iommu/vt-d: Delegate the identity domain to upper layer
[linux-2.6-microblaze.git] / drivers / iommu / intel-iommu.c
1 /*
2  * Copyright © 2006-2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * Authors: David Woodhouse <dwmw2@infradead.org>,
14  *          Ashok Raj <ashok.raj@intel.com>,
15  *          Shaohua Li <shaohua.li@intel.com>,
16  *          Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
17  *          Fenghua Yu <fenghua.yu@intel.com>
18  *          Joerg Roedel <jroedel@suse.de>
19  */
20
21 #define pr_fmt(fmt)     "DMAR: " fmt
22 #define dev_fmt(fmt)    pr_fmt(fmt)
23
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/export.h>
28 #include <linux/slab.h>
29 #include <linux/irq.h>
30 #include <linux/interrupt.h>
31 #include <linux/spinlock.h>
32 #include <linux/pci.h>
33 #include <linux/dmar.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mempool.h>
36 #include <linux/memory.h>
37 #include <linux/cpu.h>
38 #include <linux/timer.h>
39 #include <linux/io.h>
40 #include <linux/iova.h>
41 #include <linux/iommu.h>
42 #include <linux/intel-iommu.h>
43 #include <linux/syscore_ops.h>
44 #include <linux/tboot.h>
45 #include <linux/dmi.h>
46 #include <linux/pci-ats.h>
47 #include <linux/memblock.h>
48 #include <linux/dma-contiguous.h>
49 #include <linux/dma-direct.h>
50 #include <linux/crash_dump.h>
51 #include <linux/numa.h>
52 #include <asm/irq_remapping.h>
53 #include <asm/cacheflush.h>
54 #include <asm/iommu.h>
55
56 #include "irq_remapping.h"
57 #include "intel-pasid.h"
58
59 #define ROOT_SIZE               VTD_PAGE_SIZE
60 #define CONTEXT_SIZE            VTD_PAGE_SIZE
61
62 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
63 #define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
64 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
65 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
66
67 #define IOAPIC_RANGE_START      (0xfee00000)
68 #define IOAPIC_RANGE_END        (0xfeefffff)
69 #define IOVA_START_ADDR         (0x1000)
70
71 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 57
72
73 #define MAX_AGAW_WIDTH 64
74 #define MAX_AGAW_PFN_WIDTH      (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
75
76 #define __DOMAIN_MAX_PFN(gaw)  ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
77 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
78
79 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
80    to match. That way, we can use 'unsigned long' for PFNs with impunity. */
81 #define DOMAIN_MAX_PFN(gaw)     ((unsigned long) min_t(uint64_t, \
82                                 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
83 #define DOMAIN_MAX_ADDR(gaw)    (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
84
85 /* IO virtual address start page frame number */
86 #define IOVA_START_PFN          (1)
87
88 #define IOVA_PFN(addr)          ((addr) >> PAGE_SHIFT)
89
90 /* page table handling */
91 #define LEVEL_STRIDE            (9)
92 #define LEVEL_MASK              (((u64)1 << LEVEL_STRIDE) - 1)
93
94 /*
95  * This bitmap is used to advertise the page sizes our hardware support
96  * to the IOMMU core, which will then use this information to split
97  * physically contiguous memory regions it is mapping into page sizes
98  * that we support.
99  *
100  * Traditionally the IOMMU core just handed us the mappings directly,
101  * after making sure the size is an order of a 4KiB page and that the
102  * mapping has natural alignment.
103  *
104  * To retain this behavior, we currently advertise that we support
105  * all page sizes that are an order of 4KiB.
106  *
107  * If at some point we'd like to utilize the IOMMU core's new behavior,
108  * we could change this to advertise the real page sizes we support.
109  */
110 #define INTEL_IOMMU_PGSIZES     (~0xFFFUL)
111
112 static inline int agaw_to_level(int agaw)
113 {
114         return agaw + 2;
115 }
116
117 static inline int agaw_to_width(int agaw)
118 {
119         return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
120 }
121
122 static inline int width_to_agaw(int width)
123 {
124         return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
125 }
126
127 static inline unsigned int level_to_offset_bits(int level)
128 {
129         return (level - 1) * LEVEL_STRIDE;
130 }
131
132 static inline int pfn_level_offset(unsigned long pfn, int level)
133 {
134         return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
135 }
136
137 static inline unsigned long level_mask(int level)
138 {
139         return -1UL << level_to_offset_bits(level);
140 }
141
142 static inline unsigned long level_size(int level)
143 {
144         return 1UL << level_to_offset_bits(level);
145 }
146
147 static inline unsigned long align_to_level(unsigned long pfn, int level)
148 {
149         return (pfn + level_size(level) - 1) & level_mask(level);
150 }
151
152 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
153 {
154         return  1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
155 }
156
157 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
158    are never going to work. */
159 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
160 {
161         return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
162 }
163
164 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
165 {
166         return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
167 }
168 static inline unsigned long page_to_dma_pfn(struct page *pg)
169 {
170         return mm_to_dma_pfn(page_to_pfn(pg));
171 }
172 static inline unsigned long virt_to_dma_pfn(void *p)
173 {
174         return page_to_dma_pfn(virt_to_page(p));
175 }
176
177 /* global iommu list, set NULL for ignored DMAR units */
178 static struct intel_iommu **g_iommus;
179
180 static void __init check_tylersburg_isoch(void);
181 static int rwbf_quirk;
182
183 /*
184  * set to 1 to panic kernel if can't successfully enable VT-d
185  * (used when kernel is launched w/ TXT)
186  */
187 static int force_on = 0;
188 int intel_iommu_tboot_noforce;
189 static int no_platform_optin;
190
191 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
192
193 /*
194  * Take a root_entry and return the Lower Context Table Pointer (LCTP)
195  * if marked present.
196  */
197 static phys_addr_t root_entry_lctp(struct root_entry *re)
198 {
199         if (!(re->lo & 1))
200                 return 0;
201
202         return re->lo & VTD_PAGE_MASK;
203 }
204
205 /*
206  * Take a root_entry and return the Upper Context Table Pointer (UCTP)
207  * if marked present.
208  */
209 static phys_addr_t root_entry_uctp(struct root_entry *re)
210 {
211         if (!(re->hi & 1))
212                 return 0;
213
214         return re->hi & VTD_PAGE_MASK;
215 }
216
217 static inline void context_clear_pasid_enable(struct context_entry *context)
218 {
219         context->lo &= ~(1ULL << 11);
220 }
221
222 static inline bool context_pasid_enabled(struct context_entry *context)
223 {
224         return !!(context->lo & (1ULL << 11));
225 }
226
227 static inline void context_set_copied(struct context_entry *context)
228 {
229         context->hi |= (1ull << 3);
230 }
231
232 static inline bool context_copied(struct context_entry *context)
233 {
234         return !!(context->hi & (1ULL << 3));
235 }
236
237 static inline bool __context_present(struct context_entry *context)
238 {
239         return (context->lo & 1);
240 }
241
242 bool context_present(struct context_entry *context)
243 {
244         return context_pasid_enabled(context) ?
245              __context_present(context) :
246              __context_present(context) && !context_copied(context);
247 }
248
249 static inline void context_set_present(struct context_entry *context)
250 {
251         context->lo |= 1;
252 }
253
254 static inline void context_set_fault_enable(struct context_entry *context)
255 {
256         context->lo &= (((u64)-1) << 2) | 1;
257 }
258
259 static inline void context_set_translation_type(struct context_entry *context,
260                                                 unsigned long value)
261 {
262         context->lo &= (((u64)-1) << 4) | 3;
263         context->lo |= (value & 3) << 2;
264 }
265
266 static inline void context_set_address_root(struct context_entry *context,
267                                             unsigned long value)
268 {
269         context->lo &= ~VTD_PAGE_MASK;
270         context->lo |= value & VTD_PAGE_MASK;
271 }
272
273 static inline void context_set_address_width(struct context_entry *context,
274                                              unsigned long value)
275 {
276         context->hi |= value & 7;
277 }
278
279 static inline void context_set_domain_id(struct context_entry *context,
280                                          unsigned long value)
281 {
282         context->hi |= (value & ((1 << 16) - 1)) << 8;
283 }
284
285 static inline int context_domain_id(struct context_entry *c)
286 {
287         return((c->hi >> 8) & 0xffff);
288 }
289
290 static inline void context_clear_entry(struct context_entry *context)
291 {
292         context->lo = 0;
293         context->hi = 0;
294 }
295
296 /*
297  * This domain is a statically identity mapping domain.
298  *      1. This domain creats a static 1:1 mapping to all usable memory.
299  *      2. It maps to each iommu if successful.
300  *      3. Each iommu mapps to this domain if successful.
301  */
302 static struct dmar_domain *si_domain;
303 static int hw_pass_through = 1;
304
305 /*
306  * Domain represents a virtual machine, more than one devices
307  * across iommus may be owned in one domain, e.g. kvm guest.
308  */
309 #define DOMAIN_FLAG_VIRTUAL_MACHINE     (1 << 0)
310
311 /* si_domain contains mulitple devices */
312 #define DOMAIN_FLAG_STATIC_IDENTITY     (1 << 1)
313
314 #define for_each_domain_iommu(idx, domain)                      \
315         for (idx = 0; idx < g_num_of_iommus; idx++)             \
316                 if (domain->iommu_refcnt[idx])
317
318 struct dmar_rmrr_unit {
319         struct list_head list;          /* list of rmrr units   */
320         struct acpi_dmar_header *hdr;   /* ACPI header          */
321         u64     base_address;           /* reserved base address*/
322         u64     end_address;            /* reserved end address */
323         struct dmar_dev_scope *devices; /* target devices */
324         int     devices_cnt;            /* target device count */
325         struct iommu_resv_region *resv; /* reserved region handle */
326 };
327
328 struct dmar_atsr_unit {
329         struct list_head list;          /* list of ATSR units */
330         struct acpi_dmar_header *hdr;   /* ACPI header */
331         struct dmar_dev_scope *devices; /* target devices */
332         int devices_cnt;                /* target device count */
333         u8 include_all:1;               /* include all ports */
334 };
335
336 static LIST_HEAD(dmar_atsr_units);
337 static LIST_HEAD(dmar_rmrr_units);
338
339 #define for_each_rmrr_units(rmrr) \
340         list_for_each_entry(rmrr, &dmar_rmrr_units, list)
341
342 /* bitmap for indexing intel_iommus */
343 static int g_num_of_iommus;
344
345 static void domain_exit(struct dmar_domain *domain);
346 static void domain_remove_dev_info(struct dmar_domain *domain);
347 static void dmar_remove_one_dev_info(struct device *dev);
348 static void __dmar_remove_one_dev_info(struct device_domain_info *info);
349 static void domain_context_clear(struct intel_iommu *iommu,
350                                  struct device *dev);
351 static int domain_detach_iommu(struct dmar_domain *domain,
352                                struct intel_iommu *iommu);
353 static bool device_is_rmrr_locked(struct device *dev);
354
355 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
356 int dmar_disabled = 0;
357 #else
358 int dmar_disabled = 1;
359 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
360
361 int intel_iommu_sm;
362 int intel_iommu_enabled = 0;
363 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
364
365 static int dmar_map_gfx = 1;
366 static int dmar_forcedac;
367 static int intel_iommu_strict;
368 static int intel_iommu_superpage = 1;
369 static int iommu_identity_mapping;
370
371 #define IDENTMAP_ALL            1
372 #define IDENTMAP_GFX            2
373 #define IDENTMAP_AZALIA         4
374
375 int intel_iommu_gfx_mapped;
376 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
377
378 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
379 static DEFINE_SPINLOCK(device_domain_lock);
380 static LIST_HEAD(device_domain_list);
381
382 /*
383  * Iterate over elements in device_domain_list and call the specified
384  * callback @fn against each element.
385  */
386 int for_each_device_domain(int (*fn)(struct device_domain_info *info,
387                                      void *data), void *data)
388 {
389         int ret = 0;
390         unsigned long flags;
391         struct device_domain_info *info;
392
393         spin_lock_irqsave(&device_domain_lock, flags);
394         list_for_each_entry(info, &device_domain_list, global) {
395                 ret = fn(info, data);
396                 if (ret) {
397                         spin_unlock_irqrestore(&device_domain_lock, flags);
398                         return ret;
399                 }
400         }
401         spin_unlock_irqrestore(&device_domain_lock, flags);
402
403         return 0;
404 }
405
406 const struct iommu_ops intel_iommu_ops;
407
408 static bool translation_pre_enabled(struct intel_iommu *iommu)
409 {
410         return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
411 }
412
413 static void clear_translation_pre_enabled(struct intel_iommu *iommu)
414 {
415         iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
416 }
417
418 static void init_translation_status(struct intel_iommu *iommu)
419 {
420         u32 gsts;
421
422         gsts = readl(iommu->reg + DMAR_GSTS_REG);
423         if (gsts & DMA_GSTS_TES)
424                 iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
425 }
426
427 /* Convert generic 'struct iommu_domain to private struct dmar_domain */
428 static struct dmar_domain *to_dmar_domain(struct iommu_domain *dom)
429 {
430         return container_of(dom, struct dmar_domain, domain);
431 }
432
433 static int __init intel_iommu_setup(char *str)
434 {
435         if (!str)
436                 return -EINVAL;
437         while (*str) {
438                 if (!strncmp(str, "on", 2)) {
439                         dmar_disabled = 0;
440                         pr_info("IOMMU enabled\n");
441                 } else if (!strncmp(str, "off", 3)) {
442                         dmar_disabled = 1;
443                         no_platform_optin = 1;
444                         pr_info("IOMMU disabled\n");
445                 } else if (!strncmp(str, "igfx_off", 8)) {
446                         dmar_map_gfx = 0;
447                         pr_info("Disable GFX device mapping\n");
448                 } else if (!strncmp(str, "forcedac", 8)) {
449                         pr_info("Forcing DAC for PCI devices\n");
450                         dmar_forcedac = 1;
451                 } else if (!strncmp(str, "strict", 6)) {
452                         pr_info("Disable batched IOTLB flush\n");
453                         intel_iommu_strict = 1;
454                 } else if (!strncmp(str, "sp_off", 6)) {
455                         pr_info("Disable supported super page\n");
456                         intel_iommu_superpage = 0;
457                 } else if (!strncmp(str, "sm_on", 5)) {
458                         pr_info("Intel-IOMMU: scalable mode supported\n");
459                         intel_iommu_sm = 1;
460                 } else if (!strncmp(str, "tboot_noforce", 13)) {
461                         printk(KERN_INFO
462                                 "Intel-IOMMU: not forcing on after tboot. This could expose security risk for tboot\n");
463                         intel_iommu_tboot_noforce = 1;
464                 }
465
466                 str += strcspn(str, ",");
467                 while (*str == ',')
468                         str++;
469         }
470         return 0;
471 }
472 __setup("intel_iommu=", intel_iommu_setup);
473
474 static struct kmem_cache *iommu_domain_cache;
475 static struct kmem_cache *iommu_devinfo_cache;
476
477 static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did)
478 {
479         struct dmar_domain **domains;
480         int idx = did >> 8;
481
482         domains = iommu->domains[idx];
483         if (!domains)
484                 return NULL;
485
486         return domains[did & 0xff];
487 }
488
489 static void set_iommu_domain(struct intel_iommu *iommu, u16 did,
490                              struct dmar_domain *domain)
491 {
492         struct dmar_domain **domains;
493         int idx = did >> 8;
494
495         if (!iommu->domains[idx]) {
496                 size_t size = 256 * sizeof(struct dmar_domain *);
497                 iommu->domains[idx] = kzalloc(size, GFP_ATOMIC);
498         }
499
500         domains = iommu->domains[idx];
501         if (WARN_ON(!domains))
502                 return;
503         else
504                 domains[did & 0xff] = domain;
505 }
506
507 void *alloc_pgtable_page(int node)
508 {
509         struct page *page;
510         void *vaddr = NULL;
511
512         page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
513         if (page)
514                 vaddr = page_address(page);
515         return vaddr;
516 }
517
518 void free_pgtable_page(void *vaddr)
519 {
520         free_page((unsigned long)vaddr);
521 }
522
523 static inline void *alloc_domain_mem(void)
524 {
525         return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
526 }
527
528 static void free_domain_mem(void *vaddr)
529 {
530         kmem_cache_free(iommu_domain_cache, vaddr);
531 }
532
533 static inline void * alloc_devinfo_mem(void)
534 {
535         return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
536 }
537
538 static inline void free_devinfo_mem(void *vaddr)
539 {
540         kmem_cache_free(iommu_devinfo_cache, vaddr);
541 }
542
543 static inline int domain_type_is_vm(struct dmar_domain *domain)
544 {
545         return domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE;
546 }
547
548 static inline int domain_type_is_si(struct dmar_domain *domain)
549 {
550         return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY;
551 }
552
553 static inline int domain_type_is_vm_or_si(struct dmar_domain *domain)
554 {
555         return domain->flags & (DOMAIN_FLAG_VIRTUAL_MACHINE |
556                                 DOMAIN_FLAG_STATIC_IDENTITY);
557 }
558
559 static inline int domain_pfn_supported(struct dmar_domain *domain,
560                                        unsigned long pfn)
561 {
562         int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
563
564         return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
565 }
566
567 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
568 {
569         unsigned long sagaw;
570         int agaw = -1;
571
572         sagaw = cap_sagaw(iommu->cap);
573         for (agaw = width_to_agaw(max_gaw);
574              agaw >= 0; agaw--) {
575                 if (test_bit(agaw, &sagaw))
576                         break;
577         }
578
579         return agaw;
580 }
581
582 /*
583  * Calculate max SAGAW for each iommu.
584  */
585 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
586 {
587         return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
588 }
589
590 /*
591  * calculate agaw for each iommu.
592  * "SAGAW" may be different across iommus, use a default agaw, and
593  * get a supported less agaw for iommus that don't support the default agaw.
594  */
595 int iommu_calculate_agaw(struct intel_iommu *iommu)
596 {
597         return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
598 }
599
600 /* This functionin only returns single iommu in a domain */
601 struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
602 {
603         int iommu_id;
604
605         /* si_domain and vm domain should not get here. */
606         BUG_ON(domain_type_is_vm_or_si(domain));
607         for_each_domain_iommu(iommu_id, domain)
608                 break;
609
610         if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
611                 return NULL;
612
613         return g_iommus[iommu_id];
614 }
615
616 static void domain_update_iommu_coherency(struct dmar_domain *domain)
617 {
618         struct dmar_drhd_unit *drhd;
619         struct intel_iommu *iommu;
620         bool found = false;
621         int i;
622
623         domain->iommu_coherency = 1;
624
625         for_each_domain_iommu(i, domain) {
626                 found = true;
627                 if (!ecap_coherent(g_iommus[i]->ecap)) {
628                         domain->iommu_coherency = 0;
629                         break;
630                 }
631         }
632         if (found)
633                 return;
634
635         /* No hardware attached; use lowest common denominator */
636         rcu_read_lock();
637         for_each_active_iommu(iommu, drhd) {
638                 if (!ecap_coherent(iommu->ecap)) {
639                         domain->iommu_coherency = 0;
640                         break;
641                 }
642         }
643         rcu_read_unlock();
644 }
645
646 static int domain_update_iommu_snooping(struct intel_iommu *skip)
647 {
648         struct dmar_drhd_unit *drhd;
649         struct intel_iommu *iommu;
650         int ret = 1;
651
652         rcu_read_lock();
653         for_each_active_iommu(iommu, drhd) {
654                 if (iommu != skip) {
655                         if (!ecap_sc_support(iommu->ecap)) {
656                                 ret = 0;
657                                 break;
658                         }
659                 }
660         }
661         rcu_read_unlock();
662
663         return ret;
664 }
665
666 static int domain_update_iommu_superpage(struct intel_iommu *skip)
667 {
668         struct dmar_drhd_unit *drhd;
669         struct intel_iommu *iommu;
670         int mask = 0xf;
671
672         if (!intel_iommu_superpage) {
673                 return 0;
674         }
675
676         /* set iommu_superpage to the smallest common denominator */
677         rcu_read_lock();
678         for_each_active_iommu(iommu, drhd) {
679                 if (iommu != skip) {
680                         mask &= cap_super_page_val(iommu->cap);
681                         if (!mask)
682                                 break;
683                 }
684         }
685         rcu_read_unlock();
686
687         return fls(mask);
688 }
689
690 /* Some capabilities may be different across iommus */
691 static void domain_update_iommu_cap(struct dmar_domain *domain)
692 {
693         domain_update_iommu_coherency(domain);
694         domain->iommu_snooping = domain_update_iommu_snooping(NULL);
695         domain->iommu_superpage = domain_update_iommu_superpage(NULL);
696 }
697
698 struct context_entry *iommu_context_addr(struct intel_iommu *iommu, u8 bus,
699                                          u8 devfn, int alloc)
700 {
701         struct root_entry *root = &iommu->root_entry[bus];
702         struct context_entry *context;
703         u64 *entry;
704
705         entry = &root->lo;
706         if (sm_supported(iommu)) {
707                 if (devfn >= 0x80) {
708                         devfn -= 0x80;
709                         entry = &root->hi;
710                 }
711                 devfn *= 2;
712         }
713         if (*entry & 1)
714                 context = phys_to_virt(*entry & VTD_PAGE_MASK);
715         else {
716                 unsigned long phy_addr;
717                 if (!alloc)
718                         return NULL;
719
720                 context = alloc_pgtable_page(iommu->node);
721                 if (!context)
722                         return NULL;
723
724                 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
725                 phy_addr = virt_to_phys((void *)context);
726                 *entry = phy_addr | 1;
727                 __iommu_flush_cache(iommu, entry, sizeof(*entry));
728         }
729         return &context[devfn];
730 }
731
732 static int iommu_dummy(struct device *dev)
733 {
734         return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
735 }
736
737 static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
738 {
739         struct dmar_drhd_unit *drhd = NULL;
740         struct intel_iommu *iommu;
741         struct device *tmp;
742         struct pci_dev *ptmp, *pdev = NULL;
743         u16 segment = 0;
744         int i;
745
746         if (iommu_dummy(dev))
747                 return NULL;
748
749         if (dev_is_pci(dev)) {
750                 struct pci_dev *pf_pdev;
751
752                 pdev = to_pci_dev(dev);
753
754 #ifdef CONFIG_X86
755                 /* VMD child devices currently cannot be handled individually */
756                 if (is_vmd(pdev->bus))
757                         return NULL;
758 #endif
759
760                 /* VFs aren't listed in scope tables; we need to look up
761                  * the PF instead to find the IOMMU. */
762                 pf_pdev = pci_physfn(pdev);
763                 dev = &pf_pdev->dev;
764                 segment = pci_domain_nr(pdev->bus);
765         } else if (has_acpi_companion(dev))
766                 dev = &ACPI_COMPANION(dev)->dev;
767
768         rcu_read_lock();
769         for_each_active_iommu(iommu, drhd) {
770                 if (pdev && segment != drhd->segment)
771                         continue;
772
773                 for_each_active_dev_scope(drhd->devices,
774                                           drhd->devices_cnt, i, tmp) {
775                         if (tmp == dev) {
776                                 /* For a VF use its original BDF# not that of the PF
777                                  * which we used for the IOMMU lookup. Strictly speaking
778                                  * we could do this for all PCI devices; we only need to
779                                  * get the BDF# from the scope table for ACPI matches. */
780                                 if (pdev && pdev->is_virtfn)
781                                         goto got_pdev;
782
783                                 *bus = drhd->devices[i].bus;
784                                 *devfn = drhd->devices[i].devfn;
785                                 goto out;
786                         }
787
788                         if (!pdev || !dev_is_pci(tmp))
789                                 continue;
790
791                         ptmp = to_pci_dev(tmp);
792                         if (ptmp->subordinate &&
793                             ptmp->subordinate->number <= pdev->bus->number &&
794                             ptmp->subordinate->busn_res.end >= pdev->bus->number)
795                                 goto got_pdev;
796                 }
797
798                 if (pdev && drhd->include_all) {
799                 got_pdev:
800                         *bus = pdev->bus->number;
801                         *devfn = pdev->devfn;
802                         goto out;
803                 }
804         }
805         iommu = NULL;
806  out:
807         rcu_read_unlock();
808
809         return iommu;
810 }
811
812 static void domain_flush_cache(struct dmar_domain *domain,
813                                void *addr, int size)
814 {
815         if (!domain->iommu_coherency)
816                 clflush_cache_range(addr, size);
817 }
818
819 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
820 {
821         struct context_entry *context;
822         int ret = 0;
823         unsigned long flags;
824
825         spin_lock_irqsave(&iommu->lock, flags);
826         context = iommu_context_addr(iommu, bus, devfn, 0);
827         if (context)
828                 ret = context_present(context);
829         spin_unlock_irqrestore(&iommu->lock, flags);
830         return ret;
831 }
832
833 static void free_context_table(struct intel_iommu *iommu)
834 {
835         int i;
836         unsigned long flags;
837         struct context_entry *context;
838
839         spin_lock_irqsave(&iommu->lock, flags);
840         if (!iommu->root_entry) {
841                 goto out;
842         }
843         for (i = 0; i < ROOT_ENTRY_NR; i++) {
844                 context = iommu_context_addr(iommu, i, 0, 0);
845                 if (context)
846                         free_pgtable_page(context);
847
848                 if (!sm_supported(iommu))
849                         continue;
850
851                 context = iommu_context_addr(iommu, i, 0x80, 0);
852                 if (context)
853                         free_pgtable_page(context);
854
855         }
856         free_pgtable_page(iommu->root_entry);
857         iommu->root_entry = NULL;
858 out:
859         spin_unlock_irqrestore(&iommu->lock, flags);
860 }
861
862 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
863                                       unsigned long pfn, int *target_level)
864 {
865         struct dma_pte *parent, *pte;
866         int level = agaw_to_level(domain->agaw);
867         int offset;
868
869         BUG_ON(!domain->pgd);
870
871         if (!domain_pfn_supported(domain, pfn))
872                 /* Address beyond IOMMU's addressing capabilities. */
873                 return NULL;
874
875         parent = domain->pgd;
876
877         while (1) {
878                 void *tmp_page;
879
880                 offset = pfn_level_offset(pfn, level);
881                 pte = &parent[offset];
882                 if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
883                         break;
884                 if (level == *target_level)
885                         break;
886
887                 if (!dma_pte_present(pte)) {
888                         uint64_t pteval;
889
890                         tmp_page = alloc_pgtable_page(domain->nid);
891
892                         if (!tmp_page)
893                                 return NULL;
894
895                         domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
896                         pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
897                         if (cmpxchg64(&pte->val, 0ULL, pteval))
898                                 /* Someone else set it while we were thinking; use theirs. */
899                                 free_pgtable_page(tmp_page);
900                         else
901                                 domain_flush_cache(domain, pte, sizeof(*pte));
902                 }
903                 if (level == 1)
904                         break;
905
906                 parent = phys_to_virt(dma_pte_addr(pte));
907                 level--;
908         }
909
910         if (!*target_level)
911                 *target_level = level;
912
913         return pte;
914 }
915
916
917 /* return address's pte at specific level */
918 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
919                                          unsigned long pfn,
920                                          int level, int *large_page)
921 {
922         struct dma_pte *parent, *pte;
923         int total = agaw_to_level(domain->agaw);
924         int offset;
925
926         parent = domain->pgd;
927         while (level <= total) {
928                 offset = pfn_level_offset(pfn, total);
929                 pte = &parent[offset];
930                 if (level == total)
931                         return pte;
932
933                 if (!dma_pte_present(pte)) {
934                         *large_page = total;
935                         break;
936                 }
937
938                 if (dma_pte_superpage(pte)) {
939                         *large_page = total;
940                         return pte;
941                 }
942
943                 parent = phys_to_virt(dma_pte_addr(pte));
944                 total--;
945         }
946         return NULL;
947 }
948
949 /* clear last level pte, a tlb flush should be followed */
950 static void dma_pte_clear_range(struct dmar_domain *domain,
951                                 unsigned long start_pfn,
952                                 unsigned long last_pfn)
953 {
954         unsigned int large_page;
955         struct dma_pte *first_pte, *pte;
956
957         BUG_ON(!domain_pfn_supported(domain, start_pfn));
958         BUG_ON(!domain_pfn_supported(domain, last_pfn));
959         BUG_ON(start_pfn > last_pfn);
960
961         /* we don't need lock here; nobody else touches the iova range */
962         do {
963                 large_page = 1;
964                 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
965                 if (!pte) {
966                         start_pfn = align_to_level(start_pfn + 1, large_page + 1);
967                         continue;
968                 }
969                 do {
970                         dma_clear_pte(pte);
971                         start_pfn += lvl_to_nr_pages(large_page);
972                         pte++;
973                 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
974
975                 domain_flush_cache(domain, first_pte,
976                                    (void *)pte - (void *)first_pte);
977
978         } while (start_pfn && start_pfn <= last_pfn);
979 }
980
981 static void dma_pte_free_level(struct dmar_domain *domain, int level,
982                                int retain_level, struct dma_pte *pte,
983                                unsigned long pfn, unsigned long start_pfn,
984                                unsigned long last_pfn)
985 {
986         pfn = max(start_pfn, pfn);
987         pte = &pte[pfn_level_offset(pfn, level)];
988
989         do {
990                 unsigned long level_pfn;
991                 struct dma_pte *level_pte;
992
993                 if (!dma_pte_present(pte) || dma_pte_superpage(pte))
994                         goto next;
995
996                 level_pfn = pfn & level_mask(level);
997                 level_pte = phys_to_virt(dma_pte_addr(pte));
998
999                 if (level > 2) {
1000                         dma_pte_free_level(domain, level - 1, retain_level,
1001                                            level_pte, level_pfn, start_pfn,
1002                                            last_pfn);
1003                 }
1004
1005                 /*
1006                  * Free the page table if we're below the level we want to
1007                  * retain and the range covers the entire table.
