iommu/vt-d: Cleanup get_valid_domain_for_dev()
[linux-2.6-microblaze.git] / drivers / iommu / intel-iommu.c
1 /*
2  * Copyright © 2006-2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * Authors: David Woodhouse <dwmw2@infradead.org>,
14  *          Ashok Raj <ashok.raj@intel.com>,
15  *          Shaohua Li <shaohua.li@intel.com>,
16  *          Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
17  *          Fenghua Yu <fenghua.yu@intel.com>
18  *          Joerg Roedel <jroedel@suse.de>
19  */
20
21 #define pr_fmt(fmt)     "DMAR: " fmt
22 #define dev_fmt(fmt)    pr_fmt(fmt)
23
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/export.h>
28 #include <linux/slab.h>
29 #include <linux/irq.h>
30 #include <linux/interrupt.h>
31 #include <linux/spinlock.h>
32 #include <linux/pci.h>
33 #include <linux/dmar.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mempool.h>
36 #include <linux/memory.h>
37 #include <linux/cpu.h>
38 #include <linux/timer.h>
39 #include <linux/io.h>
40 #include <linux/iova.h>
41 #include <linux/iommu.h>
42 #include <linux/intel-iommu.h>
43 #include <linux/syscore_ops.h>
44 #include <linux/tboot.h>
45 #include <linux/dmi.h>
46 #include <linux/pci-ats.h>
47 #include <linux/memblock.h>
48 #include <linux/dma-contiguous.h>
49 #include <linux/dma-direct.h>
50 #include <linux/crash_dump.h>
51 #include <linux/numa.h>
52 #include <asm/irq_remapping.h>
53 #include <asm/cacheflush.h>
54 #include <asm/iommu.h>
55
56 #include "irq_remapping.h"
57 #include "intel-pasid.h"
58
59 #define ROOT_SIZE               VTD_PAGE_SIZE
60 #define CONTEXT_SIZE            VTD_PAGE_SIZE
61
62 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
63 #define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
64 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
65 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
66
67 #define IOAPIC_RANGE_START      (0xfee00000)
68 #define IOAPIC_RANGE_END        (0xfeefffff)
69 #define IOVA_START_ADDR         (0x1000)
70
71 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 57
72
73 #define MAX_AGAW_WIDTH 64
74 #define MAX_AGAW_PFN_WIDTH      (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
75
76 #define __DOMAIN_MAX_PFN(gaw)  ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
77 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
78
79 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
80    to match. That way, we can use 'unsigned long' for PFNs with impunity. */
81 #define DOMAIN_MAX_PFN(gaw)     ((unsigned long) min_t(uint64_t, \
82                                 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
83 #define DOMAIN_MAX_ADDR(gaw)    (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
84
85 /* IO virtual address start page frame number */
86 #define IOVA_START_PFN          (1)
87
88 #define IOVA_PFN(addr)          ((addr) >> PAGE_SHIFT)
89
90 /* page table handling */
91 #define LEVEL_STRIDE            (9)
92 #define LEVEL_MASK              (((u64)1 << LEVEL_STRIDE) - 1)
93
94 /*
95  * This bitmap is used to advertise the page sizes our hardware support
96  * to the IOMMU core, which will then use this information to split
97  * physically contiguous memory regions it is mapping into page sizes
98  * that we support.
99  *
100  * Traditionally the IOMMU core just handed us the mappings directly,
101  * after making sure the size is an order of a 4KiB page and that the
102  * mapping has natural alignment.
103  *
104  * To retain this behavior, we currently advertise that we support
105  * all page sizes that are an order of 4KiB.
106  *
107  * If at some point we'd like to utilize the IOMMU core's new behavior,
108  * we could change this to advertise the real page sizes we support.
109  */
110 #define INTEL_IOMMU_PGSIZES     (~0xFFFUL)
111
112 static inline int agaw_to_level(int agaw)
113 {
114         return agaw + 2;
115 }
116
117 static inline int agaw_to_width(int agaw)
118 {
119         return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
120 }
121
122 static inline int width_to_agaw(int width)
123 {
124         return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
125 }
126
127 static inline unsigned int level_to_offset_bits(int level)
128 {
129         return (level - 1) * LEVEL_STRIDE;
130 }
131
132 static inline int pfn_level_offset(unsigned long pfn, int level)
133 {
134         return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
135 }
136
137 static inline unsigned long level_mask(int level)
138 {
139         return -1UL << level_to_offset_bits(level);
140 }
141
142 static inline unsigned long level_size(int level)
143 {
144         return 1UL << level_to_offset_bits(level);
145 }
146
147 static inline unsigned long align_to_level(unsigned long pfn, int level)
148 {
149         return (pfn + level_size(level) - 1) & level_mask(level);
150 }
151
152 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
153 {
154         return  1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
155 }
156
157 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
158    are never going to work. */
159 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
160 {
161         return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
162 }
163
164 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
165 {
166         return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
167 }
168 static inline unsigned long page_to_dma_pfn(struct page *pg)
169 {
170         return mm_to_dma_pfn(page_to_pfn(pg));
171 }
172 static inline unsigned long virt_to_dma_pfn(void *p)
173 {
174         return page_to_dma_pfn(virt_to_page(p));
175 }
176
177 /* global iommu list, set NULL for ignored DMAR units */
178 static struct intel_iommu **g_iommus;
179
180 static void __init check_tylersburg_isoch(void);
181 static int rwbf_quirk;
182
183 /*
184  * set to 1 to panic kernel if can't successfully enable VT-d
185  * (used when kernel is launched w/ TXT)
186  */
187 static int force_on = 0;
188 int intel_iommu_tboot_noforce;
189 static int no_platform_optin;
190
191 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
192
193 /*
194  * Take a root_entry and return the Lower Context Table Pointer (LCTP)
195  * if marked present.
196  */
197 static phys_addr_t root_entry_lctp(struct root_entry *re)
198 {
199         if (!(re->lo & 1))
200                 return 0;
201
202         return re->lo & VTD_PAGE_MASK;
203 }
204
205 /*
206  * Take a root_entry and return the Upper Context Table Pointer (UCTP)
207  * if marked present.
208  */
209 static phys_addr_t root_entry_uctp(struct root_entry *re)
210 {
211         if (!(re->hi & 1))
212                 return 0;
213
214         return re->hi & VTD_PAGE_MASK;
215 }
216
217 static inline void context_clear_pasid_enable(struct context_entry *context)
218 {
219         context->lo &= ~(1ULL << 11);
220 }
221
222 static inline bool context_pasid_enabled(struct context_entry *context)
223 {
224         return !!(context->lo & (1ULL << 11));
225 }
226
227 static inline void context_set_copied(struct context_entry *context)
228 {
229         context->hi |= (1ull << 3);
230 }
231
232 static inline bool context_copied(struct context_entry *context)
233 {
234         return !!(context->hi & (1ULL << 3));
235 }
236
237 static inline bool __context_present(struct context_entry *context)
238 {
239         return (context->lo & 1);
240 }
241
242 bool context_present(struct context_entry *context)
243 {
244         return context_pasid_enabled(context) ?
245              __context_present(context) :
246              __context_present(context) && !context_copied(context);
247 }
248
249 static inline void context_set_present(struct context_entry *context)
250 {
251         context->lo |= 1;
252 }
253
254 static inline void context_set_fault_enable(struct context_entry *context)
255 {
256         context->lo &= (((u64)-1) << 2) | 1;
257 }
258
259 static inline void context_set_translation_type(struct context_entry *context,
260                                                 unsigned long value)
261 {
262         context->lo &= (((u64)-1) << 4) | 3;
263         context->lo |= (value & 3) << 2;
264 }
265
266 static inline void context_set_address_root(struct context_entry *context,
267                                             unsigned long value)
268 {
269         context->lo &= ~VTD_PAGE_MASK;
270         context->lo |= value & VTD_PAGE_MASK;
271 }
272
273 static inline void context_set_address_width(struct context_entry *context,
274                                              unsigned long value)
275 {
276         context->hi |= value & 7;
277 }
278
279 static inline void context_set_domain_id(struct context_entry *context,
280                                          unsigned long value)
281 {
282         context->hi |= (value & ((1 << 16) - 1)) << 8;
283 }
284
285 static inline int context_domain_id(struct context_entry *c)
286 {
287         return((c->hi >> 8) & 0xffff);
288 }
289
290 static inline void context_clear_entry(struct context_entry *context)
291 {
292         context->lo = 0;
293         context->hi = 0;
294 }
295
296 /*
297  * This domain is a statically identity mapping domain.
298  *      1. This domain creats a static 1:1 mapping to all usable memory.
299  *      2. It maps to each iommu if successful.
300  *      3. Each iommu mapps to this domain if successful.
301  */
302 static struct dmar_domain *si_domain;
303 static int hw_pass_through = 1;
304
305 /* si_domain contains mulitple devices */
306 #define DOMAIN_FLAG_STATIC_IDENTITY             BIT(0)
307
308 /*
309  * This is a DMA domain allocated through the iommu domain allocation
310  * interface. But one or more devices belonging to this domain have
311  * been chosen to use a private domain. We should avoid to use the
312  * map/unmap/iova_to_phys APIs on it.
313  */
314 #define DOMAIN_FLAG_LOSE_CHILDREN               BIT(1)
315
316 #define for_each_domain_iommu(idx, domain)                      \
317         for (idx = 0; idx < g_num_of_iommus; idx++)             \
318                 if (domain->iommu_refcnt[idx])
319
320 struct dmar_rmrr_unit {
321         struct list_head list;          /* list of rmrr units   */
322         struct acpi_dmar_header *hdr;   /* ACPI header          */
323         u64     base_address;           /* reserved base address*/
324         u64     end_address;            /* reserved end address */
325         struct dmar_dev_scope *devices; /* target devices */
326         int     devices_cnt;            /* target device count */
327         struct iommu_resv_region *resv; /* reserved region handle */
328 };
329
330 struct dmar_atsr_unit {
331         struct list_head list;          /* list of ATSR units */
332         struct acpi_dmar_header *hdr;   /* ACPI header */
333         struct dmar_dev_scope *devices; /* target devices */
334         int devices_cnt;                /* target device count */
335         u8 include_all:1;               /* include all ports */
336 };
337
338 static LIST_HEAD(dmar_atsr_units);
339 static LIST_HEAD(dmar_rmrr_units);
340
341 #define for_each_rmrr_units(rmrr) \
342         list_for_each_entry(rmrr, &dmar_rmrr_units, list)
343
344 /* bitmap for indexing intel_iommus */
345 static int g_num_of_iommus;
346
347 static void domain_exit(struct dmar_domain *domain);
348 static void domain_remove_dev_info(struct dmar_domain *domain);
349 static void dmar_remove_one_dev_info(struct device *dev);
350 static void __dmar_remove_one_dev_info(struct device_domain_info *info);
351 static void domain_context_clear(struct intel_iommu *iommu,
352                                  struct device *dev);
353 static int domain_detach_iommu(struct dmar_domain *domain,
354                                struct intel_iommu *iommu);
355 static bool device_is_rmrr_locked(struct device *dev);
356 static int intel_iommu_attach_device(struct iommu_domain *domain,
357                                      struct device *dev);
358
359 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
360 int dmar_disabled = 0;
361 #else
362 int dmar_disabled = 1;
363 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
364
365 int intel_iommu_sm;
366 int intel_iommu_enabled = 0;
367 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
368
369 static int dmar_map_gfx = 1;
370 static int dmar_forcedac;
371 static int intel_iommu_strict;
372 static int intel_iommu_superpage = 1;
373 static int iommu_identity_mapping;
374
375 #define IDENTMAP_ALL            1
376 #define IDENTMAP_GFX            2
377 #define IDENTMAP_AZALIA         4
378
379 int intel_iommu_gfx_mapped;
380 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
381
382 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
383 #define DEFER_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-2))
384 static DEFINE_SPINLOCK(device_domain_lock);
385 static LIST_HEAD(device_domain_list);
386
387 /*
388  * Iterate over elements in device_domain_list and call the specified
389  * callback @fn against each element.
390  */
391 int for_each_device_domain(int (*fn)(struct device_domain_info *info,
392                                      void *data), void *data)
393 {
394         int ret = 0;
395         unsigned long flags;
396         struct device_domain_info *info;
397
398         spin_lock_irqsave(&device_domain_lock, flags);
399         list_for_each_entry(info, &device_domain_list, global) {
400                 ret = fn(info, data);
401                 if (ret) {
402                         spin_unlock_irqrestore(&device_domain_lock, flags);
403                         return ret;
404                 }
405         }
406         spin_unlock_irqrestore(&device_domain_lock, flags);
407
408         return 0;
409 }
410
411 const struct iommu_ops intel_iommu_ops;
412
413 static bool translation_pre_enabled(struct intel_iommu *iommu)
414 {
415         return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
416 }
417
418 static void clear_translation_pre_enabled(struct intel_iommu *iommu)
419 {
420         iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
421 }
422
423 static void init_translation_status(struct intel_iommu *iommu)
424 {
425         u32 gsts;
426
427         gsts = readl(iommu->reg + DMAR_GSTS_REG);
428         if (gsts & DMA_GSTS_TES)
429                 iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
430 }
431
432 /* Convert generic 'struct iommu_domain to private struct dmar_domain */
433 static struct dmar_domain *to_dmar_domain(struct iommu_domain *dom)
434 {
435         return container_of(dom, struct dmar_domain, domain);
436 }
437
438 static int __init intel_iommu_setup(char *str)
439 {
440         if (!str)
441                 return -EINVAL;
442         while (*str) {
443                 if (!strncmp(str, "on", 2)) {
444                         dmar_disabled = 0;
445                         pr_info("IOMMU enabled\n");
446                 } else if (!strncmp(str, "off", 3)) {
447                         dmar_disabled = 1;
448                         no_platform_optin = 1;
449                         pr_info("IOMMU disabled\n");
450                 } else if (!strncmp(str, "igfx_off", 8)) {
451                         dmar_map_gfx = 0;
452                         pr_info("Disable GFX device mapping\n");
453                 } else if (!strncmp(str, "forcedac", 8)) {
454                         pr_info("Forcing DAC for PCI devices\n");
455                         dmar_forcedac = 1;
456                 } else if (!strncmp(str, "strict", 6)) {
457                         pr_info("Disable batched IOTLB flush\n");
458                         intel_iommu_strict = 1;
459                 } else if (!strncmp(str, "sp_off", 6)) {
460                         pr_info("Disable supported super page\n");
461                         intel_iommu_superpage = 0;
462                 } else if (!strncmp(str, "sm_on", 5)) {
463                         pr_info("Intel-IOMMU: scalable mode supported\n");
464                         intel_iommu_sm = 1;
465                 } else if (!strncmp(str, "tboot_noforce", 13)) {
466                         printk(KERN_INFO
467                                 "Intel-IOMMU: not forcing on after tboot. This could expose security risk for tboot\n");
468                         intel_iommu_tboot_noforce = 1;
469                 }
470
471                 str += strcspn(str, ",");
472                 while (*str == ',')
473                         str++;
474         }
475         return 0;
476 }
477 __setup("intel_iommu=", intel_iommu_setup);
478
479 static struct kmem_cache *iommu_domain_cache;
480 static struct kmem_cache *iommu_devinfo_cache;
481
482 static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did)
483 {
484         struct dmar_domain **domains;
485         int idx = did >> 8;
486
487         domains = iommu->domains[idx];
488         if (!domains)
489                 return NULL;
490
491         return domains[did & 0xff];
492 }
493
494 static void set_iommu_domain(struct intel_iommu *iommu, u16 did,
495                              struct dmar_domain *domain)
496 {
497         struct dmar_domain **domains;
498         int idx = did >> 8;
499
500         if (!iommu->domains[idx]) {
501                 size_t size = 256 * sizeof(struct dmar_domain *);
502                 iommu->domains[idx] = kzalloc(size, GFP_ATOMIC);
503         }
504
505         domains = iommu->domains[idx];
506         if (WARN_ON(!domains))
507                 return;
508         else
509                 domains[did & 0xff] = domain;
510 }
511
512 void *alloc_pgtable_page(int node)
513 {
514         struct page *page;
515         void *vaddr = NULL;
516
517         page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
518         if (page)
519                 vaddr = page_address(page);
520         return vaddr;
521 }
522
523 void free_pgtable_page(void *vaddr)
524 {
525         free_page((unsigned long)vaddr);
526 }
527
528 static inline void *alloc_domain_mem(void)
529 {
530         return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
531 }
532
533 static void free_domain_mem(void *vaddr)
534 {
535         kmem_cache_free(iommu_domain_cache, vaddr);
536 }
537
538 static inline void * alloc_devinfo_mem(void)
539 {
540         return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
541 }
542
543 static inline void free_devinfo_mem(void *vaddr)
544 {
545         kmem_cache_free(iommu_devinfo_cache, vaddr);
546 }
547
548 static inline int domain_type_is_si(struct dmar_domain *domain)
549 {
550         return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY;
551 }
552
553 static inline int domain_pfn_supported(struct dmar_domain *domain,
554                                        unsigned long pfn)
555 {
556         int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
557
558         return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
559 }
560
561 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
562 {
563         unsigned long sagaw;
564         int agaw = -1;
565
566         sagaw = cap_sagaw(iommu->cap);
567         for (agaw = width_to_agaw(max_gaw);
568              agaw >= 0; agaw--) {
569                 if (test_bit(agaw, &sagaw))
570                         break;
571         }
572
573         return agaw;
574 }
575
576 /*
577  * Calculate max SAGAW for each iommu.
578  */
579 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
580 {
581         return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
582 }
583
584 /*
585  * calculate agaw for each iommu.
586  * "SAGAW" may be different across iommus, use a default agaw, and
587  * get a supported less agaw for iommus that don't support the default agaw.
588  */
589 int iommu_calculate_agaw(struct intel_iommu *iommu)
590 {
591         return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
592 }
593
594 /* This functionin only returns single iommu in a domain */
595 struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
596 {
597         int iommu_id;
598
599         /* si_domain and vm domain should not get here. */
600         if (WARN_ON(domain->domain.type != IOMMU_DOMAIN_DMA))
601                 return NULL;
602
603         for_each_domain_iommu(iommu_id, domain)
604                 break;
605
606         if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
607                 return NULL;
608
609         return g_iommus[iommu_id];
610 }
611
612 static void domain_update_iommu_coherency(struct dmar_domain *domain)
613 {
614         struct dmar_drhd_unit *drhd;
615         struct intel_iommu *iommu;
616         bool found = false;
617         int i;
618
619         domain->iommu_coherency = 1;
620
621         for_each_domain_iommu(i, domain) {
622                 found = true;
623                 if (!ecap_coherent(g_iommus[i]->ecap)) {
624                         domain->iommu_coherency = 0;
625                         break;
626                 }
627         }
628         if (found)
629                 return;
630
631         /* No hardware attached; use lowest common denominator */
632         rcu_read_lock();
633         for_each_active_iommu(iommu, drhd) {
634                 if (!ecap_coherent(iommu->ecap)) {
635                         domain->iommu_coherency = 0;
636                         break;
637                 }
638         }
639         rcu_read_unlock();
640 }
641
642 static int domain_update_iommu_snooping(struct intel_iommu *skip)
643 {
644         struct dmar_drhd_unit *drhd;
645         struct intel_iommu *iommu;
646         int ret = 1;
647
648         rcu_read_lock();
649         for_each_active_iommu(iommu, drhd) {
650                 if (iommu != skip) {
651                         if (!ecap_sc_support(iommu->ecap)) {
652                                 ret = 0;
653                                 break;
654                         }
655                 }
656         }
657         rcu_read_unlock();
658
659         return ret;
660 }
661
662 static int domain_update_iommu_superpage(struct intel_iommu *skip)
663 {
664         struct dmar_drhd_unit *drhd;
665         struct intel_iommu *iommu;
666         int mask = 0xf;
667
668         if (!intel_iommu_superpage) {
669                 return 0;
670         }
671
672         /* set iommu_superpage to the smallest common denominator */
673         rcu_read_lock();
674         for_each_active_iommu(iommu, drhd) {
675                 if (iommu != skip) {
676                         mask &= cap_super_page_val(iommu->cap);
677                         if (!mask)
678                                 break;
679                 }
680         }
681         rcu_read_unlock();
682
683         return fls(mask);
684 }
685
686 /* Some capabilities may be different across iommus */
687 static void domain_update_iommu_cap(struct dmar_domain *domain)
688 {
689         domain_update_iommu_coherency(domain);
690         domain->iommu_snooping = domain_update_iommu_snooping(NULL);
691         domain->iommu_superpage = domain_update_iommu_superpage(NULL);
692 }
693
694 struct context_entry *iommu_context_addr(struct intel_iommu *iommu, u8 bus,
695                                          u8 devfn, int alloc)
696 {
697         struct root_entry *root = &iommu->root_entry[bus];
698         struct context_entry *context;
699         u64 *entry;
700
701         entry = &root->lo;
702         if (sm_supported(iommu)) {
703                 if (devfn >= 0x80) {
704                         devfn -= 0x80;
705                         entry = &root->hi;
706                 }
707                 devfn *= 2;
708         }
709         if (*entry & 1)
710                 context = phys_to_virt(*entry & VTD_PAGE_MASK);
711         else {
712                 unsigned long phy_addr;
713                 if (!alloc)
714                         return NULL;
715
716                 context = alloc_pgtable_page(iommu->node);
717                 if (!context)
718                         return NULL;
719
720                 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
721                 phy_addr = virt_to_phys((void *)context);
722                 *entry = phy_addr | 1;
723                 __iommu_flush_cache(iommu, entry, sizeof(*entry));
724         }
725         return &context[devfn];
726 }
727
728 static int iommu_dummy(struct device *dev)
729 {
730         return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
731 }
732
733 static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
734 {
735         struct dmar_drhd_unit *drhd = NULL;
736         struct intel_iommu *iommu;
737         struct device *tmp;
738         struct pci_dev *ptmp, *pdev = NULL;
739         u16 segment = 0;
740         int i;
741
742         if (iommu_dummy(dev))
743                 return NULL;
744
745         if (dev_is_pci(dev)) {
746                 struct pci_dev *pf_pdev;
747
748                 pdev = to_pci_dev(dev);
749
750 #ifdef CONFIG_X86
751                 /* VMD child devices currently cannot be handled individually */
752                 if (is_vmd(pdev->bus))
753                         return NULL;
754 #endif
755
756                 /* VFs aren't listed in scope tables; we need to look up
757                  * the PF instead to find the IOMMU. */
758                 pf_pdev = pci_physfn(pdev);
759                 dev = &pf_pdev->dev;
760                 segment = pci_domain_nr(pdev->bus);
761         } else if (has_acpi_companion(dev))
762                 dev = &ACPI_COMPANION(dev)->dev;
763
764         rcu_read_lock();
765         for_each_active_iommu(iommu, drhd) {
766                 if (pdev && segment != drhd->segment)
767                         continue;
768
769                 for_each_active_dev_scope(drhd->devices,
770                                           drhd->devices_cnt, i, tmp) {
771                         if (tmp == dev) {
772                                 /* For a VF use its original BDF# not that of the PF
773                                  * which we used for the IOMMU lookup. Strictly speaking
774                                  * we could do this for all PCI devices; we only need to
775                                  * get the BDF# from the scope table for ACPI matches. */
776                                 if (pdev && pdev->is_virtfn)
777                                         goto got_pdev;
778
779                                 *bus = drhd->devices[i].bus;
780                                 *devfn = drhd->devices[i].devfn;
781                                 goto out;
782                         }
783
784                         if (!pdev || !dev_is_pci(tmp))
785                                 continue;
786
787                         ptmp = to_pci_dev(tmp);
788                         if (ptmp->subordinate &&
789                             ptmp->subordinate->number <= pdev->bus->number &&
790                             ptmp->subordinate->busn_res.end >= pdev->bus->number)
791                                 goto got_pdev;
792                 }
793
794                 if (pdev && drhd->include_all) {
795                 got_pdev:
796                         *bus = pdev->bus->number;
797                         *devfn = pdev->devfn;
798                         goto out;
799                 }
800         }
801         iommu = NULL;
802  out:
803         rcu_read_unlock();
804
805         return iommu;
806 }
807
808 static void domain_flush_cache(struct dmar_domain *domain,
809                                void *addr, int size)
810 {
811         if (!domain->iommu_coherency)
812                 clflush_cache_range(addr, size);
813 }
814
815 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
816 {
817         struct context_entry *context;
818         int ret = 0;
819         unsigned long flags;
820
821         spin_lock_irqsave(&iommu->lock, flags);
822         context = iommu_context_addr(iommu, bus, devfn, 0);
823         if (context)
824                 ret = context_present(context);
825         spin_unlock_irqrestore(&iommu->lock, flags);
826         return ret;
827 }
828
829 static void free_context_table(struct intel_iommu *iommu)
830 {
831         int i;
832         unsigned long flags;
833         struct context_entry *context;
834
835         spin_lock_irqsave(&iommu->lock, flags);
836         if (!iommu->root_entry) {
837                 goto out;
838         }
839         for (i = 0; i < ROOT_ENTRY_NR; i++) {
840                 context = iommu_context_addr(iommu, i, 0, 0);
841                 if (context)
842                         free_pgtable_page(context);
843
844                 if (!sm_supported(iommu))
845                         continue;
846
847                 context = iommu_context_addr(iommu, i, 0x80, 0);
848                 if (context)
849                         free_pgtable_page(context);
850
851         }
852         free_pgtable_page(iommu->root_entry);
853         iommu->root_entry = NULL;
854 out:
855         spin_unlock_irqrestore(&iommu->lock, flags);
856 }
857
858 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
859                                       unsigned long pfn, int *target_level)
860 {
861         struct dma_pte *parent, *pte;
862         int level = agaw_to_level(domain->agaw);
863         int offset;
864
865         BUG_ON(!domain->pgd);
866
867         if (!domain_pfn_supported(domain, pfn))
868                 /* Address beyond IOMMU's addressing capabilities. */
869                 return NULL;
870
871         parent = domain->pgd;
872
873         while (1) {
874                 void *tmp_page;
875
876                 offset = pfn_level_offset(pfn, level);
877                 pte = &parent[offset];
878                 if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
879                         break;
880                 if (level == *target_level)
881                         break;
882
883                 if (!dma_pte_present(pte)) {
884                         uint64_t pteval;
885
886                         tmp_page = alloc_pgtable_page(domain->nid);
887
888                         if (!tmp_page)
889                                 return NULL;
890
891                         domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
892                         pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
893                         if (cmpxchg64(&pte->val, 0ULL, pteval))
894                                 /* Someone else set it while we were thinking; use theirs. */
895                                 free_pgtable_page(tmp_page);
896                         else
897                                 domain_flush_cache(domain, pte, sizeof(*pte));
898                 }
899                 if (level == 1)
900                         break;
901
902                 parent = phys_to_virt(dma_pte_addr(pte));
903                 level--;
904         }
905
906         if (!*target_level)
907                 *target_level = level;
908
909         return pte;
910 }
911
912
913 /* return address's pte at specific level */
914 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
915                                          unsigned long pfn,
916                                          int level, int *large_page)
917 {
918         struct dma_pte *parent, *pte;
919         int total = agaw_to_level(domain->agaw);
920         int offset;
921
922         parent = domain->pgd;
923         while (level <= total) {
924                 offset = pfn_level_offset(pfn, total);
925                 pte = &parent[offset];
926                 if (level == total)
927                         return pte;
928
929                 if (!dma_pte_present(pte)) {
930                         *large_page = total;
931                         break;
932                 }
933
934                 if (dma_pte_superpage(pte)) {
935                         *large_page = total;
936                         return pte;
937                 }
938
939                 parent = phys_to_virt(dma_pte_addr(pte));
940                 total--;
941         }
942         return NULL;
943 }
944
945 /* clear last level pte, a tlb flush should be followed */
946 static void dma_pte_clear_range(struct dmar_domain *domain,
947                                 unsigned long start_pfn,
948                                 unsigned long last_pfn)
949 {
950         unsigned int large_page;
951         struct dma_pte *first_pte, *pte;
952
953         BUG_ON(!domain_pfn_supported(domain, start_pfn));
954         BUG_ON(!domain_pfn_supported(domain, last_pfn));
955         BUG_ON(start_pfn > last_pfn);
956
957         /* we don't need lock here; nobody else touches the iova range */
958         do {
959                 large_page = 1;
960                 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
961                 if (!pte) {
962                         start_pfn = align_to_level(start_pfn + 1, large_page + 1);
963                         continue;
964                 }
965                 do {
966                         dma_clear_pte(pte);
967                         start_pfn += lvl_to_nr_pages(large_page);
968                         pte++;
969                 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
970
971                 domain_flush_cache(domain, first_pte,
972                                    (void *)pte - (void *)first_pte);
973
974         } while (start_pfn && start_pfn <= last_pfn);
975 }
976
977 static void dma_pte_free_level(struct dmar_domain *domain, int level,
978                                int retain_level, struct dma_pte *pte,
979                                unsigned long pfn, unsigned long start_pfn,
980                                unsigned long last_pfn)
981 {
982         pfn = max(start_pfn, pfn);
983         pte = &pte[pfn_level_offset(pfn, level)];
984
985         do {
986                 unsigned long level_pfn;
987                 struct dma_pte *level_pte;
988
989                 if (!dma_pte_present(pte) || dma_pte_superpage(pte))
990                         goto next;
991
992                 level_pfn = pfn & level_mask(level);
993                 level_pte = phys_to_virt(dma_pte_addr(pte));
994
995                 if (level > 2) {
996                         dma_pte_free_level(domain, level - 1, retain_level,
997                                            level_pte, level_pfn, start_pfn,
998                                            last_pfn);
999                 }
1000
1001                 /*
1002                  * Free the page table if we're below the level we want to
1003                  * retain and the range covers the entire table.
