Merge tag 'for-linus-2023100502' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / iommu / ipmmu-vmsa.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * IOMMU API for Renesas VMSA-compatible IPMMU
4  * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
5  *
6  * Copyright (C) 2014-2020 Renesas Electronics Corporation
7  */
8
9 #include <linux/bitmap.h>
10 #include <linux/delay.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/err.h>
13 #include <linux/export.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/iopoll.h>
18 #include <linux/io-pgtable.h>
19 #include <linux/iommu.h>
20 #include <linux/of.h>
21 #include <linux/of_platform.h>
22 #include <linux/pci.h>
23 #include <linux/platform_device.h>
24 #include <linux/sizes.h>
25 #include <linux/slab.h>
26 #include <linux/sys_soc.h>
27
28 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
29 #include <asm/dma-iommu.h>
30 #else
31 #define arm_iommu_create_mapping(...)   NULL
32 #define arm_iommu_attach_device(...)    -ENODEV
33 #define arm_iommu_release_mapping(...)  do {} while (0)
34 #endif
35
36 #define IPMMU_CTX_MAX           16U
37 #define IPMMU_CTX_INVALID       -1
38
39 #define IPMMU_UTLB_MAX          64U
40
41 struct ipmmu_features {
42         bool use_ns_alias_offset;
43         bool has_cache_leaf_nodes;
44         unsigned int number_of_contexts;
45         unsigned int num_utlbs;
46         bool setup_imbuscr;
47         bool twobit_imttbcr_sl0;
48         bool reserved_context;
49         bool cache_snoop;
50         unsigned int ctx_offset_base;
51         unsigned int ctx_offset_stride;
52         unsigned int utlb_offset_base;
53 };
54
55 struct ipmmu_vmsa_device {
56         struct device *dev;
57         void __iomem *base;
58         struct iommu_device iommu;
59         struct ipmmu_vmsa_device *root;
60         const struct ipmmu_features *features;
61         unsigned int num_ctx;
62         spinlock_t lock;                        /* Protects ctx and domains[] */
63         DECLARE_BITMAP(ctx, IPMMU_CTX_MAX);
64         struct ipmmu_vmsa_domain *domains[IPMMU_CTX_MAX];
65         s8 utlb_ctx[IPMMU_UTLB_MAX];
66
67         struct iommu_group *group;
68         struct dma_iommu_mapping *mapping;
69 };
70
71 struct ipmmu_vmsa_domain {
72         struct ipmmu_vmsa_device *mmu;
73         struct iommu_domain io_domain;
74
75         struct io_pgtable_cfg cfg;
76         struct io_pgtable_ops *iop;
77
78         unsigned int context_id;
79         struct mutex mutex;                     /* Protects mappings */
80 };
81
82 static struct ipmmu_vmsa_domain *to_vmsa_domain(struct iommu_domain *dom)
83 {
84         return container_of(dom, struct ipmmu_vmsa_domain, io_domain);
85 }
86
87 static struct ipmmu_vmsa_device *to_ipmmu(struct device *dev)
88 {
89         return dev_iommu_priv_get(dev);
90 }
91
92 #define TLB_LOOP_TIMEOUT                100     /* 100us */
93
94 /* -----------------------------------------------------------------------------
95  * Registers Definition
96  */
97
98 #define IM_NS_ALIAS_OFFSET              0x800
99
100 /* MMU "context" registers */
101 #define IMCTR                           0x0000          /* R-Car Gen2/3 */
102 #define IMCTR_INTEN                     (1 << 2)        /* R-Car Gen2/3 */
103 #define IMCTR_FLUSH                     (1 << 1)        /* R-Car Gen2/3 */
104 #define IMCTR_MMUEN                     (1 << 0)        /* R-Car Gen2/3 */
105
106 #define IMTTBCR                         0x0008          /* R-Car Gen2/3 */
107 #define IMTTBCR_EAE                     (1 << 31)       /* R-Car Gen2/3 */
108 #define IMTTBCR_SH0_INNER_SHAREABLE     (3 << 12)       /* R-Car Gen2 only */
109 #define IMTTBCR_ORGN0_WB_WA             (1 << 10)       /* R-Car Gen2 only */
110 #define IMTTBCR_IRGN0_WB_WA             (1 << 8)        /* R-Car Gen2 only */
111 #define IMTTBCR_SL0_TWOBIT_LVL_1        (2 << 6)        /* R-Car Gen3 only */
112 #define IMTTBCR_SL0_LVL_1               (1 << 4)        /* R-Car Gen2 only */
113
114 #define IMBUSCR                         0x000c          /* R-Car Gen2 only */
115 #define IMBUSCR_DVM                     (1 << 2)        /* R-Car Gen2 only */
116 #define IMBUSCR_BUSSEL_MASK             (3 << 0)        /* R-Car Gen2 only */
117
118 #define IMTTLBR0                        0x0010          /* R-Car Gen2/3 */
119 #define IMTTUBR0                        0x0014          /* R-Car Gen2/3 */
120
121 #define IMSTR                           0x0020          /* R-Car Gen2/3 */
122 #define IMSTR_MHIT                      (1 << 4)        /* R-Car Gen2/3 */
123 #define IMSTR_ABORT                     (1 << 2)        /* R-Car Gen2/3 */
124 #define IMSTR_PF                        (1 << 1)        /* R-Car Gen2/3 */
125 #define IMSTR_TF                        (1 << 0)        /* R-Car Gen2/3 */
126
127 #define IMMAIR0                         0x0028          /* R-Car Gen2/3 */
128
129 #define IMELAR                          0x0030          /* R-Car Gen2/3, IMEAR on R-Car Gen2 */
130 #define IMEUAR                          0x0034          /* R-Car Gen3 only */
131
132 /* uTLB registers */
133 #define IMUCTR(n)                       ((n) < 32 ? IMUCTR0(n) : IMUCTR32(n))
134 #define IMUCTR0(n)                      (0x0300 + ((n) * 16))           /* R-Car Gen2/3 */
