }
135 }
136
137 /* handle LED requests  */
138 static void
139 handle_led(struct hfcsusb *hw, int event)
140 {
141         struct hfcsusb_vdata *driver_info = (struct hfcsusb_vdata *)
142                 hfcsusb_idtab[hw->vend_idx].driver_info;
143         __u8 tmpled;
144
145         if (driver_info->led_scheme == LED_OFF)
146                 return;
147         tmpled = hw->led_state;
148
149         switch (event) {
150         case LED_POWER_ON:
151                 set_led_bit(hw, driver_info->led_bits[0], 1);
152                 set_led_bit(hw, driver_info->led_bits[1], 0);
153                 set_led_bit(hw, driver_info->led_bits[2], 0);
154                 set_led_bit(hw, driver_info->led_bits[3], 0);
155                 break;
156         case LED_POWER_OFF:
157                 set_led_bit(hw, driver_info->led_bits[0], 0);
158                 set_led_bit(hw, driver_info->led_bits[1], 0);
159                 set_led_bit(hw, driver_info->led_bits[2], 0);
160                 set_led_bit(hw, driver_info->led_bits[3], 0);
161                 break;
162         case LED_S0_ON:
163                 set_led_bit(hw, driver_info->led_bits[1], 1);
164                 break;
165         case LED_S0_OFF:
166                 set_led_bit(hw, driver_info->led_bits[1], 0);
167                 break;
168         case LED_B1_ON:
169                 set_led_bit(hw, driver_info->led_bits[2], 1);
170                 break;
171         case LED_B1_OFF:
172                 set_led_bit(hw, driver_info->led_bits[2], 0);
173                 break;
174         case LED_B2_ON:
175                 set_led_bit(hw, driver_info->led_bits[3], 1);
176                 break;
177         case LED_B2_OFF:
178                 set_led_bit(hw, driver_info->led_bits[3], 0);
179                 break;
180         }
181
182         if (hw->led_state != tmpled) {
183                 if (debug & DBG_HFC_CALL_TRACE)
184                         printk(KERN_DEBUG "%s: %s reg(0x%02x) val(x%02x)\n",
185                                hw->name, __func__,
186                                HFCUSB_P_DATA, hw->led_state);
187
188                 write_reg(hw, HFCUSB_P_DATA, hw->led_state);
189         }
190 }
191
192 /*
193  * Layer2 -> Layer 1 Bchannel data
194  */
195 static int
196 hfcusb_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
197 {
198         struct bchannel         *bch = container_of(ch, struct bchannel, ch);
199         struct hfcsusb          *hw = bch->hw;
200         int                     ret = -EINVAL;
201         struct mISDNhead        *hh = mISDN_HEAD_P(skb);
202         u_long                  flags;
203
204         if (debug & DBG_HFC_CALL_TRACE)
205                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
206
207         switch (hh->prim) {
208         case PH_DATA_REQ:
209                 spin_lock_irqsave(&hw->lock, flags);
210                 ret = bchannel_senddata(bch, skb);
211                 spin_unlock_irqrestore(&hw->lock, flags);
212                 if (debug & DBG_HFC_CALL_TRACE)
213                         printk(KERN_DEBUG "%s: %s PH_DATA_REQ ret(%i)\n",
214                                hw->name, __func__, ret);
215                 if (ret > 0)
216                         ret = 0;
217                 return ret;
218         case PH_ACTIVATE_REQ:
219                 if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
220                         hfcsusb_start_endpoint(hw, bch->nr - 1);
221                         ret = hfcsusb_setup_bch(bch, ch->protocol);
222                 } else
223                         ret = 0;
224                 if (!ret)
225                         _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
226                                     0, NULL, GFP_KERNEL);
227                 break;
228         case PH_DEACTIVATE_REQ:
229                 deactivate_bchannel(bch);
230                 _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY,
231                             0, NULL, GFP_KERNEL);
232                 ret = 0;
233                 break;
234         }
235         if (!ret)
236                 dev_kfree_skb(skb);
237         return ret;
238 }
239
240 /*
241  * send full D/B channel status information
242  * as MPH_INFORMATION_IND
243  */
244 static void
245 hfcsusb_ph_info(struct hfcsusb *hw)
246 {
247         struct ph_info *phi;
248         struct dchannel *dch = &hw->dch;
249         int i;
250
251         phi = kzalloc(struct_size(phi, bch, dch->dev.nrbchan), GFP_ATOMIC);
252         if (!phi)
253                 return;
254
255         phi->dch.ch.protocol = hw->protocol;
256         phi->dch.ch.Flags = dch->Flags;
257         phi->dch.state = dch->state;
258         phi->dch.num_bch = dch->dev.nrbchan;
259         for (i = 0; i < dch->dev.nrbchan; i++) {
260                 phi->bch[i].protocol = hw->bch[i].ch.protocol;
261                 phi->bch[i].Flags = hw->bch[i].Flags;
262         }
263         _queue_data(&dch->dev.D, MPH_INFORMATION_IND, MISDN_ID_ANY,
264                     struct_size(phi, bch, dch->dev.nrbchan), phi, GFP_ATOMIC);
265         kfree(phi);
266 }
267
268 /*
269  * Layer2 -> Layer 1 Dchannel data
270  */
271 static int
272 hfcusb_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
273 {
274         struct mISDNdevice      *dev = container_of(ch, struct mISDNdevice, D);
275         struct dchannel         *dch = container_of(dev, struct dchannel, dev);
276         struct mISDNhead        *hh = mISDN_HEAD_P(skb);
277         struct hfcsusb          *hw = dch->hw;
278         int                     ret = -EINVAL;
279         u_long                  flags;
280
281         switch (hh->prim) {
282         case PH_DATA_REQ:
283                 if (debug & DBG_HFC_CALL_TRACE)
284                         printk(KERN_DEBUG "%s: %s: PH_DATA_REQ\n",
285                                hw->name, __func__);
286
287                 spin_lock_irqsave(&hw->lock, flags);
288                 ret = dchannel_senddata(dch, skb);
289                 spin_unlock_irqrestore(&hw->lock, flags);
290                 if (ret > 0) {
291                         ret = 0;
292                         queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL);
293                 }
294                 break;
295
296         case PH_ACTIVATE_REQ:
297                 if (debug & DBG_HFC_CALL_TRACE)
298                         printk(KERN_DEBUG "%s: %s: PH_ACTIVATE_REQ %s\n",
299                                hw->name, __func__,
300                                (hw->protocol == ISDN_P_NT_S0) ? "NT" : "TE");
301
302                 if (hw->protocol == ISDN_P_NT_S0) {
303                         ret = 0;
304                         if (test_bit(FLG_ACTIVE, &dch->Flags)) {
305                                 _queue_data(&dch->dev.D,
306                                             PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
307                                             NULL, GFP_ATOMIC);
308                         } else {
309                                 hfcsusb_ph_command(hw,
310                                                    HFC_L1_ACTIVATE_NT);
311                                 test_and_set_bit(FLG_L2_ACTIVATED,
312                                                  &dch->Flags);
313                         }
314                 } else {
315                         hfcsusb_ph_command(hw, HFC_L1_ACTIVATE_TE);
316                         ret = l1_event(dch->l1, hh->prim);
317                 }
318                 break;
319
320         case PH_DEACTIVATE_REQ:
321                 if (debug & DBG_HFC_CALL_TRACE)
322                         printk(KERN_DEBUG "%s: %s: PH_DEACTIVATE_REQ\n",
323                                hw->name, __func__);
324                 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
325
326                 if (hw->protocol == ISDN_P_NT_S0) {
327                         hfcsusb_ph_command(hw, HFC_L1_DEACTIVATE_NT);
328                         spin_lock_irqsave(&hw->lock, flags);
329                         skb_queue_purge(&dch->squeue);
330                         if (dch->tx_skb) {
331                                 dev_kfree_skb(dch->tx_skb);
332                                 dch->tx_skb = NULL;
333                         }
334                         dch->tx_idx = 0;
335                         if (dch->rx_skb) {
336                                 dev_kfree_skb(dch->rx_skb);
337                                 dch->rx_skb = NULL;
338                         }
339                         test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
340                         spin_unlock_irqrestore(&hw->lock, flags);
341 #ifdef FIXME
342                         if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
343                                 dchannel_sched_event(&hc->dch, D_CLEARBUSY);
344 #endif
345                         ret = 0;
346                 } else
347                         ret = l1_event(dch->l1, hh->prim);
348                 break;
349         case MPH_INFORMATION_REQ:
350                 hfcsusb_ph_info(hw);
351                 ret = 0;
352                 break;
353         }
354
355         return ret;
356 }
357
358 /*
359  * Layer 1 callback function
360  */
361 static int
362 hfc_l1callback(struct dchannel *dch, u_int cmd)
363 {
364         struct hfcsusb *hw = dch->hw;
365
366         if (debug & DBG_HFC_CALL_TRACE)
367                 printk(KERN_DEBUG "%s: %s cmd 0x%x\n",
368                        hw->name, __func__, cmd);
369
370         switch (cmd) {
371         case INFO3_P8:
372         case INFO3_P10:
373         case HW_RESET_REQ:
374         case HW_POWERUP_REQ:
375                 break;
376
377         case HW_DEACT_REQ:
378                 skb_queue_purge(&dch->squeue);
379                 if (dch->tx_skb) {
380                         dev_kfree_skb(dch->tx_skb);
381                         dch->tx_skb = NULL;
382                 }
383                 dch->tx_idx = 0;
384                 if (dch->rx_skb) {
385                         dev_kfree_skb(dch->rx_skb);
386                         dch->rx_skb = NULL;
387                 }
388                 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
389                 break;
390         case PH_ACTIVATE_IND:
391                 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
392                 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
393                             GFP_ATOMIC);
394                 break;
395         case PH_DEACTIVATE_IND:
396                 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
397                 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
398                             GFP_ATOMIC);
399                 break;
400         default:
401                 if (dch->debug & DEBUG_HW)