1008                  */
1009                 if (level < retain_level && !(start_pfn > level_pfn ||
1010                       last_pfn < level_pfn + level_size(level) - 1)) {
1011                         dma_clear_pte(pte);
1012                         domain_flush_cache(domain, pte, sizeof(*pte));
1013                         free_pgtable_page(level_pte);
1014                 }
1015 next:
1016                 pfn += level_size(level);
1017         } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1018 }
1019
1020 /*
1021  * clear last level (leaf) ptes and free page table pages below the
1022  * level we wish to keep intact.
1023  */
1024 static void dma_pte_free_pagetable(struct dmar_domain *domain,
1025                                    unsigned long start_pfn,
1026                                    unsigned long last_pfn,
1027                                    int retain_level)
1028 {
1029         BUG_ON(!domain_pfn_supported(domain, start_pfn));
1030         BUG_ON(!domain_pfn_supported(domain, last_pfn));
1031         BUG_ON(start_pfn > last_pfn);
1032
1033         dma_pte_clear_range(domain, start_pfn, last_pfn);
1034
1035         /* We don't need lock here; nobody else touches the iova range */
1036         dma_pte_free_level(domain, agaw_to_level(domain->agaw), retain_level,
1037                            domain->pgd, 0, start_pfn, last_pfn);
1038
1039         /* free pgd */
1040         if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1041                 free_pgtable_page(domain->pgd);
1042                 domain->pgd = NULL;
1043         }
1044 }
1045
1046 /* When a page at a given level is being unlinked from its parent, we don't
1047    need to *modify* it at all. All we need to do is make a list of all the
1048    pages which can be freed just as soon as we've flushed the IOTLB and we
1049    know the hardware page-walk will no longer touch them.
1050    The 'pte' argument is the *parent* PTE, pointing to the page that is to
1051    be freed. */
1052 static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
1053                                             int level, struct dma_pte *pte,
1054                                             struct page *freelist)
1055 {
1056         struct page *pg;
1057
1058         pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
1059         pg->freelist = freelist;
1060         freelist = pg;
1061
1062         if (level == 1)
1063                 return freelist;
1064
1065         pte = page_address(pg);
1066         do {
1067                 if (dma_pte_present(pte) && !dma_pte_superpage(pte))
1068                         freelist = dma_pte_list_pagetables(domain, level - 1,
1069                                                            pte, freelist);
1070                 pte++;
1071         } while (!first_pte_in_page(pte));
1072
1073         return freelist;
1074 }
1075
1076 static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
1077                                         struct dma_pte *pte, unsigned long pfn,
1078                                         unsigned long start_pfn,
1079                                         unsigned long last_pfn,
1080                                         struct page *freelist)
1081 {
1082         struct dma_pte *first_pte = NULL, *last_pte = NULL;
1083
1084         pfn = max(start_pfn, pfn);
1085         pte = &pte[pfn_level_offset(pfn, level)];
1086
1087         do {
1088                 unsigned long level_pfn;
1089
1090                 if (!dma_pte_present(pte))
1091                         goto next;
1092
1093                 level_pfn = pfn & level_mask(level);
1094
1095                 /* If range covers entire pagetable, free it */
1096                 if (start_pfn <= level_pfn &&
1097                     last_pfn >= level_pfn + level_size(level) - 1) {
1098                         /* These suborbinate page tables are going away entirely. Don't
1099                            bother to clear them; we're just going to *free* them. */
1100                         if (level > 1 && !dma_pte_superpage(pte))
1101                                 freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1102
1103                         dma_clear_pte(pte);
1104                         if (!first_pte)
1105                                 first_pte = pte;
1106                         last_pte = pte;
1107                 } else if (level > 1) {
1108                         /* Recurse down into a level that isn't *entirely* obsolete */
1109                         freelist = dma_pte_clear_level(domain, level - 1,
1110                                                        phys_to_virt(dma_pte_addr(pte)),
1111                                                        level_pfn, start_pfn, last_pfn,
1112                                                        freelist);
1113                 }
1114 next:
1115                 pfn += level_size(level);
1116         } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1117
1118         if (first_pte)
1119                 domain_flush_cache(domain, first_pte,
1120                                    (void *)++last_pte - (void *)first_pte);
1121
1122         return freelist;
1123 }
1124
1125 /* We can't just free the pages because the IOMMU may still be walking
1126    the page tables, and may have cached the intermediate levels. The
1127    pages can only be freed after the IOTLB flush has been done. */
1128 static struct page *domain_unmap(struct dmar_domain *domain,
1129                                  unsigned long start_pfn,
1130                                  unsigned long last_pfn)
1131 {
1132         struct page *freelist;
1133
1134         BUG_ON(!domain_pfn_supported(domain, start_pfn));
1135         BUG_ON(!domain_pfn_supported(domain, last_pfn));
1136         BUG_ON(start_pfn > last_pfn);
1137
1138         /* we don't need lock here; nobody else touches the iova range */
1139         freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1140                                        domain->pgd, 0, start_pfn, last_pfn, NULL);
1141
1142         /* free pgd */
1143         if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1144                 struct page *pgd_page = virt_to_page(domain->pgd);
1145                 pgd_page->freelist = freelist;
1146                 freelist = pgd_page;
1147
1148                 domain->pgd = NULL;
1149         }
1150
1151         return freelist;
1152 }
1153
1154 static void dma_free_pagelist(struct page *freelist)
1155 {
1156         struct page *pg;
1157
1158         while ((pg = freelist)) {
1159                 freelist = pg->freelist;
1160                 free_pgtable_page(page_address(pg));
1161         }
1162 }
1163
1164 static void iova_entry_free(unsigned long data)
1165 {
1166         struct page *freelist = (struct page *)data;
1167
1168         dma_free_pagelist(freelist);
1169 }
1170
1171 /* iommu handling */
1172 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
1173 {
1174         struct root_entry *root;
1175         unsigned long flags;
1176
1177         root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1178         if (!root) {
1179                 pr_err("Allocating root entry for %s failed\n",
1180                         iommu->name);
1181                 return -ENOMEM;
1182         }
1183
1184         __iommu_flush_cache(iommu, root, ROOT_SIZE);
1185
1186         spin_lock_irqsave(&iommu->lock, flags);
1187         iommu->root_entry = root;
1188         spin_unlock_irqrestore(&iommu->lock, flags);
1189
1190         return 0;
1191 }
1192
1193 static void iommu_set_root_entry(struct intel_iommu *iommu)
1194 {
1195         u64 addr;
1196         u32 sts;
1197         unsigned long flag;
1198
1199         addr = virt_to_phys(iommu->root_entry);
1200         if (sm_supported(iommu))
1201                 addr |= DMA_RTADDR_SMT;
1202
1203         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1204         dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1205
1206         writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1207
1208         /* Make sure hardware complete it */
1209         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1210                       readl, (sts & DMA_GSTS_RTPS), sts);
1211
1212         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1213 }
1214
1215 void iommu_flush_write_buffer(struct intel_iommu *iommu)
1216 {
1217         u32 val;
1218         unsigned long flag;
1219
1220         if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1221                 return;
1222
1223         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1224         writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1225
1226         /* Make sure hardware complete it */
1227         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1228                       readl, (!(val & DMA_GSTS_WBFS)), val);
1229
1230         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1231 }
1232
1233 /* return value determine if we need a write buffer flush */
1234 static void __iommu_flush_context(struct intel_iommu *iommu,
1235                                   u16 did, u16 source_id, u8 function_mask,
1236                                   u64 type)
1237 {
1238         u64 val = 0;
1239         unsigned long flag;
1240
1241         switch (type) {
1242         case DMA_CCMD_GLOBAL_INVL:
1243                 val = DMA_CCMD_GLOBAL_INVL;
1244                 break;
1245         case DMA_CCMD_DOMAIN_INVL:
1246                 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1247                 break;
1248         case DMA_CCMD_DEVICE_INVL:
1249                 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1250                         | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1251                 break;
1252         default:
1253                 BUG();
1254         }
1255         val |= DMA_CCMD_ICC;
1256
1257         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1258         dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1259
1260         /* Make sure hardware complete it */
1261         IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1262                 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1263
1264         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1265 }
1266
1267 /* return value determine if we need a write buffer flush */
1268 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1269                                 u64 addr, unsigned int size_order, u64 type)
1270 {
1271         int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1272         u64 val = 0, val_iva = 0;
1273         unsigned long flag;
1274
1275         switch (type) {
1276         case DMA_TLB_GLOBAL_FLUSH:
1277                 /* global flush doesn't need set IVA_REG */
1278                 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1279                 break;
1280         case DMA_TLB_DSI_FLUSH:
1281                 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1282                 break;
1283         case DMA_TLB_PSI_FLUSH:
1284                 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1285                 /* IH bit is passed in as part of address */
1286                 val_iva = size_order | addr;
1287                 break;
1288         default:
1289                 BUG();
1290         }
1291         /* Note: set drain read/write */
1292 #if 0
1293         /*
1294          * This is probably to be super secure.. Looks like we can
1295          * ignore it without any impact.
1296          */
1297         if (cap_read_drain(iommu->cap))
1298                 val |= DMA_TLB_READ_DRAIN;
1299 #endif
1300         if (cap_write_drain(iommu->cap))
1301                 val |= DMA_TLB_WRITE_DRAIN;
1302
1303         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1304         /* Note: Only uses first TLB reg currently */
1305         if (val_iva)
1306                 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1307         dmar_writeq(iommu->reg + tlb_offset + 8, val);
1308
1309         /* Make sure hardware complete it */
1310         IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1311                 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1312
1313         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1314
1315         /* check IOTLB invalidation granularity */
1316         if (DMA_TLB_IAIG(val) == 0)
1317                 pr_err("Flush IOTLB failed\n");
1318         if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1319                 pr_debug("TLB flush request %Lx, actual %Lx\n",
1320                         (unsigned long long)DMA_TLB_IIRG(type),
1321                         (unsigned long long)DMA_TLB_IAIG(val));
1322 }
1323
1324 static struct device_domain_info *
1325 iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
1326                          u8 bus, u8 devfn)
1327 {
1328         struct device_domain_info *info;
1329
1330         assert_spin_locked(&device_domain_lock);
1331
1332         if (!iommu->qi)
1333                 return NULL;
1334
1335         list_for_each_entry(info, &domain->devices, link)
1336                 if (info->iommu == iommu && info->bus == bus &&
1337                     info->devfn == devfn) {
1338                         if (info->ats_supported && info->dev)
1339                                 return info;
1340                         break;
1341                 }
1342
1343         return NULL;
1344 }
1345
1346 static void domain_update_iotlb(struct dmar_domain *domain)
1347 {
1348         struct device_domain_info *info;
1349         bool has_iotlb_device = false;
1350
1351         assert_spin_locked(&device_domain_lock);
1352
1353         list_for_each_entry(info, &domain->devices, link) {
1354                 struct pci_dev *pdev;
1355
1356                 if (!info->dev || !dev_is_pci(info->dev))
1357                         continue;
1358
1359                 pdev = to_pci_dev(info->dev);
1360                 if (pdev->ats_enabled) {
1361                         has_iotlb_device = true;
1362                         break;
1363                 }
1364         }
1365
1366         domain->has_iotlb_device = has_iotlb_device;
1367 }
1368
1369 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1370 {
1371         struct pci_dev *pdev;
1372
1373         assert_spin_locked(&device_domain_lock);
1374
1375         if (!info || !dev_is_pci(info->dev))
1376                 return;
1377
1378         pdev = to_pci_dev(info->dev);
1379         /* For IOMMU that supports device IOTLB throttling (DIT), we assign
1380          * PFSID to the invalidation desc of a VF such that IOMMU HW can gauge
1381          * queue depth at PF level. If DIT is not set, PFSID will be treated as
1382          * reserved, which should be set to 0.
1383          */
1384         if (!ecap_dit(info->iommu->ecap))
1385                 info->pfsid = 0;
1386         else {
1387                 struct pci_dev *pf_pdev;
1388
1389                 /* pdev will be returned if device is not a vf */
1390                 pf_pdev = pci_physfn(pdev);
1391                 info->pfsid = pci_dev_id(pf_pdev);
1392         }
1393
1394 #ifdef CONFIG_INTEL_IOMMU_SVM
1395         /* The PCIe spec, in its wisdom, declares that the behaviour of
1396            the device if you enable PASID support after ATS support is
1397            undefined. So always enable PASID support on devices which
1398            have it, even if we can't yet know if we're ever going to
1399            use it. */
1400         if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1))
1401                 info->pasid_enabled = 1;
1402
1403         if (info->pri_supported &&
1404             (info->pasid_enabled ? pci_prg_resp_pasid_required(pdev) : 1)  &&
1405             !pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32))
1406                 info->pri_enabled = 1;
1407 #endif
1408         if (!pdev->untrusted && info->ats_supported &&
1409             pci_ats_page_aligned(pdev) &&
1410             !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) {
1411                 info->ats_enabled = 1;
1412                 domain_update_iotlb(info->domain);
1413                 info->ats_qdep = pci_ats_queue_depth(pdev);
1414         }
1415 }
1416
1417 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1418 {
1419         struct pci_dev *pdev;
1420
1421         assert_spin_locked(&device_domain_lock);
1422
1423         if (!dev_is_pci(info->dev))
1424                 return;
1425
1426         pdev = to_pci_dev(info->dev);
1427
1428         if (info->ats_enabled) {
1429                 pci_disable_ats(pdev);
1430                 info->ats_enabled = 0;
1431                 domain_update_iotlb(info->domain);
1432         }
1433 #ifdef CONFIG_INTEL_IOMMU_SVM
1434         if (info->pri_enabled) {
1435                 pci_disable_pri(pdev);
1436                 info->pri_enabled = 0;
1437         }
1438         if (info->pasid_enabled) {
1439                 pci_disable_pasid(pdev);
1440                 info->pasid_enabled = 0;
1441         }
1442 #endif
1443 }
1444
1445 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1446                                   u64 addr, unsigned mask)
1447 {
1448         u16 sid, qdep;
1449         unsigned long flags;
1450         struct device_domain_info *info;
1451
1452         if (!domain->has_iotlb_device)
1453                 return;
1454
1455         spin_lock_irqsave(&device_domain_lock, flags);
1456         list_for_each_entry(info, &domain->devices, link) {
1457                 if (!info->ats_enabled)
1458                         continue;
1459
1460                 sid = info->bus << 8 | info->devfn;
1461                 qdep = info->ats_qdep;
1462                 qi_flush_dev_iotlb(info->iommu, sid, info->pfsid,
1463                                 qdep, addr, mask);
1464         }
1465         spin_unlock_irqrestore(&device_domain_lock, flags);
1466 }
1467
1468 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
1469                                   struct dmar_domain *domain,
1470                                   unsigned long pfn, unsigned int pages,
1471                                   int ih, int map)
1472 {
1473         unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1474         uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1475         u16 did = domain->iommu_did[iommu->seq_id];
1476
1477         BUG_ON(pages == 0);
1478
1479         if (ih)
1480                 ih = 1 << 6;
1481         /*
1482          * Fallback to domain selective flush if no PSI support or the size is
1483          * too big.
1484          * PSI requires page size to be 2 ^ x, and the base address is naturally
1485          * aligned to the size
1486          */
1487         if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1488                 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1489                                                 DMA_TLB_DSI_FLUSH);
1490         else
1491                 iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
1492                                                 DMA_TLB_PSI_FLUSH);
1493
1494         /*
1495          * In caching mode, changes of pages from non-present to present require
1496          * flush. However, device IOTLB doesn't need to be flushed in this case.
1497          */
1498         if (!cap_caching_mode(iommu->cap) || !map)
1499                 iommu_flush_dev_iotlb(domain, addr, mask);
1500 }
1501
1502 /* Notification for newly created mappings */
1503 static inline void __mapping_notify_one(struct intel_iommu *iommu,
1504                                         struct dmar_domain *domain,
1505                                         unsigned long pfn, unsigned int pages)
1506 {
1507         /* It's a non-present to present mapping. Only flush if caching mode */
1508         if (cap_caching_mode(iommu->cap))
1509                 iommu_flush_iotlb_psi(iommu, domain, pfn, pages, 0, 1);
1510         else
1511                 iommu_flush_write_buffer(iommu);
1512 }
1513
1514 static void iommu_flush_iova(struct iova_domain *iovad)
1515 {
1516         struct dmar_domain *domain;
1517         int idx;
1518
1519         domain = container_of(iovad, struct dmar_domain, iovad);
1520
1521         for_each_domain_iommu(idx, domain) {
1522                 struct intel_iommu *iommu = g_iommus[idx];
1523                 u16 did = domain->iommu_did[iommu->seq_id];
1524
1525                 iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
1526
1527                 if (!cap_caching_mode(iommu->cap))
1528                         iommu_flush_dev_iotlb(get_iommu_domain(iommu, did),
1529                                               0, MAX_AGAW_PFN_WIDTH);
1530         }
1531 }
1532
1533 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1534 {
1535         u32 pmen;
1536         unsigned long flags;
1537
1538         if (!cap_plmr(iommu->cap) && !cap_phmr(iommu->cap))
1539                 return;
1540
1541         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1542         pmen = readl(iommu->reg + DMAR_PMEN_REG);
1543         pmen &= ~DMA_PMEN_EPM;
1544         writel(pmen, iommu->reg + DMAR_PMEN_REG);
1545
1546         /* wait for the protected region status bit to clear */
1547         IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1548                 readl, !(pmen & DMA_PMEN_PRS), pmen);
1549
1550         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1551 }
1552
1553 static void iommu_enable_translation(struct intel_iommu *iommu)
1554 {
1555         u32 sts;
1556         unsigned long flags;
1557
1558         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1559         iommu->gcmd |= DMA_GCMD_TE;
1560         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1561
1562         /* Make sure hardware complete it */
1563         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1564                       readl, (sts & DMA_GSTS_TES), sts);
1565
1566         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1567 }
1568
1569 static void iommu_disable_translation(struct intel_iommu *iommu)
1570 {
1571         u32 sts;
1572         unsigned long flag;
1573
1574         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1575         iommu->gcmd &= ~DMA_GCMD_TE;
1576         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1577
1578         /* Make sure hardware complete it */
1579         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1580                       readl, (!(sts & DMA_GSTS_TES)), sts);
1581
1582         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1583 }
1584
1585
1586 static int iommu_init_domains(struct intel_iommu *iommu)
1587 {
1588         u32 ndomains, nlongs;
1589         size_t size;
1590
1591         ndomains = cap_ndoms(iommu->cap);
1592         pr_debug("%s: Number of Domains supported <%d>\n",
1593                  iommu->name, ndomains);
1594         nlongs = BITS_TO_LONGS(ndomains);
1595
1596         spin_lock_init(&iommu->lock);
1597
1598         iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1599         if (!iommu->domain_ids) {
1600                 pr_err("%s: Allocating domain id array failed\n",
1601                        iommu->name);
1602                 return -ENOMEM;
1603         }
1604
1605         size = (ALIGN(ndomains, 256) >> 8) * sizeof(struct dmar_domain **);
1606         iommu->domains = kzalloc(size, GFP_KERNEL);
1607
1608         if (iommu->domains) {
1609                 size = 256 * sizeof(struct dmar_domain *);
1610                 iommu->domains[0] = kzalloc(size, GFP_KERNEL);
1611         }
1612
1613         if (!iommu->domains || !iommu->domains[0]) {
1614                 pr_err("%s: Allocating domain array failed\n",
1615                        iommu->name);
1616                 kfree(iommu->domain_ids);
1617                 kfree(iommu->domains);
1618                 iommu->domain_ids = NULL;
1619                 iommu->domains    = NULL;
1620                 return -ENOMEM;
1621         }
1622
1623
1624
1625         /*
1626          * If Caching mode is set, then invalid translations are tagged
1627          * with domain-id 0, hence we need to pre-allocate it. We also
1628          * use domain-id 0 as a marker for non-allocated domain-id, so
1629          * make sure it is not used for a real domain.
