iommu/renesas: Convert to probe/release_device() call-backs
[linux-2.6-microblaze.git] / drivers / iommu / ipmmu-vmsa.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * IOMMU API for Renesas VMSA-compatible IPMMU
4  * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
5  *
6  * Copyright (C) 2014 Renesas Electronics Corporation
7  */
8
9 #include <linux/bitmap.h>
10 #include <linux/delay.h>
11 #include <linux/dma-iommu.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/err.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/io-pgtable.h>
19 #include <linux/iommu.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
22 #include <linux/of_iommu.h>
23 #include <linux/of_platform.h>
24 #include <linux/platform_device.h>
25 #include <linux/sizes.h>
26 #include <linux/slab.h>
27 #include <linux/sys_soc.h>
28
29 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
30 #include <asm/dma-iommu.h>
31 #include <asm/pgalloc.h>
32 #else
33 #define arm_iommu_create_mapping(...)   NULL
34 #define arm_iommu_attach_device(...)    -ENODEV
35 #define arm_iommu_release_mapping(...)  do {} while (0)
36 #define arm_iommu_detach_device(...)    do {} while (0)
37 #endif
38
39 #define IPMMU_CTX_MAX           8U
40 #define IPMMU_CTX_INVALID       -1
41
42 #define IPMMU_UTLB_MAX          48U
43
44 struct ipmmu_features {
45         bool use_ns_alias_offset;
46         bool has_cache_leaf_nodes;
47         unsigned int number_of_contexts;
48         unsigned int num_utlbs;
49         bool setup_imbuscr;
50         bool twobit_imttbcr_sl0;
51         bool reserved_context;
52         bool cache_snoop;
53         unsigned int ctx_offset_base;
54         unsigned int ctx_offset_stride;
55         unsigned int utlb_offset_base;
56 };
57
58 struct ipmmu_vmsa_device {
59         struct device *dev;
60         void __iomem *base;
61         struct iommu_device iommu;
62         struct ipmmu_vmsa_device *root;
63         const struct ipmmu_features *features;
64         unsigned int num_ctx;
65         spinlock_t lock;                        /* Protects ctx and domains[] */
66         DECLARE_BITMAP(ctx, IPMMU_CTX_MAX);
67         struct ipmmu_vmsa_domain *domains[IPMMU_CTX_MAX];
68         s8 utlb_ctx[IPMMU_UTLB_MAX];
69
70         struct iommu_group *group;
71         struct dma_iommu_mapping *mapping;
72 };
73
74 struct ipmmu_vmsa_domain {
75         struct ipmmu_vmsa_device *mmu;
76         struct iommu_domain io_domain;
77
78         struct io_pgtable_cfg cfg;
79         struct io_pgtable_ops *iop;
80
81         unsigned int context_id;
82         struct mutex mutex;                     /* Protects mappings */
83 };
84
85 static struct ipmmu_vmsa_domain *to_vmsa_domain(struct iommu_domain *dom)
86 {
87         return container_of(dom, struct ipmmu_vmsa_domain, io_domain);
88 }
89
90 static struct ipmmu_vmsa_device *to_ipmmu(struct device *dev)
91 {
92         return dev_iommu_priv_get(dev);
93 }
94
95 #define TLB_LOOP_TIMEOUT                100     /* 100us */
96
97 /* -----------------------------------------------------------------------------
98  * Registers Definition
99  */
100
101 #define IM_NS_ALIAS_OFFSET              0x800
102
103 /* MMU "context" registers */
104 #define IMCTR                           0x0000          /* R-Car Gen2/3 */
105 #define IMCTR_INTEN                     (1 << 2)        /* R-Car Gen2/3 */
106 #define IMCTR_FLUSH                     (1 << 1)        /* R-Car Gen2/3 */
107 #define IMCTR_MMUEN                     (1 << 0)        /* R-Car Gen2/3 */
108
109 #define IMTTBCR                         0x0008          /* R-Car Gen2/3 */
110 #define IMTTBCR_EAE                     (1 << 31)       /* R-Car Gen2/3 */
111 #define IMTTBCR_SH0_INNER_SHAREABLE     (3 << 12)       /* R-Car Gen2 only */
112 #define IMTTBCR_ORGN0_WB_WA             (1 << 10)       /* R-Car Gen2 only */
113 #define IMTTBCR_IRGN0_WB_WA             (1 << 8)        /* R-Car Gen2 only */
114 #define IMTTBCR_SL0_TWOBIT_LVL_1        (2 << 6)        /* R-Car Gen3 only */
115 #define IMTTBCR_SL0_LVL_1               (1 << 4)        /* R-Car Gen2 only */
116
117 #define IMBUSCR                         0x000c          /* R-Car Gen2 only */
118 #define IMBUSCR_DVM                     (1 << 2)        /* R-Car Gen2 only */
119 #define IMBUSCR_BUSSEL_MASK             (3 << 0)        /* R-Car Gen2 only */
120
121 #define IMTTLBR0                        0x0010          /* R-Car Gen2/3 */
122 #define IMTTUBR0                        0x0014          /* R-Car Gen2/3 */
123
124 #define IMSTR                           0x0020          /* R-Car Gen2/3 */
125 #define IMSTR_MHIT                      (1 << 4)        /* R-Car Gen2/3 */
126 #define IMSTR_ABORT                     (1 << 2)        /* R-Car Gen2/3 */
127 #define IMSTR_PF                        (1 << 1)        /* R-Car Gen2/3 */
128 #define IMSTR_TF                        (1 << 0)        /* R-Car Gen2/3 */
129
130 #define IMMAIR0                         0x0028          /* R-Car Gen2/3 */
131
132 #define IMELAR                          0x0030          /* R-Car Gen2/3, IMEAR on R-Car Gen2 */
133 #define IMEUAR                          0x0034          /* R-Car Gen3 only */
134
135 /* uTLB registers */
136 #define IMUCTR(n)                       ((n) < 32 ? IMUCTR0(n) : IMUCTR32(n))