135 #define IMUCTR32(n)                     (0x0600 + (((n) - 32) * 16))    /* R-Car Gen3 only */
136 #define IMUCTR_TTSEL_MMU(n)             ((n) << 4)      /* R-Car Gen2/3 */
137 #define IMUCTR_FLUSH                    (1 << 1)        /* R-Car Gen2/3 */
138 #define IMUCTR_MMUEN                    (1 << 0)        /* R-Car Gen2/3 */
139
140 #define IMUASID(n)                      ((n) < 32 ? IMUASID0(n) : IMUASID32(n))
141 #define IMUASID0(n)                     (0x0308 + ((n) * 16))           /* R-Car Gen2/3 */
142 #define IMUASID32(n)                    (0x0608 + (((n) - 32) * 16))    /* R-Car Gen3 only */
143
144 /* -----------------------------------------------------------------------------
145  * Root device handling
146  */
147
148 static struct platform_driver ipmmu_driver;
149
150 static bool ipmmu_is_root(struct ipmmu_vmsa_device *mmu)
151 {
152         return mmu->root == mmu;
153 }
154
155 static int __ipmmu_check_device(struct device *dev, void *data)
156 {
157         struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
158         struct ipmmu_vmsa_device **rootp = data;
159
160         if (ipmmu_is_root(mmu))
161                 *rootp = mmu;
162
163         return 0;
164 }
165
166 static struct ipmmu_vmsa_device *ipmmu_find_root(void)
167 {
168         struct ipmmu_vmsa_device *root = NULL;
169
170         return driver_for_each_device(&ipmmu_driver.driver, NULL, &root,
171                                       __ipmmu_check_device) == 0 ? root : NULL;
172 }
173
174 /* -----------------------------------------------------------------------------
175  * Read/Write Access
176  */
177
178 static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset)
179 {
180         return ioread32(mmu->base + offset);
181 }
182
183 static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset,
184                         u32 data)
185 {
186         iowrite32(data, mmu->base + offset);
187 }
188
189 static unsigned int ipmmu_ctx_reg(struct ipmmu_vmsa_device *mmu,
190                                   unsigned int context_id, unsigned int reg)
191 {
192         unsigned int base = mmu->features->ctx_offset_base;
193
194         if (context_id > 7)
195                 base += 0x800 - 8 * 0x40;
196
197         return base + context_id * mmu->features->ctx_offset_stride + reg;
198 }
199
200 static u32 ipmmu_ctx_read(struct ipmmu_vmsa_device *mmu,
201                           unsigned int context_id, unsigned int reg)
202 {
203         return ipmmu_read(mmu, ipmmu_ctx_reg(mmu, context_id, reg));
204 }
205
206 static void ipmmu_ctx_write(struct ipmmu_vmsa_device *mmu,
207                             unsigned int context_id, unsigned int reg, u32 data)
208 {
209         ipmmu_write(mmu, ipmmu_ctx_reg(mmu, context_id, reg), data);
210 }
211
212 static u32 ipmmu_ctx_read_root(struct ipmmu_vmsa_domain *domain,
213                                unsigned int reg)
214 {
215         return ipmmu_ctx_read(domain->mmu->root, domain->context_id, reg);
216 }
217
218 static void ipmmu_ctx_write_root(struct ipmmu_vmsa_domain *domain,
219                                  unsigned int reg, u32 data)
220 {
221         ipmmu_ctx_write(domain->mmu->root, domain->context_id, reg, data);
222 }
223
224 static void ipmmu_ctx_write_all(struct ipmmu_vmsa_domain *domain,
225                                 unsigned int reg, u32 data)
226 {
227         if (domain->mmu != domain->mmu->root)
228                 ipmmu_ctx_write(domain->mmu, domain->context_id, reg, data);
229
230         ipmmu_ctx_write(domain->mmu->root, domain->context_id, reg, data);
231 }
232
233 static u32 ipmmu_utlb_reg(struct ipmmu_vmsa_device *mmu, unsigned int reg)
234 {
235         return mmu->features->utlb_offset_base + reg;
236 }
237
238 static void ipmmu_imuasid_write(struct ipmmu_vmsa_device *mmu,
239                                 unsigned int utlb, u32 data)
240 {
241         ipmmu_write(mmu, ipmmu_utlb_reg(mmu, IMUASID(utlb)), data);
242 }
243
244 static void ipmmu_imuctr_write(struct ipmmu_vmsa_device *mmu,
245                                unsigned int utlb, u32 data)
246 {
247         ipmmu_write(mmu, ipmmu_utlb_reg(mmu, IMUCTR(utlb)), data);
248 }
249
250 /* -----------------------------------------------------------------------------
251  * TLB and microTLB Management
252  */
253
254 /* Wait for any pending TLB invalidations to complete */
255 static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain)
256 {
257         u32 val;
258
259         if (read_poll_timeout_atomic(ipmmu_ctx_read_root, val,
260                                      !(val & IMCTR_FLUSH), 1, TLB_LOOP_TIMEOUT,
261                                      false, domain, IMCTR))
262                 dev_err_ratelimited(domain->mmu->dev,
263                         "TLB sync timed out -- MMU may be deadlocked\n");
264 }
265
266 static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain)
267 {
268         u32 reg;
269
270         reg = ipmmu_ctx_read_root(domain, IMCTR);
271         reg |= IMCTR_FLUSH;
272         ipmmu_ctx_write_all(domain, IMCTR, reg);
273
274         ipmmu_tlb_sync(domain);
275 }
276
277 /*
278  * Enable MMU translation for the microTLB.