402                         printk(KERN_DEBUG "%s: %s: unknown cmd %x\n",
403                                hw->name, __func__, cmd);
404                 return -1;
405         }
406         hfcsusb_ph_info(hw);
407         return 0;
408 }
409
410 static int
411 open_dchannel(struct hfcsusb *hw, struct mISDNchannel *ch,
412               struct channel_req *rq)
413 {
414         int err = 0;
415
416         if (debug & DEBUG_HW_OPEN)
417                 printk(KERN_DEBUG "%s: %s: dev(%d) open addr(%i) from %p\n",
418                        hw->name, __func__, hw->dch.dev.id, rq->adr.channel,
419                        __builtin_return_address(0));
420         if (rq->protocol == ISDN_P_NONE)
421                 return -EINVAL;
422
423         test_and_clear_bit(FLG_ACTIVE, &hw->dch.Flags);
424         test_and_clear_bit(FLG_ACTIVE, &hw->ech.Flags);
425         hfcsusb_start_endpoint(hw, HFC_CHAN_D);
426
427         /* E-Channel logging */
428         if (rq->adr.channel == 1) {
429                 if (hw->fifos[HFCUSB_PCM_RX].pipe) {
430                         hfcsusb_start_endpoint(hw, HFC_CHAN_E);
431                         set_bit(FLG_ACTIVE, &hw->ech.Flags);
432                         _queue_data(&hw->ech.dev.D, PH_ACTIVATE_IND,
433                                     MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
434                 } else
435                         return -EINVAL;
436         }
437
438         if (!hw->initdone) {
439                 hw->protocol = rq->protocol;
440                 if (rq->protocol == ISDN_P_TE_S0) {
441                         err = create_l1(&hw->dch, hfc_l1callback);
442                         if (err)
443                                 return err;
444                 }
445                 setPortMode(hw);
446                 ch->protocol = rq->protocol;
447                 hw->initdone = 1;
448         } else {
449                 if (rq->protocol != ch->protocol)
450                         return -EPROTONOSUPPORT;
451         }
452
453         if (((ch->protocol == ISDN_P_NT_S0) && (hw->dch.state == 3)) ||
454             ((ch->protocol == ISDN_P_TE_S0) && (hw->dch.state == 7)))
455                 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
456                             0, NULL, GFP_KERNEL);
457         rq->ch = ch;
458         if (!try_module_get(THIS_MODULE))
459                 printk(KERN_WARNING "%s: %s: cannot get module\n",
460                        hw->name, __func__);
461         return 0;
462 }
463
464 static int
465 open_bchannel(struct hfcsusb *hw, struct channel_req *rq)
466 {
467         struct bchannel         *bch;
468
469         if (rq->adr.channel == 0 || rq->adr.channel > 2)
470                 return -EINVAL;
471         if (rq->protocol == ISDN_P_NONE)
472                 return -EINVAL;
473
474         if (debug & DBG_HFC_CALL_TRACE)
475                 printk(KERN_DEBUG "%s: %s B%i\n",
476                        hw->name, __func__, rq->adr.channel);
477
478         bch = &hw->bch[rq->adr.channel - 1];
479         if (test_and_set_bit(FLG_OPEN, &bch->Flags))
480                 return -EBUSY; /* b-channel can be only open once */
481         bch->ch.protocol = rq->protocol;
482         rq->ch = &bch->ch;
483
484         if (!try_module_get(THIS_MODULE))
485                 printk(KERN_WARNING "%s: %s:cannot get module\n",
486                        hw->name, __func__);
487         return 0;
488 }
489
490 static int
491 channel_ctrl(struct hfcsusb *hw, struct mISDN_ctrl_req *cq)
492 {
493         int ret = 0;
494
495         if (debug & DBG_HFC_CALL_TRACE)
496                 printk(KERN_DEBUG "%s: %s op(0x%x) channel(0x%x)\n",
497                        hw->name, __func__, (cq->op), (cq->channel));
498
499         switch (cq->op) {
500         case MISDN_CTRL_GETOP:
501                 cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
502                         MISDN_CTRL_DISCONNECT;
503                 break;
504         default:
505                 printk(KERN_WARNING "%s: %s: unknown Op %x\n",
506                        hw->name, __func__, cq->op);
507                 ret = -EINVAL;
508                 break;
509         }
510         return ret;
511 }
512
513 /*
514  * device control function
515  */
516 static int
517 hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
518 {
519         struct mISDNdevice      *dev = container_of(ch, struct mISDNdevice, D);
520         struct dchannel         *dch = container_of(dev, struct dchannel, dev);
521         struct hfcsusb          *hw = dch->hw;
522         struct channel_req      *rq;
523         int                     err = 0;
524
525         if (dch->debug & DEBUG_HW)
526                 printk(KERN_DEBUG "%s: %s: cmd:%x %p\n",
527                        hw->name, __func__, cmd, arg);
528         switch (cmd) {
529         case OPEN_CHANNEL:
530                 rq = arg;
531                 if ((rq->protocol == ISDN_P_TE_S0) ||
532                     (rq->protocol == ISDN_P_NT_S0))
533                         err = open_dchannel(hw, ch, rq);
534                 else
535                         err = open_bchannel(hw, rq);
536                 if (!err)
537                         hw->open++;
538                 break;
539         case CLOSE_CHANNEL:
540                 hw->open--;
541                 if (debug & DEBUG_HW_OPEN)
542                         printk(KERN_DEBUG
543                                "%s: %s: dev(%d) close from %p (open %d)\n",
544                                hw->name, __func__, hw->dch.dev.id,
545                                __builtin_return_address(0), hw->open);
546                 if (!hw->open) {
547                         hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
548                         if (hw->fifos[HFCUSB_PCM_RX].pipe)
549                                 hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
550                         handle_led(hw, LED_POWER_ON);
551                 }
552                 module_put(THIS_MODULE);
553                 break;
554         case CONTROL_CHANNEL:
555                 err = channel_ctrl(hw, arg);
556                 break;
557         default:
558                 if (dch->debug & DEBUG_HW)
559                         printk(KERN_DEBUG "%s: %s: unknown command %x\n",
560                                hw->name, __func__, cmd);
561                 return -EINVAL;
562         }
563         return err;
564 }
565
566 /*
567  * S0 TE state change event handler
568  */
569 static void
570 ph_state_te(struct dchannel *dch)
571 {
572         struct hfcsusb *hw = dch->hw;
573
574         if (debug & DEBUG_HW) {
575                 if (dch->state <= HFC_MAX_TE_LAYER1_STATE)
576                         printk(KERN_DEBUG "%s: %s: %s\n", hw->name, __func__,
577                                HFC_TE_LAYER1_STATES[dch->state]);
578                 else
579                         printk(KERN_DEBUG "%s: %s: TE F%d\n",
580                                hw->name, __func__, dch->state);
581         }
582
583         switch (dch->state) {
584         case 0:
585                 l1_event(dch->l1, HW_RESET_IND);
586                 break;
587         case 3:
588                 l1_event(dch->l1, HW_DEACT_IND);
589                 break;
590         case 5:
591         case 8:
592                 l1_event(dch->l1, ANYSIGNAL);
593                 break;
594         case 6:
595                 l1_event(dch->l1, INFO2);
596                 break;
597         case 7:
598                 l1_event(dch->l1, INFO4_P8);
599                 break;
600         }
601         if (dch->state == 7)
602                 handle_led(hw, LED_S0_ON);
603         else
604                 handle_led(hw, LED_S0_OFF);
605 }
606
607 /*
608  * S0 NT state change event handler
609  */
610 static void
611 ph_state_nt(struct dchannel *dch)
612 {
613         struct hfcsusb *hw = dch->hw;
614
615         if (debug & DEBUG_HW) {
616                 if (dch->state <= HFC_MAX_NT_LAYER1_STATE)
617                         printk(KERN_DEBUG "%s: %s: %s\n",
618                                hw->name, __func__,
619                                HFC_NT_LAYER1_STATES[dch->state]);
620
621                 else
622                         printk(KERN_INFO DRIVER_NAME "%s: %s: NT G%d\n",
623                                hw->name, __func__, dch->state);
624         }
625
626         switch (dch->state) {
627         case (1):
628                 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
629                 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
630                 hw->nt_timer = 0;
631                 hw->timers &= ~NT_ACTIVATION_TIMER;
632                 handle_led(hw, LED_S0_OFF);
633                 break;
634
635         case (2):
636                 if (hw->nt_timer < 0) {
637                         hw->nt_timer = 0;
638                         hw->timers &= ~NT_ACTIVATION_TIMER;
639                         hfcsusb_ph_command(dch->hw, HFC_L1_DEACTIVATE_NT);
640                 } else {
641                         hw->timers |= NT_ACTIVATION_TIMER;
642                         hw->nt_timer = NT_T1_COUNT;
643                         /* allow G2 -> G3 transition */
644                         write_reg(hw, HFCUSB_STATES, 2 | HFCUSB_NT_G2_G3);
645                 }
646                 break;
647         case (3):
648                 hw->nt_timer = 0;
649                 hw->timers &= ~NT_ACTIVATION_TIMER;
650                 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
651                 _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
652                             MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
653                 handle_led(hw, LED_S0_ON);
654                 break;
655         case (4):
656                 hw->nt_timer = 0;
657                 hw->timers &= ~NT_ACTIVATION_TIMER;
658                 break;
659         default:
660                 break;
661         }
662         hfcsusb_ph_info(hw);
663 }
664
665 static void
666 ph_state(struct dchannel *dch)
667 {
668         struct hfcsusb *hw = dch->hw;
669
670         if (hw->protocol == ISDN_P_NT_S0)
671                 ph_state_nt(dch);
672         else if (hw->protocol == ISDN_P_TE_S0)
673                 ph_state_te(dch);
674 }
675
676 /*
677  * disable/enable BChannel for desired protocoll
678  */
679 static int
680 hfcsusb_setup_bch(struct bchannel *bch, int protocol)
681 {
682         struct hfcsusb *hw = bch->hw;
683         __u8 conhdlc, sctrl, sctrl_r;
684
685         if (debug & DEBUG_HW)
686                 printk(KERN_DEBUG "%s: %s: protocol %x-->%x B%d\n",
687                        hw->name, __func__, bch->state, protocol,
688                        bch->nr);
689
690         /* setup val for CON_HDLC */
691         conhdlc = 0;
