Merge tag 'drm-msm-fixes-2021-02-25' of https://gitlab.freedesktop.org/drm/msm into...
[linux-2.6-microblaze.git] / drivers / iommu / ipmmu-vmsa.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * IOMMU API for Renesas VMSA-compatible IPMMU
4  * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
5  *
6  * Copyright (C) 2014-2020 Renesas Electronics Corporation
7  */
8
9 #include <linux/bitmap.h>
10 #include <linux/delay.h>
11 #include <linux/dma-iommu.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/err.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/io-pgtable.h>
19 #include <linux/iommu.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
22 #include <linux/of_iommu.h>
23 #include <linux/of_platform.h>
24 #include <linux/platform_device.h>
25 #include <linux/sizes.h>
26 #include <linux/slab.h>
27 #include <linux/sys_soc.h>
28
29 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
30 #include <asm/dma-iommu.h>
31 #else
32 #define arm_iommu_create_mapping(...)   NULL
33 #define arm_iommu_attach_device(...)    -ENODEV
34 #define arm_iommu_release_mapping(...)  do {} while (0)
35 #define arm_iommu_detach_device(...)    do {} while (0)
36 #endif
37
38 #define IPMMU_CTX_MAX           8U
39 #define IPMMU_CTX_INVALID       -1
40
41 #define IPMMU_UTLB_MAX          48U
42
43 struct ipmmu_features {
44         bool use_ns_alias_offset;
45         bool has_cache_leaf_nodes;
46         unsigned int number_of_contexts;
47         unsigned int num_utlbs;
48         bool setup_imbuscr;
49         bool twobit_imttbcr_sl0;
50         bool reserved_context;
51         bool cache_snoop;
52         unsigned int ctx_offset_base;
53         unsigned int ctx_offset_stride;
54         unsigned int utlb_offset_base;
55 };
56
57 struct ipmmu_vmsa_device {
58         struct device *dev;
59         void __iomem *base;
60         struct iommu_device iommu;
61         struct ipmmu_vmsa_device *root;
62         const struct ipmmu_features *features;
63         unsigned int num_ctx;
64         spinlock_t lock;                        /* Protects ctx and domains[] */
65         DECLARE_BITMAP(ctx, IPMMU_CTX_MAX);
66         struct ipmmu_vmsa_domain *domains[IPMMU_CTX_MAX];
67         s8 utlb_ctx[IPMMU_UTLB_MAX];
68
69         struct iommu_group *group;
70         struct dma_iommu_mapping *mapping;
71 };
72
73 struct ipmmu_vmsa_domain {
74         struct ipmmu_vmsa_device *mmu;
75         struct iommu_domain io_domain;
76
77         struct io_pgtable_cfg cfg;
78         struct io_pgtable_ops *iop;
79
80         unsigned int context_id;
81         struct mutex mutex;                     /* Protects mappings */
82 };
83
84 static struct ipmmu_vmsa_domain *to_vmsa_domain(struct iommu_domain *dom)
85 {
86         return container_of(dom, struct ipmmu_vmsa_domain, io_domain);
87 }
88
89 static struct ipmmu_vmsa_device *to_ipmmu(struct device *dev)
90 {
91         return dev_iommu_priv_get(dev);
92 }
93
94 #define TLB_LOOP_TIMEOUT                100     /* 100us */
95
96 /* -----------------------------------------------------------------------------
97  * Registers Definition
98  */
99
100 #define IM_NS_ALIAS_OFFSET              0x800
101
102 /* MMU "context" registers */
103 #define IMCTR                           0x0000          /* R-Car Gen2/3 */
104 #define IMCTR_INTEN                     (1 << 2)        /* R-Car Gen2/3 */
105 #define IMCTR_FLUSH                     (1 << 1)        /* R-Car Gen2/3 */
106 #define IMCTR_MMUEN                     (1 << 0)        /* R-Car Gen2/3 */
107
108 #define IMTTBCR                         0x0008          /* R-Car Gen2/3 */
109 #define IMTTBCR_EAE                     (1 << 31)       /* R-Car Gen2/3 */
110 #define IMTTBCR_SH0_INNER_SHAREABLE     (3 << 12)       /* R-Car Gen2 only */
111 #define IMTTBCR_ORGN0_WB_WA             (1 << 10)       /* R-Car Gen2 only */
112 #define IMTTBCR_IRGN0_WB_WA             (1 << 8)        /* R-Car Gen2 only */
113 #define IMTTBCR_SL0_TWOBIT_LVL_1        (2 << 6)        /* R-Car Gen3 only */
114 #define IMTTBCR_SL0_LVL_1               (1 << 4)        /* R-Car Gen2 only */
115
116 #define IMBUSCR                         0x000c          /* R-Car Gen2 only */
117 #define IMBUSCR_DVM                     (1 << 2)        /* R-Car Gen2 only */
118 #define IMBUSCR_BUSSEL_MASK             (3 << 0)        /* R-Car Gen2 only */
119
120 #define IMTTLBR0                        0x0010          /* R-Car Gen2/3 */
121 #define IMTTUBR0                        0x0014          /* R-Car Gen2/3 */
122
123 #define IMSTR                           0x0020          /* R-Car Gen2/3 */
124 #define IMSTR_MHIT                      (1 << 4)        /* R-Car Gen2/3 */
125 #define IMSTR_ABORT                     (1 << 2)        /* R-Car Gen2/3 */
126 #define IMSTR_PF                        (1 << 1)        /* R-Car Gen2/3 */
127 #define IMSTR_TF                        (1 << 0)        /* R-Car Gen2/3 */
128
129 #define IMMAIR0                         0x0028          /* R-Car Gen2/3 */
130
131 #define IMELAR                          0x0030          /* R-Car Gen2/3, IMEAR on R-Car Gen2 */
132 #define IMEUAR                          0x0034          /* R-Car Gen3 only */
133
134 /* uTLB registers */
135 #define IMUCTR(n)                       ((n) < 32 ? IMUCTR0(n) : IMUCTR32(n))