279  */
280 static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain,
281                               unsigned int utlb)
282 {
283         struct ipmmu_vmsa_device *mmu = domain->mmu;
284
285         /*
286          * TODO: Reference-count the microTLB as several bus masters can be
287          * connected to the same microTLB.
288          */
289
290         /* TODO: What should we set the ASID to ? */
291         ipmmu_imuasid_write(mmu, utlb, 0);
292         /* TODO: Do we need to flush the microTLB ? */
293         ipmmu_imuctr_write(mmu, utlb, IMUCTR_TTSEL_MMU(domain->context_id) |
294                                       IMUCTR_FLUSH | IMUCTR_MMUEN);
295         mmu->utlb_ctx[utlb] = domain->context_id;
296 }
297
298 static void ipmmu_tlb_flush_all(void *cookie)
299 {
300         struct ipmmu_vmsa_domain *domain = cookie;
301
302         ipmmu_tlb_invalidate(domain);
303 }
304
305 static void ipmmu_tlb_flush(unsigned long iova, size_t size,
306                                 size_t granule, void *cookie)
307 {
308         ipmmu_tlb_flush_all(cookie);
309 }
310
311 static const struct iommu_flush_ops ipmmu_flush_ops = {
312         .tlb_flush_all = ipmmu_tlb_flush_all,
313         .tlb_flush_walk = ipmmu_tlb_flush,
314 };
315
316 /* -----------------------------------------------------------------------------
317  * Domain/Context Management
318  */
319
320 static int ipmmu_domain_allocate_context(struct ipmmu_vmsa_device *mmu,
321                                          struct ipmmu_vmsa_domain *domain)
322 {
323         unsigned long flags;
324         int ret;
325
326         spin_lock_irqsave(&mmu->lock, flags);
327
328         ret = find_first_zero_bit(mmu->ctx, mmu->num_ctx);
329         if (ret != mmu->num_ctx) {
330                 mmu->domains[ret] = domain;
331                 set_bit(ret, mmu->ctx);
332         } else
333                 ret = -EBUSY;
334
335         spin_unlock_irqrestore(&mmu->lock, flags);
336
337         return ret;
338 }
339
340 static void ipmmu_domain_free_context(struct ipmmu_vmsa_device *mmu,
341                                       unsigned int context_id)
342 {
343         unsigned long flags;
344
345         spin_lock_irqsave(&mmu->lock, flags);
346
347         clear_bit(context_id, mmu->ctx);
348         mmu->domains[context_id] = NULL;
349
350         spin_unlock_irqrestore(&mmu->lock, flags);
351 }
352
353 static void ipmmu_domain_setup_context(struct ipmmu_vmsa_domain *domain)
354 {
355         u64 ttbr;
356         u32 tmp;
357
358         /* TTBR0 */
359         ttbr = domain->cfg.arm_lpae_s1_cfg.ttbr;
360         ipmmu_ctx_write_root(domain, IMTTLBR0, ttbr);
361         ipmmu_ctx_write_root(domain, IMTTUBR0, ttbr >> 32);
362
363         /*
364          * TTBCR
365          * We use long descriptors and allocate the whole 32-bit VA space to
366          * TTBR0.
367          */
368         if (domain->mmu->features->twobit_imttbcr_sl0)
369                 tmp = IMTTBCR_SL0_TWOBIT_LVL_1;
370         else
371                 tmp = IMTTBCR_SL0_LVL_1;
372
373         if (domain->mmu->features->cache_snoop)
374                 tmp |= IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA |
375                        IMTTBCR_IRGN0_WB_WA;
376
377         ipmmu_ctx_write_root(domain, IMTTBCR, IMTTBCR_EAE | tmp);
378
379         /* MAIR0 */
380         ipmmu_ctx_write_root(domain, IMMAIR0,
381                              domain->cfg.arm_lpae_s1_cfg.mair);
382
383         /* IMBUSCR */
384         if (domain->mmu->features->setup_imbuscr)
385                 ipmmu_ctx_write_root(domain, IMBUSCR,
386                                      ipmmu_ctx_read_root(domain, IMBUSCR) &
387                                      ~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK));
388
389         /*
390          * IMSTR
391          * Clear all interrupt flags.
