iommu/vt-d: Don't free parent pagetable of the PTE we're adding
[linux-2.6-microblaze.git] / drivers / iommu / intel-iommu.c
1 /*
2  * Copyright © 2006-2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * Authors: David Woodhouse <dwmw2@infradead.org>,
14  *          Ashok Raj <ashok.raj@intel.com>,
15  *          Shaohua Li <shaohua.li@intel.com>,
16  *          Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
17  *          Fenghua Yu <fenghua.yu@intel.com>
18  *          Joerg Roedel <jroedel@suse.de>
19  */
20
21 #define pr_fmt(fmt)     "DMAR: " fmt
22
23 #include <linux/init.h>
24 #include <linux/bitmap.h>
25 #include <linux/debugfs.h>
26 #include <linux/export.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/memory.h>
36 #include <linux/cpu.h>
37 #include <linux/timer.h>
38 #include <linux/io.h>
39 #include <linux/iova.h>
40 #include <linux/iommu.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/syscore_ops.h>
43 #include <linux/tboot.h>
44 #include <linux/dmi.h>
45 #include <linux/pci-ats.h>
46 #include <linux/memblock.h>
47 #include <linux/dma-contiguous.h>
48 #include <linux/crash_dump.h>
49 #include <asm/irq_remapping.h>
50 #include <asm/cacheflush.h>
51 #include <asm/iommu.h>
52
53 #include "irq_remapping.h"
54
55 #define ROOT_SIZE               VTD_PAGE_SIZE
56 #define CONTEXT_SIZE            VTD_PAGE_SIZE
57
58 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
59 #define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
60 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
61 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
62
63 #define IOAPIC_RANGE_START      (0xfee00000)
64 #define IOAPIC_RANGE_END        (0xfeefffff)
65 #define IOVA_START_ADDR         (0x1000)
66
67 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
68
69 #define MAX_AGAW_WIDTH 64
70 #define MAX_AGAW_PFN_WIDTH      (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
71
72 #define __DOMAIN_MAX_PFN(gaw)  ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
73 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
74
75 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
76    to match. That way, we can use 'unsigned long' for PFNs with impunity. */
77 #define DOMAIN_MAX_PFN(gaw)     ((unsigned long) min_t(uint64_t, \
78                                 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
79 #define DOMAIN_MAX_ADDR(gaw)    (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
80
81 /* IO virtual address start page frame number */
82 #define IOVA_START_PFN          (1)
83
84 #define IOVA_PFN(addr)          ((addr) >> PAGE_SHIFT)
85 #define DMA_32BIT_PFN           IOVA_PFN(DMA_BIT_MASK(32))
86 #define DMA_64BIT_PFN           IOVA_PFN(DMA_BIT_MASK(64))
87
88 /* page table handling */
89 #define LEVEL_STRIDE            (9)
90 #define LEVEL_MASK              (((u64)1 << LEVEL_STRIDE) - 1)
91
92 /*
93  * This bitmap is used to advertise the page sizes our hardware support
94  * to the IOMMU core, which will then use this information to split
95  * physically contiguous memory regions it is mapping into page sizes
96  * that we support.
97  *
98  * Traditionally the IOMMU core just handed us the mappings directly,
99  * after making sure the size is an order of a 4KiB page and that the
100  * mapping has natural alignment.
101  *
102  * To retain this behavior, we currently advertise that we support
103  * all page sizes that are an order of 4KiB.
104  *
105  * If at some point we'd like to utilize the IOMMU core's new behavior,
106  * we could change this to advertise the real page sizes we support.
107  */
108 #define INTEL_IOMMU_PGSIZES     (~0xFFFUL)
109
110 static inline int agaw_to_level(int agaw)
111 {
112         return agaw + 2;
113 }
114
115 static inline int agaw_to_width(int agaw)
116 {
117         return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
118 }
119
120 static inline int width_to_agaw(int width)
121 {
122         return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
123 }
124
125 static inline unsigned int level_to_offset_bits(int level)
126 {
127         return (level - 1) * LEVEL_STRIDE;
128 }
129
130 static inline int pfn_level_offset(unsigned long pfn, int level)
131 {
132         return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
133 }
134
135 static inline unsigned long level_mask(int level)
136 {
137         return -1UL << level_to_offset_bits(level);
138 }
139
140 static inline unsigned long level_size(int level)
141 {
142         return 1UL << level_to_offset_bits(level);
143 }
144
145 static inline unsigned long align_to_level(unsigned long pfn, int level)
146 {
147         return (pfn + level_size(level) - 1) & level_mask(level);
148 }
149
150 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
151 {
152         return  1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
153 }
154
155 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
156    are never going to work. */
157 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
158 {
159         return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
160 }
161
162 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
163 {
164         return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
165 }
166 static inline unsigned long page_to_dma_pfn(struct page *pg)
167 {
168         return mm_to_dma_pfn(page_to_pfn(pg));
169 }
170 static inline unsigned long virt_to_dma_pfn(void *p)
171 {
172         return page_to_dma_pfn(virt_to_page(p));
173 }
174
175 /* global iommu list, set NULL for ignored DMAR units */
176 static struct intel_iommu **g_iommus;
177
178 static void __init check_tylersburg_isoch(void);
179 static int rwbf_quirk;
180
181 /*
182  * set to 1 to panic kernel if can't successfully enable VT-d
183  * (used when kernel is launched w/ TXT)
184  */
185 static int force_on = 0;
186 int intel_iommu_tboot_noforce;
187
188 /*
189  * 0: Present
190  * 1-11: Reserved
191  * 12-63: Context Ptr (12 - (haw-1))
192  * 64-127: Reserved
193  */
194 struct root_entry {
195         u64     lo;
196         u64     hi;
197 };
198 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
199
200 /*
201  * Take a root_entry and return the Lower Context Table Pointer (LCTP)
202  * if marked present.
203  */
204 static phys_addr_t root_entry_lctp(struct root_entry *re)
205 {
206         if (!(re->lo & 1))
207                 return 0;
208
209         return re->lo & VTD_PAGE_MASK;
210 }
211
212 /*
213  * Take a root_entry and return the Upper Context Table Pointer (UCTP)
214  * if marked present.
215  */
216 static phys_addr_t root_entry_uctp(struct root_entry *re)
217 {
218         if (!(re->hi & 1))
219                 return 0;
220
221         return re->hi & VTD_PAGE_MASK;
222 }
223 /*
224  * low 64 bits:
225  * 0: present
226  * 1: fault processing disable
227  * 2-3: translation type
228  * 12-63: address space root
229  * high 64 bits:
230  * 0-2: address width
231  * 3-6: aval
232  * 8-23: domain id
233  */
234 struct context_entry {
235         u64 lo;
236         u64 hi;
237 };
238
239 static inline void context_clear_pasid_enable(struct context_entry *context)
240 {
241         context->lo &= ~(1ULL << 11);
242 }
243
244 static inline bool context_pasid_enabled(struct context_entry *context)
245 {
246         return !!(context->lo & (1ULL << 11));
247 }
248
249 static inline void context_set_copied(struct context_entry *context)
250 {
251         context->hi |= (1ull << 3);
252 }
253
254 static inline bool context_copied(struct context_entry *context)
255 {
256         return !!(context->hi & (1ULL << 3));
257 }
258
259 static inline bool __context_present(struct context_entry *context)
260 {
261         return (context->lo & 1);
262 }
263
264 static inline bool context_present(struct context_entry *context)
265 {
266         return context_pasid_enabled(context) ?
267              __context_present(context) :
268              __context_present(context) && !context_copied(context);
269 }
270
271 static inline void context_set_present(struct context_entry *context)
272 {
273         context->lo |= 1;
274 }
275
276 static inline void context_set_fault_enable(struct context_entry *context)
277 {
278         context->lo &= (((u64)-1) << 2) | 1;
279 }
280
281 static inline void context_set_translation_type(struct context_entry *context,
282                                                 unsigned long value)
283 {
284         context->lo &= (((u64)-1) << 4) | 3;
285         context->lo |= (value & 3) << 2;
286 }
287
288 static inline void context_set_address_root(struct context_entry *context,
289                                             unsigned long value)
290 {
291         context->lo &= ~VTD_PAGE_MASK;
292         context->lo |= value & VTD_PAGE_MASK;
293 }
294
295 static inline void context_set_address_width(struct context_entry *context,
296                                              unsigned long value)
297 {
298         context->hi |= value & 7;
299 }
300
301 static inline void context_set_domain_id(struct context_entry *context,
302                                          unsigned long value)
303 {
304         context->hi |= (value & ((1 << 16) - 1)) << 8;
305 }
306
307 static inline int context_domain_id(struct context_entry *c)
308 {
309         return((c->hi >> 8) & 0xffff);
310 }
311
312 static inline void context_clear_entry(struct context_entry *context)
313 {
314         context->lo = 0;
315         context->hi = 0;
316 }
317
318 /*
319  * 0: readable
320  * 1: writable
321  * 2-6: reserved
322  * 7: super page
323  * 8-10: available
324  * 11: snoop behavior
325  * 12-63: Host physcial address
326  */
327 struct dma_pte {
328         u64 val;
329 };
330
331 static inline void dma_clear_pte(struct dma_pte *pte)
332 {
333         pte->val = 0;
334 }
335
336 static inline u64 dma_pte_addr(struct dma_pte *pte)
337 {
338 #ifdef CONFIG_64BIT
339         return pte->val & VTD_PAGE_MASK;
340 #else
341         /* Must have a full atomic 64-bit read */
342         return  __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
343 #endif
344 }
345
346 static inline bool dma_pte_present(struct dma_pte *pte)
347 {
348         return (pte->val & 3) != 0;
349 }
350
351 static inline bool dma_pte_superpage(struct dma_pte *pte)
352 {
353         return (pte->val & DMA_PTE_LARGE_PAGE);
354 }
355
356 static inline int first_pte_in_page(struct dma_pte *pte)
357 {
358         return !((unsigned long)pte & ~VTD_PAGE_MASK);
359 }
360
361 /*
362  * This domain is a statically identity mapping domain.
363  *      1. This domain creats a static 1:1 mapping to all usable memory.
364  *      2. It maps to each iommu if successful.
365  *      3. Each iommu mapps to this domain if successful.
366  */
367 static struct dmar_domain *si_domain;
368 static int hw_pass_through = 1;
369
370 /*
371  * Domain represents a virtual machine, more than one devices
372  * across iommus may be owned in one domain, e.g. kvm guest.
373  */
374 #define DOMAIN_FLAG_VIRTUAL_MACHINE     (1 << 0)
375
376 /* si_domain contains mulitple devices */
377 #define DOMAIN_FLAG_STATIC_IDENTITY     (1 << 1)
378
379 #define for_each_domain_iommu(idx, domain)                      \
380         for (idx = 0; idx < g_num_of_iommus; idx++)             \
381                 if (domain->iommu_refcnt[idx])
382
383 struct dmar_domain {
384         int     nid;                    /* node id */
385
386         unsigned        iommu_refcnt[DMAR_UNITS_SUPPORTED];
387                                         /* Refcount of devices per iommu */
388
389
390         u16             iommu_did[DMAR_UNITS_SUPPORTED];
391                                         /* Domain ids per IOMMU. Use u16 since
392                                          * domain ids are 16 bit wide according
393                                          * to VT-d spec, section 9.3 */
394
395         bool has_iotlb_device;
396         struct list_head devices;       /* all devices' list */
397         struct iova_domain iovad;       /* iova's that belong to this domain */
398
399         struct dma_pte  *pgd;           /* virtual address */
400         int             gaw;            /* max guest address width */
401
402         /* adjusted guest address width, 0 is level 2 30-bit */
403         int             agaw;
404
405         int             flags;          /* flags to find out type of domain */
406
407         int             iommu_coherency;/* indicate coherency of iommu access */
408         int             iommu_snooping; /* indicate snooping control feature*/
409         int             iommu_count;    /* reference count of iommu */
410         int             iommu_superpage;/* Level of superpages supported:
411                                            0 == 4KiB (no superpages), 1 == 2MiB,
412                                            2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
413         u64             max_addr;       /* maximum mapped address */
414
415         struct iommu_domain domain;     /* generic domain data structure for
416                                            iommu core */
417 };
418
419 /* PCI domain-device relationship */
420 struct device_domain_info {
421         struct list_head link;  /* link to domain siblings */
422         struct list_head global; /* link to global list */
423         u8 bus;                 /* PCI bus number */
424         u8 devfn;               /* PCI devfn number */
425         u8 pasid_supported:3;
426         u8 pasid_enabled:1;
427         u8 pri_supported:1;
428         u8 pri_enabled:1;
429         u8 ats_supported:1;
430         u8 ats_enabled:1;
431         u8 ats_qdep;
432         struct device *dev; /* it's NULL for PCIe-to-PCI bridge */
433         struct intel_iommu *iommu; /* IOMMU used by this device */
434         struct dmar_domain *domain; /* pointer to domain */
435 };
436
437 struct dmar_rmrr_unit {
438         struct list_head list;          /* list of rmrr units   */
439         struct acpi_dmar_header *hdr;   /* ACPI header          */
440         u64     base_address;           /* reserved base address*/
441         u64     end_address;            /* reserved end address */
442         struct dmar_dev_scope *devices; /* target devices */
443         int     devices_cnt;            /* target device count */
444         struct iommu_resv_region *resv; /* reserved region handle */
445 };
446
447 struct dmar_atsr_unit {
448         struct list_head list;          /* list of ATSR units */
449         struct acpi_dmar_header *hdr;   /* ACPI header */
450         struct dmar_dev_scope *devices; /* target devices */
451         int devices_cnt;                /* target device count */
452         u8 include_all:1;               /* include all ports */
453 };
454
455 static LIST_HEAD(dmar_atsr_units);
456 static LIST_HEAD(dmar_rmrr_units);
457
458 #define for_each_rmrr_units(rmrr) \
459         list_for_each_entry(rmrr, &dmar_rmrr_units, list)
460
461 static void flush_unmaps_timeout(unsigned long data);
462
463 struct deferred_flush_entry {
464         unsigned long iova_pfn;
465         unsigned long nrpages;
466         struct dmar_domain *domain;
467         struct page *freelist;
468 };
469
470 #define HIGH_WATER_MARK 250
471 struct deferred_flush_table {
472         int next;
473         struct deferred_flush_entry entries[HIGH_WATER_MARK];
474 };
475
476 struct deferred_flush_data {
477         spinlock_t lock;
478         int timer_on;
479         struct timer_list timer;
480         long size;
481         struct deferred_flush_table *tables;
482 };
483
484 static DEFINE_PER_CPU(struct deferred_flush_data, deferred_flush);
485
486 /* bitmap for indexing intel_iommus */
487 static int g_num_of_iommus;
488
489 static void domain_exit(struct dmar_domain *domain);
490 static void domain_remove_dev_info(struct dmar_domain *domain);
491 static void dmar_remove_one_dev_info(struct dmar_domain *domain,
492                                      struct device *dev);
493 static void __dmar_remove_one_dev_info(struct device_domain_info *info);
494 static void domain_context_clear(struct intel_iommu *iommu,
495                                  struct device *dev);
496 static int domain_detach_iommu(struct dmar_domain *domain,
497                                struct intel_iommu *iommu);
498
499 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
500 int dmar_disabled = 0;
501 #else
502 int dmar_disabled = 1;
503 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
504
505 int intel_iommu_enabled = 0;
506 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
507
508 static int dmar_map_gfx = 1;
509 static int dmar_forcedac;
510 static int intel_iommu_strict;
511 static int intel_iommu_superpage = 1;
512 static int intel_iommu_ecs = 1;
513 static int intel_iommu_pasid28;
514 static int iommu_identity_mapping;
515
516 #define IDENTMAP_ALL            1
517 #define IDENTMAP_GFX            2
518 #define IDENTMAP_AZALIA         4
519
520 /* Broadwell and Skylake have broken ECS support — normal so-called "second
521  * level" translation of DMA requests-without-PASID doesn't actually happen
522  * unless you also set the NESTE bit in an extended context-entry. Which of
523  * course means that SVM doesn't work because it's trying to do nested
524  * translation of the physical addresses it finds in the process page tables,
525  * through the IOVA->phys mapping found in the "second level" page tables.
526  *
527  * The VT-d specification was retroactively changed to change the definition
528  * of the capability bits and pretend that Broadwell/Skylake never happened...
529  * but unfortunately the wrong bit was changed. It's ECS which is broken, but
530  * for some reason it was the PASID capability bit which was redefined (from
531  * bit 28 on BDW/SKL to bit 40 in future).
