dt-bindings: soc: bcm: use absolute path to other schema
[linux-2.6-microblaze.git] / drivers / irqchip / irq-apple-aic.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright The Asahi Linux Contributors
4  *
5  * Based on irq-lpc32xx:
6  *   Copyright 2015-2016 Vladimir Zapolskiy <vz@mleia.com>
7  * Based on irq-bcm2836:
8  *   Copyright 2015 Broadcom
9  */
10
11 /*
12  * AIC is a fairly simple interrupt controller with the following features:
13  *
14  * - 896 level-triggered hardware IRQs
15  *   - Single mask bit per IRQ
16  *   - Per-IRQ affinity setting
17  *   - Automatic masking on event delivery (auto-ack)
18  *   - Software triggering (ORed with hw line)
19  * - 2 per-CPU IPIs (meant as "self" and "other", but they are
20  *   interchangeable if not symmetric)
21  * - Automatic prioritization (single event/ack register per CPU, lower IRQs =
22  *   higher priority)
23  * - Automatic masking on ack
24  * - Default "this CPU" register view and explicit per-CPU views
25  *
26  * In addition, this driver also handles FIQs, as these are routed to the same
27  * IRQ vector. These are used for Fast IPIs, the ARMv8 timer IRQs, and
28  * performance counters (TODO).
29  *
30  * Implementation notes:
31  *
32  * - This driver creates two IRQ domains, one for HW IRQs and internal FIQs,
33  *   and one for IPIs.
34  * - Since Linux needs more than 2 IPIs, we implement a software IRQ controller
35  *   and funnel all IPIs into one per-CPU IPI (the second "self" IPI is unused).
36  * - FIQ hwirq numbers are assigned after true hwirqs, and are per-cpu.
37  * - DT bindings use 3-cell form (like GIC):
38  *   - <0 nr flags> - hwirq #nr
39  *   - <1 nr flags> - FIQ #nr
40  *     - nr=0  Physical HV timer
41  *     - nr=1  Virtual HV timer
42  *     - nr=2  Physical guest timer
43  *     - nr=3  Virtual guest timer
44  */
45
46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47
48 #include <linux/bits.h>
49 #include <linux/bitfield.h>
50 #include <linux/cpuhotplug.h>
51 #include <linux/io.h>
52 #include <linux/irqchip.h>
53 #include <linux/irqchip/arm-vgic-info.h>
54 #include <linux/irqdomain.h>
55 #include <linux/jump_label.h>
56 #include <linux/limits.h>
57 #include <linux/of_address.h>
58 #include <linux/slab.h>
59 #include <asm/apple_m1_pmu.h>
60 #include <asm/cputype.h>
61 #include <asm/exception.h>
62 #include <asm/sysreg.h>
63 #include <asm/virt.h>
64
65 #include <dt-bindings/interrupt-controller/apple-aic.h>
66
67 /*
68  * AIC v1 registers (MMIO)
69  */
70
71 #define AIC_INFO                0x0004
72 #define AIC_INFO_NR_IRQ         GENMASK(15, 0)
73
74 #define AIC_CONFIG              0x0010
75
76 #define AIC_WHOAMI              0x2000
77 #define AIC_EVENT               0x2004
78 #define AIC_EVENT_DIE           GENMASK(31, 24)
79 #define AIC_EVENT_TYPE          GENMASK(23, 16)
80 #define AIC_EVENT_NUM           GENMASK(15, 0)
81
82 #define AIC_EVENT_TYPE_FIQ      0 /* Software use */
83 #define AIC_EVENT_TYPE_IRQ      1
84 #define AIC_EVENT_TYPE_IPI      4
85 #define AIC_EVENT_IPI_OTHER     1
86 #define AIC_EVENT_IPI_SELF      2
87
88 #define AIC_IPI_SEND            0x2008
89 #define AIC_IPI_ACK             0x200c
90 #define AIC_IPI_MASK_SET        0x2024
91 #define AIC_IPI_MASK_CLR        0x2028
92
93 #define AIC_IPI_SEND_CPU(cpu)   BIT(cpu)
94
95 #define AIC_IPI_OTHER           BIT(0)
96 #define AIC_IPI_SELF            BIT(31)
97
98 #define AIC_TARGET_CPU          0x3000
99
100 #define AIC_CPU_IPI_SET(cpu)    (0x5008 + ((cpu) << 7))
101 #define AIC_CPU_IPI_CLR(cpu)    (0x500c + ((cpu) << 7))
102 #define AIC_CPU_IPI_MASK_SET(cpu) (0x5024 + ((cpu) << 7))
103 #define AIC_CPU_IPI_MASK_CLR(cpu) (0x5028 + ((cpu) << 7))
104
105 #define AIC_MAX_IRQ             0x400
106
107 /*
108  * AIC v2 registers (MMIO)
109  */
110
111 #define AIC2_VERSION            0x0000
112 #define AIC2_VERSION_VER        GENMASK(7, 0)
113
114 #define AIC2_INFO1              0x0004
115 #define AIC2_INFO1_NR_IRQ       GENMASK(15, 0)
116 #define AIC2_INFO1_LAST_DIE     GENMASK(27, 24)
117
118 #define AIC2_INFO2              0x0008
119
120 #define AIC2_INFO3              0x000c
121 #define AIC2_INFO3_MAX_IRQ      GENMASK(15, 0)
122 #define AIC2_INFO3_MAX_DIE      GENMASK(27, 24)
123
124 #define AIC2_RESET              0x0010
125 #define AIC2_RESET_RESET        BIT(0)
126
127 #define AIC2_CONFIG             0x0014
128 #define AIC2_CONFIG_ENABLE      BIT(0)
129 #define AIC2_CONFIG_PREFER_PCPU BIT(28)
130
131 #define AIC2_TIMEOUT            0x0028
132 #define AIC2_CLUSTER_PRIO       0x0030
133 #define AIC2_DELAY_GROUPS       0x0100
134
135 #define AIC2_IRQ_CFG            0x2000
136
137 /*
138  * AIC2 registers are laid out like this, starting at AIC2_IRQ_CFG:
139  *
140  * Repeat for each die:
141  *   IRQ_CFG: u32 * MAX_IRQS
142  *   SW_SET: u32 * (MAX_IRQS / 32)
143  *   SW_CLR: u32 * (MAX_IRQS / 32)
144  *   MASK_SET: u32 * (MAX_IRQS / 32)
145  *   MASK_CLR: u32 * (MAX_IRQS / 32)
146  *   HW_STATE: u32 * (MAX_IRQS / 32)
147  *
148  * This is followed by a set of event registers, each 16K page aligned.