392          */
393         ipmmu_ctx_write_root(domain, IMSTR, ipmmu_ctx_read_root(domain, IMSTR));
394
395         /*
396          * IMCTR
397          * Enable the MMU and interrupt generation. The long-descriptor
398          * translation table format doesn't use TEX remapping. Don't enable AF
399          * software management as we have no use for it. Flush the TLB as
400          * required when modifying the context registers.
401          */
402         ipmmu_ctx_write_all(domain, IMCTR,
403                             IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN);
404 }
405
406 static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain)
407 {
408         int ret;
409
410         /*
411          * Allocate the page table operations.
412          *
413          * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory
414          * access, Long-descriptor format" that the NStable bit being set in a
415          * table descriptor will result in the NStable and NS bits of all child
416          * entries being ignored and considered as being set. The IPMMU seems
417          * not to comply with this, as it generates a secure access page fault
418          * if any of the NStable and NS bits isn't set when running in
419          * non-secure mode.
420          */
421         domain->cfg.quirks = IO_PGTABLE_QUIRK_ARM_NS;
422         domain->cfg.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K;
423         domain->cfg.ias = 32;
424         domain->cfg.oas = 40;
425         domain->cfg.tlb = &ipmmu_flush_ops;
426         domain->io_domain.geometry.aperture_end = DMA_BIT_MASK(32);
427         domain->io_domain.geometry.force_aperture = true;
428         /*
429          * TODO: Add support for coherent walk through CCI with DVM and remove
430          * cache handling. For now, delegate it to the io-pgtable code.
431          */
432         domain->cfg.coherent_walk = false;
433         domain->cfg.iommu_dev = domain->mmu->root->dev;
434
435         /*
436          * Find an unused context.
437          */
438         ret = ipmmu_domain_allocate_context(domain->mmu->root, domain);
439         if (ret < 0)
440                 return ret;
441
442         domain->context_id = ret;
443
444         domain->iop = alloc_io_pgtable_ops(ARM_32_LPAE_S1, &domain->cfg,
445                                            domain);
446         if (!domain->iop) {
447                 ipmmu_domain_free_context(domain->mmu->root,
448                                           domain->context_id);
449                 return -EINVAL;
450         }
451
452         ipmmu_domain_setup_context(domain);
453         return 0;
454 }
455
456 static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain)
457 {
458         if (!domain->mmu)
459                 return;
460
461         /*
462          * Disable the context. Flush the TLB as required when modifying the
463          * context registers.
464          *
465          * TODO: Is TLB flush really needed ?
466          */
467         ipmmu_ctx_write_all(domain, IMCTR, IMCTR_FLUSH);
468         ipmmu_tlb_sync(domain);
469         ipmmu_domain_free_context(domain->mmu->root, domain->context_id);
470 }
471
472 /* -----------------------------------------------------------------------------
473  * Fault Handling
474  */
475
476 static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain)
477 {
478         const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF;
479         struct ipmmu_vmsa_device *mmu = domain->mmu;
480         unsigned long iova;
481         u32 status;
482
483         status = ipmmu_ctx_read_root(domain, IMSTR);
484         if (!(status & err_mask))
485                 return IRQ_NONE;
486
487         iova = ipmmu_ctx_read_root(domain, IMELAR);
488         if (IS_ENABLED(CONFIG_64BIT))
489                 iova |= (u64)ipmmu_ctx_read_root(domain, IMEUAR) << 32;
490
491         /*
492          * Clear the error status flags. Unlike traditional interrupt flag
493          * registers that must be cleared by writing 1, this status register
494          * seems to require 0. The error address register must be read before,
495          * otherwise its value will be 0.
496          */
497         ipmmu_ctx_write_root(domain, IMSTR, 0);
498
499         /* Log fatal errors. */
500         if (status & IMSTR_MHIT)
501                 dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%lx\n",
502                                     iova);
503         if (status & IMSTR_ABORT)
504                 dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%lx\n",
505                                     iova);
506
507         if (!(status & (IMSTR_PF | IMSTR_TF)))
508                 return IRQ_NONE;
509
510         /*
511          * Try to handle page faults and translation faults.
512          *
513          * TODO: We need to look up the faulty device based on the I/O VA. Use
514          * the IOMMU device for now.
515          */
516         if (!report_iommu_fault(&domain->io_domain, mmu->dev, iova, 0))
517                 return IRQ_HANDLED;
518
519         dev_err_ratelimited(mmu->dev,
520                             "Unhandled fault: status 0x%08x iova 0x%lx\n",
521                             status, iova);
522
523         return IRQ_HANDLED;
524 }
525
526 static irqreturn_t ipmmu_irq(int irq, void *dev)
527 {
528         struct ipmmu_vmsa_device *mmu = dev;
529         irqreturn_t status = IRQ_NONE;
530         unsigned int i;
531         unsigned long flags;
532
533         spin_lock_irqsave(&mmu->lock, flags);
534
535         /*
536          * Check interrupts for all active contexts.
