Merge tag 'pci-v6.9-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/pci/pci
[linux-2.6-microblaze.git] / drivers / irqchip / irq-gic-v3.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6
7 #define pr_fmt(fmt)     "GICv3: " fmt
8
9 #include <linux/acpi.h>
10 #include <linux/cpu.h>
11 #include <linux/cpu_pm.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/irqdomain.h>
15 #include <linux/kstrtox.h>
16 #include <linux/of.h>
17 #include <linux/of_address.h>
18 #include <linux/of_irq.h>
19 #include <linux/percpu.h>
20 #include <linux/refcount.h>
21 #include <linux/slab.h>
22 #include <linux/iopoll.h>
23
24 #include <linux/irqchip.h>
25 #include <linux/irqchip/arm-gic-common.h>
26 #include <linux/irqchip/arm-gic-v3.h>
27 #include <linux/irqchip/irq-partition-percpu.h>
28 #include <linux/bitfield.h>
29 #include <linux/bits.h>
30 #include <linux/arm-smccc.h>
31
32 #include <asm/cputype.h>
33 #include <asm/exception.h>
34 #include <asm/smp_plat.h>
35 #include <asm/virt.h>
36
37 #include "irq-gic-common.h"
38
39 #define GICD_INT_NMI_PRI        (GICD_INT_DEF_PRI & ~0x80)
40
41 #define FLAGS_WORKAROUND_GICR_WAKER_MSM8996     (1ULL << 0)
42 #define FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539   (1ULL << 1)
43 #define FLAGS_WORKAROUND_ASR_ERRATUM_8601001    (1ULL << 2)
44
45 #define GIC_IRQ_TYPE_PARTITION  (GIC_IRQ_TYPE_LPI + 1)
46
47 struct redist_region {
48         void __iomem            *redist_base;
49         phys_addr_t             phys_base;
50         bool                    single_redist;
51 };
52
53 struct gic_chip_data {
54         struct fwnode_handle    *fwnode;
55         phys_addr_t             dist_phys_base;
56         void __iomem            *dist_base;
57         struct redist_region    *redist_regions;
58         struct rdists           rdists;
59         struct irq_domain       *domain;
60         u64                     redist_stride;
61         u32                     nr_redist_regions;
62         u64                     flags;
63         bool                    has_rss;
64         unsigned int            ppi_nr;
65         struct partition_desc   **ppi_descs;
66 };
67
68 #define T241_CHIPS_MAX          4
69 static void __iomem *t241_dist_base_alias[T241_CHIPS_MAX] __read_mostly;
70 static DEFINE_STATIC_KEY_FALSE(gic_nvidia_t241_erratum);
71
72 static DEFINE_STATIC_KEY_FALSE(gic_arm64_2941627_erratum);
73
74 static struct gic_chip_data gic_data __read_mostly;
75 static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key);
76
77 #define GIC_ID_NR       (1U << GICD_TYPER_ID_BITS(gic_data.rdists.gicd_typer))
78 #define GIC_LINE_NR     min(GICD_TYPER_SPIS(gic_data.rdists.gicd_typer), 1020U)
79 #define GIC_ESPI_NR     GICD_TYPER_ESPIS(gic_data.rdists.gicd_typer)
80
81 /*
82  * There are 16 SGIs, though we only actually use 8 in Linux. The other 8 SGIs
83  * are potentially stolen by the secure side. Some code, especially code dealing
84  * with hwirq IDs, is simplified by accounting for all 16.
85  */
86 #define SGI_NR          16
87
88 /*
89  * The behaviours of RPR and PMR registers differ depending on the value of
90  * SCR_EL3.FIQ, and the behaviour of non-secure priority registers of the
91  * distributor and redistributors depends on whether security is enabled in the
92  * GIC.
93  *
94  * When security is enabled, non-secure priority values from the (re)distributor
95  * are presented to the GIC CPUIF as follow:
96  *     (GIC_(R)DIST_PRI[irq] >> 1) | 0x80;
97  *
98  * If SCR_EL3.FIQ == 1, the values written to/read from PMR and RPR at non-secure
99  * EL1 are subject to a similar operation thus matching the priorities presented
100  * from the (re)distributor when security is enabled. When SCR_EL3.FIQ == 0,
101  * these values are unchanged by the GIC.
102  *
103  * see GICv3/GICv4 Architecture Specification (IHI0069D):
104  * - section 4.8.1 Non-secure accesses to register fields for Secure interrupt
105  *   priorities.
106  * - Figure 4-7 Secure read of the priority field for a Non-secure Group 1
107  *   interrupt.
108  */
109 static DEFINE_STATIC_KEY_FALSE(supports_pseudo_nmis);
110
111 DEFINE_STATIC_KEY_FALSE(gic_nonsecure_priorities);
112 EXPORT_SYMBOL(gic_nonsecure_priorities);
113
114 /*
115  * When the Non-secure world has access to group 0 interrupts (as a
116  * consequence of SCR_EL3.FIQ == 0), reading the ICC_RPR_EL1 register will
117  * return the Distributor's view of the interrupt priority.
118  *
119  * When GIC security is enabled (GICD_CTLR.DS == 0), the interrupt priority
120  * written by software is moved to the Non-secure range by the Distributor.
121  *
122  * If both are true (which is when gic_nonsecure_priorities gets enabled),
123  * we need to shift down the priority programmed by software to match it
124  * against the value returned by ICC_RPR_EL1.
125  */
126 #define GICD_INT_RPR_PRI(priority)                                      \
127         ({                                                              \
128                 u32 __priority = (priority);                            \
129                 if (static_branch_unlikely(&gic_nonsecure_priorities))  \
130                         __priority = 0x80 | (__priority >> 1);          \
131                                                                         \
132                 __priority;                                             \
133         })
134
135 /* rdist_nmi_refs[n] == number of cpus having the rdist interrupt n set as NMI */
136 static refcount_t *rdist_nmi_refs;
137
138 static struct gic_kvm_info gic_v3_kvm_info __initdata;
139 static DEFINE_PER_CPU(bool, has_rss);
140
141 #define MPIDR_RS(mpidr)                 (((mpidr) & 0xF0UL) >> 4)
142 #define gic_data_rdist()                (this_cpu_ptr(gic_data.rdists.rdist))
143 #define gic_data_rdist_rd_base()        (gic_data_rdist()->rd_base)
144 #define gic_data_rdist_sgi_base()       (gic_data_rdist_rd_base() + SZ_64K)
145
146 /* Our default, arbitrary priority value. Linux only uses one anyway. */
147 #define DEFAULT_PMR_VALUE       0xf0
148
149 enum gic_intid_range {
150         SGI_RANGE,
151         PPI_RANGE,
152         SPI_RANGE,
153         EPPI_RANGE,
154         ESPI_RANGE,
155         LPI_RANGE,
156         __INVALID_RANGE__
157 };
158
159 static enum gic_intid_range __get_intid_range(irq_hw_number_t hwirq)
160 {
161         switch (hwirq) {
162         case 0 ... 15:
163                 return SGI_RANGE;
164         case 16 ... 31:
165                 return PPI_RANGE;
166         case 32 ... 1019:
167                 return SPI_RANGE;
168         case EPPI_BASE_INTID ... (EPPI_BASE_INTID + 63):
169                 return EPPI_RANGE;
170         case ESPI_BASE_INTID ... (ESPI_BASE_INTID + 1023):
171                 return ESPI_RANGE;
172         case 8192 ... GENMASK(23, 0):
173                 return LPI_RANGE;
174         default:
175                 return __INVALID_RANGE__;
176         }
177 }
178
179 static enum gic_intid_range get_intid_range(struct irq_data *d)
180 {
181         return __get_intid_range(d->hwirq);
182 }
183
184 static inline bool gic_irq_in_rdist(struct irq_data *d)
185 {
186         switch (get_intid_range(d)) {
187         case SGI_RANGE:
188         case PPI_RANGE:
189         case EPPI_RANGE:
190                 return true;
191         default:
192                 return false;
193         }
194 }
195
196 static inline void __iomem *gic_dist_base_alias(struct irq_data *d)
197 {
198         if (static_branch_unlikely(&gic_nvidia_t241_erratum)) {
199                 irq_hw_number_t hwirq = irqd_to_hwirq(d);
200                 u32 chip;
201
202                 /*
203                  * For the erratum T241-FABRIC-4, read accesses to GICD_In{E}
204                  * registers are directed to the chip that owns the SPI. The
205                  * the alias region can also be used for writes to the
206                  * GICD_In{E} except GICD_ICENABLERn. Each chip has support
207                  * for 320 {E}SPIs. Mappings for all 4 chips:
208                  *    Chip0 = 32-351
209                  *    Chip1 = 352-671
210                  *    Chip2 = 672-991
211                  *    Chip3 = 4096-4415
212                  */
213                 switch (__get_intid_range(hwirq)) {
214                 case SPI_RANGE:
215                         chip = (hwirq - 32) / 320;
216                         break;
217                 case ESPI_RANGE:
218                         chip = 3;
219                         break;
220                 default:
221                         unreachable();
222                 }
223                 return t241_dist_base_alias[chip];
224         }
225
226         return gic_data.dist_base;
227 }
228
229 static inline void __iomem *gic_dist_base(struct irq_data *d)
230 {
231         switch (get_intid_range(d)) {
232         case SGI_RANGE:
233         case PPI_RANGE:
234         case EPPI_RANGE:
235                 /* SGI+PPI -> SGI_base for this CPU */
236                 return gic_data_rdist_sgi_base();
237
238         case SPI_RANGE:
239         case ESPI_RANGE:
240                 /* SPI -> dist_base */
241                 return gic_data.dist_base;
242
243         default:
244                 return NULL;
245         }
246 }
247
248 static void gic_do_wait_for_rwp(void __iomem *base, u32 bit)
249 {
250         u32 val;
251         int ret;
252
253         ret = readl_relaxed_poll_timeout_atomic(base + GICD_CTLR, val, !(val & bit),
254                                                 1, USEC_PER_SEC);
255         if (ret == -ETIMEDOUT)
256                 pr_err_ratelimited("RWP timeout, gone fishing\n");
257 }
258
259 /* Wait for completion of a distributor change */
260 static void gic_dist_wait_for_rwp(void)
261 {
262         gic_do_wait_for_rwp(gic_data.dist_base, GICD_CTLR_RWP);
263 }
264
265 /* Wait for completion of a redistributor change */
266 static void gic_redist_wait_for_rwp(void)
267 {
268         gic_do_wait_for_rwp(gic_data_rdist_rd_base(), GICR_CTLR_RWP);
269 }
270
271 static void gic_enable_redist(bool enable)
272 {
273         void __iomem *rbase;
274         u32 val;
275         int ret;
276
277         if (gic_data.flags & FLAGS_WORKAROUND_GICR_WAKER_MSM8996)
278                 return;
279
280         rbase = gic_data_rdist_rd_base();
281
282         val = readl_relaxed(rbase + GICR_WAKER);
283         if (enable)
284                 /* Wake up this CPU redistributor */
285                 val &= ~GICR_WAKER_ProcessorSleep;
286         else
287                 val |= GICR_WAKER_ProcessorSleep;
288         writel_relaxed(val, rbase + GICR_WAKER);
289
290         if (!enable) {          /* Check that GICR_WAKER is writeable */
291                 val = readl_relaxed(rbase + GICR_WAKER);
292                 if (!(val & GICR_WAKER_ProcessorSleep))
293                         return; /* No PM support in this redistributor */
294         }
295
296         ret = readl_relaxed_poll_timeout_atomic(rbase + GICR_WAKER, val,
297                                                 enable ^ (bool)(val & GICR_WAKER_ChildrenAsleep),
298                                                 1, USEC_PER_SEC);
299         if (ret == -ETIMEDOUT) {
300                 pr_err_ratelimited("redistributor failed to %s...\n",
301                                    enable ? "wakeup" : "sleep");
302         }
303 }
304
305 /*
306  * Routines to disable, enable, EOI and route interrupts
307  */
308 static u32 convert_offset_index(struct irq_data *d, u32 offset, u32 *index)
309 {
310         switch (get_intid_range(d)) {
311         case SGI_RANGE:
312         case PPI_RANGE:
313         case SPI_RANGE:
314                 *index = d->hwirq;
315                 return offset;
316         case EPPI_RANGE:
317                 /*
318                  * Contrary to the ESPI range, the EPPI range is contiguous
319                  * to the PPI range in the registers, so let's adjust the
320                  * displacement accordingly. Consistency is overrated.