532  *
533  * So our test for ECS needs to eschew those implementations which set the old
534  * PASID capabiity bit 28, since those are the ones on which ECS is broken.
535  * Unless we are working around the 'pasid28' limitations, that is, by putting
536  * the device into passthrough mode for normal DMA and thus masking the bug.
537  */
538 #define ecs_enabled(iommu) (intel_iommu_ecs && ecap_ecs(iommu->ecap) && \
539                             (intel_iommu_pasid28 || !ecap_broken_pasid(iommu->ecap)))
540 /* PASID support is thus enabled if ECS is enabled and *either* of the old
541  * or new capability bits are set. */
542 #define pasid_enabled(iommu) (ecs_enabled(iommu) &&                     \
543                               (ecap_pasid(iommu->ecap) || ecap_broken_pasid(iommu->ecap)))
544
545 int intel_iommu_gfx_mapped;
546 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
547
548 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
549 static DEFINE_SPINLOCK(device_domain_lock);
550 static LIST_HEAD(device_domain_list);
551
552 const struct iommu_ops intel_iommu_ops;
553
554 static bool translation_pre_enabled(struct intel_iommu *iommu)
555 {
556         return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
557 }
558
559 static void clear_translation_pre_enabled(struct intel_iommu *iommu)
560 {
561         iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
562 }
563
564 static void init_translation_status(struct intel_iommu *iommu)
565 {
566         u32 gsts;
567
568         gsts = readl(iommu->reg + DMAR_GSTS_REG);
569         if (gsts & DMA_GSTS_TES)
570                 iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
571 }
572
573 /* Convert generic 'struct iommu_domain to private struct dmar_domain */
574 static struct dmar_domain *to_dmar_domain(struct iommu_domain *dom)
575 {
576         return container_of(dom, struct dmar_domain, domain);
577 }
578
579 static int __init intel_iommu_setup(char *str)
580 {
581         if (!str)
582                 return -EINVAL;
583         while (*str) {
584                 if (!strncmp(str, "on", 2)) {
585                         dmar_disabled = 0;
586                         pr_info("IOMMU enabled\n");
587                 } else if (!strncmp(str, "off", 3)) {
588                         dmar_disabled = 1;
589                         pr_info("IOMMU disabled\n");
590                 } else if (!strncmp(str, "igfx_off", 8)) {
591                         dmar_map_gfx = 0;
592                         pr_info("Disable GFX device mapping\n");
593                 } else if (!strncmp(str, "forcedac", 8)) {
594                         pr_info("Forcing DAC for PCI devices\n");
595                         dmar_forcedac = 1;
596                 } else if (!strncmp(str, "strict", 6)) {
597                         pr_info("Disable batched IOTLB flush\n");
598                         intel_iommu_strict = 1;
599                 } else if (!strncmp(str, "sp_off", 6)) {
600                         pr_info("Disable supported super page\n");
601                         intel_iommu_superpage = 0;
602                 } else if (!strncmp(str, "ecs_off", 7)) {
603                         printk(KERN_INFO
604                                 "Intel-IOMMU: disable extended context table support\n");
605                         intel_iommu_ecs = 0;
606                 } else if (!strncmp(str, "pasid28", 7)) {
607                         printk(KERN_INFO
608                                 "Intel-IOMMU: enable pre-production PASID support\n");
609                         intel_iommu_pasid28 = 1;
610                         iommu_identity_mapping |= IDENTMAP_GFX;
611                 } else if (!strncmp(str, "tboot_noforce", 13)) {
612                         printk(KERN_INFO
613                                 "Intel-IOMMU: not forcing on after tboot. This could expose security risk for tboot\n");
614                         intel_iommu_tboot_noforce = 1;
615                 }
616
617                 str += strcspn(str, ",");
618                 while (*str == ',')
619                         str++;
620         }
621         return 0;
622 }
623 __setup("intel_iommu=", intel_iommu_setup);
624
625 static struct kmem_cache *iommu_domain_cache;
626 static struct kmem_cache *iommu_devinfo_cache;
627
628 static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did)
629 {
630         struct dmar_domain **domains;
631         int idx = did >> 8;
632
633         domains = iommu->domains[idx];
634         if (!domains)
635                 return NULL;
636
637         return domains[did & 0xff];
638 }
639
640 static void set_iommu_domain(struct intel_iommu *iommu, u16 did,
641                              struct dmar_domain *domain)
642 {
643         struct dmar_domain **domains;
644         int idx = did >> 8;
645
646         if (!iommu->domains[idx]) {
647                 size_t size = 256 * sizeof(struct dmar_domain *);
648                 iommu->domains[idx] = kzalloc(size, GFP_ATOMIC);
649         }
650
651         domains = iommu->domains[idx];
652         if (WARN_ON(!domains))
653                 return;
654         else
655                 domains[did & 0xff] = domain;
656 }
657
658 static inline void *alloc_pgtable_page(int node)
659 {
660         struct page *page;
661         void *vaddr = NULL;
662
663         page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
664         if (page)
665                 vaddr = page_address(page);
666         return vaddr;
667 }
668
669 static inline void free_pgtable_page(void *vaddr)
670 {
671         free_page((unsigned long)vaddr);
672 }
673
674 static inline void *alloc_domain_mem(void)
675 {
676         return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
677 }
678
679 static void free_domain_mem(void *vaddr)
680 {
681         kmem_cache_free(iommu_domain_cache, vaddr);
682 }
683
684 static inline void * alloc_devinfo_mem(void)
685 {
686         return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
687 }
688
689 static inline void free_devinfo_mem(void *vaddr)
690 {
691         kmem_cache_free(iommu_devinfo_cache, vaddr);
692 }
693
694 static inline int domain_type_is_vm(struct dmar_domain *domain)
695 {
696         return domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE;
697 }
698
699 static inline int domain_type_is_si(struct dmar_domain *domain)
700 {
701         return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY;
702 }
703
704 static inline int domain_type_is_vm_or_si(struct dmar_domain *domain)
705 {
706         return domain->flags & (DOMAIN_FLAG_VIRTUAL_MACHINE |
707                                 DOMAIN_FLAG_STATIC_IDENTITY);
708 }
709
710 static inline int domain_pfn_supported(struct dmar_domain *domain,
711                                        unsigned long pfn)
712 {
713         int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
714
715         return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
716 }
717
718 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
719 {
720         unsigned long sagaw;
721         int agaw = -1;
722
723         sagaw = cap_sagaw(iommu->cap);
724         for (agaw = width_to_agaw(max_gaw);
725              agaw >= 0; agaw--) {
726                 if (test_bit(agaw, &sagaw))
727                         break;
728         }
729
730         return agaw;
731 }
732
733 /*
734  * Calculate max SAGAW for each iommu.
735  */
736 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
737 {
738         return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
739 }
740
741 /*
742  * calculate agaw for each iommu.
743  * "SAGAW" may be different across iommus, use a default agaw, and
744  * get a supported less agaw for iommus that don't support the default agaw.
745  */
746 int iommu_calculate_agaw(struct intel_iommu *iommu)
747 {
748         return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
749 }
750
751 /* This functionin only returns single iommu in a domain */
752 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
753 {
754         int iommu_id;
755
756         /* si_domain and vm domain should not get here. */
757         BUG_ON(domain_type_is_vm_or_si(domain));
758         for_each_domain_iommu(iommu_id, domain)
759                 break;
760
761         if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
762                 return NULL;
763
764         return g_iommus[iommu_id];
765 }
766
767 static void domain_update_iommu_coherency(struct dmar_domain *domain)
768 {
769         struct dmar_drhd_unit *drhd;
770         struct intel_iommu *iommu;
771         bool found = false;
772         int i;
773
774         domain->iommu_coherency = 1;
775
776         for_each_domain_iommu(i, domain) {
777                 found = true;
778                 if (!ecap_coherent(g_iommus[i]->ecap)) {
779                         domain->iommu_coherency = 0;
780                         break;
781                 }
782         }
783         if (found)
784                 return;
785
786         /* No hardware attached; use lowest common denominator */
787         rcu_read_lock();
788         for_each_active_iommu(iommu, drhd) {
789                 if (!ecap_coherent(iommu->ecap)) {
790                         domain->iommu_coherency = 0;
791                         break;
792                 }
793         }
794         rcu_read_unlock();
795 }
796
797 static int domain_update_iommu_snooping(struct intel_iommu *skip)
798 {
799         struct dmar_drhd_unit *drhd;
800         struct intel_iommu *iommu;
801         int ret = 1;
802
803         rcu_read_lock();
804         for_each_active_iommu(iommu, drhd) {
805                 if (iommu != skip) {
806                         if (!ecap_sc_support(iommu->ecap)) {
807                                 ret = 0;
808                                 break;
809                         }
810                 }
811         }
812         rcu_read_unlock();
813
814         return ret;
815 }
816
817 static int domain_update_iommu_superpage(struct intel_iommu *skip)
818 {
819         struct dmar_drhd_unit *drhd;
820         struct intel_iommu *iommu;
821         int mask = 0xf;
822
823         if (!intel_iommu_superpage) {
824                 return 0;
825         }
826
827         /* set iommu_superpage to the smallest common denominator */
828         rcu_read_lock();
829         for_each_active_iommu(iommu, drhd) {
830                 if (iommu != skip) {
831                         mask &= cap_super_page_val(iommu->cap);
832                         if (!mask)
833                                 break;
834                 }
835         }
836         rcu_read_unlock();
837
838         return fls(mask);
839 }
840
841 /* Some capabilities may be different across iommus */
842 static void domain_update_iommu_cap(struct dmar_domain *domain)
843 {
844         domain_update_iommu_coherency(domain);
845         domain->iommu_snooping = domain_update_iommu_snooping(NULL);
846         domain->iommu_superpage = domain_update_iommu_superpage(NULL);
847 }
848
849 static inline struct context_entry *iommu_context_addr(struct intel_iommu *iommu,
850                                                        u8 bus, u8 devfn, int alloc)
851 {
852         struct root_entry *root = &iommu->root_entry[bus];
853         struct context_entry *context;
854         u64 *entry;
855
856         entry = &root->lo;
857         if (ecs_enabled(iommu)) {
858                 if (devfn >= 0x80) {
859                         devfn -= 0x80;
860                         entry = &root->hi;
861                 }
862                 devfn *= 2;
863         }
864         if (*entry & 1)
865                 context = phys_to_virt(*entry & VTD_PAGE_MASK);
866         else {
867                 unsigned long phy_addr;
868                 if (!alloc)
869                         return NULL;
870
871                 context = alloc_pgtable_page(iommu->node);
872                 if (!context)
873                         return NULL;
874
875                 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
876                 phy_addr = virt_to_phys((void *)context);
877                 *entry = phy_addr | 1;
878                 __iommu_flush_cache(iommu, entry, sizeof(*entry));
879         }
880         return &context[devfn];
881 }
882
883 static int iommu_dummy(struct device *dev)
884 {
885         return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
886 }
887
888 static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
889 {
890         struct dmar_drhd_unit *drhd = NULL;
891         struct intel_iommu *iommu;
892         struct device *tmp;
893         struct pci_dev *ptmp, *pdev = NULL;
894         u16 segment = 0;
895         int i;
896
897         if (iommu_dummy(dev))
898                 return NULL;
899
900         if (dev_is_pci(dev)) {
901                 struct pci_dev *pf_pdev;
902
903                 pdev = to_pci_dev(dev);
904                 /* VFs aren't listed in scope tables; we need to look up
905                  * the PF instead to find the IOMMU. */
906                 pf_pdev = pci_physfn(pdev);
907                 dev = &pf_pdev->dev;
908                 segment = pci_domain_nr(pdev->bus);
909         } else if (has_acpi_companion(dev))
910                 dev = &ACPI_COMPANION(dev)->dev;
911
912         rcu_read_lock();
913         for_each_active_iommu(iommu, drhd) {
914                 if (pdev && segment != drhd->segment)
915                         continue;
916
917                 for_each_active_dev_scope(drhd->devices,
918                                           drhd->devices_cnt, i, tmp) {
919                         if (tmp == dev) {
920                                 /* For a VF use its original BDF# not that of the PF
921                                  * which we used for the IOMMU lookup. Strictly speaking
922                                  * we could do this for all PCI devices; we only need to
923                                  * get the BDF# from the scope table for ACPI matches. */
924                                 if (pdev && pdev->is_virtfn)
925                                         goto got_pdev;
926
927                                 *bus = drhd->devices[i].bus;
928                                 *devfn = drhd->devices[i].devfn;
929                                 goto out;
930                         }
931
932                         if (!pdev || !dev_is_pci(tmp))
933                                 continue;
934
935                         ptmp = to_pci_dev(tmp);
936                         if (ptmp->subordinate &&
937                             ptmp->subordinate->number <= pdev->bus->number &&
938                             ptmp->subordinate->busn_res.end >= pdev->bus->number)
939                                 goto got_pdev;
940                 }
941
942                 if (pdev && drhd->include_all) {
943                 got_pdev:
944                         *bus = pdev->bus->number;
945                         *devfn = pdev->devfn;
946                         goto out;
947                 }
948         }
949         iommu = NULL;
950  out:
951         rcu_read_unlock();
952
953         return iommu;
954 }
955
956 static void domain_flush_cache(struct dmar_domain *domain,
957                                void *addr, int size)
958 {
959         if (!domain->iommu_coherency)
960                 clflush_cache_range(addr, size);
961 }
962
963 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
964 {
965         struct context_entry *context;
966         int ret = 0;
967         unsigned long flags;
968
969         spin_lock_irqsave(&iommu->lock, flags);
970         context = iommu_context_addr(iommu, bus, devfn, 0);
971         if (context)
972                 ret = context_present(context);
973         spin_unlock_irqrestore(&iommu->lock, flags);
974         return ret;
975 }
976
977 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
978 {
979         struct context_entry *context;
980         unsigned long flags;
981
982         spin_lock_irqsave(&iommu->lock, flags);
983         context = iommu_context_addr(iommu, bus, devfn, 0);
984         if (context) {
985                 context_clear_entry(context);
986                 __iommu_flush_cache(iommu, context, sizeof(*context));
987         }
988         spin_unlock_irqrestore(&iommu->lock, flags);
989 }
990
991 static void free_context_table(struct intel_iommu *iommu)
992 {
993         int i;
994         unsigned long flags;
995         struct context_entry *context;
996
997         spin_lock_irqsave(&iommu->lock, flags);
998         if (!iommu->root_entry) {
999                 goto out;
1000         }
1001         for (i = 0; i < ROOT_ENTRY_NR; i++) {
1002                 context = iommu_context_addr(iommu, i, 0, 0);
1003                 if (context)
1004                         free_pgtable_page(context);
1005
1006                 if (!ecs_enabled(iommu))
1007                         continue;
1008
1009                 context = iommu_context_addr(iommu, i, 0x80, 0);
1010                 if (context)
1011                         free_pgtable_page(context);
1012
1013         }
1014         free_pgtable_page(iommu->root_entry);
1015         iommu->root_entry = NULL;
1016 out:
1017         spin_unlock_irqrestore(&iommu->lock, flags);
1018 }
1019
1020 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
1021                                       unsigned long pfn, int *target_level)
1022 {
1023         struct dma_pte *parent, *pte = NULL;
1024         int level = agaw_to_level(domain->agaw);
1025         int offset;
1026
1027         BUG_ON(!domain->pgd);
1028
1029         if (!domain_pfn_supported(domain, pfn))
1030                 /* Address beyond IOMMU's addressing capabilities. */
1031                 return NULL;
1032
1033         parent = domain->pgd;
1034
1035         while (1) {
1036                 void *tmp_page;
1037
1038                 offset = pfn_level_offset(pfn, level);
1039                 pte = &parent[offset];
1040                 if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
1041                         break;
1042                 if (level == *target_level)
1043                         break;
1044
1045                 if (!dma_pte_present(pte)) {
1046                         uint64_t pteval;
1047
1048                         tmp_page = alloc_pgtable_page(domain->nid);
1049
1050                         if (!tmp_page)
1051                                 return NULL;
1052
1053                         domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
1054                         pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
1055                         if (cmpxchg64(&pte->val, 0ULL, pteval))
1056                                 /* Someone else set it while we were thinking; use theirs. */
1057                                 free_pgtable_page(tmp_page);
1058                         else
1059                                 domain_flush_cache(domain, pte, sizeof(*pte));
1060                 }
1061                 if (level == 1)
1062                         break;
1063
1064                 parent = phys_to_virt(dma_pte_addr(pte));
1065                 level--;
1066         }
1067
1068         if (!*target_level)
1069                 *target_level = level;
1070
1071         return pte;
1072 }
1073
1074
1075 /* return address's pte at specific level */
1076 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
1077                                          unsigned long pfn,
1078                                          int level, int *large_page)
1079 {
1080         struct dma_pte *parent, *pte = NULL;
1081         int total = agaw_to_level(domain->agaw);
1082         int offset;
1083
1084         parent = domain->pgd;
1085         while (level <= total) {
1086                 offset = pfn_level_offset(pfn, total);
1087                 pte = &parent[offset];
1088                 if (level == total)
1089                         return pte;
1090
1091                 if (!dma_pte_present(pte)) {
1092                         *large_page = total;
1093                         break;
1094                 }
1095
1096                 if (dma_pte_superpage(pte)) {
1097                         *large_page = total;
1098                         return pte;
1099                 }
1100
1101                 parent = phys_to_virt(dma_pte_addr(pte));
1102                 total--;
1103         }
1104         return NULL;
1105 }
1106
1107 /* clear last level pte, a tlb flush should be followed */
1108 static void dma_pte_clear_range(struct dmar_domain *domain,
1109                                 unsigned long start_pfn,
1110                                 unsigned long last_pfn)
1111 {
1112         unsigned int large_page = 1;
1113         struct dma_pte *first_pte, *pte;
1114
1115         BUG_ON(!domain_pfn_supported(domain, start_pfn));
1116         BUG_ON(!domain_pfn_supported(domain, last_pfn));
1117         BUG_ON(start_pfn > last_pfn);
1118
1119         /* we don't need lock here; nobody else touches the iova range */
1120         do {
1121                 large_page = 1;
1122                 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
1123                 if (!pte) {
1124                         start_pfn = align_to_level(start_pfn + 1, large_page + 1);
1125                         continue;
1126                 }
1127                 do {
1128                         dma_clear_pte(pte);
1129                         start_pfn += lvl_to_nr_pages(large_page);
1130                         pte++;
1131                 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
1132
1133                 domain_flush_cache(domain, first_pte,
1134                                    (void *)pte - (void *)first_pte);
1135
1136         } while (start_pfn && start_pfn <= last_pfn);
1137 }
1138
1139 static void dma_pte_free_level(struct dmar_domain *domain, int level,
1140                                int retain_level, struct dma_pte *pte,
1141                                unsigned long pfn, unsigned long start_pfn,
1142                                unsigned long last_pfn)
1143 {
1144         pfn = max(start_pfn, pfn);
1145         pte = &pte[pfn_level_offset(pfn, level)];
1146
1147         do {
1148                 unsigned long level_pfn;
1149                 struct dma_pte *level_pte;
1150
1151                 if (!dma_pte_present(pte) || dma_pte_superpage(pte))
1152                         goto next;
1153
1154                 level_pfn = pfn & level_mask(level);
1155                 level_pte = phys_to_virt(dma_pte_addr(pte));
1156
1157                 if (level > 2) {
1158                         dma_pte_free_level(domain, level - 1, retain_level,
1159                                            level_pte, level_pfn, start_pfn,
1160                                            last_pfn);
1161                 }
1162
1163                 /*
1164                  * Free the page table if we're below the level we want to
1165                  * retain and the range covers the entire table.