137 #define IMUCTR0(n)                      (0x0300 + ((n) * 16))           /* R-Car Gen2/3 */
138 #define IMUCTR32(n)                     (0x0600 + (((n) - 32) * 16))    /* R-Car Gen3 only */
139 #define IMUCTR_TTSEL_MMU(n)             ((n) << 4)      /* R-Car Gen2/3 */
140 #define IMUCTR_FLUSH                    (1 << 1)        /* R-Car Gen2/3 */
141 #define IMUCTR_MMUEN                    (1 << 0)        /* R-Car Gen2/3 */
142
143 #define IMUASID(n)                      ((n) < 32 ? IMUASID0(n) : IMUASID32(n))
144 #define IMUASID0(n)                     (0x0308 + ((n) * 16))           /* R-Car Gen2/3 */
145 #define IMUASID32(n)                    (0x0608 + (((n) - 32) * 16))    /* R-Car Gen3 only */
146
147 /* -----------------------------------------------------------------------------
148  * Root device handling
149  */
150
151 static struct platform_driver ipmmu_driver;
152
153 static bool ipmmu_is_root(struct ipmmu_vmsa_device *mmu)
154 {
155         return mmu->root == mmu;
156 }
157
158 static int __ipmmu_check_device(struct device *dev, void *data)
159 {
160         struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
161         struct ipmmu_vmsa_device **rootp = data;
162
163         if (ipmmu_is_root(mmu))
164                 *rootp = mmu;
165
166         return 0;
167 }
168
169 static struct ipmmu_vmsa_device *ipmmu_find_root(void)
170 {
171         struct ipmmu_vmsa_device *root = NULL;
172
173         return driver_for_each_device(&ipmmu_driver.driver, NULL, &root,
174                                       __ipmmu_check_device) == 0 ? root : NULL;
175 }
176
177 /* -----------------------------------------------------------------------------
178  * Read/Write Access
179  */
180
181 static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset)
182 {
183         return ioread32(mmu->base + offset);
184 }
185
186 static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset,
187                         u32 data)
188 {
189         iowrite32(data, mmu->base + offset);
190 }
191
192 static unsigned int ipmmu_ctx_reg(struct ipmmu_vmsa_device *mmu,
193                                   unsigned int context_id, unsigned int reg)
194 {
195         return mmu->features->ctx_offset_base +
196                context_id * mmu->features->ctx_offset_stride + reg;
197 }
198
199 static u32 ipmmu_ctx_read(struct ipmmu_vmsa_device *mmu,
200                           unsigned int context_id, unsigned int reg)
201 {
202         return ipmmu_read(mmu, ipmmu_ctx_reg(mmu, context_id, reg));
203 }
204
205 static void ipmmu_ctx_write(struct ipmmu_vmsa_device *mmu,
206                             unsigned int context_id, unsigned int reg, u32 data)
207 {
208         ipmmu_write(mmu, ipmmu_ctx_reg(mmu, context_id, reg), data);
209 }
210
211 static u32 ipmmu_ctx_read_root(struct ipmmu_vmsa_domain *domain,
212                                unsigned int reg)
213 {
214         return ipmmu_ctx_read(domain->mmu->root, domain->context_id, reg);
215 }
216
217 static void ipmmu_ctx_write_root(struct ipmmu_vmsa_domain *domain,
218                                  unsigned int reg, u32 data)
219 {
220         ipmmu_ctx_write(domain->mmu->root, domain->context_id, reg, data);
221 }
222
223 static void ipmmu_ctx_write_all(struct ipmmu_vmsa_domain *domain,
224                                 unsigned int reg, u32 data)
225 {
226         if (domain->mmu != domain->mmu->root)
227                 ipmmu_ctx_write(domain->mmu, domain->context_id, reg, data);
228
229         ipmmu_ctx_write(domain->mmu->root, domain->context_id, reg, data);
230 }
231
232 static u32 ipmmu_utlb_reg(struct ipmmu_vmsa_device *mmu, unsigned int reg)
233 {
234         return mmu->features->utlb_offset_base + reg;
235 }
236
237 static void ipmmu_imuasid_write(struct ipmmu_vmsa_device *mmu,
238                                 unsigned int utlb, u32 data)
239 {
240         ipmmu_write(mmu, ipmmu_utlb_reg(mmu, IMUASID(utlb)), data);
241 }
242
243 static void ipmmu_imuctr_write(struct ipmmu_vmsa_device *mmu,
244                                unsigned int utlb, u32 data)
245 {
246         ipmmu_write(mmu, ipmmu_utlb_reg(mmu, IMUCTR(utlb)), data);
247 }
248
249 /* -----------------------------------------------------------------------------
250  * TLB and microTLB Management
251  */
252
253 /* Wait for any pending TLB invalidations to complete */
254 static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain)
255 {
256         unsigned int count = 0;
257
258         while (ipmmu_ctx_read_root(domain, IMCTR) & IMCTR_FLUSH) {
259                 cpu_relax();
260                 if (++count == TLB_LOOP_TIMEOUT) {
261                         dev_err_ratelimited(domain->mmu->dev,
262                         "TLB sync timed out -- MMU may be deadlocked\n");
263                         return;
264                 }
265                 udelay(1);
266         }
267 }
268
269 static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain)
270 {
271         u32 reg;
272
273         reg = ipmmu_ctx_read_root(domain, IMCTR);
274         reg |= IMCTR_FLUSH;
275         ipmmu_ctx_write_all(domain, IMCTR, reg);
276
277         ipmmu_tlb_sync(domain);
278 }
279
280 /*
281  * Enable MMU translation for the microTLB.