321                  */
322                 *index = d->hwirq - EPPI_BASE_INTID + 32;
323                 return offset;
324         case ESPI_RANGE:
325                 *index = d->hwirq - ESPI_BASE_INTID;
326                 switch (offset) {
327                 case GICD_ISENABLER:
328                         return GICD_ISENABLERnE;
329                 case GICD_ICENABLER:
330                         return GICD_ICENABLERnE;
331                 case GICD_ISPENDR:
332                         return GICD_ISPENDRnE;
333                 case GICD_ICPENDR:
334                         return GICD_ICPENDRnE;
335                 case GICD_ISACTIVER:
336                         return GICD_ISACTIVERnE;
337                 case GICD_ICACTIVER:
338                         return GICD_ICACTIVERnE;
339                 case GICD_IPRIORITYR:
340                         return GICD_IPRIORITYRnE;
341                 case GICD_ICFGR:
342                         return GICD_ICFGRnE;
343                 case GICD_IROUTER:
344                         return GICD_IROUTERnE;
345                 default:
346                         break;
347                 }
348                 break;
349         default:
350                 break;
351         }
352
353         WARN_ON(1);
354         *index = d->hwirq;
355         return offset;
356 }
357
358 static int gic_peek_irq(struct irq_data *d, u32 offset)
359 {
360         void __iomem *base;
361         u32 index, mask;
362
363         offset = convert_offset_index(d, offset, &index);
364         mask = 1 << (index % 32);
365
366         if (gic_irq_in_rdist(d))
367                 base = gic_data_rdist_sgi_base();
368         else
369                 base = gic_dist_base_alias(d);
370
371         return !!(readl_relaxed(base + offset + (index / 32) * 4) & mask);
372 }
373
374 static void gic_poke_irq(struct irq_data *d, u32 offset)
375 {
376         void __iomem *base;
377         u32 index, mask;
378
379         offset = convert_offset_index(d, offset, &index);
380         mask = 1 << (index % 32);
381
382         if (gic_irq_in_rdist(d))
383                 base = gic_data_rdist_sgi_base();
384         else
385                 base = gic_data.dist_base;
386
387         writel_relaxed(mask, base + offset + (index / 32) * 4);
388 }
389
390 static void gic_mask_irq(struct irq_data *d)
391 {
392         gic_poke_irq(d, GICD_ICENABLER);
393         if (gic_irq_in_rdist(d))
394                 gic_redist_wait_for_rwp();
395         else
396                 gic_dist_wait_for_rwp();
397 }
398
399 static void gic_eoimode1_mask_irq(struct irq_data *d)
400 {
401         gic_mask_irq(d);
402         /*
403          * When masking a forwarded interrupt, make sure it is
404          * deactivated as well.
405          *
406          * This ensures that an interrupt that is getting
407          * disabled/masked will not get "stuck", because there is
408          * noone to deactivate it (guest is being terminated).
409          */
410         if (irqd_is_forwarded_to_vcpu(d))
411                 gic_poke_irq(d, GICD_ICACTIVER);
412 }
413
414 static void gic_unmask_irq(struct irq_data *d)
415 {
416         gic_poke_irq(d, GICD_ISENABLER);
417 }
418
419 static inline bool gic_supports_nmi(void)
420 {
421         return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
422                static_branch_likely(&supports_pseudo_nmis);
423 }
424
425 static int gic_irq_set_irqchip_state(struct irq_data *d,
426                                      enum irqchip_irq_state which, bool val)
427 {
428         u32 reg;
429
430         if (d->hwirq >= 8192) /* SGI/PPI/SPI only */
431                 return -EINVAL;
432
433         switch (which) {
434         case IRQCHIP_STATE_PENDING:
435                 reg = val ? GICD_ISPENDR : GICD_ICPENDR;
436                 break;
437
438         case IRQCHIP_STATE_ACTIVE:
439                 reg = val ? GICD_ISACTIVER : GICD_ICACTIVER;
440                 break;
441
442         case IRQCHIP_STATE_MASKED:
443                 if (val) {
444                         gic_mask_irq(d);
445                         return 0;
446                 }
447                 reg = GICD_ISENABLER;
448                 break;
449
450         default:
451                 return -EINVAL;
452         }
453
454         gic_poke_irq(d, reg);
455         return 0;
456 }
457
458 static int gic_irq_get_irqchip_state(struct irq_data *d,
459                                      enum irqchip_irq_state which, bool *val)
460 {
461         if (d->hwirq >= 8192) /* PPI/SPI only */
462                 return -EINVAL;
463
464         switch (which) {
465         case IRQCHIP_STATE_PENDING:
466                 *val = gic_peek_irq(d, GICD_ISPENDR);
467                 break;
468
469         case IRQCHIP_STATE_ACTIVE:
470                 *val = gic_peek_irq(d, GICD_ISACTIVER);
471                 break;
472
473         case IRQCHIP_STATE_MASKED:
474                 *val = !gic_peek_irq(d, GICD_ISENABLER);
475                 break;
476
477         default:
478                 return -EINVAL;
479         }
480
481         return 0;
482 }
483
484 static void gic_irq_set_prio(struct irq_data *d, u8 prio)
485 {
486         void __iomem *base = gic_dist_base(d);
487         u32 offset, index;
488
489         offset = convert_offset_index(d, GICD_IPRIORITYR, &index);
490
491         writeb_relaxed(prio, base + offset + index);
492 }
493
494 static u32 __gic_get_ppi_index(irq_hw_number_t hwirq)
495 {
496         switch (__get_intid_range(hwirq)) {
497         case PPI_RANGE:
498                 return hwirq - 16;
499         case EPPI_RANGE:
500                 return hwirq - EPPI_BASE_INTID + 16;
501         default:
502                 unreachable();
503         }
504 }
505
506 static u32 __gic_get_rdist_index(irq_hw_number_t hwirq)
507 {
508         switch (__get_intid_range(hwirq)) {
509         case SGI_RANGE:
510         case PPI_RANGE:
511                 return hwirq;
512         case EPPI_RANGE:
513                 return hwirq - EPPI_BASE_INTID + 32;
514         default:
515                 unreachable();
516         }
517 }
518
519 static u32 gic_get_rdist_index(struct irq_data *d)
520 {
521         return __gic_get_rdist_index(d->hwirq);
522 }
523
524 static int gic_irq_nmi_setup(struct irq_data *d)
525 {
526         struct irq_desc *desc = irq_to_desc(d->irq);
527
528         if (!gic_supports_nmi())
529                 return -EINVAL;
530
531         if (gic_peek_irq(d, GICD_ISENABLER)) {
532                 pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
533                 return -EINVAL;
534         }
535
536         /*
537          * A secondary irq_chip should be in charge of LPI request,
538          * it should not be possible to get there
539          */
540         if (WARN_ON(irqd_to_hwirq(d) >= 8192))
541                 return -EINVAL;
542
543         /* desc lock should already be held */
544         if (gic_irq_in_rdist(d)) {
545                 u32 idx = gic_get_rdist_index(d);
546
547                 /*
548                  * Setting up a percpu interrupt as NMI, only switch handler
549                  * for first NMI
550                  */
551                 if (!refcount_inc_not_zero(&rdist_nmi_refs[idx])) {
552                         refcount_set(&rdist_nmi_refs[idx], 1);
553                         desc->handle_irq = handle_percpu_devid_fasteoi_nmi;
554                 }
555         } else {
556                 desc->handle_irq = handle_fasteoi_nmi;
557         }
558
559         gic_irq_set_prio(d, GICD_INT_NMI_PRI);
560
561         return 0;
562 }
563
564 static void gic_irq_nmi_teardown(struct irq_data *d)
565 {
566         struct irq_desc *desc = irq_to_desc(d->irq);
567
568         if (WARN_ON(!gic_supports_nmi()))
569                 return;
570
571         if (gic_peek_irq(d, GICD_ISENABLER)) {
572                 pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
573                 return;
574         }
575
576         /*
577          * A secondary irq_chip should be in charge of LPI request,
578          * it should not be possible to get there
579          */
580         if (WARN_ON(irqd_to_hwirq(d) >= 8192))
581                 return;
582
583         /* desc lock should already be held */
584         if (gic_irq_in_rdist(d)) {
585                 u32 idx = gic_get_rdist_index(d);
586
587                 /* Tearing down NMI, only switch handler for last NMI */
588                 if (refcount_dec_and_test(&rdist_nmi_refs[idx]))
589                         desc->handle_irq = handle_percpu_devid_irq;
590         } else {
591                 desc->handle_irq = handle_fasteoi_irq;
592         }
593
594         gic_irq_set_prio(d, GICD_INT_DEF_PRI);
595 }
596
597 static bool gic_arm64_erratum_2941627_needed(struct irq_data *d)
598 {
599         enum gic_intid_range range;
600
601         if (!static_branch_unlikely(&gic_arm64_2941627_erratum))
602                 return false;
603
604         range = get_intid_range(d);
605
606         /*
607          * The workaround is needed if the IRQ is an SPI and
608          * the target cpu is different from the one we are
609          * executing on.
610          */
611         return (range == SPI_RANGE || range == ESPI_RANGE) &&
612                 !cpumask_test_cpu(raw_smp_processor_id(),
613                                   irq_data_get_effective_affinity_mask(d));
614 }
615
616 static void gic_eoi_irq(struct irq_data *d)
617 {
618         write_gicreg(irqd_to_hwirq(d), ICC_EOIR1_EL1);
619         isb();
620
621         if (gic_arm64_erratum_2941627_needed(d)) {
622                 /*
623                  * Make sure the GIC stream deactivate packet
624                  * issued by ICC_EOIR1_EL1 has completed before
625                  * deactivating through GICD_IACTIVER.
626                  */
627                 dsb(sy);
628                 gic_poke_irq(d, GICD_ICACTIVER);
629         }
630 }
631
632 static void gic_eoimode1_eoi_irq(struct irq_data *d)
633 {
634         /*
635          * No need to deactivate an LPI, or an interrupt that
636          * is is getting forwarded to a vcpu.
637          */
638         if (irqd_to_hwirq(d) >= 8192 || irqd_is_forwarded_to_vcpu(d))
639                 return;
640
641         if (!gic_arm64_erratum_2941627_needed(d))
642                 gic_write_dir(irqd_to_hwirq(d));
643         else
644                 gic_poke_irq(d, GICD_ICACTIVER);
645 }
646
647 static int gic_set_type(struct irq_data *d, unsigned int type)
648 {
649         irq_hw_number_t irq = irqd_to_hwirq(d);
650         enum gic_intid_range range;
651         void __iomem *base;
652         u32 offset, index;
653         int ret;
654
655         range = get_intid_range(d);
656
657         /* Interrupt configuration for SGIs can't be changed */
658         if (range == SGI_RANGE)
659                 return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0;
660
661         /* SPIs have restrictions on the supported types */
662         if ((range == SPI_RANGE || range == ESPI_RANGE) &&
663             type != IRQ_TYPE_LEVEL_HIGH && type != IRQ_TYPE_EDGE_RISING)
664                 return -EINVAL;
665
666         if (gic_irq_in_rdist(d))
667                 base = gic_data_rdist_sgi_base();
668         else
669                 base = gic_dist_base_alias(d);
670
671         offset = convert_offset_index(d, GICD_ICFGR, &index);
672
673         ret = gic_configure_irq(index, type, base + offset, NULL);
674         if (ret && (range == PPI_RANGE || range == EPPI_RANGE)) {
675                 /* Misconfigured PPIs are usually not fatal */
676                 pr_warn("GIC: PPI INTID%ld is secure or misconfigured\n", irq);
677                 ret = 0;
678         }
679
680         return ret;
681 }
682
683 static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
684 {
685         if (get_intid_range(d) == SGI_RANGE)
686                 return -EINVAL;
687
688         if (vcpu)
689                 irqd_set_forwarded_to_vcpu(d);
690         else
691                 irqd_clr_forwarded_to_vcpu(d);
692         return 0;
693 }
694
695 static u64 gic_cpu_to_affinity(int cpu)
696 {
697         u64 mpidr = cpu_logical_map(cpu);
698         u64 aff;
699
700         /* ASR8601 needs to have its affinities shifted down... */
701         if (unlikely(gic_data.flags & FLAGS_WORKAROUND_ASR_ERRATUM_8601001))
702                 mpidr = (MPIDR_AFFINITY_LEVEL(mpidr, 1) |
703                          (MPIDR_AFFINITY_LEVEL(mpidr, 2) << 8));
704
705         aff = ((u64)MPIDR_AFFINITY_LEVEL(mpidr, 3) << 32 |
706                MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
707                MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8  |
708                MPIDR_AFFINITY_LEVEL(mpidr, 0));
709
710         return aff;
711 }
712
713 static void gic_deactivate_unhandled(u32 irqnr)
714 {
715         if (static_branch_likely(&supports_deactivate_key)) {
716                 if (irqnr < 8192)
717                         gic_write_dir(irqnr);
718         } else {
719                 write_gicreg(irqnr, ICC_EOIR1_EL1);
720                 isb();
721         }
722 }
723
724 /*
725  * Follow a read of the IAR with any HW maintenance that needs to happen prior
726  * to invoking the relevant IRQ handler. We must do two things:
727  *
728  * (1) Ensure instruction ordering between a read of IAR and subsequent
729  *     instructions in the IRQ handler using an ISB.