1166                  */
1167                 if (level < retain_level && !(start_pfn > level_pfn ||
1168                       last_pfn < level_pfn + level_size(level) - 1)) {
1169                         dma_clear_pte(pte);
1170                         domain_flush_cache(domain, pte, sizeof(*pte));
1171                         free_pgtable_page(level_pte);
1172                 }
1173 next:
1174                 pfn += level_size(level);
1175         } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1176 }
1177
1178 /*
1179  * clear last level (leaf) ptes and free page table pages below the
1180  * level we wish to keep intact.
1181  */
1182 static void dma_pte_free_pagetable(struct dmar_domain *domain,
1183                                    unsigned long start_pfn,
1184                                    unsigned long last_pfn,
1185                                    int retain_level)
1186 {
1187         BUG_ON(!domain_pfn_supported(domain, start_pfn));
1188         BUG_ON(!domain_pfn_supported(domain, last_pfn));
1189         BUG_ON(start_pfn > last_pfn);
1190
1191         dma_pte_clear_range(domain, start_pfn, last_pfn);
1192
1193         /* We don't need lock here; nobody else touches the iova range */
1194         dma_pte_free_level(domain, agaw_to_level(domain->agaw), retain_level,
1195                            domain->pgd, 0, start_pfn, last_pfn);
1196
1197         /* free pgd */
1198         if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1199                 free_pgtable_page(domain->pgd);
1200                 domain->pgd = NULL;
1201         }
1202 }
1203
1204 /* When a page at a given level is being unlinked from its parent, we don't
1205    need to *modify* it at all. All we need to do is make a list of all the
1206    pages which can be freed just as soon as we've flushed the IOTLB and we
1207    know the hardware page-walk will no longer touch them.
1208    The 'pte' argument is the *parent* PTE, pointing to the page that is to
1209    be freed. */
1210 static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
1211                                             int level, struct dma_pte *pte,
1212                                             struct page *freelist)
1213 {
1214         struct page *pg;
1215
1216         pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
1217         pg->freelist = freelist;
1218         freelist = pg;
1219
1220         if (level == 1)
1221                 return freelist;
1222
1223         pte = page_address(pg);
1224         do {
1225                 if (dma_pte_present(pte) && !dma_pte_superpage(pte))
1226                         freelist = dma_pte_list_pagetables(domain, level - 1,
1227                                                            pte, freelist);
1228                 pte++;
1229         } while (!first_pte_in_page(pte));
1230
1231         return freelist;
1232 }
1233
1234 static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
1235                                         struct dma_pte *pte, unsigned long pfn,
1236                                         unsigned long start_pfn,
1237                                         unsigned long last_pfn,
1238                                         struct page *freelist)
1239 {
1240         struct dma_pte *first_pte = NULL, *last_pte = NULL;
1241
1242         pfn = max(start_pfn, pfn);
1243         pte = &pte[pfn_level_offset(pfn, level)];
1244
1245         do {
1246                 unsigned long level_pfn;
1247
1248                 if (!dma_pte_present(pte))
1249                         goto next;
1250
1251                 level_pfn = pfn & level_mask(level);
1252
1253                 /* If range covers entire pagetable, free it */
1254                 if (start_pfn <= level_pfn &&
1255                     last_pfn >= level_pfn + level_size(level) - 1) {
1256                         /* These suborbinate page tables are going away entirely. Don't
1257                            bother to clear them; we're just going to *free* them. */
1258                         if (level > 1 && !dma_pte_superpage(pte))
1259                                 freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1260
1261                         dma_clear_pte(pte);
1262                         if (!first_pte)
1263                                 first_pte = pte;
1264                         last_pte = pte;
1265                 } else if (level > 1) {
1266                         /* Recurse down into a level that isn't *entirely* obsolete */
1267                         freelist = dma_pte_clear_level(domain, level - 1,
1268                                                        phys_to_virt(dma_pte_addr(pte)),
1269                                                        level_pfn, start_pfn, last_pfn,
1270                                                        freelist);
1271                 }
1272 next:
1273                 pfn += level_size(level);
1274         } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1275
1276         if (first_pte)
1277                 domain_flush_cache(domain, first_pte,
1278                                    (void *)++last_pte - (void *)first_pte);
1279
1280         return freelist;
1281 }
1282
1283 /* We can't just free the pages because the IOMMU may still be walking
1284    the page tables, and may have cached the intermediate levels. The
1285    pages can only be freed after the IOTLB flush has been done. */
1286 static struct page *domain_unmap(struct dmar_domain *domain,
1287                                  unsigned long start_pfn,
1288                                  unsigned long last_pfn)
1289 {
1290         struct page *freelist = NULL;
1291
1292         BUG_ON(!domain_pfn_supported(domain, start_pfn));
1293         BUG_ON(!domain_pfn_supported(domain, last_pfn));
1294         BUG_ON(start_pfn > last_pfn);
1295
1296         /* we don't need lock here; nobody else touches the iova range */
1297         freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1298                                        domain->pgd, 0, start_pfn, last_pfn, NULL);
1299
1300         /* free pgd */
1301         if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1302                 struct page *pgd_page = virt_to_page(domain->pgd);
1303                 pgd_page->freelist = freelist;
1304                 freelist = pgd_page;
1305
1306                 domain->pgd = NULL;
1307         }
1308
1309         return freelist;
1310 }
1311
1312 static void dma_free_pagelist(struct page *freelist)
1313 {
1314         struct page *pg;
1315
1316         while ((pg = freelist)) {
1317                 freelist = pg->freelist;
1318                 free_pgtable_page(page_address(pg));
1319         }
1320 }
1321
1322 /* iommu handling */
1323 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
1324 {
1325         struct root_entry *root;
1326         unsigned long flags;
1327
1328         root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1329         if (!root) {
1330                 pr_err("Allocating root entry for %s failed\n",
1331                         iommu->name);
1332                 return -ENOMEM;
1333         }
1334
1335         __iommu_flush_cache(iommu, root, ROOT_SIZE);
1336
1337         spin_lock_irqsave(&iommu->lock, flags);
1338         iommu->root_entry = root;
1339         spin_unlock_irqrestore(&iommu->lock, flags);
1340
1341         return 0;
1342 }
1343
1344 static void iommu_set_root_entry(struct intel_iommu *iommu)
1345 {
1346         u64 addr;
1347         u32 sts;
1348         unsigned long flag;
1349
1350         addr = virt_to_phys(iommu->root_entry);
1351         if (ecs_enabled(iommu))
1352                 addr |= DMA_RTADDR_RTT;
1353
1354         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1355         dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1356
1357         writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1358
1359         /* Make sure hardware complete it */
1360         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1361                       readl, (sts & DMA_GSTS_RTPS), sts);
1362
1363         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1364 }
1365
1366 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
1367 {
1368         u32 val;
1369         unsigned long flag;
1370
1371         if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1372                 return;
1373
1374         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1375         writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1376
1377         /* Make sure hardware complete it */
1378         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1379                       readl, (!(val & DMA_GSTS_WBFS)), val);
1380
1381         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1382 }
1383
1384 /* return value determine if we need a write buffer flush */
1385 static void __iommu_flush_context(struct intel_iommu *iommu,
1386                                   u16 did, u16 source_id, u8 function_mask,
1387                                   u64 type)
1388 {
1389         u64 val = 0;
1390         unsigned long flag;
1391
1392         switch (type) {
1393         case DMA_CCMD_GLOBAL_INVL:
1394                 val = DMA_CCMD_GLOBAL_INVL;
1395                 break;
1396         case DMA_CCMD_DOMAIN_INVL:
1397                 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1398                 break;
1399         case DMA_CCMD_DEVICE_INVL:
1400                 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1401                         | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1402                 break;
1403         default:
1404                 BUG();
1405         }
1406         val |= DMA_CCMD_ICC;
1407
1408         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1409         dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1410
1411         /* Make sure hardware complete it */
1412         IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1413                 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1414
1415         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1416 }
1417
1418 /* return value determine if we need a write buffer flush */
1419 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1420                                 u64 addr, unsigned int size_order, u64 type)
1421 {
1422         int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1423         u64 val = 0, val_iva = 0;
1424         unsigned long flag;
1425
1426         switch (type) {
1427         case DMA_TLB_GLOBAL_FLUSH:
1428                 /* global flush doesn't need set IVA_REG */
1429                 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1430                 break;
1431         case DMA_TLB_DSI_FLUSH:
1432                 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1433                 break;
1434         case DMA_TLB_PSI_FLUSH:
1435                 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1436                 /* IH bit is passed in as part of address */
1437                 val_iva = size_order | addr;
1438                 break;
1439         default:
1440                 BUG();
1441         }
1442         /* Note: set drain read/write */
1443 #if 0
1444         /*
1445          * This is probably to be super secure.. Looks like we can
1446          * ignore it without any impact.
1447          */
1448         if (cap_read_drain(iommu->cap))
1449                 val |= DMA_TLB_READ_DRAIN;
1450 #endif
1451         if (cap_write_drain(iommu->cap))
1452                 val |= DMA_TLB_WRITE_DRAIN;
1453
1454         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1455         /* Note: Only uses first TLB reg currently */
1456         if (val_iva)
1457                 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1458         dmar_writeq(iommu->reg + tlb_offset + 8, val);
1459
1460         /* Make sure hardware complete it */
1461         IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1462                 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1463
1464         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1465
1466         /* check IOTLB invalidation granularity */
1467         if (DMA_TLB_IAIG(val) == 0)
1468                 pr_err("Flush IOTLB failed\n");
1469         if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1470                 pr_debug("TLB flush request %Lx, actual %Lx\n",
1471                         (unsigned long long)DMA_TLB_IIRG(type),
1472                         (unsigned long long)DMA_TLB_IAIG(val));
1473 }
1474
1475 static struct device_domain_info *
1476 iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
1477                          u8 bus, u8 devfn)
1478 {
1479         struct device_domain_info *info;
1480
1481         assert_spin_locked(&device_domain_lock);
1482
1483         if (!iommu->qi)
1484                 return NULL;
1485
1486         list_for_each_entry(info, &domain->devices, link)
1487                 if (info->iommu == iommu && info->bus == bus &&
1488                     info->devfn == devfn) {
1489                         if (info->ats_supported && info->dev)
1490                                 return info;
1491                         break;
1492                 }
1493
1494         return NULL;
1495 }
1496
1497 static void domain_update_iotlb(struct dmar_domain *domain)
1498 {
1499         struct device_domain_info *info;
1500         bool has_iotlb_device = false;
1501
1502         assert_spin_locked(&device_domain_lock);
1503
1504         list_for_each_entry(info, &domain->devices, link) {
1505                 struct pci_dev *pdev;
1506
1507                 if (!info->dev || !dev_is_pci(info->dev))
1508                         continue;
1509
1510                 pdev = to_pci_dev(info->dev);
1511                 if (pdev->ats_enabled) {
1512                         has_iotlb_device = true;
1513                         break;
1514                 }
1515         }
1516
1517         domain->has_iotlb_device = has_iotlb_device;
1518 }
1519
1520 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1521 {
1522         struct pci_dev *pdev;
1523
1524         assert_spin_locked(&device_domain_lock);
1525
1526         if (!info || !dev_is_pci(info->dev))
1527                 return;
1528
1529         pdev = to_pci_dev(info->dev);
1530
1531 #ifdef CONFIG_INTEL_IOMMU_SVM
1532         /* The PCIe spec, in its wisdom, declares that the behaviour of
1533            the device if you enable PASID support after ATS support is
1534            undefined. So always enable PASID support on devices which
1535            have it, even if we can't yet know if we're ever going to
1536            use it. */
1537         if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1))
1538                 info->pasid_enabled = 1;
1539
1540         if (info->pri_supported && !pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32))
1541                 info->pri_enabled = 1;
1542 #endif
1543         if (info->ats_supported && !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) {
1544                 info->ats_enabled = 1;
1545                 domain_update_iotlb(info->domain);
1546                 info->ats_qdep = pci_ats_queue_depth(pdev);
1547         }
1548 }
1549
1550 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1551 {
1552         struct pci_dev *pdev;
1553
1554         assert_spin_locked(&device_domain_lock);
1555
1556         if (!dev_is_pci(info->dev))
1557                 return;
1558
1559         pdev = to_pci_dev(info->dev);
1560
1561         if (info->ats_enabled) {
1562                 pci_disable_ats(pdev);
1563                 info->ats_enabled = 0;
1564                 domain_update_iotlb(info->domain);
1565         }
1566 #ifdef CONFIG_INTEL_IOMMU_SVM
1567         if (info->pri_enabled) {
1568                 pci_disable_pri(pdev);
1569                 info->pri_enabled = 0;
1570         }
1571         if (info->pasid_enabled) {
1572                 pci_disable_pasid(pdev);
1573                 info->pasid_enabled = 0;
1574         }
1575 #endif
1576 }
1577
1578 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1579                                   u64 addr, unsigned mask)
1580 {
1581         u16 sid, qdep;
1582         unsigned long flags;
1583         struct device_domain_info *info;
1584
1585         if (!domain->has_iotlb_device)
1586                 return;
1587
1588         spin_lock_irqsave(&device_domain_lock, flags);
1589         list_for_each_entry(info, &domain->devices, link) {
1590                 if (!info->ats_enabled)
1591                         continue;
1592
1593                 sid = info->bus << 8 | info->devfn;
1594                 qdep = info->ats_qdep;
1595                 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1596         }
1597         spin_unlock_irqrestore(&device_domain_lock, flags);
1598 }
1599
1600 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
1601                                   struct dmar_domain *domain,
1602                                   unsigned long pfn, unsigned int pages,
1603                                   int ih, int map)
1604 {
1605         unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1606         uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1607         u16 did = domain->iommu_did[iommu->seq_id];
1608
1609         BUG_ON(pages == 0);
1610
1611         if (ih)
1612                 ih = 1 << 6;
1613         /*
1614          * Fallback to domain selective flush if no PSI support or the size is
1615          * too big.