1630          */
1631         set_bit(0, iommu->domain_ids);
1632
1633         /*
1634          * Vt-d spec rev3.0 (section 6.2.3.1) requires that each pasid
1635          * entry for first-level or pass-through translation modes should
1636          * be programmed with a domain id different from those used for
1637          * second-level or nested translation. We reserve a domain id for
1638          * this purpose.
1639          */
1640         if (sm_supported(iommu))
1641                 set_bit(FLPT_DEFAULT_DID, iommu->domain_ids);
1642
1643         return 0;
1644 }
1645
1646 static void disable_dmar_iommu(struct intel_iommu *iommu)
1647 {
1648         struct device_domain_info *info, *tmp;
1649         unsigned long flags;
1650
1651         if (!iommu->domains || !iommu->domain_ids)
1652                 return;
1653
1654 again:
1655         spin_lock_irqsave(&device_domain_lock, flags);
1656         list_for_each_entry_safe(info, tmp, &device_domain_list, global) {
1657                 struct dmar_domain *domain;
1658
1659                 if (info->iommu != iommu)
1660                         continue;
1661
1662                 if (!info->dev || !info->domain)
1663                         continue;
1664
1665                 domain = info->domain;
1666
1667                 __dmar_remove_one_dev_info(info);
1668
1669                 if (!domain_type_is_vm_or_si(domain)) {
1670                         /*
1671                          * The domain_exit() function  can't be called under
1672                          * device_domain_lock, as it takes this lock itself.
1673                          * So release the lock here and re-run the loop
1674                          * afterwards.
1675                          */
1676                         spin_unlock_irqrestore(&device_domain_lock, flags);
1677                         domain_exit(domain);
1678                         goto again;
1679                 }
1680         }
1681         spin_unlock_irqrestore(&device_domain_lock, flags);
1682
1683         if (iommu->gcmd & DMA_GCMD_TE)
1684                 iommu_disable_translation(iommu);
1685 }
1686
1687 static void free_dmar_iommu(struct intel_iommu *iommu)
1688 {
1689         if ((iommu->domains) && (iommu->domain_ids)) {
1690                 int elems = ALIGN(cap_ndoms(iommu->cap), 256) >> 8;
1691                 int i;
1692
1693                 for (i = 0; i < elems; i++)
1694                         kfree(iommu->domains[i]);
1695                 kfree(iommu->domains);
1696                 kfree(iommu->domain_ids);
1697                 iommu->domains = NULL;
1698                 iommu->domain_ids = NULL;
1699         }
1700
1701         g_iommus[iommu->seq_id] = NULL;
1702
1703         /* free context mapping */
1704         free_context_table(iommu);
1705
1706 #ifdef CONFIG_INTEL_IOMMU_SVM
1707         if (pasid_supported(iommu)) {
1708                 if (ecap_prs(iommu->ecap))
1709                         intel_svm_finish_prq(iommu);
1710         }
1711 #endif
1712 }
1713
1714 static struct dmar_domain *alloc_domain(int flags)
1715 {
1716         struct dmar_domain *domain;
1717
1718         domain = alloc_domain_mem();
1719         if (!domain)
1720                 return NULL;
1721
1722         memset(domain, 0, sizeof(*domain));
1723         domain->nid = NUMA_NO_NODE;
1724         domain->flags = flags;
1725         domain->has_iotlb_device = false;
1726         INIT_LIST_HEAD(&domain->devices);
1727
1728         return domain;
1729 }
1730
1731 /* Must be called with iommu->lock */
1732 static int domain_attach_iommu(struct dmar_domain *domain,
1733                                struct intel_iommu *iommu)
1734 {
1735         unsigned long ndomains;
1736         int num;
1737
1738         assert_spin_locked(&device_domain_lock);
1739         assert_spin_locked(&iommu->lock);
1740
1741         domain->iommu_refcnt[iommu->seq_id] += 1;
1742         domain->iommu_count += 1;
1743         if (domain->iommu_refcnt[iommu->seq_id] == 1) {
1744                 ndomains = cap_ndoms(iommu->cap);
1745                 num      = find_first_zero_bit(iommu->domain_ids, ndomains);
1746
1747                 if (num >= ndomains) {
1748                         pr_err("%s: No free domain ids\n", iommu->name);
1749                         domain->iommu_refcnt[iommu->seq_id] -= 1;
1750                         domain->iommu_count -= 1;
1751                         return -ENOSPC;
1752                 }
1753
1754                 set_bit(num, iommu->domain_ids);
1755                 set_iommu_domain(iommu, num, domain);
1756
1757                 domain->iommu_did[iommu->seq_id] = num;
1758                 domain->nid                      = iommu->node;
1759
1760                 domain_update_iommu_cap(domain);
1761         }
1762
1763         return 0;
1764 }
1765
1766 static int domain_detach_iommu(struct dmar_domain *domain,
1767                                struct intel_iommu *iommu)
1768 {
1769         int num, count;
1770
1771         assert_spin_locked(&device_domain_lock);
1772         assert_spin_locked(&iommu->lock);
1773
1774         domain->iommu_refcnt[iommu->seq_id] -= 1;
1775         count = --domain->iommu_count;
1776         if (domain->iommu_refcnt[iommu->seq_id] == 0) {
1777                 num = domain->iommu_did[iommu->seq_id];
1778                 clear_bit(num, iommu->domain_ids);
1779                 set_iommu_domain(iommu, num, NULL);
1780
1781                 domain_update_iommu_cap(domain);
1782                 domain->iommu_did[iommu->seq_id] = 0;
1783         }
1784
1785         return count;
1786 }
1787
1788 static struct iova_domain reserved_iova_list;
1789 static struct lock_class_key reserved_rbtree_key;
1790
1791 static int dmar_init_reserved_ranges(void)
1792 {
1793         struct pci_dev *pdev = NULL;
1794         struct iova *iova;
1795         int i;
1796
1797         init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN);
1798
1799         lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1800                 &reserved_rbtree_key);
1801
1802         /* IOAPIC ranges shouldn't be accessed by DMA */
1803         iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1804                 IOVA_PFN(IOAPIC_RANGE_END));
1805         if (!iova) {
1806                 pr_err("Reserve IOAPIC range failed\n");
1807                 return -ENODEV;
1808         }
1809
1810         /* Reserve all PCI MMIO to avoid peer-to-peer access */
1811         for_each_pci_dev(pdev) {
1812                 struct resource *r;
1813
1814                 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1815                         r = &pdev->resource[i];
1816                         if (!r->flags || !(r->flags & IORESOURCE_MEM))
1817                                 continue;
1818                         iova = reserve_iova(&reserved_iova_list,
1819                                             IOVA_PFN(r->start),
1820                                             IOVA_PFN(r->end));
1821                         if (!iova) {
1822                                 pci_err(pdev, "Reserve iova for %pR failed\n", r);
1823                                 return -ENODEV;
1824                         }
1825                 }
1826         }
1827         return 0;
1828 }
1829
1830 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1831 {
1832         copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1833 }
1834
1835 static inline int guestwidth_to_adjustwidth(int gaw)
1836 {
1837         int agaw;
1838         int r = (gaw - 12) % 9;
1839
1840         if (r == 0)
1841                 agaw = gaw;
1842         else
1843                 agaw = gaw + 9 - r;
1844         if (agaw > 64)
1845                 agaw = 64;
1846         return agaw;
1847 }
1848
1849 static int domain_init(struct dmar_domain *domain, struct intel_iommu *iommu,
1850                        int guest_width)
1851 {
1852         int adjust_width, agaw;
1853         unsigned long sagaw;
1854         int err;
1855
1856         init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN);
1857
1858         err = init_iova_flush_queue(&domain->iovad,
1859                                     iommu_flush_iova, iova_entry_free);
1860         if (err)
1861                 return err;
1862
1863         domain_reserve_special_ranges(domain);
1864
1865         /* calculate AGAW */
1866         if (guest_width > cap_mgaw(iommu->cap))
1867                 guest_width = cap_mgaw(iommu->cap);
1868         domain->gaw = guest_width;
1869         adjust_width = guestwidth_to_adjustwidth(guest_width);
1870         agaw = width_to_agaw(adjust_width);
1871         sagaw = cap_sagaw(iommu->cap);
1872         if (!test_bit(agaw, &sagaw)) {
1873                 /* hardware doesn't support it, choose a bigger one */
1874                 pr_debug("Hardware doesn't support agaw %d\n", agaw);
1875                 agaw = find_next_bit(&sagaw, 5, agaw);
1876                 if (agaw >= 5)
1877                         return -ENODEV;
1878         }
1879         domain->agaw = agaw;
1880
1881         if (ecap_coherent(iommu->ecap))
1882                 domain->iommu_coherency = 1;
1883         else
1884                 domain->iommu_coherency = 0;
1885
1886         if (ecap_sc_support(iommu->ecap))
1887                 domain->iommu_snooping = 1;
1888         else
1889                 domain->iommu_snooping = 0;
1890
1891         if (intel_iommu_superpage)
1892                 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1893         else
1894                 domain->iommu_superpage = 0;
1895
1896         domain->nid = iommu->node;
1897
1898         /* always allocate the top pgd */
1899         domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1900         if (!domain->pgd)
1901                 return -ENOMEM;
1902         __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1903         return 0;
1904 }
1905
1906 static void domain_exit(struct dmar_domain *domain)
1907 {
1908         struct page *freelist;
1909
1910         /* Remove associated devices and clear attached or cached domains */
1911         domain_remove_dev_info(domain);
1912
1913         /* destroy iovas */
1914         put_iova_domain(&domain->iovad);
1915
1916         freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1917
1918         dma_free_pagelist(freelist);
1919
1920         free_domain_mem(domain);
1921 }
1922
1923 /*
1924  * Get the PASID directory size for scalable mode context entry.
1925  * Value of X in the PDTS field of a scalable mode context entry
1926  * indicates PASID directory with 2^(X + 7) entries.
1927  */
1928 static inline unsigned long context_get_sm_pds(struct pasid_table *table)
1929 {
1930         int pds, max_pde;
1931
1932         max_pde = table->max_pasid >> PASID_PDE_SHIFT;
1933         pds = find_first_bit((unsigned long *)&max_pde, MAX_NR_PASID_BITS);
1934         if (pds < 7)
1935                 return 0;
1936
1937         return pds - 7;
1938 }
1939
1940 /*
1941  * Set the RID_PASID field of a scalable mode context entry. The
1942  * IOMMU hardware will use the PASID value set in this field for
1943  * DMA translations of DMA requests without PASID.
1944  */
1945 static inline void
1946 context_set_sm_rid2pasid(struct context_entry *context, unsigned long pasid)
1947 {
1948         context->hi |= pasid & ((1 << 20) - 1);
1949         context->hi |= (1 << 20);
1950 }
1951
1952 /*
1953  * Set the DTE(Device-TLB Enable) field of a scalable mode context
1954  * entry.
1955  */
1956 static inline void context_set_sm_dte(struct context_entry *context)
1957 {
1958         context->lo |= (1 << 2);
1959 }
1960
1961 /*
1962  * Set the PRE(Page Request Enable) field of a scalable mode context
1963  * entry.
1964  */
1965 static inline void context_set_sm_pre(struct context_entry *context)
1966 {
1967         context->lo |= (1 << 4);
1968 }
1969
1970 /* Convert value to context PASID directory size field coding. */
1971 #define context_pdts(pds)       (((pds) & 0x7) << 9)
1972
1973 static int domain_context_mapping_one(struct dmar_domain *domain,
1974                                       struct intel_iommu *iommu,
1975                                       struct pasid_table *table,
1976                                       u8 bus, u8 devfn)
1977 {
1978         u16 did = domain->iommu_did[iommu->seq_id];
1979         int translation = CONTEXT_TT_MULTI_LEVEL;
1980         struct device_domain_info *info = NULL;
1981         struct context_entry *context;
1982         unsigned long flags;
1983         int ret;
1984
1985         WARN_ON(did == 0);
1986
1987         if (hw_pass_through && domain_type_is_si(domain))
1988                 translation = CONTEXT_TT_PASS_THROUGH;
1989
1990         pr_debug("Set context mapping for %02x:%02x.%d\n",
1991                 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1992
1993         BUG_ON(!domain->pgd);
1994
1995         spin_lock_irqsave(&device_domain_lock, flags);
1996         spin_lock(&iommu->lock);
1997
1998         ret = -ENOMEM;
1999         context = iommu_context_addr(iommu, bus, devfn, 1);
2000         if (!context)
2001                 goto out_unlock;
2002
2003         ret = 0;
2004         if (context_present(context))
2005                 goto out_unlock;
2006
2007         /*
2008          * For kdump cases, old valid entries may be cached due to the
2009          * in-flight DMA and copied pgtable, but there is no unmapping
2010          * behaviour for them, thus we need an explicit cache flush for
2011          * the newly-mapped device. For kdump, at this point, the device
2012          * is supposed to finish reset at its driver probe stage, so no
2013          * in-flight DMA will exist, and we don't need to worry anymore
2014          * hereafter.
2015          */
2016         if (context_copied(context)) {
2017                 u16 did_old = context_domain_id(context);
2018
2019                 if (did_old < cap_ndoms(iommu->cap)) {
2020                         iommu->flush.flush_context(iommu, did_old,
2021                                                    (((u16)bus) << 8) | devfn,
2022                                                    DMA_CCMD_MASK_NOBIT,
2023                                                    DMA_CCMD_DEVICE_INVL);
2024                         iommu->flush.flush_iotlb(iommu, did_old, 0, 0,
2025                                                  DMA_TLB_DSI_FLUSH);
2026                 }
2027         }
2028
2029         context_clear_entry(context);
2030
2031         if (sm_supported(iommu)) {
2032                 unsigned long pds;
2033
2034                 WARN_ON(!table);
2035
2036                 /* Setup the PASID DIR pointer: */
2037                 pds = context_get_sm_pds(table);
2038                 context->lo = (u64)virt_to_phys(table->table) |
2039                                 context_pdts(pds);
2040
2041                 /* Setup the RID_PASID field: */
2042                 context_set_sm_rid2pasid(context, PASID_RID2PASID);
2043
2044                 /*
2045                  * Setup the Device-TLB enable bit and Page request
2046                  * Enable bit:
2047                  */
2048                 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
2049                 if (info && info->ats_supported)
2050                         context_set_sm_dte(context);
2051                 if (info && info->pri_supported)
2052                         context_set_sm_pre(context);
2053         } else {
2054                 struct dma_pte *pgd = domain->pgd;
2055                 int agaw;
2056
2057                 context_set_domain_id(context, did);
2058
2059                 if (translation != CONTEXT_TT_PASS_THROUGH) {
2060                         /*
2061                          * Skip top levels of page tables for iommu which has
2062                          * less agaw than default. Unnecessary for PT mode.
2063                          */
2064                         for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) {
2065                                 ret = -ENOMEM;
2066                                 pgd = phys_to_virt(dma_pte_addr(pgd));
2067                                 if (!dma_pte_present(pgd))
2068                                         goto out_unlock;
2069                         }
2070
2071                         info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
2072                         if (info && info->ats_supported)
2073                                 translation = CONTEXT_TT_DEV_IOTLB;
2074                         else
2075                                 translation = CONTEXT_TT_MULTI_LEVEL;
2076
2077                         context_set_address_root(context, virt_to_phys(pgd));
2078                         context_set_address_width(context, agaw);
2079                 } else {
2080                         /*
2081                          * In pass through mode, AW must be programmed to
2082                          * indicate the largest AGAW value supported by
2083                          * hardware. And ASR is ignored by hardware.
2084                          */
2085                         context_set_address_width(context, iommu->msagaw);
2086                 }
2087
2088                 context_set_translation_type(context, translation);
2089         }
2090
2091         context_set_fault_enable(context);
2092         context_set_present(context);
2093         domain_flush_cache(domain, context, sizeof(*context));
2094
2095         /*
2096          * It's a non-present to present mapping. If hardware doesn't cache
2097          * non-present entry we only need to flush the write-buffer. If the
2098          * _does_ cache non-present entries, then it does so in the special
2099          * domain #0, which we have to flush:
2100          */
2101         if (cap_caching_mode(iommu->cap)) {
2102                 iommu->flush.flush_context(iommu, 0,
2103                                            (((u16)bus) << 8) | devfn,
2104                                            DMA_CCMD_MASK_NOBIT,
2105                                            DMA_CCMD_DEVICE_INVL);
2106                 iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
2107         } else {
2108                 iommu_flush_write_buffer(iommu);
2109         }
2110         iommu_enable_dev_iotlb(info);
2111
2112         ret = 0;
2113
2114 out_unlock:
2115         spin_unlock(&iommu->lock);
2116         spin_unlock_irqrestore(&device_domain_lock, flags);
2117
2118         return ret;
2119 }
2120
2121 struct domain_context_mapping_data {
2122         struct dmar_domain *domain;
2123         struct intel_iommu *iommu;
2124         struct pasid_table *table;
2125 };
2126
2127 static int domain_context_mapping_cb(struct pci_dev *pdev,
2128                                      u16 alias, void *opaque)
2129 {
2130         struct domain_context_mapping_data *data = opaque;
2131
2132         return domain_context_mapping_one(data->domain, data->iommu,
2133                                           data->table, PCI_BUS_NUM(alias),
2134                                           alias & 0xff);
2135 }
2136
2137 static int
2138 domain_context_mapping(struct dmar_domain *domain, struct device *dev)
2139 {
2140         struct domain_context_mapping_data data;
2141         struct pasid_table *table;
2142         struct intel_iommu *iommu;
2143         u8 bus, devfn;
2144
2145         iommu = device_to_iommu(dev, &bus, &devfn);
2146         if (!iommu)
2147                 return -ENODEV;
2148
2149         table = intel_pasid_get_table(dev);
2150
2151         if (!dev_is_pci(dev))
2152                 return domain_context_mapping_one(domain, iommu, table,
2153                                                   bus, devfn);
2154
2155         data.domain = domain;
2156         data.iommu = iommu;
2157         data.table = table;
2158
2159         return pci_for_each_dma_alias(to_pci_dev(dev),
2160                                       &domain_context_mapping_cb, &data);
2161 }
2162
2163 static int domain_context_mapped_cb(struct pci_dev *pdev,
2164                                     u16 alias, void *opaque)
2165 {
2166         struct intel_iommu *iommu = opaque;
2167
2168         return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
2169 }
2170
2171 static int domain_context_mapped(struct device *dev)
2172 {
2173         struct intel_iommu *iommu;
2174         u8 bus, devfn;
2175
2176         iommu = device_to_iommu(dev, &bus, &devfn);
2177         if (!iommu)
2178                 return -ENODEV;
2179
2180         if (!dev_is_pci(dev))
2181                 return device_context_mapped(iommu, bus, devfn);
2182
2183         return !pci_for_each_dma_alias(to_pci_dev(dev),
2184                                        domain_context_mapped_cb, iommu);
2185 }
2186
2187 /* Returns a number of VTD pages, but aligned to MM page size */
2188 static inline unsigned long aligned_nrpages(unsigned long host_addr,
2189                                             size_t size)
2190 {
2191         host_addr &= ~PAGE_MASK;
2192         return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
2193 }
2194
2195 /* Return largest possible superpage level for a given mapping */
2196 static inline int hardware_largepage_caps(struct dmar_domain *domain,
2197                                           unsigned long iov_pfn,
2198                                           unsigned long phy_pfn,
2199                                           unsigned long pages)
2200 {
2201         int support, level = 1;
2202         unsigned long pfnmerge;
2203
2204         support = domain->iommu_superpage;
2205
2206         /* To use a large page, the virtual *and* physical addresses
2207            must be aligned to 2MiB/1GiB/etc. Lower bits set in either
2208            of them will mean we have to use smaller pages. So just
2209            merge them and check both at once. */
2210         pfnmerge = iov_pfn | phy_pfn;
2211
2212         while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
2213                 pages >>= VTD_STRIDE_SHIFT;
2214                 if (!pages)
2215                         break;
2216                 pfnmerge >>= VTD_STRIDE_SHIFT;
2217                 level++;
2218                 support--;
2219         }
2220         return level;
2221 }
2222
2223 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2224                             struct scatterlist *sg, unsigned long phys_pfn,
2225                             unsigned long nr_pages, int prot)
2226 {
2227         struct dma_pte *first_pte = NULL, *pte = NULL;
2228         phys_addr_t uninitialized_var(pteval);
2229         unsigned long sg_res = 0;
2230         unsigned int largepage_lvl = 0;
2231         unsigned long lvl_pages = 0;
2232
2233         BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
2234
2235         if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
2236                 return -EINVAL;
2237
2238         prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
2239
2240         if (!sg) {
2241                 sg_res = nr_pages;
2242                 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
2243         }
2244
2245         while (nr_pages > 0) {
2246                 uint64_t tmp;
2247
2248                 if (!sg_res) {
2249                         unsigned int pgoff = sg->offset & ~PAGE_MASK;
2250
2251                         sg_res = aligned_nrpages(sg->offset, sg->length);
2252                         sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + pgoff;
2253                         sg->dma_length = sg->length;
2254                         pteval = (sg_phys(sg) - pgoff) | prot;
2255                         phys_pfn = pteval >> VTD_PAGE_SHIFT;
2256                 }
2257
2258                 if (!pte) {
2259                         largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
2260
2261                         first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2262                         if (!pte)
2263                                 return -ENOMEM;
2264                         /* It is large page*/
2265                         if (largepage_lvl > 1) {
2266                                 unsigned long nr_superpages, end_pfn;
2267
2268                                 pteval |= DMA_PTE_LARGE_PAGE;
2269                                 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2270
2271                                 nr_superpages = sg_res / lvl_pages;
2272                                 end_pfn = iov_pfn + nr_superpages * lvl_pages - 1;
2273
2274                                 /*
2275                                  * Ensure that old small page tables are
2276                                  * removed to make room for superpage(s).