730  *
731  *     It is possible for the IAR to report an IRQ which was signalled *after*
732  *     the CPU took an IRQ exception as multiple interrupts can race to be
733  *     recognized by the GIC, earlier interrupts could be withdrawn, and/or
734  *     later interrupts could be prioritized by the GIC.
735  *
736  *     For devices which are tightly coupled to the CPU, such as PMUs, a
737  *     context synchronization event is necessary to ensure that system
738  *     register state is not stale, as these may have been indirectly written
739  *     *after* exception entry.
740  *
741  * (2) Deactivate the interrupt when EOI mode 1 is in use.
742  */
743 static inline void gic_complete_ack(u32 irqnr)
744 {
745         if (static_branch_likely(&supports_deactivate_key))
746                 write_gicreg(irqnr, ICC_EOIR1_EL1);
747
748         isb();
749 }
750
751 static bool gic_rpr_is_nmi_prio(void)
752 {
753         if (!gic_supports_nmi())
754                 return false;
755
756         return unlikely(gic_read_rpr() == GICD_INT_RPR_PRI(GICD_INT_NMI_PRI));
757 }
758
759 static bool gic_irqnr_is_special(u32 irqnr)
760 {
761         return irqnr >= 1020 && irqnr <= 1023;
762 }
763
764 static void __gic_handle_irq(u32 irqnr, struct pt_regs *regs)
765 {
766         if (gic_irqnr_is_special(irqnr))
767                 return;
768
769         gic_complete_ack(irqnr);
770
771         if (generic_handle_domain_irq(gic_data.domain, irqnr)) {
772                 WARN_ONCE(true, "Unexpected interrupt (irqnr %u)\n", irqnr);
773                 gic_deactivate_unhandled(irqnr);
774         }
775 }
776
777 static void __gic_handle_nmi(u32 irqnr, struct pt_regs *regs)
778 {
779         if (gic_irqnr_is_special(irqnr))
780                 return;
781
782         gic_complete_ack(irqnr);
783
784         if (generic_handle_domain_nmi(gic_data.domain, irqnr)) {
785                 WARN_ONCE(true, "Unexpected pseudo-NMI (irqnr %u)\n", irqnr);
786                 gic_deactivate_unhandled(irqnr);
787         }
788 }
789
790 /*
791  * An exception has been taken from a context with IRQs enabled, and this could
792  * be an IRQ or an NMI.
793  *
794  * The entry code called us with DAIF.IF set to keep NMIs masked. We must clear
795  * DAIF.IF (and update ICC_PMR_EL1 to mask regular IRQs) prior to returning,
796  * after handling any NMI but before handling any IRQ.
797  *
798  * The entry code has performed IRQ entry, and if an NMI is detected we must
799  * perform NMI entry/exit around invoking the handler.
800  */
801 static void __gic_handle_irq_from_irqson(struct pt_regs *regs)
802 {
803         bool is_nmi;
804         u32 irqnr;
805
806         irqnr = gic_read_iar();
807
808         is_nmi = gic_rpr_is_nmi_prio();
809
810         if (is_nmi) {
811                 nmi_enter();
812                 __gic_handle_nmi(irqnr, regs);
813                 nmi_exit();
814         }
815
816         if (gic_prio_masking_enabled()) {
817                 gic_pmr_mask_irqs();
818                 gic_arch_enable_irqs();
819         }
820
821         if (!is_nmi)
822                 __gic_handle_irq(irqnr, regs);
823 }
824
825 /*
826  * An exception has been taken from a context with IRQs disabled, which can only
827  * be an NMI.
828  *
829  * The entry code called us with DAIF.IF set to keep NMIs masked. We must leave
830  * DAIF.IF (and ICC_PMR_EL1) unchanged.
831  *
832  * The entry code has performed NMI entry.
833  */
834 static void __gic_handle_irq_from_irqsoff(struct pt_regs *regs)
835 {
836         u64 pmr;
837         u32 irqnr;
838
839         /*
840          * We were in a context with IRQs disabled. However, the
841          * entry code has set PMR to a value that allows any
842          * interrupt to be acknowledged, and not just NMIs. This can
843          * lead to surprising effects if the NMI has been retired in
844          * the meantime, and that there is an IRQ pending. The IRQ
845          * would then be taken in NMI context, something that nobody
846          * wants to debug twice.
847          *
848          * Until we sort this, drop PMR again to a level that will
849          * actually only allow NMIs before reading IAR, and then
850          * restore it to what it was.
851          */
852         pmr = gic_read_pmr();
853         gic_pmr_mask_irqs();
854         isb();
855         irqnr = gic_read_iar();
856         gic_write_pmr(pmr);
857
858         __gic_handle_nmi(irqnr, regs);
859 }
860
861 static asmlinkage void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
862 {
863         if (unlikely(gic_supports_nmi() && !interrupts_enabled(regs)))
864                 __gic_handle_irq_from_irqsoff(regs);
865         else
866                 __gic_handle_irq_from_irqson(regs);
867 }
868
869 static u32 gic_get_pribits(void)
870 {
871         u32 pribits;
872
873         pribits = gic_read_ctlr();
874         pribits &= ICC_CTLR_EL1_PRI_BITS_MASK;
875         pribits >>= ICC_CTLR_EL1_PRI_BITS_SHIFT;
876         pribits++;
877
878         return pribits;
879 }
880
881 static bool gic_has_group0(void)
882 {
883         u32 val;
884         u32 old_pmr;
885
886         old_pmr = gic_read_pmr();
887
888         /*
889          * Let's find out if Group0 is under control of EL3 or not by
890          * setting the highest possible, non-zero priority in PMR.
891          *
892          * If SCR_EL3.FIQ is set, the priority gets shifted down in
893          * order for the CPU interface to set bit 7, and keep the
894          * actual priority in the non-secure range. In the process, it
895          * looses the least significant bit and the actual priority
896          * becomes 0x80. Reading it back returns 0, indicating that
897          * we're don't have access to Group0.
898          */
899         gic_write_pmr(BIT(8 - gic_get_pribits()));
900         val = gic_read_pmr();
901
902         gic_write_pmr(old_pmr);
903
904         return val != 0;
905 }
906
907 static void __init gic_dist_init(void)
908 {
909         unsigned int i;
910         u64 affinity;
911         void __iomem *base = gic_data.dist_base;
912         u32 val;
913
914         /* Disable the distributor */
915         writel_relaxed(0, base + GICD_CTLR);
916         gic_dist_wait_for_rwp();
917
918         /*
919          * Configure SPIs as non-secure Group-1. This will only matter
920          * if the GIC only has a single security state. This will not
921          * do the right thing if the kernel is running in secure mode,
922          * but that's not the intended use case anyway.
923          */
924         for (i = 32; i < GIC_LINE_NR; i += 32)
925                 writel_relaxed(~0, base + GICD_IGROUPR + i / 8);
926
927         /* Extended SPI range, not handled by the GICv2/GICv3 common code */
928         for (i = 0; i < GIC_ESPI_NR; i += 32) {
929                 writel_relaxed(~0U, base + GICD_ICENABLERnE + i / 8);
930                 writel_relaxed(~0U, base + GICD_ICACTIVERnE + i / 8);
931         }
932
933         for (i = 0; i < GIC_ESPI_NR; i += 32)
934                 writel_relaxed(~0U, base + GICD_IGROUPRnE + i / 8);
935
936         for (i = 0; i < GIC_ESPI_NR; i += 16)
937                 writel_relaxed(0, base + GICD_ICFGRnE + i / 4);
938
939         for (i = 0; i < GIC_ESPI_NR; i += 4)
940                 writel_relaxed(GICD_INT_DEF_PRI_X4, base + GICD_IPRIORITYRnE + i);
941
942         /* Now do the common stuff */
943         gic_dist_config(base, GIC_LINE_NR, NULL);
944
945         val = GICD_CTLR_ARE_NS | GICD_CTLR_ENABLE_G1A | GICD_CTLR_ENABLE_G1;
946         if (gic_data.rdists.gicd_typer2 & GICD_TYPER2_nASSGIcap) {
947                 pr_info("Enabling SGIs without active state\n");
948                 val |= GICD_CTLR_nASSGIreq;
949         }
950
951         /* Enable distributor with ARE, Group1, and wait for it to drain */
952         writel_relaxed(val, base + GICD_CTLR);
953         gic_dist_wait_for_rwp();
954
955         /*
956          * Set all global interrupts to the boot CPU only. ARE must be
957          * enabled.
958          */
959         affinity = gic_cpu_to_affinity(smp_processor_id());
960         for (i = 32; i < GIC_LINE_NR; i++)
961                 gic_write_irouter(affinity, base + GICD_IROUTER + i * 8);
962
963         for (i = 0; i < GIC_ESPI_NR; i++)
964                 gic_write_irouter(affinity, base + GICD_IROUTERnE + i * 8);
965 }
966
967 static int gic_iterate_rdists(int (*fn)(struct redist_region *, void __iomem *))
968 {
969         int ret = -ENODEV;
970         int i;
971
972         for (i = 0; i < gic_data.nr_redist_regions; i++) {
973                 void __iomem *ptr = gic_data.redist_regions[i].redist_base;
974                 u64 typer;
975                 u32 reg;
976
977                 reg = readl_relaxed(ptr + GICR_PIDR2) & GIC_PIDR2_ARCH_MASK;
978                 if (reg != GIC_PIDR2_ARCH_GICv3 &&
979                     reg != GIC_PIDR2_ARCH_GICv4) { /* We're in trouble... */
980                         pr_warn("No redistributor present @%p\n", ptr);
981                         break;
982                 }
983
984                 do {
985                         typer = gic_read_typer(ptr + GICR_TYPER);
986                         ret = fn(gic_data.redist_regions + i, ptr);
987                         if (!ret)
988                                 return 0;
989
990                         if (gic_data.redist_regions[i].single_redist)
991                                 break;
992
993                         if (gic_data.redist_stride) {
994                                 ptr += gic_data.redist_stride;
995                         } else {
996                                 ptr += SZ_64K * 2; /* Skip RD_base + SGI_base */
997                                 if (typer & GICR_TYPER_VLPIS)
998                                         ptr += SZ_64K * 2; /* Skip VLPI_base + reserved page */
999                         }
1000                 } while (!(typer & GICR_TYPER_LAST));
1001         }
1002
1003         return ret ? -ENODEV : 0;
1004 }
1005
1006 static int __gic_populate_rdist(struct redist_region *region, void __iomem *ptr)
1007 {
1008         unsigned long mpidr;
1009         u64 typer;
1010         u32 aff;
1011
1012         /*
1013          * Convert affinity to a 32bit value that can be matched to
1014          * GICR_TYPER bits [63:32].