537          */
538         for (i = 0; i < mmu->num_ctx; i++) {
539                 if (!mmu->domains[i])
540                         continue;
541                 if (ipmmu_domain_irq(mmu->domains[i]) == IRQ_HANDLED)
542                         status = IRQ_HANDLED;
543         }
544
545         spin_unlock_irqrestore(&mmu->lock, flags);
546
547         return status;
548 }
549
550 /* -----------------------------------------------------------------------------
551  * IOMMU Operations
552  */
553
554 static struct iommu_domain *ipmmu_domain_alloc(unsigned type)
555 {
556         struct ipmmu_vmsa_domain *domain;
557
558         if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
559                 return NULL;
560
561         domain = kzalloc(sizeof(*domain), GFP_KERNEL);
562         if (!domain)
563                 return NULL;
564
565         mutex_init(&domain->mutex);
566
567         return &domain->io_domain;
568 }
569
570 static void ipmmu_domain_free(struct iommu_domain *io_domain)
571 {
572         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
573
574         /*
575          * Free the domain resources. We assume that all devices have already
576          * been detached.
577          */
578         ipmmu_domain_destroy_context(domain);
579         free_io_pgtable_ops(domain->iop);
580         kfree(domain);
581 }
582
583 static int ipmmu_attach_device(struct iommu_domain *io_domain,
584                                struct device *dev)
585 {
586         struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
587         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
588         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
589         unsigned int i;
590         int ret = 0;
591
592         if (!mmu) {
593                 dev_err(dev, "Cannot attach to IPMMU\n");
594                 return -ENXIO;
595         }
596
597         mutex_lock(&domain->mutex);
598
599         if (!domain->mmu) {
600                 /* The domain hasn't been used yet, initialize it. */
601                 domain->mmu = mmu;
602                 ret = ipmmu_domain_init_context(domain);
603                 if (ret < 0) {
604                         dev_err(dev, "Unable to initialize IPMMU context\n");
605                         domain->mmu = NULL;
606                 } else {
607                         dev_info(dev, "Using IPMMU context %u\n",
608                                  domain->context_id);
609                 }
610         } else if (domain->mmu != mmu) {
611                 /*
612                  * Something is wrong, we can't attach two devices using
613                  * different IOMMUs to the same domain.
614                  */
615                 ret = -EINVAL;
616         } else
617                 dev_info(dev, "Reusing IPMMU context %u\n", domain->context_id);
618
619         mutex_unlock(&domain->mutex);
620
621         if (ret < 0)
622                 return ret;
623
624         for (i = 0; i < fwspec->num_ids; ++i)
625                 ipmmu_utlb_enable(domain, fwspec->ids[i]);
626
627         return 0;
628 }
629
630 static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova,
631                      phys_addr_t paddr, size_t pgsize, size_t pgcount,
632                      int prot, gfp_t gfp, size_t *mapped)
633 {
634         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
635
636         return domain->iop->map_pages(domain->iop, iova, paddr, pgsize, pgcount,
637                                       prot, gfp, mapped);
638 }
639
640 static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova,
641                           size_t pgsize, size_t pgcount,
642                           struct iommu_iotlb_gather *gather)
643 {
644         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
645
646         return domain->iop->unmap_pages(domain->iop, iova, pgsize, pgcount, gather);
647 }
648
649 static void ipmmu_flush_iotlb_all(struct iommu_domain *io_domain)
650 {
651         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
652
653         if (domain->mmu)
654                 ipmmu_tlb_flush_all(domain);
655 }
656
657 static void ipmmu_iotlb_sync(struct iommu_domain *io_domain,
658                              struct iommu_iotlb_gather *gather)
659 {
660         ipmmu_flush_iotlb_all(io_domain);
661 }
662
663 static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain,
664                                       dma_addr_t iova)
665 {
666         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
667
668         /* TODO: Is locking needed ? */
669
670         return domain->iop->iova_to_phys(domain->iop, iova);
671 }
672
673 static int ipmmu_init_platform_device(struct device *dev,
674                                       struct of_phandle_args *args)
675 {
676         struct platform_device *ipmmu_pdev;
677
678         ipmmu_pdev = of_find_device_by_node(args->np);
679         if (!ipmmu_pdev)
680                 return -ENODEV;
681
682         dev_iommu_priv_set(dev, platform_get_drvdata(ipmmu_pdev));
683
684         return 0;
685 }
686
687 static const struct soc_device_attribute soc_needs_opt_in[] = {
688         { .family = "R-Car Gen3", },
689         { .family = "R-Car Gen4", },
690         { .family = "RZ/G2", },
691         { /* sentinel */ }
692 };
693
694 static const struct soc_device_attribute soc_denylist[] = {
695         { .soc_id = "r8a774a1", },
696         { .soc_id = "r8a7795", .revision = "ES2.*" },
697         { .soc_id = "r8a7796", },
698         { /* sentinel */ }
699 };
700
701 static const char * const devices_allowlist[] = {
702         "ee100000.mmc",
703         "ee120000.mmc",
704         "ee140000.mmc",
705         "ee160000.mmc"
706 };
707
708 static bool ipmmu_device_is_allowed(struct device *dev)
709 {
710         unsigned int i;
711
712         /*
713          * R-Car Gen3/4 and RZ/G2 use the allow list to opt-in devices.
714          * For Other SoCs, this returns true anyway.