136 #define IMUCTR0(n)                      (0x0300 + ((n) * 16))           /* R-Car Gen2/3 */
137 #define IMUCTR32(n)                     (0x0600 + (((n) - 32) * 16))    /* R-Car Gen3 only */
138 #define IMUCTR_TTSEL_MMU(n)             ((n) << 4)      /* R-Car Gen2/3 */
139 #define IMUCTR_FLUSH                    (1 << 1)        /* R-Car Gen2/3 */
140 #define IMUCTR_MMUEN                    (1 << 0)        /* R-Car Gen2/3 */
141
142 #define IMUASID(n)                      ((n) < 32 ? IMUASID0(n) : IMUASID32(n))
143 #define IMUASID0(n)                     (0x0308 + ((n) * 16))           /* R-Car Gen2/3 */
144 #define IMUASID32(n)                    (0x0608 + (((n) - 32) * 16))    /* R-Car Gen3 only */
145
146 /* -----------------------------------------------------------------------------
147  * Root device handling
148  */
149
150 static struct platform_driver ipmmu_driver;
151
152 static bool ipmmu_is_root(struct ipmmu_vmsa_device *mmu)
153 {
154         return mmu->root == mmu;
155 }
156
157 static int __ipmmu_check_device(struct device *dev, void *data)
158 {
159         struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
160         struct ipmmu_vmsa_device **rootp = data;
161
162         if (ipmmu_is_root(mmu))
163                 *rootp = mmu;
164
165         return 0;
166 }
167
168 static struct ipmmu_vmsa_device *ipmmu_find_root(void)
169 {
170         struct ipmmu_vmsa_device *root = NULL;
171
172         return driver_for_each_device(&ipmmu_driver.driver, NULL, &root,
173                                       __ipmmu_check_device) == 0 ? root : NULL;
174 }
175
176 /* -----------------------------------------------------------------------------
177  * Read/Write Access
178  */
179
180 static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset)
181 {
182         return ioread32(mmu->base + offset);
183 }
184
185 static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset,
186                         u32 data)
187 {
188         iowrite32(data, mmu->base + offset);
189 }
190
191 static unsigned int ipmmu_ctx_reg(struct ipmmu_vmsa_device *mmu,
192                                   unsigned int context_id, unsigned int reg)
193 {
194         return mmu->features->ctx_offset_base +
195                context_id * mmu->features->ctx_offset_stride + reg;
196 }
197
198 static u32 ipmmu_ctx_read(struct ipmmu_vmsa_device *mmu,
199                           unsigned int context_id, unsigned int reg)
200 {
201         return ipmmu_read(mmu, ipmmu_ctx_reg(mmu, context_id, reg));
202 }
203
204 static void ipmmu_ctx_write(struct ipmmu_vmsa_device *mmu,
205                             unsigned int context_id, unsigned int reg, u32 data)
206 {
207         ipmmu_write(mmu, ipmmu_ctx_reg(mmu, context_id, reg), data);
208 }
209
210 static u32 ipmmu_ctx_read_root(struct ipmmu_vmsa_domain *domain,
211                                unsigned int reg)
212 {
213         return ipmmu_ctx_read(domain->mmu->root, domain->context_id, reg);
214 }
215
216 static void ipmmu_ctx_write_root(struct ipmmu_vmsa_domain *domain,
217                                  unsigned int reg, u32 data)
218 {
219         ipmmu_ctx_write(domain->mmu->root, domain->context_id, reg, data);
220 }
221
222 static void ipmmu_ctx_write_all(struct ipmmu_vmsa_domain *domain,
223                                 unsigned int reg, u32 data)
224 {
225         if (domain->mmu != domain->mmu->root)
226                 ipmmu_ctx_write(domain->mmu, domain->context_id, reg, data);
227
228         ipmmu_ctx_write(domain->mmu->root, domain->context_id, reg, data);
229 }
230
231 static u32 ipmmu_utlb_reg(struct ipmmu_vmsa_device *mmu, unsigned int reg)
232 {
233         return mmu->features->utlb_offset_base + reg;
234 }
235
236 static void ipmmu_imuasid_write(struct ipmmu_vmsa_device *mmu,
237                                 unsigned int utlb, u32 data)
238 {
239         ipmmu_write(mmu, ipmmu_utlb_reg(mmu, IMUASID(utlb)), data);
240 }
241
242 static void ipmmu_imuctr_write(struct ipmmu_vmsa_device *mmu,
243                                unsigned int utlb, u32 data)
244 {
245         ipmmu_write(mmu, ipmmu_utlb_reg(mmu, IMUCTR(utlb)), data);
246 }
247
248 /* -----------------------------------------------------------------------------
249  * TLB and microTLB Management
250  */
251
252 /* Wait for any pending TLB invalidations to complete */
253 static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain)
254 {
255         unsigned int count = 0;
256
257         while (ipmmu_ctx_read_root(domain, IMCTR) & IMCTR_FLUSH) {
258                 cpu_relax();
259                 if (++count == TLB_LOOP_TIMEOUT) {
260                         dev_err_ratelimited(domain->mmu->dev,
261                         "TLB sync timed out -- MMU may be deadlocked\n");
262                         return;
263                 }
264                 udelay(1);
265         }
266 }
267
268 static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain)
269 {
270         u32 reg;
271
272         reg = ipmmu_ctx_read_root(domain, IMCTR);
273         reg |= IMCTR_FLUSH;
274         ipmmu_ctx_write_all(domain, IMCTR, reg);
275
276         ipmmu_tlb_sync(domain);
277 }
278
279 /*
280  * Enable MMU translation for the microTLB.