282  */
283 static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain,
284                               unsigned int utlb)
285 {
286         struct ipmmu_vmsa_device *mmu = domain->mmu;
287
288         /*
289          * TODO: Reference-count the microTLB as several bus masters can be
290          * connected to the same microTLB.
291          */
292
293         /* TODO: What should we set the ASID to ? */
294         ipmmu_imuasid_write(mmu, utlb, 0);
295         /* TODO: Do we need to flush the microTLB ? */
296         ipmmu_imuctr_write(mmu, utlb, IMUCTR_TTSEL_MMU(domain->context_id) |
297                                       IMUCTR_FLUSH | IMUCTR_MMUEN);
298         mmu->utlb_ctx[utlb] = domain->context_id;
299 }
300
301 /*
302  * Disable MMU translation for the microTLB.
303  */
304 static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain *domain,
305                                unsigned int utlb)
306 {
307         struct ipmmu_vmsa_device *mmu = domain->mmu;
308
309         ipmmu_imuctr_write(mmu, utlb, 0);
310         mmu->utlb_ctx[utlb] = IPMMU_CTX_INVALID;
311 }
312
313 static void ipmmu_tlb_flush_all(void *cookie)
314 {
315         struct ipmmu_vmsa_domain *domain = cookie;
316
317         ipmmu_tlb_invalidate(domain);
318 }
319
320 static void ipmmu_tlb_flush(unsigned long iova, size_t size,
321                                 size_t granule, void *cookie)
322 {
323         ipmmu_tlb_flush_all(cookie);
324 }
325
326 static const struct iommu_flush_ops ipmmu_flush_ops = {
327         .tlb_flush_all = ipmmu_tlb_flush_all,
328         .tlb_flush_walk = ipmmu_tlb_flush,
329         .tlb_flush_leaf = ipmmu_tlb_flush,
330 };
331
332 /* -----------------------------------------------------------------------------
333  * Domain/Context Management
334  */
335
336 static int ipmmu_domain_allocate_context(struct ipmmu_vmsa_device *mmu,
337                                          struct ipmmu_vmsa_domain *domain)
338 {
339         unsigned long flags;
340         int ret;
341
342         spin_lock_irqsave(&mmu->lock, flags);
343
344         ret = find_first_zero_bit(mmu->ctx, mmu->num_ctx);
345         if (ret != mmu->num_ctx) {
346                 mmu->domains[ret] = domain;
347                 set_bit(ret, mmu->ctx);
348         } else
349                 ret = -EBUSY;
350
351         spin_unlock_irqrestore(&mmu->lock, flags);
352
353         return ret;
354 }
355
356 static void ipmmu_domain_free_context(struct ipmmu_vmsa_device *mmu,
357                                       unsigned int context_id)
358 {
359         unsigned long flags;
360
361         spin_lock_irqsave(&mmu->lock, flags);
362
363         clear_bit(context_id, mmu->ctx);
364         mmu->domains[context_id] = NULL;
365
366         spin_unlock_irqrestore(&mmu->lock, flags);
367 }
368
369 static void ipmmu_domain_setup_context(struct ipmmu_vmsa_domain *domain)
370 {
371         u64 ttbr;
372         u32 tmp;
373
374         /* TTBR0 */
375         ttbr = domain->cfg.arm_lpae_s1_cfg.ttbr;
376         ipmmu_ctx_write_root(domain, IMTTLBR0, ttbr);
377         ipmmu_ctx_write_root(domain, IMTTUBR0, ttbr >> 32);
378
379         /*
380          * TTBCR
381          * We use long descriptors and allocate the whole 32-bit VA space to
382          * TTBR0.
383          */
384         if (domain->mmu->features->twobit_imttbcr_sl0)
385                 tmp = IMTTBCR_SL0_TWOBIT_LVL_1;
386         else
387                 tmp = IMTTBCR_SL0_LVL_1;
388
389         if (domain->mmu->features->cache_snoop)
390                 tmp |= IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA |
391                        IMTTBCR_IRGN0_WB_WA;
392
393         ipmmu_ctx_write_root(domain, IMTTBCR, IMTTBCR_EAE | tmp);
394
395         /* MAIR0 */
396         ipmmu_ctx_write_root(domain, IMMAIR0,
397                              domain->cfg.arm_lpae_s1_cfg.mair);
398
399         /* IMBUSCR */
400         if (domain->mmu->features->setup_imbuscr)
401                 ipmmu_ctx_write_root(domain, IMBUSCR,
402                                      ipmmu_ctx_read_root(domain, IMBUSCR) &
403                                      ~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK));
404
405         /*
406          * IMSTR
407          * Clear all interrupt flags.