1616          * PSI requires page size to be 2 ^ x, and the base address is naturally
1617          * aligned to the size
1618          */
1619         if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1620                 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1621                                                 DMA_TLB_DSI_FLUSH);
1622         else
1623                 iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
1624                                                 DMA_TLB_PSI_FLUSH);
1625
1626         /*
1627          * In caching mode, changes of pages from non-present to present require
1628          * flush. However, device IOTLB doesn't need to be flushed in this case.
1629          */
1630         if (!cap_caching_mode(iommu->cap) || !map)
1631                 iommu_flush_dev_iotlb(get_iommu_domain(iommu, did),
1632                                       addr, mask);
1633 }
1634
1635 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1636 {
1637         u32 pmen;
1638         unsigned long flags;
1639
1640         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1641         pmen = readl(iommu->reg + DMAR_PMEN_REG);
1642         pmen &= ~DMA_PMEN_EPM;
1643         writel(pmen, iommu->reg + DMAR_PMEN_REG);
1644
1645         /* wait for the protected region status bit to clear */
1646         IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1647                 readl, !(pmen & DMA_PMEN_PRS), pmen);
1648
1649         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1650 }
1651
1652 static void iommu_enable_translation(struct intel_iommu *iommu)
1653 {
1654         u32 sts;
1655         unsigned long flags;
1656
1657         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1658         iommu->gcmd |= DMA_GCMD_TE;
1659         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1660
1661         /* Make sure hardware complete it */
1662         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1663                       readl, (sts & DMA_GSTS_TES), sts);
1664
1665         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1666 }
1667
1668 static void iommu_disable_translation(struct intel_iommu *iommu)
1669 {
1670         u32 sts;
1671         unsigned long flag;
1672
1673         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1674         iommu->gcmd &= ~DMA_GCMD_TE;
1675         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1676
1677         /* Make sure hardware complete it */
1678         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1679                       readl, (!(sts & DMA_GSTS_TES)), sts);
1680
1681         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1682 }
1683
1684
1685 static int iommu_init_domains(struct intel_iommu *iommu)
1686 {
1687         u32 ndomains, nlongs;
1688         size_t size;
1689
1690         ndomains = cap_ndoms(iommu->cap);
1691         pr_debug("%s: Number of Domains supported <%d>\n",
1692                  iommu->name, ndomains);
1693         nlongs = BITS_TO_LONGS(ndomains);
1694
1695         spin_lock_init(&iommu->lock);
1696
1697         iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1698         if (!iommu->domain_ids) {
1699                 pr_err("%s: Allocating domain id array failed\n",
1700                        iommu->name);
1701                 return -ENOMEM;
1702         }
1703
1704         size = (ALIGN(ndomains, 256) >> 8) * sizeof(struct dmar_domain **);
1705         iommu->domains = kzalloc(size, GFP_KERNEL);
1706
1707         if (iommu->domains) {
1708                 size = 256 * sizeof(struct dmar_domain *);
1709                 iommu->domains[0] = kzalloc(size, GFP_KERNEL);
1710         }
1711
1712         if (!iommu->domains || !iommu->domains[0]) {
1713                 pr_err("%s: Allocating domain array failed\n",
1714                        iommu->name);
1715                 kfree(iommu->domain_ids);
1716                 kfree(iommu->domains);
1717                 iommu->domain_ids = NULL;
1718                 iommu->domains    = NULL;
1719                 return -ENOMEM;
1720         }
1721
1722
1723
1724         /*
1725          * If Caching mode is set, then invalid translations are tagged
1726          * with domain-id 0, hence we need to pre-allocate it. We also
1727          * use domain-id 0 as a marker for non-allocated domain-id, so
1728          * make sure it is not used for a real domain.
1729          */
1730         set_bit(0, iommu->domain_ids);
1731
1732         return 0;
1733 }
1734
1735 static void disable_dmar_iommu(struct intel_iommu *iommu)
1736 {
1737         struct device_domain_info *info, *tmp;
1738         unsigned long flags;
1739
1740         if (!iommu->domains || !iommu->domain_ids)
1741                 return;
1742
1743 again:
1744         spin_lock_irqsave(&device_domain_lock, flags);
1745         list_for_each_entry_safe(info, tmp, &device_domain_list, global) {
1746                 struct dmar_domain *domain;
1747
1748                 if (info->iommu != iommu)
1749                         continue;
1750
1751                 if (!info->dev || !info->domain)
1752                         continue;
1753
1754                 domain = info->domain;
1755
1756                 __dmar_remove_one_dev_info(info);
1757
1758                 if (!domain_type_is_vm_or_si(domain)) {
1759                         /*
1760                          * The domain_exit() function  can't be called under
1761                          * device_domain_lock, as it takes this lock itself.
1762                          * So release the lock here and re-run the loop
1763                          * afterwards.
1764                          */
1765                         spin_unlock_irqrestore(&device_domain_lock, flags);
1766                         domain_exit(domain);
1767                         goto again;
1768                 }
1769         }
1770         spin_unlock_irqrestore(&device_domain_lock, flags);
1771
1772         if (iommu->gcmd & DMA_GCMD_TE)
1773                 iommu_disable_translation(iommu);
1774 }
1775
1776 static void free_dmar_iommu(struct intel_iommu *iommu)
1777 {
1778         if ((iommu->domains) && (iommu->domain_ids)) {
1779                 int elems = ALIGN(cap_ndoms(iommu->cap), 256) >> 8;
1780                 int i;
1781
1782                 for (i = 0; i < elems; i++)
1783                         kfree(iommu->domains[i]);
1784                 kfree(iommu->domains);
1785                 kfree(iommu->domain_ids);
1786                 iommu->domains = NULL;
1787                 iommu->domain_ids = NULL;
1788         }
1789
1790         g_iommus[iommu->seq_id] = NULL;
1791
1792         /* free context mapping */
1793         free_context_table(iommu);
1794
1795 #ifdef CONFIG_INTEL_IOMMU_SVM
1796         if (pasid_enabled(iommu)) {
1797                 if (ecap_prs(iommu->ecap))
1798                         intel_svm_finish_prq(iommu);
1799                 intel_svm_free_pasid_tables(iommu);
1800         }
1801 #endif
1802 }
1803
1804 static struct dmar_domain *alloc_domain(int flags)
1805 {
1806         struct dmar_domain *domain;
1807
1808         domain = alloc_domain_mem();
1809         if (!domain)
1810                 return NULL;
1811
1812         memset(domain, 0, sizeof(*domain));
1813         domain->nid = -1;
1814         domain->flags = flags;
1815         domain->has_iotlb_device = false;
1816         INIT_LIST_HEAD(&domain->devices);
1817
1818         return domain;
1819 }
1820
1821 /* Must be called with iommu->lock */
1822 static int domain_attach_iommu(struct dmar_domain *domain,
1823                                struct intel_iommu *iommu)
1824 {
1825         unsigned long ndomains;
1826         int num;
1827
1828         assert_spin_locked(&device_domain_lock);
1829         assert_spin_locked(&iommu->lock);
1830
1831         domain->iommu_refcnt[iommu->seq_id] += 1;
1832         domain->iommu_count += 1;
1833         if (domain->iommu_refcnt[iommu->seq_id] == 1) {
1834                 ndomains = cap_ndoms(iommu->cap);
1835                 num      = find_first_zero_bit(iommu->domain_ids, ndomains);
1836
1837                 if (num >= ndomains) {
1838                         pr_err("%s: No free domain ids\n", iommu->name);
1839                         domain->iommu_refcnt[iommu->seq_id] -= 1;
1840                         domain->iommu_count -= 1;
1841                         return -ENOSPC;
1842                 }
1843
1844                 set_bit(num, iommu->domain_ids);
1845                 set_iommu_domain(iommu, num, domain);
1846
1847                 domain->iommu_did[iommu->seq_id] = num;
1848                 domain->nid                      = iommu->node;
1849
1850                 domain_update_iommu_cap(domain);
1851         }
1852
1853         return 0;
1854 }
1855
1856 static int domain_detach_iommu(struct dmar_domain *domain,
1857                                struct intel_iommu *iommu)
1858 {
1859         int num, count = INT_MAX;
1860
1861         assert_spin_locked(&device_domain_lock);
1862         assert_spin_locked(&iommu->lock);
1863
1864         domain->iommu_refcnt[iommu->seq_id] -= 1;
1865         count = --domain->iommu_count;
1866         if (domain->iommu_refcnt[iommu->seq_id] == 0) {
1867                 num = domain->iommu_did[iommu->seq_id];
1868                 clear_bit(num, iommu->domain_ids);
1869                 set_iommu_domain(iommu, num, NULL);
1870
1871                 domain_update_iommu_cap(domain);
1872                 domain->iommu_did[iommu->seq_id] = 0;
1873         }
1874
1875         return count;
1876 }
1877
1878 static struct iova_domain reserved_iova_list;
1879 static struct lock_class_key reserved_rbtree_key;
1880
1881 static int dmar_init_reserved_ranges(void)
1882 {
1883         struct pci_dev *pdev = NULL;
1884         struct iova *iova;
1885         int i;
1886
1887         init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN,
1888                         DMA_32BIT_PFN);
1889
1890         lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1891                 &reserved_rbtree_key);
1892
1893         /* IOAPIC ranges shouldn't be accessed by DMA */
1894         iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1895                 IOVA_PFN(IOAPIC_RANGE_END));
1896         if (!iova) {
1897                 pr_err("Reserve IOAPIC range failed\n");
1898                 return -ENODEV;
1899         }
1900
1901         /* Reserve all PCI MMIO to avoid peer-to-peer access */
1902         for_each_pci_dev(pdev) {
1903                 struct resource *r;
1904
1905                 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1906                         r = &pdev->resource[i];
1907                         if (!r->flags || !(r->flags & IORESOURCE_MEM))
1908                                 continue;
1909                         iova = reserve_iova(&reserved_iova_list,
1910                                             IOVA_PFN(r->start),
1911                                             IOVA_PFN(r->end));
1912                         if (!iova) {
1913                                 pr_err("Reserve iova failed\n");
1914                                 return -ENODEV;
1915                         }
1916                 }
1917         }
1918         return 0;
1919 }
1920
1921 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1922 {
1923         copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1924 }
1925
1926 static inline int guestwidth_to_adjustwidth(int gaw)
1927 {
1928         int agaw;
1929         int r = (gaw - 12) % 9;
1930
1931         if (r == 0)
1932                 agaw = gaw;
1933         else
1934                 agaw = gaw + 9 - r;
1935         if (agaw > 64)
1936                 agaw = 64;
1937         return agaw;
1938 }
1939
1940 static int domain_init(struct dmar_domain *domain, struct intel_iommu *iommu,
1941                        int guest_width)
1942 {
1943         int adjust_width, agaw;
1944         unsigned long sagaw;
1945
1946         init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN,
1947                         DMA_32BIT_PFN);
1948         domain_reserve_special_ranges(domain);
1949
1950         /* calculate AGAW */
1951         if (guest_width > cap_mgaw(iommu->cap))
1952                 guest_width = cap_mgaw(iommu->cap);
1953         domain->gaw = guest_width;
1954         adjust_width = guestwidth_to_adjustwidth(guest_width);
1955         agaw = width_to_agaw(adjust_width);
1956         sagaw = cap_sagaw(iommu->cap);
1957         if (!test_bit(agaw, &sagaw)) {
1958                 /* hardware doesn't support it, choose a bigger one */
1959                 pr_debug("Hardware doesn't support agaw %d\n", agaw);
1960                 agaw = find_next_bit(&sagaw, 5, agaw);
1961                 if (agaw >= 5)
1962                         return -ENODEV;
1963         }
1964         domain->agaw = agaw;
1965
1966         if (ecap_coherent(iommu->ecap))
1967                 domain->iommu_coherency = 1;
1968         else
1969                 domain->iommu_coherency = 0;
1970
1971         if (ecap_sc_support(iommu->ecap))
1972                 domain->iommu_snooping = 1;
1973         else
1974                 domain->iommu_snooping = 0;
1975
1976         if (intel_iommu_superpage)
1977                 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1978         else
1979                 domain->iommu_superpage = 0;
1980
1981         domain->nid = iommu->node;
1982
1983         /* always allocate the top pgd */
1984         domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1985         if (!domain->pgd)
1986                 return -ENOMEM;
1987         __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1988         return 0;
1989 }
1990
1991 static void domain_exit(struct dmar_domain *domain)
1992 {
1993         struct page *freelist = NULL;
1994
1995         /* Domain 0 is reserved, so dont process it */
1996         if (!domain)
1997                 return;
1998
1999         /* Flush any lazy unmaps that may reference this domain */
2000         if (!intel_iommu_strict) {
2001                 int cpu;
2002
2003                 for_each_possible_cpu(cpu)
2004                         flush_unmaps_timeout(cpu);
2005         }
2006
2007         /* Remove associated devices and clear attached or cached domains */
2008         rcu_read_lock();
2009         domain_remove_dev_info(domain);
2010         rcu_read_unlock();
2011
2012         /* destroy iovas */
2013         put_iova_domain(&domain->iovad);
2014
2015         freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
2016
2017         dma_free_pagelist(freelist);
2018
2019         free_domain_mem(domain);
2020 }
2021
2022 static int domain_context_mapping_one(struct dmar_domain *domain,
2023                                       struct intel_iommu *iommu,
2024                                       u8 bus, u8 devfn)
2025 {
2026         u16 did = domain->iommu_did[iommu->seq_id];
2027         int translation = CONTEXT_TT_MULTI_LEVEL;
2028         struct device_domain_info *info = NULL;
2029         struct context_entry *context;
2030         unsigned long flags;
2031         struct dma_pte *pgd;
2032         int ret, agaw;
2033
2034         WARN_ON(did == 0);
2035
2036         if (hw_pass_through && domain_type_is_si(domain))
2037                 translation = CONTEXT_TT_PASS_THROUGH;
2038
2039         pr_debug("Set context mapping for %02x:%02x.%d\n",
2040                 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
2041
2042         BUG_ON(!domain->pgd);
2043
2044         spin_lock_irqsave(&device_domain_lock, flags);
2045         spin_lock(&iommu->lock);
2046
2047         ret = -ENOMEM;
2048         context = iommu_context_addr(iommu, bus, devfn, 1);
2049         if (!context)
2050                 goto out_unlock;
2051
2052         ret = 0;
2053         if (context_present(context))
2054                 goto out_unlock;
2055
2056         /*
2057          * For kdump cases, old valid entries may be cached due to the
2058          * in-flight DMA and copied pgtable, but there is no unmapping
2059          * behaviour for them, thus we need an explicit cache flush for
2060          * the newly-mapped device. For kdump, at this point, the device
2061          * is supposed to finish reset at its driver probe stage, so no
2062          * in-flight DMA will exist, and we don't need to worry anymore
2063          * hereafter.
2064          */
2065         if (context_copied(context)) {
2066                 u16 did_old = context_domain_id(context);
2067
2068                 if (did_old >= 0 && did_old < cap_ndoms(iommu->cap))
2069                         iommu->flush.flush_context(iommu, did_old,
2070                                                    (((u16)bus) << 8) | devfn,
2071                                                    DMA_CCMD_MASK_NOBIT,
2072                                                    DMA_CCMD_DEVICE_INVL);
2073         }
2074
2075         pgd = domain->pgd;
2076
2077         context_clear_entry(context);
2078         context_set_domain_id(context, did);
2079
2080         /*
2081          * Skip top levels of page tables for iommu which has less agaw
2082          * than default.  Unnecessary for PT mode.