281  */
282 static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain,
283                               unsigned int utlb)
284 {
285         struct ipmmu_vmsa_device *mmu = domain->mmu;
286
287         /*
288          * TODO: Reference-count the microTLB as several bus masters can be
289          * connected to the same microTLB.
290          */
291
292         /* TODO: What should we set the ASID to ? */
293         ipmmu_imuasid_write(mmu, utlb, 0);
294         /* TODO: Do we need to flush the microTLB ? */
295         ipmmu_imuctr_write(mmu, utlb, IMUCTR_TTSEL_MMU(domain->context_id) |
296                                       IMUCTR_FLUSH | IMUCTR_MMUEN);
297         mmu->utlb_ctx[utlb] = domain->context_id;
298 }
299
300 /*
301  * Disable MMU translation for the microTLB.
302  */
303 static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain *domain,
304                                unsigned int utlb)
305 {
306         struct ipmmu_vmsa_device *mmu = domain->mmu;
307
308         ipmmu_imuctr_write(mmu, utlb, 0);
309         mmu->utlb_ctx[utlb] = IPMMU_CTX_INVALID;
310 }
311
312 static void ipmmu_tlb_flush_all(void *cookie)
313 {
314         struct ipmmu_vmsa_domain *domain = cookie;
315
316         ipmmu_tlb_invalidate(domain);
317 }
318
319 static void ipmmu_tlb_flush(unsigned long iova, size_t size,
320                                 size_t granule, void *cookie)
321 {
322         ipmmu_tlb_flush_all(cookie);
323 }
324
325 static const struct iommu_flush_ops ipmmu_flush_ops = {
326         .tlb_flush_all = ipmmu_tlb_flush_all,
327         .tlb_flush_walk = ipmmu_tlb_flush,
328 };
329
330 /* -----------------------------------------------------------------------------
331  * Domain/Context Management
332  */
333
334 static int ipmmu_domain_allocate_context(struct ipmmu_vmsa_device *mmu,
335                                          struct ipmmu_vmsa_domain *domain)
336 {
337         unsigned long flags;
338         int ret;
339
340         spin_lock_irqsave(&mmu->lock, flags);
341
342         ret = find_first_zero_bit(mmu->ctx, mmu->num_ctx);
343         if (ret != mmu->num_ctx) {
344                 mmu->domains[ret] = domain;
345                 set_bit(ret, mmu->ctx);
346         } else
347                 ret = -EBUSY;
348
349         spin_unlock_irqrestore(&mmu->lock, flags);
350
351         return ret;
352 }
353
354 static void ipmmu_domain_free_context(struct ipmmu_vmsa_device *mmu,
355                                       unsigned int context_id)
356 {
357         unsigned long flags;
358
359         spin_lock_irqsave(&mmu->lock, flags);
360
361         clear_bit(context_id, mmu->ctx);
362         mmu->domains[context_id] = NULL;
363
364         spin_unlock_irqrestore(&mmu->lock, flags);
365 }
366
367 static void ipmmu_domain_setup_context(struct ipmmu_vmsa_domain *domain)
368 {
369         u64 ttbr;
370         u32 tmp;
371
372         /* TTBR0 */
373         ttbr = domain->cfg.arm_lpae_s1_cfg.ttbr;
374         ipmmu_ctx_write_root(domain, IMTTLBR0, ttbr);
375         ipmmu_ctx_write_root(domain, IMTTUBR0, ttbr >> 32);
376
377         /*
378          * TTBCR
379          * We use long descriptors and allocate the whole 32-bit VA space to
380          * TTBR0.
381          */
382         if (domain->mmu->features->twobit_imttbcr_sl0)
383                 tmp = IMTTBCR_SL0_TWOBIT_LVL_1;
384         else
385                 tmp = IMTTBCR_SL0_LVL_1;
386
387         if (domain->mmu->features->cache_snoop)
388                 tmp |= IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA |
389                        IMTTBCR_IRGN0_WB_WA;
390
391         ipmmu_ctx_write_root(domain, IMTTBCR, IMTTBCR_EAE | tmp);
392
393         /* MAIR0 */
394         ipmmu_ctx_write_root(domain, IMMAIR0,
395                              domain->cfg.arm_lpae_s1_cfg.mair);
396
397         /* IMBUSCR */
398         if (domain->mmu->features->setup_imbuscr)
399                 ipmmu_ctx_write_root(domain, IMBUSCR,
400                                      ipmmu_ctx_read_root(domain, IMBUSCR) &
401                                      ~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK));
402
403         /*
404          * IMSTR
405          * Clear all interrupt flags.