149  * The first one is the AP event register we will use. Unfortunately,
150  * the actual implemented die count is not specified anywhere in the
151  * capability registers, so we have to explicitly specify the event
152  * register as a second reg entry in the device tree to remain
153  * forward-compatible.
154  */
155
156 #define AIC2_IRQ_CFG_TARGET     GENMASK(3, 0)
157 #define AIC2_IRQ_CFG_DELAY_IDX  GENMASK(7, 5)
158
159 #define MASK_REG(x)             (4 * ((x) >> 5))
160 #define MASK_BIT(x)             BIT((x) & GENMASK(4, 0))
161
162 /*
163  * IMP-DEF sysregs that control FIQ sources
164  */
165
166 /* IPI request registers */
167 #define SYS_IMP_APL_IPI_RR_LOCAL_EL1    sys_reg(3, 5, 15, 0, 0)
168 #define SYS_IMP_APL_IPI_RR_GLOBAL_EL1   sys_reg(3, 5, 15, 0, 1)
169 #define IPI_RR_CPU                      GENMASK(7, 0)
170 /* Cluster only used for the GLOBAL register */
171 #define IPI_RR_CLUSTER                  GENMASK(23, 16)
172 #define IPI_RR_TYPE                     GENMASK(29, 28)
173 #define IPI_RR_IMMEDIATE                0
174 #define IPI_RR_RETRACT                  1
175 #define IPI_RR_DEFERRED                 2
176 #define IPI_RR_NOWAKE                   3
177
178 /* IPI status register */
179 #define SYS_IMP_APL_IPI_SR_EL1          sys_reg(3, 5, 15, 1, 1)
180 #define IPI_SR_PENDING                  BIT(0)
181
182 /* Guest timer FIQ enable register */
183 #define SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2  sys_reg(3, 5, 15, 1, 3)
184 #define VM_TMR_FIQ_ENABLE_V             BIT(0)
185 #define VM_TMR_FIQ_ENABLE_P             BIT(1)
186
187 /* Deferred IPI countdown register */
188 #define SYS_IMP_APL_IPI_CR_EL1          sys_reg(3, 5, 15, 3, 1)
189
190 /* Uncore PMC control register */
191 #define SYS_IMP_APL_UPMCR0_EL1          sys_reg(3, 7, 15, 0, 4)
192 #define UPMCR0_IMODE                    GENMASK(18, 16)
193 #define UPMCR0_IMODE_OFF                0
194 #define UPMCR0_IMODE_AIC                2
195 #define UPMCR0_IMODE_HALT               3
196 #define UPMCR0_IMODE_FIQ                4
197
198 /* Uncore PMC status register */
199 #define SYS_IMP_APL_UPMSR_EL1           sys_reg(3, 7, 15, 6, 4)
200 #define UPMSR_IACT                      BIT(0)
201
202 /* MPIDR fields */
203 #define MPIDR_CPU(x)                    MPIDR_AFFINITY_LEVEL(x, 0)
204 #define MPIDR_CLUSTER(x)                MPIDR_AFFINITY_LEVEL(x, 1)
205
206 #define AIC_IRQ_HWIRQ(die, irq) (FIELD_PREP(AIC_EVENT_DIE, die) | \
207                                  FIELD_PREP(AIC_EVENT_TYPE, AIC_EVENT_TYPE_IRQ) | \
208                                  FIELD_PREP(AIC_EVENT_NUM, irq))
209 #define AIC_FIQ_HWIRQ(x)        (FIELD_PREP(AIC_EVENT_TYPE, AIC_EVENT_TYPE_FIQ) | \
210                                  FIELD_PREP(AIC_EVENT_NUM, x))
211 #define AIC_HWIRQ_IRQ(x)        FIELD_GET(AIC_EVENT_NUM, x)
212 #define AIC_HWIRQ_DIE(x)        FIELD_GET(AIC_EVENT_DIE, x)
213 #define AIC_NR_FIQ              6
214 #define AIC_NR_SWIPI            32
215
216 /*
217  * FIQ hwirq index definitions: FIQ sources use the DT binding defines
218  * directly, except that timers are special. At the irqchip level, the
219  * two timer types are represented by their access method: _EL0 registers
220  * or _EL02 registers. In the DT binding, the timers are represented
221  * by their purpose (HV or guest). This mapping is for when the kernel is
222  * running at EL2 (with VHE). When the kernel is running at EL1, the
223  * mapping differs and aic_irq_domain_translate() performs the remapping.