2083          */
2084         if (translation != CONTEXT_TT_PASS_THROUGH) {
2085                 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
2086                         ret = -ENOMEM;
2087                         pgd = phys_to_virt(dma_pte_addr(pgd));
2088                         if (!dma_pte_present(pgd))
2089                                 goto out_unlock;
2090                 }
2091
2092                 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
2093                 if (info && info->ats_supported)
2094                         translation = CONTEXT_TT_DEV_IOTLB;
2095                 else
2096                         translation = CONTEXT_TT_MULTI_LEVEL;
2097
2098                 context_set_address_root(context, virt_to_phys(pgd));
2099                 context_set_address_width(context, iommu->agaw);
2100         } else {
2101                 /*
2102                  * In pass through mode, AW must be programmed to
2103                  * indicate the largest AGAW value supported by
2104                  * hardware. And ASR is ignored by hardware.
2105                  */
2106                 context_set_address_width(context, iommu->msagaw);
2107         }
2108
2109         context_set_translation_type(context, translation);
2110         context_set_fault_enable(context);
2111         context_set_present(context);
2112         domain_flush_cache(domain, context, sizeof(*context));
2113
2114         /*
2115          * It's a non-present to present mapping. If hardware doesn't cache
2116          * non-present entry we only need to flush the write-buffer. If the
2117          * _does_ cache non-present entries, then it does so in the special
2118          * domain #0, which we have to flush:
2119          */
2120         if (cap_caching_mode(iommu->cap)) {
2121                 iommu->flush.flush_context(iommu, 0,
2122                                            (((u16)bus) << 8) | devfn,
2123                                            DMA_CCMD_MASK_NOBIT,
2124                                            DMA_CCMD_DEVICE_INVL);
2125                 iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
2126         } else {
2127                 iommu_flush_write_buffer(iommu);
2128         }
2129         iommu_enable_dev_iotlb(info);
2130
2131         ret = 0;
2132
2133 out_unlock:
2134         spin_unlock(&iommu->lock);
2135         spin_unlock_irqrestore(&device_domain_lock, flags);
2136
2137         return ret;
2138 }
2139
2140 struct domain_context_mapping_data {
2141         struct dmar_domain *domain;
2142         struct intel_iommu *iommu;
2143 };
2144
2145 static int domain_context_mapping_cb(struct pci_dev *pdev,
2146                                      u16 alias, void *opaque)
2147 {
2148         struct domain_context_mapping_data *data = opaque;
2149
2150         return domain_context_mapping_one(data->domain, data->iommu,
2151                                           PCI_BUS_NUM(alias), alias & 0xff);
2152 }
2153
2154 static int
2155 domain_context_mapping(struct dmar_domain *domain, struct device *dev)
2156 {
2157         struct intel_iommu *iommu;
2158         u8 bus, devfn;
2159         struct domain_context_mapping_data data;
2160
2161         iommu = device_to_iommu(dev, &bus, &devfn);
2162         if (!iommu)
2163                 return -ENODEV;
2164
2165         if (!dev_is_pci(dev))
2166                 return domain_context_mapping_one(domain, iommu, bus, devfn);
2167
2168         data.domain = domain;
2169         data.iommu = iommu;
2170
2171         return pci_for_each_dma_alias(to_pci_dev(dev),
2172                                       &domain_context_mapping_cb, &data);
2173 }
2174
2175 static int domain_context_mapped_cb(struct pci_dev *pdev,
2176                                     u16 alias, void *opaque)
2177 {
2178         struct intel_iommu *iommu = opaque;
2179
2180         return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
2181 }
2182
2183 static int domain_context_mapped(struct device *dev)
2184 {
2185         struct intel_iommu *iommu;
2186         u8 bus, devfn;
2187
2188         iommu = device_to_iommu(dev, &bus, &devfn);
2189         if (!iommu)
2190                 return -ENODEV;
2191
2192         if (!dev_is_pci(dev))
2193                 return device_context_mapped(iommu, bus, devfn);
2194
2195         return !pci_for_each_dma_alias(to_pci_dev(dev),
2196                                        domain_context_mapped_cb, iommu);
2197 }
2198
2199 /* Returns a number of VTD pages, but aligned to MM page size */
2200 static inline unsigned long aligned_nrpages(unsigned long host_addr,
2201                                             size_t size)
2202 {
2203         host_addr &= ~PAGE_MASK;
2204         return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
2205 }
2206
2207 /* Return largest possible superpage level for a given mapping */
2208 static inline int hardware_largepage_caps(struct dmar_domain *domain,
2209                                           unsigned long iov_pfn,
2210                                           unsigned long phy_pfn,
2211                                           unsigned long pages)
2212 {
2213         int support, level = 1;
2214         unsigned long pfnmerge;
2215
2216         support = domain->iommu_superpage;
2217
2218         /* To use a large page, the virtual *and* physical addresses
2219            must be aligned to 2MiB/1GiB/etc. Lower bits set in either
2220            of them will mean we have to use smaller pages. So just
2221            merge them and check both at once. */
2222         pfnmerge = iov_pfn | phy_pfn;
2223
2224         while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
2225                 pages >>= VTD_STRIDE_SHIFT;
2226                 if (!pages)
2227                         break;
2228                 pfnmerge >>= VTD_STRIDE_SHIFT;
2229                 level++;
2230                 support--;
2231         }
2232         return level;
2233 }
2234
2235 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2236                             struct scatterlist *sg, unsigned long phys_pfn,
2237                             unsigned long nr_pages, int prot)
2238 {
2239         struct dma_pte *first_pte = NULL, *pte = NULL;
2240         phys_addr_t uninitialized_var(pteval);
2241         unsigned long sg_res = 0;
2242         unsigned int largepage_lvl = 0;
2243         unsigned long lvl_pages = 0;
2244
2245         BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
2246
2247         if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
2248                 return -EINVAL;
2249
2250         prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
2251
2252         if (!sg) {
2253                 sg_res = nr_pages;
2254                 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
2255         }
2256
2257         while (nr_pages > 0) {
2258                 uint64_t tmp;
2259
2260                 if (!sg_res) {
2261                         sg_res = aligned_nrpages(sg->offset, sg->length);
2262                         sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
2263                         sg->dma_length = sg->length;
2264                         pteval = page_to_phys(sg_page(sg)) | prot;
2265                         phys_pfn = pteval >> VTD_PAGE_SHIFT;
2266                 }
2267
2268                 if (!pte) {
2269                         largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
2270
2271                         first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2272                         if (!pte)
2273                                 return -ENOMEM;
2274                         /* It is large page*/
2275                         if (largepage_lvl > 1) {
2276                                 unsigned long nr_superpages, end_pfn;
2277
2278                                 pteval |= DMA_PTE_LARGE_PAGE;
2279                                 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2280
2281                                 nr_superpages = sg_res / lvl_pages;
2282                                 end_pfn = iov_pfn + nr_superpages * lvl_pages - 1;
2283
2284                                 /*
2285                                  * Ensure that old small page tables are
2286                                  * removed to make room for superpage(s).
2287                                  * We're adding new large pages, so make sure
2288                                  * we don't remove their parent tables.
2289                                  */
2290                                 dma_pte_free_pagetable(domain, iov_pfn, end_pfn,
2291                                                        largepage_lvl + 1);
2292                         } else {
2293                                 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2294                         }
2295
2296                 }
2297                 /* We don't need lock here, nobody else
2298                  * touches the iova range
2299                  */
2300                 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2301                 if (tmp) {
2302                         static int dumps = 5;
2303                         pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2304                                 iov_pfn, tmp, (unsigned long long)pteval);
2305                         if (dumps) {
2306                                 dumps--;
2307                                 debug_dma_dump_mappings(NULL);
2308                         }
2309                         WARN_ON(1);
2310                 }
2311
2312                 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2313
2314                 BUG_ON(nr_pages < lvl_pages);
2315                 BUG_ON(sg_res < lvl_pages);
2316
2317                 nr_pages -= lvl_pages;
2318                 iov_pfn += lvl_pages;
2319                 phys_pfn += lvl_pages;
2320                 pteval += lvl_pages * VTD_PAGE_SIZE;
2321                 sg_res -= lvl_pages;
2322
2323                 /* If the next PTE would be the first in a new page, then we
2324                    need to flush the cache on the entries we've just written.
2325                    And then we'll need to recalculate 'pte', so clear it and
2326                    let it get set again in the if (!pte) block above.
2327
2328                    If we're done (!nr_pages) we need to flush the cache too.
2329
2330                    Also if we've been setting superpages, we may need to
2331                    recalculate 'pte' and switch back to smaller pages for the
2332                    end of the mapping, if the trailing size is not enough to
2333                    use another superpage (i.e. sg_res < lvl_pages). */
2334                 pte++;
2335                 if (!nr_pages || first_pte_in_page(pte) ||
2336                     (largepage_lvl > 1 && sg_res < lvl_pages)) {
2337                         domain_flush_cache(domain, first_pte,
2338                                            (void *)pte - (void *)first_pte);
2339                         pte = NULL;
2340                 }
2341
2342                 if (!sg_res && nr_pages)
2343                         sg = sg_next(sg);
2344         }
2345         return 0;
2346 }
2347
2348 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2349                                     struct scatterlist *sg, unsigned long nr_pages,
2350                                     int prot)
2351 {
2352         return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2353 }
2354
2355 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2356                                      unsigned long phys_pfn, unsigned long nr_pages,
2357                                      int prot)
2358 {
2359         return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2360 }
2361
2362 static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn)
2363 {
2364         if (!iommu)
2365                 return;
2366
2367         clear_context_table(iommu, bus, devfn);
2368         iommu->flush.flush_context(iommu, 0, 0, 0,
2369                                            DMA_CCMD_GLOBAL_INVL);
2370         iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2371 }
2372
2373 static inline void unlink_domain_info(struct device_domain_info *info)
2374 {
2375         assert_spin_locked(&device_domain_lock);
2376         list_del(&info->link);
2377         list_del(&info->global);
2378         if (info->dev)
2379                 info->dev->archdata.iommu = NULL;
2380 }
2381
2382 static void domain_remove_dev_info(struct dmar_domain *domain)
2383 {
2384         struct device_domain_info *info, *tmp;
2385         unsigned long flags;
2386
2387         spin_lock_irqsave(&device_domain_lock, flags);
2388         list_for_each_entry_safe(info, tmp, &domain->devices, link)
2389                 __dmar_remove_one_dev_info(info);
2390         spin_unlock_irqrestore(&device_domain_lock, flags);
2391 }
2392
2393 /*
2394  * find_domain
2395  * Note: we use struct device->archdata.iommu stores the info
2396  */
2397 static struct dmar_domain *find_domain(struct device *dev)
2398 {
2399         struct device_domain_info *info;
2400
2401         /* No lock here, assumes no domain exit in normal case */
2402         info = dev->archdata.iommu;
2403         if (likely(info))
2404                 return info->domain;
2405         return NULL;
2406 }
2407
2408 static inline struct device_domain_info *
2409 dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
2410 {
2411         struct device_domain_info *info;
2412
2413         list_for_each_entry(info, &device_domain_list, global)
2414                 if (info->iommu->segment == segment && info->bus == bus &&
2415                     info->devfn == devfn)
2416                         return info;
2417
2418         return NULL;
2419 }
2420
2421 static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu,
2422                                                     int bus, int devfn,
2423                                                     struct device *dev,
2424                                                     struct dmar_domain *domain)
2425 {
2426         struct dmar_domain *found = NULL;
2427         struct device_domain_info *info;
2428         unsigned long flags;
2429         int ret;
2430
2431         info = alloc_devinfo_mem();
2432         if (!info)
2433                 return NULL;
2434
2435         info->bus = bus;
2436         info->devfn = devfn;
2437         info->ats_supported = info->pasid_supported = info->pri_supported = 0;
2438         info->ats_enabled = info->pasid_enabled = info->pri_enabled = 0;
2439         info->ats_qdep = 0;
2440         info->dev = dev;
2441         info->domain = domain;
2442         info->iommu = iommu;
2443
2444         if (dev && dev_is_pci(dev)) {
2445                 struct pci_dev *pdev = to_pci_dev(info->dev);
2446
2447                 if (ecap_dev_iotlb_support(iommu->ecap) &&
2448                     pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS) &&
2449                     dmar_find_matched_atsr_unit(pdev))
2450                         info->ats_supported = 1;
2451
2452                 if (ecs_enabled(iommu)) {
2453                         if (pasid_enabled(iommu)) {
2454                                 int features = pci_pasid_features(pdev);
2455                                 if (features >= 0)
2456                                         info->pasid_supported = features | 1;
2457                         }
2458
2459                         if (info->ats_supported && ecap_prs(iommu->ecap) &&
2460                             pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI))
2461                                 info->pri_supported = 1;
2462                 }
2463         }
2464
2465         spin_lock_irqsave(&device_domain_lock, flags);
2466         if (dev)
2467                 found = find_domain(dev);
2468
2469         if (!found) {
2470                 struct device_domain_info *info2;
2471                 info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn);
2472                 if (info2) {
2473                         found      = info2->domain;
2474                         info2->dev = dev;
2475                 }
2476         }
2477
2478         if (found) {
2479                 spin_unlock_irqrestore(&device_domain_lock, flags);
2480                 free_devinfo_mem(info);
2481                 /* Caller must free the original domain */
2482                 return found;
2483         }
2484
2485         spin_lock(&iommu->lock);
2486         ret = domain_attach_iommu(domain, iommu);
2487         spin_unlock(&iommu->lock);
2488
2489         if (ret) {
2490                 spin_unlock_irqrestore(&device_domain_lock, flags);
2491                 free_devinfo_mem(info);
2492                 return NULL;
2493         }
2494
2495         list_add(&info->link, &domain->devices);
2496         list_add(&info->global, &device_domain_list);
2497         if (dev)
2498                 dev->archdata.iommu = info;
2499         spin_unlock_irqrestore(&device_domain_lock, flags);
2500
2501         if (dev && domain_context_mapping(domain, dev)) {
2502                 pr_err("Domain context map for %s failed\n", dev_name(dev));
2503                 dmar_remove_one_dev_info(domain, dev);
2504                 return NULL;
2505         }
2506
2507         return domain;
2508 }
2509
2510 static int get_last_alias(struct pci_dev *pdev, u16 alias, void *opaque)
2511 {
2512         *(u16 *)opaque = alias;
2513         return 0;
2514 }
2515
2516 static struct dmar_domain *find_or_alloc_domain(struct device *dev, int gaw)
2517 {
2518         struct device_domain_info *info = NULL;
2519         struct dmar_domain *domain = NULL;
2520         struct intel_iommu *iommu;
2521         u16 req_id, dma_alias;
2522         unsigned long flags;
2523         u8 bus, devfn;
2524
2525         iommu = device_to_iommu(dev, &bus, &devfn);
2526         if (!iommu)
2527                 return NULL;
2528
2529         req_id = ((u16)bus << 8) | devfn;
2530
2531         if (dev_is_pci(dev)) {
2532                 struct pci_dev *pdev = to_pci_dev(dev);
2533
2534                 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2535
2536                 spin_lock_irqsave(&device_domain_lock, flags);
2537                 info = dmar_search_domain_by_dev_info(pci_domain_nr(pdev->bus),
2538                                                       PCI_BUS_NUM(dma_alias),
2539                                                       dma_alias & 0xff);
2540                 if (info) {
2541                         iommu = info->iommu;
2542                         domain = info->domain;
2543                 }
2544                 spin_unlock_irqrestore(&device_domain_lock, flags);
2545
2546                 /* DMA alias already has a domain, use it */
2547                 if (info)
2548                         goto out;
2549         }
2550
2551         /* Allocate and initialize new domain for the device */
2552         domain = alloc_domain(0);
2553         if (!domain)
2554                 return NULL;
2555         if (domain_init(domain, iommu, gaw)) {
2556                 domain_exit(domain);
2557                 return NULL;
2558         }
2559
2560 out:
2561
2562         return domain;
2563 }
2564
2565 static struct dmar_domain *set_domain_for_dev(struct device *dev,
2566                                               struct dmar_domain *domain)
2567 {
2568         struct intel_iommu *iommu;
2569         struct dmar_domain *tmp;
2570         u16 req_id, dma_alias;
2571         u8 bus, devfn;
2572
2573         iommu = device_to_iommu(dev, &bus, &devfn);
2574         if (!iommu)
2575                 return NULL;
2576
2577         req_id = ((u16)bus << 8) | devfn;
2578
2579         if (dev_is_pci(dev)) {
2580                 struct pci_dev *pdev = to_pci_dev(dev);
2581
2582                 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2583
2584                 /* register PCI DMA alias device */
2585                 if (req_id != dma_alias) {
2586                         tmp = dmar_insert_one_dev_info(iommu, PCI_BUS_NUM(dma_alias),
2587                                         dma_alias & 0xff, NULL, domain);
2588
2589                         if (!tmp || tmp != domain)
2590                                 return tmp;
2591                 }
2592         }
2593
2594         tmp = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2595         if (!tmp || tmp != domain)
2596                 return tmp;
2597