2277                                  * We're adding new large pages, so make sure
2278                                  * we don't remove their parent tables.
2279                                  */
2280                                 dma_pte_free_pagetable(domain, iov_pfn, end_pfn,
2281                                                        largepage_lvl + 1);
2282                         } else {
2283                                 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2284                         }
2285
2286                 }
2287                 /* We don't need lock here, nobody else
2288                  * touches the iova range
2289                  */
2290                 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2291                 if (tmp) {
2292                         static int dumps = 5;
2293                         pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2294                                 iov_pfn, tmp, (unsigned long long)pteval);
2295                         if (dumps) {
2296                                 dumps--;
2297                                 debug_dma_dump_mappings(NULL);
2298                         }
2299                         WARN_ON(1);
2300                 }
2301
2302                 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2303
2304                 BUG_ON(nr_pages < lvl_pages);
2305                 BUG_ON(sg_res < lvl_pages);
2306
2307                 nr_pages -= lvl_pages;
2308                 iov_pfn += lvl_pages;
2309                 phys_pfn += lvl_pages;
2310                 pteval += lvl_pages * VTD_PAGE_SIZE;
2311                 sg_res -= lvl_pages;
2312
2313                 /* If the next PTE would be the first in a new page, then we
2314                    need to flush the cache on the entries we've just written.
2315                    And then we'll need to recalculate 'pte', so clear it and
2316                    let it get set again in the if (!pte) block above.
2317
2318                    If we're done (!nr_pages) we need to flush the cache too.
2319
2320                    Also if we've been setting superpages, we may need to
2321                    recalculate 'pte' and switch back to smaller pages for the
2322                    end of the mapping, if the trailing size is not enough to
2323                    use another superpage (i.e. sg_res < lvl_pages). */
2324                 pte++;
2325                 if (!nr_pages || first_pte_in_page(pte) ||
2326                     (largepage_lvl > 1 && sg_res < lvl_pages)) {
2327                         domain_flush_cache(domain, first_pte,
2328                                            (void *)pte - (void *)first_pte);
2329                         pte = NULL;
2330                 }
2331
2332                 if (!sg_res && nr_pages)
2333                         sg = sg_next(sg);
2334         }
2335         return 0;
2336 }
2337
2338 static int domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2339                           struct scatterlist *sg, unsigned long phys_pfn,
2340                           unsigned long nr_pages, int prot)
2341 {
2342         int ret;
2343         struct intel_iommu *iommu;
2344
2345         /* Do the real mapping first */
2346         ret = __domain_mapping(domain, iov_pfn, sg, phys_pfn, nr_pages, prot);
2347         if (ret)
2348                 return ret;
2349
2350         /* Notify about the new mapping */
2351         if (domain_type_is_vm(domain)) {
2352                 /* VM typed domains can have more than one IOMMUs */
2353                 int iommu_id;
2354
2355                 for_each_domain_iommu(iommu_id, domain) {
2356                         iommu = g_iommus[iommu_id];
2357                         __mapping_notify_one(iommu, domain, iov_pfn, nr_pages);
2358                 }
2359         } else {
2360                 /* General domains only have one IOMMU */
2361                 iommu = domain_get_iommu(domain);
2362                 __mapping_notify_one(iommu, domain, iov_pfn, nr_pages);
2363         }
2364
2365         return 0;
2366 }
2367
2368 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2369                                     struct scatterlist *sg, unsigned long nr_pages,
2370                                     int prot)
2371 {
2372         return domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2373 }
2374
2375 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2376                                      unsigned long phys_pfn, unsigned long nr_pages,
2377                                      int prot)
2378 {
2379         return domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2380 }
2381
2382 static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn)
2383 {
2384         unsigned long flags;
2385         struct context_entry *context;
2386         u16 did_old;
2387
2388         if (!iommu)
2389                 return;
2390
2391         spin_lock_irqsave(&iommu->lock, flags);
2392         context = iommu_context_addr(iommu, bus, devfn, 0);
2393         if (!context) {
2394                 spin_unlock_irqrestore(&iommu->lock, flags);
2395                 return;
2396         }
2397         did_old = context_domain_id(context);
2398         context_clear_entry(context);
2399         __iommu_flush_cache(iommu, context, sizeof(*context));
2400         spin_unlock_irqrestore(&iommu->lock, flags);
2401         iommu->flush.flush_context(iommu,
2402                                    did_old,
2403                                    (((u16)bus) << 8) | devfn,
2404                                    DMA_CCMD_MASK_NOBIT,
2405                                    DMA_CCMD_DEVICE_INVL);
2406         iommu->flush.flush_iotlb(iommu,
2407                                  did_old,
2408                                  0,
2409                                  0,
2410                                  DMA_TLB_DSI_FLUSH);
2411 }
2412
2413 static inline void unlink_domain_info(struct device_domain_info *info)
2414 {
2415         assert_spin_locked(&device_domain_lock);
2416         list_del(&info->link);
2417         list_del(&info->global);
2418         if (info->dev)
2419                 info->dev->archdata.iommu = NULL;
2420 }
2421
2422 static void domain_remove_dev_info(struct dmar_domain *domain)
2423 {
2424         struct device_domain_info *info, *tmp;
2425         unsigned long flags;
2426
2427         spin_lock_irqsave(&device_domain_lock, flags);
2428         list_for_each_entry_safe(info, tmp, &domain->devices, link)
2429                 __dmar_remove_one_dev_info(info);
2430         spin_unlock_irqrestore(&device_domain_lock, flags);
2431 }
2432
2433 /*
2434  * find_domain
2435  * Note: we use struct device->archdata.iommu stores the info
2436  */
2437 static struct dmar_domain *find_domain(struct device *dev)
2438 {
2439         struct device_domain_info *info;
2440
2441         /* No lock here, assumes no domain exit in normal case */
2442         info = dev->archdata.iommu;
2443         if (likely(info))
2444                 return info->domain;
2445         return NULL;
2446 }
2447
2448 static inline struct device_domain_info *
2449 dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
2450 {
2451         struct device_domain_info *info;
2452
2453         list_for_each_entry(info, &device_domain_list, global)
2454                 if (info->iommu->segment == segment && info->bus == bus &&
2455                     info->devfn == devfn)
2456                         return info;
2457
2458         return NULL;
2459 }
2460
2461 static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu,
2462                                                     int bus, int devfn,
2463                                                     struct device *dev,
2464                                                     struct dmar_domain *domain)
2465 {
2466         struct dmar_domain *found = NULL;
2467         struct device_domain_info *info;
2468         unsigned long flags;
2469         int ret;
2470
2471         info = alloc_devinfo_mem();
2472         if (!info)
2473                 return NULL;
2474
2475         info->bus = bus;
2476         info->devfn = devfn;
2477         info->ats_supported = info->pasid_supported = info->pri_supported = 0;
2478         info->ats_enabled = info->pasid_enabled = info->pri_enabled = 0;
2479         info->ats_qdep = 0;
2480         info->dev = dev;
2481         info->domain = domain;
2482         info->iommu = iommu;
2483         info->pasid_table = NULL;
2484         info->auxd_enabled = 0;
2485         INIT_LIST_HEAD(&info->auxiliary_domains);
2486
2487         if (dev && dev_is_pci(dev)) {
2488                 struct pci_dev *pdev = to_pci_dev(info->dev);
2489
2490                 if (!pdev->untrusted &&
2491                     !pci_ats_disabled() &&
2492                     ecap_dev_iotlb_support(iommu->ecap) &&
2493                     pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS) &&
2494                     dmar_find_matched_atsr_unit(pdev))
2495                         info->ats_supported = 1;
2496
2497                 if (sm_supported(iommu)) {
2498                         if (pasid_supported(iommu)) {
2499                                 int features = pci_pasid_features(pdev);
2500                                 if (features >= 0)
2501                                         info->pasid_supported = features | 1;
2502                         }
2503
2504                         if (info->ats_supported && ecap_prs(iommu->ecap) &&
2505                             pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI))
2506                                 info->pri_supported = 1;
2507                 }
2508         }
2509
2510         spin_lock_irqsave(&device_domain_lock, flags);
2511         if (dev)
2512                 found = find_domain(dev);
2513
2514         if (!found) {
2515                 struct device_domain_info *info2;
2516                 info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn);
2517                 if (info2) {
2518                         found      = info2->domain;
2519                         info2->dev = dev;
2520                 }
2521         }
2522
2523         if (found) {
2524                 spin_unlock_irqrestore(&device_domain_lock, flags);
2525                 free_devinfo_mem(info);
2526                 /* Caller must free the original domain */
2527                 return found;
2528         }
2529
2530         spin_lock(&iommu->lock);
2531         ret = domain_attach_iommu(domain, iommu);
2532         spin_unlock(&iommu->lock);
2533
2534         if (ret) {
2535                 spin_unlock_irqrestore(&device_domain_lock, flags);
2536                 free_devinfo_mem(info);
2537                 return NULL;
2538         }
2539
2540         list_add(&info->link, &domain->devices);
2541         list_add(&info->global, &device_domain_list);
2542         if (dev)
2543                 dev->archdata.iommu = info;
2544         spin_unlock_irqrestore(&device_domain_lock, flags);
2545
2546         /* PASID table is mandatory for a PCI device in scalable mode. */
2547         if (dev && dev_is_pci(dev) && sm_supported(iommu)) {
2548                 ret = intel_pasid_alloc_table(dev);
2549                 if (ret) {
2550                         dev_err(dev, "PASID table allocation failed\n");
2551                         dmar_remove_one_dev_info(dev);
2552                         return NULL;
2553                 }
2554
2555                 /* Setup the PASID entry for requests without PASID: */
2556                 spin_lock(&iommu->lock);
2557                 if (hw_pass_through && domain_type_is_si(domain))
2558                         ret = intel_pasid_setup_pass_through(iommu, domain,
2559                                         dev, PASID_RID2PASID);
2560                 else
2561                         ret = intel_pasid_setup_second_level(iommu, domain,
2562                                         dev, PASID_RID2PASID);
2563                 spin_unlock(&iommu->lock);
2564                 if (ret) {
2565                         dev_err(dev, "Setup RID2PASID failed\n");
2566                         dmar_remove_one_dev_info(dev);
2567                         return NULL;
2568                 }
2569         }
2570
2571         if (dev && domain_context_mapping(domain, dev)) {
2572                 dev_err(dev, "Domain context map failed\n");
2573                 dmar_remove_one_dev_info(dev);
2574                 return NULL;
2575         }
2576
2577         return domain;
2578 }
2579
2580 static int get_last_alias(struct pci_dev *pdev, u16 alias, void *opaque)
2581 {
2582         *(u16 *)opaque = alias;
2583         return 0;
2584 }
2585
2586 static struct dmar_domain *find_or_alloc_domain(struct device *dev, int gaw)
2587 {
2588         struct device_domain_info *info;
2589         struct dmar_domain *domain = NULL;
2590         struct intel_iommu *iommu;
2591         u16 dma_alias;
2592         unsigned long flags;
2593         u8 bus, devfn;
2594
2595         iommu = device_to_iommu(dev, &bus, &devfn);
2596         if (!iommu)
2597                 return NULL;
2598
2599         if (dev_is_pci(dev)) {
2600                 struct pci_dev *pdev = to_pci_dev(dev);
2601
2602                 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2603
2604                 spin_lock_irqsave(&device_domain_lock, flags);
2605                 info = dmar_search_domain_by_dev_info(pci_domain_nr(pdev->bus),
2606                                                       PCI_BUS_NUM(dma_alias),
2607                                                       dma_alias & 0xff);
2608                 if (info) {
2609                         iommu = info->iommu;
2610                         domain = info->domain;
2611                 }
2612                 spin_unlock_irqrestore(&device_domain_lock, flags);
2613
2614                 /* DMA alias already has a domain, use it */
2615                 if (info)
2616                         goto out;
2617         }
2618
2619         /* Allocate and initialize new domain for the device */
2620         domain = alloc_domain(0);
2621         if (!domain)
2622                 return NULL;
2623         if (domain_init(domain, iommu, gaw)) {
2624                 domain_exit(domain);
2625                 return NULL;
2626         }
2627
2628 out:
2629
2630         return domain;
2631 }
2632
2633 static struct dmar_domain *set_domain_for_dev(struct device *dev,
2634                                               struct dmar_domain *domain)
2635 {
2636         struct intel_iommu *iommu;
2637         struct dmar_domain *tmp;
2638         u16 req_id, dma_alias;
2639         u8 bus, devfn;
2640
2641         iommu = device_to_iommu(dev, &bus, &devfn);
2642         if (!iommu)
2643                 return NULL;
2644
2645         req_id = ((u16)bus << 8) | devfn;
2646
2647         if (dev_is_pci(dev)) {
2648                 struct pci_dev *pdev = to_pci_dev(dev);
2649
2650                 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2651
2652                 /* register PCI DMA alias device */
2653                 if (req_id != dma_alias) {
2654                         tmp = dmar_insert_one_dev_info(iommu, PCI_BUS_NUM(dma_alias),
2655                                         dma_alias & 0xff, NULL, domain);
2656
2657                         if (!tmp || tmp != domain)
2658                                 return tmp;
2659                 }
2660         }
2661
2662         tmp = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2663         if (!tmp || tmp != domain)
2664                 return tmp;
2665
2666         return domain;
2667 }
2668
2669 static struct dmar_domain *get_domain_for_dev(struct device *dev, int gaw)
2670 {
2671         struct dmar_domain *domain, *tmp;
2672
2673         domain = find_domain(dev);
2674         if (domain)
2675                 goto out;
2676
2677         domain = find_or_alloc_domain(dev, gaw);
2678         if (!domain)
2679                 goto out;
2680
2681         tmp = set_domain_for_dev(dev, domain);
2682         if (!tmp || domain != tmp) {
2683                 domain_exit(domain);
2684                 domain = tmp;
2685         }
2686
2687 out:
2688
2689         return domain;
2690 }
2691
2692 static int iommu_domain_identity_map(struct dmar_domain *domain,
2693                                      unsigned long long start,
2694                                      unsigned long long end)
2695 {
2696         unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2697         unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2698
2699         if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2700                           dma_to_mm_pfn(last_vpfn))) {
2701                 pr_err("Reserving iova failed\n");
2702                 return -ENOMEM;
2703         }
2704
2705         pr_debug("Mapping reserved region %llx-%llx\n", start, end);
2706         /*
2707          * RMRR range might have overlap with physical memory range,
2708          * clear it first
2709          */
2710         dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2711
2712         return __domain_mapping(domain, first_vpfn, NULL,
2713                                 first_vpfn, last_vpfn - first_vpfn + 1,
2714                                 DMA_PTE_READ|DMA_PTE_WRITE);
2715 }
2716
2717 static int domain_prepare_identity_map(struct device *dev,
2718                                        struct dmar_domain *domain,
2719                                        unsigned long long start,
2720                                        unsigned long long end)
2721 {
2722         /* For _hardware_ passthrough, don't bother. But for software
2723            passthrough, we do it anyway -- it may indicate a memory
2724            range which is reserved in E820, so which didn't get set
2725            up to start with in si_domain */
2726         if (domain == si_domain && hw_pass_through) {
2727                 dev_warn(dev, "Ignoring identity map for HW passthrough [0x%Lx - 0x%Lx]\n",
2728                          start, end);
2729                 return 0;
2730         }
2731
2732         dev_info(dev, "Setting identity map [0x%Lx - 0x%Lx]\n", start, end);
2733
2734         if (end < start) {
2735                 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2736                         "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2737                         dmi_get_system_info(DMI_BIOS_VENDOR),
2738                         dmi_get_system_info(DMI_BIOS_VERSION),
2739                      dmi_get_system_info(DMI_PRODUCT_VERSION));
2740                 return -EIO;
2741         }
2742
2743         if (end >> agaw_to_width(domain->agaw)) {
2744                 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2745                      "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2746                      agaw_to_width(domain->agaw),
2747                      dmi_get_system_info(DMI_BIOS_VENDOR),
2748                      dmi_get_system_info(DMI_BIOS_VERSION),
2749                      dmi_get_system_info(DMI_PRODUCT_VERSION));
2750                 return -EIO;
2751         }
2752
2753         return iommu_domain_identity_map(domain, start, end);
2754 }
2755
2756 static int iommu_prepare_identity_map(struct device *dev,
2757                                       unsigned long long start,
2758                                       unsigned long long end)
2759 {
2760         struct dmar_domain *domain;
2761         int ret;
2762
2763         domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2764         if (!domain)
2765                 return -ENOMEM;
2766
2767         ret = domain_prepare_identity_map(dev, domain, start, end);
2768         if (ret)
2769                 domain_exit(domain);
2770
2771         return ret;
2772 }
2773
2774 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2775                                          struct device *dev)
2776 {
2777         if (dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2778                 return 0;
2779         return iommu_prepare_identity_map(dev, rmrr->base_address,
2780                                           rmrr->end_address);
2781 }
2782
2783 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2784 static inline void iommu_prepare_isa(void)
2785 {
2786         struct pci_dev *pdev;
2787         int ret;
2788
2789         pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2790         if (!pdev)
2791                 return;
2792
2793         pr_info("Prepare 0-16MiB unity mapping for LPC\n");
2794         ret = iommu_prepare_identity_map(&pdev->dev, 0, 16*1024*1024 - 1);
2795
2796         if (ret)
2797                 pr_err("Failed to create 0-16MiB identity map - floppy might not work\n");
2798
2799         pci_dev_put(pdev);
2800 }
2801 #else
2802 static inline void iommu_prepare_isa(void)
2803 {
2804         return;
2805 }
2806 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2807
2808 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2809
2810 static int __init si_domain_init(int hw)
2811 {
2812         struct dmar_rmrr_unit *rmrr;
2813         struct device *dev;
2814         int i, nid, ret;
2815
2816         si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2817         if (!si_domain)
2818                 return -EFAULT;
2819
2820         if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2821                 domain_exit(si_domain);
2822                 return -EFAULT;
2823         }
2824
2825         if (hw)
2826                 return 0;
2827
2828         for_each_online_node(nid) {
2829                 unsigned long start_pfn, end_pfn;
2830                 int i;
2831
2832                 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2833                         ret = iommu_domain_identity_map(si_domain,
2834                                         PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2835                         if (ret)
2836                                 return ret;
2837                 }
2838         }
2839
2840         /*
2841          * Normally we use DMA domains for devices which have RMRRs. But we
2842          * loose this requirement for graphic and usb devices. Identity map
2843          * the RMRRs for graphic and USB devices so that they could use the
2844          * si_domain.
2845          */
2846         for_each_rmrr_units(rmrr) {
2847                 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
2848                                           i, dev) {
2849                         unsigned long long start = rmrr->base_address;
2850                         unsigned long long end = rmrr->end_address;
2851
2852                         if (device_is_rmrr_locked(dev))
2853                                 continue;
2854
2855                         if (WARN_ON(end < start ||
2856                                     end >> agaw_to_width(si_domain->agaw)))
2857                                 continue;
2858
2859                         ret = iommu_domain_identity_map(si_domain, start, end);
2860                         if (ret)
2861                                 return ret;
2862                 }
2863         }
2864
2865         return 0;
2866 }
2867
2868 static int identity_mapping(struct device *dev)
2869 {
2870         struct device_domain_info *info;
2871
2872         info = dev->archdata.iommu;
2873         if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2874                 return (info->domain == si_domain);
2875
2876         return 0;
2877 }
2878
2879 static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev)
2880 {
2881         struct dmar_domain *ndomain;
2882         struct intel_iommu *iommu;
2883         u8 bus, devfn;
2884
2885         iommu = device_to_iommu(dev, &bus, &devfn);
2886         if (!iommu)
2887                 return -ENODEV;
2888
2889         ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2890         if (ndomain != domain)
2891                 return -EBUSY;
2892
2893         return 0;
2894 }
2895
2896 static bool device_has_rmrr(struct device *dev)
2897 {
2898         struct dmar_rmrr_unit *rmrr;
2899         struct device *tmp;
2900         int i;
2901
2902         rcu_read_lock();
2903         for_each_rmrr_units(rmrr) {
2904                 /*
2905                  * Return TRUE if this RMRR contains the device that
2906                  * is passed in.
2907                  */
2908                 for_each_active_dev_scope(rmrr->devices,
2909                                           rmrr->devices_cnt, i, tmp)
2910                         if (tmp == dev) {
2911                                 rcu_read_unlock();
2912                                 return true;
2913                         }
2914         }
2915         rcu_read_unlock();
2916         return false;
2917 }
2918
2919 /*
2920  * There are a couple cases where we need to restrict the functionality of
2921  * devices associated with RMRRs.  The first is when evaluating a device for
2922  * identity mapping because problems exist when devices are moved in and out
2923  * of domains and their respective RMRR information is lost.  This means that
2924  * a device with associated RMRRs will never be in a "passthrough" domain.
2925  * The second is use of the device through the IOMMU API.  This interface
2926  * expects to have full control of the IOVA space for the device.  We cannot
2927  * satisfy both the requirement that RMRR access is maintained and have an
2928  * unencumbered IOVA space.  We also have no ability to quiesce the device's
2929  * use of the RMRR space or even inform the IOMMU API user of the restriction.
2930  * We therefore prevent devices associated with an RMRR from participating in
2931  * the IOMMU API, which eliminates them from device assignment.
2932  *
2933  * In both cases we assume that PCI USB devices with RMRRs have them largely
2934  * for historical reasons and that the RMRR space is not actively used post
2935  * boot.  This exclusion may change if vendors begin to abuse it.
2936  *
2937  * The same exception is made for graphics devices, with the requirement that
2938  * any use of the RMRR regions will be torn down before assigning the device
2939  * to a guest.
2940  */
2941 static bool device_is_rmrr_locked(struct device *dev)
2942 {
2943         if (!device_has_rmrr(dev))
2944                 return false;
2945
2946         if (dev_is_pci(dev)) {
2947                 struct pci_dev *pdev = to_pci_dev(dev);
2948
2949                 if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
2950                         return false;
2951         }
2952
2953         return true;
2954 }
2955
2956 /*
2957  * Return the required default domain type for a specific device.
2958  *
2959  * @dev: the device in query
2960  * @startup: true if this is during early boot
2961  *
2962  * Returns:
2963  *  - IOMMU_DOMAIN_DMA: device requires a dynamic mapping domain
2964  *  - IOMMU_DOMAIN_IDENTITY: device requires an identical mapping domain
2965  *  - 0: both identity and dynamic domains work for this device
2966  */
2967 static int device_def_domain_type(struct device *dev, int startup)
2968 {
2969         if (dev_is_pci(dev)) {
2970                 struct pci_dev *pdev = to_pci_dev(dev);
2971
2972                 if (device_is_rmrr_locked(dev))
2973                         return IOMMU_DOMAIN_DMA;
2974
2975                 /*
2976                  * Prevent any device marked as untrusted from getting
2977                  * placed into the statically identity mapping domain.
2978                  */
2979                 if (pdev->untrusted)
2980                         return IOMMU_DOMAIN_DMA;
2981
2982                 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2983                         return IOMMU_DOMAIN_IDENTITY;
2984
2985                 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2986                         return IOMMU_DOMAIN_IDENTITY;
2987
2988                 /*
2989                  * We want to start off with all devices in the 1:1 domain, and
2990                  * take them out later if we find they can't access all of memory.
2991                  *
2992                  * However, we can't do this for PCI devices behind bridges,
2993                  * because all PCI devices behind the same bridge will end up
2994                  * with the same source-id on their transactions.
2995                  *
2996                  * Practically speaking, we can't change things around for these
2997                  * devices at run-time, because we can't be sure there'll be no
2998                  * DMA transactions in flight for any of their siblings.
2999                  *
3000                  * So PCI devices (unless they're on the root bus) as well as
3001                  * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
3002                  * the 1:1 domain, just in _case_ one of their siblings turns out
3003                  * not to be able to map all of memory.