224  */
225
226 #define AIC_TMR_EL0_PHYS        AIC_TMR_HV_PHYS
227 #define AIC_TMR_EL0_VIRT        AIC_TMR_HV_VIRT
228 #define AIC_TMR_EL02_PHYS       AIC_TMR_GUEST_PHYS
229 #define AIC_TMR_EL02_VIRT       AIC_TMR_GUEST_VIRT
230
231 DEFINE_STATIC_KEY_TRUE(use_fast_ipi);
232
233 struct aic_info {
234         int version;
235
236         /* Register offsets */
237         u32 event;
238         u32 target_cpu;
239         u32 irq_cfg;
240         u32 sw_set;
241         u32 sw_clr;
242         u32 mask_set;
243         u32 mask_clr;
244
245         u32 die_stride;
246
247         /* Features */
248         bool fast_ipi;
249 };
250
251 static const struct aic_info aic1_info = {
252         .version        = 1,
253
254         .event          = AIC_EVENT,
255         .target_cpu     = AIC_TARGET_CPU,
256 };
257
258 static const struct aic_info aic1_fipi_info = {
259         .version        = 1,
260
261         .event          = AIC_EVENT,
262         .target_cpu     = AIC_TARGET_CPU,
263
264         .fast_ipi       = true,
265 };
266
267 static const struct aic_info aic2_info = {
268         .version        = 2,
269
270         .irq_cfg        = AIC2_IRQ_CFG,
271
272         .fast_ipi       = true,
273 };
274
275 static const struct of_device_id aic_info_match[] = {
276         {
277                 .compatible = "apple,t8103-aic",
278                 .data = &aic1_fipi_info,
279         },
280         {
281                 .compatible = "apple,aic",
282                 .data = &aic1_info,
283         },
284         {
285                 .compatible = "apple,aic2",
286                 .data = &aic2_info,
287         },
288         {}
289 };
290
291 struct aic_irq_chip {
292         void __iomem *base;
293         void __iomem *event;
294         struct irq_domain *hw_domain;
295         struct irq_domain *ipi_domain;
296         struct {
297                 cpumask_t aff;
298         } *fiq_aff[AIC_NR_FIQ];
299
300         int nr_irq;
301         int max_irq;
302         int nr_die;
303         int max_die;
304
305         struct aic_info info;
306 };
307
308 static DEFINE_PER_CPU(uint32_t, aic_fiq_unmasked);
309
310 static DEFINE_PER_CPU(atomic_t, aic_vipi_flag);
311 static DEFINE_PER_CPU(atomic_t, aic_vipi_enable);
312
313 static struct aic_irq_chip *aic_irqc;
314
315 static void aic_handle_ipi(struct pt_regs *regs);
316
317 static u32 aic_ic_read(struct aic_irq_chip *ic, u32 reg)
318 {
319         return readl_relaxed(ic->base + reg);
320 }
321
322 static void aic_ic_write(struct aic_irq_chip *ic, u32 reg, u32 val)
323 {
324         writel_relaxed(val, ic->base + reg);
325 }
326
327 /*
328  * IRQ irqchip
329  */
330
331 static void aic_irq_mask(struct irq_data *d)
332 {
333         irq_hw_number_t hwirq = irqd_to_hwirq(d);
334         struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
335
336         u32 off = AIC_HWIRQ_DIE(hwirq) * ic->info.die_stride;
337         u32 irq = AIC_HWIRQ_IRQ(hwirq);
338
339         aic_ic_write(ic, ic->info.mask_set + off + MASK_REG(irq), MASK_BIT(irq));
340 }
341
342 static void aic_irq_unmask(struct irq_data *d)
343 {
344         irq_hw_number_t hwirq = irqd_to_hwirq(d);
345         struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
346
347         u32 off = AIC_HWIRQ_DIE(hwirq) * ic->info.die_stride;
348         u32 irq = AIC_HWIRQ_IRQ(hwirq);
349
350         aic_ic_write(ic, ic->info.mask_clr + off + MASK_REG(irq), MASK_BIT(irq));
351 }
352
353 static void aic_irq_eoi(struct irq_data *d)
354 {
355         /*
356          * Reading the interrupt reason automatically acknowledges and masks
357          * the IRQ, so we just unmask it here if needed.
358          */
359         if (!irqd_irq_masked(d))
360                 aic_irq_unmask(d);
361 }
362
363 static void __exception_irq_entry aic_handle_irq(struct pt_regs *regs)
364 {
365         struct aic_irq_chip *ic = aic_irqc;
366         u32 event, type, irq;
367
368         do {
369                 /*
370                  * We cannot use a relaxed read here, as reads from DMA buffers
371                  * need to be ordered after the IRQ fires.
372                  */
373                 event = readl(ic->event + ic->info.event);
374                 type = FIELD_GET(AIC_EVENT_TYPE, event);
375                 irq = FIELD_GET(AIC_EVENT_NUM, event);
376
377                 if (type == AIC_EVENT_TYPE_IRQ)
378                         generic_handle_domain_irq(aic_irqc->hw_domain, event);
379                 else if (type == AIC_EVENT_TYPE_IPI && irq == 1)
380                         aic_handle_ipi(regs);
381                 else if (event != 0)
382                         pr_err_ratelimited("Unknown IRQ event %d, %d\n", type, irq);
383         } while (event);
384
385         /*
386          * vGIC maintenance interrupts end up here too, so we need to check
387          * for them separately. This should never trigger if KVM is working
388          * properly, because it will have already taken care of clearing it
389          * on guest exit before this handler runs.
390          */
391         if (is_kernel_in_hyp_mode() && (read_sysreg_s(SYS_ICH_HCR_EL2) & ICH_HCR_EN) &&
392                 read_sysreg_s(SYS_ICH_MISR_EL2) != 0) {
393                 pr_err_ratelimited("vGIC IRQ fired and not handled by KVM, disabling.\n");
394                 sysreg_clear_set_s(SYS_ICH_HCR_EL2, ICH_HCR_EN, 0);
395         }
396 }
397
398 static int aic_irq_set_affinity(struct irq_data *d,
399                                 const struct cpumask *mask_val, bool force)
400 {
401         irq_hw_number_t hwirq = irqd_to_hwirq(d);
402         struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
403         int cpu;
404
405         BUG_ON(!ic->info.target_cpu);
406
407         if (force)
408                 cpu = cpumask_first(mask_val);
409         else
410                 cpu = cpumask_any_and(mask_val, cpu_online_mask);
411
412         aic_ic_write(ic, ic->info.target_cpu + AIC_HWIRQ_IRQ(hwirq) * 4, BIT(cpu));
413         irq_data_update_effective_affinity(d, cpumask_of(cpu));
414
415         return IRQ_SET_MASK_OK;
416 }
417
418 static int aic_irq_set_type(struct irq_data *d, unsigned int type)
419 {
420         /*
421          * Some IRQs (e.g. MSIs) implicitly have edge semantics, and we don't
422          * have a way to find out the type of any given IRQ, so just allow both.