1015          */
1016         mpidr = gic_cpu_to_affinity(smp_processor_id());
1017
1018         aff = (MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24 |
1019                MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
1020                MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 |
1021                MPIDR_AFFINITY_LEVEL(mpidr, 0));
1022
1023         typer = gic_read_typer(ptr + GICR_TYPER);
1024         if ((typer >> 32) == aff) {
1025                 u64 offset = ptr - region->redist_base;
1026                 raw_spin_lock_init(&gic_data_rdist()->rd_lock);
1027                 gic_data_rdist_rd_base() = ptr;
1028                 gic_data_rdist()->phys_base = region->phys_base + offset;
1029
1030                 pr_info("CPU%d: found redistributor %lx region %d:%pa\n",
1031                         smp_processor_id(), mpidr,
1032                         (int)(region - gic_data.redist_regions),
1033                         &gic_data_rdist()->phys_base);
1034                 return 0;
1035         }
1036
1037         /* Try next one */
1038         return 1;
1039 }
1040
1041 static int gic_populate_rdist(void)
1042 {
1043         if (gic_iterate_rdists(__gic_populate_rdist) == 0)
1044                 return 0;
1045
1046         /* We couldn't even deal with ourselves... */
1047         WARN(true, "CPU%d: mpidr %lx has no re-distributor!\n",
1048              smp_processor_id(),
1049              (unsigned long)cpu_logical_map(smp_processor_id()));
1050         return -ENODEV;
1051 }
1052
1053 static int __gic_update_rdist_properties(struct redist_region *region,
1054                                          void __iomem *ptr)
1055 {
1056         u64 typer = gic_read_typer(ptr + GICR_TYPER);
1057         u32 ctlr = readl_relaxed(ptr + GICR_CTLR);
1058
1059         /* Boot-time cleanup */
1060         if ((typer & GICR_TYPER_VLPIS) && (typer & GICR_TYPER_RVPEID)) {
1061                 u64 val;
1062
1063                 /* Deactivate any present vPE */
1064                 val = gicr_read_vpendbaser(ptr + SZ_128K + GICR_VPENDBASER);
1065                 if (val & GICR_VPENDBASER_Valid)
1066                         gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
1067                                               ptr + SZ_128K + GICR_VPENDBASER);
1068
1069                 /* Mark the VPE table as invalid */
1070                 val = gicr_read_vpropbaser(ptr + SZ_128K + GICR_VPROPBASER);
1071                 val &= ~GICR_VPROPBASER_4_1_VALID;
1072                 gicr_write_vpropbaser(val, ptr + SZ_128K + GICR_VPROPBASER);
1073         }
1074
1075         gic_data.rdists.has_vlpis &= !!(typer & GICR_TYPER_VLPIS);
1076
1077         /*
1078          * TYPER.RVPEID implies some form of DirectLPI, no matter what the
1079          * doc says... :-/ And CTLR.IR implies another subset of DirectLPI
1080          * that the ITS driver can make use of for LPIs (and not VLPIs).
1081          *
1082          * These are 3 different ways to express the same thing, depending
1083          * on the revision of the architecture and its relaxations over
1084          * time. Just group them under the 'direct_lpi' banner.
1085          */
1086         gic_data.rdists.has_rvpeid &= !!(typer & GICR_TYPER_RVPEID);
1087         gic_data.rdists.has_direct_lpi &= (!!(typer & GICR_TYPER_DirectLPIS) |
1088                                            !!(ctlr & GICR_CTLR_IR) |
1089                                            gic_data.rdists.has_rvpeid);
1090         gic_data.rdists.has_vpend_valid_dirty &= !!(typer & GICR_TYPER_DIRTY);
1091
1092         /* Detect non-sensical configurations */
1093         if (WARN_ON_ONCE(gic_data.rdists.has_rvpeid && !gic_data.rdists.has_vlpis)) {
1094                 gic_data.rdists.has_direct_lpi = false;
1095                 gic_data.rdists.has_vlpis = false;
1096                 gic_data.rdists.has_rvpeid = false;
1097         }
1098
1099         gic_data.ppi_nr = min(GICR_TYPER_NR_PPIS(typer), gic_data.ppi_nr);
1100
1101         return 1;
1102 }
1103
1104 static void gic_update_rdist_properties(void)
1105 {
1106         gic_data.ppi_nr = UINT_MAX;
1107         gic_iterate_rdists(__gic_update_rdist_properties);
1108         if (WARN_ON(gic_data.ppi_nr == UINT_MAX))
1109                 gic_data.ppi_nr = 0;
1110         pr_info("GICv3 features: %d PPIs%s%s\n",
1111                 gic_data.ppi_nr,
1112                 gic_data.has_rss ? ", RSS" : "",
1113                 gic_data.rdists.has_direct_lpi ? ", DirectLPI" : "");
1114
1115         if (gic_data.rdists.has_vlpis)
1116                 pr_info("GICv4 features: %s%s%s\n",
1117                         gic_data.rdists.has_direct_lpi ? "DirectLPI " : "",
1118                         gic_data.rdists.has_rvpeid ? "RVPEID " : "",
1119                         gic_data.rdists.has_vpend_valid_dirty ? "Valid+Dirty " : "");
1120 }
1121
1122 /* Check whether it's single security state view */
1123 static inline bool gic_dist_security_disabled(void)
1124 {
1125         return readl_relaxed(gic_data.dist_base + GICD_CTLR) & GICD_CTLR_DS;
1126 }
1127
1128 static void gic_cpu_sys_reg_init(void)
1129 {
1130         int i, cpu = smp_processor_id();
1131         u64 mpidr = gic_cpu_to_affinity(cpu);
1132         u64 need_rss = MPIDR_RS(mpidr);
1133         bool group0;
1134         u32 pribits;
1135
1136         /*
1137          * Need to check that the SRE bit has actually been set. If
1138          * not, it means that SRE is disabled at EL2. We're going to
1139          * die painfully, and there is nothing we can do about it.
1140          *
1141          * Kindly inform the luser.
1142          */
1143         if (!gic_enable_sre())
1144                 pr_err("GIC: unable to set SRE (disabled at EL2), panic ahead\n");
1145
1146         pribits = gic_get_pribits();
1147
1148         group0 = gic_has_group0();
1149
1150         /* Set priority mask register */
1151         if (!gic_prio_masking_enabled()) {
1152                 write_gicreg(DEFAULT_PMR_VALUE, ICC_PMR_EL1);
1153         } else if (gic_supports_nmi()) {
1154                 /*
1155                  * Mismatch configuration with boot CPU, the system is likely
1156                  * to die as interrupt masking will not work properly on all
1157                  * CPUs
1158                  *
1159                  * The boot CPU calls this function before enabling NMI support,
1160                  * and as a result we'll never see this warning in the boot path
1161                  * for that CPU.
1162                  */
1163                 if (static_branch_unlikely(&gic_nonsecure_priorities))
1164                         WARN_ON(!group0 || gic_dist_security_disabled());
1165                 else
1166                         WARN_ON(group0 && !gic_dist_security_disabled());
1167         }
1168
1169         /*
1170          * Some firmwares hand over to the kernel with the BPR changed from
1171          * its reset value (and with a value large enough to prevent
1172          * any pre-emptive interrupts from working at all). Writing a zero
1173          * to BPR restores is reset value.
1174          */
1175         gic_write_bpr1(0);
1176
1177         if (static_branch_likely(&supports_deactivate_key)) {
1178                 /* EOI drops priority only (mode 1) */
1179                 gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop);
1180         } else {
1181                 /* EOI deactivates interrupt too (mode 0) */
1182                 gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop_dir);
1183         }
1184
1185         /* Always whack Group0 before Group1 */
1186         if (group0) {
1187                 switch(pribits) {
1188                 case 8:
1189                 case 7:
1190                         write_gicreg(0, ICC_AP0R3_EL1);
1191                         write_gicreg(0, ICC_AP0R2_EL1);
1192                         fallthrough;
1193                 case 6:
1194                         write_gicreg(0, ICC_AP0R1_EL1);
1195                         fallthrough;
1196                 case 5:
1197                 case 4:
1198                         write_gicreg(0, ICC_AP0R0_EL1);
1199                 }
1200
1201                 isb();
1202         }
1203
1204         switch(pribits) {
1205         case 8:
1206         case 7:
1207                 write_gicreg(0, ICC_AP1R3_EL1);
1208                 write_gicreg(0, ICC_AP1R2_EL1);
1209                 fallthrough;
1210         case 6:
1211                 write_gicreg(0, ICC_AP1R1_EL1);
1212                 fallthrough;
1213         case 5:
1214         case 4:
1215                 write_gicreg(0, ICC_AP1R0_EL1);
1216         }
1217
1218         isb();
1219
1220         /* ... and let's hit the road... */
1221         gic_write_grpen1(1);
1222
1223         /* Keep the RSS capability status in per_cpu variable */
1224         per_cpu(has_rss, cpu) = !!(gic_read_ctlr() & ICC_CTLR_EL1_RSS);
1225
1226         /* Check all the CPUs have capable of sending SGIs to other CPUs */
1227         for_each_online_cpu(i) {
1228                 bool have_rss = per_cpu(has_rss, i) && per_cpu(has_rss, cpu);
1229
1230                 need_rss |= MPIDR_RS(gic_cpu_to_affinity(i));
1231                 if (need_rss && (!have_rss))
1232                         pr_crit("CPU%d (%lx) can't SGI CPU%d (%lx), no RSS\n",
1233                                 cpu, (unsigned long)mpidr,
1234                                 i, (unsigned long)gic_cpu_to_affinity(i));
1235         }
1236
1237         /**
1238          * GIC spec says, when ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0,
1239          * writing ICC_ASGI1R_EL1 register with RS != 0 is a CONSTRAINED
1240          * UNPREDICTABLE choice of :
1241          *   - The write is ignored.
1242          *   - The RS field is treated as 0.
1243          */
1244         if (need_rss && (!gic_data.has_rss))
1245                 pr_crit_once("RSS is required but GICD doesn't support it\n");
1246 }
1247
1248 static bool gicv3_nolpi;
1249
1250 static int __init gicv3_nolpi_cfg(char *buf)
1251 {
1252         return kstrtobool(buf, &gicv3_nolpi);
1253 }
1254 early_param("irqchip.gicv3_nolpi", gicv3_nolpi_cfg);
1255
1256 static int gic_dist_supports_lpis(void)
1257 {
1258         return (IS_ENABLED(CONFIG_ARM_GIC_V3_ITS) &&
1259                 !!(readl_relaxed(gic_data.dist_base + GICD_TYPER) & GICD_TYPER_LPIS) &&
1260                 !gicv3_nolpi);
1261 }
1262
1263 static void gic_cpu_init(void)
1264 {
1265         void __iomem *rbase;
1266         int i;
1267
1268         /* Register ourselves with the rest of the world */
1269         if (gic_populate_rdist())
1270                 return;
1271
1272         gic_enable_redist(true);
1273
1274         WARN((gic_data.ppi_nr > 16 || GIC_ESPI_NR != 0) &&
1275              !(gic_read_ctlr() & ICC_CTLR_EL1_ExtRange),
1276              "Distributor has extended ranges, but CPU%d doesn't\n",
1277              smp_processor_id());
1278
1279         rbase = gic_data_rdist_sgi_base();
1280
1281         /* Configure SGIs/PPIs as non-secure Group-1 */
1282         for (i = 0; i < gic_data.ppi_nr + SGI_NR; i += 32)
1283                 writel_relaxed(~0, rbase + GICR_IGROUPR0 + i / 8);
1284
1285         gic_cpu_config(rbase, gic_data.ppi_nr + SGI_NR, gic_redist_wait_for_rwp);
1286
1287         /* initialise system registers */
1288         gic_cpu_sys_reg_init();
1289 }
1290
1291 #ifdef CONFIG_SMP
1292
1293 #define MPIDR_TO_SGI_RS(mpidr)  (MPIDR_RS(mpidr) << ICC_SGI1R_RS_SHIFT)
1294 #define MPIDR_TO_SGI_CLUSTER_ID(mpidr)  ((mpidr) & ~0xFUL)
1295
1296 static int gic_starting_cpu(unsigned int cpu)
1297 {
1298         gic_cpu_init();
1299
1300         if (gic_dist_supports_lpis())
1301                 its_cpu_init();
1302
1303         return 0;
1304 }
1305
1306 static u16 gic_compute_target_list(int *base_cpu, const struct cpumask *mask,
1307                                    unsigned long cluster_id)
1308 {
1309         int next_cpu, cpu = *base_cpu;
1310         unsigned long mpidr;
1311         u16 tlist = 0;
1312
1313         mpidr = gic_cpu_to_affinity(cpu);
1314
1315         while (cpu < nr_cpu_ids) {
1316                 tlist |= 1 << (mpidr & 0xf);
1317
1318                 next_cpu = cpumask_next(cpu, mask);
1319                 if (next_cpu >= nr_cpu_ids)
1320                         goto out;
1321                 cpu = next_cpu;
1322
1323                 mpidr = gic_cpu_to_affinity(cpu);
1324
1325                 if (cluster_id != MPIDR_TO_SGI_CLUSTER_ID(mpidr)) {
1326                         cpu--;
1327                         goto out;
1328                 }
1329         }
1330 out:
1331         *base_cpu = cpu;
1332         return tlist;
1333 }
1334
1335 #define MPIDR_TO_SGI_AFFINITY(cluster_id, level) \
1336         (MPIDR_AFFINITY_LEVEL(cluster_id, level) \
1337                 << ICC_SGI1R_AFFINITY_## level ##_SHIFT)
1338
1339 static void gic_send_sgi(u64 cluster_id, u16 tlist, unsigned int irq)
1340 {
1341         u64 val;
1342
1343         val = (MPIDR_TO_SGI_AFFINITY(cluster_id, 3)     |
1344                MPIDR_TO_SGI_AFFINITY(cluster_id, 2)     |
1345                irq << ICC_SGI1R_SGI_ID_SHIFT            |
1346                MPIDR_TO_SGI_AFFINITY(cluster_id, 1)     |
1347                MPIDR_TO_SGI_RS(cluster_id)              |
1348                tlist << ICC_SGI1R_TARGET_LIST_SHIFT);
1349
1350         pr_devel("CPU%d: ICC_SGI1R_EL1 %llx\n", smp_processor_id(), val);
1351         gic_write_sgi1r(val);
1352 }
1353
1354 static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
1355 {
1356         int cpu;
1357
1358         if (WARN_ON(d->hwirq >= 16))
1359                 return;
1360
1361         /*
1362          * Ensure that stores to Normal memory are visible to the
1363          * other CPUs before issuing the IPI.