715          */
716         if (!soc_device_match(soc_needs_opt_in))
717                 return true;
718
719         /* Check whether this SoC can use the IPMMU correctly or not */
720         if (soc_device_match(soc_denylist))
721                 return false;
722
723         /* Check whether this device is a PCI device */
724         if (dev_is_pci(dev))
725                 return true;
726
727         /* Check whether this device can work with the IPMMU */
728         for (i = 0; i < ARRAY_SIZE(devices_allowlist); i++) {
729                 if (!strcmp(dev_name(dev), devices_allowlist[i]))
730                         return true;
731         }
732
733         /* Otherwise, do not allow use of IPMMU */
734         return false;
735 }
736
737 static int ipmmu_of_xlate(struct device *dev,
738                           struct of_phandle_args *spec)
739 {
740         if (!ipmmu_device_is_allowed(dev))
741                 return -ENODEV;
742
743         iommu_fwspec_add_ids(dev, spec->args, 1);
744
745         /* Initialize once - xlate() will call multiple times */
746         if (to_ipmmu(dev))
747                 return 0;
748
749         return ipmmu_init_platform_device(dev, spec);
750 }
751
752 static int ipmmu_init_arm_mapping(struct device *dev)
753 {
754         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
755         int ret;
756
757         /*
758          * Create the ARM mapping, used by the ARM DMA mapping core to allocate
759          * VAs. This will allocate a corresponding IOMMU domain.
760          *
761          * TODO:
762          * - Create one mapping per context (TLB).
763          * - Make the mapping size configurable ? We currently use a 2GB mapping
764          *   at a 1GB offset to ensure that NULL VAs will fault.
765          */
766         if (!mmu->mapping) {
767                 struct dma_iommu_mapping *mapping;
768
769                 mapping = arm_iommu_create_mapping(&platform_bus_type,
770                                                    SZ_1G, SZ_2G);
771                 if (IS_ERR(mapping)) {
772                         dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n");
773                         ret = PTR_ERR(mapping);
774                         goto error;
775                 }
776
777                 mmu->mapping = mapping;
778         }
779
780         /* Attach the ARM VA mapping to the device. */
781         ret = arm_iommu_attach_device(dev, mmu->mapping);
782         if (ret < 0) {
783                 dev_err(dev, "Failed to attach device to VA mapping\n");
784                 goto error;
785         }
786
787         return 0;
788
789 error:
790         if (mmu->mapping)
791                 arm_iommu_release_mapping(mmu->mapping);
792
793         return ret;
794 }
795
796 static struct iommu_device *ipmmu_probe_device(struct device *dev)
797 {
798         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
799
800         /*
801          * Only let through devices that have been verified in xlate()
802          */
803         if (!mmu)
804                 return ERR_PTR(-ENODEV);
805
806         return &mmu->iommu;
807 }
808
809 static void ipmmu_probe_finalize(struct device *dev)
810 {
811         int ret = 0;
812
813         if (IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA))
814                 ret = ipmmu_init_arm_mapping(dev);
815
816         if (ret)
817                 dev_err(dev, "Can't create IOMMU mapping - DMA-OPS will not work\n");
818 }
819
820 static void ipmmu_release_device(struct device *dev)
821 {
822         struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
823         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
824         unsigned int i;
825
826         for (i = 0; i < fwspec->num_ids; ++i) {
827                 unsigned int utlb = fwspec->ids[i];
828
829                 ipmmu_imuctr_write(mmu, utlb, 0);
830                 mmu->utlb_ctx[utlb] = IPMMU_CTX_INVALID;
831         }
832
833         arm_iommu_release_mapping(mmu->mapping);
834 }
835
836 static struct iommu_group *ipmmu_find_group(struct device *dev)
837 {
838         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
839         struct iommu_group *group;
840
841         if (mmu->group)
842                 return iommu_group_ref_get(mmu->group);
843
844         group = iommu_group_alloc();
845         if (!IS_ERR(group))
846                 mmu->group = group;
847
848         return group;
849 }
850
851 static const struct iommu_ops ipmmu_ops = {
852         .domain_alloc = ipmmu_domain_alloc,
853         .probe_device = ipmmu_probe_device,
854         .release_device = ipmmu_release_device,
855         .probe_finalize = ipmmu_probe_finalize,
856         .device_group = IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA)
857                         ? generic_device_group : ipmmu_find_group,
858         .pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K,
859         .of_xlate = ipmmu_of_xlate,
860         .default_domain_ops = &(const struct iommu_domain_ops) {
861                 .attach_dev     = ipmmu_attach_device,
862                 .map_pages      = ipmmu_map,
863                 .unmap_pages    = ipmmu_unmap,
864                 .flush_iotlb_all = ipmmu_flush_iotlb_all,
865                 .iotlb_sync     = ipmmu_iotlb_sync,
866                 .iova_to_phys   = ipmmu_iova_to_phys,
867                 .free           = ipmmu_domain_free,