423          */
424         return (type == IRQ_TYPE_LEVEL_HIGH || type == IRQ_TYPE_EDGE_RISING) ? 0 : -EINVAL;
425 }
426
427 static struct irq_chip aic_chip = {
428         .name = "AIC",
429         .irq_mask = aic_irq_mask,
430         .irq_unmask = aic_irq_unmask,
431         .irq_eoi = aic_irq_eoi,
432         .irq_set_affinity = aic_irq_set_affinity,
433         .irq_set_type = aic_irq_set_type,
434 };
435
436 static struct irq_chip aic2_chip = {
437         .name = "AIC2",
438         .irq_mask = aic_irq_mask,
439         .irq_unmask = aic_irq_unmask,
440         .irq_eoi = aic_irq_eoi,
441         .irq_set_type = aic_irq_set_type,
442 };
443
444 /*
445  * FIQ irqchip
446  */
447
448 static unsigned long aic_fiq_get_idx(struct irq_data *d)
449 {
450         return AIC_HWIRQ_IRQ(irqd_to_hwirq(d));
451 }
452
453 static void aic_fiq_set_mask(struct irq_data *d)
454 {
455         /* Only the guest timers have real mask bits, unfortunately. */
456         switch (aic_fiq_get_idx(d)) {
457         case AIC_TMR_EL02_PHYS:
458                 sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, VM_TMR_FIQ_ENABLE_P, 0);
459                 isb();
460                 break;
461         case AIC_TMR_EL02_VIRT:
462                 sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, VM_TMR_FIQ_ENABLE_V, 0);
463                 isb();
464                 break;
465         default:
466                 break;
467         }
468 }
469
470 static void aic_fiq_clear_mask(struct irq_data *d)
471 {
472         switch (aic_fiq_get_idx(d)) {
473         case AIC_TMR_EL02_PHYS:
474                 sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, 0, VM_TMR_FIQ_ENABLE_P);
475                 isb();
476                 break;
477         case AIC_TMR_EL02_VIRT:
478                 sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, 0, VM_TMR_FIQ_ENABLE_V);
479                 isb();
480                 break;
481         default:
482                 break;
483         }
484 }
485
486 static void aic_fiq_mask(struct irq_data *d)
487 {
488         aic_fiq_set_mask(d);
489         __this_cpu_and(aic_fiq_unmasked, ~BIT(aic_fiq_get_idx(d)));
490 }
491
492 static void aic_fiq_unmask(struct irq_data *d)
493 {
494         aic_fiq_clear_mask(d);
495         __this_cpu_or(aic_fiq_unmasked, BIT(aic_fiq_get_idx(d)));
496 }
497
498 static void aic_fiq_eoi(struct irq_data *d)
499 {
500         /* We mask to ack (where we can), so we need to unmask at EOI. */
501         if (__this_cpu_read(aic_fiq_unmasked) & BIT(aic_fiq_get_idx(d)))
502                 aic_fiq_clear_mask(d);
503 }
504
505 #define TIMER_FIRING(x)                                                        \
506         (((x) & (ARCH_TIMER_CTRL_ENABLE | ARCH_TIMER_CTRL_IT_MASK |            \
507                  ARCH_TIMER_CTRL_IT_STAT)) ==                                  \
508          (ARCH_TIMER_CTRL_ENABLE | ARCH_TIMER_CTRL_IT_STAT))
509
510 static void __exception_irq_entry aic_handle_fiq(struct pt_regs *regs)
511 {
512         /*
513          * It would be really nice if we had a system register that lets us get
514          * the FIQ source state without having to peek down into sources...
515          * but such a register does not seem to exist.
516          *
517          * So, we have these potential sources to test for:
518          *  - Fast IPIs (not yet used)
519          *  - The 4 timers (CNTP, CNTV for each of HV and guest)
520          *  - Per-core PMCs (not yet supported)
521          *  - Per-cluster uncore PMCs (not yet supported)
522          *
523          * Since not dealing with any of these results in a FIQ storm,
524          * we check for everything here, even things we don't support yet.
525          */
526
527         if (read_sysreg_s(SYS_IMP_APL_IPI_SR_EL1) & IPI_SR_PENDING) {
528                 if (static_branch_likely(&use_fast_ipi)) {
529                         aic_handle_ipi(regs);
530                 } else {
531                         pr_err_ratelimited("Fast IPI fired. Acking.\n");
532                         write_sysreg_s(IPI_SR_PENDING, SYS_IMP_APL_IPI_SR_EL1);
533                 }
534         }
535
536         if (TIMER_FIRING(read_sysreg(cntp_ctl_el0)))
537                 generic_handle_domain_irq(aic_irqc->hw_domain,
538                                           AIC_FIQ_HWIRQ(AIC_TMR_EL0_PHYS));
539
540         if (TIMER_FIRING(read_sysreg(cntv_ctl_el0)))
541                 generic_handle_domain_irq(aic_irqc->hw_domain,
542                                           AIC_FIQ_HWIRQ(AIC_TMR_EL0_VIRT));
543
544         if (is_kernel_in_hyp_mode()) {
545                 uint64_t enabled = read_sysreg_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2);
546
547                 if ((enabled & VM_TMR_FIQ_ENABLE_P) &&
548                     TIMER_FIRING(read_sysreg_s(SYS_CNTP_CTL_EL02)))
549                         generic_handle_domain_irq(aic_irqc->hw_domain,
550                                                   AIC_FIQ_HWIRQ(AIC_TMR_EL02_PHYS));
551
552                 if ((enabled & VM_TMR_FIQ_ENABLE_V) &&
553                     TIMER_FIRING(read_sysreg_s(SYS_CNTV_CTL_EL02)))
554                         generic_handle_domain_irq(aic_irqc->hw_domain,
555                                                   AIC_FIQ_HWIRQ(AIC_TMR_EL02_VIRT));
556         }
557
558         if (read_sysreg_s(SYS_IMP_APL_PMCR0_EL1) & PMCR0_IACT) {
559                 int irq;
560                 if (cpumask_test_cpu(smp_processor_id(),
561                                      &aic_irqc->fiq_aff[AIC_CPU_PMU_P]->aff))
562                         irq = AIC_CPU_PMU_P;
563                 else
564                         irq = AIC_CPU_PMU_E;
565                 generic_handle_domain_irq(aic_irqc->hw_domain,
566                                           AIC_FIQ_HWIRQ(irq));
567         }
568
569         if (FIELD_GET(UPMCR0_IMODE, read_sysreg_s(SYS_IMP_APL_UPMCR0_EL1)) == UPMCR0_IMODE_FIQ &&
570                         (read_sysreg_s(SYS_IMP_APL_UPMSR_EL1) & UPMSR_IACT)) {
571                 /* Same story with uncore PMCs */
572                 pr_err_ratelimited("Uncore PMC FIQ fired. Masking.\n");
573                 sysreg_clear_set_s(SYS_IMP_APL_UPMCR0_EL1, UPMCR0_IMODE,
574                                    FIELD_PREP(UPMCR0_IMODE, UPMCR0_IMODE_OFF));
575         }
576 }
577
578 static int aic_fiq_set_type(struct irq_data *d, unsigned int type)
579 {
580         return (type == IRQ_TYPE_LEVEL_HIGH) ? 0 : -EINVAL;
581 }
582
583 static struct irq_chip fiq_chip = {
584         .name = "AIC-FIQ",