1364          */
1365         dsb(ishst);
1366
1367         for_each_cpu(cpu, mask) {
1368                 u64 cluster_id = MPIDR_TO_SGI_CLUSTER_ID(gic_cpu_to_affinity(cpu));
1369                 u16 tlist;
1370
1371                 tlist = gic_compute_target_list(&cpu, mask, cluster_id);
1372                 gic_send_sgi(cluster_id, tlist, d->hwirq);
1373         }
1374
1375         /* Force the above writes to ICC_SGI1R_EL1 to be executed */
1376         isb();
1377 }
1378
1379 static void __init gic_smp_init(void)
1380 {
1381         struct irq_fwspec sgi_fwspec = {
1382                 .fwnode         = gic_data.fwnode,
1383                 .param_count    = 1,
1384         };
1385         int base_sgi;
1386
1387         cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING,
1388                                   "irqchip/arm/gicv3:starting",
1389                                   gic_starting_cpu, NULL);
1390
1391         /* Register all 8 non-secure SGIs */
1392         base_sgi = irq_domain_alloc_irqs(gic_data.domain, 8, NUMA_NO_NODE, &sgi_fwspec);
1393         if (WARN_ON(base_sgi <= 0))
1394                 return;
1395
1396         set_smp_ipi_range(base_sgi, 8);
1397 }
1398
1399 static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1400                             bool force)
1401 {
1402         unsigned int cpu;
1403         u32 offset, index;
1404         void __iomem *reg;
1405         int enabled;
1406         u64 val;
1407
1408         if (force)
1409                 cpu = cpumask_first(mask_val);
1410         else
1411                 cpu = cpumask_any_and(mask_val, cpu_online_mask);
1412
1413         if (cpu >= nr_cpu_ids)
1414                 return -EINVAL;
1415
1416         if (gic_irq_in_rdist(d))
1417                 return -EINVAL;
1418
1419         /* If interrupt was enabled, disable it first */
1420         enabled = gic_peek_irq(d, GICD_ISENABLER);
1421         if (enabled)
1422                 gic_mask_irq(d);
1423
1424         offset = convert_offset_index(d, GICD_IROUTER, &index);
1425         reg = gic_dist_base(d) + offset + (index * 8);
1426         val = gic_cpu_to_affinity(cpu);
1427
1428         gic_write_irouter(val, reg);
1429
1430         /*
1431          * If the interrupt was enabled, enabled it again. Otherwise,
1432          * just wait for the distributor to have digested our changes.
1433          */
1434         if (enabled)
1435                 gic_unmask_irq(d);
1436
1437         irq_data_update_effective_affinity(d, cpumask_of(cpu));
1438
1439         return IRQ_SET_MASK_OK_DONE;
1440 }
1441 #else
1442 #define gic_set_affinity        NULL
1443 #define gic_ipi_send_mask       NULL
1444 #define gic_smp_init()          do { } while(0)
1445 #endif
1446
1447 static int gic_retrigger(struct irq_data *data)
1448 {
1449         return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true);
1450 }
1451
1452 #ifdef CONFIG_CPU_PM
1453 static int gic_cpu_pm_notifier(struct notifier_block *self,
1454                                unsigned long cmd, void *v)
1455 {
1456         if (cmd == CPU_PM_EXIT) {
1457                 if (gic_dist_security_disabled())
1458                         gic_enable_redist(true);
1459                 gic_cpu_sys_reg_init();
1460         } else if (cmd == CPU_PM_ENTER && gic_dist_security_disabled()) {
1461                 gic_write_grpen1(0);
1462                 gic_enable_redist(false);
1463         }
1464         return NOTIFY_OK;
1465 }
1466
1467 static struct notifier_block gic_cpu_pm_notifier_block = {
1468         .notifier_call = gic_cpu_pm_notifier,
1469 };
1470
1471 static void gic_cpu_pm_init(void)
1472 {
1473         cpu_pm_register_notifier(&gic_cpu_pm_notifier_block);
1474 }
1475
1476 #else
1477 static inline void gic_cpu_pm_init(void) { }
1478 #endif /* CONFIG_CPU_PM */
1479
1480 static struct irq_chip gic_chip = {
1481         .name                   = "GICv3",
1482         .irq_mask               = gic_mask_irq,
1483         .irq_unmask             = gic_unmask_irq,
1484         .irq_eoi                = gic_eoi_irq,
1485         .irq_set_type           = gic_set_type,
1486         .irq_set_affinity       = gic_set_affinity,
1487         .irq_retrigger          = gic_retrigger,
1488         .irq_get_irqchip_state  = gic_irq_get_irqchip_state,
1489         .irq_set_irqchip_state  = gic_irq_set_irqchip_state,
1490         .irq_nmi_setup          = gic_irq_nmi_setup,
1491         .irq_nmi_teardown       = gic_irq_nmi_teardown,
1492         .ipi_send_mask          = gic_ipi_send_mask,
1493         .flags                  = IRQCHIP_SET_TYPE_MASKED |
1494                                   IRQCHIP_SKIP_SET_WAKE |
1495                                   IRQCHIP_MASK_ON_SUSPEND,
1496 };
1497
1498 static struct irq_chip gic_eoimode1_chip = {
1499         .name                   = "GICv3",
1500         .irq_mask               = gic_eoimode1_mask_irq,
1501         .irq_unmask             = gic_unmask_irq,
1502         .irq_eoi                = gic_eoimode1_eoi_irq,
1503         .irq_set_type           = gic_set_type,
1504         .irq_set_affinity       = gic_set_affinity,
1505         .irq_retrigger          = gic_retrigger,
1506         .irq_get_irqchip_state  = gic_irq_get_irqchip_state,
1507         .irq_set_irqchip_state  = gic_irq_set_irqchip_state,
1508         .irq_set_vcpu_affinity  = gic_irq_set_vcpu_affinity,
1509         .irq_nmi_setup          = gic_irq_nmi_setup,
1510         .irq_nmi_teardown       = gic_irq_nmi_teardown,
1511         .ipi_send_mask          = gic_ipi_send_mask,
1512         .flags                  = IRQCHIP_SET_TYPE_MASKED |
1513                                   IRQCHIP_SKIP_SET_WAKE |
1514                                   IRQCHIP_MASK_ON_SUSPEND,
1515 };
1516
1517 static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
1518                               irq_hw_number_t hw)
1519 {
1520         struct irq_chip *chip = &gic_chip;
1521         struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq));
1522
1523         if (static_branch_likely(&supports_deactivate_key))
1524                 chip = &gic_eoimode1_chip;
1525
1526         switch (__get_intid_range(hw)) {
1527         case SGI_RANGE:
1528         case PPI_RANGE:
1529         case EPPI_RANGE:
1530                 irq_set_percpu_devid(irq);
1531                 irq_domain_set_info(d, irq, hw, chip, d->host_data,
1532                                     handle_percpu_devid_irq, NULL, NULL);
1533                 break;
1534
1535         case SPI_RANGE:
1536         case ESPI_RANGE:
1537                 irq_domain_set_info(d, irq, hw, chip, d->host_data,
1538                                     handle_fasteoi_irq, NULL, NULL);
1539                 irq_set_probe(irq);
1540                 irqd_set_single_target(irqd);
1541                 break;
1542
1543         case LPI_RANGE:
1544                 if (!gic_dist_supports_lpis())
1545                         return -EPERM;
1546                 irq_domain_set_info(d, irq, hw, chip, d->host_data,
1547                                     handle_fasteoi_irq, NULL, NULL);
1548                 break;
1549
1550         default:
1551                 return -EPERM;
1552         }
1553
1554         /* Prevents SW retriggers which mess up the ACK/EOI ordering */
1555         irqd_set_handle_enforce_irqctx(irqd);
1556         return 0;
1557 }
1558
1559 static int gic_irq_domain_translate(struct irq_domain *d,
1560                                     struct irq_fwspec *fwspec,
1561                                     unsigned long *hwirq,
1562                                     unsigned int *type)
1563 {
1564         if (fwspec->param_count == 1 && fwspec->param[0] < 16) {
1565                 *hwirq = fwspec->param[0];
1566                 *type = IRQ_TYPE_EDGE_RISING;
1567                 return 0;
1568         }
1569
1570         if (is_of_node(fwspec->fwnode)) {
1571                 if (fwspec->param_count < 3)
1572                         return -EINVAL;
1573
1574                 switch (fwspec->param[0]) {
1575                 case 0:                 /* SPI */
1576                         *hwirq = fwspec->param[1] + 32;
1577                         break;
1578                 case 1:                 /* PPI */
1579                         *hwirq = fwspec->param[1] + 16;
1580                         break;
1581                 case 2:                 /* ESPI */
1582                         *hwirq = fwspec->param[1] + ESPI_BASE_INTID;
1583                         break;
1584                 case 3:                 /* EPPI */
1585                         *hwirq = fwspec->param[1] + EPPI_BASE_INTID;
1586                         break;
1587                 case GIC_IRQ_TYPE_LPI:  /* LPI */
1588                         *hwirq = fwspec->param[1];
1589                         break;
1590                 case GIC_IRQ_TYPE_PARTITION:
1591                         *hwirq = fwspec->param[1];
1592                         if (fwspec->param[1] >= 16)
1593                                 *hwirq += EPPI_BASE_INTID - 16;
1594                         else
1595                                 *hwirq += 16;
1596                         break;
1597                 default:
1598                         return -EINVAL;
1599                 }
1600
1601                 *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1602
1603                 /*
1604                  * Make it clear that broken DTs are... broken.
1605                  * Partitioned PPIs are an unfortunate exception.