406          */
407         ipmmu_ctx_write_root(domain, IMSTR, ipmmu_ctx_read_root(domain, IMSTR));
408
409         /*
410          * IMCTR
411          * Enable the MMU and interrupt generation. The long-descriptor
412          * translation table format doesn't use TEX remapping. Don't enable AF
413          * software management as we have no use for it. Flush the TLB as
414          * required when modifying the context registers.
415          */
416         ipmmu_ctx_write_all(domain, IMCTR,
417                             IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN);
418 }
419
420 static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain)
421 {
422         int ret;
423
424         /*
425          * Allocate the page table operations.
426          *
427          * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory
428          * access, Long-descriptor format" that the NStable bit being set in a
429          * table descriptor will result in the NStable and NS bits of all child
430          * entries being ignored and considered as being set. The IPMMU seems
431          * not to comply with this, as it generates a secure access page fault
432          * if any of the NStable and NS bits isn't set when running in
433          * non-secure mode.
434          */
435         domain->cfg.quirks = IO_PGTABLE_QUIRK_ARM_NS;
436         domain->cfg.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K;
437         domain->cfg.ias = 32;
438         domain->cfg.oas = 40;
439         domain->cfg.tlb = &ipmmu_flush_ops;
440         domain->io_domain.geometry.aperture_end = DMA_BIT_MASK(32);
441         domain->io_domain.geometry.force_aperture = true;
442         /*
443          * TODO: Add support for coherent walk through CCI with DVM and remove
444          * cache handling. For now, delegate it to the io-pgtable code.
445          */
446         domain->cfg.coherent_walk = false;
447         domain->cfg.iommu_dev = domain->mmu->root->dev;
448
449         /*
450          * Find an unused context.
451          */
452         ret = ipmmu_domain_allocate_context(domain->mmu->root, domain);
453         if (ret < 0)
454                 return ret;
455
456         domain->context_id = ret;
457
458         domain->iop = alloc_io_pgtable_ops(ARM_32_LPAE_S1, &domain->cfg,
459                                            domain);
460         if (!domain->iop) {
461                 ipmmu_domain_free_context(domain->mmu->root,
462                                           domain->context_id);
463                 return -EINVAL;
464         }
465
466         ipmmu_domain_setup_context(domain);
467         return 0;
468 }
469
470 static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain)
471 {
472         if (!domain->mmu)
473                 return;
474
475         /*
476          * Disable the context. Flush the TLB as required when modifying the
477          * context registers.
478          *
479          * TODO: Is TLB flush really needed ?
480          */
481         ipmmu_ctx_write_all(domain, IMCTR, IMCTR_FLUSH);
482         ipmmu_tlb_sync(domain);
483         ipmmu_domain_free_context(domain->mmu->root, domain->context_id);
484 }
485
486 /* -----------------------------------------------------------------------------
487  * Fault Handling
488  */
489
490 static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain)
491 {
492         const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF;
493         struct ipmmu_vmsa_device *mmu = domain->mmu;
494         unsigned long iova;
495         u32 status;
496
497         status = ipmmu_ctx_read_root(domain, IMSTR);
498         if (!(status & err_mask))
499                 return IRQ_NONE;
500
501         iova = ipmmu_ctx_read_root(domain, IMELAR);
502         if (IS_ENABLED(CONFIG_64BIT))
503                 iova |= (u64)ipmmu_ctx_read_root(domain, IMEUAR) << 32;
504
505         /*
506          * Clear the error status flags. Unlike traditional interrupt flag
507          * registers that must be cleared by writing 1, this status register
508          * seems to require 0. The error address register must be read before,
509          * otherwise its value will be 0.
510          */
511         ipmmu_ctx_write_root(domain, IMSTR, 0);
512
513         /* Log fatal errors. */
514         if (status & IMSTR_MHIT)
515                 dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%lx\n",
516                                     iova);
517         if (status & IMSTR_ABORT)
518                 dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%lx\n",
519                                     iova);
520
521         if (!(status & (IMSTR_PF | IMSTR_TF)))
522                 return IRQ_NONE;
523
524         /*
525          * Try to handle page faults and translation faults.
526          *
527          * TODO: We need to look up the faulty device based on the I/O VA. Use
528          * the IOMMU device for now.
529          */
530         if (!report_iommu_fault(&domain->io_domain, mmu->dev, iova, 0))
531                 return IRQ_HANDLED;
532
533         dev_err_ratelimited(mmu->dev,
534                             "Unhandled fault: status 0x%08x iova 0x%lx\n",
535                             status, iova);
536
537         return IRQ_HANDLED;
538 }
539
540 static irqreturn_t ipmmu_irq(int irq, void *dev)
541 {
542         struct ipmmu_vmsa_device *mmu = dev;
543         irqreturn_t status = IRQ_NONE;
544         unsigned int i;
545         unsigned long flags;
546
547         spin_lock_irqsave(&mmu->lock, flags);
548
549         /*
550          * Check interrupts for all active contexts.