585         .irq_mask = aic_fiq_mask,
586         .irq_unmask = aic_fiq_unmask,
587         .irq_ack = aic_fiq_set_mask,
588         .irq_eoi = aic_fiq_eoi,
589         .irq_set_type = aic_fiq_set_type,
590 };
591
592 /*
593  * Main IRQ domain
594  */
595
596 static int aic_irq_domain_map(struct irq_domain *id, unsigned int irq,
597                               irq_hw_number_t hw)
598 {
599         struct aic_irq_chip *ic = id->host_data;
600         u32 type = FIELD_GET(AIC_EVENT_TYPE, hw);
601         struct irq_chip *chip = &aic_chip;
602
603         if (ic->info.version == 2)
604                 chip = &aic2_chip;
605
606         if (type == AIC_EVENT_TYPE_IRQ) {
607                 irq_domain_set_info(id, irq, hw, chip, id->host_data,
608                                     handle_fasteoi_irq, NULL, NULL);
609                 irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(irq)));
610         } else {
611                 int fiq = FIELD_GET(AIC_EVENT_NUM, hw);
612
613                 switch (fiq) {
614                 case AIC_CPU_PMU_P:
615                 case AIC_CPU_PMU_E:
616                         irq_set_percpu_devid_partition(irq, &ic->fiq_aff[fiq]->aff);
617                         break;
618                 default:
619                         irq_set_percpu_devid(irq);
620                         break;
621                 }
622
623                 irq_domain_set_info(id, irq, hw, &fiq_chip, id->host_data,
624                                     handle_percpu_devid_irq, NULL, NULL);
625         }
626
627         return 0;
628 }
629
630 static int aic_irq_domain_translate(struct irq_domain *id,
631                                     struct irq_fwspec *fwspec,
632                                     unsigned long *hwirq,
633                                     unsigned int *type)
634 {
635         struct aic_irq_chip *ic = id->host_data;
636         u32 *args;
637         u32 die = 0;
638
639         if (fwspec->param_count < 3 || fwspec->param_count > 4 ||
640             !is_of_node(fwspec->fwnode))
641                 return -EINVAL;
642
643         args = &fwspec->param[1];
644
645         if (fwspec->param_count == 4) {
646                 die = args[0];
647                 args++;
648         }
649
650         switch (fwspec->param[0]) {
651         case AIC_IRQ:
652                 if (die >= ic->nr_die)
653                         return -EINVAL;
654                 if (args[0] >= ic->nr_irq)
655                         return -EINVAL;
656                 *hwirq = AIC_IRQ_HWIRQ(die, args[0]);
657                 break;
658         case AIC_FIQ:
659                 if (die != 0)
660                         return -EINVAL;
661                 if (args[0] >= AIC_NR_FIQ)
662                         return -EINVAL;
663                 *hwirq = AIC_FIQ_HWIRQ(args[0]);
664
665                 /*
666                  * In EL1 the non-redirected registers are the guest's,
667                  * not EL2's, so remap the hwirqs to match.
668                  */
669                 if (!is_kernel_in_hyp_mode()) {
670                         switch (args[0]) {
671                         case AIC_TMR_GUEST_PHYS:
672                                 *hwirq = AIC_FIQ_HWIRQ(AIC_TMR_EL0_PHYS);
673                                 break;
674                         case AIC_TMR_GUEST_VIRT:
675                                 *hwirq = AIC_FIQ_HWIRQ(AIC_TMR_EL0_VIRT);
676                                 break;
677                         case AIC_TMR_HV_PHYS:
678                         case AIC_TMR_HV_VIRT:
679                                 return -ENOENT;
680                         default:
681                                 break;
682                         }
683                 }
684                 break;
685         default:
686                 return -EINVAL;
687         }
688
689         *type = args[1] & IRQ_TYPE_SENSE_MASK;
690
691         return 0;
692 }
693
694 static int aic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
695                                 unsigned int nr_irqs, void *arg)
696 {
697         unsigned int type = IRQ_TYPE_NONE;
698         struct irq_fwspec *fwspec = arg;
699         irq_hw_number_t hwirq;
700         int i, ret;
701
702         ret = aic_irq_domain_translate(domain, fwspec, &hwirq, &type);
703         if (ret)
704                 return ret;
705
706         for (i = 0; i < nr_irqs; i++) {
707                 ret = aic_irq_domain_map(domain, virq + i, hwirq + i);
708                 if (ret)
709                         return ret;
710         }
711
712         return 0;
713 }
714
715 static void aic_irq_domain_free(struct irq_domain *domain, unsigned int virq,
716                                 unsigned int nr_irqs)
717 {
718         int i;
719
720         for (i = 0; i < nr_irqs; i++) {
721                 struct irq_data *d = irq_domain_get_irq_data(domain, virq + i);
722
723                 irq_set_handler(virq + i, NULL);
724                 irq_domain_reset_irq_data(d);
725         }
726 }
727
728 static const struct irq_domain_ops aic_irq_domain_ops = {
729         .translate      = aic_irq_domain_translate,
730         .alloc          = aic_irq_domain_alloc,
731         .free           = aic_irq_domain_free,
732 };
733
734 /*
735  * IPI irqchip
736  */
737
738 static void aic_ipi_send_fast(int cpu)
739 {
740         u64 mpidr = cpu_logical_map(cpu);
741         u64 my_mpidr = read_cpuid_mpidr();
742         u64 cluster = MPIDR_CLUSTER(mpidr);
743         u64 idx = MPIDR_CPU(mpidr);
744
745         if (MPIDR_CLUSTER(my_mpidr) == cluster)
746                 write_sysreg_s(FIELD_PREP(IPI_RR_CPU, idx),
747                                SYS_IMP_APL_IPI_RR_LOCAL_EL1);
748         else
749                 write_sysreg_s(FIELD_PREP(IPI_RR_CPU, idx) | FIELD_PREP(IPI_RR_CLUSTER, cluster),
750                                SYS_IMP_APL_IPI_RR_GLOBAL_EL1);
751         isb();
752 }
753
754 static void aic_ipi_mask(struct irq_data *d)
755 {
756         u32 irq_bit = BIT(irqd_to_hwirq(d));
757
758         /* No specific ordering requirements needed here. */
759         atomic_andnot(irq_bit, this_cpu_ptr(&aic_vipi_enable));
760 }
761
762 static void aic_ipi_unmask(struct irq_data *d)
763 {
764         struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
765         u32 irq_bit = BIT(irqd_to_hwirq(d));
766
767         atomic_or(irq_bit, this_cpu_ptr(&aic_vipi_enable));
768
769         /*
770          * The atomic_or() above must complete before the atomic_read()
771          * below to avoid racing aic_ipi_send_mask().