1004                  */
1005                 if (level < retain_level && !(start_pfn > level_pfn ||
1006                       last_pfn < level_pfn + level_size(level) - 1)) {
1007                         dma_clear_pte(pte);
1008                         domain_flush_cache(domain, pte, sizeof(*pte));
1009                         free_pgtable_page(level_pte);
1010                 }
1011 next:
1012                 pfn += level_size(level);
1013         } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1014 }
1015
1016 /*
1017  * clear last level (leaf) ptes and free page table pages below the
1018  * level we wish to keep intact.
1019  */
1020 static void dma_pte_free_pagetable(struct dmar_domain *domain,
1021                                    unsigned long start_pfn,
1022                                    unsigned long last_pfn,
1023                                    int retain_level)
1024 {
1025         BUG_ON(!domain_pfn_supported(domain, start_pfn));
1026         BUG_ON(!domain_pfn_supported(domain, last_pfn));
1027         BUG_ON(start_pfn > last_pfn);
1028
1029         dma_pte_clear_range(domain, start_pfn, last_pfn);
1030
1031         /* We don't need lock here; nobody else touches the iova range */
1032         dma_pte_free_level(domain, agaw_to_level(domain->agaw), retain_level,
1033                            domain->pgd, 0, start_pfn, last_pfn);
1034
1035         /* free pgd */
1036         if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1037                 free_pgtable_page(domain->pgd);
1038                 domain->pgd = NULL;
1039         }
1040 }
1041
1042 /* When a page at a given level is being unlinked from its parent, we don't
1043    need to *modify* it at all. All we need to do is make a list of all the
1044    pages which can be freed just as soon as we've flushed the IOTLB and we
1045    know the hardware page-walk will no longer touch them.
1046    The 'pte' argument is the *parent* PTE, pointing to the page that is to
1047    be freed. */
1048 static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
1049                                             int level, struct dma_pte *pte,
1050                                             struct page *freelist)
1051 {
1052         struct page *pg;
1053
1054         pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
1055         pg->freelist = freelist;
1056         freelist = pg;
1057
1058         if (level == 1)
1059                 return freelist;
1060
1061         pte = page_address(pg);
1062         do {
1063                 if (dma_pte_present(pte) && !dma_pte_superpage(pte))
1064                         freelist = dma_pte_list_pagetables(domain, level - 1,
1065                                                            pte, freelist);
1066                 pte++;
1067         } while (!first_pte_in_page(pte));
1068
1069         return freelist;
1070 }
1071
1072 static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
1073                                         struct dma_pte *pte, unsigned long pfn,
1074                                         unsigned long start_pfn,
1075                                         unsigned long last_pfn,
1076                                         struct page *freelist)
1077 {
1078         struct dma_pte *first_pte = NULL, *last_pte = NULL;
1079
1080         pfn = max(start_pfn, pfn);
1081         pte = &pte[pfn_level_offset(pfn, level)];
1082
1083         do {
1084                 unsigned long level_pfn;
1085
1086                 if (!dma_pte_present(pte))
1087                         goto next;
1088
1089                 level_pfn = pfn & level_mask(level);
1090
1091                 /* If range covers entire pagetable, free it */
1092                 if (start_pfn <= level_pfn &&
1093                     last_pfn >= level_pfn + level_size(level) - 1) {
1094                         /* These suborbinate page tables are going away entirely. Don't
1095                            bother to clear them; we're just going to *free* them. */
1096                         if (level > 1 && !dma_pte_superpage(pte))
1097                                 freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1098
1099                         dma_clear_pte(pte);
1100                         if (!first_pte)
1101                                 first_pte = pte;
1102                         last_pte = pte;
1103                 } else if (level > 1) {
1104                         /* Recurse down into a level that isn't *entirely* obsolete */
1105                         freelist = dma_pte_clear_level(domain, level - 1,
1106                                                        phys_to_virt(dma_pte_addr(pte)),
1107                                                        level_pfn, start_pfn, last_pfn,
1108                                                        freelist);
1109                 }
1110 next:
1111                 pfn += level_size(level);
1112         } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1113
1114         if (first_pte)
1115                 domain_flush_cache(domain, first_pte,
1116                                    (void *)++last_pte - (void *)first_pte);
1117
1118         return freelist;
1119 }
1120
1121 /* We can't just free the pages because the IOMMU may still be walking
1122    the page tables, and may have cached the intermediate levels. The
1123    pages can only be freed after the IOTLB flush has been done. */
1124 static struct page *domain_unmap(struct dmar_domain *domain,
1125                                  unsigned long start_pfn,
1126                                  unsigned long last_pfn)
1127 {
1128         struct page *freelist;
1129
1130         BUG_ON(!domain_pfn_supported(domain, start_pfn));
1131         BUG_ON(!domain_pfn_supported(domain, last_pfn));
1132         BUG_ON(start_pfn > last_pfn);
1133
1134         /* we don't need lock here; nobody else touches the iova range */
1135         freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1136                                        domain->pgd, 0, start_pfn, last_pfn, NULL);
1137
1138         /* free pgd */
1139         if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1140                 struct page *pgd_page = virt_to_page(domain->pgd);
1141                 pgd_page->freelist = freelist;
1142                 freelist = pgd_page;
1143
1144                 domain->pgd = NULL;
1145         }
1146
1147         return freelist;
1148 }
1149
1150 static void dma_free_pagelist(struct page *freelist)
1151 {
1152         struct page *pg;
1153
1154         while ((pg = freelist)) {
1155                 freelist = pg->freelist;
1156                 free_pgtable_page(page_address(pg));
1157         }
1158 }
1159
1160 static void iova_entry_free(unsigned long data)
1161 {
1162         struct page *freelist = (struct page *)data;
1163
1164         dma_free_pagelist(freelist);
1165 }
1166
1167 /* iommu handling */
1168 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
1169 {
1170         struct root_entry *root;
1171         unsigned long flags;
1172
1173         root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1174         if (!root) {
1175                 pr_err("Allocating root entry for %s failed\n",
1176                         iommu->name);
1177                 return -ENOMEM;
1178         }
1179
1180         __iommu_flush_cache(iommu, root, ROOT_SIZE);
1181
1182         spin_lock_irqsave(&iommu->lock, flags);
1183         iommu->root_entry = root;
1184         spin_unlock_irqrestore(&iommu->lock, flags);
1185
1186         return 0;
1187 }
1188
1189 static void iommu_set_root_entry(struct intel_iommu *iommu)
1190 {
1191         u64 addr;
1192         u32 sts;
1193         unsigned long flag;
1194
1195         addr = virt_to_phys(iommu->root_entry);
1196         if (sm_supported(iommu))
1197                 addr |= DMA_RTADDR_SMT;
1198
1199         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1200         dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1201
1202         writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1203
1204         /* Make sure hardware complete it */
1205         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1206                       readl, (sts & DMA_GSTS_RTPS), sts);
1207
1208         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1209 }
1210
1211 void iommu_flush_write_buffer(struct intel_iommu *iommu)
1212 {
1213         u32 val;
1214         unsigned long flag;
1215
1216         if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1217                 return;
1218
1219         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1220         writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1221
1222         /* Make sure hardware complete it */
1223         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1224                       readl, (!(val & DMA_GSTS_WBFS)), val);
1225
1226         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1227 }
1228
1229 /* return value determine if we need a write buffer flush */
1230 static void __iommu_flush_context(struct intel_iommu *iommu,
1231                                   u16 did, u16 source_id, u8 function_mask,
1232                                   u64 type)
1233 {
1234         u64 val = 0;
1235         unsigned long flag;
1236
1237         switch (type) {
1238         case DMA_CCMD_GLOBAL_INVL:
1239                 val = DMA_CCMD_GLOBAL_INVL;
1240                 break;
1241         case DMA_CCMD_DOMAIN_INVL:
1242                 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1243                 break;
1244         case DMA_CCMD_DEVICE_INVL:
1245                 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1246                         | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1247                 break;
1248         default:
1249                 BUG();
1250         }
1251         val |= DMA_CCMD_ICC;
1252
1253         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1254         dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1255
1256         /* Make sure hardware complete it */
1257         IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1258                 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1259
1260         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1261 }
1262
1263 /* return value determine if we need a write buffer flush */
1264 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1265                                 u64 addr, unsigned int size_order, u64 type)
1266 {
1267         int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1268         u64 val = 0, val_iva = 0;
1269         unsigned long flag;
1270
1271         switch (type) {
1272         case DMA_TLB_GLOBAL_FLUSH:
1273                 /* global flush doesn't need set IVA_REG */
1274                 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1275                 break;
1276         case DMA_TLB_DSI_FLUSH:
1277                 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1278                 break;
1279         case DMA_TLB_PSI_FLUSH:
1280                 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1281                 /* IH bit is passed in as part of address */
1282                 val_iva = size_order | addr;
1283                 break;
1284         default:
1285                 BUG();
1286         }
1287         /* Note: set drain read/write */
1288 #if 0
1289         /*
1290          * This is probably to be super secure.. Looks like we can
1291          * ignore it without any impact.
1292          */
1293         if (cap_read_drain(iommu->cap))
1294                 val |= DMA_TLB_READ_DRAIN;
1295 #endif
1296         if (cap_write_drain(iommu->cap))
1297                 val |= DMA_TLB_WRITE_DRAIN;
1298
1299         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1300         /* Note: Only uses first TLB reg currently */
1301         if (val_iva)
1302                 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1303         dmar_writeq(iommu->reg + tlb_offset + 8, val);
1304
1305         /* Make sure hardware complete it */
1306         IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1307                 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1308
1309         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1310
1311         /* check IOTLB invalidation granularity */
1312         if (DMA_TLB_IAIG(val) == 0)
1313                 pr_err("Flush IOTLB failed\n");
1314         if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1315                 pr_debug("TLB flush request %Lx, actual %Lx\n",
1316                         (unsigned long long)DMA_TLB_IIRG(type),
1317                         (unsigned long long)DMA_TLB_IAIG(val));
1318 }
1319
1320 static struct device_domain_info *
1321 iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
1322                          u8 bus, u8 devfn)
1323 {
1324         struct device_domain_info *info;
1325
1326         assert_spin_locked(&device_domain_lock);
1327
1328         if (!iommu->qi)
1329                 return NULL;
1330
1331         list_for_each_entry(info, &domain->devices, link)
1332                 if (info->iommu == iommu && info->bus == bus &&
1333                     info->devfn == devfn) {
1334                         if (info->ats_supported && info->dev)
1335                                 return info;
1336                         break;
1337                 }
1338
1339         return NULL;
1340 }
1341
1342 static void domain_update_iotlb(struct dmar_domain *domain)
1343 {
1344         struct device_domain_info *info;
1345         bool has_iotlb_device = false;
1346
1347         assert_spin_locked(&device_domain_lock);
1348
1349         list_for_each_entry(info, &domain->devices, link) {
1350                 struct pci_dev *pdev;
1351
1352                 if (!info->dev || !dev_is_pci(info->dev))
1353                         continue;
1354
1355                 pdev = to_pci_dev(info->dev);
1356                 if (pdev->ats_enabled) {
1357                         has_iotlb_device = true;
1358                         break;
1359                 }
1360         }
1361
1362         domain->has_iotlb_device = has_iotlb_device;
1363 }
1364
1365 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1366 {
1367         struct pci_dev *pdev;
1368
1369         assert_spin_locked(&device_domain_lock);
1370
1371         if (!info || !dev_is_pci(info->dev))
1372                 return;
1373
1374         pdev = to_pci_dev(info->dev);
1375         /* For IOMMU that supports device IOTLB throttling (DIT), we assign
1376          * PFSID to the invalidation desc of a VF such that IOMMU HW can gauge
1377          * queue depth at PF level. If DIT is not set, PFSID will be treated as
1378          * reserved, which should be set to 0.
1379          */
1380         if (!ecap_dit(info->iommu->ecap))
1381                 info->pfsid = 0;
1382         else {
1383                 struct pci_dev *pf_pdev;
1384
1385                 /* pdev will be returned if device is not a vf */
1386                 pf_pdev = pci_physfn(pdev);
1387                 info->pfsid = pci_dev_id(pf_pdev);
1388         }
1389
1390 #ifdef CONFIG_INTEL_IOMMU_SVM
1391         /* The PCIe spec, in its wisdom, declares that the behaviour of
1392            the device if you enable PASID support after ATS support is
1393            undefined. So always enable PASID support on devices which
1394            have it, even if we can't yet know if we're ever going to
1395            use it. */
1396         if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1))
1397                 info->pasid_enabled = 1;
1398
1399         if (info->pri_supported &&
1400             (info->pasid_enabled ? pci_prg_resp_pasid_required(pdev) : 1)  &&
1401             !pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32))
1402                 info->pri_enabled = 1;
1403 #endif
1404         if (!pdev->untrusted && info->ats_supported &&
1405             pci_ats_page_aligned(pdev) &&
1406             !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) {
1407                 info->ats_enabled = 1;
1408                 domain_update_iotlb(info->domain);
1409                 info->ats_qdep = pci_ats_queue_depth(pdev);
1410         }
1411 }
1412
1413 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1414 {
1415         struct pci_dev *pdev;
1416
1417         assert_spin_locked(&device_domain_lock);
1418
1419         if (!dev_is_pci(info->dev))
1420                 return;
1421
1422         pdev = to_pci_dev(info->dev);
1423
1424         if (info->ats_enabled) {
1425                 pci_disable_ats(pdev);
1426                 info->ats_enabled = 0;
1427                 domain_update_iotlb(info->domain);
1428         }
1429 #ifdef CONFIG_INTEL_IOMMU_SVM
1430         if (info->pri_enabled) {
1431                 pci_disable_pri(pdev);
1432                 info->pri_enabled = 0;
1433         }
1434         if (info->pasid_enabled) {
1435                 pci_disable_pasid(pdev);
1436                 info->pasid_enabled = 0;
1437         }
1438 #endif
1439 }
1440
1441 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1442                                   u64 addr, unsigned mask)
1443 {
1444         u16 sid, qdep;
1445         unsigned long flags;
1446         struct device_domain_info *info;
1447
1448         if (!domain->has_iotlb_device)
1449                 return;
1450
1451         spin_lock_irqsave(&device_domain_lock, flags);
1452         list_for_each_entry(info, &domain->devices, link) {
1453                 if (!info->ats_enabled)
1454                         continue;
1455
1456                 sid = info->bus << 8 | info->devfn;
1457                 qdep = info->ats_qdep;
1458                 qi_flush_dev_iotlb(info->iommu, sid, info->pfsid,
1459                                 qdep, addr, mask);
1460         }
1461         spin_unlock_irqrestore(&device_domain_lock, flags);
1462 }
1463
1464 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
1465                                   struct dmar_domain *domain,
1466                                   unsigned long pfn, unsigned int pages,
1467                                   int ih, int map)
1468 {
1469         unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1470         uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1471         u16 did = domain->iommu_did[iommu->seq_id];
1472
1473         BUG_ON(pages == 0);
1474
1475         if (ih)
1476                 ih = 1 << 6;
1477         /*
1478          * Fallback to domain selective flush if no PSI support or the size is
1479          * too big.
1480          * PSI requires page size to be 2 ^ x, and the base address is naturally
1481          * aligned to the size
1482          */
1483         if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1484                 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1485                                                 DMA_TLB_DSI_FLUSH);
1486         else
1487                 iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
1488                                                 DMA_TLB_PSI_FLUSH);
1489
1490         /*
1491          * In caching mode, changes of pages from non-present to present require
1492          * flush. However, device IOTLB doesn't need to be flushed in this case.
1493          */
1494         if (!cap_caching_mode(iommu->cap) || !map)
1495                 iommu_flush_dev_iotlb(domain, addr, mask);
1496 }
1497
1498 /* Notification for newly created mappings */
1499 static inline void __mapping_notify_one(struct intel_iommu *iommu,
1500                                         struct dmar_domain *domain,
1501                                         unsigned long pfn, unsigned int pages)
1502 {
1503         /* It's a non-present to present mapping. Only flush if caching mode */
1504         if (cap_caching_mode(iommu->cap))
1505                 iommu_flush_iotlb_psi(iommu, domain, pfn, pages, 0, 1);
1506         else
1507                 iommu_flush_write_buffer(iommu);
1508 }
1509
1510 static void iommu_flush_iova(struct iova_domain *iovad)
1511 {
1512         struct dmar_domain *domain;
1513         int idx;
1514
1515         domain = container_of(iovad, struct dmar_domain, iovad);
1516
1517         for_each_domain_iommu(idx, domain) {
1518                 struct intel_iommu *iommu = g_iommus[idx];
1519                 u16 did = domain->iommu_did[iommu->seq_id];
1520
1521                 iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
1522
1523                 if (!cap_caching_mode(iommu->cap))
1524                         iommu_flush_dev_iotlb(get_iommu_domain(iommu, did),
1525                                               0, MAX_AGAW_PFN_WIDTH);
1526         }
1527 }
1528
1529 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1530 {
1531         u32 pmen;
1532         unsigned long flags;
1533
1534         if (!cap_plmr(iommu->cap) && !cap_phmr(iommu->cap))
1535                 return;
1536
1537         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1538         pmen = readl(iommu->reg + DMAR_PMEN_REG);
1539         pmen &= ~DMA_PMEN_EPM;
1540         writel(pmen, iommu->reg + DMAR_PMEN_REG);
1541
1542         /* wait for the protected region status bit to clear */
1543         IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1544                 readl, !(pmen & DMA_PMEN_PRS), pmen);
1545
1546         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1547 }
1548
1549 static void iommu_enable_translation(struct intel_iommu *iommu)
1550 {
1551         u32 sts;
1552         unsigned long flags;
1553
1554         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1555         iommu->gcmd |= DMA_GCMD_TE;
1556         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1557
1558         /* Make sure hardware complete it */
1559         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1560                       readl, (sts & DMA_GSTS_TES), sts);
1561
1562         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1563 }
1564
1565 static void iommu_disable_translation(struct intel_iommu *iommu)
1566 {
1567         u32 sts;
1568         unsigned long flag;
1569
1570         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1571         iommu->gcmd &= ~DMA_GCMD_TE;
1572         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1573
1574         /* Make sure hardware complete it */
1575         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1576                       readl, (!(sts & DMA_GSTS_TES)), sts);
1577
1578         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1579 }
1580
1581
1582 static int iommu_init_domains(struct intel_iommu *iommu)
1583 {
1584         u32 ndomains, nlongs;
1585         size_t size;
1586
1587         ndomains = cap_ndoms(iommu->cap);
1588         pr_debug("%s: Number of Domains supported <%d>\n",
1589                  iommu->name, ndomains);
1590         nlongs = BITS_TO_LONGS(ndomains);
1591
1592         spin_lock_init(&iommu->lock);
1593
1594         iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1595         if (!iommu->domain_ids) {
1596                 pr_err("%s: Allocating domain id array failed\n",
1597                        iommu->name);
1598                 return -ENOMEM;
1599         }
1600
1601         size = (ALIGN(ndomains, 256) >> 8) * sizeof(struct dmar_domain **);
1602         iommu->domains = kzalloc(size, GFP_KERNEL);
1603
1604         if (iommu->domains) {
1605                 size = 256 * sizeof(struct dmar_domain *);
1606                 iommu->domains[0] = kzalloc(size, GFP_KERNEL);
1607         }
1608
1609         if (!iommu->domains || !iommu->domains[0]) {
1610                 pr_err("%s: Allocating domain array failed\n",
1611                        iommu->name);
1612                 kfree(iommu->domain_ids);
1613                 kfree(iommu->domains);
1614                 iommu->domain_ids = NULL;
1615                 iommu->domains    = NULL;
1616                 return -ENOMEM;
1617         }
1618
1619
1620
1621         /*
1622          * If Caching mode is set, then invalid translations are tagged
1623          * with domain-id 0, hence we need to pre-allocate it. We also
1624          * use domain-id 0 as a marker for non-allocated domain-id, so
1625          * make sure it is not used for a real domain.