2598         return domain;
2599 }
2600
2601 static struct dmar_domain *get_domain_for_dev(struct device *dev, int gaw)
2602 {
2603         struct dmar_domain *domain, *tmp;
2604
2605         domain = find_domain(dev);
2606         if (domain)
2607                 goto out;
2608
2609         domain = find_or_alloc_domain(dev, gaw);
2610         if (!domain)
2611                 goto out;
2612
2613         tmp = set_domain_for_dev(dev, domain);
2614         if (!tmp || domain != tmp) {
2615                 domain_exit(domain);
2616                 domain = tmp;
2617         }
2618
2619 out:
2620
2621         return domain;
2622 }
2623
2624 static int iommu_domain_identity_map(struct dmar_domain *domain,
2625                                      unsigned long long start,
2626                                      unsigned long long end)
2627 {
2628         unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2629         unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2630
2631         if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2632                           dma_to_mm_pfn(last_vpfn))) {
2633                 pr_err("Reserving iova failed\n");
2634                 return -ENOMEM;
2635         }
2636
2637         pr_debug("Mapping reserved region %llx-%llx\n", start, end);
2638         /*
2639          * RMRR range might have overlap with physical memory range,
2640          * clear it first
2641          */
2642         dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2643
2644         return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2645                                   last_vpfn - first_vpfn + 1,
2646                                   DMA_PTE_READ|DMA_PTE_WRITE);
2647 }
2648
2649 static int domain_prepare_identity_map(struct device *dev,
2650                                        struct dmar_domain *domain,
2651                                        unsigned long long start,
2652                                        unsigned long long end)
2653 {
2654         /* For _hardware_ passthrough, don't bother. But for software
2655            passthrough, we do it anyway -- it may indicate a memory
2656            range which is reserved in E820, so which didn't get set
2657            up to start with in si_domain */
2658         if (domain == si_domain && hw_pass_through) {
2659                 pr_warn("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2660                         dev_name(dev), start, end);
2661                 return 0;
2662         }
2663
2664         pr_info("Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2665                 dev_name(dev), start, end);
2666
2667         if (end < start) {
2668                 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2669                         "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2670                         dmi_get_system_info(DMI_BIOS_VENDOR),
2671                         dmi_get_system_info(DMI_BIOS_VERSION),
2672                      dmi_get_system_info(DMI_PRODUCT_VERSION));
2673                 return -EIO;
2674         }
2675
2676         if (end >> agaw_to_width(domain->agaw)) {
2677                 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2678                      "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2679                      agaw_to_width(domain->agaw),
2680                      dmi_get_system_info(DMI_BIOS_VENDOR),
2681                      dmi_get_system_info(DMI_BIOS_VERSION),
2682                      dmi_get_system_info(DMI_PRODUCT_VERSION));
2683                 return -EIO;
2684         }
2685
2686         return iommu_domain_identity_map(domain, start, end);
2687 }
2688
2689 static int iommu_prepare_identity_map(struct device *dev,
2690                                       unsigned long long start,
2691                                       unsigned long long end)
2692 {
2693         struct dmar_domain *domain;
2694         int ret;
2695
2696         domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2697         if (!domain)
2698                 return -ENOMEM;
2699
2700         ret = domain_prepare_identity_map(dev, domain, start, end);
2701         if (ret)
2702                 domain_exit(domain);
2703
2704         return ret;
2705 }
2706
2707 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2708                                          struct device *dev)
2709 {
2710         if (dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2711                 return 0;
2712         return iommu_prepare_identity_map(dev, rmrr->base_address,
2713                                           rmrr->end_address);
2714 }
2715
2716 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2717 static inline void iommu_prepare_isa(void)
2718 {
2719         struct pci_dev *pdev;
2720         int ret;
2721
2722         pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2723         if (!pdev)
2724                 return;
2725
2726         pr_info("Prepare 0-16MiB unity mapping for LPC\n");
2727         ret = iommu_prepare_identity_map(&pdev->dev, 0, 16*1024*1024 - 1);
2728
2729         if (ret)
2730                 pr_err("Failed to create 0-16MiB identity map - floppy might not work\n");
2731
2732         pci_dev_put(pdev);
2733 }
2734 #else
2735 static inline void iommu_prepare_isa(void)
2736 {
2737         return;
2738 }
2739 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2740
2741 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2742
2743 static int __init si_domain_init(int hw)
2744 {
2745         int nid, ret = 0;
2746
2747         si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2748         if (!si_domain)
2749                 return -EFAULT;
2750
2751         if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2752                 domain_exit(si_domain);
2753                 return -EFAULT;
2754         }
2755
2756         pr_debug("Identity mapping domain allocated\n");
2757
2758         if (hw)
2759                 return 0;
2760
2761         for_each_online_node(nid) {
2762                 unsigned long start_pfn, end_pfn;
2763                 int i;
2764
2765                 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2766                         ret = iommu_domain_identity_map(si_domain,
2767                                         PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2768                         if (ret)
2769                                 return ret;
2770                 }
2771         }
2772
2773         return 0;
2774 }
2775
2776 static int identity_mapping(struct device *dev)
2777 {
2778         struct device_domain_info *info;
2779
2780         if (likely(!iommu_identity_mapping))
2781                 return 0;
2782
2783         info = dev->archdata.iommu;
2784         if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2785                 return (info->domain == si_domain);
2786
2787         return 0;
2788 }
2789
2790 static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev)
2791 {
2792         struct dmar_domain *ndomain;
2793         struct intel_iommu *iommu;
2794         u8 bus, devfn;
2795
2796         iommu = device_to_iommu(dev, &bus, &devfn);
2797         if (!iommu)
2798                 return -ENODEV;
2799
2800         ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2801         if (ndomain != domain)
2802                 return -EBUSY;
2803
2804         return 0;
2805 }
2806
2807 static bool device_has_rmrr(struct device *dev)
2808 {
2809         struct dmar_rmrr_unit *rmrr;
2810         struct device *tmp;
2811         int i;
2812
2813         rcu_read_lock();
2814         for_each_rmrr_units(rmrr) {
2815                 /*
2816                  * Return TRUE if this RMRR contains the device that
2817                  * is passed in.
2818                  */
2819                 for_each_active_dev_scope(rmrr->devices,
2820                                           rmrr->devices_cnt, i, tmp)
2821                         if (tmp == dev) {
2822                                 rcu_read_unlock();
2823                                 return true;
2824                         }
2825         }
2826         rcu_read_unlock();
2827         return false;
2828 }
2829
2830 /*
2831  * There are a couple cases where we need to restrict the functionality of
2832  * devices associated with RMRRs.  The first is when evaluating a device for
2833  * identity mapping because problems exist when devices are moved in and out
2834  * of domains and their respective RMRR information is lost.  This means that
2835  * a device with associated RMRRs will never be in a "passthrough" domain.
2836  * The second is use of the device through the IOMMU API.  This interface
2837  * expects to have full control of the IOVA space for the device.  We cannot
2838  * satisfy both the requirement that RMRR access is maintained and have an
2839  * unencumbered IOVA space.  We also have no ability to quiesce the device's
2840  * use of the RMRR space or even inform the IOMMU API user of the restriction.
2841  * We therefore prevent devices associated with an RMRR from participating in
2842  * the IOMMU API, which eliminates them from device assignment.
2843  *
2844  * In both cases we assume that PCI USB devices with RMRRs have them largely
2845  * for historical reasons and that the RMRR space is not actively used post
2846  * boot.  This exclusion may change if vendors begin to abuse it.
2847  *
2848  * The same exception is made for graphics devices, with the requirement that
2849  * any use of the RMRR regions will be torn down before assigning the device
2850  * to a guest.
2851  */
2852 static bool device_is_rmrr_locked(struct device *dev)
2853 {
2854         if (!device_has_rmrr(dev))
2855                 return false;
2856
2857         if (dev_is_pci(dev)) {
2858                 struct pci_dev *pdev = to_pci_dev(dev);
2859
2860                 if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
2861                         return false;
2862         }
2863
2864         return true;
2865 }
2866
2867 static int iommu_should_identity_map(struct device *dev, int startup)
2868 {
2869
2870         if (dev_is_pci(dev)) {
2871                 struct pci_dev *pdev = to_pci_dev(dev);
2872
2873                 if (device_is_rmrr_locked(dev))
2874                         return 0;
2875
2876                 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2877                         return 1;
2878
2879                 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2880                         return 1;
2881
2882                 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2883                         return 0;
2884
2885                 /*
2886                  * We want to start off with all devices in the 1:1 domain, and
2887                  * take them out later if we find they can't access all of memory.
2888                  *
2889                  * However, we can't do this for PCI devices behind bridges,
2890                  * because all PCI devices behind the same bridge will end up
2891                  * with the same source-id on their transactions.
2892                  *
2893                  * Practically speaking, we can't change things around for these
2894                  * devices at run-time, because we can't be sure there'll be no
2895                  * DMA transactions in flight for any of their siblings.
2896                  *
2897                  * So PCI devices (unless they're on the root bus) as well as
2898                  * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2899                  * the 1:1 domain, just in _case_ one of their siblings turns out
2900                  * not to be able to map all of memory.
2901                  */
2902                 if (!pci_is_pcie(pdev)) {
2903                         if (!pci_is_root_bus(pdev->bus))
2904                                 return 0;
2905                         if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2906                                 return 0;
2907                 } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2908                         return 0;
2909         } else {
2910                 if (device_has_rmrr(dev))
2911                         return 0;
2912         }
2913
2914         /*
2915          * At boot time, we don't yet know if devices will be 64-bit capable.
2916          * Assume that they will — if they turn out not to be, then we can
2917          * take them out of the 1:1 domain later.
2918          */
2919         if (!startup) {
2920                 /*
2921                  * If the device's dma_mask is less than the system's memory
2922                  * size then this is not a candidate for identity mapping.
2923                  */
2924                 u64 dma_mask = *dev->dma_mask;
2925
2926                 if (dev->coherent_dma_mask &&
2927                     dev->coherent_dma_mask < dma_mask)
2928                         dma_mask = dev->coherent_dma_mask;
2929
2930                 return dma_mask >= dma_get_required_mask(dev);
2931         }
2932
2933         return 1;
2934 }
2935
2936 static int __init dev_prepare_static_identity_mapping(struct device *dev, int hw)
2937 {
2938         int ret;
2939
2940         if (!iommu_should_identity_map(dev, 1))
2941                 return 0;
2942
2943         ret = domain_add_dev_info(si_domain, dev);
2944         if (!ret)
2945                 pr_info("%s identity mapping for device %s\n",
2946                         hw ? "Hardware" : "Software", dev_name(dev));
2947         else if (ret == -ENODEV)
2948                 /* device not associated with an iommu */
2949                 ret = 0;
2950
2951         return ret;
2952 }
2953
2954
2955 static int __init iommu_prepare_static_identity_mapping(int hw)
2956 {
2957         struct pci_dev *pdev = NULL;
2958         struct dmar_drhd_unit *drhd;
2959         struct intel_iommu *iommu;
2960         struct device *dev;
2961         int i;
2962         int ret = 0;
2963
2964         for_each_pci_dev(pdev) {
2965                 ret = dev_prepare_static_identity_mapping(&pdev->dev, hw);
2966                 if (ret)
2967                         return ret;
2968         }
2969
2970         for_each_active_iommu(iommu, drhd)
2971                 for_each_active_dev_scope(drhd->devices, drhd->devices_cnt, i, dev) {
2972                         struct acpi_device_physical_node *pn;
2973                         struct acpi_device *adev;
2974
2975                         if (dev->bus != &acpi_bus_type)
2976                                 continue;
2977
2978                         adev= to_acpi_device(dev);
2979                         mutex_lock(&adev->physical_node_lock);
2980                         list_for_each_entry(pn, &adev->physical_node_list, node) {
2981                                 ret = dev_prepare_static_identity_mapping(pn->dev, hw);
2982                                 if (ret)
2983                                         break;
2984                         }
2985                         mutex_unlock(&adev->physical_node_lock);
2986                         if (ret)
2987                                 return ret;
2988                 }
2989
2990         return 0;
2991 }
2992
2993 static void intel_iommu_init_qi(struct intel_iommu *iommu)
2994 {
2995         /*
2996          * Start from the sane iommu hardware state.
2997          * If the queued invalidation is already initialized by us
2998          * (for example, while enabling interrupt-remapping) then
2999          * we got the things already rolling from a sane state.
3000          */
3001         if (!iommu->qi) {
3002                 /*
3003                  * Clear any previous faults.
3004                  */
3005                 dmar_fault(-1, iommu);
3006                 /*
3007                  * Disable queued invalidation if supported and already enabled
3008                  * before OS handover.
3009                  */
3010                 dmar_disable_qi(iommu);
3011         }
3012
3013         if (dmar_enable_qi(iommu)) {
3014                 /*
3015                  * Queued Invalidate not enabled, use Register Based Invalidate
3016                  */
3017                 iommu->flush.flush_context = __iommu_flush_context;
3018                 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
3019                 pr_info("%s: Using Register based invalidation\n",
3020                         iommu->name);
3021         } else {
3022                 iommu->flush.flush_context = qi_flush_context;
3023                 iommu->flush.flush_iotlb = qi_flush_iotlb;
3024                 pr_info("%s: Using Queued invalidation\n", iommu->name);
3025         }
3026 }
3027
3028 static int copy_context_table(struct intel_iommu *iommu,
3029                               struct root_entry *old_re,
3030                               struct context_entry **tbl,
3031                               int bus, bool ext)
3032 {
3033         int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
3034         struct context_entry *new_ce = NULL, ce;
3035         struct context_entry *old_ce = NULL;
3036         struct root_entry re;
3037         phys_addr_t old_ce_phys;
3038
3039         tbl_idx = ext ? bus * 2 : bus;
3040         memcpy(&re, old_re, sizeof(re));
3041
3042         for (devfn = 0; devfn < 256; devfn++) {
3043                 /* First calculate the correct index */
3044                 idx = (ext ? devfn * 2 : devfn) % 256;
3045
3046                 if (idx == 0) {
3047                         /* First save what we may have and clean up */
3048                         if (new_ce) {
3049                                 tbl[tbl_idx] = new_ce;
3050                                 __iommu_flush_cache(iommu, new_ce,
3051                                                     VTD_PAGE_SIZE);
3052                                 pos = 1;
3053                         }
3054
3055                         if (old_ce)
3056                                 iounmap(old_ce);
3057
3058                         ret = 0;
3059                         if (devfn < 0x80)
3060                                 old_ce_phys = root_entry_lctp(&re);
3061                         else
3062                                 old_ce_phys = root_entry_uctp(&re);
3063
3064                         if (!old_ce_phys) {
3065                                 if (ext && devfn == 0) {
3066                                         /* No LCTP, try UCTP */
3067                                         devfn = 0x7f;
3068                                         continue;
3069                                 } else {
3070                                         goto out;
3071                                 }
3072                         }
3073
3074                         ret = -ENOMEM;
3075                         old_ce = memremap(old_ce_phys, PAGE_SIZE,
3076                                         MEMREMAP_WB);
3077                         if (!old_ce)
3078                                 goto out;
3079
3080                         new_ce = alloc_pgtable_page(iommu->node);
3081                         if (!new_ce)
3082                                 goto out_unmap;
3083
3084                         ret = 0;
3085                 }
3086
3087                 /* Now copy the context entry */
3088                 memcpy(&ce, old_ce + idx, sizeof(ce));
3089
3090                 if (!__context_present(&ce))
3091                         continue;
3092
3093                 did = context_domain_id(&ce);
3094                 if (did >= 0 && did < cap_ndoms(iommu->cap))
3095                         set_bit(did, iommu->domain_ids);
3096
3097                 /*
3098                  * We need a marker for copied context entries. This
3099                  * marker needs to work for the old format as well as
3100                  * for extended context entries.
3101                  *
3102                  * Bit 67 of the context entry is used. In the old
3103                  * format this bit is available to software, in the
3104                  * extended format it is the PGE bit, but PGE is ignored
3105                  * by HW if PASIDs are disabled (and thus still
3106                  * available).
3107                  *
3108                  * So disable PASIDs first and then mark the entry
3109                  * copied. This means that we don't copy PASID
3110                  * translations from the old kernel, but this is fine as
3111                  * faults there are not fatal.