772          */
773         smp_mb__after_atomic();
774
775         /*
776          * If a pending vIPI was unmasked, raise a HW IPI to ourselves.
777          * No barriers needed here since this is a self-IPI.
778          */
779         if (atomic_read(this_cpu_ptr(&aic_vipi_flag)) & irq_bit) {
780                 if (static_branch_likely(&use_fast_ipi))
781                         aic_ipi_send_fast(smp_processor_id());
782                 else
783                         aic_ic_write(ic, AIC_IPI_SEND, AIC_IPI_SEND_CPU(smp_processor_id()));
784         }
785 }
786
787 static void aic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
788 {
789         struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
790         u32 irq_bit = BIT(irqd_to_hwirq(d));
791         u32 send = 0;
792         int cpu;
793         unsigned long pending;
794
795         for_each_cpu(cpu, mask) {
796                 /*
797                  * This sequence is the mirror of the one in aic_ipi_unmask();
798                  * see the comment there. Additionally, release semantics
799                  * ensure that the vIPI flag set is ordered after any shared
800                  * memory accesses that precede it. This therefore also pairs
801                  * with the atomic_fetch_andnot in aic_handle_ipi().
802                  */
803                 pending = atomic_fetch_or_release(irq_bit, per_cpu_ptr(&aic_vipi_flag, cpu));
804
805                 /*
806                  * The atomic_fetch_or_release() above must complete before the
807                  * atomic_read() below to avoid racing aic_ipi_unmask().
808                  */
809                 smp_mb__after_atomic();
810
811                 if (!(pending & irq_bit) &&
812                     (atomic_read(per_cpu_ptr(&aic_vipi_enable, cpu)) & irq_bit)) {
813                         if (static_branch_likely(&use_fast_ipi))
814                                 aic_ipi_send_fast(cpu);
815                         else
816                                 send |= AIC_IPI_SEND_CPU(cpu);
817                 }
818         }
819
820         /*
821          * The flag writes must complete before the physical IPI is issued
822          * to another CPU. This is implied by the control dependency on
823          * the result of atomic_read_acquire() above, which is itself
824          * already ordered after the vIPI flag write.
825          */
826         if (send)
827                 aic_ic_write(ic, AIC_IPI_SEND, send);
828 }
829
830 static struct irq_chip ipi_chip = {
831         .name = "AIC-IPI",
832         .irq_mask = aic_ipi_mask,
833         .irq_unmask = aic_ipi_unmask,
834         .ipi_send_mask = aic_ipi_send_mask,
835 };
836
837 /*
838  * IPI IRQ domain
839  */
840
841 static void aic_handle_ipi(struct pt_regs *regs)
842 {
843         int i;
844         unsigned long enabled, firing;
845
846         /*
847          * Ack the IPI. We need to order this after the AIC event read, but
848          * that is enforced by normal MMIO ordering guarantees.
849          *
850          * For the Fast IPI case, this needs to be ordered before the vIPI
851          * handling below, so we need to isb();
852          */
853         if (static_branch_likely(&use_fast_ipi)) {
854                 write_sysreg_s(IPI_SR_PENDING, SYS_IMP_APL_IPI_SR_EL1);
855                 isb();
856         } else {
857                 aic_ic_write(aic_irqc, AIC_IPI_ACK, AIC_IPI_OTHER);
858         }
859
860         /*
861          * The mask read does not need to be ordered. Only we can change
862          * our own mask anyway, so no races are possible here, as long as
863          * we are properly in the interrupt handler (which is covered by
864          * the barrier that is part of the top-level AIC handler's readl()).
865          */
866         enabled = atomic_read(this_cpu_ptr(&aic_vipi_enable));
867
868         /*
869          * Clear the IPIs we are about to handle. This pairs with the
870          * atomic_fetch_or_release() in aic_ipi_send_mask(), and needs to be
871          * ordered after the aic_ic_write() above (to avoid dropping vIPIs) and
872          * before IPI handling code (to avoid races handling vIPIs before they
873          * are signaled). The former is taken care of by the release semantics
874          * of the write portion, while the latter is taken care of by the
875          * acquire semantics of the read portion.
876          */
877         firing = atomic_fetch_andnot(enabled, this_cpu_ptr(&aic_vipi_flag)) & enabled;
878
879         for_each_set_bit(i, &firing, AIC_NR_SWIPI)
880                 generic_handle_domain_irq(aic_irqc->ipi_domain, i);
881
882         /*
883          * No ordering needed here; at worst this just changes the timing of
884          * when the next IPI will be delivered.