1626          */
1627         set_bit(0, iommu->domain_ids);
1628
1629         /*
1630          * Vt-d spec rev3.0 (section 6.2.3.1) requires that each pasid
1631          * entry for first-level or pass-through translation modes should
1632          * be programmed with a domain id different from those used for
1633          * second-level or nested translation. We reserve a domain id for
1634          * this purpose.
1635          */
1636         if (sm_supported(iommu))
1637                 set_bit(FLPT_DEFAULT_DID, iommu->domain_ids);
1638
1639         return 0;
1640 }
1641
1642 static void disable_dmar_iommu(struct intel_iommu *iommu)
1643 {
1644         struct device_domain_info *info, *tmp;
1645         unsigned long flags;
1646
1647         if (!iommu->domains || !iommu->domain_ids)
1648                 return;
1649
1650         spin_lock_irqsave(&device_domain_lock, flags);
1651         list_for_each_entry_safe(info, tmp, &device_domain_list, global) {
1652                 struct dmar_domain *domain;
1653
1654                 if (info->iommu != iommu)
1655                         continue;
1656
1657                 if (!info->dev || !info->domain)
1658                         continue;
1659
1660                 domain = info->domain;
1661
1662                 __dmar_remove_one_dev_info(info);
1663         }
1664         spin_unlock_irqrestore(&device_domain_lock, flags);
1665
1666         if (iommu->gcmd & DMA_GCMD_TE)
1667                 iommu_disable_translation(iommu);
1668 }
1669
1670 static void free_dmar_iommu(struct intel_iommu *iommu)
1671 {
1672         if ((iommu->domains) && (iommu->domain_ids)) {
1673                 int elems = ALIGN(cap_ndoms(iommu->cap), 256) >> 8;
1674                 int i;
1675
1676                 for (i = 0; i < elems; i++)
1677                         kfree(iommu->domains[i]);
1678                 kfree(iommu->domains);
1679                 kfree(iommu->domain_ids);
1680                 iommu->domains = NULL;
1681                 iommu->domain_ids = NULL;
1682         }
1683
1684         g_iommus[iommu->seq_id] = NULL;
1685
1686         /* free context mapping */
1687         free_context_table(iommu);
1688
1689 #ifdef CONFIG_INTEL_IOMMU_SVM
1690         if (pasid_supported(iommu)) {
1691                 if (ecap_prs(iommu->ecap))
1692                         intel_svm_finish_prq(iommu);
1693         }
1694 #endif
1695 }
1696
1697 static struct dmar_domain *alloc_domain(int flags)
1698 {
1699         struct dmar_domain *domain;
1700
1701         domain = alloc_domain_mem();
1702         if (!domain)
1703                 return NULL;
1704
1705         memset(domain, 0, sizeof(*domain));
1706         domain->nid = NUMA_NO_NODE;
1707         domain->flags = flags;
1708         domain->has_iotlb_device = false;
1709         INIT_LIST_HEAD(&domain->devices);
1710
1711         return domain;
1712 }
1713
1714 /* Must be called with iommu->lock */
1715 static int domain_attach_iommu(struct dmar_domain *domain,
1716                                struct intel_iommu *iommu)
1717 {
1718         unsigned long ndomains;
1719         int num;
1720
1721         assert_spin_locked(&device_domain_lock);
1722         assert_spin_locked(&iommu->lock);
1723
1724         domain->iommu_refcnt[iommu->seq_id] += 1;
1725         domain->iommu_count += 1;
1726         if (domain->iommu_refcnt[iommu->seq_id] == 1) {
1727                 ndomains = cap_ndoms(iommu->cap);
1728                 num      = find_first_zero_bit(iommu->domain_ids, ndomains);
1729
1730                 if (num >= ndomains) {
1731                         pr_err("%s: No free domain ids\n", iommu->name);
1732                         domain->iommu_refcnt[iommu->seq_id] -= 1;
1733                         domain->iommu_count -= 1;
1734                         return -ENOSPC;
1735                 }
1736
1737                 set_bit(num, iommu->domain_ids);
1738                 set_iommu_domain(iommu, num, domain);
1739
1740                 domain->iommu_did[iommu->seq_id] = num;
1741                 domain->nid                      = iommu->node;
1742
1743                 domain_update_iommu_cap(domain);
1744         }
1745
1746         return 0;
1747 }
1748
1749 static int domain_detach_iommu(struct dmar_domain *domain,
1750                                struct intel_iommu *iommu)
1751 {
1752         int num, count;
1753
1754         assert_spin_locked(&device_domain_lock);
1755         assert_spin_locked(&iommu->lock);
1756
1757         domain->iommu_refcnt[iommu->seq_id] -= 1;
1758         count = --domain->iommu_count;
1759         if (domain->iommu_refcnt[iommu->seq_id] == 0) {
1760                 num = domain->iommu_did[iommu->seq_id];
1761                 clear_bit(num, iommu->domain_ids);
1762                 set_iommu_domain(iommu, num, NULL);
1763
1764                 domain_update_iommu_cap(domain);
1765                 domain->iommu_did[iommu->seq_id] = 0;
1766         }
1767
1768         return count;
1769 }
1770
1771 static struct iova_domain reserved_iova_list;
1772 static struct lock_class_key reserved_rbtree_key;
1773
1774 static int dmar_init_reserved_ranges(void)
1775 {
1776         struct pci_dev *pdev = NULL;
1777         struct iova *iova;
1778         int i;
1779
1780         init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN);
1781
1782         lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1783                 &reserved_rbtree_key);
1784
1785         /* IOAPIC ranges shouldn't be accessed by DMA */
1786         iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1787                 IOVA_PFN(IOAPIC_RANGE_END));
1788         if (!iova) {
1789                 pr_err("Reserve IOAPIC range failed\n");
1790                 return -ENODEV;
1791         }
1792
1793         /* Reserve all PCI MMIO to avoid peer-to-peer access */
1794         for_each_pci_dev(pdev) {
1795                 struct resource *r;
1796
1797                 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1798                         r = &pdev->resource[i];
1799                         if (!r->flags || !(r->flags & IORESOURCE_MEM))
1800                                 continue;
1801                         iova = reserve_iova(&reserved_iova_list,
1802                                             IOVA_PFN(r->start),
1803                                             IOVA_PFN(r->end));
1804                         if (!iova) {
1805                                 pci_err(pdev, "Reserve iova for %pR failed\n", r);
1806                                 return -ENODEV;
1807                         }
1808                 }
1809         }
1810         return 0;
1811 }
1812
1813 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1814 {
1815         copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1816 }
1817
1818 static inline int guestwidth_to_adjustwidth(int gaw)
1819 {
1820         int agaw;
1821         int r = (gaw - 12) % 9;
1822
1823         if (r == 0)
1824                 agaw = gaw;
1825         else
1826                 agaw = gaw + 9 - r;
1827         if (agaw > 64)
1828                 agaw = 64;
1829         return agaw;
1830 }
1831
1832 static int domain_init(struct dmar_domain *domain, struct intel_iommu *iommu,
1833                        int guest_width)
1834 {
1835         int adjust_width, agaw;
1836         unsigned long sagaw;
1837         int err;
1838
1839         init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN);
1840
1841         err = init_iova_flush_queue(&domain->iovad,
1842                                     iommu_flush_iova, iova_entry_free);
1843         if (err)
1844                 return err;
1845
1846         domain_reserve_special_ranges(domain);
1847
1848         /* calculate AGAW */
1849         if (guest_width > cap_mgaw(iommu->cap))
1850                 guest_width = cap_mgaw(iommu->cap);
1851         domain->gaw = guest_width;
1852         adjust_width = guestwidth_to_adjustwidth(guest_width);
1853         agaw = width_to_agaw(adjust_width);
1854         sagaw = cap_sagaw(iommu->cap);
1855         if (!test_bit(agaw, &sagaw)) {
1856                 /* hardware doesn't support it, choose a bigger one */
1857                 pr_debug("Hardware doesn't support agaw %d\n", agaw);
1858                 agaw = find_next_bit(&sagaw, 5, agaw);
1859                 if (agaw >= 5)
1860                         return -ENODEV;
1861         }
1862         domain->agaw = agaw;
1863
1864         if (ecap_coherent(iommu->ecap))
1865                 domain->iommu_coherency = 1;
1866         else
1867                 domain->iommu_coherency = 0;
1868
1869         if (ecap_sc_support(iommu->ecap))
1870                 domain->iommu_snooping = 1;
1871         else
1872                 domain->iommu_snooping = 0;
1873
1874         if (intel_iommu_superpage)
1875                 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1876         else
1877                 domain->iommu_superpage = 0;
1878
1879         domain->nid = iommu->node;
1880
1881         /* always allocate the top pgd */
1882         domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1883         if (!domain->pgd)
1884                 return -ENOMEM;
1885         __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1886         return 0;
1887 }
1888
1889 static void domain_exit(struct dmar_domain *domain)
1890 {
1891         struct page *freelist;
1892
1893         /* Remove associated devices and clear attached or cached domains */
1894         domain_remove_dev_info(domain);
1895
1896         /* destroy iovas */
1897         put_iova_domain(&domain->iovad);
1898
1899         freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1900
1901         dma_free_pagelist(freelist);
1902
1903         free_domain_mem(domain);
1904 }
1905
1906 /*
1907  * Get the PASID directory size for scalable mode context entry.
1908  * Value of X in the PDTS field of a scalable mode context entry
1909  * indicates PASID directory with 2^(X + 7) entries.
1910  */
1911 static inline unsigned long context_get_sm_pds(struct pasid_table *table)
1912 {
1913         int pds, max_pde;
1914
1915         max_pde = table->max_pasid >> PASID_PDE_SHIFT;
1916         pds = find_first_bit((unsigned long *)&max_pde, MAX_NR_PASID_BITS);
1917         if (pds < 7)
1918                 return 0;
1919
1920         return pds - 7;
1921 }
1922
1923 /*
1924  * Set the RID_PASID field of a scalable mode context entry. The
1925  * IOMMU hardware will use the PASID value set in this field for
1926  * DMA translations of DMA requests without PASID.
1927  */
1928 static inline void
1929 context_set_sm_rid2pasid(struct context_entry *context, unsigned long pasid)
1930 {
1931         context->hi |= pasid & ((1 << 20) - 1);
1932         context->hi |= (1 << 20);
1933 }
1934
1935 /*
1936  * Set the DTE(Device-TLB Enable) field of a scalable mode context
1937  * entry.
1938  */
1939 static inline void context_set_sm_dte(struct context_entry *context)
1940 {
1941         context->lo |= (1 << 2);
1942 }
1943
1944 /*
1945  * Set the PRE(Page Request Enable) field of a scalable mode context
1946  * entry.
1947  */
1948 static inline void context_set_sm_pre(struct context_entry *context)
1949 {
1950         context->lo |= (1 << 4);
1951 }
1952
1953 /* Convert value to context PASID directory size field coding. */
1954 #define context_pdts(pds)       (((pds) & 0x7) << 9)
1955
1956 static int domain_context_mapping_one(struct dmar_domain *domain,
1957                                       struct intel_iommu *iommu,
1958                                       struct pasid_table *table,
1959                                       u8 bus, u8 devfn)
1960 {
1961         u16 did = domain->iommu_did[iommu->seq_id];
1962         int translation = CONTEXT_TT_MULTI_LEVEL;
1963         struct device_domain_info *info = NULL;
1964         struct context_entry *context;
1965         unsigned long flags;
1966         int ret;
1967
1968         WARN_ON(did == 0);
1969
1970         if (hw_pass_through && domain_type_is_si(domain))
1971                 translation = CONTEXT_TT_PASS_THROUGH;
1972
1973         pr_debug("Set context mapping for %02x:%02x.%d\n",
1974                 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1975
1976         BUG_ON(!domain->pgd);
1977
1978         spin_lock_irqsave(&device_domain_lock, flags);
1979         spin_lock(&iommu->lock);
1980
1981         ret = -ENOMEM;
1982         context = iommu_context_addr(iommu, bus, devfn, 1);
1983         if (!context)
1984                 goto out_unlock;
1985
1986         ret = 0;
1987         if (context_present(context))
1988                 goto out_unlock;
1989
1990         /*
1991          * For kdump cases, old valid entries may be cached due to the
1992          * in-flight DMA and copied pgtable, but there is no unmapping
1993          * behaviour for them, thus we need an explicit cache flush for
1994          * the newly-mapped device. For kdump, at this point, the device
1995          * is supposed to finish reset at its driver probe stage, so no
1996          * in-flight DMA will exist, and we don't need to worry anymore
1997          * hereafter.
1998          */
1999         if (context_copied(context)) {
2000                 u16 did_old = context_domain_id(context);
2001
2002                 if (did_old < cap_ndoms(iommu->cap)) {
2003                         iommu->flush.flush_context(iommu, did_old,
2004                                                    (((u16)bus) << 8) | devfn,
2005                                                    DMA_CCMD_MASK_NOBIT,
2006                                                    DMA_CCMD_DEVICE_INVL);
2007                         iommu->flush.flush_iotlb(iommu, did_old, 0, 0,
2008                                                  DMA_TLB_DSI_FLUSH);
2009                 }
2010         }
2011
2012         context_clear_entry(context);
2013
2014         if (sm_supported(iommu)) {
2015                 unsigned long pds;
2016
2017                 WARN_ON(!table);
2018
2019                 /* Setup the PASID DIR pointer: */
2020                 pds = context_get_sm_pds(table);
2021                 context->lo = (u64)virt_to_phys(table->table) |
2022                                 context_pdts(pds);
2023
2024                 /* Setup the RID_PASID field: */
2025                 context_set_sm_rid2pasid(context, PASID_RID2PASID);
2026
2027                 /*
2028                  * Setup the Device-TLB enable bit and Page request
2029                  * Enable bit:
2030                  */
2031                 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
2032                 if (info && info->ats_supported)
2033                         context_set_sm_dte(context);
2034                 if (info && info->pri_supported)
2035                         context_set_sm_pre(context);
2036         } else {
2037                 struct dma_pte *pgd = domain->pgd;
2038                 int agaw;
2039
2040                 context_set_domain_id(context, did);
2041
2042                 if (translation != CONTEXT_TT_PASS_THROUGH) {
2043                         /*
2044                          * Skip top levels of page tables for iommu which has
2045                          * less agaw than default. Unnecessary for PT mode.
2046                          */
2047                         for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) {
2048                                 ret = -ENOMEM;
2049                                 pgd = phys_to_virt(dma_pte_addr(pgd));
2050                                 if (!dma_pte_present(pgd))
2051                                         goto out_unlock;
2052                         }
2053
2054                         info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
2055                         if (info && info->ats_supported)
2056                                 translation = CONTEXT_TT_DEV_IOTLB;
2057                         else
2058                                 translation = CONTEXT_TT_MULTI_LEVEL;
2059
2060                         context_set_address_root(context, virt_to_phys(pgd));
2061                         context_set_address_width(context, agaw);
2062                 } else {
2063                         /*
2064                          * In pass through mode, AW must be programmed to
2065                          * indicate the largest AGAW value supported by
2066                          * hardware. And ASR is ignored by hardware.
2067                          */
2068                         context_set_address_width(context, iommu->msagaw);
2069                 }
2070
2071                 context_set_translation_type(context, translation);
2072         }
2073
2074         context_set_fault_enable(context);
2075         context_set_present(context);
2076         domain_flush_cache(domain, context, sizeof(*context));
2077
2078         /*
2079          * It's a non-present to present mapping. If hardware doesn't cache
2080          * non-present entry we only need to flush the write-buffer. If the
2081          * _does_ cache non-present entries, then it does so in the special
2082          * domain #0, which we have to flush:
2083          */
2084         if (cap_caching_mode(iommu->cap)) {
2085                 iommu->flush.flush_context(iommu, 0,
2086                                            (((u16)bus) << 8) | devfn,
2087                                            DMA_CCMD_MASK_NOBIT,
2088                                            DMA_CCMD_DEVICE_INVL);
2089                 iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
2090         } else {
2091                 iommu_flush_write_buffer(iommu);
2092         }
2093         iommu_enable_dev_iotlb(info);
2094
2095         ret = 0;
2096
2097 out_unlock:
2098         spin_unlock(&iommu->lock);
2099         spin_unlock_irqrestore(&device_domain_lock, flags);
2100
2101         return ret;
2102 }
2103
2104 struct domain_context_mapping_data {
2105         struct dmar_domain *domain;
2106         struct intel_iommu *iommu;
2107         struct pasid_table *table;
2108 };
2109
2110 static int domain_context_mapping_cb(struct pci_dev *pdev,
2111                                      u16 alias, void *opaque)
2112 {
2113         struct domain_context_mapping_data *data = opaque;
2114
2115         return domain_context_mapping_one(data->domain, data->iommu,
2116                                           data->table, PCI_BUS_NUM(alias),
2117                                           alias & 0xff);
2118 }
2119
2120 static int
2121 domain_context_mapping(struct dmar_domain *domain, struct device *dev)
2122 {
2123         struct domain_context_mapping_data data;
2124         struct pasid_table *table;
2125         struct intel_iommu *iommu;
2126         u8 bus, devfn;
2127
2128         iommu = device_to_iommu(dev, &bus, &devfn);
2129         if (!iommu)
2130                 return -ENODEV;
2131
2132         table = intel_pasid_get_table(dev);
2133
2134         if (!dev_is_pci(dev))
2135                 return domain_context_mapping_one(domain, iommu, table,
2136                                                   bus, devfn);
2137
2138         data.domain = domain;
2139         data.iommu = iommu;
2140         data.table = table;
2141
2142         return pci_for_each_dma_alias(to_pci_dev(dev),
2143                                       &domain_context_mapping_cb, &data);
2144 }
2145
2146 static int domain_context_mapped_cb(struct pci_dev *pdev,
2147                                     u16 alias, void *opaque)
2148 {
2149         struct intel_iommu *iommu = opaque;
2150
2151         return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
2152 }
2153
2154 static int domain_context_mapped(struct device *dev)
2155 {
2156         struct intel_iommu *iommu;
2157         u8 bus, devfn;
2158
2159         iommu = device_to_iommu(dev, &bus, &devfn);
2160         if (!iommu)
2161                 return -ENODEV;
2162
2163         if (!dev_is_pci(dev))
2164                 return device_context_mapped(iommu, bus, devfn);
2165
2166         return !pci_for_each_dma_alias(to_pci_dev(dev),
2167                                        domain_context_mapped_cb, iommu);
2168 }
2169
2170 /* Returns a number of VTD pages, but aligned to MM page size */
2171 static inline unsigned long aligned_nrpages(unsigned long host_addr,
2172                                             size_t size)
2173 {
2174         host_addr &= ~PAGE_MASK;
2175         return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
2176 }
2177
2178 /* Return largest possible superpage level for a given mapping */
2179 static inline int hardware_largepage_caps(struct dmar_domain *domain,
2180                                           unsigned long iov_pfn,
2181                                           unsigned long phy_pfn,
2182                                           unsigned long pages)
2183 {
2184         int support, level = 1;
2185         unsigned long pfnmerge;
2186
2187         support = domain->iommu_superpage;
2188
2189         /* To use a large page, the virtual *and* physical addresses
2190            must be aligned to 2MiB/1GiB/etc. Lower bits set in either
2191            of them will mean we have to use smaller pages. So just
2192            merge them and check both at once. */
2193         pfnmerge = iov_pfn | phy_pfn;
2194
2195         while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
2196                 pages >>= VTD_STRIDE_SHIFT;
2197                 if (!pages)
2198                         break;
2199                 pfnmerge >>= VTD_STRIDE_SHIFT;
2200                 level++;
2201                 support--;
2202         }
2203         return level;
2204 }
2205
2206 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2207                             struct scatterlist *sg, unsigned long phys_pfn,
2208                             unsigned long nr_pages, int prot)
2209 {
2210         struct dma_pte *first_pte = NULL, *pte = NULL;
2211         phys_addr_t uninitialized_var(pteval);
2212         unsigned long sg_res = 0;
2213         unsigned int largepage_lvl = 0;
2214         unsigned long lvl_pages = 0;
2215
2216         BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
2217
2218         if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
2219                 return -EINVAL;
2220
2221         prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
2222
2223         if (!sg) {
2224                 sg_res = nr_pages;
2225                 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
2226         }
2227
2228         while (nr_pages > 0) {
2229                 uint64_t tmp;
2230
2231                 if (!sg_res) {
2232                         unsigned int pgoff = sg->offset & ~PAGE_MASK;
2233
2234                         sg_res = aligned_nrpages(sg->offset, sg->length);
2235                         sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + pgoff;
2236                         sg->dma_length = sg->length;
2237                         pteval = (sg_phys(sg) - pgoff) | prot;
2238                         phys_pfn = pteval >> VTD_PAGE_SHIFT;
2239                 }
2240
2241                 if (!pte) {
2242                         largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
2243
2244                         first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2245                         if (!pte)
2246                                 return -ENOMEM;
2247                         /* It is large page*/
2248                         if (largepage_lvl > 1) {
2249                                 unsigned long nr_superpages, end_pfn;
2250
2251                                 pteval |= DMA_PTE_LARGE_PAGE;
2252                                 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2253
2254                                 nr_superpages = sg_res / lvl_pages;
2255                                 end_pfn = iov_pfn + nr_superpages * lvl_pages - 1;
2256
2257                                 /*
2258                                  * Ensure that old small page tables are
2259                                  * removed to make room for superpage(s).
2260                                  * We're adding new large pages, so make sure
2261                                  * we don't remove their parent tables.
2262                                  */
2263                                 dma_pte_free_pagetable(domain, iov_pfn, end_pfn,
2264                                                        largepage_lvl + 1);
2265                         } else {
2266                                 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2267                         }
2268
2269                 }
2270                 /* We don't need lock here, nobody else
2271                  * touches the iova range
2272                  */
2273                 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2274                 if (tmp) {
2275                         static int dumps = 5;
2276                         pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2277                                 iov_pfn, tmp, (unsigned long long)pteval);
2278                         if (dumps) {
2279                                 dumps--;
2280                                 debug_dma_dump_mappings(NULL);
2281                         }
2282                         WARN_ON(1);
2283                 }
2284
2285                 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2286
2287                 BUG_ON(nr_pages < lvl_pages);
2288                 BUG_ON(sg_res < lvl_pages);
2289
2290                 nr_pages -= lvl_pages;
2291                 iov_pfn += lvl_pages;
2292                 phys_pfn += lvl_pages;
2293                 pteval += lvl_pages * VTD_PAGE_SIZE;
2294                 sg_res -= lvl_pages;
2295
2296                 /* If the next PTE would be the first in a new page, then we
2297                    need to flush the cache on the entries we've just written.
2298                    And then we'll need to recalculate 'pte', so clear it and
2299                    let it get set again in the if (!pte) block above.