692         if (protocol > ISDN_P_NONE)
693                 conhdlc = 8;    /* enable FIFO */
694
695         switch (protocol) {
696         case (-1):      /* used for init */
697                 bch->state = -1;
698                 fallthrough;
699         case (ISDN_P_NONE):
700                 if (bch->state == ISDN_P_NONE)
701                         return 0; /* already in idle state */
702                 bch->state = ISDN_P_NONE;
703                 clear_bit(FLG_HDLC, &bch->Flags);
704                 clear_bit(FLG_TRANSPARENT, &bch->Flags);
705                 break;
706         case (ISDN_P_B_RAW):
707                 conhdlc |= 2;
708                 bch->state = protocol;
709                 set_bit(FLG_TRANSPARENT, &bch->Flags);
710                 break;
711         case (ISDN_P_B_HDLC):
712                 bch->state = protocol;
713                 set_bit(FLG_HDLC, &bch->Flags);
714                 break;
715         default:
716                 if (debug & DEBUG_HW)
717                         printk(KERN_DEBUG "%s: %s: prot not known %x\n",
718                                hw->name, __func__, protocol);
719                 return -ENOPROTOOPT;
720         }
721
722         if (protocol >= ISDN_P_NONE) {
723                 write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 0 : 2);
724                 write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
725                 write_reg(hw, HFCUSB_INC_RES_F, 2);
726                 write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 1 : 3);
727                 write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
728                 write_reg(hw, HFCUSB_INC_RES_F, 2);
729
730                 sctrl = 0x40 + ((hw->protocol == ISDN_P_TE_S0) ? 0x00 : 0x04);
731                 sctrl_r = 0x0;
732                 if (test_bit(FLG_ACTIVE, &hw->bch[0].Flags)) {
733                         sctrl |= 1;
734                         sctrl_r |= 1;
735                 }
736                 if (test_bit(FLG_ACTIVE, &hw->bch[1].Flags)) {
737                         sctrl |= 2;
738                         sctrl_r |= 2;
739                 }
740                 write_reg(hw, HFCUSB_SCTRL, sctrl);
741                 write_reg(hw, HFCUSB_SCTRL_R, sctrl_r);
742
743                 if (protocol > ISDN_P_NONE)
744                         handle_led(hw, (bch->nr == 1) ? LED_B1_ON : LED_B2_ON);
745                 else
746                         handle_led(hw, (bch->nr == 1) ? LED_B1_OFF :
747                                    LED_B2_OFF);
748         }
749         hfcsusb_ph_info(hw);
750         return 0;
751 }
752
753 static void
754 hfcsusb_ph_command(struct hfcsusb *hw, u_char command)
755 {
756         if (debug & DEBUG_HW)
757                 printk(KERN_DEBUG "%s: %s: %x\n",
758                        hw->name, __func__, command);
759
760         switch (command) {
761         case HFC_L1_ACTIVATE_TE:
762                 /* force sending sending INFO1 */
763                 write_reg(hw, HFCUSB_STATES, 0x14);
764                 /* start l1 activation */
765                 write_reg(hw, HFCUSB_STATES, 0x04);
766                 break;
767
768         case HFC_L1_FORCE_DEACTIVATE_TE:
769                 write_reg(hw, HFCUSB_STATES, 0x10);
770                 write_reg(hw, HFCUSB_STATES, 0x03);
771                 break;
772
773         case HFC_L1_ACTIVATE_NT:
774                 if (hw->dch.state == 3)
775                         _queue_data(&hw->dch.dev.D, PH_ACTIVATE_IND,
776                                     MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
777                 else
778                         write_reg(hw, HFCUSB_STATES, HFCUSB_ACTIVATE |
779                                   HFCUSB_DO_ACTION | HFCUSB_NT_G2_G3);
780                 break;
781
782         case HFC_L1_DEACTIVATE_NT:
783                 write_reg(hw, HFCUSB_STATES,
784                           HFCUSB_DO_ACTION);
785                 break;
786         }
787 }
788
789 /*
790  * Layer 1 B-channel hardware access
791  */
792 static int
793 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
794 {
795         return mISDN_ctrl_bchannel(bch, cq);
796 }
797
798 /* collect data from incoming interrupt or isochron USB data */
799 static void
800 hfcsusb_rx_frame(struct usb_fifo *fifo, __u8 *data, unsigned int len,
801                  int finish)
802 {
803         struct hfcsusb  *hw = fifo->hw;
804         struct sk_buff  *rx_skb = NULL;
805         int             maxlen = 0;
806         int             fifon = fifo->fifonum;
807         int             i;
808         int             hdlc = 0;
809         unsigned long   flags;
810
811         if (debug & DBG_HFC_CALL_TRACE)
812                 printk(KERN_DEBUG "%s: %s: fifo(%i) len(%i) "
813                        "dch(%p) bch(%p) ech(%p)\n",
814                        hw->name, __func__, fifon, len,
815                        fifo->dch, fifo->bch, fifo->ech);
816
817         if (!len)
818                 return;
819
820         if ((!!fifo->dch + !!fifo->bch + !!fifo->ech) != 1) {
821                 printk(KERN_DEBUG "%s: %s: undefined channel\n",
822                        hw->name, __func__);
823                 return;
824         }
825
826         spin_lock_irqsave(&hw->lock, flags);
827         if (fifo->dch) {
828                 rx_skb = fifo->dch->rx_skb;
829                 maxlen = fifo->dch->maxlen;
830                 hdlc = 1;
831         }
832         if (fifo->bch) {
833                 if (test_bit(FLG_RX_OFF, &fifo->bch->Flags)) {
834                         fifo->bch->dropcnt += len;
835                         spin_unlock_irqrestore(&hw->lock, flags);
836                         return;
837                 }
838                 maxlen = bchannel_get_rxbuf(fifo->bch, len);
839                 rx_skb = fifo->bch->rx_skb;
840                 if (maxlen < 0) {
841                         if (rx_skb)
842                                 skb_trim(rx_skb, 0);
843                         pr_warn("%s.B%d: No bufferspace for %d bytes\n",
844                                 hw->name, fifo->bch->nr, len);
845                         spin_unlock_irqrestore(&hw->lock, flags);
846                         return;
847                 }
848                 maxlen = fifo->bch->maxlen;
849                 hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
850         }
851         if (fifo->ech) {
852                 rx_skb = fifo->ech->rx_skb;
853                 maxlen = fifo->ech->maxlen;
854                 hdlc = 1;
855         }
856
857         if (fifo->dch || fifo->ech) {
858                 if (!rx_skb) {
859                         rx_skb = mI_alloc_skb(maxlen, GFP_ATOMIC);
860                         if (rx_skb) {
861                                 if (fifo->dch)
862                                         fifo->dch->rx_skb = rx_skb;
863                                 if (fifo->ech)
864                                         fifo->ech->rx_skb = rx_skb;
865                                 skb_trim(rx_skb, 0);
866                         } else {
867                                 printk(KERN_DEBUG "%s: %s: No mem for rx_skb\n",
868                                        hw->name, __func__);
869                                 spin_unlock_irqrestore(&hw->lock, flags);
870                                 return;
871                         }
872                 }
873                 /* D/E-Channel SKB range check */
874                 if ((rx_skb->len + len) >= MAX_DFRAME_LEN_L1) {
875                         printk(KERN_DEBUG "%s: %s: sbk mem exceeded "
876                                "for fifo(%d) HFCUSB_D_RX\n",
877                                hw->name, __func__, fifon);
878                         skb_trim(rx_skb, 0);
879                         spin_unlock_irqrestore(&hw->lock, flags);
880                         return;
881                 }
882         }
883
884         skb_put_data(rx_skb, data, len);
885
886         if (hdlc) {
887                 /* we have a complete hdlc packet */
888                 if (finish) {
889                         if ((rx_skb->len > 3) &&
890                             (!(rx_skb->data[rx_skb->len - 1]))) {
891                                 if (debug & DBG_HFC_FIFO_VERBOSE) {
892                                         printk(KERN_DEBUG "%s: %s: fifon(%i)"
893                                                " new RX len(%i): ",
894                                                hw->name, __func__, fifon,
895                                                rx_skb->len);
896                                         i = 0;
897                                         while (i < rx_skb->len)
898                                                 printk("%02x ",
899                                                        rx_skb->data[i++]);
900                                         printk("\n");
901                                 }
902
903                                 /* remove CRC & status */
904                                 skb_trim(rx_skb, rx_skb->len - 3);
905
906                                 if (fifo->dch)
907                                         recv_Dchannel(fifo->dch);
908                                 if (fifo->bch)
909                                         recv_Bchannel(fifo->bch, MISDN_ID_ANY,
910                                                       0);
911                                 if (fifo->ech)
912                                         recv_Echannel(fifo->ech,
913                                                       &hw->dch);
914                         } else {
915                                 if (debug & DBG_HFC_FIFO_VERBOSE) {
916                                         printk(KERN_DEBUG
917                                                "%s: CRC or minlen ERROR fifon(%i) "
918                                                "RX len(%i): ",
919                                                hw->name, fifon, rx_skb->len);
920                                         i = 0;
921                                         while (i < rx_skb->len)
922                                                 printk("%02x ",
923                                                        rx_skb->data[i++]);
924                                         printk("\n");
925                                 }
926                                 skb_trim(rx_skb, 0);
927                         }
928                 }
929         } else {
930                 /* deliver transparent data to layer2 */
931                 recv_Bchannel(fifo->bch, MISDN_ID_ANY, false);
932         }
933         spin_unlock_irqrestore(&hw->lock, flags);
934 }
935
936 static void
937 fill_isoc_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,