551          */
552         for (i = 0; i < mmu->num_ctx; i++) {
553                 if (!mmu->domains[i])
554                         continue;
555                 if (ipmmu_domain_irq(mmu->domains[i]) == IRQ_HANDLED)
556                         status = IRQ_HANDLED;
557         }
558
559         spin_unlock_irqrestore(&mmu->lock, flags);
560
561         return status;
562 }
563
564 /* -----------------------------------------------------------------------------
565  * IOMMU Operations
566  */
567
568 static struct iommu_domain *__ipmmu_domain_alloc(unsigned type)
569 {
570         struct ipmmu_vmsa_domain *domain;
571
572         domain = kzalloc(sizeof(*domain), GFP_KERNEL);
573         if (!domain)
574                 return NULL;
575
576         mutex_init(&domain->mutex);
577
578         return &domain->io_domain;
579 }
580
581 static struct iommu_domain *ipmmu_domain_alloc(unsigned type)
582 {
583         struct iommu_domain *io_domain = NULL;
584
585         switch (type) {
586         case IOMMU_DOMAIN_UNMANAGED:
587                 io_domain = __ipmmu_domain_alloc(type);
588                 break;
589
590         case IOMMU_DOMAIN_DMA:
591                 io_domain = __ipmmu_domain_alloc(type);
592                 if (io_domain && iommu_get_dma_cookie(io_domain)) {
593                         kfree(io_domain);
594                         io_domain = NULL;
595                 }
596                 break;
597         }
598
599         return io_domain;
600 }
601
602 static void ipmmu_domain_free(struct iommu_domain *io_domain)
603 {
604         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
605
606         /*
607          * Free the domain resources. We assume that all devices have already
608          * been detached.
609          */
610         iommu_put_dma_cookie(io_domain);
611         ipmmu_domain_destroy_context(domain);
612         free_io_pgtable_ops(domain->iop);
613         kfree(domain);
614 }
615
616 static int ipmmu_attach_device(struct iommu_domain *io_domain,
617                                struct device *dev)
618 {
619         struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
620         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
621         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
622         unsigned int i;
623         int ret = 0;
624
625         if (!mmu) {
626                 dev_err(dev, "Cannot attach to IPMMU\n");
627                 return -ENXIO;
628         }
629
630         mutex_lock(&domain->mutex);
631
632         if (!domain->mmu) {
633                 /* The domain hasn't been used yet, initialize it. */
634                 domain->mmu = mmu;
635                 ret = ipmmu_domain_init_context(domain);
636                 if (ret < 0) {
637                         dev_err(dev, "Unable to initialize IPMMU context\n");
638                         domain->mmu = NULL;
639                 } else {
640                         dev_info(dev, "Using IPMMU context %u\n",
641                                  domain->context_id);
642                 }
643         } else if (domain->mmu != mmu) {
644                 /*
645                  * Something is wrong, we can't attach two devices using
646                  * different IOMMUs to the same domain.
647                  */
648                 dev_err(dev, "Can't attach IPMMU %s to domain on IPMMU %s\n",
649                         dev_name(mmu->dev), dev_name(domain->mmu->dev));
650                 ret = -EINVAL;
651         } else
652                 dev_info(dev, "Reusing IPMMU context %u\n", domain->context_id);
653
654         mutex_unlock(&domain->mutex);
655
656         if (ret < 0)
657                 return ret;
658
659         for (i = 0; i < fwspec->num_ids; ++i)
660                 ipmmu_utlb_enable(domain, fwspec->ids[i]);
661
662         return 0;
663 }
664
665 static void ipmmu_detach_device(struct iommu_domain *io_domain,
666                                 struct device *dev)
667 {
668         struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
669         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
670         unsigned int i;
671
672         for (i = 0; i < fwspec->num_ids; ++i)
673                 ipmmu_utlb_disable(domain, fwspec->ids[i]);
674
675         /*
676          * TODO: Optimize by disabling the context when no device is attached.
677          */
678 }
679
680 static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova,
681                      phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
682 {
683         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
684
685         if (!domain)
686                 return -ENODEV;
687
688         return domain->iop->map(domain->iop, iova, paddr, size, prot, gfp);
689 }
690
691 static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova,
692                           size_t size, struct iommu_iotlb_gather *gather)
693 {
694         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
695
696         return domain->iop->unmap(domain->iop, iova, size, gather);
697 }
698
699 static void ipmmu_flush_iotlb_all(struct iommu_domain *io_domain)
700 {
701         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
702
703         if (domain->mmu)
704                 ipmmu_tlb_flush_all(domain);
705 }
706
707 static void ipmmu_iotlb_sync(struct iommu_domain *io_domain,
708                              struct iommu_iotlb_gather *gather)
709 {
710         ipmmu_flush_iotlb_all(io_domain);
711 }
712
713 static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain,
714                                       dma_addr_t iova)
715 {
716         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
717
718         /* TODO: Is locking needed ? */
719
720         return domain->iop->iova_to_phys(domain->iop, iova);
721 }
722
723 static int ipmmu_init_platform_device(struct device *dev,
724                                       struct of_phandle_args *args)
725 {
726         struct platform_device *ipmmu_pdev;
727
728         ipmmu_pdev = of_find_device_by_node(args->np);
729         if (!ipmmu_pdev)
730                 return -ENODEV;
731
732         dev_iommu_priv_set(dev, platform_get_drvdata(ipmmu_pdev));
733
734         return 0;
735 }
736
737 static const struct soc_device_attribute soc_needs_opt_in[] = {
738         { .family = "R-Car Gen3", },
739         { .family = "RZ/G2", },
740         { /* sentinel */ }
741 };
742
743 static const struct soc_device_attribute soc_denylist[] = {
744         { .soc_id = "r8a774a1", },
745         { .soc_id = "r8a7795", .revision = "ES1.*" },
746         { .soc_id = "r8a7795", .revision = "ES2.*" },
747         { .soc_id = "r8a7796", },
748         { /* sentinel */ }
749 };
750
751 static const char * const devices_allowlist[] = {
752         "ee100000.mmc",
753         "ee120000.mmc",
754         "ee140000.mmc",
755         "ee160000.mmc"
756 };
757
758 static bool ipmmu_device_is_allowed(struct device *dev)
759 {
760         unsigned int i;
761
762         /*
763          * R-Car Gen3 and RZ/G2 use the allow list to opt-in devices.