2300
2301                    If we're done (!nr_pages) we need to flush the cache too.
2302
2303                    Also if we've been setting superpages, we may need to
2304                    recalculate 'pte' and switch back to smaller pages for the
2305                    end of the mapping, if the trailing size is not enough to
2306                    use another superpage (i.e. sg_res < lvl_pages). */
2307                 pte++;
2308                 if (!nr_pages || first_pte_in_page(pte) ||
2309                     (largepage_lvl > 1 && sg_res < lvl_pages)) {
2310                         domain_flush_cache(domain, first_pte,
2311                                            (void *)pte - (void *)first_pte);
2312                         pte = NULL;
2313                 }
2314
2315                 if (!sg_res && nr_pages)
2316                         sg = sg_next(sg);
2317         }
2318         return 0;
2319 }
2320
2321 static int domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2322                           struct scatterlist *sg, unsigned long phys_pfn,
2323                           unsigned long nr_pages, int prot)
2324 {
2325         int iommu_id, ret;
2326         struct intel_iommu *iommu;
2327
2328         /* Do the real mapping first */
2329         ret = __domain_mapping(domain, iov_pfn, sg, phys_pfn, nr_pages, prot);
2330         if (ret)
2331                 return ret;
2332
2333         for_each_domain_iommu(iommu_id, domain) {
2334                 iommu = g_iommus[iommu_id];
2335                 __mapping_notify_one(iommu, domain, iov_pfn, nr_pages);
2336         }
2337
2338         return 0;
2339 }
2340
2341 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2342                                     struct scatterlist *sg, unsigned long nr_pages,
2343                                     int prot)
2344 {
2345         return domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2346 }
2347
2348 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2349                                      unsigned long phys_pfn, unsigned long nr_pages,
2350                                      int prot)
2351 {
2352         return domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2353 }
2354
2355 static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn)
2356 {
2357         unsigned long flags;
2358         struct context_entry *context;
2359         u16 did_old;
2360
2361         if (!iommu)
2362                 return;
2363
2364         spin_lock_irqsave(&iommu->lock, flags);
2365         context = iommu_context_addr(iommu, bus, devfn, 0);
2366         if (!context) {
2367                 spin_unlock_irqrestore(&iommu->lock, flags);
2368                 return;
2369         }
2370         did_old = context_domain_id(context);
2371         context_clear_entry(context);
2372         __iommu_flush_cache(iommu, context, sizeof(*context));
2373         spin_unlock_irqrestore(&iommu->lock, flags);
2374         iommu->flush.flush_context(iommu,
2375                                    did_old,
2376                                    (((u16)bus) << 8) | devfn,
2377                                    DMA_CCMD_MASK_NOBIT,
2378                                    DMA_CCMD_DEVICE_INVL);
2379         iommu->flush.flush_iotlb(iommu,
2380                                  did_old,
2381                                  0,
2382                                  0,
2383                                  DMA_TLB_DSI_FLUSH);
2384 }
2385
2386 static inline void unlink_domain_info(struct device_domain_info *info)
2387 {
2388         assert_spin_locked(&device_domain_lock);
2389         list_del(&info->link);
2390         list_del(&info->global);
2391         if (info->dev)
2392                 info->dev->archdata.iommu = NULL;
2393 }
2394
2395 static void domain_remove_dev_info(struct dmar_domain *domain)
2396 {
2397         struct device_domain_info *info, *tmp;
2398         unsigned long flags;
2399
2400         spin_lock_irqsave(&device_domain_lock, flags);
2401         list_for_each_entry_safe(info, tmp, &domain->devices, link)
2402                 __dmar_remove_one_dev_info(info);
2403         spin_unlock_irqrestore(&device_domain_lock, flags);
2404 }
2405
2406 /*
2407  * find_domain
2408  * Note: we use struct device->archdata.iommu stores the info
2409  */
2410 static struct dmar_domain *find_domain(struct device *dev)
2411 {
2412         struct device_domain_info *info;
2413
2414         if (unlikely(dev->archdata.iommu == DEFER_DEVICE_DOMAIN_INFO)) {
2415                 struct iommu_domain *domain;
2416
2417                 dev->archdata.iommu = NULL;
2418                 domain = iommu_get_domain_for_dev(dev);
2419                 if (domain)
2420                         intel_iommu_attach_device(domain, dev);
2421         }
2422
2423         /* No lock here, assumes no domain exit in normal case */
2424         info = dev->archdata.iommu;
2425
2426         if (likely(info))
2427                 return info->domain;
2428         return NULL;
2429 }
2430
2431 static inline struct device_domain_info *
2432 dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
2433 {
2434         struct device_domain_info *info;
2435
2436         list_for_each_entry(info, &device_domain_list, global)
2437                 if (info->iommu->segment == segment && info->bus == bus &&
2438                     info->devfn == devfn)
2439                         return info;
2440
2441         return NULL;
2442 }
2443
2444 static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu,
2445                                                     int bus, int devfn,
2446                                                     struct device *dev,
2447                                                     struct dmar_domain *domain)
2448 {
2449         struct dmar_domain *found = NULL;
2450         struct device_domain_info *info;
2451         unsigned long flags;
2452         int ret;
2453
2454         info = alloc_devinfo_mem();
2455         if (!info)
2456                 return NULL;
2457
2458         info->bus = bus;
2459         info->devfn = devfn;
2460         info->ats_supported = info->pasid_supported = info->pri_supported = 0;
2461         info->ats_enabled = info->pasid_enabled = info->pri_enabled = 0;
2462         info->ats_qdep = 0;
2463         info->dev = dev;
2464         info->domain = domain;
2465         info->iommu = iommu;
2466         info->pasid_table = NULL;
2467         info->auxd_enabled = 0;
2468         INIT_LIST_HEAD(&info->auxiliary_domains);
2469
2470         if (dev && dev_is_pci(dev)) {
2471                 struct pci_dev *pdev = to_pci_dev(info->dev);
2472
2473                 if (!pdev->untrusted &&
2474                     !pci_ats_disabled() &&
2475                     ecap_dev_iotlb_support(iommu->ecap) &&
2476                     pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS) &&
2477                     dmar_find_matched_atsr_unit(pdev))
2478                         info->ats_supported = 1;
2479
2480                 if (sm_supported(iommu)) {
2481                         if (pasid_supported(iommu)) {
2482                                 int features = pci_pasid_features(pdev);
2483                                 if (features >= 0)
2484                                         info->pasid_supported = features | 1;
2485                         }
2486
2487                         if (info->ats_supported && ecap_prs(iommu->ecap) &&
2488                             pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI))
2489                                 info->pri_supported = 1;
2490                 }
2491         }
2492
2493         spin_lock_irqsave(&device_domain_lock, flags);
2494         if (dev)
2495                 found = find_domain(dev);
2496
2497         if (!found) {
2498                 struct device_domain_info *info2;
2499                 info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn);
2500                 if (info2) {
2501                         found      = info2->domain;
2502                         info2->dev = dev;
2503                 }
2504         }
2505
2506         if (found) {
2507                 spin_unlock_irqrestore(&device_domain_lock, flags);
2508                 free_devinfo_mem(info);
2509                 /* Caller must free the original domain */
2510                 return found;
2511         }
2512
2513         spin_lock(&iommu->lock);
2514         ret = domain_attach_iommu(domain, iommu);
2515         spin_unlock(&iommu->lock);
2516
2517         if (ret) {
2518                 spin_unlock_irqrestore(&device_domain_lock, flags);
2519                 free_devinfo_mem(info);
2520                 return NULL;
2521         }
2522
2523         list_add(&info->link, &domain->devices);
2524         list_add(&info->global, &device_domain_list);
2525         if (dev)
2526                 dev->archdata.iommu = info;
2527         spin_unlock_irqrestore(&device_domain_lock, flags);
2528
2529         /* PASID table is mandatory for a PCI device in scalable mode. */
2530         if (dev && dev_is_pci(dev) && sm_supported(iommu)) {
2531                 ret = intel_pasid_alloc_table(dev);
2532                 if (ret) {
2533                         dev_err(dev, "PASID table allocation failed\n");
2534                         dmar_remove_one_dev_info(dev);
2535                         return NULL;
2536                 }
2537
2538                 /* Setup the PASID entry for requests without PASID: */
2539                 spin_lock(&iommu->lock);
2540                 if (hw_pass_through && domain_type_is_si(domain))
2541                         ret = intel_pasid_setup_pass_through(iommu, domain,
2542                                         dev, PASID_RID2PASID);
2543                 else
2544                         ret = intel_pasid_setup_second_level(iommu, domain,
2545                                         dev, PASID_RID2PASID);
2546                 spin_unlock(&iommu->lock);
2547                 if (ret) {
2548                         dev_err(dev, "Setup RID2PASID failed\n");
2549                         dmar_remove_one_dev_info(dev);
2550                         return NULL;
2551                 }
2552         }
2553
2554         if (dev && domain_context_mapping(domain, dev)) {
2555                 dev_err(dev, "Domain context map failed\n");
2556                 dmar_remove_one_dev_info(dev);
2557                 return NULL;
2558         }
2559
2560         return domain;
2561 }
2562
2563 static int get_last_alias(struct pci_dev *pdev, u16 alias, void *opaque)
2564 {
2565         *(u16 *)opaque = alias;
2566         return 0;
2567 }
2568
2569 static struct dmar_domain *find_or_alloc_domain(struct device *dev, int gaw)
2570 {
2571         struct device_domain_info *info;
2572         struct dmar_domain *domain = NULL;
2573         struct intel_iommu *iommu;
2574         u16 dma_alias;
2575         unsigned long flags;
2576         u8 bus, devfn;
2577
2578         iommu = device_to_iommu(dev, &bus, &devfn);
2579         if (!iommu)
2580                 return NULL;
2581
2582         if (dev_is_pci(dev)) {
2583                 struct pci_dev *pdev = to_pci_dev(dev);
2584
2585                 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2586
2587                 spin_lock_irqsave(&device_domain_lock, flags);
2588                 info = dmar_search_domain_by_dev_info(pci_domain_nr(pdev->bus),
2589                                                       PCI_BUS_NUM(dma_alias),
2590                                                       dma_alias & 0xff);
2591                 if (info) {
2592                         iommu = info->iommu;
2593                         domain = info->domain;
2594                 }
2595                 spin_unlock_irqrestore(&device_domain_lock, flags);
2596
2597                 /* DMA alias already has a domain, use it */
2598                 if (info)
2599                         goto out;
2600         }
2601
2602         /* Allocate and initialize new domain for the device */
2603         domain = alloc_domain(0);
2604         if (!domain)
2605                 return NULL;
2606         if (domain_init(domain, iommu, gaw)) {
2607                 domain_exit(domain);
2608                 return NULL;
2609         }
2610
2611 out:
2612         return domain;
2613 }
2614
2615 static struct dmar_domain *set_domain_for_dev(struct device *dev,
2616                                               struct dmar_domain *domain)
2617 {
2618         struct intel_iommu *iommu;
2619         struct dmar_domain *tmp;
2620         u16 req_id, dma_alias;
2621         u8 bus, devfn;
2622
2623         iommu = device_to_iommu(dev, &bus, &devfn);
2624         if (!iommu)
2625                 return NULL;
2626
2627         req_id = ((u16)bus << 8) | devfn;
2628
2629         if (dev_is_pci(dev)) {
2630                 struct pci_dev *pdev = to_pci_dev(dev);
2631
2632                 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2633
2634                 /* register PCI DMA alias device */
2635                 if (req_id != dma_alias) {
2636                         tmp = dmar_insert_one_dev_info(iommu, PCI_BUS_NUM(dma_alias),
2637                                         dma_alias & 0xff, NULL, domain);
2638
2639                         if (!tmp || tmp != domain)
2640                                 return tmp;
2641                 }
2642         }
2643
2644         tmp = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2645         if (!tmp || tmp != domain)
2646                 return tmp;
2647
2648         return domain;
2649 }
2650
2651 static struct dmar_domain *get_domain_for_dev(struct device *dev, int gaw)
2652 {
2653         struct dmar_domain *domain, *tmp;
2654
2655         domain = find_domain(dev);
2656         if (domain)
2657                 goto out;
2658
2659         domain = find_or_alloc_domain(dev, gaw);
2660         if (!domain)
2661                 goto out;
2662
2663         tmp = set_domain_for_dev(dev, domain);
2664         if (!tmp || domain != tmp) {
2665                 domain_exit(domain);
2666                 domain = tmp;
2667         }
2668
2669 out:
2670
2671         return domain;
2672 }
2673
2674 static int iommu_domain_identity_map(struct dmar_domain *domain,
2675                                      unsigned long long start,
2676                                      unsigned long long end)
2677 {
2678         unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2679         unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2680
2681         if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2682                           dma_to_mm_pfn(last_vpfn))) {
2683                 pr_err("Reserving iova failed\n");
2684                 return -ENOMEM;
2685         }
2686
2687         pr_debug("Mapping reserved region %llx-%llx\n", start, end);
2688         /*
2689          * RMRR range might have overlap with physical memory range,
2690          * clear it first
2691          */
2692         dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2693
2694         return __domain_mapping(domain, first_vpfn, NULL,
2695                                 first_vpfn, last_vpfn - first_vpfn + 1,
2696                                 DMA_PTE_READ|DMA_PTE_WRITE);
2697 }
2698
2699 static int domain_prepare_identity_map(struct device *dev,
2700                                        struct dmar_domain *domain,
2701                                        unsigned long long start,
2702                                        unsigned long long end)
2703 {
2704         /* For _hardware_ passthrough, don't bother. But for software
2705            passthrough, we do it anyway -- it may indicate a memory
2706            range which is reserved in E820, so which didn't get set
2707            up to start with in si_domain */
2708         if (domain == si_domain && hw_pass_through) {
2709                 dev_warn(dev, "Ignoring identity map for HW passthrough [0x%Lx - 0x%Lx]\n",
2710                          start, end);
2711                 return 0;
2712         }
2713
2714         dev_info(dev, "Setting identity map [0x%Lx - 0x%Lx]\n", start, end);
2715
2716         if (end < start) {
2717                 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2718                         "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2719                         dmi_get_system_info(DMI_BIOS_VENDOR),
2720                         dmi_get_system_info(DMI_BIOS_VERSION),
2721                      dmi_get_system_info(DMI_PRODUCT_VERSION));
2722                 return -EIO;
2723         }
2724
2725         if (end >> agaw_to_width(domain->agaw)) {
2726                 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2727                      "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2728                      agaw_to_width(domain->agaw),
2729                      dmi_get_system_info(DMI_BIOS_VENDOR),
2730                      dmi_get_system_info(DMI_BIOS_VERSION),
2731                      dmi_get_system_info(DMI_PRODUCT_VERSION));
2732                 return -EIO;
2733         }
2734
2735         return iommu_domain_identity_map(domain, start, end);
2736 }
2737
2738 static int iommu_prepare_identity_map(struct device *dev,
2739                                       unsigned long long start,
2740                                       unsigned long long end)
2741 {
2742         struct dmar_domain *domain;
2743         int ret;
2744
2745         domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2746         if (!domain)
2747                 return -ENOMEM;
2748
2749         ret = domain_prepare_identity_map(dev, domain, start, end);
2750         if (ret)
2751                 domain_exit(domain);
2752
2753         return ret;
2754 }
2755
2756 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2757                                          struct device *dev)
2758 {
2759         if (dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2760                 return 0;
2761         return iommu_prepare_identity_map(dev, rmrr->base_address,
2762                                           rmrr->end_address);
2763 }
2764
2765 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2766 static inline void iommu_prepare_isa(void)
2767 {
2768         struct pci_dev *pdev;
2769         int ret;
2770
2771         pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2772         if (!pdev)
2773                 return;
2774
2775         pr_info("Prepare 0-16MiB unity mapping for LPC\n");
2776         ret = iommu_prepare_identity_map(&pdev->dev, 0, 16*1024*1024 - 1);
2777
2778         if (ret)
2779                 pr_err("Failed to create 0-16MiB identity map - floppy might not work\n");
2780
2781         pci_dev_put(pdev);
2782 }
2783 #else
2784 static inline void iommu_prepare_isa(void)
2785 {
2786         return;
2787 }
2788 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2789
2790 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2791
2792 static int __init si_domain_init(int hw)
2793 {
2794         struct dmar_rmrr_unit *rmrr;
2795         struct device *dev;
2796         int i, nid, ret;
2797
2798         si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2799         if (!si_domain)
2800                 return -EFAULT;
2801
2802         if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2803                 domain_exit(si_domain);
2804                 return -EFAULT;
2805         }
2806
2807         if (hw)
2808                 return 0;
2809
2810         for_each_online_node(nid) {
2811                 unsigned long start_pfn, end_pfn;
2812                 int i;
2813
2814                 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2815                         ret = iommu_domain_identity_map(si_domain,
2816                                         PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2817                         if (ret)
2818                                 return ret;
2819                 }
2820         }
2821
2822         /*
2823          * Normally we use DMA domains for devices which have RMRRs. But we
2824          * loose this requirement for graphic and usb devices. Identity map
2825          * the RMRRs for graphic and USB devices so that they could use the
2826          * si_domain.
2827          */
2828         for_each_rmrr_units(rmrr) {
2829                 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
2830                                           i, dev) {
2831                         unsigned long long start = rmrr->base_address;
2832                         unsigned long long end = rmrr->end_address;
2833
2834                         if (device_is_rmrr_locked(dev))
2835                                 continue;
2836
2837                         if (WARN_ON(end < start ||
2838                                     end >> agaw_to_width(si_domain->agaw)))
2839                                 continue;
2840
2841                         ret = iommu_domain_identity_map(si_domain, start, end);
2842                         if (ret)
2843                                 return ret;
2844                 }
2845         }
2846
2847         return 0;
2848 }
2849
2850 static int identity_mapping(struct device *dev)
2851 {
2852         struct device_domain_info *info;
2853
2854         info = dev->archdata.iommu;
2855         if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2856                 return (info->domain == si_domain);
2857
2858         return 0;
2859 }
2860
2861 static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev)
2862 {
2863         struct dmar_domain *ndomain;
2864         struct intel_iommu *iommu;
2865         u8 bus, devfn;
2866
2867         iommu = device_to_iommu(dev, &bus, &devfn);
2868         if (!iommu)
2869                 return -ENODEV;
2870
2871         ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2872         if (ndomain != domain)
2873                 return -EBUSY;
2874
2875         return 0;
2876 }
2877
2878 static bool device_has_rmrr(struct device *dev)
2879 {
2880         struct dmar_rmrr_unit *rmrr;
2881         struct device *tmp;
2882         int i;
2883
2884         rcu_read_lock();
2885         for_each_rmrr_units(rmrr) {
2886                 /*
2887                  * Return TRUE if this RMRR contains the device that
2888                  * is passed in.
2889                  */
2890                 for_each_active_dev_scope(rmrr->devices,
2891                                           rmrr->devices_cnt, i, tmp)
2892                         if (tmp == dev) {
2893                                 rcu_read_unlock();
2894                                 return true;
2895                         }
2896         }
2897         rcu_read_unlock();
2898         return false;
2899 }
2900
2901 /*
2902  * There are a couple cases where we need to restrict the functionality of
2903  * devices associated with RMRRs.  The first is when evaluating a device for
2904  * identity mapping because problems exist when devices are moved in and out
2905  * of domains and their respective RMRR information is lost.  This means that
2906  * a device with associated RMRRs will never be in a "passthrough" domain.
2907  * The second is use of the device through the IOMMU API.  This interface
2908  * expects to have full control of the IOVA space for the device.  We cannot
2909  * satisfy both the requirement that RMRR access is maintained and have an
2910  * unencumbered IOVA space.  We also have no ability to quiesce the device's
2911  * use of the RMRR space or even inform the IOMMU API user of the restriction.
2912  * We therefore prevent devices associated with an RMRR from participating in
2913  * the IOMMU API, which eliminates them from device assignment.
2914  *
2915  * In both cases we assume that PCI USB devices with RMRRs have them largely
2916  * for historical reasons and that the RMRR space is not actively used post
2917  * boot.  This exclusion may change if vendors begin to abuse it.
2918  *
2919  * The same exception is made for graphics devices, with the requirement that
2920  * any use of the RMRR regions will be torn down before assigning the device
2921  * to a guest.
2922  */
2923 static bool device_is_rmrr_locked(struct device *dev)
2924 {
2925         if (!device_has_rmrr(dev))
2926                 return false;
2927
2928         if (dev_is_pci(dev)) {
2929                 struct pci_dev *pdev = to_pci_dev(dev);
2930
2931                 if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
2932                         return false;
2933         }
2934
2935         return true;
2936 }
2937
2938 /*
2939  * Return the required default domain type for a specific device.
2940  *
2941  * @dev: the device in query
2942  * @startup: true if this is during early boot
2943  *
2944  * Returns:
2945  *  - IOMMU_DOMAIN_DMA: device requires a dynamic mapping domain
2946  *  - IOMMU_DOMAIN_IDENTITY: device requires an identical mapping domain
2947  *  - 0: both identity and dynamic domains work for this device
2948  */
2949 static int device_def_domain_type(struct device *dev, int startup)
2950 {
2951         if (dev_is_pci(dev)) {
2952                 struct pci_dev *pdev = to_pci_dev(dev);
2953
2954                 if (device_is_rmrr_locked(dev))
2955                         return IOMMU_DOMAIN_DMA;
2956
2957                 /*
2958                  * Prevent any device marked as untrusted from getting
2959                  * placed into the statically identity mapping domain.
2960                  */
2961                 if (pdev->untrusted)
2962                         return IOMMU_DOMAIN_DMA;
2963
2964                 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2965                         return IOMMU_DOMAIN_IDENTITY;
2966
2967                 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2968                         return IOMMU_DOMAIN_IDENTITY;
2969
2970                 /*
2971                  * We want to start off with all devices in the 1:1 domain, and
2972                  * take them out later if we find they can't access all of memory.
2973                  *
2974                  * However, we can't do this for PCI devices behind bridges,
2975                  * because all PCI devices behind the same bridge will end up
2976                  * with the same source-id on their transactions.
2977                  *
2978                  * Practically speaking, we can't change things around for these
2979                  * devices at run-time, because we can't be sure there'll be no
2980                  * DMA transactions in flight for any of their siblings.
2981                  *
2982                  * So PCI devices (unless they're on the root bus) as well as
2983                  * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2984                  * the 1:1 domain, just in _case_ one of their siblings turns out
2985                  * not to be able to map all of memory.
2986                  */
2987                 if (!pci_is_pcie(pdev)) {
2988                         if (!pci_is_root_bus(pdev->bus))
2989                                 return IOMMU_DOMAIN_DMA;
2990                         if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2991                                 return IOMMU_DOMAIN_DMA;
2992                 } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2993                         return IOMMU_DOMAIN_DMA;
2994         } else {
2995                 if (device_has_rmrr(dev))
2996                         return IOMMU_DOMAIN_DMA;
2997         }
2998
2999         return (iommu_identity_mapping & IDENTMAP_ALL) ?
3000                         IOMMU_DOMAIN_IDENTITY : 0;
3001 }
3002
3003 static inline int iommu_should_identity_map(struct device *dev, int startup)
3004 {
3005         return device_def_domain_type(dev, startup) == IOMMU_DOMAIN_IDENTITY;
3006 }
3007
3008 static int __init dev_prepare_static_identity_mapping(struct device *dev, int hw)
3009 {
3010         int ret;
3011
3012         if (!iommu_should_identity_map(dev, 1))
3013                 return 0;
3014
3015         ret = domain_add_dev_info(si_domain, dev);
3016         if (!ret)
3017                 dev_info(dev, "%s identity mapping\n",
3018                          hw ? "Hardware" : "Software");
3019         else if (ret == -ENODEV)
3020                 /* device not associated with an iommu */
3021                 ret = 0;
3022
3023         return ret;
3024 }
3025
3026
3027 static int __init iommu_prepare_static_identity_mapping(int hw)
3028 {
3029         struct pci_dev *pdev = NULL;
3030         struct dmar_drhd_unit *drhd;
3031         struct intel_iommu *iommu;
3032         struct device *dev;
3033         int i;
3034         int ret = 0;
3035
3036         for_each_pci_dev(pdev) {
3037                 ret = dev_prepare_static_identity_mapping(&pdev->dev, hw);
3038                 if (ret)
3039                         return ret;
3040         }
3041
3042         for_each_active_iommu(iommu, drhd)
3043                 for_each_active_dev_scope(drhd->devices, drhd->devices_cnt, i, dev) {
3044                         struct acpi_device_physical_node *pn;
3045                         struct acpi_device *adev;
3046
3047                         if (dev->bus != &acpi_bus_type)
3048                                 continue;
3049
3050                         adev= to_acpi_device(dev);
3051                         mutex_lock(&adev->physical_node_lock);
3052                         list_for_each_entry(pn, &adev->physical_node_list, node) {
3053                                 ret = dev_prepare_static_identity_mapping(pn->dev, hw);
3054                                 if (ret)
3055                                         break;
3056                         }
3057                         mutex_unlock(&adev->physical_node_lock);
3058                         if (ret)
3059                                 return ret;
3060                 }
3061
3062         return 0;
3063 }
3064
3065 static void intel_iommu_init_qi(struct intel_iommu *iommu)
3066 {
3067         /*
3068          * Start from the sane iommu hardware state.