1606                  */
1607                 WARN_ON(*type == IRQ_TYPE_NONE &&
1608                         fwspec->param[0] != GIC_IRQ_TYPE_PARTITION);
1609                 return 0;
1610         }
1611
1612         if (is_fwnode_irqchip(fwspec->fwnode)) {
1613                 if(fwspec->param_count != 2)
1614                         return -EINVAL;
1615
1616                 if (fwspec->param[0] < 16) {
1617                         pr_err(FW_BUG "Illegal GSI%d translation request\n",
1618                                fwspec->param[0]);
1619                         return -EINVAL;
1620                 }
1621
1622                 *hwirq = fwspec->param[0];
1623                 *type = fwspec->param[1];
1624
1625                 WARN_ON(*type == IRQ_TYPE_NONE);
1626                 return 0;
1627         }
1628
1629         return -EINVAL;
1630 }
1631
1632 static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1633                                 unsigned int nr_irqs, void *arg)
1634 {
1635         int i, ret;
1636         irq_hw_number_t hwirq;
1637         unsigned int type = IRQ_TYPE_NONE;
1638         struct irq_fwspec *fwspec = arg;
1639
1640         ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type);
1641         if (ret)
1642                 return ret;
1643
1644         for (i = 0; i < nr_irqs; i++) {
1645                 ret = gic_irq_domain_map(domain, virq + i, hwirq + i);
1646                 if (ret)
1647                         return ret;
1648         }
1649
1650         return 0;
1651 }
1652
1653 static void gic_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1654                                 unsigned int nr_irqs)
1655 {
1656         int i;
1657
1658         for (i = 0; i < nr_irqs; i++) {
1659                 struct irq_data *d = irq_domain_get_irq_data(domain, virq + i);
1660                 irq_set_handler(virq + i, NULL);
1661                 irq_domain_reset_irq_data(d);
1662         }
1663 }
1664
1665 static bool fwspec_is_partitioned_ppi(struct irq_fwspec *fwspec,
1666                                       irq_hw_number_t hwirq)
1667 {
1668         enum gic_intid_range range;
1669
1670         if (!gic_data.ppi_descs)
1671                 return false;
1672
1673         if (!is_of_node(fwspec->fwnode))
1674                 return false;
1675
1676         if (fwspec->param_count < 4 || !fwspec->param[3])
1677                 return false;
1678
1679         range = __get_intid_range(hwirq);
1680         if (range != PPI_RANGE && range != EPPI_RANGE)
1681                 return false;
1682
1683         return true;
1684 }
1685
1686 static int gic_irq_domain_select(struct irq_domain *d,
1687                                  struct irq_fwspec *fwspec,
1688                                  enum irq_domain_bus_token bus_token)
1689 {
1690         unsigned int type, ret, ppi_idx;
1691         irq_hw_number_t hwirq;
1692
1693         /* Not for us */
1694         if (fwspec->fwnode != d->fwnode)
1695                 return 0;
1696
1697         /* Handle pure domain searches */
1698         if (!fwspec->param_count)
1699                 return d->bus_token == bus_token;
1700
1701         /* If this is not DT, then we have a single domain */
1702         if (!is_of_node(fwspec->fwnode))
1703                 return 1;
1704
1705         ret = gic_irq_domain_translate(d, fwspec, &hwirq, &type);
1706         if (WARN_ON_ONCE(ret))
1707                 return 0;
1708
1709         if (!fwspec_is_partitioned_ppi(fwspec, hwirq))
1710                 return d == gic_data.domain;
1711
1712         /*
1713          * If this is a PPI and we have a 4th (non-null) parameter,
1714          * then we need to match the partition domain.
1715          */
1716         ppi_idx = __gic_get_ppi_index(hwirq);
1717         return d == partition_get_domain(gic_data.ppi_descs[ppi_idx]);
1718 }
1719
1720 static const struct irq_domain_ops gic_irq_domain_ops = {
1721         .translate = gic_irq_domain_translate,
1722         .alloc = gic_irq_domain_alloc,
1723         .free = gic_irq_domain_free,
1724         .select = gic_irq_domain_select,
1725 };
1726
1727 static int partition_domain_translate(struct irq_domain *d,
1728                                       struct irq_fwspec *fwspec,
1729                                       unsigned long *hwirq,
1730                                       unsigned int *type)
1731 {
1732         unsigned long ppi_intid;
1733         struct device_node *np;
1734         unsigned int ppi_idx;
1735         int ret;
1736
1737         if (!gic_data.ppi_descs)
1738                 return -ENOMEM;
1739
1740         np = of_find_node_by_phandle(fwspec->param[3]);
1741         if (WARN_ON(!np))
1742                 return -EINVAL;
1743
1744         ret = gic_irq_domain_translate(d, fwspec, &ppi_intid, type);
1745         if (WARN_ON_ONCE(ret))
1746                 return 0;
1747
1748         ppi_idx = __gic_get_ppi_index(ppi_intid);
1749         ret = partition_translate_id(gic_data.ppi_descs[ppi_idx],
1750                                      of_node_to_fwnode(np));
1751         if (ret < 0)
1752                 return ret;
1753
1754         *hwirq = ret;
1755         *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1756
1757         return 0;
1758 }
1759
1760 static const struct irq_domain_ops partition_domain_ops = {
1761         .translate = partition_domain_translate,
1762         .select = gic_irq_domain_select,
1763 };
1764
1765 static bool gic_enable_quirk_msm8996(void *data)
1766 {
1767         struct gic_chip_data *d = data;
1768
1769         d->flags |= FLAGS_WORKAROUND_GICR_WAKER_MSM8996;
1770
1771         return true;
1772 }
1773
1774 static bool gic_enable_quirk_cavium_38539(void *data)
1775 {
1776         struct gic_chip_data *d = data;
1777
1778         d->flags |= FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539;
1779
1780         return true;
1781 }
1782
1783 static bool gic_enable_quirk_hip06_07(void *data)
1784 {
1785         struct gic_chip_data *d = data;
1786
1787         /*
1788          * HIP06 GICD_IIDR clashes with GIC-600 product number (despite
1789          * not being an actual ARM implementation). The saving grace is
1790          * that GIC-600 doesn't have ESPI, so nothing to do in that case.
1791          * HIP07 doesn't even have a proper IIDR, and still pretends to
1792          * have ESPI. In both cases, put them right.
1793          */
1794         if (d->rdists.gicd_typer & GICD_TYPER_ESPI) {
1795                 /* Zero both ESPI and the RES0 field next to it... */
1796                 d->rdists.gicd_typer &= ~GENMASK(9, 8);
1797                 return true;
1798         }
1799
1800         return false;
1801 }
1802
1803 #define T241_CHIPN_MASK         GENMASK_ULL(45, 44)
1804 #define T241_CHIP_GICDA_OFFSET  0x1580000
1805 #define SMCCC_SOC_ID_T241       0x036b0241
1806
1807 static bool gic_enable_quirk_nvidia_t241(void *data)
1808 {
1809         s32 soc_id = arm_smccc_get_soc_id_version();
1810         unsigned long chip_bmask = 0;
1811         phys_addr_t phys;
1812         u32 i;
1813
1814         /* Check JEP106 code for NVIDIA T241 chip (036b:0241) */
1815         if ((soc_id < 0) || (soc_id != SMCCC_SOC_ID_T241))
1816                 return false;
1817
1818         /* Find the chips based on GICR regions PHYS addr */
1819         for (i = 0; i < gic_data.nr_redist_regions; i++) {
1820                 chip_bmask |= BIT(FIELD_GET(T241_CHIPN_MASK,
1821                                   (u64)gic_data.redist_regions[i].phys_base));
1822         }
1823
1824         if (hweight32(chip_bmask) < 3)
1825                 return false;
1826
1827         /* Setup GICD alias regions */
1828         for (i = 0; i < ARRAY_SIZE(t241_dist_base_alias); i++) {
1829                 if (chip_bmask & BIT(i)) {
1830                         phys = gic_data.dist_phys_base + T241_CHIP_GICDA_OFFSET;
1831                         phys |= FIELD_PREP(T241_CHIPN_MASK, i);
1832                         t241_dist_base_alias[i] = ioremap(phys, SZ_64K);
1833                         WARN_ON_ONCE(!t241_dist_base_alias[i]);
1834                 }
1835         }
1836         static_branch_enable(&gic_nvidia_t241_erratum);
1837         return true;
1838 }
1839
1840 static bool gic_enable_quirk_asr8601(void *data)
1841 {
1842         struct gic_chip_data *d = data;
1843
1844         d->flags |= FLAGS_WORKAROUND_ASR_ERRATUM_8601001;
1845
1846         return true;
1847 }
1848
1849 static bool gic_enable_quirk_arm64_2941627(void *data)
1850 {
1851         static_branch_enable(&gic_arm64_2941627_erratum);
1852         return true;
1853 }
1854
1855 static bool rd_set_non_coherent(void *data)
1856 {
1857         struct gic_chip_data *d = data;
1858
1859         d->rdists.flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
1860         return true;
1861 }
1862
1863 static const struct gic_quirk gic_quirks[] = {
1864         {
1865                 .desc   = "GICv3: Qualcomm MSM8996 broken firmware",
1866                 .compatible = "qcom,msm8996-gic-v3",
1867                 .init   = gic_enable_quirk_msm8996,
1868         },
1869         {
1870                 .desc   = "GICv3: ASR erratum 8601001",
1871                 .compatible = "asr,asr8601-gic-v3",
1872                 .init   = gic_enable_quirk_asr8601,
1873         },
1874         {
1875                 .desc   = "GICv3: HIP06 erratum 161010803",
1876                 .iidr   = 0x0204043b,
1877                 .mask   = 0xffffffff,
1878                 .init   = gic_enable_quirk_hip06_07,
1879         },
1880         {
1881                 .desc   = "GICv3: HIP07 erratum 161010803",
1882                 .iidr   = 0x00000000,
1883                 .mask   = 0xffffffff,
1884                 .init   = gic_enable_quirk_hip06_07,
1885         },
1886         {
1887                 /*
1888                  * Reserved register accesses generate a Synchronous
1889                  * External Abort. This erratum applies to:
1890                  * - ThunderX: CN88xx
1891                  * - OCTEON TX: CN83xx, CN81xx
1892                  * - OCTEON TX2: CN93xx, CN96xx, CN98xx, CNF95xx*
1893                  */
1894                 .desc   = "GICv3: Cavium erratum 38539",
1895                 .iidr   = 0xa000034c,
1896                 .mask   = 0xe8f00fff,
1897                 .init   = gic_enable_quirk_cavium_38539,
1898         },
1899         {
1900                 .desc   = "GICv3: NVIDIA erratum T241-FABRIC-4",
1901                 .iidr   = 0x0402043b,
1902                 .mask   = 0xffffffff,
1903                 .init   = gic_enable_quirk_nvidia_t241,
1904         },
1905         {
1906                 /*
1907                  * GIC-700: 2941627 workaround - IP variant [0,1]
1908                  *
1909                  */
1910                 .desc   = "GICv3: ARM64 erratum 2941627",
1911                 .iidr   = 0x0400043b,
1912                 .mask   = 0xff0e0fff,
1913                 .init   = gic_enable_quirk_arm64_2941627,
1914         },
1915         {
1916                 /*
1917                  * GIC-700: 2941627 workaround - IP variant [2]
1918                  */
1919                 .desc   = "GICv3: ARM64 erratum 2941627",
1920                 .iidr   = 0x0402043b,
1921                 .mask   = 0xff0f0fff,
1922                 .init   = gic_enable_quirk_arm64_2941627,
1923         },
1924         {
1925                 .desc   = "GICv3: non-coherent attribute",
1926                 .property = "dma-noncoherent",
1927                 .init   = rd_set_non_coherent,
1928         },
1929         {
1930         }
1931 };
1932
1933 static void gic_enable_nmi_support(void)
1934 {
1935         int i;
1936
1937         if (!gic_prio_masking_enabled())
1938                 return;
1939
1940         rdist_nmi_refs = kcalloc(gic_data.ppi_nr + SGI_NR,
1941                                  sizeof(*rdist_nmi_refs), GFP_KERNEL);
1942         if (!rdist_nmi_refs)
1943                 return;
1944
1945         for (i = 0; i < gic_data.ppi_nr + SGI_NR; i++)
1946                 refcount_set(&rdist_nmi_refs[i], 0);
1947
1948         pr_info("Pseudo-NMIs enabled using %s ICC_PMR_EL1 synchronisation\n",
1949                 gic_has_relaxed_pmr_sync() ? "relaxed" : "forced");
1950
1951         /*
1952          * How priority values are used by the GIC depends on two things:
1953          * the security state of the GIC (controlled by the GICD_CTRL.DS bit)
1954          * and if Group 0 interrupts can be delivered to Linux in the non-secure
1955          * world as FIQs (controlled by the SCR_EL3.FIQ bit). These affect the
1956          * ICC_PMR_EL1 register and the priority that software assigns to
1957          * interrupts:
1958          *
1959          * GICD_CTRL.DS | SCR_EL3.FIQ | ICC_PMR_EL1 | Group 1 priority
1960          * -----------------------------------------------------------
1961          *      1       |      -      |  unchanged  |    unchanged
1962          * -----------------------------------------------------------
1963          *      0       |      1      |  non-secure |    non-secure
1964          * -----------------------------------------------------------
1965          *      0       |      0      |  unchanged  |    non-secure
1966          *
1967          * where non-secure means that the value is right-shifted by one and the
1968          * MSB bit set, to make it fit in the non-secure priority range.
1969          *
1970          * In the first two cases, where ICC_PMR_EL1 and the interrupt priority
1971          * are both either modified or unchanged, we can use the same set of
1972          * priorities.
1973          *
1974          * In the last case, where only the interrupt priorities are modified to
1975          * be in the non-secure range, we use a different PMR value to mask IRQs
1976          * and the rest of the values that we use remain unchanged.