868         }
869 };
870
871 /* -----------------------------------------------------------------------------
872  * Probe/remove and init
873  */
874
875 static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu)
876 {
877         unsigned int i;
878
879         /* Disable all contexts. */
880         for (i = 0; i < mmu->num_ctx; ++i)
881                 ipmmu_ctx_write(mmu, i, IMCTR, 0);
882 }
883
884 static const struct ipmmu_features ipmmu_features_default = {
885         .use_ns_alias_offset = true,
886         .has_cache_leaf_nodes = false,
887         .number_of_contexts = 1, /* software only tested with one context */
888         .num_utlbs = 32,
889         .setup_imbuscr = true,
890         .twobit_imttbcr_sl0 = false,
891         .reserved_context = false,
892         .cache_snoop = true,
893         .ctx_offset_base = 0,
894         .ctx_offset_stride = 0x40,
895         .utlb_offset_base = 0,
896 };
897
898 static const struct ipmmu_features ipmmu_features_rcar_gen3 = {
899         .use_ns_alias_offset = false,
900         .has_cache_leaf_nodes = true,
901         .number_of_contexts = 8,
902         .num_utlbs = 48,
903         .setup_imbuscr = false,
904         .twobit_imttbcr_sl0 = true,
905         .reserved_context = true,
906         .cache_snoop = false,
907         .ctx_offset_base = 0,
908         .ctx_offset_stride = 0x40,
909         .utlb_offset_base = 0,
910 };
911
912 static const struct ipmmu_features ipmmu_features_rcar_gen4 = {
913         .use_ns_alias_offset = false,
914         .has_cache_leaf_nodes = true,
915         .number_of_contexts = 16,
916         .num_utlbs = 64,
917         .setup_imbuscr = false,
918         .twobit_imttbcr_sl0 = true,
919         .reserved_context = true,
920         .cache_snoop = false,
921         .ctx_offset_base = 0x10000,
922         .ctx_offset_stride = 0x1040,
923         .utlb_offset_base = 0x3000,
924 };
925
926 static const struct of_device_id ipmmu_of_ids[] = {
927         {
928                 .compatible = "renesas,ipmmu-vmsa",
929                 .data = &ipmmu_features_default,
930         }, {
931                 .compatible = "renesas,ipmmu-r8a774a1",
932                 .data = &ipmmu_features_rcar_gen3,
933         }, {
934                 .compatible = "renesas,ipmmu-r8a774b1",
935                 .data = &ipmmu_features_rcar_gen3,
936         }, {
937                 .compatible = "renesas,ipmmu-r8a774c0",
938                 .data = &ipmmu_features_rcar_gen3,
939         }, {
940                 .compatible = "renesas,ipmmu-r8a774e1",
941                 .data = &ipmmu_features_rcar_gen3,
942         }, {
943                 .compatible = "renesas,ipmmu-r8a7795",
944                 .data = &ipmmu_features_rcar_gen3,
945         }, {
946                 .compatible = "renesas,ipmmu-r8a7796",
947                 .data = &ipmmu_features_rcar_gen3,
948         }, {
949                 .compatible = "renesas,ipmmu-r8a77961",
950                 .data = &ipmmu_features_rcar_gen3,
951         }, {
952                 .compatible = "renesas,ipmmu-r8a77965",
953                 .data = &ipmmu_features_rcar_gen3,
954         }, {
955                 .compatible = "renesas,ipmmu-r8a77970",
956                 .data = &ipmmu_features_rcar_gen3,
957         }, {
958                 .compatible = "renesas,ipmmu-r8a77980",
959                 .data = &ipmmu_features_rcar_gen3,
960         }, {
961                 .compatible = "renesas,ipmmu-r8a77990",
962                 .data = &ipmmu_features_rcar_gen3,
963         }, {
964                 .compatible = "renesas,ipmmu-r8a77995",
965                 .data = &ipmmu_features_rcar_gen3,
966         }, {
967                 .compatible = "renesas,ipmmu-r8a779a0",
968                 .data = &ipmmu_features_rcar_gen4,
969         }, {
970                 .compatible = "renesas,rcar-gen4-ipmmu-vmsa",
971                 .data = &ipmmu_features_rcar_gen4,
972         }, {
973                 /* Terminator */
974         },
975 };
976
977 static int ipmmu_probe(struct platform_device *pdev)
978 {
979         struct ipmmu_vmsa_device *mmu;
980         struct resource *res;
981         int irq;
982         int ret;
983
984         mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL);
985         if (!mmu) {
986                 dev_err(&pdev->dev, "cannot allocate device data\n");
987                 return -ENOMEM;
988         }
989
990         mmu->dev = &pdev->dev;
991         spin_lock_init(&mmu->lock);
992         bitmap_zero(mmu->ctx, IPMMU_CTX_MAX);
993         mmu->features = of_device_get_match_data(&pdev->dev);
994         memset(mmu->utlb_ctx, IPMMU_CTX_INVALID, mmu->features->num_utlbs);
995         ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
996         if (ret)
997                 return ret;
998
999         /* Map I/O memory and request IRQ. */
1000         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1001         mmu->base = devm_ioremap_resource(&pdev->dev, res);
1002         if (IS_ERR(mmu->base))
1003                 return PTR_ERR(mmu->base);
1004
1005         /*
1006          * The IPMMU has two register banks, for secure and non-secure modes.
1007          * The bank mapped at the beginning of the IPMMU address space
1008          * corresponds to the running mode of the CPU. When running in secure
1009          * mode the non-secure register bank is also available at an offset.