3004                  */
3005                 if (!pci_is_pcie(pdev)) {
3006                         if (!pci_is_root_bus(pdev->bus))
3007                                 return IOMMU_DOMAIN_DMA;
3008                         if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
3009                                 return IOMMU_DOMAIN_DMA;
3010                 } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
3011                         return IOMMU_DOMAIN_DMA;
3012         } else {
3013                 if (device_has_rmrr(dev))
3014                         return IOMMU_DOMAIN_DMA;
3015         }
3016
3017         /*
3018          * At boot time, we don't yet know if devices will be 64-bit capable.
3019          * Assume that they will — if they turn out not to be, then we can
3020          * take them out of the 1:1 domain later.
3021          */
3022         if (!startup) {
3023                 /*
3024                  * If the device's dma_mask is less than the system's memory
3025                  * size then this is not a candidate for identity mapping.
3026                  */
3027                 u64 dma_mask = *dev->dma_mask;
3028
3029                 if (dev->coherent_dma_mask &&
3030                     dev->coherent_dma_mask < dma_mask)
3031                         dma_mask = dev->coherent_dma_mask;
3032
3033                 return dma_mask >= dma_get_required_mask(dev);
3034         }
3035
3036         return (iommu_identity_mapping & IDENTMAP_ALL) ?
3037                         IOMMU_DOMAIN_IDENTITY : 0;
3038 }
3039
3040 static inline int iommu_should_identity_map(struct device *dev, int startup)
3041 {
3042         return device_def_domain_type(dev, startup) == IOMMU_DOMAIN_IDENTITY;
3043 }
3044
3045 static int __init dev_prepare_static_identity_mapping(struct device *dev, int hw)
3046 {
3047         int ret;
3048
3049         if (!iommu_should_identity_map(dev, 1))
3050                 return 0;
3051
3052         ret = domain_add_dev_info(si_domain, dev);
3053         if (!ret)
3054                 dev_info(dev, "%s identity mapping\n",
3055                          hw ? "Hardware" : "Software");
3056         else if (ret == -ENODEV)
3057                 /* device not associated with an iommu */
3058                 ret = 0;
3059
3060         return ret;
3061 }
3062
3063
3064 static int __init iommu_prepare_static_identity_mapping(int hw)
3065 {
3066         struct pci_dev *pdev = NULL;
3067         struct dmar_drhd_unit *drhd;
3068         struct intel_iommu *iommu;
3069         struct device *dev;
3070         int i;
3071         int ret = 0;
3072
3073         for_each_pci_dev(pdev) {
3074                 ret = dev_prepare_static_identity_mapping(&pdev->dev, hw);
3075                 if (ret)
3076                         return ret;
3077         }
3078
3079         for_each_active_iommu(iommu, drhd)
3080                 for_each_active_dev_scope(drhd->devices, drhd->devices_cnt, i, dev) {
3081                         struct acpi_device_physical_node *pn;
3082                         struct acpi_device *adev;
3083
3084                         if (dev->bus != &acpi_bus_type)
3085                                 continue;
3086
3087                         adev= to_acpi_device(dev);
3088                         mutex_lock(&adev->physical_node_lock);
3089                         list_for_each_entry(pn, &adev->physical_node_list, node) {
3090                                 ret = dev_prepare_static_identity_mapping(pn->dev, hw);
3091                                 if (ret)
3092                                         break;
3093                         }
3094                         mutex_unlock(&adev->physical_node_lock);
3095                         if (ret)
3096                                 return ret;
3097                 }
3098
3099         return 0;
3100 }
3101
3102 static void intel_iommu_init_qi(struct intel_iommu *iommu)
3103 {
3104         /*
3105          * Start from the sane iommu hardware state.
3106          * If the queued invalidation is already initialized by us
3107          * (for example, while enabling interrupt-remapping) then
3108          * we got the things already rolling from a sane state.
3109          */
3110         if (!iommu->qi) {
3111                 /*
3112                  * Clear any previous faults.
3113                  */
3114                 dmar_fault(-1, iommu);
3115                 /*
3116                  * Disable queued invalidation if supported and already enabled
3117                  * before OS handover.
3118                  */
3119                 dmar_disable_qi(iommu);
3120         }
3121
3122         if (dmar_enable_qi(iommu)) {
3123                 /*
3124                  * Queued Invalidate not enabled, use Register Based Invalidate
3125                  */
3126                 iommu->flush.flush_context = __iommu_flush_context;
3127                 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
3128                 pr_info("%s: Using Register based invalidation\n",
3129                         iommu->name);
3130         } else {
3131                 iommu->flush.flush_context = qi_flush_context;
3132                 iommu->flush.flush_iotlb = qi_flush_iotlb;
3133                 pr_info("%s: Using Queued invalidation\n", iommu->name);
3134         }
3135 }
3136
3137 static int copy_context_table(struct intel_iommu *iommu,
3138                               struct root_entry *old_re,
3139                               struct context_entry **tbl,
3140                               int bus, bool ext)
3141 {
3142         int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
3143         struct context_entry *new_ce = NULL, ce;
3144         struct context_entry *old_ce = NULL;
3145         struct root_entry re;
3146         phys_addr_t old_ce_phys;
3147
3148         tbl_idx = ext ? bus * 2 : bus;
3149         memcpy(&re, old_re, sizeof(re));
3150
3151         for (devfn = 0; devfn < 256; devfn++) {
3152                 /* First calculate the correct index */
3153                 idx = (ext ? devfn * 2 : devfn) % 256;
3154
3155                 if (idx == 0) {
3156                         /* First save what we may have and clean up */
3157                         if (new_ce) {
3158                                 tbl[tbl_idx] = new_ce;
3159                                 __iommu_flush_cache(iommu, new_ce,
3160                                                     VTD_PAGE_SIZE);
3161                                 pos = 1;
3162                         }
3163
3164                         if (old_ce)
3165                                 memunmap(old_ce);
3166
3167                         ret = 0;
3168                         if (devfn < 0x80)
3169                                 old_ce_phys = root_entry_lctp(&re);
3170                         else
3171                                 old_ce_phys = root_entry_uctp(&re);
3172
3173                         if (!old_ce_phys) {
3174                                 if (ext && devfn == 0) {
3175                                         /* No LCTP, try UCTP */
3176                                         devfn = 0x7f;
3177                                         continue;
3178                                 } else {
3179                                         goto out;
3180                                 }
3181                         }
3182
3183                         ret = -ENOMEM;
3184                         old_ce = memremap(old_ce_phys, PAGE_SIZE,
3185                                         MEMREMAP_WB);
3186                         if (!old_ce)
3187                                 goto out;
3188
3189                         new_ce = alloc_pgtable_page(iommu->node);
3190                         if (!new_ce)
3191                                 goto out_unmap;
3192
3193                         ret = 0;
3194                 }
3195
3196                 /* Now copy the context entry */
3197                 memcpy(&ce, old_ce + idx, sizeof(ce));
3198
3199                 if (!__context_present(&ce))
3200                         continue;
3201
3202                 did = context_domain_id(&ce);
3203                 if (did >= 0 && did < cap_ndoms(iommu->cap))
3204                         set_bit(did, iommu->domain_ids);
3205
3206                 /*
3207                  * We need a marker for copied context entries. This
3208                  * marker needs to work for the old format as well as
3209                  * for extended context entries.
3210                  *
3211                  * Bit 67 of the context entry is used. In the old
3212                  * format this bit is available to software, in the
3213                  * extended format it is the PGE bit, but PGE is ignored
3214                  * by HW if PASIDs are disabled (and thus still
3215                  * available).
3216                  *
3217                  * So disable PASIDs first and then mark the entry
3218                  * copied. This means that we don't copy PASID
3219                  * translations from the old kernel, but this is fine as
3220                  * faults there are not fatal.
3221                  */
3222                 context_clear_pasid_enable(&ce);
3223                 context_set_copied(&ce);
3224
3225                 new_ce[idx] = ce;
3226         }
3227
3228         tbl[tbl_idx + pos] = new_ce;
3229
3230         __iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);
3231
3232 out_unmap:
3233         memunmap(old_ce);
3234
3235 out:
3236         return ret;
3237 }
3238
3239 static int copy_translation_tables(struct intel_iommu *iommu)
3240 {
3241         struct context_entry **ctxt_tbls;
3242         struct root_entry *old_rt;
3243         phys_addr_t old_rt_phys;
3244         int ctxt_table_entries;
3245         unsigned long flags;
3246         u64 rtaddr_reg;
3247         int bus, ret;
3248         bool new_ext, ext;
3249
3250         rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
3251         ext        = !!(rtaddr_reg & DMA_RTADDR_RTT);
3252         new_ext    = !!ecap_ecs(iommu->ecap);
3253
3254         /*
3255          * The RTT bit can only be changed when translation is disabled,
3256          * but disabling translation means to open a window for data
3257          * corruption. So bail out and don't copy anything if we would
3258          * have to change the bit.
3259          */
3260         if (new_ext != ext)
3261                 return -EINVAL;
3262
3263         old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
3264         if (!old_rt_phys)
3265                 return -EINVAL;
3266
3267         old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB);
3268         if (!old_rt)
3269                 return -ENOMEM;
3270
3271         /* This is too big for the stack - allocate it from slab */
3272         ctxt_table_entries = ext ? 512 : 256;
3273         ret = -ENOMEM;
3274         ctxt_tbls = kcalloc(ctxt_table_entries, sizeof(void *), GFP_KERNEL);
3275         if (!ctxt_tbls)
3276                 goto out_unmap;
3277
3278         for (bus = 0; bus < 256; bus++) {
3279                 ret = copy_context_table(iommu, &old_rt[bus],
3280                                          ctxt_tbls, bus, ext);
3281                 if (ret) {
3282                         pr_err("%s: Failed to copy context table for bus %d\n",
3283                                 iommu->name, bus);
3284                         continue;
3285                 }
3286         }
3287
3288         spin_lock_irqsave(&iommu->lock, flags);
3289
3290         /* Context tables are copied, now write them to the root_entry table */
3291         for (bus = 0; bus < 256; bus++) {
3292                 int idx = ext ? bus * 2 : bus;
3293                 u64 val;
3294
3295                 if (ctxt_tbls[idx]) {
3296                         val = virt_to_phys(ctxt_tbls[idx]) | 1;
3297                         iommu->root_entry[bus].lo = val;
3298                 }
3299
3300                 if (!ext || !ctxt_tbls[idx + 1])
3301                         continue;
3302
3303                 val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
3304                 iommu->root_entry[bus].hi = val;
3305         }
3306
3307         spin_unlock_irqrestore(&iommu->lock, flags);
3308
3309         kfree(ctxt_tbls);
3310
3311         __iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);
3312
3313         ret = 0;
3314
3315 out_unmap:
3316         memunmap(old_rt);
3317
3318         return ret;
3319 }
3320
3321 static int __init init_dmars(void)
3322 {
3323         struct dmar_drhd_unit *drhd;
3324         struct dmar_rmrr_unit *rmrr;
3325         bool copied_tables = false;
3326         struct device *dev;
3327         struct intel_iommu *iommu;
3328         int i, ret;
3329
3330         /*
3331          * for each drhd
3332          *    allocate root
3333          *    initialize and program root entry to not present
3334          * endfor
3335          */
3336         for_each_drhd_unit(drhd) {
3337                 /*
3338                  * lock not needed as this is only incremented in the single
3339                  * threaded kernel __init code path all other access are read
3340                  * only
3341                  */
3342                 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
3343                         g_num_of_iommus++;
3344                         continue;
3345                 }
3346                 pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
3347         }
3348
3349         /* Preallocate enough resources for IOMMU hot-addition */
3350         if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
3351                 g_num_of_iommus = DMAR_UNITS_SUPPORTED;
3352
3353         g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
3354                         GFP_KERNEL);
3355         if (!g_iommus) {
3356                 pr_err("Allocating global iommu array failed\n");
3357                 ret = -ENOMEM;
3358                 goto error;
3359         }
3360
3361         for_each_active_iommu(iommu, drhd) {
3362                 /*
3363                  * Find the max pasid size of all IOMMU's in the system.
3364                  * We need to ensure the system pasid table is no bigger
3365                  * than the smallest supported.
3366                  */
3367                 if (pasid_supported(iommu)) {
3368                         u32 temp = 2 << ecap_pss(iommu->ecap);
3369
3370                         intel_pasid_max_id = min_t(u32, temp,
3371                                                    intel_pasid_max_id);
3372                 }
3373
3374                 g_iommus[iommu->seq_id] = iommu;
3375
3376                 intel_iommu_init_qi(iommu);
3377
3378                 ret = iommu_init_domains(iommu);
3379                 if (ret)
3380                         goto free_iommu;
3381
3382                 init_translation_status(iommu);
3383
3384                 if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
3385                         iommu_disable_translation(iommu);
3386                         clear_translation_pre_enabled(iommu);
3387                         pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
3388                                 iommu->name);
3389                 }
3390
3391                 /*
3392                  * TBD:
3393                  * we could share the same root & context tables
3394                  * among all IOMMU's. Need to Split it later.
3395                  */
3396                 ret = iommu_alloc_root_entry(iommu);
3397                 if (ret)
3398                         goto free_iommu;
3399
3400                 if (translation_pre_enabled(iommu)) {
3401                         pr_info("Translation already enabled - trying to copy translation structures\n");
3402
3403                         ret = copy_translation_tables(iommu);
3404                         if (ret) {
3405                                 /*
3406                                  * We found the IOMMU with translation
3407                                  * enabled - but failed to copy over the
3408                                  * old root-entry table. Try to proceed
3409                                  * by disabling translation now and
3410                                  * allocating a clean root-entry table.
3411                                  * This might cause DMAR faults, but
3412                                  * probably the dump will still succeed.
3413                                  */
3414                                 pr_err("Failed to copy translation tables from previous kernel for %s\n",
3415                                        iommu->name);
3416                                 iommu_disable_translation(iommu);
3417                                 clear_translation_pre_enabled(iommu);
3418                         } else {
3419                                 pr_info("Copied translation tables from previous kernel for %s\n",
3420                                         iommu->name);
3421                                 copied_tables = true;
3422                         }
3423                 }
3424
3425                 if (!ecap_pass_through(iommu->ecap))
3426                         hw_pass_through = 0;
3427 #ifdef CONFIG_INTEL_IOMMU_SVM
3428                 if (pasid_supported(iommu))
3429                         intel_svm_init(iommu);
3430 #endif
3431         }
3432
3433         /*
3434          * Now that qi is enabled on all iommus, set the root entry and flush
3435          * caches. This is required on some Intel X58 chipsets, otherwise the
3436          * flush_context function will loop forever and the boot hangs.
3437          */
3438         for_each_active_iommu(iommu, drhd) {
3439                 iommu_flush_write_buffer(iommu);
3440                 iommu_set_root_entry(iommu);
3441                 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
3442                 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3443         }
3444
3445         if (iommu_pass_through)
3446                 iommu_identity_mapping |= IDENTMAP_ALL;
3447
3448 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
3449         dmar_map_gfx = 0;
3450 #endif
3451
3452         if (!dmar_map_gfx)
3453                 iommu_identity_mapping |= IDENTMAP_GFX;
3454
3455         check_tylersburg_isoch();
3456
3457         ret = si_domain_init(hw_pass_through);
3458         if (ret)
3459                 goto free_iommu;
3460
3461
3462         /*
3463          * If we copied translations from a previous kernel in the kdump
3464          * case, we can not assign the devices to domains now, as that
3465          * would eliminate the old mappings. So skip this part and defer
3466          * the assignment to device driver initialization time.
3467          */
3468         if (copied_tables)
3469                 goto domains_done;
3470
3471         /*
3472          * If pass through is not set or not enabled, setup context entries for
3473          * identity mappings for rmrr, gfx, and isa and may fall back to static
3474          * identity mapping if iommu_identity_mapping is set.
3475          */
3476         if (iommu_identity_mapping) {
3477                 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
3478                 if (ret) {
3479                         pr_crit("Failed to setup IOMMU pass-through\n");
3480                         goto free_iommu;
3481                 }
3482         }
3483         /*
3484          * For each rmrr
3485          *   for each dev attached to rmrr
3486          *   do
3487          *     locate drhd for dev, alloc domain for dev
3488          *     allocate free domain
3489          *     allocate page table entries for rmrr
3490          *     if context not allocated for bus
3491          *           allocate and init context
3492          *           set present in root table for this bus
3493          *     init context with domain, translation etc
3494          *    endfor
3495          * endfor
3496          */
3497         pr_info("Setting RMRR:\n");
3498         for_each_rmrr_units(rmrr) {
3499                 /* some BIOS lists non-exist devices in DMAR table. */
3500                 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
3501                                           i, dev) {
3502                         ret = iommu_prepare_rmrr_dev(rmrr, dev);
3503                         if (ret)
3504                                 pr_err("Mapping reserved region failed\n");
3505                 }
3506         }
3507
3508         iommu_prepare_isa();
3509
3510 domains_done:
3511
3512         /*
3513          * for each drhd
3514          *   enable fault log
3515          *   global invalidate context cache
3516          *   global invalidate iotlb
3517          *   enable translation
3518          */
3519         for_each_iommu(iommu, drhd) {
3520                 if (drhd->ignored) {
3521                         /*
3522                          * we always have to disable PMRs or DMA may fail on
3523                          * this device
3524                          */
3525                         if (force_on)
3526                                 iommu_disable_protect_mem_regions(iommu);
3527                         continue;
3528                 }
3529
3530                 iommu_flush_write_buffer(iommu);
3531
3532 #ifdef CONFIG_INTEL_IOMMU_SVM
3533                 if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
3534                         /*
3535                          * Call dmar_alloc_hwirq() with dmar_global_lock held,
3536                          * could cause possible lock race condition.
3537                          */
3538                         up_write(&dmar_global_lock);
3539                         ret = intel_svm_enable_prq(iommu);
3540                         down_write(&dmar_global_lock);
3541                         if (ret)
3542                                 goto free_iommu;
3543                 }
3544 #endif
3545                 ret = dmar_set_interrupt(iommu);
3546                 if (ret)
3547                         goto free_iommu;
3548         }
3549
3550         return 0;
3551
3552 free_iommu:
3553         for_each_active_iommu(iommu, drhd) {
3554                 disable_dmar_iommu(iommu);
3555                 free_dmar_iommu(iommu);
3556         }
3557
3558         kfree(g_iommus);
3559
3560 error:
3561         return ret;
3562 }
3563
3564 /* This takes a number of _MM_ pages, not VTD pages */
3565 static unsigned long intel_alloc_iova(struct device *dev,
3566                                      struct dmar_domain *domain,
3567                                      unsigned long nrpages, uint64_t dma_mask)
3568 {
3569         unsigned long iova_pfn;
3570
3571         /* Restrict dma_mask to the width that the iommu can handle */
3572         dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
3573         /* Ensure we reserve the whole size-aligned region */
3574         nrpages = __roundup_pow_of_two(nrpages);
3575
3576         if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
3577                 /*
3578                  * First try to allocate an io virtual address in
3579                  * DMA_BIT_MASK(32) and if that fails then try allocating
3580                  * from higher range
3581                  */
3582                 iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
3583                                            IOVA_PFN(DMA_BIT_MASK(32)), false);
3584                 if (iova_pfn)
3585                         return iova_pfn;
3586         }
3587         iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
3588                                    IOVA_PFN(dma_mask), true);
3589         if (unlikely(!iova_pfn)) {
3590                 dev_err(dev, "Allocating %ld-page iova failed", nrpages);
3591                 return 0;
3592         }
3593
3594         return iova_pfn;
3595 }
3596
3597 struct dmar_domain *get_valid_domain_for_dev(struct device *dev)
3598 {
3599         struct dmar_domain *domain, *tmp;
3600         struct dmar_rmrr_unit *rmrr;
3601         struct device *i_dev;
3602         int i, ret;
3603
3604         domain = find_domain(dev);
3605         if (domain)
3606                 goto out;
3607
3608         domain = find_or_alloc_domain(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
3609         if (!domain)
3610                 goto out;
3611
3612         /* We have a new domain - setup possible RMRRs for the device */
3613         rcu_read_lock();
3614         for_each_rmrr_units(rmrr) {
3615                 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
3616                                           i, i_dev) {
3617                         if (i_dev != dev)
3618                                 continue;
3619
3620                         ret = domain_prepare_identity_map(dev, domain,
3621                                                           rmrr->base_address,
3622                                                           rmrr->end_address);
3623                         if (ret)
3624                                 dev_err(dev, "Mapping reserved region failed\n");
3625                 }
3626         }
3627         rcu_read_unlock();
3628
3629         tmp = set_domain_for_dev(dev, domain);
3630         if (!tmp || domain != tmp) {
3631                 domain_exit(domain);
3632                 domain = tmp;
3633         }
3634
3635 out:
3636
3637         if (!domain)
3638                 dev_err(dev, "Allocating domain failed\n");
3639
3640
3641         return domain;
3642 }
3643
3644 /* Check if the dev needs to go through non-identity map and unmap process.*/
3645 static bool iommu_need_mapping(struct device *dev)
3646 {
3647         int found;
3648
3649         if (iommu_dummy(dev))
3650                 return false;
3651
3652         found = identity_mapping(dev);
3653         if (found) {
3654                 if (iommu_should_identity_map(dev, 0))
3655                         return false;
3656
3657                 /*
3658                  * 32 bit DMA is removed from si_domain and fall back to
3659                  * non-identity mapping.
3660                  */
3661                 dmar_remove_one_dev_info(dev);
3662                 dev_info(dev, "32bit DMA uses non-identity mapping\n");
3663         } else {
3664                 /*
3665                  * In case of a detached 64 bit DMA device from vm, the device
3666                  * is put into si_domain for identity mapping.
3667                  */
3668                 if (iommu_should_identity_map(dev, 0) &&
3669                     !domain_add_dev_info(si_domain, dev)) {
3670                         dev_info(dev, "64bit DMA uses identity mapping\n");
3671                         return false;
3672                 }
3673         }
3674
3675         return true;
3676 }
3677
3678 static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
3679                                      size_t size, int dir, u64 dma_mask)
3680 {
3681         struct dmar_domain *domain;
3682         phys_addr_t start_paddr;
3683         unsigned long iova_pfn;
3684         int prot = 0;
3685         int ret;
3686         struct intel_iommu *iommu;
3687         unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
3688
3689         BUG_ON(dir == DMA_NONE);
3690
3691         domain = get_valid_domain_for_dev(dev);
3692         if (!domain)
3693                 return DMA_MAPPING_ERROR;
3694
3695         iommu = domain_get_iommu(domain);
3696         size = aligned_nrpages(paddr, size);
3697
3698         iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
3699         if (!iova_pfn)
3700                 goto error;
3701
3702         /*
3703          * Check if DMAR supports zero-length reads on write only
3704          * mappings..