3069          * If the queued invalidation is already initialized by us
3070          * (for example, while enabling interrupt-remapping) then
3071          * we got the things already rolling from a sane state.
3072          */
3073         if (!iommu->qi) {
3074                 /*
3075                  * Clear any previous faults.
3076                  */
3077                 dmar_fault(-1, iommu);
3078                 /*
3079                  * Disable queued invalidation if supported and already enabled
3080                  * before OS handover.
3081                  */
3082                 dmar_disable_qi(iommu);
3083         }
3084
3085         if (dmar_enable_qi(iommu)) {
3086                 /*
3087                  * Queued Invalidate not enabled, use Register Based Invalidate
3088                  */
3089                 iommu->flush.flush_context = __iommu_flush_context;
3090                 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
3091                 pr_info("%s: Using Register based invalidation\n",
3092                         iommu->name);
3093         } else {
3094                 iommu->flush.flush_context = qi_flush_context;
3095                 iommu->flush.flush_iotlb = qi_flush_iotlb;
3096                 pr_info("%s: Using Queued invalidation\n", iommu->name);
3097         }
3098 }
3099
3100 static int copy_context_table(struct intel_iommu *iommu,
3101                               struct root_entry *old_re,
3102                               struct context_entry **tbl,
3103                               int bus, bool ext)
3104 {
3105         int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
3106         struct context_entry *new_ce = NULL, ce;
3107         struct context_entry *old_ce = NULL;
3108         struct root_entry re;
3109         phys_addr_t old_ce_phys;
3110
3111         tbl_idx = ext ? bus * 2 : bus;
3112         memcpy(&re, old_re, sizeof(re));
3113
3114         for (devfn = 0; devfn < 256; devfn++) {
3115                 /* First calculate the correct index */
3116                 idx = (ext ? devfn * 2 : devfn) % 256;
3117
3118                 if (idx == 0) {
3119                         /* First save what we may have and clean up */
3120                         if (new_ce) {
3121                                 tbl[tbl_idx] = new_ce;
3122                                 __iommu_flush_cache(iommu, new_ce,
3123                                                     VTD_PAGE_SIZE);
3124                                 pos = 1;
3125                         }
3126
3127                         if (old_ce)
3128                                 memunmap(old_ce);
3129
3130                         ret = 0;
3131                         if (devfn < 0x80)
3132                                 old_ce_phys = root_entry_lctp(&re);
3133                         else
3134                                 old_ce_phys = root_entry_uctp(&re);
3135
3136                         if (!old_ce_phys) {
3137                                 if (ext && devfn == 0) {
3138                                         /* No LCTP, try UCTP */
3139                                         devfn = 0x7f;
3140                                         continue;
3141                                 } else {
3142                                         goto out;
3143                                 }
3144                         }
3145
3146                         ret = -ENOMEM;
3147                         old_ce = memremap(old_ce_phys, PAGE_SIZE,
3148                                         MEMREMAP_WB);
3149                         if (!old_ce)
3150                                 goto out;
3151
3152                         new_ce = alloc_pgtable_page(iommu->node);
3153                         if (!new_ce)
3154                                 goto out_unmap;
3155
3156                         ret = 0;
3157                 }
3158
3159                 /* Now copy the context entry */
3160                 memcpy(&ce, old_ce + idx, sizeof(ce));
3161
3162                 if (!__context_present(&ce))
3163                         continue;
3164
3165                 did = context_domain_id(&ce);
3166                 if (did >= 0 && did < cap_ndoms(iommu->cap))
3167                         set_bit(did, iommu->domain_ids);
3168
3169                 /*
3170                  * We need a marker for copied context entries. This
3171                  * marker needs to work for the old format as well as
3172                  * for extended context entries.
3173                  *
3174                  * Bit 67 of the context entry is used. In the old
3175                  * format this bit is available to software, in the
3176                  * extended format it is the PGE bit, but PGE is ignored
3177                  * by HW if PASIDs are disabled (and thus still
3178                  * available).
3179                  *
3180                  * So disable PASIDs first and then mark the entry
3181                  * copied. This means that we don't copy PASID
3182                  * translations from the old kernel, but this is fine as
3183                  * faults there are not fatal.
3184                  */
3185                 context_clear_pasid_enable(&ce);
3186                 context_set_copied(&ce);
3187
3188                 new_ce[idx] = ce;
3189         }
3190
3191         tbl[tbl_idx + pos] = new_ce;
3192
3193         __iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);
3194
3195 out_unmap:
3196         memunmap(old_ce);
3197
3198 out:
3199         return ret;
3200 }
3201
3202 static int copy_translation_tables(struct intel_iommu *iommu)
3203 {
3204         struct context_entry **ctxt_tbls;
3205         struct root_entry *old_rt;
3206         phys_addr_t old_rt_phys;
3207         int ctxt_table_entries;
3208         unsigned long flags;
3209         u64 rtaddr_reg;
3210         int bus, ret;
3211         bool new_ext, ext;
3212
3213         rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
3214         ext        = !!(rtaddr_reg & DMA_RTADDR_RTT);
3215         new_ext    = !!ecap_ecs(iommu->ecap);
3216
3217         /*
3218          * The RTT bit can only be changed when translation is disabled,
3219          * but disabling translation means to open a window for data
3220          * corruption. So bail out and don't copy anything if we would
3221          * have to change the bit.
3222          */
3223         if (new_ext != ext)
3224                 return -EINVAL;
3225
3226         old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
3227         if (!old_rt_phys)
3228                 return -EINVAL;
3229
3230         old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB);
3231         if (!old_rt)
3232                 return -ENOMEM;
3233
3234         /* This is too big for the stack - allocate it from slab */
3235         ctxt_table_entries = ext ? 512 : 256;
3236         ret = -ENOMEM;
3237         ctxt_tbls = kcalloc(ctxt_table_entries, sizeof(void *), GFP_KERNEL);
3238         if (!ctxt_tbls)
3239                 goto out_unmap;
3240
3241         for (bus = 0; bus < 256; bus++) {
3242                 ret = copy_context_table(iommu, &old_rt[bus],
3243                                          ctxt_tbls, bus, ext);
3244                 if (ret) {
3245                         pr_err("%s: Failed to copy context table for bus %d\n",
3246                                 iommu->name, bus);
3247                         continue;
3248                 }
3249         }
3250
3251         spin_lock_irqsave(&iommu->lock, flags);
3252
3253         /* Context tables are copied, now write them to the root_entry table */
3254         for (bus = 0; bus < 256; bus++) {
3255                 int idx = ext ? bus * 2 : bus;
3256                 u64 val;
3257
3258                 if (ctxt_tbls[idx]) {
3259                         val = virt_to_phys(ctxt_tbls[idx]) | 1;
3260                         iommu->root_entry[bus].lo = val;
3261                 }
3262
3263                 if (!ext || !ctxt_tbls[idx + 1])
3264                         continue;
3265
3266                 val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
3267                 iommu->root_entry[bus].hi = val;
3268         }
3269
3270         spin_unlock_irqrestore(&iommu->lock, flags);
3271
3272         kfree(ctxt_tbls);
3273
3274         __iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);
3275
3276         ret = 0;
3277
3278 out_unmap:
3279         memunmap(old_rt);
3280
3281         return ret;
3282 }
3283
3284 static int __init init_dmars(void)
3285 {
3286         struct dmar_drhd_unit *drhd;
3287         struct dmar_rmrr_unit *rmrr;
3288         bool copied_tables = false;
3289         struct device *dev;
3290         struct intel_iommu *iommu;
3291         int i, ret;
3292
3293         /*
3294          * for each drhd
3295          *    allocate root
3296          *    initialize and program root entry to not present
3297          * endfor
3298          */
3299         for_each_drhd_unit(drhd) {
3300                 /*
3301                  * lock not needed as this is only incremented in the single
3302                  * threaded kernel __init code path all other access are read
3303                  * only
3304                  */
3305                 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
3306                         g_num_of_iommus++;
3307                         continue;
3308                 }
3309                 pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
3310         }
3311
3312         /* Preallocate enough resources for IOMMU hot-addition */
3313         if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
3314                 g_num_of_iommus = DMAR_UNITS_SUPPORTED;
3315
3316         g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
3317                         GFP_KERNEL);
3318         if (!g_iommus) {
3319                 pr_err("Allocating global iommu array failed\n");
3320                 ret = -ENOMEM;
3321                 goto error;
3322         }
3323
3324         for_each_active_iommu(iommu, drhd) {
3325                 /*
3326                  * Find the max pasid size of all IOMMU's in the system.
3327                  * We need to ensure the system pasid table is no bigger
3328                  * than the smallest supported.
3329                  */
3330                 if (pasid_supported(iommu)) {
3331                         u32 temp = 2 << ecap_pss(iommu->ecap);
3332
3333                         intel_pasid_max_id = min_t(u32, temp,
3334                                                    intel_pasid_max_id);
3335                 }
3336
3337                 g_iommus[iommu->seq_id] = iommu;
3338
3339                 intel_iommu_init_qi(iommu);
3340
3341                 ret = iommu_init_domains(iommu);
3342                 if (ret)
3343                         goto free_iommu;
3344
3345                 init_translation_status(iommu);
3346
3347                 if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
3348                         iommu_disable_translation(iommu);
3349                         clear_translation_pre_enabled(iommu);
3350                         pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
3351                                 iommu->name);
3352                 }
3353
3354                 /*
3355                  * TBD:
3356                  * we could share the same root & context tables
3357                  * among all IOMMU's. Need to Split it later.
3358                  */
3359                 ret = iommu_alloc_root_entry(iommu);
3360                 if (ret)
3361                         goto free_iommu;
3362
3363                 if (translation_pre_enabled(iommu)) {
3364                         pr_info("Translation already enabled - trying to copy translation structures\n");
3365
3366                         ret = copy_translation_tables(iommu);
3367                         if (ret) {
3368                                 /*
3369                                  * We found the IOMMU with translation
3370                                  * enabled - but failed to copy over the
3371                                  * old root-entry table. Try to proceed
3372                                  * by disabling translation now and
3373                                  * allocating a clean root-entry table.
3374                                  * This might cause DMAR faults, but
3375                                  * probably the dump will still succeed.
3376                                  */
3377                                 pr_err("Failed to copy translation tables from previous kernel for %s\n",
3378                                        iommu->name);
3379                                 iommu_disable_translation(iommu);
3380                                 clear_translation_pre_enabled(iommu);
3381                         } else {
3382                                 pr_info("Copied translation tables from previous kernel for %s\n",
3383                                         iommu->name);
3384                                 copied_tables = true;
3385                         }
3386                 }
3387
3388                 if (!ecap_pass_through(iommu->ecap))
3389                         hw_pass_through = 0;
3390 #ifdef CONFIG_INTEL_IOMMU_SVM
3391                 if (pasid_supported(iommu))
3392                         intel_svm_init(iommu);
3393 #endif
3394         }
3395
3396         /*
3397          * Now that qi is enabled on all iommus, set the root entry and flush
3398          * caches. This is required on some Intel X58 chipsets, otherwise the
3399          * flush_context function will loop forever and the boot hangs.
3400          */
3401         for_each_active_iommu(iommu, drhd) {
3402                 iommu_flush_write_buffer(iommu);
3403                 iommu_set_root_entry(iommu);
3404                 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
3405                 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3406         }
3407
3408         if (iommu_pass_through)
3409                 iommu_identity_mapping |= IDENTMAP_ALL;
3410
3411 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
3412         dmar_map_gfx = 0;
3413 #endif
3414
3415         if (!dmar_map_gfx)
3416                 iommu_identity_mapping |= IDENTMAP_GFX;
3417
3418         check_tylersburg_isoch();
3419
3420         ret = si_domain_init(hw_pass_through);
3421         if (ret)
3422                 goto free_iommu;
3423
3424
3425         /*
3426          * If we copied translations from a previous kernel in the kdump
3427          * case, we can not assign the devices to domains now, as that
3428          * would eliminate the old mappings. So skip this part and defer
3429          * the assignment to device driver initialization time.
3430          */
3431         if (copied_tables)
3432                 goto domains_done;
3433
3434         /*
3435          * If pass through is not set or not enabled, setup context entries for
3436          * identity mappings for rmrr, gfx, and isa and may fall back to static
3437          * identity mapping if iommu_identity_mapping is set.
3438          */
3439         if (iommu_identity_mapping) {
3440                 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
3441                 if (ret) {
3442                         pr_crit("Failed to setup IOMMU pass-through\n");
3443                         goto free_iommu;
3444                 }
3445         }
3446         /*
3447          * For each rmrr
3448          *   for each dev attached to rmrr
3449          *   do
3450          *     locate drhd for dev, alloc domain for dev
3451          *     allocate free domain
3452          *     allocate page table entries for rmrr
3453          *     if context not allocated for bus
3454          *           allocate and init context
3455          *           set present in root table for this bus
3456          *     init context with domain, translation etc
3457          *    endfor
3458          * endfor
3459          */
3460         pr_info("Setting RMRR:\n");
3461         for_each_rmrr_units(rmrr) {
3462                 /* some BIOS lists non-exist devices in DMAR table. */
3463                 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
3464                                           i, dev) {
3465                         ret = iommu_prepare_rmrr_dev(rmrr, dev);
3466                         if (ret)
3467                                 pr_err("Mapping reserved region failed\n");
3468                 }
3469         }
3470
3471         iommu_prepare_isa();
3472
3473 domains_done:
3474
3475         /*
3476          * for each drhd
3477          *   enable fault log
3478          *   global invalidate context cache
3479          *   global invalidate iotlb
3480          *   enable translation
3481          */
3482         for_each_iommu(iommu, drhd) {
3483                 if (drhd->ignored) {
3484                         /*
3485                          * we always have to disable PMRs or DMA may fail on
3486                          * this device
3487                          */
3488                         if (force_on)
3489                                 iommu_disable_protect_mem_regions(iommu);
3490                         continue;
3491                 }
3492
3493                 iommu_flush_write_buffer(iommu);
3494
3495 #ifdef CONFIG_INTEL_IOMMU_SVM
3496                 if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
3497                         /*
3498                          * Call dmar_alloc_hwirq() with dmar_global_lock held,
3499                          * could cause possible lock race condition.
3500                          */
3501                         up_write(&dmar_global_lock);
3502                         ret = intel_svm_enable_prq(iommu);
3503                         down_write(&dmar_global_lock);
3504                         if (ret)
3505                                 goto free_iommu;
3506                 }
3507 #endif
3508                 ret = dmar_set_interrupt(iommu);
3509                 if (ret)
3510                         goto free_iommu;
3511         }
3512
3513         return 0;
3514
3515 free_iommu:
3516         for_each_active_iommu(iommu, drhd) {
3517                 disable_dmar_iommu(iommu);
3518                 free_dmar_iommu(iommu);
3519         }
3520
3521         kfree(g_iommus);
3522
3523 error:
3524         return ret;
3525 }
3526
3527 /* This takes a number of _MM_ pages, not VTD pages */
3528 static unsigned long intel_alloc_iova(struct device *dev,
3529                                      struct dmar_domain *domain,
3530                                      unsigned long nrpages, uint64_t dma_mask)
3531 {
3532         unsigned long iova_pfn;
3533
3534         /* Restrict dma_mask to the width that the iommu can handle */
3535         dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
3536         /* Ensure we reserve the whole size-aligned region */
3537         nrpages = __roundup_pow_of_two(nrpages);
3538
3539         if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
3540                 /*
3541                  * First try to allocate an io virtual address in
3542                  * DMA_BIT_MASK(32) and if that fails then try allocating
3543                  * from higher range
3544                  */
3545                 iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
3546                                            IOVA_PFN(DMA_BIT_MASK(32)), false);
3547                 if (iova_pfn)
3548                         return iova_pfn;
3549         }
3550         iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
3551                                    IOVA_PFN(dma_mask), true);
3552         if (unlikely(!iova_pfn)) {
3553                 dev_err(dev, "Allocating %ld-page iova failed", nrpages);
3554                 return 0;
3555         }
3556
3557         return iova_pfn;
3558 }
3559
3560 static struct dmar_domain *get_private_domain_for_dev(struct device *dev)
3561 {
3562         struct dmar_domain *domain, *tmp;
3563         struct dmar_rmrr_unit *rmrr;
3564         struct device *i_dev;
3565         int i, ret;
3566
3567         /* Device shouldn't be attached by any domains. */
3568         domain = find_domain(dev);
3569         if (domain)
3570                 return NULL;
3571
3572         domain = find_or_alloc_domain(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
3573         if (!domain)
3574                 goto out;
3575
3576         /* We have a new domain - setup possible RMRRs for the device */
3577         rcu_read_lock();
3578         for_each_rmrr_units(rmrr) {
3579                 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
3580                                           i, i_dev) {
3581                         if (i_dev != dev)
3582                                 continue;
3583
3584                         ret = domain_prepare_identity_map(dev, domain,
3585                                                           rmrr->base_address,
3586                                                           rmrr->end_address);
3587                         if (ret)
3588                                 dev_err(dev, "Mapping reserved region failed\n");
3589                 }
3590         }
3591         rcu_read_unlock();
3592
3593         tmp = set_domain_for_dev(dev, domain);
3594         if (!tmp || domain != tmp) {
3595                 domain_exit(domain);
3596                 domain = tmp;
3597         }
3598
3599 out:
3600         if (!domain)
3601                 dev_err(dev, "Allocating domain failed\n");
3602
3603         return domain;
3604 }
3605
3606 /* Check if the dev needs to go through non-identity map and unmap process.*/
3607 static bool iommu_need_mapping(struct device *dev)
3608 {
3609         int ret;
3610
3611         if (iommu_dummy(dev))
3612                 return false;
3613
3614         ret = identity_mapping(dev);
3615         if (ret) {
3616                 u64 dma_mask = *dev->dma_mask;
3617
3618                 if (dev->coherent_dma_mask && dev->coherent_dma_mask < dma_mask)
3619                         dma_mask = dev->coherent_dma_mask;
3620
3621                 if (dma_mask >= dma_get_required_mask(dev))
3622                         return false;
3623
3624                 /*
3625                  * 32 bit DMA is removed from si_domain and fall back to
3626                  * non-identity mapping.
3627                  */
3628                 dmar_remove_one_dev_info(dev);
3629                 ret = iommu_request_dma_domain_for_dev(dev);
3630                 if (ret) {
3631                         struct iommu_domain *domain;
3632                         struct dmar_domain *dmar_domain;
3633
3634                         domain = iommu_get_domain_for_dev(dev);
3635                         if (domain) {
3636                                 dmar_domain = to_dmar_domain(domain);
3637                                 dmar_domain->flags |= DOMAIN_FLAG_LOSE_CHILDREN;
3638                         }
3639                         get_private_domain_for_dev(dev);
3640                 }
3641
3642                 dev_info(dev, "32bit DMA uses non-identity mapping\n");
3643         }
3644
3645         return true;
3646 }
3647
3648 static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
3649                                      size_t size, int dir, u64 dma_mask)
3650 {
3651         struct dmar_domain *domain;
3652         phys_addr_t start_paddr;
3653         unsigned long iova_pfn;
3654         int prot = 0;
3655         int ret;
3656         struct intel_iommu *iommu;
3657         unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
3658
3659         BUG_ON(dir == DMA_NONE);
3660
3661         domain = find_domain(dev);
3662         if (!domain)
3663                 return DMA_MAPPING_ERROR;
3664
3665         iommu = domain_get_iommu(domain);
3666         size = aligned_nrpages(paddr, size);
3667
3668         iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
3669         if (!iova_pfn)
3670                 goto error;
3671
3672         /*
3673          * Check if DMAR supports zero-length reads on write only
3674          * mappings..
3675          */
3676         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3677                         !cap_zlr(iommu->cap))
3678                 prot |= DMA_PTE_READ;
3679         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3680                 prot |= DMA_PTE_WRITE;
3681         /*
3682          * paddr - (paddr + size) might be partial page, we should map the whole
3683          * page.  Note: if two part of one page are separately mapped, we
3684          * might have two guest_addr mapping to the same host paddr, but this
3685          * is not a big problem
3686          */
3687         ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
3688                                  mm_to_dma_pfn(paddr_pfn), size, prot);
3689         if (ret)
3690                 goto error;
3691
3692         start_paddr = (phys_addr_t)iova_pfn << PAGE_SHIFT;
3693         start_paddr += paddr & ~PAGE_MASK;
3694         return start_paddr;
3695
3696 error:
3697         if (iova_pfn)
3698                 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3699         dev_err(dev, "Device request: %zx@%llx dir %d --- failed\n",
3700                 size, (unsigned long long)paddr, dir);
3701         return DMA_MAPPING_ERROR;
3702 }
3703
3704 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
3705                                  unsigned long offset, size_t size,
3706                                  enum dma_data_direction dir,
3707                                  unsigned long attrs)
3708 {
3709         if (iommu_need_mapping(dev))
3710                 return __intel_map_single(dev, page_to_phys(page) + offset,
3711                                 size, dir, *dev->dma_mask);
3712         return dma_direct_map_page(dev, page, offset, size, dir, attrs);
3713 }
3714
3715 static dma_addr_t intel_map_resource(struct device *dev, phys_addr_t phys_addr,
3716                                      size_t size, enum dma_data_direction dir,
3717                                      unsigned long attrs)
3718 {
3719         if (iommu_need_mapping(dev))
3720                 return __intel_map_single(dev, phys_addr, size, dir,
3721                                 *dev->dma_mask);
3722         return dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
3723 }
3724
3725 static void intel_unmap(struct device *dev, dma_addr_t dev_addr, size_t size)
3726 {
3727         struct dmar_domain *domain;
3728         unsigned long start_pfn, last_pfn;
3729         unsigned long nrpages;
3730         unsigned long iova_pfn;
3731         struct intel_iommu *iommu;
3732         struct page *freelist;
3733         struct pci_dev *pdev = NULL;
3734
3735         domain = find_domain(dev);
3736         BUG_ON(!domain);
3737
3738         iommu = domain_get_iommu(domain);
3739
3740         iova_pfn = IOVA_PFN(dev_addr);
3741
3742         nrpages = aligned_nrpages(dev_addr, size);
3743         start_pfn = mm_to_dma_pfn(iova_pfn);
3744         last_pfn = start_pfn + nrpages - 1;
3745
3746         if (dev_is_pci(dev))
3747                 pdev = to_pci_dev(dev);
3748
3749         dev_dbg(dev, "Device unmapping: pfn %lx-%lx\n", start_pfn, last_pfn);
3750
3751         freelist = domain_unmap(domain, start_pfn, last_pfn);
3752
3753         if (intel_iommu_strict || (pdev && pdev->untrusted)) {
3754                 iommu_flush_iotlb_psi(iommu, domain, start_pfn,
3755                                       nrpages, !freelist, 0);
3756                 /* free iova */
3757                 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
3758                 dma_free_pagelist(freelist);
3759         } else {
3760                 queue_iova(&domain->iovad, iova_pfn, nrpages,
3761                            (unsigned long)freelist);
3762                 /*
3763                  * queue up the release of the unmap to save the 1/6th of the
3764                  * cpu used up by the iotlb flush operation...