1010          *
1011          * Secure mode operation isn't clearly documented and is thus currently
1012          * not implemented in the driver. Furthermore, preliminary tests of
1013          * non-secure operation with the main register bank were not successful.
1014          * Offset the registers base unconditionally to point to the non-secure
1015          * alias space for now.
1016          */
1017         if (mmu->features->use_ns_alias_offset)
1018                 mmu->base += IM_NS_ALIAS_OFFSET;
1019
1020         mmu->num_ctx = min(IPMMU_CTX_MAX, mmu->features->number_of_contexts);
1021
1022         /*
1023          * Determine if this IPMMU instance is a root device by checking for
1024          * the lack of has_cache_leaf_nodes flag or renesas,ipmmu-main property.
1025          */
1026         if (!mmu->features->has_cache_leaf_nodes ||
1027             !of_property_present(pdev->dev.of_node, "renesas,ipmmu-main"))
1028                 mmu->root = mmu;
1029         else
1030                 mmu->root = ipmmu_find_root();
1031
1032         /*
1033          * Wait until the root device has been registered for sure.
1034          */
1035         if (!mmu->root)
1036                 return -EPROBE_DEFER;
1037
1038         /* Root devices have mandatory IRQs */
1039         if (ipmmu_is_root(mmu)) {
1040                 irq = platform_get_irq(pdev, 0);
1041                 if (irq < 0)
1042                         return irq;
1043
1044                 ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0,
1045                                        dev_name(&pdev->dev), mmu);
1046                 if (ret < 0) {
1047                         dev_err(&pdev->dev, "failed to request IRQ %d\n", irq);
1048                         return ret;
1049                 }
1050
1051                 ipmmu_device_reset(mmu);
1052
1053                 if (mmu->features->reserved_context) {
1054                         dev_info(&pdev->dev, "IPMMU context 0 is reserved\n");
1055                         set_bit(0, mmu->ctx);
1056                 }
1057         }
1058
1059         /*
1060          * Register the IPMMU to the IOMMU subsystem in the following cases:
1061          * - R-Car Gen2 IPMMU (all devices registered)
1062          * - R-Car Gen3 IPMMU (leaf devices only - skip root IPMMU-MM device)
1063          */
1064         if (!mmu->features->has_cache_leaf_nodes || !ipmmu_is_root(mmu)) {
1065                 ret = iommu_device_sysfs_add(&mmu->iommu, &pdev->dev, NULL,
1066                                              dev_name(&pdev->dev));
1067                 if (ret)
1068                         return ret;
1069
1070                 ret = iommu_device_register(&mmu->iommu, &ipmmu_ops, &pdev->dev);
1071                 if (ret)
1072                         return ret;
1073         }
1074
1075         /*
1076          * We can't create the ARM mapping here as it requires the bus to have
1077          * an IOMMU, which only happens when bus_set_iommu() is called in
1078          * ipmmu_init() after the probe function returns.
1079          */
1080
1081         platform_set_drvdata(pdev, mmu);
1082
1083         return 0;
1084 }
1085
1086 static void ipmmu_remove(struct platform_device *pdev)
1087 {
1088         struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev);
1089
1090         iommu_device_sysfs_remove(&mmu->iommu);
1091         iommu_device_unregister(&mmu->iommu);
1092
1093         arm_iommu_release_mapping(mmu->mapping);
1094
1095         ipmmu_device_reset(mmu);
1096 }
1097
1098 #ifdef CONFIG_PM_SLEEP
1099 static int ipmmu_resume_noirq(struct device *dev)
1100 {
1101         struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
1102         unsigned int i;
1103
1104         /* Reset root MMU and restore contexts */
1105         if (ipmmu_is_root(mmu)) {
1106                 ipmmu_device_reset(mmu);
1107
1108                 for (i = 0; i < mmu->num_ctx; i++) {
1109                         if (!mmu->domains[i])
1110                                 continue;
1111
1112                         ipmmu_domain_setup_context(mmu->domains[i]);
1113                 }
1114         }
1115
1116         /* Re-enable active micro-TLBs */
1117         for (i = 0; i < mmu->features->num_utlbs; i++) {
1118                 if (mmu->utlb_ctx[i] == IPMMU_CTX_INVALID)
1119                         continue;
1120
1121                 ipmmu_utlb_enable(mmu->root->domains[mmu->utlb_ctx[i]], i);
1122         }
1123
1124         return 0;
1125 }
1126
1127 static const struct dev_pm_ops ipmmu_pm  = {
1128         SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(NULL, ipmmu_resume_noirq)
1129 };
1130 #define DEV_PM_OPS      &ipmmu_pm
1131 #else
1132 #define DEV_PM_OPS      NULL
1133 #endif /* CONFIG_PM_SLEEP */
1134
1135 static struct platform_driver ipmmu_driver = {
1136         .driver = {
1137                 .name = "ipmmu-vmsa",
1138                 .of_match_table = of_match_ptr(ipmmu_of_ids),
1139                 .pm = DEV_PM_OPS,
1140         },
1141         .probe = ipmmu_probe,
1142         .remove_new = ipmmu_remove,
1143 };
1144 builtin_platform_driver(ipmmu_driver);