3705          */
3706         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3707                         !cap_zlr(iommu->cap))
3708                 prot |= DMA_PTE_READ;
3709         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3710                 prot |= DMA_PTE_WRITE;
3711         /*
3712          * paddr - (paddr + size) might be partial page, we should map the whole
3713          * page.  Note: if two part of one page are separately mapped, we
3714          * might have two guest_addr mapping to the same host paddr, but this
3715          * is not a big problem
3716          */
3717         ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
3718                                  mm_to_dma_pfn(paddr_pfn), size, prot);
3719         if (ret)
3720                 goto error;
3721
3722         start_paddr = (phys_addr_t)iova_pfn << PAGE_SHIFT;
3723         start_paddr += paddr & ~PAGE_MASK;
3724         return start_paddr;
3725
3726 error:
3727         if (iova_pfn)
3728                 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3729         dev_err(dev, "Device request: %zx@%llx dir %d --- failed\n",
3730                 size, (unsigned long long)paddr, dir);
3731         return DMA_MAPPING_ERROR;
3732 }
3733
3734 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
3735                                  unsigned long offset, size_t size,
3736                                  enum dma_data_direction dir,
3737                                  unsigned long attrs)
3738 {
3739         if (iommu_need_mapping(dev))
3740                 return __intel_map_single(dev, page_to_phys(page) + offset,
3741                                 size, dir, *dev->dma_mask);
3742         return dma_direct_map_page(dev, page, offset, size, dir, attrs);
3743 }
3744
3745 static dma_addr_t intel_map_resource(struct device *dev, phys_addr_t phys_addr,
3746                                      size_t size, enum dma_data_direction dir,
3747                                      unsigned long attrs)
3748 {
3749         if (iommu_need_mapping(dev))
3750                 return __intel_map_single(dev, phys_addr, size, dir,
3751                                 *dev->dma_mask);
3752         return dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
3753 }
3754
3755 static void intel_unmap(struct device *dev, dma_addr_t dev_addr, size_t size)
3756 {
3757         struct dmar_domain *domain;
3758         unsigned long start_pfn, last_pfn;
3759         unsigned long nrpages;
3760         unsigned long iova_pfn;
3761         struct intel_iommu *iommu;
3762         struct page *freelist;
3763         struct pci_dev *pdev = NULL;
3764
3765         domain = find_domain(dev);
3766         BUG_ON(!domain);
3767
3768         iommu = domain_get_iommu(domain);
3769
3770         iova_pfn = IOVA_PFN(dev_addr);
3771
3772         nrpages = aligned_nrpages(dev_addr, size);
3773         start_pfn = mm_to_dma_pfn(iova_pfn);
3774         last_pfn = start_pfn + nrpages - 1;
3775
3776         if (dev_is_pci(dev))
3777                 pdev = to_pci_dev(dev);
3778
3779         dev_dbg(dev, "Device unmapping: pfn %lx-%lx\n", start_pfn, last_pfn);
3780
3781         freelist = domain_unmap(domain, start_pfn, last_pfn);
3782
3783         if (intel_iommu_strict || (pdev && pdev->untrusted)) {
3784                 iommu_flush_iotlb_psi(iommu, domain, start_pfn,
3785                                       nrpages, !freelist, 0);
3786                 /* free iova */
3787                 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
3788                 dma_free_pagelist(freelist);
3789         } else {
3790                 queue_iova(&domain->iovad, iova_pfn, nrpages,
3791                            (unsigned long)freelist);
3792                 /*
3793                  * queue up the release of the unmap to save the 1/6th of the
3794                  * cpu used up by the iotlb flush operation...
3795                  */
3796         }
3797 }
3798
3799 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
3800                              size_t size, enum dma_data_direction dir,
3801                              unsigned long attrs)
3802 {
3803         if (iommu_need_mapping(dev))
3804                 intel_unmap(dev, dev_addr, size);
3805         else
3806                 dma_direct_unmap_page(dev, dev_addr, size, dir, attrs);
3807 }
3808
3809 static void intel_unmap_resource(struct device *dev, dma_addr_t dev_addr,
3810                 size_t size, enum dma_data_direction dir, unsigned long attrs)
3811 {
3812         if (iommu_need_mapping(dev))
3813                 intel_unmap(dev, dev_addr, size);
3814 }
3815
3816 static void *intel_alloc_coherent(struct device *dev, size_t size,
3817                                   dma_addr_t *dma_handle, gfp_t flags,
3818                                   unsigned long attrs)
3819 {
3820         struct page *page = NULL;
3821         int order;
3822
3823         if (!iommu_need_mapping(dev))
3824                 return dma_direct_alloc(dev, size, dma_handle, flags, attrs);
3825
3826         size = PAGE_ALIGN(size);
3827         order = get_order(size);
3828
3829         if (gfpflags_allow_blocking(flags)) {
3830                 unsigned int count = size >> PAGE_SHIFT;
3831
3832                 page = dma_alloc_from_contiguous(dev, count, order,
3833                                                  flags & __GFP_NOWARN);
3834         }
3835
3836         if (!page)
3837                 page = alloc_pages(flags, order);
3838         if (!page)
3839                 return NULL;
3840         memset(page_address(page), 0, size);
3841
3842         *dma_handle = __intel_map_single(dev, page_to_phys(page), size,
3843                                          DMA_BIDIRECTIONAL,
3844                                          dev->coherent_dma_mask);
3845         if (*dma_handle != DMA_MAPPING_ERROR)
3846                 return page_address(page);
3847         if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3848                 __free_pages(page, order);
3849
3850         return NULL;
3851 }
3852
3853 static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3854                                 dma_addr_t dma_handle, unsigned long attrs)
3855 {
3856         int order;
3857         struct page *page = virt_to_page(vaddr);
3858
3859         if (!iommu_need_mapping(dev))
3860                 return dma_direct_free(dev, size, vaddr, dma_handle, attrs);
3861
3862         size = PAGE_ALIGN(size);
3863         order = get_order(size);
3864
3865         intel_unmap(dev, dma_handle, size);
3866         if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3867                 __free_pages(page, order);
3868 }
3869
3870 static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3871                            int nelems, enum dma_data_direction dir,
3872                            unsigned long attrs)
3873 {
3874         dma_addr_t startaddr = sg_dma_address(sglist) & PAGE_MASK;
3875         unsigned long nrpages = 0;
3876         struct scatterlist *sg;
3877         int i;
3878
3879         if (!iommu_need_mapping(dev))
3880                 return dma_direct_unmap_sg(dev, sglist, nelems, dir, attrs);
3881
3882         for_each_sg(sglist, sg, nelems, i) {
3883                 nrpages += aligned_nrpages(sg_dma_address(sg), sg_dma_len(sg));
3884         }
3885
3886         intel_unmap(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
3887 }
3888
3889 static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3890                         enum dma_data_direction dir, unsigned long attrs)
3891 {
3892         int i;
3893         struct dmar_domain *domain;
3894         size_t size = 0;
3895         int prot = 0;
3896         unsigned long iova_pfn;
3897         int ret;
3898         struct scatterlist *sg;
3899         unsigned long start_vpfn;
3900         struct intel_iommu *iommu;
3901
3902         BUG_ON(dir == DMA_NONE);
3903         if (!iommu_need_mapping(dev))
3904                 return dma_direct_map_sg(dev, sglist, nelems, dir, attrs);
3905
3906         domain = get_valid_domain_for_dev(dev);
3907         if (!domain)
3908                 return 0;
3909
3910         iommu = domain_get_iommu(domain);
3911
3912         for_each_sg(sglist, sg, nelems, i)
3913                 size += aligned_nrpages(sg->offset, sg->length);
3914
3915         iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3916                                 *dev->dma_mask);
3917         if (!iova_pfn) {
3918                 sglist->dma_length = 0;
3919                 return 0;
3920         }
3921
3922         /*
3923          * Check if DMAR supports zero-length reads on write only
3924          * mappings..
3925          */
3926         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3927                         !cap_zlr(iommu->cap))
3928                 prot |= DMA_PTE_READ;
3929         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3930                 prot |= DMA_PTE_WRITE;
3931
3932         start_vpfn = mm_to_dma_pfn(iova_pfn);
3933
3934         ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3935         if (unlikely(ret)) {
3936                 dma_pte_free_pagetable(domain, start_vpfn,
3937                                        start_vpfn + size - 1,
3938                                        agaw_to_level(domain->agaw) + 1);
3939                 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3940                 return 0;
3941         }
3942
3943         return nelems;
3944 }
3945
3946 static const struct dma_map_ops intel_dma_ops = {
3947         .alloc = intel_alloc_coherent,
3948         .free = intel_free_coherent,
3949         .map_sg = intel_map_sg,
3950         .unmap_sg = intel_unmap_sg,
3951         .map_page = intel_map_page,
3952         .unmap_page = intel_unmap_page,
3953         .map_resource = intel_map_resource,
3954         .unmap_resource = intel_unmap_resource,
3955         .dma_supported = dma_direct_supported,
3956 };
3957
3958 static inline int iommu_domain_cache_init(void)
3959 {
3960         int ret = 0;
3961
3962         iommu_domain_cache = kmem_cache_create("iommu_domain",
3963                                          sizeof(struct dmar_domain),
3964                                          0,
3965                                          SLAB_HWCACHE_ALIGN,
3966
3967                                          NULL);
3968         if (!iommu_domain_cache) {
3969                 pr_err("Couldn't create iommu_domain cache\n");
3970                 ret = -ENOMEM;
3971         }
3972
3973         return ret;
3974 }
3975
3976 static inline int iommu_devinfo_cache_init(void)
3977 {
3978         int ret = 0;
3979
3980         iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3981                                          sizeof(struct device_domain_info),
3982                                          0,
3983                                          SLAB_HWCACHE_ALIGN,
3984                                          NULL);
3985         if (!iommu_devinfo_cache) {
3986                 pr_err("Couldn't create devinfo cache\n");
3987                 ret = -ENOMEM;
3988         }
3989
3990         return ret;
3991 }
3992
3993 static int __init iommu_init_mempool(void)
3994 {
3995         int ret;
3996         ret = iova_cache_get();
3997         if (ret)
3998                 return ret;
3999
4000         ret = iommu_domain_cache_init();
4001         if (ret)
4002                 goto domain_error;
4003
4004         ret = iommu_devinfo_cache_init();
4005         if (!ret)
4006                 return ret;
4007
4008         kmem_cache_destroy(iommu_domain_cache);
4009 domain_error:
4010         iova_cache_put();
4011
4012         return -ENOMEM;
4013 }
4014
4015 static void __init iommu_exit_mempool(void)
4016 {
4017         kmem_cache_destroy(iommu_devinfo_cache);
4018         kmem_cache_destroy(iommu_domain_cache);
4019         iova_cache_put();
4020 }
4021
4022 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
4023 {
4024         struct dmar_drhd_unit *drhd;
4025         u32 vtbar;
4026         int rc;
4027
4028         /* We know that this device on this chipset has its own IOMMU.
4029          * If we find it under a different IOMMU, then the BIOS is lying
4030          * to us. Hope that the IOMMU for this device is actually
4031          * disabled, and it needs no translation...
4032          */
4033         rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
4034         if (rc) {
4035                 /* "can't" happen */
4036                 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
4037                 return;
4038         }
4039         vtbar &= 0xffff0000;
4040
4041         /* we know that the this iommu should be at offset 0xa000 from vtbar */
4042         drhd = dmar_find_matched_drhd_unit(pdev);
4043         if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
4044                             TAINT_FIRMWARE_WORKAROUND,
4045                             "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
4046                 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
4047 }
4048 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
4049
4050 static void __init init_no_remapping_devices(void)
4051 {
4052         struct dmar_drhd_unit *drhd;
4053         struct device *dev;
4054         int i;
4055
4056         for_each_drhd_unit(drhd) {
4057                 if (!drhd->include_all) {
4058                         for_each_active_dev_scope(drhd->devices,
4059                                                   drhd->devices_cnt, i, dev)
4060                                 break;
4061                         /* ignore DMAR unit if no devices exist */
4062                         if (i == drhd->devices_cnt)
4063                                 drhd->ignored = 1;
4064                 }
4065         }
4066
4067         for_each_active_drhd_unit(drhd) {
4068                 if (drhd->include_all)
4069                         continue;
4070
4071                 for_each_active_dev_scope(drhd->devices,
4072                                           drhd->devices_cnt, i, dev)
4073                         if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
4074                                 break;
4075                 if (i < drhd->devices_cnt)
4076                         continue;
4077
4078                 /* This IOMMU has *only* gfx devices. Either bypass it or
4079                    set the gfx_mapped flag, as appropriate */
4080                 if (!dmar_map_gfx) {
4081                         drhd->ignored = 1;
4082                         for_each_active_dev_scope(drhd->devices,
4083                                                   drhd->devices_cnt, i, dev)
4084                                 dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
4085                 }
4086         }
4087 }
4088
4089 #ifdef CONFIG_SUSPEND
4090 static int init_iommu_hw(void)
4091 {
4092         struct dmar_drhd_unit *drhd;
4093         struct intel_iommu *iommu = NULL;
4094
4095         for_each_active_iommu(iommu, drhd)
4096                 if (iommu->qi)
4097                         dmar_reenable_qi(iommu);
4098
4099         for_each_iommu(iommu, drhd) {
4100                 if (drhd->ignored) {
4101                         /*
4102                          * we always have to disable PMRs or DMA may fail on
4103                          * this device
4104                          */
4105                         if (force_on)
4106                                 iommu_disable_protect_mem_regions(iommu);
4107                         continue;
4108                 }
4109
4110                 iommu_flush_write_buffer(iommu);
4111
4112                 iommu_set_root_entry(iommu);
4113
4114                 iommu->flush.flush_context(iommu, 0, 0, 0,
4115                                            DMA_CCMD_GLOBAL_INVL);
4116                 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4117                 iommu_enable_translation(iommu);
4118                 iommu_disable_protect_mem_regions(iommu);
4119         }
4120
4121         return 0;
4122 }
4123
4124 static void iommu_flush_all(void)
4125 {
4126         struct dmar_drhd_unit *drhd;
4127         struct intel_iommu *iommu;
4128
4129         for_each_active_iommu(iommu, drhd) {
4130                 iommu->flush.flush_context(iommu, 0, 0, 0,
4131                                            DMA_CCMD_GLOBAL_INVL);
4132                 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
4133                                          DMA_TLB_GLOBAL_FLUSH);
4134         }
4135 }
4136
4137 static int iommu_suspend(void)
4138 {
4139         struct dmar_drhd_unit *drhd;
4140         struct intel_iommu *iommu = NULL;
4141         unsigned long flag;
4142
4143         for_each_active_iommu(iommu, drhd) {
4144                 iommu->iommu_state = kcalloc(MAX_SR_DMAR_REGS, sizeof(u32),
4145                                                  GFP_ATOMIC);
4146                 if (!iommu->iommu_state)
4147                         goto nomem;
4148         }
4149
4150         iommu_flush_all();
4151
4152         for_each_active_iommu(iommu, drhd) {
4153                 iommu_disable_translation(iommu);
4154
4155                 raw_spin_lock_irqsave(&iommu->register_lock, flag);
4156
4157                 iommu->iommu_state[SR_DMAR_FECTL_REG] =
4158                         readl(iommu->reg + DMAR_FECTL_REG);
4159                 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
4160                         readl(iommu->reg + DMAR_FEDATA_REG);
4161                 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
4162                         readl(iommu->reg + DMAR_FEADDR_REG);
4163                 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
4164                         readl(iommu->reg + DMAR_FEUADDR_REG);
4165
4166                 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4167         }
4168         return 0;
4169
4170 nomem:
4171         for_each_active_iommu(iommu, drhd)
4172                 kfree(iommu->iommu_state);
4173
4174         return -ENOMEM;
4175 }
4176
4177 static void iommu_resume(void)
4178 {
4179         struct dmar_drhd_unit *drhd;
4180         struct intel_iommu *iommu = NULL;
4181         unsigned long flag;
4182
4183         if (init_iommu_hw()) {
4184                 if (force_on)
4185                         panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
4186                 else
4187                         WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
4188                 return;
4189         }
4190
4191         for_each_active_iommu(iommu, drhd) {
4192
4193                 raw_spin_lock_irqsave(&iommu->register_lock, flag);
4194
4195                 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
4196                         iommu->reg + DMAR_FECTL_REG);
4197                 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
4198                         iommu->reg + DMAR_FEDATA_REG);
4199                 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
4200                         iommu->reg + DMAR_FEADDR_REG);
4201                 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
4202                         iommu->reg + DMAR_FEUADDR_REG);
4203
4204                 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4205         }
4206
4207         for_each_active_iommu(iommu, drhd)
4208                 kfree(iommu->iommu_state);
4209 }
4210
4211 static struct syscore_ops iommu_syscore_ops = {
4212         .resume         = iommu_resume,
4213         .suspend        = iommu_suspend,
4214 };
4215
4216 static void __init init_iommu_pm_ops(void)
4217 {
4218         register_syscore_ops(&iommu_syscore_ops);
4219 }
4220
4221 #else
4222 static inline void init_iommu_pm_ops(void) {}
4223 #endif  /* CONFIG_PM */
4224
4225
4226 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
4227 {
4228         struct acpi_dmar_reserved_memory *rmrr;
4229         int prot = DMA_PTE_READ|DMA_PTE_WRITE;
4230         struct dmar_rmrr_unit *rmrru;
4231         size_t length;
4232
4233         rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
4234         if (!rmrru)
4235                 goto out;
4236
4237         rmrru->hdr = header;
4238         rmrr = (struct acpi_dmar_reserved_memory *)header;
4239         rmrru->base_address = rmrr->base_address;
4240         rmrru->end_address = rmrr->end_address;
4241
4242         length = rmrr->end_address - rmrr->base_address + 1;
4243         rmrru->resv = iommu_alloc_resv_region(rmrr->base_address, length, prot,
4244                                               IOMMU_RESV_DIRECT);
4245         if (!rmrru->resv)
4246                 goto free_rmrru;
4247
4248         rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
4249                                 ((void *)rmrr) + rmrr->header.length,
4250                                 &rmrru->devices_cnt);
4251         if (rmrru->devices_cnt && rmrru->devices == NULL)
4252                 goto free_all;
4253
4254         list_add(&rmrru->list, &dmar_rmrr_units);
4255
4256         return 0;
4257 free_all:
4258         kfree(rmrru->resv);
4259 free_rmrru:
4260         kfree(rmrru);
4261 out:
4262         return -ENOMEM;
4263 }
4264
4265 static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
4266 {
4267         struct dmar_atsr_unit *atsru;
4268         struct acpi_dmar_atsr *tmp;
4269
4270         list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4271                 tmp = (struct acpi_dmar_atsr *)atsru->hdr;
4272                 if (atsr->segment != tmp->segment)
4273                         continue;
4274                 if (atsr->header.length != tmp->header.length)
4275                         continue;
4276                 if (memcmp(atsr, tmp, atsr->header.length) == 0)
4277                         return atsru;
4278         }
4279
4280         return NULL;
4281 }
4282
4283 int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4284 {
4285         struct acpi_dmar_atsr *atsr;
4286         struct dmar_atsr_unit *atsru;
4287
4288         if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled)
4289                 return 0;
4290
4291         atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4292         atsru = dmar_find_atsr(atsr);
4293         if (atsru)
4294                 return 0;
4295
4296         atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
4297         if (!atsru)
4298                 return -ENOMEM;
4299
4300         /*
4301          * If memory is allocated from slab by ACPI _DSM method, we need to
4302          * copy the memory content because the memory buffer will be freed
4303          * on return.
4304          */
4305         atsru->hdr = (void *)(atsru + 1);
4306         memcpy(atsru->hdr, hdr, hdr->length);
4307         atsru->include_all = atsr->flags & 0x1;
4308         if (!atsru->include_all) {
4309                 atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
4310                                 (void *)atsr + atsr->header.length,
4311                                 &atsru->devices_cnt);
4312                 if (atsru->devices_cnt && atsru->devices == NULL) {
4313                         kfree(atsru);
4314                         return -ENOMEM;
4315                 }
4316         }
4317
4318         list_add_rcu(&atsru->list, &dmar_atsr_units);
4319
4320         return 0;
4321 }
4322
4323 static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
4324 {
4325         dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
4326         kfree(atsru);
4327 }
4328
4329 int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4330 {
4331         struct acpi_dmar_atsr *atsr;
4332         struct dmar_atsr_unit *atsru;
4333
4334         atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4335         atsru = dmar_find_atsr(atsr);
4336         if (atsru) {
4337                 list_del_rcu(&atsru->list);
4338                 synchronize_rcu();
4339                 intel_iommu_free_atsr(atsru);
4340         }
4341
4342         return 0;
4343 }
4344
4345 int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4346 {
4347         int i;
4348         struct device *dev;
4349         struct acpi_dmar_atsr *atsr;
4350         struct dmar_atsr_unit *atsru;
4351
4352         atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4353         atsru = dmar_find_atsr(atsr);
4354         if (!atsru)
4355                 return 0;
4356
4357         if (!atsru->include_all && atsru->devices && atsru->devices_cnt) {
4358                 for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
4359                                           i, dev)
4360                         return -EBUSY;
4361         }
4362
4363         return 0;
4364 }
4365
4366 static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
4367 {
4368         int sp, ret;
4369         struct intel_iommu *iommu = dmaru->iommu;
4370
4371         if (g_iommus[iommu->seq_id])
4372                 return 0;
4373
4374         if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
4375                 pr_warn("%s: Doesn't support hardware pass through.\n",
4376                         iommu->name);
4377                 return -ENXIO;
4378         }
4379         if (!ecap_sc_support(iommu->ecap) &&
4380             domain_update_iommu_snooping(iommu)) {
4381                 pr_warn("%s: Doesn't support snooping.\n",
4382                         iommu->name);
4383                 return -ENXIO;
4384         }
4385         sp = domain_update_iommu_superpage(iommu) - 1;
4386         if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
4387                 pr_warn("%s: Doesn't support large page.\n",
4388                         iommu->name);
4389                 return -ENXIO;
4390         }
4391
4392         /*
4393          * Disable translation if already enabled prior to OS handover.
4394          */
4395         if (iommu->gcmd & DMA_GCMD_TE)
4396                 iommu_disable_translation(iommu);
4397
4398         g_iommus[iommu->seq_id] = iommu;
4399         ret = iommu_init_domains(iommu);
4400         if (ret == 0)
4401                 ret = iommu_alloc_root_entry(iommu);
4402         if (ret)
4403                 goto out;
4404
4405 #ifdef CONFIG_INTEL_IOMMU_SVM
4406         if (pasid_supported(iommu))
4407                 intel_svm_init(iommu);
4408 #endif
4409
4410         if (dmaru->ignored) {
4411                 /*
4412                  * we always have to disable PMRs or DMA may fail on this device
4413                  */
4414                 if (force_on)
4415                         iommu_disable_protect_mem_regions(iommu);
4416                 return 0;
4417         }
4418
4419         intel_iommu_init_qi(iommu);
4420         iommu_flush_write_buffer(iommu);
4421
4422 #ifdef CONFIG_INTEL_IOMMU_SVM
4423         if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
4424                 ret = intel_svm_enable_prq(iommu);
4425                 if (ret)
4426                         goto disable_iommu;
4427         }
4428 #endif
4429         ret = dmar_set_interrupt(iommu);
4430         if (ret)
4431                 goto disable_iommu;
4432
4433         iommu_set_root_entry(iommu);
4434         iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
4435         iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4436         iommu_enable_translation(iommu);
4437
4438         iommu_disable_protect_mem_regions(iommu);
4439         return 0;
4440
4441 disable_iommu:
4442         disable_dmar_iommu(iommu);
4443 out:
4444         free_dmar_iommu(iommu);
4445         return ret;
4446 }
4447
4448 int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
4449 {
4450         int ret = 0;
4451         struct intel_iommu *iommu = dmaru->iommu;
4452
4453         if (!intel_iommu_enabled)
4454                 return 0;
4455         if (iommu == NULL)
4456                 return -EINVAL;
4457
4458         if (insert) {
4459                 ret = intel_iommu_add(dmaru);
4460         } else {
4461                 disable_dmar_iommu(iommu);
4462                 free_dmar_iommu(iommu);
4463         }
4464
4465         return ret;
4466 }
4467
4468 static void intel_iommu_free_dmars(void)
4469 {
4470         struct dmar_rmrr_unit *rmrru, *rmrr_n;
4471         struct dmar_atsr_unit *atsru, *atsr_n;
4472
4473         list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
4474                 list_del(&rmrru->list);
4475                 dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
4476                 kfree(rmrru->resv);
4477                 kfree(rmrru);
4478         }
4479
4480         list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
4481                 list_del(&atsru->list);
4482                 intel_iommu_free_atsr(atsru);
4483         }
4484 }
4485
4486 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
4487 {
4488         int i, ret = 1;
4489         struct pci_bus *bus;
4490         struct pci_dev *bridge = NULL;
4491         struct device *tmp;
4492         struct acpi_dmar_atsr *atsr;
4493         struct dmar_atsr_unit *atsru;
4494
4495         dev = pci_physfn(dev);
4496         for (bus = dev->bus; bus; bus = bus->parent) {
4497                 bridge = bus->self;
4498                 /* If it's an integrated device, allow ATS */
4499                 if (!bridge)
4500                         return 1;
4501                 /* Connected via non-PCIe: no ATS */
4502                 if (!pci_is_pcie(bridge) ||
4503                     pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
4504                         return 0;
4505                 /* If we found the root port, look it up in the ATSR */
4506                 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
4507                         break;
4508         }
4509
4510         rcu_read_lock();
4511         list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4512                 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4513                 if (atsr->segment != pci_domain_nr(dev->bus))
4514                         continue;
4515
4516                 for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
4517                         if (tmp == &bridge->dev)
4518                                 goto out;
4519
4520                 if (atsru->include_all)
4521                         goto out;
4522         }
4523         ret = 0;
4524 out:
4525         rcu_read_unlock();
4526
4527         return ret;
4528 }
4529
4530 int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
4531 {
4532         int ret;
4533         struct dmar_rmrr_unit *rmrru;
4534         struct dmar_atsr_unit *atsru;
4535         struct acpi_dmar_atsr *atsr;
4536         struct acpi_dmar_reserved_memory *rmrr;
4537
4538         if (!intel_iommu_enabled && system_state >= SYSTEM_RUNNING)
4539                 return 0;
4540
4541         list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
4542                 rmrr = container_of(rmrru->hdr,
4543                                     struct acpi_dmar_reserved_memory, header);
4544                 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4545                         ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
4546                                 ((void *)rmrr) + rmrr->header.length,
4547                                 rmrr->segment, rmrru->devices,
4548                                 rmrru->devices_cnt);
4549                         if (ret < 0)
4550                                 return ret;
4551                 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4552                         dmar_remove_dev_scope(info, rmrr->segment,
4553                                 rmrru->devices, rmrru->devices_cnt);
4554                 }
4555         }
4556
4557         list_for_each_entry(atsru, &dmar_atsr_units, list) {
4558                 if (atsru->include_all)
4559                         continue;
4560
4561                 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4562                 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4563                         ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
4564                                         (void *)atsr + atsr->header.length,
4565                                         atsr->segment, atsru->devices,
4566                                         atsru->devices_cnt);
4567                         if (ret > 0)
4568                                 break;
4569                         else if (ret < 0)
4570                                 return ret;
4571                 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4572                         if (dmar_remove_dev_scope(info, atsr->segment,
4573                                         atsru->devices, atsru->devices_cnt))
4574                                 break;
4575                 }
4576         }
4577
4578         return 0;
4579 }
4580
4581 /*
4582  * Here we only respond to action of unbound device from driver.