3765                  */
3766         }
3767 }
3768
3769 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
3770                              size_t size, enum dma_data_direction dir,
3771                              unsigned long attrs)
3772 {
3773         if (iommu_need_mapping(dev))
3774                 intel_unmap(dev, dev_addr, size);
3775         else
3776                 dma_direct_unmap_page(dev, dev_addr, size, dir, attrs);
3777 }
3778
3779 static void intel_unmap_resource(struct device *dev, dma_addr_t dev_addr,
3780                 size_t size, enum dma_data_direction dir, unsigned long attrs)
3781 {
3782         if (iommu_need_mapping(dev))
3783                 intel_unmap(dev, dev_addr, size);
3784 }
3785
3786 static void *intel_alloc_coherent(struct device *dev, size_t size,
3787                                   dma_addr_t *dma_handle, gfp_t flags,
3788                                   unsigned long attrs)
3789 {
3790         struct page *page = NULL;
3791         int order;
3792
3793         if (!iommu_need_mapping(dev))
3794                 return dma_direct_alloc(dev, size, dma_handle, flags, attrs);
3795
3796         size = PAGE_ALIGN(size);
3797         order = get_order(size);
3798
3799         if (gfpflags_allow_blocking(flags)) {
3800                 unsigned int count = size >> PAGE_SHIFT;
3801
3802                 page = dma_alloc_from_contiguous(dev, count, order,
3803                                                  flags & __GFP_NOWARN);
3804         }
3805
3806         if (!page)
3807                 page = alloc_pages(flags, order);
3808         if (!page)
3809                 return NULL;
3810         memset(page_address(page), 0, size);
3811
3812         *dma_handle = __intel_map_single(dev, page_to_phys(page), size,
3813                                          DMA_BIDIRECTIONAL,
3814                                          dev->coherent_dma_mask);
3815         if (*dma_handle != DMA_MAPPING_ERROR)
3816                 return page_address(page);
3817         if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3818                 __free_pages(page, order);
3819
3820         return NULL;
3821 }
3822
3823 static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3824                                 dma_addr_t dma_handle, unsigned long attrs)
3825 {
3826         int order;
3827         struct page *page = virt_to_page(vaddr);
3828
3829         if (!iommu_need_mapping(dev))
3830                 return dma_direct_free(dev, size, vaddr, dma_handle, attrs);
3831
3832         size = PAGE_ALIGN(size);
3833         order = get_order(size);
3834
3835         intel_unmap(dev, dma_handle, size);
3836         if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3837                 __free_pages(page, order);
3838 }
3839
3840 static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3841                            int nelems, enum dma_data_direction dir,
3842                            unsigned long attrs)
3843 {
3844         dma_addr_t startaddr = sg_dma_address(sglist) & PAGE_MASK;
3845         unsigned long nrpages = 0;
3846         struct scatterlist *sg;
3847         int i;
3848
3849         if (!iommu_need_mapping(dev))
3850                 return dma_direct_unmap_sg(dev, sglist, nelems, dir, attrs);
3851
3852         for_each_sg(sglist, sg, nelems, i) {
3853                 nrpages += aligned_nrpages(sg_dma_address(sg), sg_dma_len(sg));
3854         }
3855
3856         intel_unmap(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
3857 }
3858
3859 static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3860                         enum dma_data_direction dir, unsigned long attrs)
3861 {
3862         int i;
3863         struct dmar_domain *domain;
3864         size_t size = 0;
3865         int prot = 0;
3866         unsigned long iova_pfn;
3867         int ret;
3868         struct scatterlist *sg;
3869         unsigned long start_vpfn;
3870         struct intel_iommu *iommu;
3871
3872         BUG_ON(dir == DMA_NONE);
3873         if (!iommu_need_mapping(dev))
3874                 return dma_direct_map_sg(dev, sglist, nelems, dir, attrs);
3875
3876         domain = find_domain(dev);
3877         if (!domain)
3878                 return 0;
3879
3880         iommu = domain_get_iommu(domain);
3881
3882         for_each_sg(sglist, sg, nelems, i)
3883                 size += aligned_nrpages(sg->offset, sg->length);
3884
3885         iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3886                                 *dev->dma_mask);
3887         if (!iova_pfn) {
3888                 sglist->dma_length = 0;
3889                 return 0;
3890         }
3891
3892         /*
3893          * Check if DMAR supports zero-length reads on write only
3894          * mappings..
3895          */
3896         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3897                         !cap_zlr(iommu->cap))
3898                 prot |= DMA_PTE_READ;
3899         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3900                 prot |= DMA_PTE_WRITE;
3901
3902         start_vpfn = mm_to_dma_pfn(iova_pfn);
3903
3904         ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3905         if (unlikely(ret)) {
3906                 dma_pte_free_pagetable(domain, start_vpfn,
3907                                        start_vpfn + size - 1,
3908                                        agaw_to_level(domain->agaw) + 1);
3909                 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3910                 return 0;
3911         }
3912
3913         return nelems;
3914 }
3915
3916 static const struct dma_map_ops intel_dma_ops = {
3917         .alloc = intel_alloc_coherent,
3918         .free = intel_free_coherent,
3919         .map_sg = intel_map_sg,
3920         .unmap_sg = intel_unmap_sg,
3921         .map_page = intel_map_page,
3922         .unmap_page = intel_unmap_page,
3923         .map_resource = intel_map_resource,
3924         .unmap_resource = intel_unmap_resource,
3925         .dma_supported = dma_direct_supported,
3926 };
3927
3928 static inline int iommu_domain_cache_init(void)
3929 {
3930         int ret = 0;
3931
3932         iommu_domain_cache = kmem_cache_create("iommu_domain",
3933                                          sizeof(struct dmar_domain),
3934                                          0,
3935                                          SLAB_HWCACHE_ALIGN,
3936
3937                                          NULL);
3938         if (!iommu_domain_cache) {
3939                 pr_err("Couldn't create iommu_domain cache\n");
3940                 ret = -ENOMEM;
3941         }
3942
3943         return ret;
3944 }
3945
3946 static inline int iommu_devinfo_cache_init(void)
3947 {
3948         int ret = 0;
3949
3950         iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3951                                          sizeof(struct device_domain_info),
3952                                          0,
3953                                          SLAB_HWCACHE_ALIGN,
3954                                          NULL);
3955         if (!iommu_devinfo_cache) {
3956                 pr_err("Couldn't create devinfo cache\n");
3957                 ret = -ENOMEM;
3958         }
3959
3960         return ret;
3961 }
3962
3963 static int __init iommu_init_mempool(void)
3964 {
3965         int ret;
3966         ret = iova_cache_get();
3967         if (ret)
3968                 return ret;
3969
3970         ret = iommu_domain_cache_init();
3971         if (ret)
3972                 goto domain_error;
3973
3974         ret = iommu_devinfo_cache_init();
3975         if (!ret)
3976                 return ret;
3977
3978         kmem_cache_destroy(iommu_domain_cache);
3979 domain_error:
3980         iova_cache_put();
3981
3982         return -ENOMEM;
3983 }
3984
3985 static void __init iommu_exit_mempool(void)
3986 {
3987         kmem_cache_destroy(iommu_devinfo_cache);
3988         kmem_cache_destroy(iommu_domain_cache);
3989         iova_cache_put();
3990 }
3991
3992 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3993 {
3994         struct dmar_drhd_unit *drhd;
3995         u32 vtbar;
3996         int rc;
3997
3998         /* We know that this device on this chipset has its own IOMMU.
3999          * If we find it under a different IOMMU, then the BIOS is lying
4000          * to us. Hope that the IOMMU for this device is actually
4001          * disabled, and it needs no translation...
4002          */
4003         rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
4004         if (rc) {
4005                 /* "can't" happen */
4006                 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
4007                 return;
4008         }
4009         vtbar &= 0xffff0000;
4010
4011         /* we know that the this iommu should be at offset 0xa000 from vtbar */
4012         drhd = dmar_find_matched_drhd_unit(pdev);
4013         if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
4014                             TAINT_FIRMWARE_WORKAROUND,
4015                             "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
4016                 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
4017 }
4018 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
4019
4020 static void __init init_no_remapping_devices(void)
4021 {
4022         struct dmar_drhd_unit *drhd;
4023         struct device *dev;
4024         int i;
4025
4026         for_each_drhd_unit(drhd) {
4027                 if (!drhd->include_all) {
4028                         for_each_active_dev_scope(drhd->devices,
4029                                                   drhd->devices_cnt, i, dev)
4030                                 break;
4031                         /* ignore DMAR unit if no devices exist */
4032                         if (i == drhd->devices_cnt)
4033                                 drhd->ignored = 1;
4034                 }
4035         }
4036
4037         for_each_active_drhd_unit(drhd) {
4038                 if (drhd->include_all)
4039                         continue;
4040
4041                 for_each_active_dev_scope(drhd->devices,
4042                                           drhd->devices_cnt, i, dev)
4043                         if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
4044                                 break;
4045                 if (i < drhd->devices_cnt)
4046                         continue;
4047
4048                 /* This IOMMU has *only* gfx devices. Either bypass it or
4049                    set the gfx_mapped flag, as appropriate */
4050                 if (!dmar_map_gfx) {
4051                         drhd->ignored = 1;
4052                         for_each_active_dev_scope(drhd->devices,
4053                                                   drhd->devices_cnt, i, dev)
4054                                 dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
4055                 }
4056         }
4057 }
4058
4059 #ifdef CONFIG_SUSPEND
4060 static int init_iommu_hw(void)
4061 {
4062         struct dmar_drhd_unit *drhd;
4063         struct intel_iommu *iommu = NULL;
4064
4065         for_each_active_iommu(iommu, drhd)
4066                 if (iommu->qi)
4067                         dmar_reenable_qi(iommu);
4068
4069         for_each_iommu(iommu, drhd) {
4070                 if (drhd->ignored) {
4071                         /*
4072                          * we always have to disable PMRs or DMA may fail on
4073                          * this device
4074                          */
4075                         if (force_on)
4076                                 iommu_disable_protect_mem_regions(iommu);
4077                         continue;
4078                 }
4079
4080                 iommu_flush_write_buffer(iommu);
4081
4082                 iommu_set_root_entry(iommu);
4083
4084                 iommu->flush.flush_context(iommu, 0, 0, 0,
4085                                            DMA_CCMD_GLOBAL_INVL);
4086                 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4087                 iommu_enable_translation(iommu);
4088                 iommu_disable_protect_mem_regions(iommu);
4089         }
4090
4091         return 0;
4092 }
4093
4094 static void iommu_flush_all(void)
4095 {
4096         struct dmar_drhd_unit *drhd;
4097         struct intel_iommu *iommu;
4098
4099         for_each_active_iommu(iommu, drhd) {
4100                 iommu->flush.flush_context(iommu, 0, 0, 0,
4101                                            DMA_CCMD_GLOBAL_INVL);
4102                 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
4103                                          DMA_TLB_GLOBAL_FLUSH);
4104         }
4105 }
4106
4107 static int iommu_suspend(void)
4108 {
4109         struct dmar_drhd_unit *drhd;
4110         struct intel_iommu *iommu = NULL;
4111         unsigned long flag;
4112
4113         for_each_active_iommu(iommu, drhd) {
4114                 iommu->iommu_state = kcalloc(MAX_SR_DMAR_REGS, sizeof(u32),
4115                                                  GFP_ATOMIC);
4116                 if (!iommu->iommu_state)
4117                         goto nomem;
4118         }
4119
4120         iommu_flush_all();
4121
4122         for_each_active_iommu(iommu, drhd) {
4123                 iommu_disable_translation(iommu);
4124
4125                 raw_spin_lock_irqsave(&iommu->register_lock, flag);
4126
4127                 iommu->iommu_state[SR_DMAR_FECTL_REG] =
4128                         readl(iommu->reg + DMAR_FECTL_REG);
4129                 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
4130                         readl(iommu->reg + DMAR_FEDATA_REG);
4131                 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
4132                         readl(iommu->reg + DMAR_FEADDR_REG);
4133                 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
4134                         readl(iommu->reg + DMAR_FEUADDR_REG);
4135
4136                 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4137         }
4138         return 0;
4139
4140 nomem:
4141         for_each_active_iommu(iommu, drhd)
4142                 kfree(iommu->iommu_state);
4143
4144         return -ENOMEM;
4145 }
4146
4147 static void iommu_resume(void)
4148 {
4149         struct dmar_drhd_unit *drhd;
4150         struct intel_iommu *iommu = NULL;
4151         unsigned long flag;
4152
4153         if (init_iommu_hw()) {
4154                 if (force_on)
4155                         panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
4156                 else
4157                         WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
4158                 return;
4159         }
4160
4161         for_each_active_iommu(iommu, drhd) {
4162
4163                 raw_spin_lock_irqsave(&iommu->register_lock, flag);
4164
4165                 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
4166                         iommu->reg + DMAR_FECTL_REG);
4167                 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
4168                         iommu->reg + DMAR_FEDATA_REG);
4169                 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
4170                         iommu->reg + DMAR_FEADDR_REG);
4171                 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
4172                         iommu->reg + DMAR_FEUADDR_REG);
4173
4174                 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4175         }
4176
4177         for_each_active_iommu(iommu, drhd)
4178                 kfree(iommu->iommu_state);
4179 }
4180
4181 static struct syscore_ops iommu_syscore_ops = {
4182         .resume         = iommu_resume,
4183         .suspend        = iommu_suspend,
4184 };
4185
4186 static void __init init_iommu_pm_ops(void)
4187 {
4188         register_syscore_ops(&iommu_syscore_ops);
4189 }
4190
4191 #else
4192 static inline void init_iommu_pm_ops(void) {}
4193 #endif  /* CONFIG_PM */
4194
4195
4196 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
4197 {
4198         struct acpi_dmar_reserved_memory *rmrr;
4199         int prot = DMA_PTE_READ|DMA_PTE_WRITE;
4200         struct dmar_rmrr_unit *rmrru;
4201         size_t length;
4202
4203         rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
4204         if (!rmrru)
4205                 goto out;
4206
4207         rmrru->hdr = header;
4208         rmrr = (struct acpi_dmar_reserved_memory *)header;
4209         rmrru->base_address = rmrr->base_address;
4210         rmrru->end_address = rmrr->end_address;
4211
4212         length = rmrr->end_address - rmrr->base_address + 1;
4213         rmrru->resv = iommu_alloc_resv_region(rmrr->base_address, length, prot,
4214                                               IOMMU_RESV_DIRECT);
4215         if (!rmrru->resv)
4216                 goto free_rmrru;
4217
4218         rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
4219                                 ((void *)rmrr) + rmrr->header.length,
4220                                 &rmrru->devices_cnt);
4221         if (rmrru->devices_cnt && rmrru->devices == NULL)
4222                 goto free_all;
4223
4224         list_add(&rmrru->list, &dmar_rmrr_units);
4225
4226         return 0;
4227 free_all:
4228         kfree(rmrru->resv);
4229 free_rmrru:
4230         kfree(rmrru);
4231 out:
4232         return -ENOMEM;
4233 }
4234
4235 static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
4236 {
4237         struct dmar_atsr_unit *atsru;
4238         struct acpi_dmar_atsr *tmp;
4239
4240         list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4241                 tmp = (struct acpi_dmar_atsr *)atsru->hdr;
4242                 if (atsr->segment != tmp->segment)
4243                         continue;
4244                 if (atsr->header.length != tmp->header.length)
4245                         continue;
4246                 if (memcmp(atsr, tmp, atsr->header.length) == 0)
4247                         return atsru;
4248         }
4249
4250         return NULL;
4251 }
4252
4253 int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4254 {
4255         struct acpi_dmar_atsr *atsr;
4256         struct dmar_atsr_unit *atsru;
4257
4258         if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled)
4259                 return 0;
4260
4261         atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4262         atsru = dmar_find_atsr(atsr);
4263         if (atsru)
4264                 return 0;
4265
4266         atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
4267         if (!atsru)
4268                 return -ENOMEM;
4269
4270         /*
4271          * If memory is allocated from slab by ACPI _DSM method, we need to
4272          * copy the memory content because the memory buffer will be freed
4273          * on return.
4274          */
4275         atsru->hdr = (void *)(atsru + 1);
4276         memcpy(atsru->hdr, hdr, hdr->length);
4277         atsru->include_all = atsr->flags & 0x1;
4278         if (!atsru->include_all) {
4279                 atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
4280                                 (void *)atsr + atsr->header.length,
4281                                 &atsru->devices_cnt);
4282                 if (atsru->devices_cnt && atsru->devices == NULL) {
4283                         kfree(atsru);
4284                         return -ENOMEM;
4285                 }
4286         }
4287
4288         list_add_rcu(&atsru->list, &dmar_atsr_units);
4289
4290         return 0;
4291 }
4292
4293 static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
4294 {
4295         dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
4296         kfree(atsru);
4297 }
4298
4299 int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4300 {
4301         struct acpi_dmar_atsr *atsr;
4302         struct dmar_atsr_unit *atsru;
4303
4304         atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4305         atsru = dmar_find_atsr(atsr);
4306         if (atsru) {
4307                 list_del_rcu(&atsru->list);
4308                 synchronize_rcu();
4309                 intel_iommu_free_atsr(atsru);
4310         }
4311
4312         return 0;
4313 }
4314
4315 int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4316 {
4317         int i;
4318         struct device *dev;
4319         struct acpi_dmar_atsr *atsr;
4320         struct dmar_atsr_unit *atsru;
4321
4322         atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4323         atsru = dmar_find_atsr(atsr);
4324         if (!atsru)
4325                 return 0;
4326
4327         if (!atsru->include_all && atsru->devices && atsru->devices_cnt) {
4328                 for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
4329                                           i, dev)
4330                         return -EBUSY;
4331         }
4332
4333         return 0;
4334 }
4335
4336 static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
4337 {
4338         int sp, ret;
4339         struct intel_iommu *iommu = dmaru->iommu;
4340
4341         if (g_iommus[iommu->seq_id])
4342                 return 0;
4343
4344         if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
4345                 pr_warn("%s: Doesn't support hardware pass through.\n",
4346                         iommu->name);
4347                 return -ENXIO;
4348         }
4349         if (!ecap_sc_support(iommu->ecap) &&
4350             domain_update_iommu_snooping(iommu)) {
4351                 pr_warn("%s: Doesn't support snooping.\n",
4352                         iommu->name);
4353                 return -ENXIO;
4354         }
4355         sp = domain_update_iommu_superpage(iommu) - 1;
4356         if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
4357                 pr_warn("%s: Doesn't support large page.\n",
4358                         iommu->name);
4359                 return -ENXIO;
4360         }
4361
4362         /*
4363          * Disable translation if already enabled prior to OS handover.
4364          */
4365         if (iommu->gcmd & DMA_GCMD_TE)
4366                 iommu_disable_translation(iommu);
4367
4368         g_iommus[iommu->seq_id] = iommu;
4369         ret = iommu_init_domains(iommu);
4370         if (ret == 0)
4371                 ret = iommu_alloc_root_entry(iommu);
4372         if (ret)
4373                 goto out;
4374
4375 #ifdef CONFIG_INTEL_IOMMU_SVM
4376         if (pasid_supported(iommu))
4377                 intel_svm_init(iommu);
4378 #endif
4379
4380         if (dmaru->ignored) {
4381                 /*
4382                  * we always have to disable PMRs or DMA may fail on this device
4383                  */
4384                 if (force_on)
4385                         iommu_disable_protect_mem_regions(iommu);
4386                 return 0;
4387         }
4388
4389         intel_iommu_init_qi(iommu);
4390         iommu_flush_write_buffer(iommu);
4391
4392 #ifdef CONFIG_INTEL_IOMMU_SVM
4393         if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
4394                 ret = intel_svm_enable_prq(iommu);
4395                 if (ret)
4396                         goto disable_iommu;
4397         }
4398 #endif
4399         ret = dmar_set_interrupt(iommu);
4400         if (ret)
4401                 goto disable_iommu;
4402
4403         iommu_set_root_entry(iommu);
4404         iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
4405         iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4406         iommu_enable_translation(iommu);
4407
4408         iommu_disable_protect_mem_regions(iommu);
4409         return 0;
4410
4411 disable_iommu:
4412         disable_dmar_iommu(iommu);
4413 out:
4414         free_dmar_iommu(iommu);
4415         return ret;
4416 }
4417
4418 int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
4419 {
4420         int ret = 0;
4421         struct intel_iommu *iommu = dmaru->iommu;
4422
4423         if (!intel_iommu_enabled)
4424                 return 0;
4425         if (iommu == NULL)
4426                 return -EINVAL;
4427
4428         if (insert) {
4429                 ret = intel_iommu_add(dmaru);
4430         } else {
4431                 disable_dmar_iommu(iommu);
4432                 free_dmar_iommu(iommu);
4433         }
4434
4435         return ret;
4436 }
4437
4438 static void intel_iommu_free_dmars(void)
4439 {
4440         struct dmar_rmrr_unit *rmrru, *rmrr_n;
4441         struct dmar_atsr_unit *atsru, *atsr_n;
4442
4443         list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
4444                 list_del(&rmrru->list);
4445                 dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
4446                 kfree(rmrru->resv);
4447                 kfree(rmrru);
4448         }
4449
4450         list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
4451                 list_del(&atsru->list);
4452                 intel_iommu_free_atsr(atsru);
4453         }
4454 }
4455
4456 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
4457 {
4458         int i, ret = 1;
4459         struct pci_bus *bus;
4460         struct pci_dev *bridge = NULL;
4461         struct device *tmp;
4462         struct acpi_dmar_atsr *atsr;
4463         struct dmar_atsr_unit *atsru;
4464
4465         dev = pci_physfn(dev);
4466         for (bus = dev->bus; bus; bus = bus->parent) {
4467                 bridge = bus->self;
4468                 /* If it's an integrated device, allow ATS */
4469                 if (!bridge)
4470                         return 1;
4471                 /* Connected via non-PCIe: no ATS */
4472                 if (!pci_is_pcie(bridge) ||
4473                     pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
4474                         return 0;
4475                 /* If we found the root port, look it up in the ATSR */
4476                 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
4477                         break;
4478         }
4479
4480         rcu_read_lock();
4481         list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4482                 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4483                 if (atsr->segment != pci_domain_nr(dev->bus))
4484                         continue;
4485
4486                 for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
4487                         if (tmp == &bridge->dev)
4488                                 goto out;
4489
4490                 if (atsru->include_all)
4491                         goto out;
4492         }
4493         ret = 0;
4494 out:
4495         rcu_read_unlock();
4496
4497         return ret;
4498 }
4499
4500 int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
4501 {
4502         int ret;
4503         struct dmar_rmrr_unit *rmrru;
4504         struct dmar_atsr_unit *atsru;
4505         struct acpi_dmar_atsr *atsr;
4506         struct acpi_dmar_reserved_memory *rmrr;
4507
4508         if (!intel_iommu_enabled && system_state >= SYSTEM_RUNNING)
4509                 return 0;
4510
4511         list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
4512                 rmrr = container_of(rmrru->hdr,
4513                                     struct acpi_dmar_reserved_memory, header);
4514                 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4515                         ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
4516                                 ((void *)rmrr) + rmrr->header.length,
4517                                 rmrr->segment, rmrru->devices,
4518                                 rmrru->devices_cnt);
4519                         if (ret < 0)
4520                                 return ret;
4521                 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4522                         dmar_remove_dev_scope(info, rmrr->segment,
4523                                 rmrru->devices, rmrru->devices_cnt);
4524                 }
4525         }
4526
4527         list_for_each_entry(atsru, &dmar_atsr_units, list) {
4528                 if (atsru->include_all)
4529                         continue;
4530
4531                 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4532                 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4533                         ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
4534                                         (void *)atsr + atsr->header.length,
4535                                         atsr->segment, atsru->devices,
4536                                         atsru->devices_cnt);
4537                         if (ret > 0)
4538                                 break;
4539                         else if (ret < 0)
4540                                 return ret;
4541                 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4542                         if (dmar_remove_dev_scope(info, atsr->segment,
4543                                         atsru->devices, atsru->devices_cnt))
4544                                 break;
4545                 }
4546         }
4547
4548         return 0;
4549 }
4550
4551 /*
4552  * Here we only respond to action of unbound device from driver.
4553  *
4554  * Added device is not attached to its DMAR domain here yet. That will happen
4555  * when mapping the device to iova.