408          */
409         ipmmu_ctx_write_root(domain, IMSTR, ipmmu_ctx_read_root(domain, IMSTR));
410
411         /*
412          * IMCTR
413          * Enable the MMU and interrupt generation. The long-descriptor
414          * translation table format doesn't use TEX remapping. Don't enable AF
415          * software management as we have no use for it. Flush the TLB as
416          * required when modifying the context registers.
417          */
418         ipmmu_ctx_write_all(domain, IMCTR,
419                             IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN);
420 }
421
422 static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain)
423 {
424         int ret;
425
426         /*
427          * Allocate the page table operations.
428          *
429          * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory
430          * access, Long-descriptor format" that the NStable bit being set in a
431          * table descriptor will result in the NStable and NS bits of all child
432          * entries being ignored and considered as being set. The IPMMU seems
433          * not to comply with this, as it generates a secure access page fault
434          * if any of the NStable and NS bits isn't set when running in
435          * non-secure mode.
436          */
437         domain->cfg.quirks = IO_PGTABLE_QUIRK_ARM_NS;
438         domain->cfg.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K;
439         domain->cfg.ias = 32;
440         domain->cfg.oas = 40;
441         domain->cfg.tlb = &ipmmu_flush_ops;
442         domain->io_domain.geometry.aperture_end = DMA_BIT_MASK(32);
443         domain->io_domain.geometry.force_aperture = true;
444         /*
445          * TODO: Add support for coherent walk through CCI with DVM and remove
446          * cache handling. For now, delegate it to the io-pgtable code.
447          */
448         domain->cfg.coherent_walk = false;
449         domain->cfg.iommu_dev = domain->mmu->root->dev;
450
451         /*
452          * Find an unused context.
453          */
454         ret = ipmmu_domain_allocate_context(domain->mmu->root, domain);
455         if (ret < 0)
456                 return ret;
457
458         domain->context_id = ret;
459
460         domain->iop = alloc_io_pgtable_ops(ARM_32_LPAE_S1, &domain->cfg,
461                                            domain);
462         if (!domain->iop) {
463                 ipmmu_domain_free_context(domain->mmu->root,
464                                           domain->context_id);
465                 return -EINVAL;
466         }
467
468         ipmmu_domain_setup_context(domain);
469         return 0;
470 }
471
472 static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain)
473 {
474         if (!domain->mmu)
475                 return;
476
477         /*
478          * Disable the context. Flush the TLB as required when modifying the
479          * context registers.
480          *
481          * TODO: Is TLB flush really needed ?
482          */
483         ipmmu_ctx_write_all(domain, IMCTR, IMCTR_FLUSH);
484         ipmmu_tlb_sync(domain);
485         ipmmu_domain_free_context(domain->mmu->root, domain->context_id);
486 }
487
488 /* -----------------------------------------------------------------------------
489  * Fault Handling
490  */
491
492 static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain)
493 {
494         const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF;
495         struct ipmmu_vmsa_device *mmu = domain->mmu;
496         unsigned long iova;
497         u32 status;
498
499         status = ipmmu_ctx_read_root(domain, IMSTR);
500         if (!(status & err_mask))
501                 return IRQ_NONE;
502
503         iova = ipmmu_ctx_read_root(domain, IMELAR);
504         if (IS_ENABLED(CONFIG_64BIT))
505                 iova |= (u64)ipmmu_ctx_read_root(domain, IMEUAR) << 32;
506
507         /*
508          * Clear the error status flags. Unlike traditional interrupt flag
509          * registers that must be cleared by writing 1, this status register
510          * seems to require 0. The error address register must be read before,
511          * otherwise its value will be 0.
512          */
513         ipmmu_ctx_write_root(domain, IMSTR, 0);
514
515         /* Log fatal errors. */
516         if (status & IMSTR_MHIT)
517                 dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%lx\n",
518                                     iova);
519         if (status & IMSTR_ABORT)
520                 dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%lx\n",
521                                     iova);
522
523         if (!(status & (IMSTR_PF | IMSTR_TF)))
524                 return IRQ_NONE;
525
526         /*
527          * Try to handle page faults and translation faults.
528          *
529          * TODO: We need to look up the faulty device based on the I/O VA. Use
530          * the IOMMU device for now.
531          */
532         if (!report_iommu_fault(&domain->io_domain, mmu->dev, iova, 0))
533                 return IRQ_HANDLED;
534
535         dev_err_ratelimited(mmu->dev,
536                             "Unhandled fault: status 0x%08x iova 0x%lx\n",
537                             status, iova);
538
539         return IRQ_HANDLED;
540 }
541
542 static irqreturn_t ipmmu_irq(int irq, void *dev)
543 {
544         struct ipmmu_vmsa_device *mmu = dev;
545         irqreturn_t status = IRQ_NONE;
546         unsigned int i;
547         unsigned long flags;
548
549         spin_lock_irqsave(&mmu->lock, flags);
550
551         /*
552          * Check interrupts for all active contexts.