885          */
886         if (!static_branch_likely(&use_fast_ipi))
887                 aic_ic_write(aic_irqc, AIC_IPI_MASK_CLR, AIC_IPI_OTHER);
888 }
889
890 static int aic_ipi_alloc(struct irq_domain *d, unsigned int virq,
891                          unsigned int nr_irqs, void *args)
892 {
893         int i;
894
895         for (i = 0; i < nr_irqs; i++) {
896                 irq_set_percpu_devid(virq + i);
897                 irq_domain_set_info(d, virq + i, i, &ipi_chip, d->host_data,
898                                     handle_percpu_devid_irq, NULL, NULL);
899         }
900
901         return 0;
902 }
903
904 static void aic_ipi_free(struct irq_domain *d, unsigned int virq, unsigned int nr_irqs)
905 {
906         /* Not freeing IPIs */
907 }
908
909 static const struct irq_domain_ops aic_ipi_domain_ops = {
910         .alloc = aic_ipi_alloc,
911         .free = aic_ipi_free,
912 };
913
914 static int __init aic_init_smp(struct aic_irq_chip *irqc, struct device_node *node)
915 {
916         struct irq_domain *ipi_domain;
917         int base_ipi;
918
919         ipi_domain = irq_domain_create_linear(irqc->hw_domain->fwnode, AIC_NR_SWIPI,
920                                               &aic_ipi_domain_ops, irqc);
921         if (WARN_ON(!ipi_domain))
922                 return -ENODEV;
923
924         ipi_domain->flags |= IRQ_DOMAIN_FLAG_IPI_SINGLE;
925         irq_domain_update_bus_token(ipi_domain, DOMAIN_BUS_IPI);
926
927         base_ipi = __irq_domain_alloc_irqs(ipi_domain, -1, AIC_NR_SWIPI,
928                                            NUMA_NO_NODE, NULL, false, NULL);
929
930         if (WARN_ON(!base_ipi)) {
931                 irq_domain_remove(ipi_domain);
932                 return -ENODEV;
933         }
934
935         set_smp_ipi_range(base_ipi, AIC_NR_SWIPI);
936
937         irqc->ipi_domain = ipi_domain;
938
939         return 0;
940 }
941
942 static int aic_init_cpu(unsigned int cpu)
943 {
944         /* Mask all hard-wired per-CPU IRQ/FIQ sources */
945
946         /* Pending Fast IPI FIQs */
947         write_sysreg_s(IPI_SR_PENDING, SYS_IMP_APL_IPI_SR_EL1);
948
949         /* Timer FIQs */
950         sysreg_clear_set(cntp_ctl_el0, 0, ARCH_TIMER_CTRL_IT_MASK);
951         sysreg_clear_set(cntv_ctl_el0, 0, ARCH_TIMER_CTRL_IT_MASK);
952
953         /* EL2-only (VHE mode) IRQ sources */
954         if (is_kernel_in_hyp_mode()) {
955                 /* Guest timers */
956                 sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2,
957                                    VM_TMR_FIQ_ENABLE_V | VM_TMR_FIQ_ENABLE_P, 0);
958
959                 /* vGIC maintenance IRQ */
960                 sysreg_clear_set_s(SYS_ICH_HCR_EL2, ICH_HCR_EN, 0);
961         }
962
963         /* PMC FIQ */
964         sysreg_clear_set_s(SYS_IMP_APL_PMCR0_EL1, PMCR0_IMODE | PMCR0_IACT,
965                            FIELD_PREP(PMCR0_IMODE, PMCR0_IMODE_OFF));
966
967         /* Uncore PMC FIQ */
968         sysreg_clear_set_s(SYS_IMP_APL_UPMCR0_EL1, UPMCR0_IMODE,
969                            FIELD_PREP(UPMCR0_IMODE, UPMCR0_IMODE_OFF));
970
971         /* Commit all of the above */
972         isb();
973
974         if (aic_irqc->info.version == 1) {
975                 /*
976                  * Make sure the kernel's idea of logical CPU order is the same as AIC's
977                  * If we ever end up with a mismatch here, we will have to introduce
978                  * a mapping table similar to what other irqchip drivers do.
979                  */
980                 WARN_ON(aic_ic_read(aic_irqc, AIC_WHOAMI) != smp_processor_id());
981
982                 /*
983                  * Always keep IPIs unmasked at the hardware level (except auto-masking
984                  * by AIC during processing). We manage masks at the vIPI level.
985                  * These registers only exist on AICv1, AICv2 always uses fast IPIs.
986                  */
987                 aic_ic_write(aic_irqc, AIC_IPI_ACK, AIC_IPI_SELF | AIC_IPI_OTHER);
988                 if (static_branch_likely(&use_fast_ipi)) {
989                         aic_ic_write(aic_irqc, AIC_IPI_MASK_SET, AIC_IPI_SELF | AIC_IPI_OTHER);
990                 } else {
991                         aic_ic_write(aic_irqc, AIC_IPI_MASK_SET, AIC_IPI_SELF);
992                         aic_ic_write(aic_irqc, AIC_IPI_MASK_CLR, AIC_IPI_OTHER);
993                 }
994         }
995
996         /* Initialize the local mask state */
997         __this_cpu_write(aic_fiq_unmasked, 0);
998
999         return 0;
1000 }
1001
1002 static struct gic_kvm_info vgic_info __initdata = {
1003         .type                   = GIC_V3,
1004         .no_maint_irq_mask      = true,
1005         .no_hw_deactivation     = true,
1006 };
1007
1008 static void build_fiq_affinity(struct aic_irq_chip *ic, struct device_node *aff)
1009 {
1010         int i, n;
1011         u32 fiq;
1012
1013         if (of_property_read_u32(aff, "apple,fiq-index", &fiq) ||
1014             WARN_ON(fiq >= AIC_NR_FIQ) || ic->fiq_aff[fiq])
1015                 return;
1016
1017         n = of_property_count_elems_of_size(aff, "cpus", sizeof(u32));
1018         if (WARN_ON(n < 0))
1019                 return;
1020
1021         ic->fiq_aff[fiq] = kzalloc(sizeof(*ic->fiq_aff[fiq]), GFP_KERNEL);
1022         if (!ic->fiq_aff[fiq])
1023                 return;
1024
1025         for (i = 0; i < n; i++) {
1026                 struct device_node *cpu_node;
1027                 u32 cpu_phandle;
1028                 int cpu;
1029
1030                 if (of_property_read_u32_index(aff, "cpus", i, &cpu_phandle))
1031                         continue;
1032
1033                 cpu_node = of_find_node_by_phandle(cpu_phandle);
1034                 if (WARN_ON(!cpu_node))
1035                         continue;
1036
1037                 cpu = of_cpu_node_to_id(cpu_node);
1038                 of_node_put(cpu_node);
1039                 if (WARN_ON(cpu < 0))
1040                         continue;