938               void *buf, int num_packets, int packet_size, int interval,
939               usb_complete_t complete, void *context)
940 {
941         int k;
942
943         usb_fill_bulk_urb(urb, dev, pipe, buf, packet_size * num_packets,
944                           complete, context);
945
946         urb->number_of_packets = num_packets;
947         urb->transfer_flags = URB_ISO_ASAP;
948         urb->actual_length = 0;
949         urb->interval = interval;
950
951         for (k = 0; k < num_packets; k++) {
952                 urb->iso_frame_desc[k].offset = packet_size * k;
953                 urb->iso_frame_desc[k].length = packet_size;
954                 urb->iso_frame_desc[k].actual_length = 0;
955         }
956 }
957
958 /* receive completion routine for all ISO tx fifos   */
959 static void
960 rx_iso_complete(struct urb *urb)
961 {
962         struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
963         struct usb_fifo *fifo = context_iso_urb->owner_fifo;
964         struct hfcsusb *hw = fifo->hw;
965         int k, len, errcode, offset, num_isoc_packets, fifon, maxlen,
966                 status, iso_status, i;
967         __u8 *buf;
968         static __u8 eof[8];
969         __u8 s0_state;
970         unsigned long flags;
971
972         fifon = fifo->fifonum;
973         status = urb->status;
974
975         spin_lock_irqsave(&hw->lock, flags);
976         if (fifo->stop_gracefull) {
977                 fifo->stop_gracefull = 0;
978                 fifo->active = 0;
979                 spin_unlock_irqrestore(&hw->lock, flags);
980                 return;
981         }
982         spin_unlock_irqrestore(&hw->lock, flags);
983
984         /*
985          * ISO transfer only partially completed,
986          * look at individual frame status for details
987          */
988         if (status == -EXDEV) {
989                 if (debug & DEBUG_HW)
990                         printk(KERN_DEBUG "%s: %s: with -EXDEV "
991                                "urb->status %d, fifonum %d\n",
992                                hw->name, __func__,  status, fifon);
993
994                 /* clear status, so go on with ISO transfers */
995                 status = 0;
996         }
997
998         s0_state = 0;
999         if (fifo->active && !status) {
1000                 num_isoc_packets = iso_packets[fifon];
1001                 maxlen = fifo->usb_packet_maxlen;
1002
1003                 for (k = 0; k < num_isoc_packets; ++k) {
1004                         len = urb->iso_frame_desc[k].actual_length;
1005                         offset = urb->iso_frame_desc[k].offset;
1006                         buf = context_iso_urb->buffer + offset;
1007                         iso_status = urb->iso_frame_desc[k].status;
1008
1009                         if (iso_status && (debug & DBG_HFC_FIFO_VERBOSE)) {
1010                                 printk(KERN_DEBUG "%s: %s: "
1011                                        "ISO packet %i, status: %i\n",
1012                                        hw->name, __func__, k, iso_status);
1013                         }
1014
1015                         /* USB data log for every D ISO in */
1016                         if ((fifon == HFCUSB_D_RX) &&
1017                             (debug & DBG_HFC_USB_VERBOSE)) {
1018                                 printk(KERN_DEBUG
1019                                        "%s: %s: %d (%d/%d) len(%d) ",
1020                                        hw->name, __func__, urb->start_frame,
1021                                        k, num_isoc_packets - 1,
1022                                        len);
1023                                 for (i = 0; i < len; i++)
1024                                         printk("%x ", buf[i]);
1025                                 printk("\n");
1026                         }
1027
1028                         if (!iso_status) {
1029                                 if (fifo->last_urblen != maxlen) {
1030                                         /*
1031                                          * save fifo fill-level threshold bits
1032                                          * to use them later in TX ISO URB
1033                                          * completions
1034                                          */
1035                                         hw->threshold_mask = buf[1];
1036
1037                                         if (fifon == HFCUSB_D_RX)
1038                                                 s0_state = (buf[0] >> 4);
1039
1040                                         eof[fifon] = buf[0] & 1;
1041                                         if (len > 2)
1042                                                 hfcsusb_rx_frame(fifo, buf + 2,
1043                                                                  len - 2, (len < maxlen)
1044                                                                  ? eof[fifon] : 0);
1045                                 } else
1046                                         hfcsusb_rx_frame(fifo, buf, len,
1047                                                          (len < maxlen) ?
1048                                                          eof[fifon] : 0);
1049                                 fifo->last_urblen = len;
1050                         }
1051                 }
1052
1053                 /* signal S0 layer1 state change */
1054                 if ((s0_state) && (hw->initdone) &&
1055                     (s0_state != hw->dch.state)) {
1056                         hw->dch.state = s0_state;
1057                         schedule_event(&hw->dch, FLG_PHCHANGE);
1058                 }
1059
1060                 fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1061                               context_iso_urb->buffer, num_isoc_packets,
1062                               fifo->usb_packet_maxlen, fifo->intervall,
1063                               (usb_complete_t)rx_iso_complete, urb->context);
1064                 errcode = usb_submit_urb(urb, GFP_ATOMIC);
1065                 if (errcode < 0) {
1066                         if (debug & DEBUG_HW)
1067                                 printk(KERN_DEBUG "%s: %s: error submitting "
1068                                        "ISO URB: %d\n",
1069                                        hw->name, __func__, errcode);
1070                 }
1071         } else {
1072                 if (status && (debug & DBG_HFC_URB_INFO))
1073                         printk(KERN_DEBUG "%s: %s: rx_iso_complete : "
1074                                "urb->status %d, fifonum %d\n",
1075                                hw->name, __func__, status, fifon);
1076         }
1077 }
1078
1079 /* receive completion routine for all interrupt rx fifos */
1080 static void
1081 rx_int_complete(struct urb *urb)
1082 {
1083         int len, status, i;
1084         __u8 *buf, maxlen, fifon;
1085         struct usb_fifo *fifo = (struct usb_fifo *) urb->context;
1086         struct hfcsusb *hw = fifo->hw;
1087         static __u8 eof[8];
1088         unsigned long flags;
1089
1090         spin_lock_irqsave(&hw->lock, flags);
1091         if (fifo->stop_gracefull) {
1092                 fifo->stop_gracefull = 0;
1093                 fifo->active = 0;
1094                 spin_unlock_irqrestore(&hw->lock, flags);
1095                 return;
1096         }
1097         spin_unlock_irqrestore(&hw->lock, flags);
1098
1099         fifon = fifo->fifonum;
1100         if ((!fifo->active) || (urb->status)) {
1101                 if (debug & DBG_HFC_URB_ERROR)
1102                         printk(KERN_DEBUG
1103                                "%s: %s: RX-Fifo %i is going down (%i)\n",
1104                                hw->name, __func__, fifon, urb->status);
1105
1106                 fifo->urb->interval = 0; /* cancel automatic rescheduling */
1107                 return;
1108         }
1109         len = urb->actual_length;
1110         buf = fifo->buffer;
1111         maxlen = fifo->usb_packet_maxlen;
1112
1113         /* USB data log for every D INT in */
1114         if ((fifon == HFCUSB_D_RX) && (debug & DBG_HFC_USB_VERBOSE)) {
1115                 printk(KERN_DEBUG "%s: %s: D RX INT len(%d) ",
1116                        hw->name, __func__, len);
1117                 for (i = 0; i < len; i++)
1118                         printk("%02x ", buf[i]);
1119                 printk("\n");
1120         }
1121
1122         if (fifo->last_urblen != fifo->usb_packet_maxlen) {
1123                 /* the threshold mask is in the 2nd status byte */
1124                 hw->threshold_mask = buf[1];
1125
1126                 /* signal S0 layer1 state change */
1127                 if (hw->initdone && ((buf[0] >> 4) != hw->dch.state)) {
1128                         hw->dch.state = (buf[0] >> 4);
1129                         schedule_event(&hw->dch, FLG_PHCHANGE);
1130                 }
1131
1132                 eof[fifon] = buf[0] & 1;
1133                 /* if we have more than the 2 status bytes -> collect data */
1134                 if (len > 2)
1135                         hfcsusb_rx_frame(fifo, buf + 2,
1136                                          urb->actual_length - 2,
1137                                          (len < maxlen) ? eof[fifon] : 0);
1138         } else {
1139                 hfcsusb_rx_frame(fifo, buf, urb->actual_length,
1140                                  (len < maxlen) ? eof[fifon] : 0);
1141         }
1142         fifo->last_urblen = urb->actual_length;
1143
1144         status = usb_submit_urb(urb, GFP_ATOMIC);
1145         if (status) {
1146                 if (debug & DEBUG_HW)
1147                         printk(KERN_DEBUG "%s: %s: error resubmitting USB\n",
1148                                hw->name, __func__);
1149         }
1150 }
1151
1152 /* transmit completion routine for all ISO tx fifos */
1153 static void
1154 tx_iso_complete(struct urb *urb)
1155 {
1156         struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
1157         struct usb_fifo *fifo = context_iso_urb->owner_fifo;
1158         struct hfcsusb *hw = fifo->hw;
1159         struct sk_buff *tx_skb;
1160         int k, tx_offset, num_isoc_packets, sink, remain, current_len,
1161                 errcode, hdlc, i;
1162         int *tx_idx;
1163         int frame_complete, fifon, status, fillempty = 0;
1164         __u8 threshbit, *p;
1165         unsigned long flags;
1166
1167         spin_lock_irqsave(&hw->lock, flags);
1168         if (fifo->stop_gracefull) {
1169                 fifo->stop_gracefull = 0;
1170                 fifo->active = 0;
1171                 spin_unlock_irqrestore(&hw->lock, flags);
1172                 return;
1173         }
1174
1175         if (fifo->dch) {
1176                 tx_skb = fifo->dch->tx_skb;
1177                 tx_idx = &fifo->dch->tx_idx;
1178                 hdlc = 1;
1179         } else if (fifo->bch) {