553          */
554         for (i = 0; i < mmu->num_ctx; i++) {
555                 if (!mmu->domains[i])
556                         continue;
557                 if (ipmmu_domain_irq(mmu->domains[i]) == IRQ_HANDLED)
558                         status = IRQ_HANDLED;
559         }
560
561         spin_unlock_irqrestore(&mmu->lock, flags);
562
563         return status;
564 }
565
566 /* -----------------------------------------------------------------------------
567  * IOMMU Operations
568  */
569
570 static struct iommu_domain *__ipmmu_domain_alloc(unsigned type)
571 {
572         struct ipmmu_vmsa_domain *domain;
573
574         domain = kzalloc(sizeof(*domain), GFP_KERNEL);
575         if (!domain)
576                 return NULL;
577
578         mutex_init(&domain->mutex);
579
580         return &domain->io_domain;
581 }
582
583 static struct iommu_domain *ipmmu_domain_alloc(unsigned type)
584 {
585         struct iommu_domain *io_domain = NULL;
586
587         switch (type) {
588         case IOMMU_DOMAIN_UNMANAGED:
589                 io_domain = __ipmmu_domain_alloc(type);
590                 break;
591
592         case IOMMU_DOMAIN_DMA:
593                 io_domain = __ipmmu_domain_alloc(type);
594                 if (io_domain && iommu_get_dma_cookie(io_domain)) {
595                         kfree(io_domain);
596                         io_domain = NULL;
597                 }
598                 break;
599         }
600
601         return io_domain;
602 }
603
604 static void ipmmu_domain_free(struct iommu_domain *io_domain)
605 {
606         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
607
608         /*
609          * Free the domain resources. We assume that all devices have already
610          * been detached.
611          */
612         iommu_put_dma_cookie(io_domain);
613         ipmmu_domain_destroy_context(domain);
614         free_io_pgtable_ops(domain->iop);
615         kfree(domain);
616 }
617
618 static int ipmmu_attach_device(struct iommu_domain *io_domain,
619                                struct device *dev)
620 {
621         struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
622         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
623         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
624         unsigned int i;
625         int ret = 0;
626
627         if (!mmu) {
628                 dev_err(dev, "Cannot attach to IPMMU\n");
629                 return -ENXIO;
630         }
631
632         mutex_lock(&domain->mutex);
633
634         if (!domain->mmu) {
635                 /* The domain hasn't been used yet, initialize it. */
636                 domain->mmu = mmu;
637                 ret = ipmmu_domain_init_context(domain);
638                 if (ret < 0) {
639                         dev_err(dev, "Unable to initialize IPMMU context\n");
640                         domain->mmu = NULL;
641                 } else {
642                         dev_info(dev, "Using IPMMU context %u\n",
643                                  domain->context_id);
644                 }
645         } else if (domain->mmu != mmu) {
646                 /*
647                  * Something is wrong, we can't attach two devices using
648                  * different IOMMUs to the same domain.
649                  */
650                 dev_err(dev, "Can't attach IPMMU %s to domain on IPMMU %s\n",
651                         dev_name(mmu->dev), dev_name(domain->mmu->dev));
652                 ret = -EINVAL;
653         } else
654                 dev_info(dev, "Reusing IPMMU context %u\n", domain->context_id);
655
656         mutex_unlock(&domain->mutex);
657
658         if (ret < 0)
659                 return ret;
660
661         for (i = 0; i < fwspec->num_ids; ++i)
662                 ipmmu_utlb_enable(domain, fwspec->ids[i]);
663
664         return 0;
665 }
666
667 static void ipmmu_detach_device(struct iommu_domain *io_domain,
668                                 struct device *dev)
669 {
670         struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
671         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
672         unsigned int i;
673
674         for (i = 0; i < fwspec->num_ids; ++i)
675                 ipmmu_utlb_disable(domain, fwspec->ids[i]);
676
677         /*
678          * TODO: Optimize by disabling the context when no device is attached.
679          */
680 }
681
682 static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova,
683                      phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
684 {
685         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
686
687         if (!domain)
688                 return -ENODEV;
689
690         return domain->iop->map(domain->iop, iova, paddr, size, prot);
691 }
692
693 static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova,
694                           size_t size, struct iommu_iotlb_gather *gather)
695 {
696         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
697
698         return domain->iop->unmap(domain->iop, iova, size, gather);
699 }
700
701 static void ipmmu_flush_iotlb_all(struct iommu_domain *io_domain)
702 {
703         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
704
705         if (domain->mmu)
706                 ipmmu_tlb_flush_all(domain);
707 }
708
709 static void ipmmu_iotlb_sync(struct iommu_domain *io_domain,
710                              struct iommu_iotlb_gather *gather)
711 {
712         ipmmu_flush_iotlb_all(io_domain);
713 }
714
715 static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain,
716                                       dma_addr_t iova)
717 {
718         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
719
720         /* TODO: Is locking needed ? */
721
722         return domain->iop->iova_to_phys(domain->iop, iova);
723 }
724
725 static int ipmmu_init_platform_device(struct device *dev,
726                                       struct of_phandle_args *args)
727 {
728         struct platform_device *ipmmu_pdev;
729
730         ipmmu_pdev = of_find_device_by_node(args->np);
731         if (!ipmmu_pdev)
732                 return -ENODEV;
733
734         dev_iommu_priv_set(dev, platform_get_drvdata(ipmmu_pdev));
735
736         return 0;
737 }
738
739 static const struct soc_device_attribute soc_rcar_gen3[] = {
740         { .soc_id = "r8a774a1", },
741         { .soc_id = "r8a774b1", },
742         { .soc_id = "r8a774c0", },
743         { .soc_id = "r8a7795", },
744         { .soc_id = "r8a7796", },
745         { .soc_id = "r8a77965", },
746         { .soc_id = "r8a77970", },
747         { .soc_id = "r8a77990", },
748         { .soc_id = "r8a77995", },
749         { /* sentinel */ }
750 };
751
752 static const struct soc_device_attribute soc_rcar_gen3_whitelist[] = {
753         { .soc_id = "r8a774b1", },
754         { .soc_id = "r8a774c0", },
755         { .soc_id = "r8a7795", .revision = "ES3.*" },
756         { .soc_id = "r8a77965", },
757         { .soc_id = "r8a77990", },
758         { .soc_id = "r8a77995", },
759         { /* sentinel */ }
760 };
761
762 static const char * const rcar_gen3_slave_whitelist[] = {
763 };
764
765 static bool ipmmu_slave_whitelist(struct device *dev)
766 {
767         unsigned int i;
768
769         /*
770          * For R-Car Gen3 use a white list to opt-in slave devices.