3112                  */
3113                 context_clear_pasid_enable(&ce);
3114                 context_set_copied(&ce);
3115
3116                 new_ce[idx] = ce;
3117         }
3118
3119         tbl[tbl_idx + pos] = new_ce;
3120
3121         __iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);
3122
3123 out_unmap:
3124         memunmap(old_ce);
3125
3126 out:
3127         return ret;
3128 }
3129
3130 static int copy_translation_tables(struct intel_iommu *iommu)
3131 {
3132         struct context_entry **ctxt_tbls;
3133         struct root_entry *old_rt;
3134         phys_addr_t old_rt_phys;
3135         int ctxt_table_entries;
3136         unsigned long flags;
3137         u64 rtaddr_reg;
3138         int bus, ret;
3139         bool new_ext, ext;
3140
3141         rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
3142         ext        = !!(rtaddr_reg & DMA_RTADDR_RTT);
3143         new_ext    = !!ecap_ecs(iommu->ecap);
3144
3145         /*
3146          * The RTT bit can only be changed when translation is disabled,
3147          * but disabling translation means to open a window for data
3148          * corruption. So bail out and don't copy anything if we would
3149          * have to change the bit.
3150          */
3151         if (new_ext != ext)
3152                 return -EINVAL;
3153
3154         old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
3155         if (!old_rt_phys)
3156                 return -EINVAL;
3157
3158         old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB);
3159         if (!old_rt)
3160                 return -ENOMEM;
3161
3162         /* This is too big for the stack - allocate it from slab */
3163         ctxt_table_entries = ext ? 512 : 256;
3164         ret = -ENOMEM;
3165         ctxt_tbls = kzalloc(ctxt_table_entries * sizeof(void *), GFP_KERNEL);
3166         if (!ctxt_tbls)
3167                 goto out_unmap;
3168
3169         for (bus = 0; bus < 256; bus++) {
3170                 ret = copy_context_table(iommu, &old_rt[bus],
3171                                          ctxt_tbls, bus, ext);
3172                 if (ret) {
3173                         pr_err("%s: Failed to copy context table for bus %d\n",
3174                                 iommu->name, bus);
3175                         continue;
3176                 }
3177         }
3178
3179         spin_lock_irqsave(&iommu->lock, flags);
3180
3181         /* Context tables are copied, now write them to the root_entry table */
3182         for (bus = 0; bus < 256; bus++) {
3183                 int idx = ext ? bus * 2 : bus;
3184                 u64 val;
3185
3186                 if (ctxt_tbls[idx]) {
3187                         val = virt_to_phys(ctxt_tbls[idx]) | 1;
3188                         iommu->root_entry[bus].lo = val;
3189                 }
3190
3191                 if (!ext || !ctxt_tbls[idx + 1])
3192                         continue;
3193
3194                 val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
3195                 iommu->root_entry[bus].hi = val;
3196         }
3197
3198         spin_unlock_irqrestore(&iommu->lock, flags);
3199
3200         kfree(ctxt_tbls);
3201
3202         __iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);
3203
3204         ret = 0;
3205
3206 out_unmap:
3207         memunmap(old_rt);
3208
3209         return ret;
3210 }
3211
3212 static int __init init_dmars(void)
3213 {
3214         struct dmar_drhd_unit *drhd;
3215         struct dmar_rmrr_unit *rmrr;
3216         bool copied_tables = false;
3217         struct device *dev;
3218         struct intel_iommu *iommu;
3219         int i, ret, cpu;
3220
3221         /*
3222          * for each drhd
3223          *    allocate root
3224          *    initialize and program root entry to not present
3225          * endfor
3226          */
3227         for_each_drhd_unit(drhd) {
3228                 /*
3229                  * lock not needed as this is only incremented in the single
3230                  * threaded kernel __init code path all other access are read
3231                  * only
3232                  */
3233                 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
3234                         g_num_of_iommus++;
3235                         continue;
3236                 }
3237                 pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
3238         }
3239
3240         /* Preallocate enough resources for IOMMU hot-addition */
3241         if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
3242                 g_num_of_iommus = DMAR_UNITS_SUPPORTED;
3243
3244         g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
3245                         GFP_KERNEL);
3246         if (!g_iommus) {
3247                 pr_err("Allocating global iommu array failed\n");
3248                 ret = -ENOMEM;
3249                 goto error;
3250         }
3251
3252         for_each_possible_cpu(cpu) {
3253                 struct deferred_flush_data *dfd = per_cpu_ptr(&deferred_flush,
3254                                                               cpu);
3255
3256                 dfd->tables = kzalloc(g_num_of_iommus *
3257                                       sizeof(struct deferred_flush_table),
3258                                       GFP_KERNEL);
3259                 if (!dfd->tables) {
3260                         ret = -ENOMEM;
3261                         goto free_g_iommus;
3262                 }
3263
3264                 spin_lock_init(&dfd->lock);
3265                 setup_timer(&dfd->timer, flush_unmaps_timeout, cpu);
3266         }
3267
3268         for_each_active_iommu(iommu, drhd) {
3269                 g_iommus[iommu->seq_id] = iommu;
3270
3271                 intel_iommu_init_qi(iommu);
3272
3273                 ret = iommu_init_domains(iommu);
3274                 if (ret)
3275                         goto free_iommu;
3276
3277                 init_translation_status(iommu);
3278
3279                 if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
3280                         iommu_disable_translation(iommu);
3281                         clear_translation_pre_enabled(iommu);
3282                         pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
3283                                 iommu->name);
3284                 }
3285
3286                 /*
3287                  * TBD:
3288                  * we could share the same root & context tables
3289                  * among all IOMMU's. Need to Split it later.
3290                  */
3291                 ret = iommu_alloc_root_entry(iommu);
3292                 if (ret)
3293                         goto free_iommu;
3294
3295                 if (translation_pre_enabled(iommu)) {
3296                         pr_info("Translation already enabled - trying to copy translation structures\n");
3297
3298                         ret = copy_translation_tables(iommu);
3299                         if (ret) {
3300                                 /*
3301                                  * We found the IOMMU with translation
3302                                  * enabled - but failed to copy over the
3303                                  * old root-entry table. Try to proceed
3304                                  * by disabling translation now and
3305                                  * allocating a clean root-entry table.
3306                                  * This might cause DMAR faults, but
3307                                  * probably the dump will still succeed.
3308                                  */
3309                                 pr_err("Failed to copy translation tables from previous kernel for %s\n",
3310                                        iommu->name);
3311                                 iommu_disable_translation(iommu);
3312                                 clear_translation_pre_enabled(iommu);
3313                         } else {
3314                                 pr_info("Copied translation tables from previous kernel for %s\n",
3315                                         iommu->name);
3316                                 copied_tables = true;
3317                         }
3318                 }
3319
3320                 if (!ecap_pass_through(iommu->ecap))
3321                         hw_pass_through = 0;
3322 #ifdef CONFIG_INTEL_IOMMU_SVM
3323                 if (pasid_enabled(iommu))
3324                         intel_svm_alloc_pasid_tables(iommu);
3325 #endif
3326         }
3327
3328         /*
3329          * Now that qi is enabled on all iommus, set the root entry and flush
3330          * caches. This is required on some Intel X58 chipsets, otherwise the
3331          * flush_context function will loop forever and the boot hangs.
3332          */
3333         for_each_active_iommu(iommu, drhd) {
3334                 iommu_flush_write_buffer(iommu);
3335                 iommu_set_root_entry(iommu);
3336                 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
3337                 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3338         }
3339
3340         if (iommu_pass_through)
3341                 iommu_identity_mapping |= IDENTMAP_ALL;
3342
3343 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
3344         iommu_identity_mapping |= IDENTMAP_GFX;
3345 #endif
3346
3347         check_tylersburg_isoch();
3348
3349         if (iommu_identity_mapping) {
3350                 ret = si_domain_init(hw_pass_through);
3351                 if (ret)
3352                         goto free_iommu;
3353         }
3354
3355
3356         /*
3357          * If we copied translations from a previous kernel in the kdump
3358          * case, we can not assign the devices to domains now, as that
3359          * would eliminate the old mappings. So skip this part and defer
3360          * the assignment to device driver initialization time.
3361          */
3362         if (copied_tables)
3363                 goto domains_done;
3364
3365         /*
3366          * If pass through is not set or not enabled, setup context entries for
3367          * identity mappings for rmrr, gfx, and isa and may fall back to static
3368          * identity mapping if iommu_identity_mapping is set.
3369          */
3370         if (iommu_identity_mapping) {
3371                 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
3372                 if (ret) {
3373                         pr_crit("Failed to setup IOMMU pass-through\n");
3374                         goto free_iommu;
3375                 }
3376         }
3377         /*
3378          * For each rmrr
3379          *   for each dev attached to rmrr
3380          *   do
3381          *     locate drhd for dev, alloc domain for dev
3382          *     allocate free domain
3383          *     allocate page table entries for rmrr
3384          *     if context not allocated for bus
3385          *           allocate and init context
3386          *           set present in root table for this bus
3387          *     init context with domain, translation etc
3388          *    endfor
3389          * endfor
3390          */
3391         pr_info("Setting RMRR:\n");
3392         for_each_rmrr_units(rmrr) {
3393                 /* some BIOS lists non-exist devices in DMAR table. */
3394                 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
3395                                           i, dev) {
3396                         ret = iommu_prepare_rmrr_dev(rmrr, dev);
3397                         if (ret)
3398                                 pr_err("Mapping reserved region failed\n");
3399                 }
3400         }
3401
3402         iommu_prepare_isa();
3403
3404 domains_done:
3405
3406         /*
3407          * for each drhd
3408          *   enable fault log
3409          *   global invalidate context cache
3410          *   global invalidate iotlb
3411          *   enable translation
3412          */
3413         for_each_iommu(iommu, drhd) {
3414                 if (drhd->ignored) {
3415                         /*
3416                          * we always have to disable PMRs or DMA may fail on
3417                          * this device
3418                          */
3419                         if (force_on)
3420                                 iommu_disable_protect_mem_regions(iommu);
3421                         continue;
3422                 }
3423
3424                 iommu_flush_write_buffer(iommu);
3425
3426 #ifdef CONFIG_INTEL_IOMMU_SVM
3427                 if (pasid_enabled(iommu) && ecap_prs(iommu->ecap)) {
3428                         ret = intel_svm_enable_prq(iommu);
3429                         if (ret)
3430                                 goto free_iommu;
3431                 }
3432 #endif
3433                 ret = dmar_set_interrupt(iommu);
3434                 if (ret)
3435                         goto free_iommu;
3436
3437                 if (!translation_pre_enabled(iommu))
3438                         iommu_enable_translation(iommu);
3439
3440                 iommu_disable_protect_mem_regions(iommu);
3441         }
3442
3443         return 0;
3444
3445 free_iommu:
3446         for_each_active_iommu(iommu, drhd) {
3447                 disable_dmar_iommu(iommu);
3448                 free_dmar_iommu(iommu);
3449         }
3450 free_g_iommus:
3451         for_each_possible_cpu(cpu)
3452                 kfree(per_cpu_ptr(&deferred_flush, cpu)->tables);
3453         kfree(g_iommus);
3454 error:
3455         return ret;
3456 }
3457
3458 /* This takes a number of _MM_ pages, not VTD pages */
3459 static unsigned long intel_alloc_iova(struct device *dev,
3460                                      struct dmar_domain *domain,
3461                                      unsigned long nrpages, uint64_t dma_mask)
3462 {
3463         unsigned long iova_pfn = 0;
3464
3465         /* Restrict dma_mask to the width that the iommu can handle */
3466         dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
3467         /* Ensure we reserve the whole size-aligned region */
3468         nrpages = __roundup_pow_of_two(nrpages);
3469
3470         if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
3471                 /*
3472                  * First try to allocate an io virtual address in
3473                  * DMA_BIT_MASK(32) and if that fails then try allocating
3474                  * from higher range
3475                  */
3476                 iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
3477                                            IOVA_PFN(DMA_BIT_MASK(32)));
3478                 if (iova_pfn)
3479                         return iova_pfn;
3480         }
3481         iova_pfn = alloc_iova_fast(&domain->iovad, nrpages, IOVA_PFN(dma_mask));
3482         if (unlikely(!iova_pfn)) {
3483                 pr_err("Allocating %ld-page iova for %s failed",
3484                        nrpages, dev_name(dev));
3485                 return 0;
3486         }
3487
3488         return iova_pfn;
3489 }
3490
3491 static struct dmar_domain *get_valid_domain_for_dev(struct device *dev)
3492 {
3493         struct dmar_domain *domain, *tmp;
3494         struct dmar_rmrr_unit *rmrr;
3495         struct device *i_dev;
3496         int i, ret;
3497
3498         domain = find_domain(dev);
3499         if (domain)
3500                 goto out;
3501
3502         domain = find_or_alloc_domain(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
3503         if (!domain)
3504                 goto out;
3505
3506         /* We have a new domain - setup possible RMRRs for the device */
3507         rcu_read_lock();
3508         for_each_rmrr_units(rmrr) {
3509                 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
3510                                           i, i_dev) {
3511                         if (i_dev != dev)
3512                                 continue;
3513
3514                         ret = domain_prepare_identity_map(dev, domain,
3515                                                           rmrr->base_address,
3516                                                           rmrr->end_address);
3517                         if (ret)
3518                                 dev_err(dev, "Mapping reserved region failed\n");
3519                 }
3520         }
3521         rcu_read_unlock();
3522
3523         tmp = set_domain_for_dev(dev, domain);
3524         if (!tmp || domain != tmp) {
3525                 domain_exit(domain);
3526                 domain = tmp;
3527         }
3528
3529 out:
3530
3531         if (!domain)
3532                 pr_err("Allocating domain for %s failed\n", dev_name(dev));
3533
3534
3535         return domain;
3536 }
3537
3538 /* Check if the dev needs to go through non-identity map and unmap process.*/
3539 static int iommu_no_mapping(struct device *dev)
3540 {
3541         int found;
3542
3543         if (iommu_dummy(dev))
3544                 return 1;
3545
3546         if (!iommu_identity_mapping)
3547                 return 0;
3548
3549         found = identity_mapping(dev);
3550         if (found) {
3551                 if (iommu_should_identity_map(dev, 0))
3552                         return 1;
3553                 else {
3554                         /*
3555                          * 32 bit DMA is removed from si_domain and fall back
3556                          * to non-identity mapping.
3557                          */
3558                         dmar_remove_one_dev_info(si_domain, dev);
3559                         pr_info("32bit %s uses non-identity mapping\n",
3560                                 dev_name(dev));
3561                         return 0;
3562                 }
3563         } else {
3564                 /*
3565                  * In case of a detached 64 bit DMA device from vm, the device
3566                  * is put into si_domain for identity mapping.
3567                  */
3568                 if (iommu_should_identity_map(dev, 0)) {
3569                         int ret;
3570                         ret = domain_add_dev_info(si_domain, dev);
3571                         if (!ret) {
3572                                 pr_info("64bit %s uses identity mapping\n",
3573                                         dev_name(dev));
3574                                 return 1;
3575                         }
3576                 }
3577         }
3578
3579         return 0;
3580 }
3581
3582 static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
3583                                      size_t size, int dir, u64 dma_mask)
3584 {
3585         struct dmar_domain *domain;
3586         phys_addr_t start_paddr;
3587         unsigned long iova_pfn;
3588         int prot = 0;
3589         int ret;
3590         struct intel_iommu *iommu;
3591         unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
3592
3593         BUG_ON(dir == DMA_NONE);
3594
3595         if (iommu_no_mapping(dev))
3596                 return paddr;
3597
3598         domain = get_valid_domain_for_dev(dev);
3599         if (!domain)
3600                 return 0;
3601
3602         iommu = domain_get_iommu(domain);
3603         size = aligned_nrpages(paddr, size);
3604
3605         iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
3606         if (!iova_pfn)
3607                 goto error;
3608
3609         /*
3610          * Check if DMAR supports zero-length reads on write only
3611          * mappings..