764          * For Other SoCs, this returns true anyway.
765          */
766         if (!soc_device_match(soc_needs_opt_in))
767                 return true;
768
769         /* Check whether this SoC can use the IPMMU correctly or not */
770         if (soc_device_match(soc_denylist))
771                 return false;
772
773         /* Check whether this device can work with the IPMMU */
774         for (i = 0; i < ARRAY_SIZE(devices_allowlist); i++) {
775                 if (!strcmp(dev_name(dev), devices_allowlist[i]))
776                         return true;
777         }
778
779         /* Otherwise, do not allow use of IPMMU */
780         return false;
781 }
782
783 static int ipmmu_of_xlate(struct device *dev,
784                           struct of_phandle_args *spec)
785 {
786         if (!ipmmu_device_is_allowed(dev))
787                 return -ENODEV;
788
789         iommu_fwspec_add_ids(dev, spec->args, 1);
790
791         /* Initialize once - xlate() will call multiple times */
792         if (to_ipmmu(dev))
793                 return 0;
794
795         return ipmmu_init_platform_device(dev, spec);
796 }
797
798 static int ipmmu_init_arm_mapping(struct device *dev)
799 {
800         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
801         int ret;
802
803         /*
804          * Create the ARM mapping, used by the ARM DMA mapping core to allocate
805          * VAs. This will allocate a corresponding IOMMU domain.
806          *
807          * TODO:
808          * - Create one mapping per context (TLB).
809          * - Make the mapping size configurable ? We currently use a 2GB mapping
810          *   at a 1GB offset to ensure that NULL VAs will fault.
811          */
812         if (!mmu->mapping) {
813                 struct dma_iommu_mapping *mapping;
814
815                 mapping = arm_iommu_create_mapping(&platform_bus_type,
816                                                    SZ_1G, SZ_2G);
817                 if (IS_ERR(mapping)) {
818                         dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n");
819                         ret = PTR_ERR(mapping);
820                         goto error;
821                 }
822
823                 mmu->mapping = mapping;
824         }
825
826         /* Attach the ARM VA mapping to the device. */
827         ret = arm_iommu_attach_device(dev, mmu->mapping);
828         if (ret < 0) {
829                 dev_err(dev, "Failed to attach device to VA mapping\n");
830                 goto error;
831         }
832
833         return 0;
834
835 error:
836         if (mmu->mapping)
837                 arm_iommu_release_mapping(mmu->mapping);
838
839         return ret;
840 }
841
842 static struct iommu_device *ipmmu_probe_device(struct device *dev)
843 {
844         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
845
846         /*
847          * Only let through devices that have been verified in xlate()
848          */
849         if (!mmu)
850                 return ERR_PTR(-ENODEV);
851
852         return &mmu->iommu;
853 }
854
855 static void ipmmu_probe_finalize(struct device *dev)
856 {
857         int ret = 0;
858
859         if (IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA))
860                 ret = ipmmu_init_arm_mapping(dev);
861
862         if (ret)
863                 dev_err(dev, "Can't create IOMMU mapping - DMA-OPS will not work\n");
864 }
865
866 static void ipmmu_release_device(struct device *dev)
867 {
868         arm_iommu_detach_device(dev);
869 }
870
871 static struct iommu_group *ipmmu_find_group(struct device *dev)
872 {
873         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
874         struct iommu_group *group;
875
876         if (mmu->group)
877                 return iommu_group_ref_get(mmu->group);
878
879         group = iommu_group_alloc();
880         if (!IS_ERR(group))
881                 mmu->group = group;
882
883         return group;
884 }
885
886 static const struct iommu_ops ipmmu_ops = {
887         .domain_alloc = ipmmu_domain_alloc,
888         .domain_free = ipmmu_domain_free,
889         .attach_dev = ipmmu_attach_device,
890         .detach_dev = ipmmu_detach_device,
891         .map = ipmmu_map,
892         .unmap = ipmmu_unmap,
893         .flush_iotlb_all = ipmmu_flush_iotlb_all,
894         .iotlb_sync = ipmmu_iotlb_sync,
895         .iova_to_phys = ipmmu_iova_to_phys,
896         .probe_device = ipmmu_probe_device,
897         .release_device = ipmmu_release_device,
898         .probe_finalize = ipmmu_probe_finalize,
899         .device_group = IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA)
900                         ? generic_device_group : ipmmu_find_group,
901         .pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K,
902         .of_xlate = ipmmu_of_xlate,
903 };
904
905 /* -----------------------------------------------------------------------------
906  * Probe/remove and init
907  */
908
909 static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu)
910 {