771          * For Other SoCs, this returns true anyway.
772          */
773         if (!soc_device_match(soc_rcar_gen3))
774                 return true;
775
776         /* Check whether this R-Car Gen3 can use the IPMMU correctly or not */
777         if (!soc_device_match(soc_rcar_gen3_whitelist))
778                 return false;
779
780         /* Check whether this slave device can work with the IPMMU */
781         for (i = 0; i < ARRAY_SIZE(rcar_gen3_slave_whitelist); i++) {
782                 if (!strcmp(dev_name(dev), rcar_gen3_slave_whitelist[i]))
783                         return true;
784         }
785
786         /* Otherwise, do not allow use of IPMMU */
787         return false;
788 }
789
790 static int ipmmu_of_xlate(struct device *dev,
791                           struct of_phandle_args *spec)
792 {
793         if (!ipmmu_slave_whitelist(dev))
794                 return -ENODEV;
795
796         iommu_fwspec_add_ids(dev, spec->args, 1);
797
798         /* Initialize once - xlate() will call multiple times */
799         if (to_ipmmu(dev))
800                 return 0;
801
802         return ipmmu_init_platform_device(dev, spec);
803 }
804
805 static int ipmmu_init_arm_mapping(struct device *dev)
806 {
807         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
808         int ret;
809
810         /*
811          * Create the ARM mapping, used by the ARM DMA mapping core to allocate
812          * VAs. This will allocate a corresponding IOMMU domain.
813          *
814          * TODO:
815          * - Create one mapping per context (TLB).
816          * - Make the mapping size configurable ? We currently use a 2GB mapping
817          *   at a 1GB offset to ensure that NULL VAs will fault.
818          */
819         if (!mmu->mapping) {
820                 struct dma_iommu_mapping *mapping;
821
822                 mapping = arm_iommu_create_mapping(&platform_bus_type,
823                                                    SZ_1G, SZ_2G);
824                 if (IS_ERR(mapping)) {
825                         dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n");
826                         ret = PTR_ERR(mapping);
827                         goto error;
828                 }
829
830                 mmu->mapping = mapping;
831         }
832
833         /* Attach the ARM VA mapping to the device. */
834         ret = arm_iommu_attach_device(dev, mmu->mapping);
835         if (ret < 0) {
836                 dev_err(dev, "Failed to attach device to VA mapping\n");
837                 goto error;
838         }
839
840         return 0;
841
842 error:
843         if (mmu->mapping)
844                 arm_iommu_release_mapping(mmu->mapping);
845
846         return ret;
847 }
848
849 static struct iommu_device *ipmmu_probe_device(struct device *dev)
850 {
851         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
852
853         /*
854          * Only let through devices that have been verified in xlate()
855          */
856         if (!mmu)
857                 return ERR_PTR(-ENODEV);
858
859         return &mmu->iommu;
860 }
861
862 static void ipmmu_probe_finalize(struct device *dev)
863 {
864         int ret = 0;
865
866         if (IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA))
867                 ret = ipmmu_init_arm_mapping(dev);
868
869         if (ret)
870                 dev_err(dev, "Can't create IOMMU mapping - DMA-OPS will not work\n");
871 }
872
873 static void ipmmu_release_device(struct device *dev)
874 {
875         arm_iommu_detach_device(dev);
876 }
877
878 static struct iommu_group *ipmmu_find_group(struct device *dev)
879 {
880         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
881         struct iommu_group *group;
882
883         if (mmu->group)
884                 return iommu_group_ref_get(mmu->group);
885
886         group = iommu_group_alloc();
887         if (!IS_ERR(group))
888                 mmu->group = group;
889
890         return group;
891 }
892
893 static const struct iommu_ops ipmmu_ops = {
894         .domain_alloc = ipmmu_domain_alloc,
895         .domain_free = ipmmu_domain_free,
896         .attach_dev = ipmmu_attach_device,
897         .detach_dev = ipmmu_detach_device,
898         .map = ipmmu_map,
899         .unmap = ipmmu_unmap,
900         .flush_iotlb_all = ipmmu_flush_iotlb_all,
901         .iotlb_sync = ipmmu_iotlb_sync,
902         .iova_to_phys = ipmmu_iova_to_phys,
903         .probe_device = ipmmu_probe_device,
904         .release_device = ipmmu_release_device,
905         .probe_finalize = ipmmu_probe_finalize,
906 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
907         .device_group = generic_device_group,
908 #else
909         .device_group = ipmmu_find_group,
910 #endif
911         .pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K,
912         .of_xlate = ipmmu_of_xlate,
913 };
914
915 /* -----------------------------------------------------------------------------