1977          */
1978         if (gic_has_group0() && !gic_dist_security_disabled())
1979                 static_branch_enable(&gic_nonsecure_priorities);
1980
1981         static_branch_enable(&supports_pseudo_nmis);
1982
1983         if (static_branch_likely(&supports_deactivate_key))
1984                 gic_eoimode1_chip.flags |= IRQCHIP_SUPPORTS_NMI;
1985         else
1986                 gic_chip.flags |= IRQCHIP_SUPPORTS_NMI;
1987 }
1988
1989 static int __init gic_init_bases(phys_addr_t dist_phys_base,
1990                                  void __iomem *dist_base,
1991                                  struct redist_region *rdist_regs,
1992                                  u32 nr_redist_regions,
1993                                  u64 redist_stride,
1994                                  struct fwnode_handle *handle)
1995 {
1996         u32 typer;
1997         int err;
1998
1999         if (!is_hyp_mode_available())
2000                 static_branch_disable(&supports_deactivate_key);
2001
2002         if (static_branch_likely(&supports_deactivate_key))
2003                 pr_info("GIC: Using split EOI/Deactivate mode\n");
2004
2005         gic_data.fwnode = handle;
2006         gic_data.dist_phys_base = dist_phys_base;
2007         gic_data.dist_base = dist_base;
2008         gic_data.redist_regions = rdist_regs;
2009         gic_data.nr_redist_regions = nr_redist_regions;
2010         gic_data.redist_stride = redist_stride;
2011
2012         /*
2013          * Find out how many interrupts are supported.
2014          */
2015         typer = readl_relaxed(gic_data.dist_base + GICD_TYPER);
2016         gic_data.rdists.gicd_typer = typer;
2017
2018         gic_enable_quirks(readl_relaxed(gic_data.dist_base + GICD_IIDR),
2019                           gic_quirks, &gic_data);
2020
2021         pr_info("%d SPIs implemented\n", GIC_LINE_NR - 32);
2022         pr_info("%d Extended SPIs implemented\n", GIC_ESPI_NR);
2023
2024         /*
2025          * ThunderX1 explodes on reading GICD_TYPER2, in violation of the
2026          * architecture spec (which says that reserved registers are RES0).
2027          */
2028         if (!(gic_data.flags & FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539))
2029                 gic_data.rdists.gicd_typer2 = readl_relaxed(gic_data.dist_base + GICD_TYPER2);
2030
2031         gic_data.domain = irq_domain_create_tree(handle, &gic_irq_domain_ops,
2032                                                  &gic_data);
2033         gic_data.rdists.rdist = alloc_percpu(typeof(*gic_data.rdists.rdist));
2034         if (!static_branch_unlikely(&gic_nvidia_t241_erratum)) {
2035                 /* Disable GICv4.x features for the erratum T241-FABRIC-4 */
2036                 gic_data.rdists.has_rvpeid = true;
2037                 gic_data.rdists.has_vlpis = true;
2038                 gic_data.rdists.has_direct_lpi = true;
2039                 gic_data.rdists.has_vpend_valid_dirty = true;
2040         }
2041
2042         if (WARN_ON(!gic_data.domain) || WARN_ON(!gic_data.rdists.rdist)) {
2043                 err = -ENOMEM;
2044                 goto out_free;
2045         }
2046
2047         irq_domain_update_bus_token(gic_data.domain, DOMAIN_BUS_WIRED);
2048
2049         gic_data.has_rss = !!(typer & GICD_TYPER_RSS);
2050
2051         if (typer & GICD_TYPER_MBIS) {
2052                 err = mbi_init(handle, gic_data.domain);
2053                 if (err)
2054                         pr_err("Failed to initialize MBIs\n");
2055         }
2056
2057         set_handle_irq(gic_handle_irq);
2058
2059         gic_update_rdist_properties();
2060
2061         gic_dist_init();
2062         gic_cpu_init();
2063         gic_enable_nmi_support();
2064         gic_smp_init();
2065         gic_cpu_pm_init();
2066
2067         if (gic_dist_supports_lpis()) {
2068                 its_init(handle, &gic_data.rdists, gic_data.domain);
2069                 its_cpu_init();
2070                 its_lpi_memreserve_init();
2071         } else {
2072                 if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
2073                         gicv2m_init(handle, gic_data.domain);
2074         }
2075
2076         return 0;
2077
2078 out_free:
2079         if (gic_data.domain)
2080                 irq_domain_remove(gic_data.domain);
2081         free_percpu(gic_data.rdists.rdist);
2082         return err;
2083 }
2084
2085 static int __init gic_validate_dist_version(void __iomem *dist_base)
2086 {
2087         u32 reg = readl_relaxed(dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
2088
2089         if (reg != GIC_PIDR2_ARCH_GICv3 && reg != GIC_PIDR2_ARCH_GICv4)
2090                 return -ENODEV;
2091
2092         return 0;
2093 }
2094
2095 /* Create all possible partitions at boot time */
2096 static void __init gic_populate_ppi_partitions(struct device_node *gic_node)
2097 {
2098         struct device_node *parts_node, *child_part;
2099         int part_idx = 0, i;
2100         int nr_parts;
2101         struct partition_affinity *parts;
2102
2103         parts_node = of_get_child_by_name(gic_node, "ppi-partitions");
2104         if (!parts_node)
2105                 return;
2106
2107         gic_data.ppi_descs = kcalloc(gic_data.ppi_nr, sizeof(*gic_data.ppi_descs), GFP_KERNEL);
2108         if (!gic_data.ppi_descs)
2109                 goto out_put_node;
2110
2111         nr_parts = of_get_child_count(parts_node);
2112
2113         if (!nr_parts)
2114                 goto out_put_node;
2115
2116         parts = kcalloc(nr_parts, sizeof(*parts), GFP_KERNEL);
2117         if (WARN_ON(!parts))
2118                 goto out_put_node;
2119
2120         for_each_child_of_node(parts_node, child_part) {
2121                 struct partition_affinity *part;
2122                 int n;
2123
2124                 part = &parts[part_idx];
2125
2126                 part->partition_id = of_node_to_fwnode(child_part);
2127
2128                 pr_info("GIC: PPI partition %pOFn[%d] { ",
2129                         child_part, part_idx);
2130
2131                 n = of_property_count_elems_of_size(child_part, "affinity",
2132                                                     sizeof(u32));
2133                 WARN_ON(n <= 0);
2134
2135                 for (i = 0; i < n; i++) {
2136                         int err, cpu;
2137                         u32 cpu_phandle;
2138                         struct device_node *cpu_node;
2139
2140                         err = of_property_read_u32_index(child_part, "affinity",
2141                                                          i, &cpu_phandle);
2142                         if (WARN_ON(err))
2143                                 continue;
2144
2145                         cpu_node = of_find_node_by_phandle(cpu_phandle);
2146                         if (WARN_ON(!cpu_node))
2147                                 continue;
2148
2149                         cpu = of_cpu_node_to_id(cpu_node);
2150                         if (WARN_ON(cpu < 0)) {
2151                                 of_node_put(cpu_node);
2152                                 continue;
2153                         }
2154
2155                         pr_cont("%pOF[%d] ", cpu_node, cpu);
2156
2157                         cpumask_set_cpu(cpu, &part->mask);
2158                         of_node_put(cpu_node);
2159                 }
2160
2161                 pr_cont("}\n");
2162                 part_idx++;
2163         }
2164
2165         for (i = 0; i < gic_data.ppi_nr; i++) {
2166                 unsigned int irq;
2167                 struct partition_desc *desc;
2168                 struct irq_fwspec ppi_fwspec = {
2169                         .fwnode         = gic_data.fwnode,
2170                         .param_count    = 3,
2171                         .param          = {
2172                                 [0]     = GIC_IRQ_TYPE_PARTITION,
2173                                 [1]     = i,
2174                                 [2]     = IRQ_TYPE_NONE,
2175                         },
2176                 };
2177
2178                 irq = irq_create_fwspec_mapping(&ppi_fwspec);
2179                 if (WARN_ON(!irq))
2180                         continue;
2181                 desc = partition_create_desc(gic_data.fwnode, parts, nr_parts,
2182                                              irq, &partition_domain_ops);
2183                 if (WARN_ON(!desc))
2184                         continue;
2185
2186                 gic_data.ppi_descs[i] = desc;
2187         }
2188
2189 out_put_node:
2190         of_node_put(parts_node);
2191 }
2192
2193 static void __init gic_of_setup_kvm_info(struct device_node *node)
2194 {
2195         int ret;
2196         struct resource r;
2197         u32 gicv_idx;
2198
2199         gic_v3_kvm_info.type = GIC_V3;
2200
2201         gic_v3_kvm_info.maint_irq = irq_of_parse_and_map(node, 0);
2202         if (!gic_v3_kvm_info.maint_irq)
2203                 return;
2204
2205         if (of_property_read_u32(node, "#redistributor-regions",
2206                                  &gicv_idx))
2207                 gicv_idx = 1;
2208
2209         gicv_idx += 3;  /* Also skip GICD, GICC, GICH */
2210         ret = of_address_to_resource(node, gicv_idx, &r);
2211         if (!ret)
2212                 gic_v3_kvm_info.vcpu = r;
2213
2214         gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2215         gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
2216         vgic_set_kvm_info(&gic_v3_kvm_info);
2217 }
2218
2219 static void gic_request_region(resource_size_t base, resource_size_t size,
2220                                const char *name)
2221 {
2222         if (!request_mem_region(base, size, name))
2223                 pr_warn_once(FW_BUG "%s region %pa has overlapping address\n",
2224                              name, &base);
2225 }
2226
2227 static void __iomem *gic_of_iomap(struct device_node *node, int idx,
2228                                   const char *name, struct resource *res)
2229 {
2230         void __iomem *base;
2231         int ret;
2232
2233         ret = of_address_to_resource(node, idx, res);
2234         if (ret)
2235                 return IOMEM_ERR_PTR(ret);
2236
2237         gic_request_region(res->start, resource_size(res), name);
2238         base = of_iomap(node, idx);
2239
2240         return base ?: IOMEM_ERR_PTR(-ENOMEM);
2241 }
2242
2243 static int __init gic_of_init(struct device_node *node, struct device_node *parent)
2244 {
2245         phys_addr_t dist_phys_base;
2246         void __iomem *dist_base;
2247         struct redist_region *rdist_regs;
2248         struct resource res;
2249         u64 redist_stride;
2250         u32 nr_redist_regions;
2251         int err, i;
2252
2253         dist_base = gic_of_iomap(node, 0, "GICD", &res);
2254         if (IS_ERR(dist_base)) {
2255                 pr_err("%pOF: unable to map gic dist registers\n", node);
2256                 return PTR_ERR(dist_base);
2257         }
2258
2259         dist_phys_base = res.start;
2260
2261         err = gic_validate_dist_version(dist_base);
2262         if (err) {
2263                 pr_err("%pOF: no distributor detected, giving up\n", node);
2264                 goto out_unmap_dist;
2265         }
2266
2267         if (of_property_read_u32(node, "#redistributor-regions", &nr_redist_regions))
2268                 nr_redist_regions = 1;
2269
2270         rdist_regs = kcalloc(nr_redist_regions, sizeof(*rdist_regs),
2271                              GFP_KERNEL);
2272         if (!rdist_regs) {
2273                 err = -ENOMEM;
2274                 goto out_unmap_dist;
2275         }
2276
2277         for (i = 0; i < nr_redist_regions; i++) {
2278                 rdist_regs[i].redist_base = gic_of_iomap(node, 1 + i, "GICR", &res);
2279                 if (IS_ERR(rdist_regs[i].redist_base)) {
2280                         pr_err("%pOF: couldn't map region %d\n", node, i);
2281                         err = -ENODEV;
2282                         goto out_unmap_rdist;
2283                 }
2284                 rdist_regs[i].phys_base = res.start;
2285         }
2286
2287         if (of_property_read_u64(node, "redistributor-stride", &redist_stride))
2288                 redist_stride = 0;
2289
2290         gic_enable_of_quirks(node, gic_quirks, &gic_data);
2291
2292         err = gic_init_bases(dist_phys_base, dist_base, rdist_regs,
2293                              nr_redist_regions, redist_stride, &node->fwnode);
2294         if (err)
2295                 goto out_unmap_rdist;
2296
2297         gic_populate_ppi_partitions(node);
2298
2299         if (static_branch_likely(&supports_deactivate_key))
2300                 gic_of_setup_kvm_info(node);
2301         return 0;
2302
2303 out_unmap_rdist:
2304         for (i = 0; i < nr_redist_regions; i++)