911         unsigned int i;
912
913         /* Disable all contexts. */
914         for (i = 0; i < mmu->num_ctx; ++i)
915                 ipmmu_ctx_write(mmu, i, IMCTR, 0);
916 }
917
918 static const struct ipmmu_features ipmmu_features_default = {
919         .use_ns_alias_offset = true,
920         .has_cache_leaf_nodes = false,
921         .number_of_contexts = 1, /* software only tested with one context */
922         .num_utlbs = 32,
923         .setup_imbuscr = true,
924         .twobit_imttbcr_sl0 = false,
925         .reserved_context = false,
926         .cache_snoop = true,
927         .ctx_offset_base = 0,
928         .ctx_offset_stride = 0x40,
929         .utlb_offset_base = 0,
930 };
931
932 static const struct ipmmu_features ipmmu_features_rcar_gen3 = {
933         .use_ns_alias_offset = false,
934         .has_cache_leaf_nodes = true,
935         .number_of_contexts = 8,
936         .num_utlbs = 48,
937         .setup_imbuscr = false,
938         .twobit_imttbcr_sl0 = true,
939         .reserved_context = true,
940         .cache_snoop = false,
941         .ctx_offset_base = 0,
942         .ctx_offset_stride = 0x40,
943         .utlb_offset_base = 0,
944 };
945
946 static const struct of_device_id ipmmu_of_ids[] = {
947         {
948                 .compatible = "renesas,ipmmu-vmsa",
949                 .data = &ipmmu_features_default,
950         }, {
951                 .compatible = "renesas,ipmmu-r8a774a1",
952                 .data = &ipmmu_features_rcar_gen3,
953         }, {
954                 .compatible = "renesas,ipmmu-r8a774b1",
955                 .data = &ipmmu_features_rcar_gen3,
956         }, {
957                 .compatible = "renesas,ipmmu-r8a774c0",
958                 .data = &ipmmu_features_rcar_gen3,
959         }, {
960                 .compatible = "renesas,ipmmu-r8a774e1",
961                 .data = &ipmmu_features_rcar_gen3,
962         }, {
963                 .compatible = "renesas,ipmmu-r8a7795",
964                 .data = &ipmmu_features_rcar_gen3,
965         }, {
966                 .compatible = "renesas,ipmmu-r8a7796",
967                 .data = &ipmmu_features_rcar_gen3,
968         }, {
969                 .compatible = "renesas,ipmmu-r8a77961",
970                 .data = &ipmmu_features_rcar_gen3,
971         }, {
972                 .compatible = "renesas,ipmmu-r8a77965",
973                 .data = &ipmmu_features_rcar_gen3,
974         }, {
975                 .compatible = "renesas,ipmmu-r8a77970",
976                 .data = &ipmmu_features_rcar_gen3,
977         }, {
978                 .compatible = "renesas,ipmmu-r8a77990",
979                 .data = &ipmmu_features_rcar_gen3,
980         }, {
981                 .compatible = "renesas,ipmmu-r8a77995",
982                 .data = &ipmmu_features_rcar_gen3,
983         }, {
984                 /* Terminator */
985         },
986 };
987
988 static int ipmmu_probe(struct platform_device *pdev)
989 {
990         struct ipmmu_vmsa_device *mmu;
991         struct resource *res;
992         int irq;
993         int ret;
994
995         mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL);
996         if (!mmu) {
997                 dev_err(&pdev->dev, "cannot allocate device data\n");
998                 return -ENOMEM;
999         }
1000
1001         mmu->dev = &pdev->dev;
1002         spin_lock_init(&mmu->lock);
1003         bitmap_zero(mmu->ctx, IPMMU_CTX_MAX);
1004         mmu->features = of_device_get_match_data(&pdev->dev);
1005         memset(mmu->utlb_ctx, IPMMU_CTX_INVALID, mmu->features->num_utlbs);
1006         dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
1007
1008         /* Map I/O memory and request IRQ. */
1009         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1010         mmu->base = devm_ioremap_resource(&pdev->dev, res);
1011         if (IS_ERR(mmu->base))
1012                 return PTR_ERR(mmu->base);
1013
1014         /*
1015          * The IPMMU has two register banks, for secure and non-secure modes.
1016          * The bank mapped at the beginning of the IPMMU address space
1017          * corresponds to the running mode of the CPU. When running in secure
1018          * mode the non-secure register bank is also available at an offset.
1019          *
1020          * Secure mode operation isn't clearly documented and is thus currently
1021          * not implemented in the driver. Furthermore, preliminary tests of
1022          * non-secure operation with the main register bank were not successful.
1023          * Offset the registers base unconditionally to point to the non-secure
1024          * alias space for now.
1025          */
1026         if (mmu->features->use_ns_alias_offset)
1027                 mmu->base += IM_NS_ALIAS_OFFSET;
1028
1029         mmu->num_ctx = min(IPMMU_CTX_MAX, mmu->features->number_of_contexts);
1030
1031         /*
1032          * Determine if this IPMMU instance is a root device by checking for
1033          * the lack of has_cache_leaf_nodes flag or renesas,ipmmu-main property.