4583  *
4584  * Added device is not attached to its DMAR domain here yet. That will happen
4585  * when mapping the device to iova.
4586  */
4587 static int device_notifier(struct notifier_block *nb,
4588                                   unsigned long action, void *data)
4589 {
4590         struct device *dev = data;
4591         struct dmar_domain *domain;
4592
4593         if (iommu_dummy(dev))
4594                 return 0;
4595
4596         if (action == BUS_NOTIFY_REMOVED_DEVICE) {
4597                 domain = find_domain(dev);
4598                 if (!domain)
4599                         return 0;
4600
4601                 dmar_remove_one_dev_info(dev);
4602                 if (!domain_type_is_vm_or_si(domain) &&
4603                     list_empty(&domain->devices))
4604                         domain_exit(domain);
4605         } else if (action == BUS_NOTIFY_ADD_DEVICE) {
4606                 if (iommu_should_identity_map(dev, 1))
4607                         domain_add_dev_info(si_domain, dev);
4608         }
4609
4610         return 0;
4611 }
4612
4613 static struct notifier_block device_nb = {
4614         .notifier_call = device_notifier,
4615 };
4616
4617 static int intel_iommu_memory_notifier(struct notifier_block *nb,
4618                                        unsigned long val, void *v)
4619 {
4620         struct memory_notify *mhp = v;
4621         unsigned long long start, end;
4622         unsigned long start_vpfn, last_vpfn;
4623
4624         switch (val) {
4625         case MEM_GOING_ONLINE:
4626                 start = mhp->start_pfn << PAGE_SHIFT;
4627                 end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
4628                 if (iommu_domain_identity_map(si_domain, start, end)) {
4629                         pr_warn("Failed to build identity map for [%llx-%llx]\n",
4630                                 start, end);
4631                         return NOTIFY_BAD;
4632                 }
4633                 break;
4634
4635         case MEM_OFFLINE:
4636         case MEM_CANCEL_ONLINE:
4637                 start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
4638                 last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
4639                 while (start_vpfn <= last_vpfn) {
4640                         struct iova *iova;
4641                         struct dmar_drhd_unit *drhd;
4642                         struct intel_iommu *iommu;
4643                         struct page *freelist;
4644
4645                         iova = find_iova(&si_domain->iovad, start_vpfn);
4646                         if (iova == NULL) {
4647                                 pr_debug("Failed get IOVA for PFN %lx\n",
4648                                          start_vpfn);
4649                                 break;
4650                         }
4651
4652                         iova = split_and_remove_iova(&si_domain->iovad, iova,
4653                                                      start_vpfn, last_vpfn);
4654                         if (iova == NULL) {
4655                                 pr_warn("Failed to split IOVA PFN [%lx-%lx]\n",
4656                                         start_vpfn, last_vpfn);
4657                                 return NOTIFY_BAD;
4658                         }
4659
4660                         freelist = domain_unmap(si_domain, iova->pfn_lo,
4661                                                iova->pfn_hi);
4662
4663                         rcu_read_lock();
4664                         for_each_active_iommu(iommu, drhd)
4665                                 iommu_flush_iotlb_psi(iommu, si_domain,
4666                                         iova->pfn_lo, iova_size(iova),
4667                                         !freelist, 0);
4668                         rcu_read_unlock();
4669                         dma_free_pagelist(freelist);
4670
4671                         start_vpfn = iova->pfn_hi + 1;
4672                         free_iova_mem(iova);
4673                 }
4674                 break;
4675         }
4676
4677         return NOTIFY_OK;
4678 }
4679
4680 static struct notifier_block intel_iommu_memory_nb = {
4681         .notifier_call = intel_iommu_memory_notifier,
4682         .priority = 0
4683 };
4684
4685 static void free_all_cpu_cached_iovas(unsigned int cpu)
4686 {
4687         int i;
4688
4689         for (i = 0; i < g_num_of_iommus; i++) {
4690                 struct intel_iommu *iommu = g_iommus[i];
4691                 struct dmar_domain *domain;
4692                 int did;
4693
4694                 if (!iommu)
4695                         continue;
4696
4697                 for (did = 0; did < cap_ndoms(iommu->cap); did++) {
4698                         domain = get_iommu_domain(iommu, (u16)did);
4699
4700                         if (!domain)
4701                                 continue;
4702                         free_cpu_cached_iovas(cpu, &domain->iovad);
4703                 }
4704         }
4705 }
4706
4707 static int intel_iommu_cpu_dead(unsigned int cpu)
4708 {
4709         free_all_cpu_cached_iovas(cpu);
4710         return 0;
4711 }
4712
4713 static void intel_disable_iommus(void)
4714 {
4715         struct intel_iommu *iommu = NULL;
4716         struct dmar_drhd_unit *drhd;
4717
4718         for_each_iommu(iommu, drhd)
4719                 iommu_disable_translation(iommu);
4720 }
4721
4722 static inline struct intel_iommu *dev_to_intel_iommu(struct device *dev)
4723 {
4724         struct iommu_device *iommu_dev = dev_to_iommu_device(dev);
4725
4726         return container_of(iommu_dev, struct intel_iommu, iommu);
4727 }
4728
4729 static ssize_t intel_iommu_show_version(struct device *dev,
4730                                         struct device_attribute *attr,
4731                                         char *buf)
4732 {
4733         struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4734         u32 ver = readl(iommu->reg + DMAR_VER_REG);
4735         return sprintf(buf, "%d:%d\n",
4736                        DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
4737 }
4738 static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);
4739
4740 static ssize_t intel_iommu_show_address(struct device *dev,
4741                                         struct device_attribute *attr,
4742                                         char *buf)
4743 {
4744         struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4745         return sprintf(buf, "%llx\n", iommu->reg_phys);
4746 }
4747 static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);
4748
4749 static ssize_t intel_iommu_show_cap(struct device *dev,
4750                                     struct device_attribute *attr,
4751                                     char *buf)
4752 {
4753         struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4754         return sprintf(buf, "%llx\n", iommu->cap);
4755 }
4756 static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);
4757
4758 static ssize_t intel_iommu_show_ecap(struct device *dev,
4759                                     struct device_attribute *attr,
4760                                     char *buf)
4761 {
4762         struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4763         return sprintf(buf, "%llx\n", iommu->ecap);
4764 }
4765 static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);
4766
4767 static ssize_t intel_iommu_show_ndoms(struct device *dev,
4768                                       struct device_attribute *attr,
4769                                       char *buf)
4770 {
4771         struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4772         return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap));
4773 }
4774 static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL);
4775
4776 static ssize_t intel_iommu_show_ndoms_used(struct device *dev,
4777                                            struct device_attribute *attr,
4778                                            char *buf)
4779 {
4780         struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4781         return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids,
4782                                                   cap_ndoms(iommu->cap)));
4783 }
4784 static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL);
4785
4786 static struct attribute *intel_iommu_attrs[] = {
4787         &dev_attr_version.attr,
4788         &dev_attr_address.attr,
4789         &dev_attr_cap.attr,
4790         &dev_attr_ecap.attr,
4791         &dev_attr_domains_supported.attr,
4792         &dev_attr_domains_used.attr,
4793         NULL,
4794 };
4795
4796 static struct attribute_group intel_iommu_group = {
4797         .name = "intel-iommu",
4798         .attrs = intel_iommu_attrs,
4799 };
4800
4801 const struct attribute_group *intel_iommu_groups[] = {
4802         &intel_iommu_group,
4803         NULL,
4804 };
4805
4806 static int __init platform_optin_force_iommu(void)
4807 {
4808         struct pci_dev *pdev = NULL;
4809         bool has_untrusted_dev = false;
4810
4811         if (!dmar_platform_optin() || no_platform_optin)
4812                 return 0;
4813
4814         for_each_pci_dev(pdev) {
4815                 if (pdev->untrusted) {
4816                         has_untrusted_dev = true;
4817                         break;
4818                 }
4819         }
4820
4821         if (!has_untrusted_dev)
4822                 return 0;
4823
4824         if (no_iommu || dmar_disabled)
4825                 pr_info("Intel-IOMMU force enabled due to platform opt in\n");
4826
4827         /*
4828          * If Intel-IOMMU is disabled by default, we will apply identity
4829          * map for all devices except those marked as being untrusted.
4830          */
4831         if (dmar_disabled)
4832                 iommu_identity_mapping |= IDENTMAP_ALL;
4833
4834         dmar_disabled = 0;
4835 #if defined(CONFIG_X86) && defined(CONFIG_SWIOTLB)
4836         swiotlb = 0;
4837 #endif
4838         no_iommu = 0;
4839
4840         return 1;
4841 }
4842
4843 int __init intel_iommu_init(void)
4844 {
4845         int ret = -ENODEV;
4846         struct dmar_drhd_unit *drhd;
4847         struct intel_iommu *iommu;
4848
4849         /*
4850          * Intel IOMMU is required for a TXT/tboot launch or platform
4851          * opt in, so enforce that.
4852          */
4853         force_on = tboot_force_iommu() || platform_optin_force_iommu();
4854
4855         if (iommu_init_mempool()) {
4856                 if (force_on)
4857                         panic("tboot: Failed to initialize iommu memory\n");
4858                 return -ENOMEM;
4859         }
4860
4861         down_write(&dmar_global_lock);
4862         if (dmar_table_init()) {
4863                 if (force_on)
4864                         panic("tboot: Failed to initialize DMAR table\n");
4865                 goto out_free_dmar;
4866         }
4867
4868         if (dmar_dev_scope_init() < 0) {
4869                 if (force_on)
4870                         panic("tboot: Failed to initialize DMAR device scope\n");
4871                 goto out_free_dmar;
4872         }
4873
4874         up_write(&dmar_global_lock);
4875
4876         /*
4877          * The bus notifier takes the dmar_global_lock, so lockdep will
4878          * complain later when we register it under the lock.
4879          */
4880         dmar_register_bus_notifier();
4881
4882         down_write(&dmar_global_lock);
4883
4884         if (no_iommu || dmar_disabled) {
4885                 /*
4886                  * We exit the function here to ensure IOMMU's remapping and
4887                  * mempool aren't setup, which means that the IOMMU's PMRs
4888                  * won't be disabled via the call to init_dmars(). So disable
4889                  * it explicitly here. The PMRs were setup by tboot prior to
4890                  * calling SENTER, but the kernel is expected to reset/tear
4891                  * down the PMRs.
4892                  */
4893                 if (intel_iommu_tboot_noforce) {
4894                         for_each_iommu(iommu, drhd)
4895                                 iommu_disable_protect_mem_regions(iommu);
4896                 }
4897
4898                 /*
4899                  * Make sure the IOMMUs are switched off, even when we
4900                  * boot into a kexec kernel and the previous kernel left
4901                  * them enabled
4902                  */
4903                 intel_disable_iommus();
4904                 goto out_free_dmar;
4905         }
4906
4907         if (list_empty(&dmar_rmrr_units))
4908                 pr_info("No RMRR found\n");
4909
4910         if (list_empty(&dmar_atsr_units))
4911                 pr_info("No ATSR found\n");
4912
4913         if (dmar_init_reserved_ranges()) {
4914                 if (force_on)
4915                         panic("tboot: Failed to reserve iommu ranges\n");
4916                 goto out_free_reserved_range;
4917         }
4918
4919         if (dmar_map_gfx)
4920                 intel_iommu_gfx_mapped = 1;
4921
4922         init_no_remapping_devices();
4923
4924         ret = init_dmars();
4925         if (ret) {
4926                 if (force_on)
4927                         panic("tboot: Failed to initialize DMARs\n");
4928                 pr_err("Initialization failed\n");
4929                 goto out_free_reserved_range;
4930         }
4931         up_write(&dmar_global_lock);
4932
4933 #if defined(CONFIG_X86) && defined(CONFIG_SWIOTLB)
4934         swiotlb = 0;
4935 #endif
4936         dma_ops = &intel_dma_ops;
4937
4938         init_iommu_pm_ops();
4939
4940         for_each_active_iommu(iommu, drhd) {
4941                 iommu_device_sysfs_add(&iommu->iommu, NULL,
4942                                        intel_iommu_groups,
4943                                        "%s", iommu->name);
4944                 iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
4945                 iommu_device_register(&iommu->iommu);
4946         }
4947
4948         bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
4949         bus_register_notifier(&pci_bus_type, &device_nb);
4950         if (si_domain && !hw_pass_through)
4951                 register_memory_notifier(&intel_iommu_memory_nb);
4952         cpuhp_setup_state(CPUHP_IOMMU_INTEL_DEAD, "iommu/intel:dead", NULL,
4953                           intel_iommu_cpu_dead);
4954
4955         /* Finally, we enable the DMA remapping hardware. */
4956         for_each_iommu(iommu, drhd) {
4957                 if (!translation_pre_enabled(iommu))
4958                         iommu_enable_translation(iommu);
4959
4960                 iommu_disable_protect_mem_regions(iommu);
4961         }
4962         pr_info("Intel(R) Virtualization Technology for Directed I/O\n");
4963
4964         intel_iommu_enabled = 1;
4965         intel_iommu_debugfs_init();
4966
4967         return 0;
4968
4969 out_free_reserved_range:
4970         put_iova_domain(&reserved_iova_list);
4971 out_free_dmar:
4972         intel_iommu_free_dmars();
4973         up_write(&dmar_global_lock);
4974         iommu_exit_mempool();
4975         return ret;
4976 }
4977
4978 static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque)
4979 {
4980         struct intel_iommu *iommu = opaque;
4981
4982         domain_context_clear_one(iommu, PCI_BUS_NUM(alias), alias & 0xff);
4983         return 0;
4984 }
4985
4986 /*
4987  * NB - intel-iommu lacks any sort of reference counting for the users of
4988  * dependent devices.  If multiple endpoints have intersecting dependent
4989  * devices, unbinding the driver from any one of them will possibly leave
4990  * the others unable to operate.
4991  */
4992 static void domain_context_clear(struct intel_iommu *iommu, struct device *dev)
4993 {
4994         if (!iommu || !dev || !dev_is_pci(dev))
4995                 return;
4996
4997         pci_for_each_dma_alias(to_pci_dev(dev), &domain_context_clear_one_cb, iommu);
4998 }
4999
5000 static void __dmar_remove_one_dev_info(struct device_domain_info *info)
5001 {
5002         struct intel_iommu *iommu;
5003         unsigned long flags;
5004
5005         assert_spin_locked(&device_domain_lock);
5006
5007         if (WARN_ON(!info))
5008                 return;
5009
5010         iommu = info->iommu;
5011
5012         if (info->dev) {
5013                 if (dev_is_pci(info->dev) && sm_supported(iommu))
5014                         intel_pasid_tear_down_entry(iommu, info->dev,
5015                                         PASID_RID2PASID);
5016
5017                 iommu_disable_dev_iotlb(info);
5018                 domain_context_clear(iommu, info->dev);
5019                 intel_pasid_free_table(info->dev);
5020         }
5021
5022         unlink_domain_info(info);
5023
5024         spin_lock_irqsave(&iommu->lock, flags);
5025         domain_detach_iommu(info->domain, iommu);
5026         spin_unlock_irqrestore(&iommu->lock, flags);
5027
5028         free_devinfo_mem(info);
5029 }
5030
5031 static void dmar_remove_one_dev_info(struct device *dev)
5032 {
5033         struct device_domain_info *info;
5034         unsigned long flags;
5035
5036         spin_lock_irqsave(&device_domain_lock, flags);
5037         info = dev->archdata.iommu;
5038         __dmar_remove_one_dev_info(info);
5039         spin_unlock_irqrestore(&device_domain_lock, flags);
5040 }
5041
5042 static int md_domain_init(struct dmar_domain *domain, int guest_width)
5043 {
5044         int adjust_width;
5045
5046         init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN);
5047         domain_reserve_special_ranges(domain);
5048
5049         /* calculate AGAW */
5050         domain->gaw = guest_width;
5051         adjust_width = guestwidth_to_adjustwidth(guest_width);
5052         domain->agaw = width_to_agaw(adjust_width);
5053
5054         domain->iommu_coherency = 0;
5055         domain->iommu_snooping = 0;
5056         domain->iommu_superpage = 0;
5057         domain->max_addr = 0;
5058
5059         /* always allocate the top pgd */
5060         domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
5061         if (!domain->pgd)
5062                 return -ENOMEM;
5063         domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
5064         return 0;
5065 }
5066
5067 static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
5068 {
5069         struct dmar_domain *dmar_domain;
5070         struct iommu_domain *domain;
5071
5072         switch (type) {
5073         case IOMMU_DOMAIN_UNMANAGED:
5074                 dmar_domain = alloc_domain(DOMAIN_FLAG_VIRTUAL_MACHINE);
5075                 if (!dmar_domain) {
5076                         pr_err("Can't allocate dmar_domain\n");
5077                         return NULL;
5078                 }
5079                 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
5080                         pr_err("Domain initialization failed\n");
5081                         domain_exit(dmar_domain);
5082                         return NULL;
5083                 }
5084                 domain_update_iommu_cap(dmar_domain);
5085
5086                 domain = &dmar_domain->domain;
5087                 domain->geometry.aperture_start = 0;
5088                 domain->geometry.aperture_end   =
5089                                 __DOMAIN_MAX_ADDR(dmar_domain->gaw);
5090                 domain->geometry.force_aperture = true;
5091
5092                 return domain;
5093         case IOMMU_DOMAIN_IDENTITY:
5094                 return &si_domain->domain;
5095         default:
5096                 return NULL;
5097         }
5098
5099         return NULL;
5100 }
5101
5102 static void intel_iommu_domain_free(struct iommu_domain *domain)
5103 {
5104         if (domain != &si_domain->domain)
5105                 domain_exit(to_dmar_domain(domain));
5106 }
5107
5108 /*
5109  * Check whether a @domain could be attached to the @dev through the
5110  * aux-domain attach/detach APIs.
5111  */
5112 static inline bool
5113 is_aux_domain(struct device *dev, struct iommu_domain *domain)
5114 {
5115         struct device_domain_info *info = dev->archdata.iommu;
5116
5117         return info && info->auxd_enabled &&
5118                         domain->type == IOMMU_DOMAIN_UNMANAGED;
5119 }
5120
5121 static void auxiliary_link_device(struct dmar_domain *domain,
5122                                   struct device *dev)
5123 {
5124         struct device_domain_info *info = dev->archdata.iommu;
5125
5126         assert_spin_locked(&device_domain_lock);
5127         if (WARN_ON(!info))
5128                 return;
5129
5130         domain->auxd_refcnt++;
5131         list_add(&domain->auxd, &info->auxiliary_domains);
5132 }
5133
5134 static void auxiliary_unlink_device(struct dmar_domain *domain,
5135                                     struct device *dev)
5136 {
5137         struct device_domain_info *info = dev->archdata.iommu;
5138
5139         assert_spin_locked(&device_domain_lock);
5140         if (WARN_ON(!info))
5141                 return;
5142
5143         list_del(&domain->auxd);
5144         domain->auxd_refcnt--;
5145
5146         if (!domain->auxd_refcnt && domain->default_pasid > 0)
5147                 intel_pasid_free_id(domain->default_pasid);
5148 }
5149
5150 static int aux_domain_add_dev(struct dmar_domain *domain,
5151                               struct device *dev)
5152 {
5153         int ret;
5154         u8 bus, devfn;
5155         unsigned long flags;
5156         struct intel_iommu *iommu;
5157
5158         iommu = device_to_iommu(dev, &bus, &devfn);
5159         if (!iommu)
5160                 return -ENODEV;
5161
5162         if (domain->default_pasid <= 0) {
5163                 int pasid;
5164
5165                 pasid = intel_pasid_alloc_id(domain, PASID_MIN,
5166                                              pci_max_pasids(to_pci_dev(dev)),
5167                                              GFP_KERNEL);
5168                 if (pasid <= 0) {
5169                         pr_err("Can't allocate default pasid\n");
5170                         return -ENODEV;
5171                 }
5172                 domain->default_pasid = pasid;
5173         }
5174
5175         spin_lock_irqsave(&device_domain_lock, flags);
5176         /*
5177          * iommu->lock must be held to attach domain to iommu and setup the
5178          * pasid entry for second level translation.