4556  */
4557 static int device_notifier(struct notifier_block *nb,
4558                                   unsigned long action, void *data)
4559 {
4560         struct device *dev = data;
4561         struct dmar_domain *domain;
4562
4563         if (iommu_dummy(dev))
4564                 return 0;
4565
4566         if (action == BUS_NOTIFY_REMOVED_DEVICE) {
4567                 domain = find_domain(dev);
4568                 if (!domain)
4569                         return 0;
4570
4571                 dmar_remove_one_dev_info(dev);
4572         } else if (action == BUS_NOTIFY_ADD_DEVICE) {
4573                 if (iommu_should_identity_map(dev, 1))
4574                         domain_add_dev_info(si_domain, dev);
4575         }
4576
4577         return 0;
4578 }
4579
4580 static struct notifier_block device_nb = {
4581         .notifier_call = device_notifier,
4582 };
4583
4584 static int intel_iommu_memory_notifier(struct notifier_block *nb,
4585                                        unsigned long val, void *v)
4586 {
4587         struct memory_notify *mhp = v;
4588         unsigned long long start, end;
4589         unsigned long start_vpfn, last_vpfn;
4590
4591         switch (val) {
4592         case MEM_GOING_ONLINE:
4593                 start = mhp->start_pfn << PAGE_SHIFT;
4594                 end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
4595                 if (iommu_domain_identity_map(si_domain, start, end)) {
4596                         pr_warn("Failed to build identity map for [%llx-%llx]\n",
4597                                 start, end);
4598                         return NOTIFY_BAD;
4599                 }
4600                 break;
4601
4602         case MEM_OFFLINE:
4603         case MEM_CANCEL_ONLINE:
4604                 start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
4605                 last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
4606                 while (start_vpfn <= last_vpfn) {
4607                         struct iova *iova;
4608                         struct dmar_drhd_unit *drhd;
4609                         struct intel_iommu *iommu;
4610                         struct page *freelist;
4611
4612                         iova = find_iova(&si_domain->iovad, start_vpfn);
4613                         if (iova == NULL) {
4614                                 pr_debug("Failed get IOVA for PFN %lx\n",
4615                                          start_vpfn);
4616                                 break;
4617                         }
4618
4619                         iova = split_and_remove_iova(&si_domain->iovad, iova,
4620                                                      start_vpfn, last_vpfn);
4621                         if (iova == NULL) {
4622                                 pr_warn("Failed to split IOVA PFN [%lx-%lx]\n",
4623                                         start_vpfn, last_vpfn);
4624                                 return NOTIFY_BAD;
4625                         }
4626
4627                         freelist = domain_unmap(si_domain, iova->pfn_lo,
4628                                                iova->pfn_hi);
4629
4630                         rcu_read_lock();
4631                         for_each_active_iommu(iommu, drhd)
4632                                 iommu_flush_iotlb_psi(iommu, si_domain,
4633                                         iova->pfn_lo, iova_size(iova),
4634                                         !freelist, 0);
4635                         rcu_read_unlock();
4636                         dma_free_pagelist(freelist);
4637
4638                         start_vpfn = iova->pfn_hi + 1;
4639                         free_iova_mem(iova);
4640                 }
4641                 break;
4642         }
4643
4644         return NOTIFY_OK;
4645 }
4646
4647 static struct notifier_block intel_iommu_memory_nb = {
4648         .notifier_call = intel_iommu_memory_notifier,
4649         .priority = 0
4650 };
4651
4652 static void free_all_cpu_cached_iovas(unsigned int cpu)
4653 {
4654         int i;
4655
4656         for (i = 0; i < g_num_of_iommus; i++) {
4657                 struct intel_iommu *iommu = g_iommus[i];
4658                 struct dmar_domain *domain;
4659                 int did;
4660
4661                 if (!iommu)
4662                         continue;
4663
4664                 for (did = 0; did < cap_ndoms(iommu->cap); did++) {
4665                         domain = get_iommu_domain(iommu, (u16)did);
4666
4667                         if (!domain)
4668                                 continue;
4669                         free_cpu_cached_iovas(cpu, &domain->iovad);
4670                 }
4671         }
4672 }
4673
4674 static int intel_iommu_cpu_dead(unsigned int cpu)
4675 {
4676         free_all_cpu_cached_iovas(cpu);
4677         return 0;
4678 }
4679
4680 static void intel_disable_iommus(void)
4681 {
4682         struct intel_iommu *iommu = NULL;
4683         struct dmar_drhd_unit *drhd;
4684
4685         for_each_iommu(iommu, drhd)
4686                 iommu_disable_translation(iommu);
4687 }
4688
4689 static inline struct intel_iommu *dev_to_intel_iommu(struct device *dev)
4690 {
4691         struct iommu_device *iommu_dev = dev_to_iommu_device(dev);
4692
4693         return container_of(iommu_dev, struct intel_iommu, iommu);
4694 }
4695
4696 static ssize_t intel_iommu_show_version(struct device *dev,
4697                                         struct device_attribute *attr,
4698                                         char *buf)
4699 {
4700         struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4701         u32 ver = readl(iommu->reg + DMAR_VER_REG);
4702         return sprintf(buf, "%d:%d\n",
4703                        DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
4704 }
4705 static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);
4706
4707 static ssize_t intel_iommu_show_address(struct device *dev,
4708                                         struct device_attribute *attr,
4709                                         char *buf)
4710 {
4711         struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4712         return sprintf(buf, "%llx\n", iommu->reg_phys);
4713 }
4714 static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);
4715
4716 static ssize_t intel_iommu_show_cap(struct device *dev,
4717                                     struct device_attribute *attr,
4718                                     char *buf)
4719 {
4720         struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4721         return sprintf(buf, "%llx\n", iommu->cap);
4722 }
4723 static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);
4724
4725 static ssize_t intel_iommu_show_ecap(struct device *dev,
4726                                     struct device_attribute *attr,
4727                                     char *buf)
4728 {
4729         struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4730         return sprintf(buf, "%llx\n", iommu->ecap);
4731 }
4732 static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);
4733
4734 static ssize_t intel_iommu_show_ndoms(struct device *dev,
4735                                       struct device_attribute *attr,
4736                                       char *buf)
4737 {
4738         struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4739         return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap));
4740 }
4741 static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL);
4742
4743 static ssize_t intel_iommu_show_ndoms_used(struct device *dev,
4744                                            struct device_attribute *attr,
4745                                            char *buf)
4746 {
4747         struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4748         return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids,
4749                                                   cap_ndoms(iommu->cap)));
4750 }
4751 static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL);
4752
4753 static struct attribute *intel_iommu_attrs[] = {
4754         &dev_attr_version.attr,
4755         &dev_attr_address.attr,
4756         &dev_attr_cap.attr,
4757         &dev_attr_ecap.attr,
4758         &dev_attr_domains_supported.attr,
4759         &dev_attr_domains_used.attr,
4760         NULL,
4761 };
4762
4763 static struct attribute_group intel_iommu_group = {
4764         .name = "intel-iommu",
4765         .attrs = intel_iommu_attrs,
4766 };
4767
4768 const struct attribute_group *intel_iommu_groups[] = {
4769         &intel_iommu_group,
4770         NULL,
4771 };
4772
4773 static int __init platform_optin_force_iommu(void)
4774 {
4775         struct pci_dev *pdev = NULL;
4776         bool has_untrusted_dev = false;
4777
4778         if (!dmar_platform_optin() || no_platform_optin)
4779                 return 0;
4780
4781         for_each_pci_dev(pdev) {
4782                 if (pdev->untrusted) {
4783                         has_untrusted_dev = true;
4784                         break;
4785                 }
4786         }
4787
4788         if (!has_untrusted_dev)
4789                 return 0;
4790
4791         if (no_iommu || dmar_disabled)
4792                 pr_info("Intel-IOMMU force enabled due to platform opt in\n");
4793
4794         /*
4795          * If Intel-IOMMU is disabled by default, we will apply identity
4796          * map for all devices except those marked as being untrusted.
4797          */
4798         if (dmar_disabled)
4799                 iommu_identity_mapping |= IDENTMAP_ALL;
4800
4801         dmar_disabled = 0;
4802 #if defined(CONFIG_X86) && defined(CONFIG_SWIOTLB)
4803         swiotlb = 0;
4804 #endif
4805         no_iommu = 0;
4806
4807         return 1;
4808 }
4809
4810 static int __init probe_acpi_namespace_devices(void)
4811 {
4812         struct dmar_drhd_unit *drhd;
4813         struct intel_iommu *iommu;
4814         struct device *dev;
4815         int i, ret = 0;
4816
4817         for_each_active_iommu(iommu, drhd) {
4818                 for_each_active_dev_scope(drhd->devices,
4819                                           drhd->devices_cnt, i, dev) {
4820                         struct acpi_device_physical_node *pn;
4821                         struct iommu_group *group;
4822                         struct acpi_device *adev;
4823
4824                         if (dev->bus != &acpi_bus_type)
4825                                 continue;
4826
4827                         adev = to_acpi_device(dev);
4828                         mutex_lock(&adev->physical_node_lock);
4829                         list_for_each_entry(pn,
4830                                             &adev->physical_node_list, node) {
4831                                 group = iommu_group_get(pn->dev);
4832                                 if (group) {
4833                                         iommu_group_put(group);
4834                                         continue;
4835                                 }
4836
4837                                 pn->dev->bus->iommu_ops = &intel_iommu_ops;
4838                                 ret = iommu_probe_device(pn->dev);
4839                                 if (ret)
4840                                         break;
4841                         }
4842                         mutex_unlock(&adev->physical_node_lock);
4843
4844                         if (ret)
4845                                 return ret;
4846                 }
4847         }
4848
4849         return 0;
4850 }
4851
4852 int __init intel_iommu_init(void)
4853 {
4854         int ret = -ENODEV;
4855         struct dmar_drhd_unit *drhd;
4856         struct intel_iommu *iommu;
4857
4858         /*
4859          * Intel IOMMU is required for a TXT/tboot launch or platform
4860          * opt in, so enforce that.
4861          */
4862         force_on = tboot_force_iommu() || platform_optin_force_iommu();
4863
4864         if (iommu_init_mempool()) {
4865                 if (force_on)
4866                         panic("tboot: Failed to initialize iommu memory\n");
4867                 return -ENOMEM;
4868         }
4869
4870         down_write(&dmar_global_lock);
4871         if (dmar_table_init()) {
4872                 if (force_on)
4873                         panic("tboot: Failed to initialize DMAR table\n");
4874                 goto out_free_dmar;
4875         }
4876
4877         if (dmar_dev_scope_init() < 0) {
4878                 if (force_on)
4879                         panic("tboot: Failed to initialize DMAR device scope\n");
4880                 goto out_free_dmar;
4881         }
4882
4883         up_write(&dmar_global_lock);
4884
4885         /*
4886          * The bus notifier takes the dmar_global_lock, so lockdep will
4887          * complain later when we register it under the lock.
4888          */
4889         dmar_register_bus_notifier();
4890
4891         down_write(&dmar_global_lock);
4892
4893         if (no_iommu || dmar_disabled) {
4894                 /*
4895                  * We exit the function here to ensure IOMMU's remapping and
4896                  * mempool aren't setup, which means that the IOMMU's PMRs
4897                  * won't be disabled via the call to init_dmars(). So disable
4898                  * it explicitly here. The PMRs were setup by tboot prior to
4899                  * calling SENTER, but the kernel is expected to reset/tear
4900                  * down the PMRs.
4901                  */
4902                 if (intel_iommu_tboot_noforce) {
4903                         for_each_iommu(iommu, drhd)
4904                                 iommu_disable_protect_mem_regions(iommu);
4905                 }
4906
4907                 /*
4908                  * Make sure the IOMMUs are switched off, even when we
4909                  * boot into a kexec kernel and the previous kernel left
4910                  * them enabled
4911                  */
4912                 intel_disable_iommus();
4913                 goto out_free_dmar;
4914         }
4915
4916         if (list_empty(&dmar_rmrr_units))
4917                 pr_info("No RMRR found\n");
4918
4919         if (list_empty(&dmar_atsr_units))
4920                 pr_info("No ATSR found\n");
4921
4922         if (dmar_init_reserved_ranges()) {
4923                 if (force_on)
4924                         panic("tboot: Failed to reserve iommu ranges\n");
4925                 goto out_free_reserved_range;
4926         }
4927
4928         if (dmar_map_gfx)
4929                 intel_iommu_gfx_mapped = 1;
4930
4931         init_no_remapping_devices();
4932
4933         ret = init_dmars();
4934         if (ret) {
4935                 if (force_on)
4936                         panic("tboot: Failed to initialize DMARs\n");
4937                 pr_err("Initialization failed\n");
4938                 goto out_free_reserved_range;
4939         }
4940         up_write(&dmar_global_lock);
4941
4942 #if defined(CONFIG_X86) && defined(CONFIG_SWIOTLB)
4943         swiotlb = 0;
4944 #endif
4945         dma_ops = &intel_dma_ops;
4946
4947         init_iommu_pm_ops();
4948
4949         for_each_active_iommu(iommu, drhd) {
4950                 iommu_device_sysfs_add(&iommu->iommu, NULL,
4951                                        intel_iommu_groups,
4952                                        "%s", iommu->name);
4953                 iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
4954                 iommu_device_register(&iommu->iommu);
4955         }
4956
4957         bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
4958         bus_register_notifier(&pci_bus_type, &device_nb);
4959         if (si_domain && !hw_pass_through)
4960                 register_memory_notifier(&intel_iommu_memory_nb);
4961         cpuhp_setup_state(CPUHP_IOMMU_INTEL_DEAD, "iommu/intel:dead", NULL,
4962                           intel_iommu_cpu_dead);
4963
4964         if (probe_acpi_namespace_devices())
4965                 pr_warn("ACPI name space devices didn't probe correctly\n");
4966
4967         /* Finally, we enable the DMA remapping hardware. */
4968         for_each_iommu(iommu, drhd) {
4969                 if (!translation_pre_enabled(iommu))
4970                         iommu_enable_translation(iommu);
4971
4972                 iommu_disable_protect_mem_regions(iommu);
4973         }
4974         pr_info("Intel(R) Virtualization Technology for Directed I/O\n");
4975
4976         intel_iommu_enabled = 1;
4977         intel_iommu_debugfs_init();
4978
4979         return 0;
4980
4981 out_free_reserved_range:
4982         put_iova_domain(&reserved_iova_list);
4983 out_free_dmar:
4984         intel_iommu_free_dmars();
4985         up_write(&dmar_global_lock);
4986         iommu_exit_mempool();
4987         return ret;
4988 }
4989
4990 static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque)
4991 {
4992         struct intel_iommu *iommu = opaque;
4993
4994         domain_context_clear_one(iommu, PCI_BUS_NUM(alias), alias & 0xff);
4995         return 0;
4996 }
4997
4998 /*
4999  * NB - intel-iommu lacks any sort of reference counting for the users of
5000  * dependent devices.  If multiple endpoints have intersecting dependent
5001  * devices, unbinding the driver from any one of them will possibly leave
5002  * the others unable to operate.
5003  */
5004 static void domain_context_clear(struct intel_iommu *iommu, struct device *dev)
5005 {
5006         if (!iommu || !dev || !dev_is_pci(dev))
5007                 return;
5008
5009         pci_for_each_dma_alias(to_pci_dev(dev), &domain_context_clear_one_cb, iommu);
5010 }
5011
5012 static void __dmar_remove_one_dev_info(struct device_domain_info *info)
5013 {
5014         struct dmar_domain *domain;
5015         struct intel_iommu *iommu;
5016         unsigned long flags;
5017
5018         assert_spin_locked(&device_domain_lock);
5019
5020         if (WARN_ON(!info))
5021                 return;
5022
5023         iommu = info->iommu;
5024         domain = info->domain;
5025
5026         if (info->dev) {
5027                 if (dev_is_pci(info->dev) && sm_supported(iommu))
5028                         intel_pasid_tear_down_entry(iommu, info->dev,
5029                                         PASID_RID2PASID);
5030
5031                 iommu_disable_dev_iotlb(info);
5032                 domain_context_clear(iommu, info->dev);
5033                 intel_pasid_free_table(info->dev);
5034         }
5035
5036         unlink_domain_info(info);
5037
5038         spin_lock_irqsave(&iommu->lock, flags);
5039         domain_detach_iommu(domain, iommu);
5040         spin_unlock_irqrestore(&iommu->lock, flags);
5041
5042         /* free the private domain */
5043         if (domain->flags & DOMAIN_FLAG_LOSE_CHILDREN &&
5044             !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY))
5045                 domain_exit(info->domain);
5046
5047         free_devinfo_mem(info);
5048 }
5049
5050 static void dmar_remove_one_dev_info(struct device *dev)
5051 {
5052         struct device_domain_info *info;
5053         unsigned long flags;
5054
5055         spin_lock_irqsave(&device_domain_lock, flags);
5056         info = dev->archdata.iommu;
5057         __dmar_remove_one_dev_info(info);
5058         spin_unlock_irqrestore(&device_domain_lock, flags);
5059 }
5060
5061 static int md_domain_init(struct dmar_domain *domain, int guest_width)
5062 {
5063         int adjust_width;
5064
5065         init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN);
5066         domain_reserve_special_ranges(domain);
5067
5068         /* calculate AGAW */
5069         domain->gaw = guest_width;
5070         adjust_width = guestwidth_to_adjustwidth(guest_width);
5071         domain->agaw = width_to_agaw(adjust_width);
5072
5073         domain->iommu_coherency = 0;
5074         domain->iommu_snooping = 0;
5075         domain->iommu_superpage = 0;
5076         domain->max_addr = 0;
5077
5078         /* always allocate the top pgd */
5079         domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
5080         if (!domain->pgd)
5081                 return -ENOMEM;
5082         domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
5083         return 0;
5084 }
5085
5086 static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
5087 {
5088         struct dmar_domain *dmar_domain;
5089         struct iommu_domain *domain;
5090
5091         switch (type) {
5092         case IOMMU_DOMAIN_DMA:
5093         /* fallthrough */
5094         case IOMMU_DOMAIN_UNMANAGED:
5095                 dmar_domain = alloc_domain(0);
5096                 if (!dmar_domain) {
5097                         pr_err("Can't allocate dmar_domain\n");
5098                         return NULL;
5099                 }
5100                 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
5101                         pr_err("Domain initialization failed\n");
5102                         domain_exit(dmar_domain);
5103                         return NULL;
5104                 }
5105
5106                 if (type == IOMMU_DOMAIN_DMA &&
5107                     init_iova_flush_queue(&dmar_domain->iovad,
5108                                           iommu_flush_iova, iova_entry_free)) {
5109                         pr_warn("iova flush queue initialization failed\n");
5110                         intel_iommu_strict = 1;
5111                 }
5112
5113                 domain_update_iommu_cap(dmar_domain);
5114
5115                 domain = &dmar_domain->domain;
5116                 domain->geometry.aperture_start = 0;
5117                 domain->geometry.aperture_end   =
5118                                 __DOMAIN_MAX_ADDR(dmar_domain->gaw);
5119                 domain->geometry.force_aperture = true;
5120
5121                 return domain;
5122         case IOMMU_DOMAIN_IDENTITY:
5123                 return &si_domain->domain;
5124         default:
5125                 return NULL;
5126         }
5127
5128         return NULL;
5129 }
5130
5131 static void intel_iommu_domain_free(struct iommu_domain *domain)
5132 {
5133         if (domain != &si_domain->domain)
5134                 domain_exit(to_dmar_domain(domain));
5135 }
5136
5137 /*
5138  * Check whether a @domain could be attached to the @dev through the
5139  * aux-domain attach/detach APIs.
5140  */
5141 static inline bool
5142 is_aux_domain(struct device *dev, struct iommu_domain *domain)
5143 {
5144         struct device_domain_info *info = dev->archdata.iommu;
5145
5146         return info && info->auxd_enabled &&
5147                         domain->type == IOMMU_DOMAIN_UNMANAGED;
5148 }
5149
5150 static void auxiliary_link_device(struct dmar_domain *domain,
5151                                   struct device *dev)
5152 {
5153         struct device_domain_info *info = dev->archdata.iommu;
5154
5155         assert_spin_locked(&device_domain_lock);
5156         if (WARN_ON(!info))
5157                 return;
5158
5159         domain->auxd_refcnt++;
5160         list_add(&domain->auxd, &info->auxiliary_domains);
5161 }
5162
5163 static void auxiliary_unlink_device(struct dmar_domain *domain,
5164                                     struct device *dev)
5165 {
5166         struct device_domain_info *info = dev->archdata.iommu;
5167
5168         assert_spin_locked(&device_domain_lock);
5169         if (WARN_ON(!info))
5170                 return;
5171
5172         list_del(&domain->auxd);
5173         domain->auxd_refcnt--;
5174
5175         if (!domain->auxd_refcnt && domain->default_pasid > 0)
5176                 intel_pasid_free_id(domain->default_pasid);
5177 }
5178
5179 static int aux_domain_add_dev(struct dmar_domain *domain,
5180                               struct device *dev)
5181 {
5182         int ret;
5183         u8 bus, devfn;
5184         unsigned long flags;
5185         struct intel_iommu *iommu;
5186
5187         iommu = device_to_iommu(dev, &bus, &devfn);
5188         if (!iommu)
5189                 return -ENODEV;
5190
5191         if (domain->default_pasid <= 0) {
5192                 int pasid;
5193
5194                 pasid = intel_pasid_alloc_id(domain, PASID_MIN,
5195                                              pci_max_pasids(to_pci_dev(dev)),
5196                                              GFP_KERNEL);
5197                 if (pasid <= 0) {
5198                         pr_err("Can't allocate default pasid\n");
5199                         return -ENODEV;
5200                 }
5201                 domain->default_pasid = pasid;
5202         }
5203
5204         spin_lock_irqsave(&device_domain_lock, flags);
5205         /*
5206          * iommu->lock must be held to attach domain to iommu and setup the
5207          * pasid entry for second level translation.