1041
1042                 cpumask_set_cpu(cpu, &ic->fiq_aff[fiq]->aff);
1043         }
1044 }
1045
1046 static int __init aic_of_ic_init(struct device_node *node, struct device_node *parent)
1047 {
1048         int i, die;
1049         u32 off, start_off;
1050         void __iomem *regs;
1051         struct aic_irq_chip *irqc;
1052         struct device_node *affs;
1053         const struct of_device_id *match;
1054
1055         regs = of_iomap(node, 0);
1056         if (WARN_ON(!regs))
1057                 return -EIO;
1058
1059         irqc = kzalloc(sizeof(*irqc), GFP_KERNEL);
1060         if (!irqc) {
1061                 iounmap(regs);
1062                 return -ENOMEM;
1063         }
1064
1065         irqc->base = regs;
1066
1067         match = of_match_node(aic_info_match, node);
1068         if (!match)
1069                 goto err_unmap;
1070
1071         irqc->info = *(struct aic_info *)match->data;
1072
1073         aic_irqc = irqc;
1074
1075         switch (irqc->info.version) {
1076         case 1: {
1077                 u32 info;
1078
1079                 info = aic_ic_read(irqc, AIC_INFO);
1080                 irqc->nr_irq = FIELD_GET(AIC_INFO_NR_IRQ, info);
1081                 irqc->max_irq = AIC_MAX_IRQ;
1082                 irqc->nr_die = irqc->max_die = 1;
1083
1084                 off = start_off = irqc->info.target_cpu;
1085                 off += sizeof(u32) * irqc->max_irq; /* TARGET_CPU */
1086
1087                 irqc->event = irqc->base;
1088
1089                 break;
1090         }
1091         case 2: {
1092                 u32 info1, info3;
1093
1094                 info1 = aic_ic_read(irqc, AIC2_INFO1);
1095                 info3 = aic_ic_read(irqc, AIC2_INFO3);
1096
1097                 irqc->nr_irq = FIELD_GET(AIC2_INFO1_NR_IRQ, info1);
1098                 irqc->max_irq = FIELD_GET(AIC2_INFO3_MAX_IRQ, info3);
1099                 irqc->nr_die = FIELD_GET(AIC2_INFO1_LAST_DIE, info1) + 1;
1100                 irqc->max_die = FIELD_GET(AIC2_INFO3_MAX_DIE, info3);
1101
1102                 off = start_off = irqc->info.irq_cfg;
1103                 off += sizeof(u32) * irqc->max_irq; /* IRQ_CFG */
1104
1105                 irqc->event = of_iomap(node, 1);
1106                 if (WARN_ON(!irqc->event))
1107                         goto err_unmap;
1108
1109                 break;
1110         }
1111         }
1112
1113         irqc->info.sw_set = off;
1114         off += sizeof(u32) * (irqc->max_irq >> 5); /* SW_SET */
1115         irqc->info.sw_clr = off;
1116         off += sizeof(u32) * (irqc->max_irq >> 5); /* SW_CLR */
1117         irqc->info.mask_set = off;
1118         off += sizeof(u32) * (irqc->max_irq >> 5); /* MASK_SET */
1119         irqc->info.mask_clr = off;
1120         off += sizeof(u32) * (irqc->max_irq >> 5); /* MASK_CLR */
1121         off += sizeof(u32) * (irqc->max_irq >> 5); /* HW_STATE */
1122
1123         if (irqc->info.fast_ipi)
1124                 static_branch_enable(&use_fast_ipi);
1125         else
1126                 static_branch_disable(&use_fast_ipi);
1127
1128         irqc->info.die_stride = off - start_off;
1129
1130         irqc->hw_domain = irq_domain_create_tree(of_node_to_fwnode(node),
1131                                                  &aic_irq_domain_ops, irqc);
1132         if (WARN_ON(!irqc->hw_domain))
1133                 goto err_unmap;
1134
1135         irq_domain_update_bus_token(irqc->hw_domain, DOMAIN_BUS_WIRED);
1136
1137         if (aic_init_smp(irqc, node))
1138                 goto err_remove_domain;
1139
1140         affs = of_get_child_by_name(node, "affinities");
1141         if (affs) {
1142                 struct device_node *chld;
1143
1144                 for_each_child_of_node(affs, chld)
1145                         build_fiq_affinity(irqc, chld);
1146         }
1147         of_node_put(affs);
1148
1149         set_handle_irq(aic_handle_irq);
1150         set_handle_fiq(aic_handle_fiq);
1151
1152         off = 0;
1153         for (die = 0; die < irqc->nr_die; die++) {
1154                 for (i = 0; i < BITS_TO_U32(irqc->nr_irq); i++)
1155                         aic_ic_write(irqc, irqc->info.mask_set + off + i * 4, U32_MAX);
1156                 for (i = 0; i < BITS_TO_U32(irqc->nr_irq); i++)
1157                         aic_ic_write(irqc, irqc->info.sw_clr + off + i * 4, U32_MAX);
1158                 if (irqc->info.target_cpu)
1159                         for (i = 0; i < irqc->nr_irq; i++)
1160                                 aic_ic_write(irqc, irqc->info.target_cpu + off + i * 4, 1);
1161                 off += irqc->info.die_stride;
1162         }
1163
1164         if (irqc->info.version == 2) {
1165                 u32 config = aic_ic_read(irqc, AIC2_CONFIG);
1166
1167                 config |= AIC2_CONFIG_ENABLE;
1168                 aic_ic_write(irqc, AIC2_CONFIG, config);
1169         }
1170
1171         if (!is_kernel_in_hyp_mode())
1172                 pr_info("Kernel running in EL1, mapping interrupts");
1173
1174         if (static_branch_likely(&use_fast_ipi))
1175                 pr_info("Using Fast IPIs");
1176
1177         cpuhp_setup_state(CPUHP_AP_IRQ_APPLE_AIC_STARTING,
1178                           "irqchip/apple-aic/ipi:starting",
1179                           aic_init_cpu, NULL);
1180
1181         vgic_set_kvm_info(&vgic_info);
1182
1183         pr_info("Initialized with %d/%d IRQs * %d/%d die(s), %d FIQs, %d vIPIs",
1184                 irqc->nr_irq, irqc->max_irq, irqc->nr_die, irqc->max_die, AIC_NR_FIQ, AIC_NR_SWIPI);
1185
1186         return 0;
1187
1188 err_remove_domain:
1189         irq_domain_remove(irqc->hw_domain);
1190 err_unmap:
1191         if (irqc->event && irqc->event != irqc->base)
1192                 iounmap(irqc->event);
1193         iounmap(irqc->base);
1194         kfree(irqc);
1195         return -ENODEV;
1196 }
1197
1198 IRQCHIP_DECLARE(apple_aic, "apple,aic", aic_of_ic_init);
1199 IRQCHIP_DECLARE(apple_aic2, "apple,aic2", aic_of_ic_init);