1180                 tx_skb = fifo->bch->tx_skb;
1181                 tx_idx = &fifo->bch->tx_idx;
1182                 hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
1183                 if (!tx_skb && !hdlc &&
1184                     test_bit(FLG_FILLEMPTY, &fifo->bch->Flags))
1185                         fillempty = 1;
1186         } else {
1187                 printk(KERN_DEBUG "%s: %s: neither BCH nor DCH\n",
1188                        hw->name, __func__);
1189                 spin_unlock_irqrestore(&hw->lock, flags);
1190                 return;
1191         }
1192
1193         fifon = fifo->fifonum;
1194         status = urb->status;
1195
1196         tx_offset = 0;
1197
1198         /*
1199          * ISO transfer only partially completed,
1200          * look at individual frame status for details
1201          */
1202         if (status == -EXDEV) {
1203                 if (debug & DBG_HFC_URB_ERROR)
1204                         printk(KERN_DEBUG "%s: %s: "
1205                                "-EXDEV (%i) fifon (%d)\n",
1206                                hw->name, __func__, status, fifon);
1207
1208                 /* clear status, so go on with ISO transfers */
1209                 status = 0;
1210         }
1211
1212         if (fifo->active && !status) {
1213                 /* is FifoFull-threshold set for our channel? */
1214                 threshbit = (hw->threshold_mask & (1 << fifon));
1215                 num_isoc_packets = iso_packets[fifon];
1216
1217                 /* predict dataflow to avoid fifo overflow */
1218                 if (fifon >= HFCUSB_D_TX)
1219                         sink = (threshbit) ? SINK_DMIN : SINK_DMAX;
1220                 else
1221                         sink = (threshbit) ? SINK_MIN : SINK_MAX;
1222                 fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1223                               context_iso_urb->buffer, num_isoc_packets,
1224                               fifo->usb_packet_maxlen, fifo->intervall,
1225                               (usb_complete_t)tx_iso_complete, urb->context);
1226                 memset(context_iso_urb->buffer, 0,
1227                        sizeof(context_iso_urb->buffer));
1228                 frame_complete = 0;
1229
1230                 for (k = 0; k < num_isoc_packets; ++k) {
1231                         /* analyze tx success of previous ISO packets */
1232                         if (debug & DBG_HFC_URB_ERROR) {
1233                                 errcode = urb->iso_frame_desc[k].status;
1234                                 if (errcode) {
1235                                         printk(KERN_DEBUG "%s: %s: "
1236                                                "ISO packet %i, status: %i\n",
1237                                                hw->name, __func__, k, errcode);
1238                                 }
1239                         }
1240
1241                         /* Generate next ISO Packets */
1242                         if (tx_skb)
1243                                 remain = tx_skb->len - *tx_idx;
1244                         else if (fillempty)
1245                                 remain = 15; /* > not complete */
1246                         else
1247                                 remain = 0;
1248
1249                         if (remain > 0) {
1250                                 fifo->bit_line -= sink;
1251                                 current_len = (0 - fifo->bit_line) / 8;
1252                                 if (current_len > 14)
1253                                         current_len = 14;
1254                                 if (current_len < 0)
1255                                         current_len = 0;
1256                                 if (remain < current_len)
1257                                         current_len = remain;
1258
1259                                 /* how much bit do we put on the line? */
1260                                 fifo->bit_line += current_len * 8;
1261
1262                                 context_iso_urb->buffer[tx_offset] = 0;
1263                                 if (current_len == remain) {
1264                                         if (hdlc) {
1265                                                 /* signal frame completion */
1266                                                 context_iso_urb->
1267                                                         buffer[tx_offset] = 1;
1268                                                 /* add 2 byte flags and 16bit
1269                                                  * CRC at end of ISDN frame */
1270                                                 fifo->bit_line += 32;
1271                                         }
1272                                         frame_complete = 1;
1273                                 }
1274
1275                                 /* copy tx data to iso-urb buffer */
1276                                 p = context_iso_urb->buffer + tx_offset + 1;
1277                                 if (fillempty) {
1278                                         memset(p, fifo->bch->fill[0],
1279                                                current_len);
1280                                 } else {
1281                                         memcpy(p, (tx_skb->data + *tx_idx),
1282                                                current_len);
1283                                         *tx_idx += current_len;
1284                                 }
1285                                 urb->iso_frame_desc[k].offset = tx_offset;
1286                                 urb->iso_frame_desc[k].length = current_len + 1;
1287
1288                                 /* USB data log for every D ISO out */
1289                                 if ((fifon == HFCUSB_D_RX) && !fillempty &&
1290                                     (debug & DBG_HFC_USB_VERBOSE)) {
1291                                         printk(KERN_DEBUG
1292                                                "%s: %s (%d/%d) offs(%d) len(%d) ",
1293                                                hw->name, __func__,
1294                                                k, num_isoc_packets - 1,
1295                                                urb->iso_frame_desc[k].offset,
1296                                                urb->iso_frame_desc[k].length);
1297
1298                                         for (i = urb->iso_frame_desc[k].offset;
1299                                              i < (urb->iso_frame_desc[k].offset
1300                                                   + urb->iso_frame_desc[k].length);
1301                                              i++)
1302                                                 printk("%x ",
1303                                                        context_iso_urb->buffer[i]);
1304
1305                                         printk(" skb->len(%i) tx-idx(%d)\n",
1306                                                tx_skb->len, *tx_idx);
1307                                 }
1308
1309                                 tx_offset += (current_len + 1);
1310                         } else {
1311                                 urb->iso_frame_desc[k].offset = tx_offset++;
1312                                 urb->iso_frame_desc[k].length = 1;
1313                                 /* we lower data margin every msec */
1314                                 fifo->bit_line -= sink;
1315                                 if (fifo->bit_line < BITLINE_INF)
1316                                         fifo->bit_line = BITLINE_INF;
1317                         }
1318
1319                         if (frame_complete) {
1320                                 frame_complete = 0;
1321
1322                                 if (debug & DBG_HFC_FIFO_VERBOSE) {
1323                                         printk(KERN_DEBUG  "%s: %s: "
1324                                                "fifon(%i) new TX len(%i): ",
1325                                                hw->name, __func__,
1326                                                fifon, tx_skb->len);
1327                                         i = 0;
1328                                         while (i < tx_skb->len)
1329                                                 printk("%02x ",
1330                                                        tx_skb->data[i++]);
1331                                         printk("\n");
1332                                 }
1333
1334                                 dev_kfree_skb(tx_skb);
1335                                 tx_skb = NULL;
1336                                 if (fifo->dch && get_next_dframe(fifo->dch))
1337                                         tx_skb = fifo->dch->tx_skb;
1338                                 else if (fifo->bch &&
1339                                          get_next_bframe(fifo->bch))
1340                                         tx_skb = fifo->bch->tx_skb;
1341                         }
1342                 }
1343                 errcode = usb_submit_urb(urb, GFP_ATOMIC);
1344                 if (errcode < 0) {
1345                         if (debug & DEBUG_HW)
1346                                 printk(KERN_DEBUG
1347                                        "%s: %s: error submitting ISO URB: %d \n",
1348                                        hw->name, __func__, errcode);
1349                 }
1350
1351                 /*
1352                  * abuse DChannel tx iso completion to trigger NT mode state
1353                  * changes tx_iso_complete is assumed to be called every
1354                  * fifo->intervall (ms)
1355                  */
1356                 if ((fifon == HFCUSB_D_TX) && (hw->protocol == ISDN_P_NT_S0)
1357                     && (hw->timers & NT_ACTIVATION_TIMER)) {
1358                         if ((--hw->nt_timer) < 0)
1359                                 schedule_event(&hw->dch, FLG_PHCHANGE);
1360                 }
1361
1362         } else {
1363                 if (status && (debug & DBG_HFC_URB_ERROR))
1364                         printk(KERN_DEBUG  "%s: %s: urb->status %s (%i)"
1365                                "fifonum=%d\n",
1366                                hw->name, __func__,
1367                                symbolic(urb_errlist, status), status, fifon);
1368         }
1369         spin_unlock_irqrestore(&hw->lock, flags);
1370 }
1371
1372 /*
1373  * allocs urbs and start isoc transfer with two pending urbs to avoid
1374  * gaps in the transfer chain
1375  */
1376 static int
1377 start_isoc_chain(struct usb_fifo *fifo, int num_packets_per_urb,
1378                  usb_complete_t complete, int packet_size)
1379 {
1380         struct hfcsusb *hw = fifo->hw;
1381         int i, k, errcode;
1382
1383         if (debug)
1384                 printk(KERN_DEBUG "%s: %s: fifo %i\n",