916  * Probe/remove and init
917  */
918
919 static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu)
920 {
921         unsigned int i;
922
923         /* Disable all contexts. */
924         for (i = 0; i < mmu->num_ctx; ++i)
925                 ipmmu_ctx_write(mmu, i, IMCTR, 0);
926 }
927
928 static const struct ipmmu_features ipmmu_features_default = {
929         .use_ns_alias_offset = true,
930         .has_cache_leaf_nodes = false,
931         .number_of_contexts = 1, /* software only tested with one context */
932         .num_utlbs = 32,
933         .setup_imbuscr = true,
934         .twobit_imttbcr_sl0 = false,
935         .reserved_context = false,
936         .cache_snoop = true,
937         .ctx_offset_base = 0,
938         .ctx_offset_stride = 0x40,
939         .utlb_offset_base = 0,
940 };
941
942 static const struct ipmmu_features ipmmu_features_rcar_gen3 = {
943         .use_ns_alias_offset = false,
944         .has_cache_leaf_nodes = true,
945         .number_of_contexts = 8,
946         .num_utlbs = 48,
947         .setup_imbuscr = false,
948         .twobit_imttbcr_sl0 = true,
949         .reserved_context = true,
950         .cache_snoop = false,
951         .ctx_offset_base = 0,
952         .ctx_offset_stride = 0x40,
953         .utlb_offset_base = 0,
954 };
955
956 static const struct of_device_id ipmmu_of_ids[] = {
957         {
958                 .compatible = "renesas,ipmmu-vmsa",
959                 .data = &ipmmu_features_default,
960         }, {
961                 .compatible = "renesas,ipmmu-r8a774a1",
962                 .data = &ipmmu_features_rcar_gen3,
963         }, {
964                 .compatible = "renesas,ipmmu-r8a774b1",
965                 .data = &ipmmu_features_rcar_gen3,
966         }, {
967                 .compatible = "renesas,ipmmu-r8a774c0",
968                 .data = &ipmmu_features_rcar_gen3,
969         }, {
970                 .compatible = "renesas,ipmmu-r8a7795",
971                 .data = &ipmmu_features_rcar_gen3,
972         }, {
973                 .compatible = "renesas,ipmmu-r8a7796",
974                 .data = &ipmmu_features_rcar_gen3,
975         }, {
976                 .compatible = "renesas,ipmmu-r8a77965",
977                 .data = &ipmmu_features_rcar_gen3,
978         }, {
979                 .compatible = "renesas,ipmmu-r8a77970",
980                 .data = &ipmmu_features_rcar_gen3,
981         }, {
982                 .compatible = "renesas,ipmmu-r8a77990",
983                 .data = &ipmmu_features_rcar_gen3,
984         }, {
985                 .compatible = "renesas,ipmmu-r8a77995",
986                 .data = &ipmmu_features_rcar_gen3,
987         }, {
988                 /* Terminator */
989         },
990 };
991
992 static int ipmmu_probe(struct platform_device *pdev)
993 {
994         struct ipmmu_vmsa_device *mmu;
995         struct resource *res;
996         int irq;
997         int ret;
998
999         mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL);
1000         if (!mmu) {
1001                 dev_err(&pdev->dev, "cannot allocate device data\n");
1002                 return -ENOMEM;
1003         }
1004
1005         mmu->dev = &pdev->dev;
1006         spin_lock_init(&mmu->lock);
1007         bitmap_zero(mmu->ctx, IPMMU_CTX_MAX);
1008         mmu->features = of_device_get_match_data(&pdev->dev);
1009         memset(mmu->utlb_ctx, IPMMU_CTX_INVALID, mmu->features->num_utlbs);
1010         dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
1011
1012         /* Map I/O memory and request IRQ. */
1013         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1014         mmu->base = devm_ioremap_resource(&pdev->dev, res);
1015         if (IS_ERR(mmu->base))
1016                 return PTR_ERR(mmu->base);
1017
1018         /*
1019          * The IPMMU has two register banks, for secure and non-secure modes.
1020          * The bank mapped at the beginning of the IPMMU address space
1021          * corresponds to the running mode of the CPU. When running in secure
1022          * mode the non-secure register bank is also available at an offset.
1023          *
1024          * Secure mode operation isn't clearly documented and is thus currently
1025          * not implemented in the driver. Furthermore, preliminary tests of
1026          * non-secure operation with the main register bank were not successful.
1027          * Offset the registers base unconditionally to point to the non-secure
1028          * alias space for now.
1029          */
1030         if (mmu->features->use_ns_alias_offset)
1031                 mmu->base += IM_NS_ALIAS_OFFSET;
1032
1033         mmu->num_ctx = min(IPMMU_CTX_MAX, mmu->features->number_of_contexts);
1034
1035         /*
1036          * Determine if this IPMMU instance is a root device by checking for
1037          * the lack of has_cache_leaf_nodes flag or renesas,ipmmu-main property.