1034          */
1035         if (!mmu->features->has_cache_leaf_nodes ||
1036             !of_find_property(pdev->dev.of_node, "renesas,ipmmu-main", NULL))
1037                 mmu->root = mmu;
1038         else
1039                 mmu->root = ipmmu_find_root();
1040
1041         /*
1042          * Wait until the root device has been registered for sure.
1043          */
1044         if (!mmu->root)
1045                 return -EPROBE_DEFER;
1046
1047         /* Root devices have mandatory IRQs */
1048         if (ipmmu_is_root(mmu)) {
1049                 irq = platform_get_irq(pdev, 0);
1050                 if (irq < 0)
1051                         return irq;
1052
1053                 ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0,
1054                                        dev_name(&pdev->dev), mmu);
1055                 if (ret < 0) {
1056                         dev_err(&pdev->dev, "failed to request IRQ %d\n", irq);
1057                         return ret;
1058                 }
1059
1060                 ipmmu_device_reset(mmu);
1061
1062                 if (mmu->features->reserved_context) {
1063                         dev_info(&pdev->dev, "IPMMU context 0 is reserved\n");
1064                         set_bit(0, mmu->ctx);
1065                 }
1066         }
1067
1068         /*
1069          * Register the IPMMU to the IOMMU subsystem in the following cases:
1070          * - R-Car Gen2 IPMMU (all devices registered)
1071          * - R-Car Gen3 IPMMU (leaf devices only - skip root IPMMU-MM device)
1072          */
1073         if (!mmu->features->has_cache_leaf_nodes || !ipmmu_is_root(mmu)) {
1074                 ret = iommu_device_sysfs_add(&mmu->iommu, &pdev->dev, NULL,
1075                                              dev_name(&pdev->dev));
1076                 if (ret)
1077                         return ret;
1078
1079                 iommu_device_set_ops(&mmu->iommu, &ipmmu_ops);
1080                 iommu_device_set_fwnode(&mmu->iommu,
1081                                         &pdev->dev.of_node->fwnode);
1082
1083                 ret = iommu_device_register(&mmu->iommu);
1084                 if (ret)
1085                         return ret;
1086
1087 #if defined(CONFIG_IOMMU_DMA)
1088                 if (!iommu_present(&platform_bus_type))
1089                         bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1090 #endif
1091         }
1092
1093         /*
1094          * We can't create the ARM mapping here as it requires the bus to have
1095          * an IOMMU, which only happens when bus_set_iommu() is called in
1096          * ipmmu_init() after the probe function returns.
1097          */
1098
1099         platform_set_drvdata(pdev, mmu);
1100
1101         return 0;
1102 }
1103
1104 static int ipmmu_remove(struct platform_device *pdev)
1105 {
1106         struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev);
1107
1108         iommu_device_sysfs_remove(&mmu->iommu);
1109         iommu_device_unregister(&mmu->iommu);
1110
1111         arm_iommu_release_mapping(mmu->mapping);
1112
1113         ipmmu_device_reset(mmu);
1114
1115         return 0;
1116 }
1117
1118 #ifdef CONFIG_PM_SLEEP
1119 static int ipmmu_resume_noirq(struct device *dev)
1120 {
1121         struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
1122         unsigned int i;
1123
1124         /* Reset root MMU and restore contexts */
1125         if (ipmmu_is_root(mmu)) {
1126                 ipmmu_device_reset(mmu);
1127
1128                 for (i = 0; i < mmu->num_ctx; i++) {
1129                         if (!mmu->domains[i])
1130                                 continue;
1131
1132                         ipmmu_domain_setup_context(mmu->domains[i]);
1133                 }
1134         }
1135
1136         /* Re-enable active micro-TLBs */
1137         for (i = 0; i < mmu->features->num_utlbs; i++) {
1138                 if (mmu->utlb_ctx[i] == IPMMU_CTX_INVALID)
1139                         continue;
1140
1141                 ipmmu_utlb_enable(mmu->root->domains[mmu->utlb_ctx[i]], i);
1142         }
1143
1144         return 0;
1145 }
1146
1147 static const struct dev_pm_ops ipmmu_pm  = {
1148         SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(NULL, ipmmu_resume_noirq)
1149 };
1150 #define DEV_PM_OPS      &ipmmu_pm
1151 #else
1152 #define DEV_PM_OPS      NULL
1153 #endif /* CONFIG_PM_SLEEP */
1154
1155 static struct platform_driver ipmmu_driver = {
1156         .driver = {
1157                 .name = "ipmmu-vmsa",
1158                 .of_match_table = of_match_ptr(ipmmu_of_ids),
1159                 .pm = DEV_PM_OPS,
1160         },
1161         .probe = ipmmu_probe,
1162         .remove = ipmmu_remove,
1163 };
1164
1165 static int __init ipmmu_init(void)
1166 {
1167         struct device_node *np;
1168         static bool setup_done;
1169         int ret;
1170
1171         if (setup_done)
1172                 return 0;
1173
1174         np = of_find_matching_node(NULL, ipmmu_of_ids);
1175         if (!np)
1176                 return 0;
1177
1178         of_node_put(np);
1179
1180         ret = platform_driver_register(&ipmmu_driver);
1181         if (ret < 0)
1182                 return ret;
1183
1184 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
1185         if (!iommu_present(&platform_bus_type))
1186                 bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1187 #endif
1188
1189         setup_done = true;
1190         return 0;
1191 }
1192 subsys_initcall(ipmmu_init);