1385                        hw->name, __func__, fifo->fifonum);
1386
1387         /* allocate Memory for Iso out Urbs */
1388         for (i = 0; i < 2; i++) {
1389                 if (!(fifo->iso[i].urb)) {
1390                         fifo->iso[i].urb =
1391                                 usb_alloc_urb(num_packets_per_urb, GFP_KERNEL);
1392                         if (!(fifo->iso[i].urb)) {
1393                                 printk(KERN_DEBUG
1394                                        "%s: %s: alloc urb for fifo %i failed",
1395                                        hw->name, __func__, fifo->fifonum);
1396                                 continue;
1397                         }
1398                         fifo->iso[i].owner_fifo = (struct usb_fifo *) fifo;
1399                         fifo->iso[i].indx = i;
1400
1401                         /* Init the first iso */
1402                         if (ISO_BUFFER_SIZE >=
1403                             (fifo->usb_packet_maxlen *
1404                              num_packets_per_urb)) {
1405                                 fill_isoc_urb(fifo->iso[i].urb,
1406                                               fifo->hw->dev, fifo->pipe,
1407                                               fifo->iso[i].buffer,
1408                                               num_packets_per_urb,
1409                                               fifo->usb_packet_maxlen,
1410                                               fifo->intervall, complete,
1411                                               &fifo->iso[i]);
1412                                 memset(fifo->iso[i].buffer, 0,
1413                                        sizeof(fifo->iso[i].buffer));
1414
1415                                 for (k = 0; k < num_packets_per_urb; k++) {
1416                                         fifo->iso[i].urb->
1417                                                 iso_frame_desc[k].offset =
1418                                                 k * packet_size;
1419                                         fifo->iso[i].urb->
1420                                                 iso_frame_desc[k].length =
1421                                                 packet_size;
1422                                 }
1423                         } else {
1424                                 printk(KERN_DEBUG
1425                                        "%s: %s: ISO Buffer size to small!\n",
1426                                        hw->name, __func__);
1427                         }
1428                 }
1429                 fifo->bit_line = BITLINE_INF;
1430
1431                 errcode = usb_submit_urb(fifo->iso[i].urb, GFP_KERNEL);
1432                 fifo->active = (errcode >= 0) ? 1 : 0;
1433                 fifo->stop_gracefull = 0;
1434                 if (errcode < 0) {
1435                         printk(KERN_DEBUG "%s: %s: %s URB nr:%d\n",
1436                                hw->name, __func__,
1437                                symbolic(urb_errlist, errcode), i);
1438                 }
1439         }
1440         return fifo->active;
1441 }
1442
1443 static void
1444 stop_iso_gracefull(struct usb_fifo *fifo)
1445 {
1446         struct hfcsusb *hw = fifo->hw;
1447         int i, timeout;
1448         u_long flags;
1449
1450         for (i = 0; i < 2; i++) {
1451                 spin_lock_irqsave(&hw->lock, flags);
1452                 if (debug)
1453                         printk(KERN_DEBUG "%s: %s for fifo %i.%i\n",
1454                                hw->name, __func__, fifo->fifonum, i);
1455                 fifo->stop_gracefull = 1;
1456                 spin_unlock_irqrestore(&hw->lock, flags);
1457         }
1458
1459         for (i = 0; i < 2; i++) {
1460                 timeout = 3;
1461                 while (fifo->stop_gracefull && timeout--)
1462                         schedule_timeout_interruptible((HZ / 1000) * 16);
1463                 if (debug && fifo->stop_gracefull)
1464                         printk(KERN_DEBUG "%s: ERROR %s for fifo %i.%i\n",
1465                                hw->name, __func__, fifo->fifonum, i);
1466         }
1467 }
1468
1469 static void
1470 stop_int_gracefull(struct usb_fifo *fifo)
1471 {
1472         struct hfcsusb *hw = fifo->hw;
1473         int timeout;
1474         u_long flags;
1475
1476         spin_lock_irqsave(&hw->lock, flags);
1477         if (debug)
1478                 printk(KERN_DEBUG "%s: %s for fifo %i\n",
1479                        hw->name, __func__, fifo->fifonum);
1480         fifo->stop_gracefull = 1;
1481         spin_unlock_irqrestore(&hw->lock, flags);
1482
1483         timeout = 3;
1484         while (fifo->stop_gracefull && timeout--)
1485                 schedule_timeout_interruptible((HZ / 1000) * 3);
1486         if (debug && fifo->stop_gracefull)
1487                 printk(KERN_DEBUG "%s: ERROR %s for fifo %i\n",
1488                        hw->name, __func__, fifo->fifonum);
1489 }
1490
1491 /* start the interrupt transfer for the given fifo */
1492 static void
1493 start_int_fifo(struct usb_fifo *fifo)
1494 {
1495         struct hfcsusb *hw = fifo->hw;
1496         int errcode;
1497
1498         if (debug)
1499                 printk(KERN_DEBUG "%s: %s: INT IN fifo:%d\n",
1500                        hw->name, __func__, fifo->fifonum);
1501
1502         if (!fifo->urb) {
1503                 fifo->urb = usb_alloc_urb(0, GFP_KERNEL);
1504                 if (!fifo->urb)
1505                         return;
1506         }
1507         usb_fill_int_urb(fifo->urb, fifo->hw->dev, fifo->pipe,
1508                          fifo->buffer, fifo->usb_packet_maxlen,
1509                          (usb_complete_t)rx_int_complete, fifo, fifo->intervall);
1510         fifo->active = 1;
1511         fifo->stop_gracefull = 0;
1512         errcode = usb_submit_urb(fifo->urb, GFP_KERNEL);
1513         if (errcode) {
1514                 printk(KERN_DEBUG "%s: %s: submit URB: status:%i\n",
1515                        hw->name, __func__, errcode);
1516                 fifo->active = 0;
1517         }
1518 }
1519
1520 static void
1521 setPortMode(struct hfcsusb *hw)
1522 {
1523         if (debug & DEBUG_HW)
1524                 printk(KERN_DEBUG "%s: %s %s\n", hw->name, __func__,
1525                        (hw->protocol == ISDN_P_TE_S0) ? "TE" : "NT");
1526
1527         if (hw->protocol == ISDN_P_TE_S0) {
1528                 write_reg(hw, HFCUSB_SCTRL, 0x40);
1529                 write_reg(hw, HFCUSB_SCTRL_E, 0x00);
1530                 write_reg(hw, HFCUSB_CLKDEL, CLKDEL_TE);
1531                 write_reg(hw, HFCUSB_STATES, 3 | 0x10);
1532                 write_reg(hw, HFCUSB_STATES, 3);
1533         } else {
1534                 write_reg(hw, HFCUSB_SCTRL, 0x44);
1535                 write_reg(hw, HFCUSB_SCTRL_E, 0x09);
1536                 write_reg(hw, HFCUSB_CLKDEL, CLKDEL_NT);
1537                 write_reg(hw, HFCUSB_STATES, 1 | 0x10);
1538                 write_reg(hw, HFCUSB_STATES, 1);
1539         }
1540 }
1541
1542 static void
1543 reset_hfcsusb(struct hfcsusb *hw)
1544 {
1545         struct usb_fifo *fifo;
1546         int i;
1547
1548         if (debug & DEBUG_HW)
1549                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1550
1551         /* do Chip reset */
1552         write_reg(hw, HFCUSB_CIRM, 8);
1553
1554         /* aux = output, reset off */
1555         write_reg(hw, HFCUSB_CIRM, 0x10);
1556
1557         /* set USB_SIZE to match the wMaxPacketSize for INT or BULK transfers */
1558         write_reg(hw, HFCUSB_USB_SIZE, (hw->packet_size / 8) |
1559                   ((hw->packet_size / 8) << 4));
1560
1561         /* set USB_SIZE_I to match the the wMaxPacketSize for ISO transfers */
1562         write_reg(hw, HFCUSB_USB_SIZE_I, hw->iso_packet_size);
1563
1564         /* enable PCM/GCI master mode */
1565         write_reg(hw, HFCUSB_MST_MODE1, 0);     /* set default values */
1566         write_reg(hw, HFCUSB_MST_MODE0, 1);     /* enable master mode */
1567
1568         /* init the fifos */
1569         write_reg(hw, HFCUSB_F_THRES,
1570                   (HFCUSB_TX_THRESHOLD / 8) | ((HFCUSB_RX_THRESHOLD / 8) << 4));
1571
1572         fifo = hw->fifos;
1573         for (i = 0; i < HFCUSB_NUM_FIFOS; i++) {
1574                 write_reg(hw, HFCUSB_FIFO, i);  /* select the desired fifo */
1575                 fifo[i].max_size =
1576                         (i <= HFCUSB_B2_RX) ? MAX_BCH_SIZE : MAX_DFRAME_LEN;
1577                 fifo[i].last_urblen = 0;
1578
1579                 /* set 2 bit for D- & E-channel */
1580                 write_reg(hw, HFCUSB_HDLC_PAR, ((i <= HFCUSB_B2_RX) ? 0 : 2));
1581
1582                 /* enable all fifos */
1583                 if (i == HFCUSB_D_TX)
1584                         write_reg(hw, HFCUSB_CON_HDLC,
1585                                   (hw->protocol == ISDN_P_NT_S0) ? 0x08 : 0x09);
1586                 else
1587                         write_reg(hw, HFCUSB_CON_HDLC, 0x08);
1588                 write_reg(hw, HFCUSB_INC_RES_F, 2); /* reset the fifo */
1589         }
1590
1591         write_reg(hw, HFCUSB_SCTRL_R, 0); /* disable both B receivers */
1592         handle_led(hw, LED_POWER_ON);
1593 }
1594
1595 /* start USB data pipes dependand on device's endpoint configuration */
1596 static void
1597 hfcsusb_start_endpoint(struct hfcsusb *hw, int channel)
1598 {
1599         /* quick check if endpoint already running */
1600         if ((channel == HFC_CHAN_D) && (hw->fifos[HFCUSB_D_RX].active))
1601                 return;
1602         if ((channel == HFC_CHAN_B1) && (hw->fifos[HFCUSB_B1_RX].active))
1603                 return;
1604         if ((channel == HFC_CHAN_B2) && (hw->fifos[HFCUSB_B2_RX].active))
1605                 return;
1606         if ((channel == HFC_CHAN_E) && (hw->fifos[HFCUSB_PCM_RX].active))
1607                 return;
1608
1609         /* start rx endpoints using USB INT IN method */
1610         if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1611                 start_int_fifo(hw->fifos + channel * 2 + 1);
1612
1613         /* start rx endpoints using USB ISO IN method */
1614         if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO) {
1615                 switch (channel) {
1616                 case HFC_CHAN_D:
1617                         start_isoc_chain(hw->fifos + HFCUSB_D_RX,
1618                                          ISOC_PACKETS_D,
1619                                          (usb_complete_t)rx_iso_complete,
1620                                          16);
1621                         break;
1622                 case HFC_CHAN_E:
1623                         start_isoc_chain(hw->fifos + HFCUSB_PCM_RX,
1624                                          ISOC_PACKETS_D,
1625                                          (usb_complete_t)rx_iso_complete,