1038          */
1039         if (!mmu->features->has_cache_leaf_nodes ||
1040             !of_find_property(pdev->dev.of_node, "renesas,ipmmu-main", NULL))
1041                 mmu->root = mmu;
1042         else
1043                 mmu->root = ipmmu_find_root();
1044
1045         /*
1046          * Wait until the root device has been registered for sure.
1047          */
1048         if (!mmu->root)
1049                 return -EPROBE_DEFER;
1050
1051         /* Root devices have mandatory IRQs */
1052         if (ipmmu_is_root(mmu)) {
1053                 irq = platform_get_irq(pdev, 0);
1054                 if (irq < 0)
1055                         return irq;
1056
1057                 ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0,
1058                                        dev_name(&pdev->dev), mmu);
1059                 if (ret < 0) {
1060                         dev_err(&pdev->dev, "failed to request IRQ %d\n", irq);
1061                         return ret;
1062                 }
1063
1064                 ipmmu_device_reset(mmu);
1065
1066                 if (mmu->features->reserved_context) {
1067                         dev_info(&pdev->dev, "IPMMU context 0 is reserved\n");
1068                         set_bit(0, mmu->ctx);
1069                 }
1070         }
1071
1072         /*
1073          * Register the IPMMU to the IOMMU subsystem in the following cases:
1074          * - R-Car Gen2 IPMMU (all devices registered)
1075          * - R-Car Gen3 IPMMU (leaf devices only - skip root IPMMU-MM device)
1076          */
1077         if (!mmu->features->has_cache_leaf_nodes || !ipmmu_is_root(mmu)) {
1078                 ret = iommu_device_sysfs_add(&mmu->iommu, &pdev->dev, NULL,
1079                                              dev_name(&pdev->dev));
1080                 if (ret)
1081                         return ret;
1082
1083                 iommu_device_set_ops(&mmu->iommu, &ipmmu_ops);
1084                 iommu_device_set_fwnode(&mmu->iommu,
1085                                         &pdev->dev.of_node->fwnode);
1086
1087                 ret = iommu_device_register(&mmu->iommu);
1088                 if (ret)
1089                         return ret;
1090
1091 #if defined(CONFIG_IOMMU_DMA)
1092                 if (!iommu_present(&platform_bus_type))
1093                         bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1094 #endif
1095         }
1096
1097         /*
1098          * We can't create the ARM mapping here as it requires the bus to have
1099          * an IOMMU, which only happens when bus_set_iommu() is called in
1100          * ipmmu_init() after the probe function returns.
1101          */
1102
1103         platform_set_drvdata(pdev, mmu);
1104
1105         return 0;
1106 }
1107
1108 static int ipmmu_remove(struct platform_device *pdev)
1109 {
1110         struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev);
1111
1112         iommu_device_sysfs_remove(&mmu->iommu);
1113         iommu_device_unregister(&mmu->iommu);
1114
1115         arm_iommu_release_mapping(mmu->mapping);
1116
1117         ipmmu_device_reset(mmu);
1118
1119         return 0;
1120 }
1121
1122 #ifdef CONFIG_PM_SLEEP
1123 static int ipmmu_resume_noirq(struct device *dev)
1124 {
1125         struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
1126         unsigned int i;
1127
1128         /* Reset root MMU and restore contexts */
1129         if (ipmmu_is_root(mmu)) {
1130                 ipmmu_device_reset(mmu);
1131
1132                 for (i = 0; i < mmu->num_ctx; i++) {
1133                         if (!mmu->domains[i])
1134                                 continue;
1135
1136                         ipmmu_domain_setup_context(mmu->domains[i]);
1137                 }
1138         }
1139
1140         /* Re-enable active micro-TLBs */
1141         for (i = 0; i < mmu->features->num_utlbs; i++) {
1142                 if (mmu->utlb_ctx[i] == IPMMU_CTX_INVALID)
1143                         continue;
1144
1145                 ipmmu_utlb_enable(mmu->root->domains[mmu->utlb_ctx[i]], i);
1146         }
1147
1148         return 0;
1149 }
1150
1151 static const struct dev_pm_ops ipmmu_pm  = {
1152         SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(NULL, ipmmu_resume_noirq)
1153 };
1154 #define DEV_PM_OPS      &ipmmu_pm
1155 #else
1156 #define DEV_PM_OPS      NULL
1157 #endif /* CONFIG_PM_SLEEP */
1158
1159 static struct platform_driver ipmmu_driver = {
1160         .driver = {
1161                 .name = "ipmmu-vmsa",
1162                 .of_match_table = of_match_ptr(ipmmu_of_ids),
1163                 .pm = DEV_PM_OPS,
1164         },
1165         .probe = ipmmu_probe,
1166         .remove = ipmmu_remove,
1167 };
1168
1169 static int __init ipmmu_init(void)
1170 {
1171         struct device_node *np;
1172         static bool setup_done;
1173         int ret;
1174
1175         if (setup_done)
1176                 return 0;
1177
1178         np = of_find_matching_node(NULL, ipmmu_of_ids);
1179         if (!np)
1180                 return 0;
1181
1182         of_node_put(np);
1183
1184         ret = platform_driver_register(&ipmmu_driver);
1185         if (ret < 0)
1186                 return ret;
1187
1188 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
1189         if (!iommu_present(&platform_bus_type))
1190                 bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1191 #endif
1192
1193         setup_done = true;
1194         return 0;
1195 }
1196 subsys_initcall(ipmmu_init);