5208          */
5209         spin_lock(&iommu->lock);
5210         ret = domain_attach_iommu(domain, iommu);
5211         if (ret)
5212                 goto attach_failed;
5213
5214         /* Setup the PASID entry for mediated devices: */
5215         ret = intel_pasid_setup_second_level(iommu, domain, dev,
5216                                              domain->default_pasid);
5217         if (ret)
5218                 goto table_failed;
5219         spin_unlock(&iommu->lock);
5220
5221         auxiliary_link_device(domain, dev);
5222
5223         spin_unlock_irqrestore(&device_domain_lock, flags);
5224
5225         return 0;
5226
5227 table_failed:
5228         domain_detach_iommu(domain, iommu);
5229 attach_failed:
5230         spin_unlock(&iommu->lock);
5231         spin_unlock_irqrestore(&device_domain_lock, flags);
5232         if (!domain->auxd_refcnt && domain->default_pasid > 0)
5233                 intel_pasid_free_id(domain->default_pasid);
5234
5235         return ret;
5236 }
5237
5238 static void aux_domain_remove_dev(struct dmar_domain *domain,
5239                                   struct device *dev)
5240 {
5241         struct device_domain_info *info;
5242         struct intel_iommu *iommu;
5243         unsigned long flags;
5244
5245         if (!is_aux_domain(dev, &domain->domain))
5246                 return;
5247
5248         spin_lock_irqsave(&device_domain_lock, flags);
5249         info = dev->archdata.iommu;
5250         iommu = info->iommu;
5251
5252         auxiliary_unlink_device(domain, dev);
5253
5254         spin_lock(&iommu->lock);
5255         intel_pasid_tear_down_entry(iommu, dev, domain->default_pasid);
5256         domain_detach_iommu(domain, iommu);
5257         spin_unlock(&iommu->lock);
5258
5259         spin_unlock_irqrestore(&device_domain_lock, flags);
5260 }
5261
5262 static int prepare_domain_attach_device(struct iommu_domain *domain,
5263                                         struct device *dev)
5264 {
5265         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5266         struct intel_iommu *iommu;
5267         int addr_width;
5268         u8 bus, devfn;
5269
5270         iommu = device_to_iommu(dev, &bus, &devfn);
5271         if (!iommu)
5272                 return -ENODEV;
5273
5274         /* check if this iommu agaw is sufficient for max mapped address */
5275         addr_width = agaw_to_width(iommu->agaw);
5276         if (addr_width > cap_mgaw(iommu->cap))
5277                 addr_width = cap_mgaw(iommu->cap);
5278
5279         if (dmar_domain->max_addr > (1LL << addr_width)) {
5280                 dev_err(dev, "%s: iommu width (%d) is not "
5281                         "sufficient for the mapped address (%llx)\n",
5282                         __func__, addr_width, dmar_domain->max_addr);
5283                 return -EFAULT;
5284         }
5285         dmar_domain->gaw = addr_width;
5286
5287         /*
5288          * Knock out extra levels of page tables if necessary
5289          */
5290         while (iommu->agaw < dmar_domain->agaw) {
5291                 struct dma_pte *pte;
5292
5293                 pte = dmar_domain->pgd;
5294                 if (dma_pte_present(pte)) {
5295                         dmar_domain->pgd = (struct dma_pte *)
5296                                 phys_to_virt(dma_pte_addr(pte));
5297                         free_pgtable_page(pte);
5298                 }
5299                 dmar_domain->agaw--;
5300         }
5301
5302         return 0;
5303 }
5304
5305 static int intel_iommu_attach_device(struct iommu_domain *domain,
5306                                      struct device *dev)
5307 {
5308         int ret;
5309
5310         if (device_is_rmrr_locked(dev)) {
5311                 dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement.  Contact your platform vendor.\n");
5312                 return -EPERM;
5313         }
5314
5315         if (is_aux_domain(dev, domain))
5316                 return -EPERM;
5317
5318         /* normally dev is not mapped */
5319         if (unlikely(domain_context_mapped(dev))) {
5320                 struct dmar_domain *old_domain;
5321
5322                 old_domain = find_domain(dev);
5323                 if (old_domain)
5324                         dmar_remove_one_dev_info(dev);
5325         }
5326
5327         ret = prepare_domain_attach_device(domain, dev);
5328         if (ret)
5329                 return ret;
5330
5331         return domain_add_dev_info(to_dmar_domain(domain), dev);
5332 }
5333
5334 static int intel_iommu_aux_attach_device(struct iommu_domain *domain,
5335                                          struct device *dev)
5336 {
5337         int ret;
5338
5339         if (!is_aux_domain(dev, domain))
5340                 return -EPERM;
5341
5342         ret = prepare_domain_attach_device(domain, dev);
5343         if (ret)
5344                 return ret;
5345
5346         return aux_domain_add_dev(to_dmar_domain(domain), dev);
5347 }
5348
5349 static void intel_iommu_detach_device(struct iommu_domain *domain,
5350                                       struct device *dev)
5351 {
5352         dmar_remove_one_dev_info(dev);
5353 }
5354
5355 static void intel_iommu_aux_detach_device(struct iommu_domain *domain,
5356                                           struct device *dev)
5357 {
5358         aux_domain_remove_dev(to_dmar_domain(domain), dev);
5359 }
5360
5361 static int intel_iommu_map(struct iommu_domain *domain,
5362                            unsigned long iova, phys_addr_t hpa,
5363                            size_t size, int iommu_prot)
5364 {
5365         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5366         u64 max_addr;
5367         int prot = 0;
5368         int ret;
5369
5370         if (dmar_domain->flags & DOMAIN_FLAG_LOSE_CHILDREN)
5371                 return -EINVAL;
5372
5373         if (iommu_prot & IOMMU_READ)
5374                 prot |= DMA_PTE_READ;
5375         if (iommu_prot & IOMMU_WRITE)
5376                 prot |= DMA_PTE_WRITE;
5377         if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
5378                 prot |= DMA_PTE_SNP;
5379
5380         max_addr = iova + size;
5381         if (dmar_domain->max_addr < max_addr) {
5382                 u64 end;
5383
5384                 /* check if minimum agaw is sufficient for mapped address */
5385                 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
5386                 if (end < max_addr) {
5387                         pr_err("%s: iommu width (%d) is not "
5388                                "sufficient for the mapped address (%llx)\n",
5389                                __func__, dmar_domain->gaw, max_addr);
5390                         return -EFAULT;
5391                 }
5392                 dmar_domain->max_addr = max_addr;
5393         }
5394         /* Round up size to next multiple of PAGE_SIZE, if it and
5395            the low bits of hpa would take us onto the next page */
5396         size = aligned_nrpages(hpa, size);
5397         ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
5398                                  hpa >> VTD_PAGE_SHIFT, size, prot);
5399         return ret;
5400 }
5401
5402 static size_t intel_iommu_unmap(struct iommu_domain *domain,
5403                                 unsigned long iova, size_t size)
5404 {
5405         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5406         struct page *freelist = NULL;
5407         unsigned long start_pfn, last_pfn;
5408         unsigned int npages;
5409         int iommu_id, level = 0;
5410
5411         /* Cope with horrid API which requires us to unmap more than the
5412            size argument if it happens to be a large-page mapping. */
5413         BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level));
5414         if (dmar_domain->flags & DOMAIN_FLAG_LOSE_CHILDREN)
5415                 return 0;
5416
5417         if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
5418                 size = VTD_PAGE_SIZE << level_to_offset_bits(level);
5419
5420         start_pfn = iova >> VTD_PAGE_SHIFT;
5421         last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
5422
5423         freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);
5424
5425         npages = last_pfn - start_pfn + 1;
5426
5427         for_each_domain_iommu(iommu_id, dmar_domain)
5428                 iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain,
5429                                       start_pfn, npages, !freelist, 0);
5430
5431         dma_free_pagelist(freelist);
5432
5433         if (dmar_domain->max_addr == iova + size)
5434                 dmar_domain->max_addr = iova;
5435
5436         return size;
5437 }
5438
5439 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
5440                                             dma_addr_t iova)
5441 {
5442         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5443         struct dma_pte *pte;
5444         int level = 0;
5445         u64 phys = 0;
5446
5447         if (dmar_domain->flags & DOMAIN_FLAG_LOSE_CHILDREN)
5448                 return 0;
5449
5450         pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
5451         if (pte)
5452                 phys = dma_pte_addr(pte);
5453
5454         return phys;
5455 }
5456
5457 static inline bool scalable_mode_support(void)
5458 {
5459         struct dmar_drhd_unit *drhd;
5460         struct intel_iommu *iommu;
5461         bool ret = true;
5462
5463         rcu_read_lock();
5464         for_each_active_iommu(iommu, drhd) {
5465                 if (!sm_supported(iommu)) {
5466                         ret = false;
5467                         break;
5468                 }
5469         }
5470         rcu_read_unlock();
5471
5472         return ret;
5473 }
5474
5475 static inline bool iommu_pasid_support(void)
5476 {
5477         struct dmar_drhd_unit *drhd;
5478         struct intel_iommu *iommu;
5479         bool ret = true;
5480
5481         rcu_read_lock();
5482         for_each_active_iommu(iommu, drhd) {
5483                 if (!pasid_supported(iommu)) {
5484                         ret = false;
5485                         break;
5486                 }
5487         }
5488         rcu_read_unlock();
5489
5490         return ret;
5491 }
5492
5493 static bool intel_iommu_capable(enum iommu_cap cap)
5494 {
5495         if (cap == IOMMU_CAP_CACHE_COHERENCY)
5496                 return domain_update_iommu_snooping(NULL) == 1;
5497         if (cap == IOMMU_CAP_INTR_REMAP)
5498                 return irq_remapping_enabled == 1;
5499
5500         return false;
5501 }
5502
5503 static int intel_iommu_add_device(struct device *dev)
5504 {
5505         struct dmar_domain *dmar_domain;
5506         struct iommu_domain *domain;
5507         struct intel_iommu *iommu;
5508         struct iommu_group *group;
5509         u8 bus, devfn;
5510         int ret;
5511
5512         iommu = device_to_iommu(dev, &bus, &devfn);
5513         if (!iommu)
5514                 return -ENODEV;
5515
5516         iommu_device_link(&iommu->iommu, dev);
5517
5518         if (translation_pre_enabled(iommu))
5519                 dev->archdata.iommu = DEFER_DEVICE_DOMAIN_INFO;
5520
5521         group = iommu_group_get_for_dev(dev);
5522
5523         if (IS_ERR(group))
5524                 return PTR_ERR(group);
5525
5526         iommu_group_put(group);
5527
5528         domain = iommu_get_domain_for_dev(dev);
5529         dmar_domain = to_dmar_domain(domain);
5530         if (domain->type == IOMMU_DOMAIN_DMA) {
5531                 if (device_def_domain_type(dev, 1) == IOMMU_DOMAIN_IDENTITY) {
5532                         ret = iommu_request_dm_for_dev(dev);
5533                         if (ret) {
5534                                 dmar_domain->flags |= DOMAIN_FLAG_LOSE_CHILDREN;
5535                                 domain_add_dev_info(si_domain, dev);
5536                                 dev_info(dev,
5537                                          "Device uses a private identity domain.\n");
5538                                 return 0;
5539                         }
5540
5541                         return -ENODEV;
5542                 }
5543         } else {
5544                 if (device_def_domain_type(dev, 1) == IOMMU_DOMAIN_DMA) {
5545                         ret = iommu_request_dma_domain_for_dev(dev);
5546                         if (ret) {
5547                                 dmar_domain->flags |= DOMAIN_FLAG_LOSE_CHILDREN;
5548                                 if (!get_private_domain_for_dev(dev)) {
5549                                         dev_warn(dev,
5550                                                  "Failed to get a private domain.\n");
5551                                         return -ENOMEM;
5552                                 }
5553
5554                                 dev_info(dev,
5555                                          "Device uses a private dma domain.\n");
5556                                 return 0;
5557                         }
5558
5559                         return -ENODEV;
5560                 }
5561         }
5562
5563         return 0;
5564 }
5565
5566 static void intel_iommu_remove_device(struct device *dev)
5567 {
5568         struct intel_iommu *iommu;
5569         u8 bus, devfn;
5570
5571         iommu = device_to_iommu(dev, &bus, &devfn);
5572         if (!iommu)
5573                 return;
5574
5575         iommu_group_remove_device(dev);
5576
5577         iommu_device_unlink(&iommu->iommu, dev);
5578 }
5579
5580 static void intel_iommu_get_resv_regions(struct device *device,
5581                                          struct list_head *head)
5582 {
5583         struct iommu_resv_region *reg;
5584         struct dmar_rmrr_unit *rmrr;
5585         struct device *i_dev;
5586         int i;
5587
5588         rcu_read_lock();
5589         for_each_rmrr_units(rmrr) {
5590                 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
5591                                           i, i_dev) {
5592                         if (i_dev != device)
5593                                 continue;
5594
5595                         list_add_tail(&rmrr->resv->list, head);
5596                 }
5597         }
5598         rcu_read_unlock();
5599
5600 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
5601         if (dev_is_pci(device)) {
5602                 struct pci_dev *pdev = to_pci_dev(device);
5603
5604                 if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) {
5605                         reg = iommu_alloc_resv_region(0, 1UL << 24, 0,
5606                                                       IOMMU_RESV_DIRECT);
5607                         if (reg)
5608                                 list_add_tail(&reg->list, head);
5609                 }
5610         }
5611 #endif /* CONFIG_INTEL_IOMMU_FLOPPY_WA */
5612
5613         reg = iommu_alloc_resv_region(IOAPIC_RANGE_START,
5614                                       IOAPIC_RANGE_END - IOAPIC_RANGE_START + 1,
5615                                       0, IOMMU_RESV_MSI);
5616         if (!reg)
5617                 return;
5618         list_add_tail(&reg->list, head);
5619 }
5620
5621 static void intel_iommu_put_resv_regions(struct device *dev,
5622                                          struct list_head *head)
5623 {
5624         struct iommu_resv_region *entry, *next;
5625
5626         list_for_each_entry_safe(entry, next, head, list) {
5627                 if (entry->type == IOMMU_RESV_MSI)
5628                         kfree(entry);
5629         }
5630 }
5631
5632 int intel_iommu_enable_pasid(struct intel_iommu *iommu, struct device *dev)
5633 {
5634         struct device_domain_info *info;
5635         struct context_entry *context;
5636         struct dmar_domain *domain;
5637         unsigned long flags;
5638         u64 ctx_lo;
5639         int ret;
5640
5641         domain = find_domain(dev);
5642         if (!domain)
5643                 return -EINVAL;
5644
5645         spin_lock_irqsave(&device_domain_lock, flags);
5646         spin_lock(&iommu->lock);
5647
5648         ret = -EINVAL;
5649         info = dev->archdata.iommu;
5650         if (!info || !info->pasid_supported)
5651                 goto out;
5652
5653         context = iommu_context_addr(iommu, info->bus, info->devfn, 0);
5654         if (WARN_ON(!context))
5655                 goto out;
5656
5657         ctx_lo = context[0].lo;
5658
5659         if (!(ctx_lo & CONTEXT_PASIDE)) {
5660                 ctx_lo |= CONTEXT_PASIDE;
5661                 context[0].lo = ctx_lo;
5662                 wmb();
5663                 iommu->flush.flush_context(iommu,
5664                                            domain->iommu_did[iommu->seq_id],
5665                                            PCI_DEVID(info->bus, info->devfn),
5666                                            DMA_CCMD_MASK_NOBIT,
5667                                            DMA_CCMD_DEVICE_INVL);
5668         }
5669
5670         /* Enable PASID support in the device, if it wasn't already */
5671         if (!info->pasid_enabled)
5672                 iommu_enable_dev_iotlb(info);
5673
5674         ret = 0;
5675
5676  out:
5677         spin_unlock(&iommu->lock);
5678         spin_unlock_irqrestore(&device_domain_lock, flags);
5679
5680         return ret;
5681 }
5682
5683 static void intel_iommu_apply_resv_region(struct device *dev,
5684                                           struct iommu_domain *domain,
5685                                           struct iommu_resv_region *region)
5686 {
5687         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5688         unsigned long start, end;
5689
5690         start = IOVA_PFN(region->start);
5691         end   = IOVA_PFN(region->start + region->length - 1);
5692
5693         WARN_ON_ONCE(!reserve_iova(&dmar_domain->iovad, start, end));
5694 }
5695
5696 #ifdef CONFIG_INTEL_IOMMU_SVM
5697 struct intel_iommu *intel_svm_device_to_iommu(struct device *dev)
5698 {
5699         struct intel_iommu *iommu;
5700         u8 bus, devfn;
5701
5702         if (iommu_dummy(dev)) {
5703                 dev_warn(dev,
5704                          "No IOMMU translation for device; cannot enable SVM\n");
5705                 return NULL;
5706         }
5707
5708         iommu = device_to_iommu(dev, &bus, &devfn);
5709         if ((!iommu)) {
5710                 dev_err(dev, "No IOMMU for device; cannot enable SVM\n");
5711                 return NULL;
5712         }
5713
5714         return iommu;
5715 }
5716 #endif /* CONFIG_INTEL_IOMMU_SVM */
5717
5718 static int intel_iommu_enable_auxd(struct device *dev)
5719 {
5720         struct device_domain_info *info;
5721         struct intel_iommu *iommu;
5722         unsigned long flags;
5723         u8 bus, devfn;
5724         int ret;
5725
5726         iommu = device_to_iommu(dev, &bus, &devfn);
5727         if (!iommu || dmar_disabled)
5728                 return -EINVAL;
5729
5730         if (!sm_supported(iommu) || !pasid_supported(iommu))
5731                 return -EINVAL;
5732
5733         ret = intel_iommu_enable_pasid(iommu, dev);
5734         if (ret)
5735                 return -ENODEV;
5736
5737         spin_lock_irqsave(&device_domain_lock, flags);
5738         info = dev->archdata.iommu;
5739         info->auxd_enabled = 1;
5740         spin_unlock_irqrestore(&device_domain_lock, flags);
5741
5742         return 0;
5743 }
5744
5745 static int intel_iommu_disable_auxd(struct device *dev)
5746 {
5747         struct device_domain_info *info;
5748         unsigned long flags;
5749
5750         spin_lock_irqsave(&device_domain_lock, flags);
5751         info = dev->archdata.iommu;
5752         if (!WARN_ON(!info))
5753                 info->auxd_enabled = 0;
5754         spin_unlock_irqrestore(&device_domain_lock, flags);
5755
5756         return 0;
5757 }
5758
5759 /*
5760  * A PCI express designated vendor specific extended capability is defined
5761  * in the section 3.7 of Intel scalable I/O virtualization technical spec
5762  * for system software and tools to detect endpoint devices supporting the
5763  * Intel scalable IO virtualization without host driver dependency.
5764  *
5765  * Returns the address of the matching extended capability structure within
5766  * the device's PCI configuration space or 0 if the device does not support
5767  * it.
5768  */
5769 static int siov_find_pci_dvsec(struct pci_dev *pdev)
5770 {
5771         int pos;
5772         u16 vendor, id;
5773
5774         pos = pci_find_next_ext_capability(pdev, 0, 0x23);
5775         while (pos) {
5776                 pci_read_config_word(pdev, pos + 4, &vendor);
5777                 pci_read_config_word(pdev, pos + 8, &id);
5778                 if (vendor == PCI_VENDOR_ID_INTEL && id == 5)
5779                         return pos;
5780
5781                 pos = pci_find_next_ext_capability(pdev, pos, 0x23);
5782         }
5783
5784         return 0;
5785 }
5786
5787 static bool
5788 intel_iommu_dev_has_feat(struct device *dev, enum iommu_dev_features feat)
5789 {
5790         if (feat == IOMMU_DEV_FEAT_AUX) {
5791                 int ret;
5792
5793                 if (!dev_is_pci(dev) || dmar_disabled ||
5794                     !scalable_mode_support() || !iommu_pasid_support())
5795                         return false;
5796
5797                 ret = pci_pasid_features(to_pci_dev(dev));
5798                 if (ret < 0)
5799                         return false;
5800
5801                 return !!siov_find_pci_dvsec(to_pci_dev(dev));
5802         }
5803
5804         return false;
5805 }
5806
5807 static int
5808 intel_iommu_dev_enable_feat(struct device *dev, enum iommu_dev_features feat)
5809 {
5810         if (feat == IOMMU_DEV_FEAT_AUX)
5811                 return intel_iommu_enable_auxd(dev);
5812
5813         return -ENODEV;
5814 }
5815
5816 static int
5817 intel_iommu_dev_disable_feat(struct device *dev, enum iommu_dev_features feat)
5818 {
5819         if (feat == IOMMU_DEV_FEAT_AUX)
5820                 return intel_iommu_disable_auxd(dev);
5821
5822         return -ENODEV;
5823 }
5824
5825 static bool
5826 intel_iommu_dev_feat_enabled(struct device *dev, enum iommu_dev_features feat)
5827 {
5828         struct device_domain_info *info = dev->archdata.iommu;
5829
5830         if (feat == IOMMU_DEV_FEAT_AUX)
5831                 return scalable_mode_support() && info && info->auxd_enabled;
5832
5833         return false;
5834 }
5835
5836 static int
5837 intel_iommu_aux_get_pasid(struct iommu_domain *domain, struct device *dev)
5838 {
5839         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5840
5841         return dmar_domain->default_pasid > 0 ?
5842                         dmar_domain->default_pasid : -EINVAL;
5843 }
5844
5845 static bool intel_iommu_is_attach_deferred(struct iommu_domain *domain,
5846                                            struct device *dev)
5847 {
5848         return dev->archdata.iommu == DEFER_DEVICE_DOMAIN_INFO;
5849 }
5850
5851 const struct iommu_ops intel_iommu_ops = {
5852         .capable                = intel_iommu_capable,
5853         .domain_alloc           = intel_iommu_domain_alloc,
5854         .domain_free            = intel_iommu_domain_free,
5855         .attach_dev             = intel_iommu_attach_device,
5856         .detach_dev             = intel_iommu_detach_device,
5857         .aux_attach_dev         = intel_iommu_aux_attach_device,
5858         .aux_detach_dev         = intel_iommu_aux_detach_device,
5859         .aux_get_pasid          = intel_iommu_aux_get_pasid,
5860         .map                    = intel_iommu_map,
5861         .unmap                  = intel_iommu_unmap,
5862         .iova_to_phys           = intel_iommu_iova_to_phys,
5863         .add_device             = intel_iommu_add_device,
5864         .remove_device          = intel_iommu_remove_device,
5865         .get_resv_regions       = intel_iommu_get_resv_regions,
5866         .put_resv_regions       = intel_iommu_put_resv_regions,
5867         .apply_resv_region      = intel_iommu_apply_resv_region,
5868         .device_group           = pci_device_group,
5869         .dev_has_feat           = intel_iommu_dev_has_feat,
5870         .dev_feat_enabled       = intel_iommu_dev_feat_enabled,
5871         .dev_enable_feat        = intel_iommu_dev_enable_feat,
5872         .dev_disable_feat       = intel_iommu_dev_disable_feat,
5873         .is_attach_deferred     = intel_iommu_is_attach_deferred,
5874         .pgsize_bitmap          = INTEL_IOMMU_PGSIZES,
5875 };
5876
5877 static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
5878 {
5879         /* G4x/GM45 integrated gfx dmar support is totally busted. */
5880         pci_info(dev, "Disabling IOMMU for graphics on this chipset\n");
5881         dmar_map_gfx = 0;
5882 }
5883
5884 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
5885 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
5886 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
5887 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
5888 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
5889 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
5890 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);
5891
5892 static void quirk_iommu_rwbf(struct pci_dev *dev)
5893 {
5894         /*
5895          * Mobile 4 Series Chipset neglects to set RWBF capability,
5896          * but needs it. Same seems to hold for the desktop versions.
5897          */
5898         pci_info(dev, "Forcing write-buffer flush capability\n");
5899         rwbf_quirk = 1;
5900 }
5901
5902 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
5903 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
5904 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
5905 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
5906 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
5907 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
5908 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
5909
5910 #define GGC 0x52
5911 #define GGC_MEMORY_SIZE_MASK    (0xf << 8)
5912 #define GGC_MEMORY_SIZE_NONE    (0x0 << 8)
5913 #define GGC_MEMORY_SIZE_1M      (0x1 << 8)
5914 #define GGC_MEMORY_SIZE_2M      (0x3 << 8)
5915 #define GGC_MEMORY_VT_ENABLED   (0x8 << 8)
5916 #define GGC_MEMORY_SIZE_2M_VT   (0x9 << 8)
5917 #define GGC_MEMORY_SIZE_3M_VT   (0xa << 8)
5918 #define GGC_MEMORY_SIZE_4M_VT   (0xb << 8)
5919
5920 static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
5921 {
5922         unsigned short ggc;
5923
5924         if (pci_read_config_word(dev, GGC, &ggc))
5925                 return;
5926
5927         if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
5928                 pci_info(dev, "BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
5929                 dmar_map_gfx = 0;
5930         } else if (dmar_map_gfx) {
5931                 /* we have to ensure the gfx device is idle before we flush */
5932                 pci_info(dev, "Disabling batched IOTLB flush on Ironlake\n");
5933                 intel_iommu_strict = 1;
5934        }
5935 }
5936 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
5937 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
5938 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
5939 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
5940
5941 /* On Tylersburg chipsets, some BIOSes have been known to enable the
5942    ISOCH DMAR unit for the Azalia sound device, but not give it any
5943    TLB entries, which causes it to deadlock. Check for that.  We do
5944    this in a function called from init_dmars(), instead of in a PCI
5945    quirk, because we don't want to print the obnoxious "BIOS broken"
5946    message if VT-d is actually disabled.
5947 */
5948 static void __init check_tylersburg_isoch(void)
5949 {
5950         struct pci_dev *pdev;
5951         uint32_t vtisochctrl;
5952
5953         /* If there's no Azalia in the system anyway, forget it. */
5954         pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
5955         if (!pdev)
5956                 return;
5957         pci_dev_put(pdev);
5958
5959         /* System Management Registers. Might be hidden, in which case
5960            we can't do the sanity check. But that's OK, because the
5961            known-broken BIOSes _don't_ actually hide it, so far. */
5962         pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
5963         if (!pdev)
5964                 return;
5965
5966         if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
5967                 pci_dev_put(pdev);
5968                 return;
5969         }
5970
5971         pci_dev_put(pdev);
5972
5973         /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
5974         if (vtisochctrl & 1)
5975                 return;
5976
5977         /* Drop all bits other than the number of TLB entries */
5978         vtisochctrl &= 0x1c;
5979
5980         /* If we have the recommended number of TLB entries (16), fine. */
5981         if (vtisochctrl == 0x10)
5982                 return;
5983
5984         /* Zero TLB entries? You get to ride the short bus to school. */
5985         if (!vtisochctrl) {
5986                 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
5987                      "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
5988                      dmi_get_system_info(DMI_BIOS_VENDOR),
5989                      dmi_get_system_info(DMI_BIOS_VERSION),
5990                      dmi_get_system_info(DMI_PRODUCT_VERSION));
5991                 iommu_identity_mapping |= IDENTMAP_AZALIA;
5992                 return;
5993         }
5994
5995         pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
5996                vtisochctrl);
5997 }