5179          */
5180         spin_lock(&iommu->lock);
5181         ret = domain_attach_iommu(domain, iommu);
5182         if (ret)
5183                 goto attach_failed;
5184
5185         /* Setup the PASID entry for mediated devices: */
5186         ret = intel_pasid_setup_second_level(iommu, domain, dev,
5187                                              domain->default_pasid);
5188         if (ret)
5189                 goto table_failed;
5190         spin_unlock(&iommu->lock);
5191
5192         auxiliary_link_device(domain, dev);
5193
5194         spin_unlock_irqrestore(&device_domain_lock, flags);
5195
5196         return 0;
5197
5198 table_failed:
5199         domain_detach_iommu(domain, iommu);
5200 attach_failed:
5201         spin_unlock(&iommu->lock);
5202         spin_unlock_irqrestore(&device_domain_lock, flags);
5203         if (!domain->auxd_refcnt && domain->default_pasid > 0)
5204                 intel_pasid_free_id(domain->default_pasid);
5205
5206         return ret;
5207 }
5208
5209 static void aux_domain_remove_dev(struct dmar_domain *domain,
5210                                   struct device *dev)
5211 {
5212         struct device_domain_info *info;
5213         struct intel_iommu *iommu;
5214         unsigned long flags;
5215
5216         if (!is_aux_domain(dev, &domain->domain))
5217                 return;
5218
5219         spin_lock_irqsave(&device_domain_lock, flags);
5220         info = dev->archdata.iommu;
5221         iommu = info->iommu;
5222
5223         auxiliary_unlink_device(domain, dev);
5224
5225         spin_lock(&iommu->lock);
5226         intel_pasid_tear_down_entry(iommu, dev, domain->default_pasid);
5227         domain_detach_iommu(domain, iommu);
5228         spin_unlock(&iommu->lock);
5229
5230         spin_unlock_irqrestore(&device_domain_lock, flags);
5231 }
5232
5233 static int prepare_domain_attach_device(struct iommu_domain *domain,
5234                                         struct device *dev)
5235 {
5236         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5237         struct intel_iommu *iommu;
5238         int addr_width;
5239         u8 bus, devfn;
5240
5241         iommu = device_to_iommu(dev, &bus, &devfn);
5242         if (!iommu)
5243                 return -ENODEV;
5244
5245         /* check if this iommu agaw is sufficient for max mapped address */
5246         addr_width = agaw_to_width(iommu->agaw);
5247         if (addr_width > cap_mgaw(iommu->cap))
5248                 addr_width = cap_mgaw(iommu->cap);
5249
5250         if (dmar_domain->max_addr > (1LL << addr_width)) {
5251                 dev_err(dev, "%s: iommu width (%d) is not "
5252                         "sufficient for the mapped address (%llx)\n",
5253                         __func__, addr_width, dmar_domain->max_addr);
5254                 return -EFAULT;
5255         }
5256         dmar_domain->gaw = addr_width;
5257
5258         /*
5259          * Knock out extra levels of page tables if necessary
5260          */
5261         while (iommu->agaw < dmar_domain->agaw) {
5262                 struct dma_pte *pte;
5263
5264                 pte = dmar_domain->pgd;
5265                 if (dma_pte_present(pte)) {
5266                         dmar_domain->pgd = (struct dma_pte *)
5267                                 phys_to_virt(dma_pte_addr(pte));
5268                         free_pgtable_page(pte);
5269                 }
5270                 dmar_domain->agaw--;
5271         }
5272
5273         return 0;
5274 }
5275
5276 static int intel_iommu_attach_device(struct iommu_domain *domain,
5277                                      struct device *dev)
5278 {
5279         int ret;
5280
5281         if (device_is_rmrr_locked(dev)) {
5282                 dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement.  Contact your platform vendor.\n");
5283                 return -EPERM;
5284         }
5285
5286         if (is_aux_domain(dev, domain))
5287                 return -EPERM;
5288
5289         /* normally dev is not mapped */
5290         if (unlikely(domain_context_mapped(dev))) {
5291                 struct dmar_domain *old_domain;
5292
5293                 old_domain = find_domain(dev);
5294                 if (old_domain) {
5295                         dmar_remove_one_dev_info(dev);
5296
5297                         if (!domain_type_is_vm_or_si(old_domain) &&
5298                             list_empty(&old_domain->devices))
5299                                 domain_exit(old_domain);
5300                 }
5301         }
5302
5303         ret = prepare_domain_attach_device(domain, dev);
5304         if (ret)
5305                 return ret;
5306
5307         return domain_add_dev_info(to_dmar_domain(domain), dev);
5308 }
5309
5310 static int intel_iommu_aux_attach_device(struct iommu_domain *domain,
5311                                          struct device *dev)
5312 {
5313         int ret;
5314
5315         if (!is_aux_domain(dev, domain))
5316                 return -EPERM;
5317
5318         ret = prepare_domain_attach_device(domain, dev);
5319         if (ret)
5320                 return ret;
5321
5322         return aux_domain_add_dev(to_dmar_domain(domain), dev);
5323 }
5324
5325 static void intel_iommu_detach_device(struct iommu_domain *domain,
5326                                       struct device *dev)
5327 {
5328         dmar_remove_one_dev_info(dev);
5329 }
5330
5331 static void intel_iommu_aux_detach_device(struct iommu_domain *domain,
5332                                           struct device *dev)
5333 {
5334         aux_domain_remove_dev(to_dmar_domain(domain), dev);
5335 }
5336
5337 static int intel_iommu_map(struct iommu_domain *domain,
5338                            unsigned long iova, phys_addr_t hpa,
5339                            size_t size, int iommu_prot)
5340 {
5341         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5342         u64 max_addr;
5343         int prot = 0;
5344         int ret;
5345
5346         if (iommu_prot & IOMMU_READ)
5347                 prot |= DMA_PTE_READ;
5348         if (iommu_prot & IOMMU_WRITE)
5349                 prot |= DMA_PTE_WRITE;
5350         if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
5351                 prot |= DMA_PTE_SNP;
5352
5353         max_addr = iova + size;
5354         if (dmar_domain->max_addr < max_addr) {
5355                 u64 end;
5356
5357                 /* check if minimum agaw is sufficient for mapped address */
5358                 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
5359                 if (end < max_addr) {
5360                         pr_err("%s: iommu width (%d) is not "
5361                                "sufficient for the mapped address (%llx)\n",
5362                                __func__, dmar_domain->gaw, max_addr);
5363                         return -EFAULT;
5364                 }
5365                 dmar_domain->max_addr = max_addr;
5366         }
5367         /* Round up size to next multiple of PAGE_SIZE, if it and
5368            the low bits of hpa would take us onto the next page */
5369         size = aligned_nrpages(hpa, size);
5370         ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
5371                                  hpa >> VTD_PAGE_SHIFT, size, prot);
5372         return ret;
5373 }
5374
5375 static size_t intel_iommu_unmap(struct iommu_domain *domain,
5376                                 unsigned long iova, size_t size)
5377 {
5378         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5379         struct page *freelist = NULL;
5380         unsigned long start_pfn, last_pfn;
5381         unsigned int npages;
5382         int iommu_id, level = 0;
5383
5384         /* Cope with horrid API which requires us to unmap more than the
5385            size argument if it happens to be a large-page mapping. */
5386         BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level));
5387
5388         if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
5389                 size = VTD_PAGE_SIZE << level_to_offset_bits(level);
5390
5391         start_pfn = iova >> VTD_PAGE_SHIFT;
5392         last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
5393
5394         freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);
5395
5396         npages = last_pfn - start_pfn + 1;
5397
5398         for_each_domain_iommu(iommu_id, dmar_domain)
5399                 iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain,
5400                                       start_pfn, npages, !freelist, 0);
5401
5402         dma_free_pagelist(freelist);
5403
5404         if (dmar_domain->max_addr == iova + size)
5405                 dmar_domain->max_addr = iova;
5406
5407         return size;
5408 }
5409
5410 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
5411                                             dma_addr_t iova)
5412 {
5413         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5414         struct dma_pte *pte;
5415         int level = 0;
5416         u64 phys = 0;
5417
5418         pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
5419         if (pte)
5420                 phys = dma_pte_addr(pte);
5421
5422         return phys;
5423 }
5424
5425 static inline bool scalable_mode_support(void)
5426 {
5427         struct dmar_drhd_unit *drhd;
5428         struct intel_iommu *iommu;
5429         bool ret = true;
5430
5431         rcu_read_lock();
5432         for_each_active_iommu(iommu, drhd) {
5433                 if (!sm_supported(iommu)) {
5434                         ret = false;
5435                         break;
5436                 }
5437         }
5438         rcu_read_unlock();
5439
5440         return ret;
5441 }
5442
5443 static inline bool iommu_pasid_support(void)
5444 {
5445         struct dmar_drhd_unit *drhd;
5446         struct intel_iommu *iommu;
5447         bool ret = true;
5448
5449         rcu_read_lock();
5450         for_each_active_iommu(iommu, drhd) {
5451                 if (!pasid_supported(iommu)) {
5452                         ret = false;
5453                         break;
5454                 }
5455         }
5456         rcu_read_unlock();
5457
5458         return ret;
5459 }
5460
5461 static bool intel_iommu_capable(enum iommu_cap cap)
5462 {
5463         if (cap == IOMMU_CAP_CACHE_COHERENCY)
5464                 return domain_update_iommu_snooping(NULL) == 1;
5465         if (cap == IOMMU_CAP_INTR_REMAP)
5466                 return irq_remapping_enabled == 1;
5467
5468         return false;
5469 }
5470
5471 static int intel_iommu_add_device(struct device *dev)
5472 {
5473         struct intel_iommu *iommu;
5474         struct iommu_group *group;
5475         u8 bus, devfn;
5476
5477         iommu = device_to_iommu(dev, &bus, &devfn);
5478         if (!iommu)
5479                 return -ENODEV;
5480
5481         iommu_device_link(&iommu->iommu, dev);
5482
5483         group = iommu_group_get_for_dev(dev);
5484
5485         if (IS_ERR(group))
5486                 return PTR_ERR(group);
5487
5488         iommu_group_put(group);
5489         return 0;
5490 }
5491
5492 static void intel_iommu_remove_device(struct device *dev)
5493 {
5494         struct intel_iommu *iommu;
5495         u8 bus, devfn;
5496
5497         iommu = device_to_iommu(dev, &bus, &devfn);
5498         if (!iommu)
5499                 return;
5500
5501         iommu_group_remove_device(dev);
5502
5503         iommu_device_unlink(&iommu->iommu, dev);
5504 }
5505
5506 static void intel_iommu_get_resv_regions(struct device *device,
5507                                          struct list_head *head)
5508 {
5509         struct iommu_resv_region *reg;
5510         struct dmar_rmrr_unit *rmrr;
5511         struct device *i_dev;
5512         int i;
5513
5514         rcu_read_lock();
5515         for_each_rmrr_units(rmrr) {
5516                 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
5517                                           i, i_dev) {
5518                         if (i_dev != device)
5519                                 continue;
5520
5521                         list_add_tail(&rmrr->resv->list, head);
5522                 }
5523         }
5524         rcu_read_unlock();
5525
5526 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
5527         if (dev_is_pci(device)) {
5528                 struct pci_dev *pdev = to_pci_dev(device);
5529
5530                 if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) {
5531                         reg = iommu_alloc_resv_region(0, 1UL << 24, 0,
5532                                                       IOMMU_RESV_DIRECT);
5533                         if (reg)
5534                                 list_add_tail(&reg->list, head);
5535                 }
5536         }
5537 #endif /* CONFIG_INTEL_IOMMU_FLOPPY_WA */
5538
5539         reg = iommu_alloc_resv_region(IOAPIC_RANGE_START,
5540                                       IOAPIC_RANGE_END - IOAPIC_RANGE_START + 1,
5541                                       0, IOMMU_RESV_MSI);
5542         if (!reg)
5543                 return;
5544         list_add_tail(&reg->list, head);
5545 }
5546
5547 static void intel_iommu_put_resv_regions(struct device *dev,
5548                                          struct list_head *head)
5549 {
5550         struct iommu_resv_region *entry, *next;
5551
5552         list_for_each_entry_safe(entry, next, head, list) {
5553                 if (entry->type == IOMMU_RESV_MSI)
5554                         kfree(entry);
5555         }
5556 }
5557
5558 int intel_iommu_enable_pasid(struct intel_iommu *iommu, struct device *dev)
5559 {
5560         struct device_domain_info *info;
5561         struct context_entry *context;
5562         struct dmar_domain *domain;
5563         unsigned long flags;
5564         u64 ctx_lo;
5565         int ret;
5566
5567         domain = get_valid_domain_for_dev(dev);
5568         if (!domain)
5569                 return -EINVAL;
5570
5571         spin_lock_irqsave(&device_domain_lock, flags);
5572         spin_lock(&iommu->lock);
5573
5574         ret = -EINVAL;
5575         info = dev->archdata.iommu;
5576         if (!info || !info->pasid_supported)
5577                 goto out;
5578
5579         context = iommu_context_addr(iommu, info->bus, info->devfn, 0);
5580         if (WARN_ON(!context))
5581                 goto out;
5582
5583         ctx_lo = context[0].lo;
5584
5585         if (!(ctx_lo & CONTEXT_PASIDE)) {
5586                 ctx_lo |= CONTEXT_PASIDE;
5587                 context[0].lo = ctx_lo;
5588                 wmb();
5589                 iommu->flush.flush_context(iommu,
5590                                            domain->iommu_did[iommu->seq_id],
5591                                            PCI_DEVID(info->bus, info->devfn),
5592                                            DMA_CCMD_MASK_NOBIT,
5593                                            DMA_CCMD_DEVICE_INVL);
5594         }
5595
5596         /* Enable PASID support in the device, if it wasn't already */
5597         if (!info->pasid_enabled)
5598                 iommu_enable_dev_iotlb(info);
5599
5600         ret = 0;
5601
5602  out:
5603         spin_unlock(&iommu->lock);
5604         spin_unlock_irqrestore(&device_domain_lock, flags);
5605
5606         return ret;
5607 }
5608
5609 static void intel_iommu_apply_resv_region(struct device *dev,
5610                                           struct iommu_domain *domain,
5611                                           struct iommu_resv_region *region)
5612 {
5613         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5614         unsigned long start, end;
5615
5616         start = IOVA_PFN(region->start);
5617         end   = IOVA_PFN(region->start + region->length - 1);
5618
5619         WARN_ON_ONCE(!reserve_iova(&dmar_domain->iovad, start, end));
5620 }
5621
5622 #ifdef CONFIG_INTEL_IOMMU_SVM
5623 struct intel_iommu *intel_svm_device_to_iommu(struct device *dev)
5624 {
5625         struct intel_iommu *iommu;
5626         u8 bus, devfn;
5627
5628         if (iommu_dummy(dev)) {
5629                 dev_warn(dev,
5630                          "No IOMMU translation for device; cannot enable SVM\n");
5631                 return NULL;
5632         }
5633
5634         iommu = device_to_iommu(dev, &bus, &devfn);
5635         if ((!iommu)) {
5636                 dev_err(dev, "No IOMMU for device; cannot enable SVM\n");
5637                 return NULL;
5638         }
5639
5640         return iommu;
5641 }
5642 #endif /* CONFIG_INTEL_IOMMU_SVM */
5643
5644 static int intel_iommu_enable_auxd(struct device *dev)
5645 {
5646         struct device_domain_info *info;
5647         struct intel_iommu *iommu;
5648         unsigned long flags;
5649         u8 bus, devfn;
5650         int ret;
5651
5652         iommu = device_to_iommu(dev, &bus, &devfn);
5653         if (!iommu || dmar_disabled)
5654                 return -EINVAL;
5655
5656         if (!sm_supported(iommu) || !pasid_supported(iommu))
5657                 return -EINVAL;
5658
5659         ret = intel_iommu_enable_pasid(iommu, dev);
5660         if (ret)
5661                 return -ENODEV;
5662
5663         spin_lock_irqsave(&device_domain_lock, flags);
5664         info = dev->archdata.iommu;
5665         info->auxd_enabled = 1;
5666         spin_unlock_irqrestore(&device_domain_lock, flags);
5667
5668         return 0;
5669 }
5670
5671 static int intel_iommu_disable_auxd(struct device *dev)
5672 {
5673         struct device_domain_info *info;
5674         unsigned long flags;
5675
5676         spin_lock_irqsave(&device_domain_lock, flags);
5677         info = dev->archdata.iommu;
5678         if (!WARN_ON(!info))
5679                 info->auxd_enabled = 0;
5680         spin_unlock_irqrestore(&device_domain_lock, flags);
5681
5682         return 0;
5683 }
5684
5685 /*
5686  * A PCI express designated vendor specific extended capability is defined
5687  * in the section 3.7 of Intel scalable I/O virtualization technical spec
5688  * for system software and tools to detect endpoint devices supporting the
5689  * Intel scalable IO virtualization without host driver dependency.
5690  *
5691  * Returns the address of the matching extended capability structure within
5692  * the device's PCI configuration space or 0 if the device does not support
5693  * it.
5694  */
5695 static int siov_find_pci_dvsec(struct pci_dev *pdev)
5696 {
5697         int pos;
5698         u16 vendor, id;
5699
5700         pos = pci_find_next_ext_capability(pdev, 0, 0x23);
5701         while (pos) {
5702                 pci_read_config_word(pdev, pos + 4, &vendor);
5703                 pci_read_config_word(pdev, pos + 8, &id);
5704                 if (vendor == PCI_VENDOR_ID_INTEL && id == 5)
5705                         return pos;
5706
5707                 pos = pci_find_next_ext_capability(pdev, pos, 0x23);
5708         }
5709
5710         return 0;
5711 }
5712
5713 static bool
5714 intel_iommu_dev_has_feat(struct device *dev, enum iommu_dev_features feat)
5715 {
5716         if (feat == IOMMU_DEV_FEAT_AUX) {
5717                 int ret;
5718
5719                 if (!dev_is_pci(dev) || dmar_disabled ||
5720                     !scalable_mode_support() || !iommu_pasid_support())
5721                         return false;
5722
5723                 ret = pci_pasid_features(to_pci_dev(dev));
5724                 if (ret < 0)
5725                         return false;
5726
5727                 return !!siov_find_pci_dvsec(to_pci_dev(dev));
5728         }
5729
5730         return false;
5731 }
5732
5733 static int
5734 intel_iommu_dev_enable_feat(struct device *dev, enum iommu_dev_features feat)
5735 {
5736         if (feat == IOMMU_DEV_FEAT_AUX)
5737                 return intel_iommu_enable_auxd(dev);
5738
5739         return -ENODEV;
5740 }
5741
5742 static int
5743 intel_iommu_dev_disable_feat(struct device *dev, enum iommu_dev_features feat)
5744 {
5745         if (feat == IOMMU_DEV_FEAT_AUX)
5746                 return intel_iommu_disable_auxd(dev);
5747
5748         return -ENODEV;
5749 }
5750
5751 static bool
5752 intel_iommu_dev_feat_enabled(struct device *dev, enum iommu_dev_features feat)
5753 {
5754         struct device_domain_info *info = dev->archdata.iommu;
5755
5756         if (feat == IOMMU_DEV_FEAT_AUX)
5757                 return scalable_mode_support() && info && info->auxd_enabled;
5758
5759         return false;
5760 }
5761
5762 static int
5763 intel_iommu_aux_get_pasid(struct iommu_domain *domain, struct device *dev)
5764 {
5765         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5766
5767         return dmar_domain->default_pasid > 0 ?
5768                         dmar_domain->default_pasid : -EINVAL;
5769 }
5770
5771 const struct iommu_ops intel_iommu_ops = {
5772         .capable                = intel_iommu_capable,
5773         .domain_alloc           = intel_iommu_domain_alloc,
5774         .domain_free            = intel_iommu_domain_free,
5775         .attach_dev             = intel_iommu_attach_device,
5776         .detach_dev             = intel_iommu_detach_device,
5777         .aux_attach_dev         = intel_iommu_aux_attach_device,
5778         .aux_detach_dev         = intel_iommu_aux_detach_device,
5779         .aux_get_pasid          = intel_iommu_aux_get_pasid,
5780         .map                    = intel_iommu_map,
5781         .unmap                  = intel_iommu_unmap,
5782         .iova_to_phys           = intel_iommu_iova_to_phys,
5783         .add_device             = intel_iommu_add_device,
5784         .remove_device          = intel_iommu_remove_device,
5785         .get_resv_regions       = intel_iommu_get_resv_regions,
5786         .put_resv_regions       = intel_iommu_put_resv_regions,
5787         .apply_resv_region      = intel_iommu_apply_resv_region,
5788         .device_group           = pci_device_group,
5789         .dev_has_feat           = intel_iommu_dev_has_feat,
5790         .dev_feat_enabled       = intel_iommu_dev_feat_enabled,
5791         .dev_enable_feat        = intel_iommu_dev_enable_feat,
5792         .dev_disable_feat       = intel_iommu_dev_disable_feat,
5793         .pgsize_bitmap          = INTEL_IOMMU_PGSIZES,
5794 };
5795
5796 static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
5797 {
5798         /* G4x/GM45 integrated gfx dmar support is totally busted. */
5799         pci_info(dev, "Disabling IOMMU for graphics on this chipset\n");
5800         dmar_map_gfx = 0;
5801 }
5802
5803 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
5804 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
5805 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
5806 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
5807 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
5808 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
5809 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);
5810
5811 static void quirk_iommu_rwbf(struct pci_dev *dev)
5812 {
5813         /*
5814          * Mobile 4 Series Chipset neglects to set RWBF capability,
5815          * but needs it. Same seems to hold for the desktop versions.
5816          */
5817         pci_info(dev, "Forcing write-buffer flush capability\n");
5818         rwbf_quirk = 1;
5819 }
5820
5821 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
5822 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
5823 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
5824 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
5825 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
5826 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
5827 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
5828
5829 #define GGC 0x52
5830 #define GGC_MEMORY_SIZE_MASK    (0xf << 8)
5831 #define GGC_MEMORY_SIZE_NONE    (0x0 << 8)
5832 #define GGC_MEMORY_SIZE_1M      (0x1 << 8)
5833 #define GGC_MEMORY_SIZE_2M      (0x3 << 8)
5834 #define GGC_MEMORY_VT_ENABLED   (0x8 << 8)
5835 #define GGC_MEMORY_SIZE_2M_VT   (0x9 << 8)
5836 #define GGC_MEMORY_SIZE_3M_VT   (0xa << 8)
5837 #define GGC_MEMORY_SIZE_4M_VT   (0xb << 8)
5838
5839 static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
5840 {
5841         unsigned short ggc;
5842
5843         if (pci_read_config_word(dev, GGC, &ggc))
5844                 return;
5845
5846         if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
5847                 pci_info(dev, "BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
5848                 dmar_map_gfx = 0;
5849         } else if (dmar_map_gfx) {
5850                 /* we have to ensure the gfx device is idle before we flush */
5851                 pci_info(dev, "Disabling batched IOTLB flush on Ironlake\n");
5852                 intel_iommu_strict = 1;
5853        }
5854 }
5855 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
5856 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
5857 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
5858 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
5859
5860 /* On Tylersburg chipsets, some BIOSes have been known to enable the
5861    ISOCH DMAR unit for the Azalia sound device, but not give it any
5862    TLB entries, which causes it to deadlock. Check for that.  We do
5863    this in a function called from init_dmars(), instead of in a PCI
5864    quirk, because we don't want to print the obnoxious "BIOS broken"
5865    message if VT-d is actually disabled.
5866 */
5867 static void __init check_tylersburg_isoch(void)
5868 {
5869         struct pci_dev *pdev;
5870         uint32_t vtisochctrl;
5871
5872         /* If there's no Azalia in the system anyway, forget it. */
5873         pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
5874         if (!pdev)
5875                 return;
5876         pci_dev_put(pdev);
5877
5878         /* System Management Registers. Might be hidden, in which case
5879            we can't do the sanity check. But that's OK, because the
5880            known-broken BIOSes _don't_ actually hide it, so far. */
5881         pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
5882         if (!pdev)
5883                 return;
5884
5885         if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
5886                 pci_dev_put(pdev);
5887                 return;
5888         }
5889
5890         pci_dev_put(pdev);
5891
5892         /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
5893         if (vtisochctrl & 1)
5894                 return;
5895
5896         /* Drop all bits other than the number of TLB entries */
5897         vtisochctrl &= 0x1c;
5898
5899         /* If we have the recommended number of TLB entries (16), fine. */
5900         if (vtisochctrl == 0x10)
5901                 return;
5902
5903         /* Zero TLB entries? You get to ride the short bus to school. */
5904         if (!vtisochctrl) {
5905                 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
5906                      "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
5907                      dmi_get_system_info(DMI_BIOS_VENDOR),
5908                      dmi_get_system_info(DMI_BIOS_VERSION),
5909                      dmi_get_system_info(DMI_PRODUCT_VERSION));
5910                 iommu_identity_mapping |= IDENTMAP_AZALIA;
5911                 return;
5912         }
5913
5914         pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
5915                vtisochctrl);
5916 }