2305                 if (rdist_regs[i].redist_base && !IS_ERR(rdist_regs[i].redist_base))
2306                         iounmap(rdist_regs[i].redist_base);
2307         kfree(rdist_regs);
2308 out_unmap_dist:
2309         iounmap(dist_base);
2310         return err;
2311 }
2312
2313 IRQCHIP_DECLARE(gic_v3, "arm,gic-v3", gic_of_init);
2314
2315 #ifdef CONFIG_ACPI
2316 static struct
2317 {
2318         void __iomem *dist_base;
2319         struct redist_region *redist_regs;
2320         u32 nr_redist_regions;
2321         bool single_redist;
2322         int enabled_rdists;
2323         u32 maint_irq;
2324         int maint_irq_mode;
2325         phys_addr_t vcpu_base;
2326 } acpi_data __initdata;
2327
2328 static void __init
2329 gic_acpi_register_redist(phys_addr_t phys_base, void __iomem *redist_base)
2330 {
2331         static int count = 0;
2332
2333         acpi_data.redist_regs[count].phys_base = phys_base;
2334         acpi_data.redist_regs[count].redist_base = redist_base;
2335         acpi_data.redist_regs[count].single_redist = acpi_data.single_redist;
2336         count++;
2337 }
2338
2339 static int __init
2340 gic_acpi_parse_madt_redist(union acpi_subtable_headers *header,
2341                            const unsigned long end)
2342 {
2343         struct acpi_madt_generic_redistributor *redist =
2344                         (struct acpi_madt_generic_redistributor *)header;
2345         void __iomem *redist_base;
2346
2347         redist_base = ioremap(redist->base_address, redist->length);
2348         if (!redist_base) {
2349                 pr_err("Couldn't map GICR region @%llx\n", redist->base_address);
2350                 return -ENOMEM;
2351         }
2352         gic_request_region(redist->base_address, redist->length, "GICR");
2353
2354         gic_acpi_register_redist(redist->base_address, redist_base);
2355         return 0;
2356 }
2357
2358 static int __init
2359 gic_acpi_parse_madt_gicc(union acpi_subtable_headers *header,
2360                          const unsigned long end)
2361 {
2362         struct acpi_madt_generic_interrupt *gicc =
2363                                 (struct acpi_madt_generic_interrupt *)header;
2364         u32 reg = readl_relaxed(acpi_data.dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
2365         u32 size = reg == GIC_PIDR2_ARCH_GICv4 ? SZ_64K * 4 : SZ_64K * 2;
2366         void __iomem *redist_base;
2367
2368         if (!acpi_gicc_is_usable(gicc))
2369                 return 0;
2370
2371         redist_base = ioremap(gicc->gicr_base_address, size);
2372         if (!redist_base)
2373                 return -ENOMEM;
2374         gic_request_region(gicc->gicr_base_address, size, "GICR");
2375
2376         gic_acpi_register_redist(gicc->gicr_base_address, redist_base);
2377         return 0;
2378 }
2379
2380 static int __init gic_acpi_collect_gicr_base(void)
2381 {
2382         acpi_tbl_entry_handler redist_parser;
2383         enum acpi_madt_type type;
2384
2385         if (acpi_data.single_redist) {
2386                 type = ACPI_MADT_TYPE_GENERIC_INTERRUPT;
2387                 redist_parser = gic_acpi_parse_madt_gicc;
2388         } else {
2389                 type = ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR;
2390                 redist_parser = gic_acpi_parse_madt_redist;
2391         }
2392
2393         /* Collect redistributor base addresses in GICR entries */
2394         if (acpi_table_parse_madt(type, redist_parser, 0) > 0)
2395                 return 0;
2396
2397         pr_info("No valid GICR entries exist\n");
2398         return -ENODEV;
2399 }
2400
2401 static int __init gic_acpi_match_gicr(union acpi_subtable_headers *header,
2402                                   const unsigned long end)
2403 {
2404         /* Subtable presence means that redist exists, that's it */
2405         return 0;
2406 }
2407
2408 static int __init gic_acpi_match_gicc(union acpi_subtable_headers *header,
2409                                       const unsigned long end)
2410 {
2411         struct acpi_madt_generic_interrupt *gicc =
2412                                 (struct acpi_madt_generic_interrupt *)header;
2413
2414         /*
2415          * If GICC is enabled and has valid gicr base address, then it means
2416          * GICR base is presented via GICC
2417          */
2418         if (acpi_gicc_is_usable(gicc) && gicc->gicr_base_address) {
2419                 acpi_data.enabled_rdists++;
2420                 return 0;
2421         }
2422
2423         /*
2424          * It's perfectly valid firmware can pass disabled GICC entry, driver
2425          * should not treat as errors, skip the entry instead of probe fail.
2426          */
2427         if (!acpi_gicc_is_usable(gicc))
2428                 return 0;
2429
2430         return -ENODEV;
2431 }
2432
2433 static int __init gic_acpi_count_gicr_regions(void)
2434 {
2435         int count;
2436
2437         /*
2438          * Count how many redistributor regions we have. It is not allowed
2439          * to mix redistributor description, GICR and GICC subtables have to be
2440          * mutually exclusive.
2441          */
2442         count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR,
2443                                       gic_acpi_match_gicr, 0);
2444         if (count > 0) {
2445                 acpi_data.single_redist = false;
2446                 return count;
2447         }
2448
2449         count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2450                                       gic_acpi_match_gicc, 0);
2451         if (count > 0) {
2452                 acpi_data.single_redist = true;
2453                 count = acpi_data.enabled_rdists;
2454         }
2455
2456         return count;
2457 }
2458
2459 static bool __init acpi_validate_gic_table(struct acpi_subtable_header *header,
2460                                            struct acpi_probe_entry *ape)
2461 {
2462         struct acpi_madt_generic_distributor *dist;
2463         int count;
2464
2465         dist = (struct acpi_madt_generic_distributor *)header;
2466         if (dist->version != ape->driver_data)
2467                 return false;
2468
2469         /* We need to do that exercise anyway, the sooner the better */
2470         count = gic_acpi_count_gicr_regions();
2471         if (count <= 0)
2472                 return false;
2473
2474         acpi_data.nr_redist_regions = count;
2475         return true;
2476 }
2477
2478 static int __init gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers *header,
2479                                                 const unsigned long end)
2480 {
2481         struct acpi_madt_generic_interrupt *gicc =
2482                 (struct acpi_madt_generic_interrupt *)header;
2483         int maint_irq_mode;
2484         static int first_madt = true;
2485
2486         if (!acpi_gicc_is_usable(gicc))
2487                 return 0;
2488
2489         maint_irq_mode = (gicc->flags & ACPI_MADT_VGIC_IRQ_MODE) ?
2490                 ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE;
2491
2492         if (first_madt) {
2493                 first_madt = false;
2494
2495                 acpi_data.maint_irq = gicc->vgic_interrupt;
2496                 acpi_data.maint_irq_mode = maint_irq_mode;
2497                 acpi_data.vcpu_base = gicc->gicv_base_address;
2498
2499                 return 0;
2500         }
2501
2502         /*
2503          * The maintenance interrupt and GICV should be the same for every CPU
2504          */
2505         if ((acpi_data.maint_irq != gicc->vgic_interrupt) ||
2506             (acpi_data.maint_irq_mode != maint_irq_mode) ||
2507             (acpi_data.vcpu_base != gicc->gicv_base_address))
2508                 return -EINVAL;
2509
2510         return 0;
2511 }
2512
2513 static bool __init gic_acpi_collect_virt_info(void)
2514 {
2515         int count;
2516
2517         count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2518                                       gic_acpi_parse_virt_madt_gicc, 0);
2519
2520         return (count > 0);
2521 }
2522
2523 #define ACPI_GICV3_DIST_MEM_SIZE (SZ_64K)
2524 #define ACPI_GICV2_VCTRL_MEM_SIZE       (SZ_4K)
2525 #define ACPI_GICV2_VCPU_MEM_SIZE        (SZ_8K)
2526
2527 static void __init gic_acpi_setup_kvm_info(void)
2528 {
2529         int irq;
2530
2531         if (!gic_acpi_collect_virt_info()) {
2532                 pr_warn("Unable to get hardware information used for virtualization\n");
2533                 return;
2534         }
2535
2536         gic_v3_kvm_info.type = GIC_V3;
2537
2538         irq = acpi_register_gsi(NULL, acpi_data.maint_irq,
2539                                 acpi_data.maint_irq_mode,
2540                                 ACPI_ACTIVE_HIGH);
2541         if (irq <= 0)
2542                 return;
2543
2544         gic_v3_kvm_info.maint_irq = irq;
2545
2546         if (acpi_data.vcpu_base) {
2547                 struct resource *vcpu = &gic_v3_kvm_info.vcpu;
2548
2549                 vcpu->flags = IORESOURCE_MEM;
2550                 vcpu->start = acpi_data.vcpu_base;
2551                 vcpu->end = vcpu->start + ACPI_GICV2_VCPU_MEM_SIZE - 1;
2552         }
2553
2554         gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2555         gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
2556         vgic_set_kvm_info(&gic_v3_kvm_info);
2557 }
2558
2559 static struct fwnode_handle *gsi_domain_handle;
2560
2561 static struct fwnode_handle *gic_v3_get_gsi_domain_id(u32 gsi)
2562 {
2563         return gsi_domain_handle;
2564 }
2565
2566 static int __init
2567 gic_acpi_init(union acpi_subtable_headers *header, const unsigned long end)
2568 {
2569         struct acpi_madt_generic_distributor *dist;
2570         size_t size;
2571         int i, err;
2572
2573         /* Get distributor base address */
2574         dist = (struct acpi_madt_generic_distributor *)header;
2575         acpi_data.dist_base = ioremap(dist->base_address,
2576                                       ACPI_GICV3_DIST_MEM_SIZE);
2577         if (!acpi_data.dist_base) {
2578                 pr_err("Unable to map GICD registers\n");
2579                 return -ENOMEM;
2580         }
2581         gic_request_region(dist->base_address, ACPI_GICV3_DIST_MEM_SIZE, "GICD");
2582
2583         err = gic_validate_dist_version(acpi_data.dist_base);
2584         if (err) {
2585                 pr_err("No distributor detected at @%p, giving up\n",
2586                        acpi_data.dist_base);
2587                 goto out_dist_unmap;
2588         }
2589
2590         size = sizeof(*acpi_data.redist_regs) * acpi_data.nr_redist_regions;
2591         acpi_data.redist_regs = kzalloc(size, GFP_KERNEL);
2592         if (!acpi_data.redist_regs) {
2593                 err = -ENOMEM;
2594                 goto out_dist_unmap;
2595         }
2596
2597         err = gic_acpi_collect_gicr_base();
2598         if (err)
2599                 goto out_redist_unmap;
2600
2601         gsi_domain_handle = irq_domain_alloc_fwnode(&dist->base_address);
2602         if (!gsi_domain_handle) {
2603                 err = -ENOMEM;
2604                 goto out_redist_unmap;
2605         }
2606
2607         err = gic_init_bases(dist->base_address, acpi_data.dist_base,
2608                              acpi_data.redist_regs, acpi_data.nr_redist_regions,
2609                              0, gsi_domain_handle);
2610         if (err)
2611                 goto out_fwhandle_free;
2612
2613         acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, gic_v3_get_gsi_domain_id);
2614
2615         if (static_branch_likely(&supports_deactivate_key))
2616                 gic_acpi_setup_kvm_info();
2617
2618         return 0;
2619
2620 out_fwhandle_free:
2621         irq_domain_free_fwnode(gsi_domain_handle);
2622 out_redist_unmap:
2623         for (i = 0; i < acpi_data.nr_redist_regions; i++)
2624                 if (acpi_data.redist_regs[i].redist_base)
2625                         iounmap(acpi_data.redist_regs[i].redist_base);
2626         kfree(acpi_data.redist_regs);
2627 out_dist_unmap:
2628         iounmap(acpi_data.dist_base);
2629         return err;
2630 }
2631 IRQCHIP_ACPI_DECLARE(gic_v3, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2632                      acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V3,
2633                      gic_acpi_init);
2634 IRQCHIP_ACPI_DECLARE(gic_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2635                      acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V4,
2636                      gic_acpi_init);
2637 IRQCHIP_ACPI_DECLARE(gic_v3_or_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2638                      acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_NONE,
2639                      gic_acpi_init);
2640 #endif