1626                                          16);
1627                         break;
1628                 case HFC_CHAN_B1:
1629                         start_isoc_chain(hw->fifos + HFCUSB_B1_RX,
1630                                          ISOC_PACKETS_B,
1631                                          (usb_complete_t)rx_iso_complete,
1632                                          16);
1633                         break;
1634                 case HFC_CHAN_B2:
1635                         start_isoc_chain(hw->fifos + HFCUSB_B2_RX,
1636                                          ISOC_PACKETS_B,
1637                                          (usb_complete_t)rx_iso_complete,
1638                                          16);
1639                         break;
1640                 }
1641         }
1642
1643         /* start tx endpoints using USB ISO OUT method */
1644         switch (channel) {
1645         case HFC_CHAN_D:
1646                 start_isoc_chain(hw->fifos + HFCUSB_D_TX,
1647                                  ISOC_PACKETS_B,
1648                                  (usb_complete_t)tx_iso_complete, 1);
1649                 break;
1650         case HFC_CHAN_B1:
1651                 start_isoc_chain(hw->fifos + HFCUSB_B1_TX,
1652                                  ISOC_PACKETS_D,
1653                                  (usb_complete_t)tx_iso_complete, 1);
1654                 break;
1655         case HFC_CHAN_B2:
1656                 start_isoc_chain(hw->fifos + HFCUSB_B2_TX,
1657                                  ISOC_PACKETS_B,
1658                                  (usb_complete_t)tx_iso_complete, 1);
1659                 break;
1660         }
1661 }
1662
1663 /* stop USB data pipes dependand on device's endpoint configuration */
1664 static void
1665 hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel)
1666 {
1667         /* quick check if endpoint currently running */
1668         if ((channel == HFC_CHAN_D) && (!hw->fifos[HFCUSB_D_RX].active))
1669                 return;
1670         if ((channel == HFC_CHAN_B1) && (!hw->fifos[HFCUSB_B1_RX].active))
1671                 return;
1672         if ((channel == HFC_CHAN_B2) && (!hw->fifos[HFCUSB_B2_RX].active))
1673                 return;
1674         if ((channel == HFC_CHAN_E) && (!hw->fifos[HFCUSB_PCM_RX].active))
1675                 return;
1676
1677         /* rx endpoints using USB INT IN method */
1678         if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1679                 stop_int_gracefull(hw->fifos + channel * 2 + 1);
1680
1681         /* rx endpoints using USB ISO IN method */
1682         if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO)
1683                 stop_iso_gracefull(hw->fifos + channel * 2 + 1);
1684
1685         /* tx endpoints using USB ISO OUT method */
1686         if (channel != HFC_CHAN_E)
1687                 stop_iso_gracefull(hw->fifos + channel * 2);
1688 }
1689
1690
1691 /* Hardware Initialization */
1692 static int
1693 setup_hfcsusb(struct hfcsusb *hw)
1694 {
1695         void *dmabuf = kmalloc(sizeof(u_char), GFP_KERNEL);
1696         u_char b;
1697         int ret;
1698
1699         if (debug & DBG_HFC_CALL_TRACE)
1700                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1701
1702         if (!dmabuf)
1703                 return -ENOMEM;
1704
1705         ret = read_reg_atomic(hw, HFCUSB_CHIP_ID, dmabuf);
1706
1707         memcpy(&b, dmabuf, sizeof(u_char));
1708         kfree(dmabuf);
1709
1710         /* check the chip id */
1711         if (ret != 1) {
1712                 printk(KERN_DEBUG "%s: %s: cannot read chip id\n",
1713                        hw->name, __func__);
1714                 return 1;
1715         }
1716         if (b != HFCUSB_CHIPID) {
1717                 printk(KERN_DEBUG "%s: %s: Invalid chip id 0x%02x\n",
1718                        hw->name, __func__, b);
1719                 return 1;
1720         }
1721
1722         /* first set the needed config, interface and alternate */
1723         (void) usb_set_interface(hw->dev, hw->if_used, hw->alt_used);
1724
1725         hw->led_state = 0;
1726
1727         /* init the background machinery for control requests */
1728         hw->ctrl_read.bRequestType = 0xc0;
1729         hw->ctrl_read.bRequest = 1;
1730         hw->ctrl_read.wLength = cpu_to_le16(1);
1731         hw->ctrl_write.bRequestType = 0x40;
1732         hw->ctrl_write.bRequest = 0;
1733         hw->ctrl_write.wLength = 0;
1734         usb_fill_control_urb(hw->ctrl_urb, hw->dev, hw->ctrl_out_pipe,
1735                              (u_char *)&hw->ctrl_write, NULL, 0,
1736                              (usb_complete_t)ctrl_complete, hw);
1737
1738         reset_hfcsusb(hw);
1739         return 0;
1740 }
1741
1742 static void
1743 release_hw(struct hfcsusb *hw)
1744 {
1745         if (debug & DBG_HFC_CALL_TRACE)
1746                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1747
1748         /*
1749          * stop all endpoints gracefully
1750          * TODO: mISDN_core should generate CLOSE_CHANNEL
1751          *       signals after calling mISDN_unregister_device()
1752          */
1753         hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
1754         hfcsusb_stop_endpoint(hw, HFC_CHAN_B1);
1755         hfcsusb_stop_endpoint(hw, HFC_CHAN_B2);
1756         if (hw->fifos[HFCUSB_PCM_RX].pipe)
1757                 hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
1758         if (hw->protocol == ISDN_P_TE_S0)
1759                 l1_event(hw->dch.l1, CLOSE_CHANNEL);
1760
1761         mISDN_unregister_device(&hw->dch.dev);
1762         mISDN_freebchannel(&hw->bch[1]);
1763         mISDN_freebchannel(&hw->bch[0]);
1764         mISDN_freedchannel(&hw->dch);
1765
1766         if (hw->ctrl_urb) {
1767                 usb_kill_urb(hw->ctrl_urb);
1768                 usb_free_urb(hw->ctrl_urb);
1769                 hw->ctrl_urb = NULL;
1770         }
1771
1772         if (hw->intf)
1773                 usb_set_intfdata(hw->intf, NULL);
1774         list_del(&hw->list);
1775         kfree(hw);
1776         hw = NULL;
1777 }
1778
1779 static void
1780 deactivate_bchannel(struct bchannel *bch)
1781 {
1782         struct hfcsusb *hw = bch->hw;
1783         u_long flags;
1784
1785         if (bch->debug & DEBUG_HW)
1786                 printk(KERN_DEBUG "%s: %s: bch->nr(%i)\n",
1787                        hw->name, __func__, bch->nr);
1788
1789         spin_lock_irqsave(&hw->lock, flags);
1790         mISDN_clear_bchannel(bch);
1791         spin_unlock_irqrestore(&hw->lock, flags);
1792         hfcsusb_setup_bch(bch, ISDN_P_NONE);
1793         hfcsusb_stop_endpoint(hw, bch->nr - 1);
1794 }
1795
1796 /*
1797  * Layer 1 B-channel hardware access
1798  */
1799 static int
1800 hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1801 {
1802         struct bchannel *bch = container_of(ch, struct bchannel, ch);
1803         int             ret = -EINVAL;
1804
1805         if (bch->debug & DEBUG_HW)
1806                 printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
1807
1808         switch (cmd) {
1809         case HW_TESTRX_RAW:
1810         case HW_TESTRX_HDLC:
1811         case HW_TESTRX_OFF:
1812                 ret = -EINVAL;
1813                 break;
1814
1815         case CLOSE_CHANNEL:
1816                 test_and_clear_bit(FLG_OPEN, &bch->Flags);
1817                 deactivate_bchannel(bch);
1818                 ch->protocol = ISDN_P_NONE;
1819                 ch->peer = NULL;
1820                 module_put(THIS_MODULE);
1821                 ret = 0;
1822                 break;
1823         case CONTROL_CHANNEL:
1824                 ret = channel_bctrl(bch, arg);
1825                 break;
1826         default:
1827                 printk(KERN_WARNING "%s: unknown prim(%x)\n",
1828                        __func__, cmd);
1829         }
1830         return ret;
1831 }
1832
1833 static int
1834 setup_instance(struct hfcsusb *hw, struct device *parent)
1835 {
1836         u_long  flags;
1837         int     err, i;
1838
1839         if (debug & DBG_HFC_CALL_TRACE)
1840                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1841
1842         spin_lock_init(&hw->ctrl_lock);
1843         spin_lock_init(&hw->lock);
1844
1845         mISDN_initdchannel(&hw->dch, MAX_DFRAME_LEN_L1, ph_state);
1846         hw->dch.debug = debug & 0xFFFF;
1847         hw->dch.hw = hw;
1848         hw->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
1849         hw->dch.dev.D.send = hfcusb_l2l1D;
1850         hw->dch.dev.D.ctrl = hfc_dctrl;
1851
1852         /* enable E-Channel logging */
1853         if (hw->fifos[HFCUSB_PCM_RX].pipe)
1854                 mISDN_initdchannel(&hw->ech, MAX_DFRAME_LEN_L1, NULL);
1855
1856         hw->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
1857                 (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
1858         hw->dch.dev.nrbchan = 2;
1859         for (i = 0; i < 2; i++) {
1860                 hw->bch[i].nr = i + 1;
1861                 set_channelmap(i + 1, hw->dch.dev.channelmap);
1862                 hw->bch[i].debug = debug;
1863                 mISDN_initbchannel(&hw->bch[i], MAX_DATA_MEM, poll >> 1);
1864                 hw->bch[i].hw = hw;
1865                 hw->bch[i].ch.send = hfcusb_l2l1B;
1866                 hw->bch[i].ch.ctrl = hfc_bctrl;
1867                 hw->bch[i].ch.nr = i + 1;
1868                 list_add(&hw->bch[i].ch.list, &hw->dch.dev.bchannels);
1869         }
1870
1871         hw->fifos[HFCUSB_B1_TX].bch = &hw->bch[0];
1872         hw->fifos[HFCUSB_B1_RX].bch = &hw->bch[0];
1873         hw->fifos[HFCUSB_B2_TX].bch = &hw->bch[1];
1874         hw->fifos[HFCUSB_B2_RX].bch = &hw->bch[1];
1875         hw->fifos[HFCUSB_D_TX].dch = &hw->dch;
1876         hw->fifos[HFCUSB_D_RX].dch = &hw->dch;
1877         hw->fifos[HFCUSB_PCM_RX].ech = &hw->ech;
1878         hw->fifos[HFCUSB_PCM_TX].ech = &hw->ech;
1879
1880         err = setup_hfcsusb(hw);
1881         if (err)
1882                 goto out;
1883
1884         snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s.%d", DRIVER_NAME,
1885                  hfcsusb_cnt + 1);
1886         printk(KERN_INFO "%s: registered as '%s'\n",
1887                DRIVER_NAME, hw->name);
1888
1889         err = mISDN_register_device(&hw->dch.dev, parent, hw->name);
1890         if (err)
1891                 goto out;
1892
1893         hfcsusb_cnt++;
1894         write_lock_irqsave(&HFClock, flags);
1895         list_add_tail(&hw->list, &HFClist);
1896         write_unlock_irqrestore(&HFClock, flags);
1897         return 0;
1898
1899 out:
1900         mISDN_freebchannel(&hw->bch[1]);
1901         mISDN_freebchannel(&hw->bch[0]);
1902         mISDN_freedchannel(&hw->dch);
1903         kfree(hw);
1904         return err;
1905 }
1906
1907 static int
1908 hfcsusb_probe(struct usb_interface *intf, const struct usb_device_id *id)
1909 {
1910         struct hfcsusb                  *hw;
1911         struct usb_device               *dev = interface_to_usbdev(intf);
1912         struct usb_host_interface       *iface = intf->cur_altsetting;
1913         struct usb_host_interface       *iface_used = NULL;
1914         struct usb_host_endpoint        *ep;
1915         struct hfcsusb_vdata            *driver_info;
1916         int ifnum = iface->desc.bInterfaceNumber, i, idx, alt_idx,
1917                 probe_alt_setting, vend_idx, cfg_used, *vcf, attr, cfg_found,
1918                 ep_addr, cmptbl[16], small_match, iso_packet_size, packet_size,
1919                 alt_used = 0;
1920
1921         vend_idx = 0xffff;
1922         for (i = 0; hfcsusb_idtab[i].idVendor; i++) {
1923                 if ((le16_to_cpu(dev->descriptor.idVendor)
1924                      == hfcsusb_idtab[i].idVendor) &&
1925                     (le16_to_cpu(dev->descriptor.idProduct)
1926                      == hfcsusb_idtab[i].idProduct)) {
1927                         vend_idx = i;
1928                         continue;
1929                 }
1930         }
1931
1932         printk(KERN_DEBUG
1933                "%s: interface(%d) actalt(%d) minor(%d) vend_idx(%d)\n",
1934                __func__, ifnum, iface->desc.bAlternateSetting,
1935                intf->minor, vend_idx);
1936
1937         if (vend_idx == 0xffff) {
1938                 printk(KERN_WARNING
1939                        "%s: no valid vendor found in USB descriptor\n",
1940                        __func__);
1941                 return -EIO;
1942         }
1943         /* if vendor and product ID is OK, start probing alternate settings */
1944         alt_idx = 0;
1945         small_match = -1;
1946
1947         /* default settings */
1948         iso_packet_size = 16;
1949         packet_size = 64;
1950
1951         while (alt_idx < intf->num_altsetting) {
1952                 iface = intf->altsetting + alt_idx;
1953                 probe_alt_setting = iface->desc.bAlternateSetting;
1954                 cfg_used = 0;
1955
1956                 while (validconf[cfg_used][0]) {
1957                         cfg_found = 1;
1958                         vcf = validconf[cfg_used];
1959                         ep = iface->endpoint;
1960                         memcpy(cmptbl, vcf, 16 * sizeof(int));
1961
1962                         /* check for all endpoints in this alternate setting */
1963                         for (i = 0; i < iface->desc.bNumEndpoints; i++) {
1964                                 ep_addr = ep->desc.bEndpointAddress;
1965
1966                                 /* get endpoint base */
1967                                 idx = ((ep_addr & 0x7f) - 1) * 2;
1968                                 if (idx > 15)
1969                                         return -EIO;
1970
1971                                 if (ep_addr & 0x80)
1972                                         idx++;
1973                                 attr = ep->desc.bmAttributes;
1974
1975                                 if (cmptbl[idx] != EP_NOP) {
1976                                         if (cmptbl[idx] == EP_NUL)
1977                                                 cfg_found = 0;
1978                                         if (attr == USB_ENDPOINT_XFER_INT
1979                                             && cmptbl[idx] == EP_INT)
1980                                                 cmptbl[idx] = EP_NUL;
1981                                         if (attr == USB_ENDPOINT_XFER_BULK
1982                                             && cmptbl[idx] == EP_BLK)
1983                                                 cmptbl[idx] = EP_NUL;
1984                                         if (attr == USB_ENDPOINT_XFER_ISOC
1985                                             && cmptbl[idx] == EP_ISO)
1986                                                 cmptbl[idx] = EP_NUL;
1987
1988                                         if (attr == USB_ENDPOINT_XFER_INT &&
1989                                             ep->desc.bInterval < vcf[17]) {
1990                                                 cfg_found = 0;
1991                                         }
1992                                 }
1993                                 ep++;
1994                         }
1995
1996                         for (i = 0; i < 16; i++)
1997                                 if (cmptbl[i] != EP_NOP && cmptbl[i] != EP_NUL)
1998                                         cfg_found = 0;
1999
2000                         if (cfg_found) {
2001                                 if (small_match < cfg_used) {
2002                                         small_match = cfg_used;
2003                                         alt_used = probe_alt_setting;
2004                                         iface_used = iface;
2005                                 }
2006                         }
2007                         cfg_used++;
2008                 }
2009                 alt_idx++;
2010         }       /* (alt_idx < intf->num_altsetting) */
2011
2012         /* not found a valid USB Ta Endpoint config */
2013         if (small_match == -1)
2014                 return -EIO;
2015
2016         iface = iface_used;
2017         hw = kzalloc(sizeof(struct hfcsusb), GFP_KERNEL);
2018         if (!hw)
2019                 return -ENOMEM; /* got no mem */
2020         snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s", DRIVER_NAME);
2021
2022         ep = iface->endpoint;
2023         vcf = validconf[small_match];
2024
2025         for (i = 0; i < iface->desc.bNumEndpoints; i++) {
2026                 struct usb_fifo *f;
2027
2028                 ep_addr = ep->desc.bEndpointAddress;
2029                 /* get endpoint base */
2030                 idx = ((ep_addr & 0x7f) - 1) * 2;
2031                 if (ep_addr & 0x80)
2032                         idx++;
2033                 f = &hw->fifos[idx & 7];
2034
2035                 /* init Endpoints */
2036                 if (vcf[idx] == EP_NOP || vcf[idx] == EP_NUL) {
2037                         ep++;
2038                         continue;
2039                 }
2040                 switch (ep->desc.bmAttributes) {
2041                 case USB_ENDPOINT_XFER_INT:
2042                         f->pipe = usb_rcvintpipe(dev,
2043                                                  ep->desc.bEndpointAddress);
2044                         f->usb_transfer_mode = USB_INT;
2045                         packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2046                         break;
2047                 case USB_ENDPOINT_XFER_BULK:
2048                         if (ep_addr & 0x80)
2049                                 f->pipe = usb_rcvbulkpipe(dev,
2050                                                           ep->desc.bEndpointAddress);
2051                         else
2052                                 f->pipe = usb_sndbulkpipe(dev,
2053                                                           ep->desc.bEndpointAddress);
2054                         f->usb_transfer_mode = USB_BULK;
2055                         packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2056                         break;
2057                 case USB_ENDPOINT_XFER_ISOC:
2058                         if (ep_addr & 0x80)
2059                                 f->pipe = usb_rcvisocpipe(dev,
2060                                                           ep->desc.bEndpointAddress);
2061                         else
2062                                 f->pipe = usb_sndisocpipe(dev,
2063                                                           ep->desc.bEndpointAddress);
2064                         f->usb_transfer_mode = USB_ISOC;
2065                         iso_packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2066                         break;
2067                 default:
2068                         f->pipe = 0;
2069                 }
2070
2071                 if (f->pipe) {
2072                         f->fifonum = idx & 7;
2073                         f->hw = hw;
2074                         f->usb_packet_maxlen =
2075                                 le16_to_cpu(ep->desc.wMaxPacketSize);
2076                         f->intervall = ep->desc.bInterval;
2077                 }
2078                 ep++;
2079         }
2080         hw->dev = dev; /* save device */
2081         hw->if_used = ifnum; /* save used interface */
2082         hw->alt_used = alt_used; /* and alternate config */
2083         hw->ctrl_paksize = dev->descriptor.bMaxPacketSize0; /* control size */
2084         hw->cfg_used = vcf[16]; /* store used config */
2085         hw->vend_idx = vend_idx; /* store found vendor */
2086         hw->packet_size = packet_size;
2087         hw->iso_packet_size = iso_packet_size;
2088
2089         /* create the control pipes needed for register access */
2090         hw->ctrl_in_pipe = usb_rcvctrlpipe(hw->dev, 0);
2091         hw->ctrl_out_pipe = usb_sndctrlpipe(hw->dev, 0);
2092
2093         driver_info = (struct hfcsusb_vdata *)
2094                       hfcsusb_idtab[vend_idx].driver_info;
2095
2096         hw->ctrl_urb = usb_alloc_urb(0, GFP_KERNEL);
2097         if (!hw->ctrl_urb) {
2098                 pr_warn("%s: No memory for control urb\n",
2099                         driver_info->vend_name);
2100                 kfree(hw);
2101                 return -ENOMEM;
2102         }
2103
2104         pr_info("%s: %s: detected \"%s\" (%s, if=%d alt=%d)\n",
2105                 hw->name, __func__, driver_info->vend_name,
2106                 conf_str[small_match], ifnum, alt_used);
2107
2108         if (setup_instance(hw, dev->dev.parent))
2109                 return -EIO;
2110
2111         hw->intf = intf;
2112         usb_set_intfdata(hw->intf, hw);
2113         return 0;
2114 }
2115
2116 /* function called when an active device is removed */
2117 static void
2118 hfcsusb_disconnect(struct usb_interface *intf)
2119 {
2120         struct hfcsusb *hw = usb_get_intfdata(intf);
2121         struct hfcsusb *next;
2122         int cnt = 0;
2123
2124         printk(KERN_INFO "%s: device disconnected\n", hw->name);
2125
2126         handle_led(hw, LED_POWER_OFF);
2127         release_hw(hw);
2128
2129         list_for_each_entry_safe(hw, next, &HFClist, list)
2130                 cnt++;
2131         if (!cnt)
2132                 hfcsusb_cnt = 0;
2133
2134         usb_set_intfdata(intf, NULL);
2135 }
2136
2137 static struct usb_driver hfcsusb_drv = {
2138         .name = DRIVER_NAME,
2139         .id_table = hfcsusb_idtab,
2140         .probe = hfcsusb_probe,
2141         .disconnect = hfcsusb_disconnect,
2142         .disable_hub_initiated_lpm = 1,
2143 };
2144
2145 module_usb_driver(hfcsusb_drv);