3612          */
3613         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3614                         !cap_zlr(iommu->cap))
3615                 prot |= DMA_PTE_READ;
3616         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3617                 prot |= DMA_PTE_WRITE;
3618         /*
3619          * paddr - (paddr + size) might be partial page, we should map the whole
3620          * page.  Note: if two part of one page are separately mapped, we
3621          * might have two guest_addr mapping to the same host paddr, but this
3622          * is not a big problem
3623          */
3624         ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
3625                                  mm_to_dma_pfn(paddr_pfn), size, prot);
3626         if (ret)
3627                 goto error;
3628
3629         /* it's a non-present to present mapping. Only flush if caching mode */
3630         if (cap_caching_mode(iommu->cap))
3631                 iommu_flush_iotlb_psi(iommu, domain,
3632                                       mm_to_dma_pfn(iova_pfn),
3633                                       size, 0, 1);
3634         else
3635                 iommu_flush_write_buffer(iommu);
3636
3637         start_paddr = (phys_addr_t)iova_pfn << PAGE_SHIFT;
3638         start_paddr += paddr & ~PAGE_MASK;
3639         return start_paddr;
3640
3641 error:
3642         if (iova_pfn)
3643                 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3644         pr_err("Device %s request: %zx@%llx dir %d --- failed\n",
3645                 dev_name(dev), size, (unsigned long long)paddr, dir);
3646         return 0;
3647 }
3648
3649 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
3650                                  unsigned long offset, size_t size,
3651                                  enum dma_data_direction dir,
3652                                  unsigned long attrs)
3653 {
3654         return __intel_map_single(dev, page_to_phys(page) + offset, size,
3655                                   dir, *dev->dma_mask);
3656 }
3657
3658 static void flush_unmaps(struct deferred_flush_data *flush_data)
3659 {
3660         int i, j;
3661
3662         flush_data->timer_on = 0;
3663
3664         /* just flush them all */
3665         for (i = 0; i < g_num_of_iommus; i++) {
3666                 struct intel_iommu *iommu = g_iommus[i];
3667                 struct deferred_flush_table *flush_table =
3668                                 &flush_data->tables[i];
3669                 if (!iommu)
3670                         continue;
3671
3672                 if (!flush_table->next)
3673                         continue;
3674
3675                 /* In caching mode, global flushes turn emulation expensive */
3676                 if (!cap_caching_mode(iommu->cap))
3677                         iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3678                                          DMA_TLB_GLOBAL_FLUSH);
3679                 for (j = 0; j < flush_table->next; j++) {
3680                         unsigned long mask;
3681                         struct deferred_flush_entry *entry =
3682                                                 &flush_table->entries[j];
3683                         unsigned long iova_pfn = entry->iova_pfn;
3684                         unsigned long nrpages = entry->nrpages;
3685                         struct dmar_domain *domain = entry->domain;
3686                         struct page *freelist = entry->freelist;
3687
3688                         /* On real hardware multiple invalidations are expensive */
3689                         if (cap_caching_mode(iommu->cap))
3690                                 iommu_flush_iotlb_psi(iommu, domain,
3691                                         mm_to_dma_pfn(iova_pfn),
3692                                         nrpages, !freelist, 0);
3693                         else {
3694                                 mask = ilog2(nrpages);
3695                                 iommu_flush_dev_iotlb(domain,
3696                                                 (uint64_t)iova_pfn << PAGE_SHIFT, mask);
3697                         }
3698                         free_iova_fast(&domain->iovad, iova_pfn, nrpages);
3699                         if (freelist)
3700                                 dma_free_pagelist(freelist);
3701                 }
3702                 flush_table->next = 0;
3703         }
3704
3705         flush_data->size = 0;
3706 }
3707
3708 static void flush_unmaps_timeout(unsigned long cpuid)
3709 {
3710         struct deferred_flush_data *flush_data = per_cpu_ptr(&deferred_flush, cpuid);
3711         unsigned long flags;
3712
3713         spin_lock_irqsave(&flush_data->lock, flags);
3714         flush_unmaps(flush_data);
3715         spin_unlock_irqrestore(&flush_data->lock, flags);
3716 }
3717
3718 static void add_unmap(struct dmar_domain *dom, unsigned long iova_pfn,
3719                       unsigned long nrpages, struct page *freelist)
3720 {
3721         unsigned long flags;
3722         int entry_id, iommu_id;
3723         struct intel_iommu *iommu;
3724         struct deferred_flush_entry *entry;
3725         struct deferred_flush_data *flush_data;
3726
3727         flush_data = raw_cpu_ptr(&deferred_flush);
3728
3729         /* Flush all CPUs' entries to avoid deferring too much.  If
3730          * this becomes a bottleneck, can just flush us, and rely on
3731          * flush timer for the rest.
3732          */
3733         if (flush_data->size == HIGH_WATER_MARK) {
3734                 int cpu;
3735
3736                 for_each_online_cpu(cpu)
3737                         flush_unmaps_timeout(cpu);
3738         }
3739
3740         spin_lock_irqsave(&flush_data->lock, flags);
3741
3742         iommu = domain_get_iommu(dom);
3743         iommu_id = iommu->seq_id;
3744
3745         entry_id = flush_data->tables[iommu_id].next;
3746         ++(flush_data->tables[iommu_id].next);
3747
3748         entry = &flush_data->tables[iommu_id].entries[entry_id];
3749         entry->domain = dom;
3750         entry->iova_pfn = iova_pfn;
3751         entry->nrpages = nrpages;
3752         entry->freelist = freelist;
3753
3754         if (!flush_data->timer_on) {
3755                 mod_timer(&flush_data->timer, jiffies + msecs_to_jiffies(10));
3756                 flush_data->timer_on = 1;
3757         }
3758         flush_data->size++;
3759         spin_unlock_irqrestore(&flush_data->lock, flags);
3760 }
3761
3762 static void intel_unmap(struct device *dev, dma_addr_t dev_addr, size_t size)
3763 {
3764         struct dmar_domain *domain;
3765         unsigned long start_pfn, last_pfn;
3766         unsigned long nrpages;
3767         unsigned long iova_pfn;
3768         struct intel_iommu *iommu;
3769         struct page *freelist;
3770
3771         if (iommu_no_mapping(dev))
3772                 return;
3773
3774         domain = find_domain(dev);
3775         BUG_ON(!domain);
3776
3777         iommu = domain_get_iommu(domain);
3778
3779         iova_pfn = IOVA_PFN(dev_addr);
3780
3781         nrpages = aligned_nrpages(dev_addr, size);
3782         start_pfn = mm_to_dma_pfn(iova_pfn);
3783         last_pfn = start_pfn + nrpages - 1;
3784
3785         pr_debug("Device %s unmapping: pfn %lx-%lx\n",
3786                  dev_name(dev), start_pfn, last_pfn);
3787
3788         freelist = domain_unmap(domain, start_pfn, last_pfn);
3789
3790         if (intel_iommu_strict) {
3791                 iommu_flush_iotlb_psi(iommu, domain, start_pfn,
3792                                       nrpages, !freelist, 0);
3793                 /* free iova */
3794                 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
3795                 dma_free_pagelist(freelist);
3796         } else {
3797                 add_unmap(domain, iova_pfn, nrpages, freelist);
3798                 /*
3799                  * queue up the release of the unmap to save the 1/6th of the
3800                  * cpu used up by the iotlb flush operation...
3801                  */
3802         }
3803 }
3804
3805 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
3806                              size_t size, enum dma_data_direction dir,
3807                              unsigned long attrs)
3808 {
3809         intel_unmap(dev, dev_addr, size);
3810 }
3811
3812 static void *intel_alloc_coherent(struct device *dev, size_t size,
3813                                   dma_addr_t *dma_handle, gfp_t flags,
3814                                   unsigned long attrs)
3815 {
3816         struct page *page = NULL;
3817         int order;
3818
3819         size = PAGE_ALIGN(size);
3820         order = get_order(size);
3821
3822         if (!iommu_no_mapping(dev))
3823                 flags &= ~(GFP_DMA | GFP_DMA32);
3824         else if (dev->coherent_dma_mask < dma_get_required_mask(dev)) {
3825                 if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
3826                         flags |= GFP_DMA;
3827                 else
3828                         flags |= GFP_DMA32;
3829         }
3830
3831         if (gfpflags_allow_blocking(flags)) {
3832                 unsigned int count = size >> PAGE_SHIFT;
3833
3834                 page = dma_alloc_from_contiguous(dev, count, order, flags);
3835                 if (page && iommu_no_mapping(dev) &&
3836                     page_to_phys(page) + size > dev->coherent_dma_mask) {
3837                         dma_release_from_contiguous(dev, page, count);
3838                         page = NULL;
3839                 }
3840         }
3841
3842         if (!page)
3843                 page = alloc_pages(flags, order);
3844         if (!page)
3845                 return NULL;
3846         memset(page_address(page), 0, size);
3847
3848         *dma_handle = __intel_map_single(dev, page_to_phys(page), size,
3849                                          DMA_BIDIRECTIONAL,
3850                                          dev->coherent_dma_mask);
3851         if (*dma_handle)
3852                 return page_address(page);
3853         if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3854                 __free_pages(page, order);
3855
3856         return NULL;
3857 }
3858
3859 static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3860                                 dma_addr_t dma_handle, unsigned long attrs)
3861 {
3862         int order;
3863         struct page *page = virt_to_page(vaddr);
3864
3865         size = PAGE_ALIGN(size);
3866         order = get_order(size);
3867
3868         intel_unmap(dev, dma_handle, size);
3869         if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3870                 __free_pages(page, order);
3871 }
3872
3873 static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3874                            int nelems, enum dma_data_direction dir,
3875                            unsigned long attrs)
3876 {
3877         dma_addr_t startaddr = sg_dma_address(sglist) & PAGE_MASK;
3878         unsigned long nrpages = 0;
3879         struct scatterlist *sg;
3880         int i;
3881
3882         for_each_sg(sglist, sg, nelems, i) {
3883                 nrpages += aligned_nrpages(sg_dma_address(sg), sg_dma_len(sg));
3884         }
3885
3886         intel_unmap(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
3887 }
3888
3889 static int intel_nontranslate_map_sg(struct device *hddev,
3890         struct scatterlist *sglist, int nelems, int dir)
3891 {
3892         int i;
3893         struct scatterlist *sg;
3894
3895         for_each_sg(sglist, sg, nelems, i) {
3896                 BUG_ON(!sg_page(sg));
3897                 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
3898                 sg->dma_length = sg->length;
3899         }
3900         return nelems;
3901 }
3902
3903 static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3904                         enum dma_data_direction dir, unsigned long attrs)
3905 {
3906         int i;
3907         struct dmar_domain *domain;
3908         size_t size = 0;
3909         int prot = 0;
3910         unsigned long iova_pfn;
3911         int ret;
3912         struct scatterlist *sg;
3913         unsigned long start_vpfn;
3914         struct intel_iommu *iommu;
3915
3916         BUG_ON(dir == DMA_NONE);
3917         if (iommu_no_mapping(dev))
3918                 return intel_nontranslate_map_sg(dev, sglist, nelems, dir);
3919
3920         domain = get_valid_domain_for_dev(dev);
3921         if (!domain)
3922                 return 0;
3923
3924         iommu = domain_get_iommu(domain);
3925
3926         for_each_sg(sglist, sg, nelems, i)
3927                 size += aligned_nrpages(sg->offset, sg->length);
3928
3929         iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3930                                 *dev->dma_mask);
3931         if (!iova_pfn) {
3932                 sglist->dma_length = 0;
3933                 return 0;
3934         }
3935
3936         /*
3937          * Check if DMAR supports zero-length reads on write only
3938          * mappings..
3939          */
3940         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3941                         !cap_zlr(iommu->cap))
3942                 prot |= DMA_PTE_READ;
3943         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3944                 prot |= DMA_PTE_WRITE;
3945
3946         start_vpfn = mm_to_dma_pfn(iova_pfn);
3947
3948         ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3949         if (unlikely(ret)) {
3950                 dma_pte_free_pagetable(domain, start_vpfn,
3951                                        start_vpfn + size - 1,
3952                                        agaw_to_level(domain->agaw) + 1);
3953                 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3954                 return 0;
3955         }
3956
3957         /* it's a non-present to present mapping. Only flush if caching mode */
3958         if (cap_caching_mode(iommu->cap))
3959                 iommu_flush_iotlb_psi(iommu, domain, start_vpfn, size, 0, 1);
3960         else
3961                 iommu_flush_write_buffer(iommu);
3962
3963         return nelems;
3964 }
3965
3966 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3967 {
3968         return !dma_addr;
3969 }
3970
3971 const struct dma_map_ops intel_dma_ops = {
3972         .alloc = intel_alloc_coherent,
3973         .free = intel_free_coherent,
3974         .map_sg = intel_map_sg,
3975         .unmap_sg = intel_unmap_sg,
3976         .map_page = intel_map_page,
3977         .unmap_page = intel_unmap_page,
3978         .mapping_error = intel_mapping_error,
3979 };
3980
3981 static inline int iommu_domain_cache_init(void)
3982 {
3983         int ret = 0;
3984
3985         iommu_domain_cache = kmem_cache_create("iommu_domain",
3986                                          sizeof(struct dmar_domain),
3987                                          0,
3988                                          SLAB_HWCACHE_ALIGN,
3989
3990                                          NULL);
3991         if (!iommu_domain_cache) {
3992                 pr_err("Couldn't create iommu_domain cache\n");
3993                 ret = -ENOMEM;
3994         }
3995
3996         return ret;
3997 }
3998
3999 static inline int iommu_devinfo_cache_init(void)
4000 {
4001         int ret = 0;
4002
4003         iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
4004                                          sizeof(struct device_domain_info),
4005                                          0,
4006                                          SLAB_HWCACHE_ALIGN,
4007                                          NULL);
4008         if (!iommu_devinfo_cache) {
4009                 pr_err("Couldn't create devinfo cache\n");
4010                 ret = -ENOMEM;
4011         }
4012
4013         return ret;
4014 }
4015
4016 static int __init iommu_init_mempool(void)
4017 {
4018         int ret;
4019         ret = iova_cache_get();
4020         if (ret)
4021                 return ret;
4022
4023         ret = iommu_domain_cache_init();
4024         if (ret)
4025                 goto domain_error;
4026
4027         ret = iommu_devinfo_cache_init();
4028         if (!ret)
4029                 return ret;
4030
4031         kmem_cache_destroy(iommu_domain_cache);
4032 domain_error:
4033         iova_cache_put();
4034
4035         return -ENOMEM;
4036 }
4037
4038 static void __init iommu_exit_mempool(void)
4039 {
4040         kmem_cache_destroy(iommu_devinfo_cache);
4041         kmem_cache_destroy(iommu_domain_cache);
4042         iova_cache_put();
4043 }
4044
4045 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
4046 {
4047         struct dmar_drhd_unit *drhd;
4048         u32 vtbar;
4049         int rc;
4050
4051         /* We know that this device on this chipset has its own IOMMU.
4052          * If we find it under a different IOMMU, then the BIOS is lying
4053          * to us. Hope that the IOMMU for this device is actually
4054          * disabled, and it needs no translation...
4055          */
4056         rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
4057         if (rc) {
4058                 /* "can't" happen */
4059                 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
4060                 return;
4061         }
4062         vtbar &= 0xffff0000;
4063
4064         /* we know that the this iommu should be at offset 0xa000 from vtbar */
4065         drhd = dmar_find_matched_drhd_unit(pdev);
4066         if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
4067                             TAINT_FIRMWARE_WORKAROUND,
4068                             "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
4069                 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
4070 }
4071 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
4072
4073 static void __init init_no_remapping_devices(void)
4074 {
4075         struct dmar_drhd_unit *drhd;
4076         struct device *dev;
4077         int i;
4078
4079         for_each_drhd_unit(drhd) {
4080                 if (!drhd->include_all) {
4081                         for_each_active_dev_scope(drhd->devices,
4082                                                   drhd->devices_cnt, i, dev)
4083                                 break;
4084                         /* ignore DMAR unit if no devices exist */
4085                         if (i == drhd->devices_cnt)
4086                                 drhd->ignored = 1;
4087                 }
4088         }
4089
4090         for_each_active_drhd_unit(drhd) {
4091                 if (drhd->include_all)
4092                         continue;
4093
4094                 for_each_active_dev_scope(drhd->devices,
4095                                           drhd->devices_cnt, i, dev)
4096                         if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
4097                                 break;
4098                 if (i < drhd->devices_cnt)
4099                         continue;
4100
4101                 /* This IOMMU has *only* gfx devices. Either bypass it or
4102                    set the gfx_mapped flag, as appropriate */
4103                 if (dmar_map_gfx) {
4104                         intel_iommu_gfx_mapped = 1;
4105                 } else {
4106                         drhd->ignored = 1;
4107                         for_each_active_dev_scope(drhd->devices,
4108                                                   drhd->devices_cnt, i, dev)
4109                                 dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
4110                 }
4111         }
4112 }
4113
4114 #ifdef CONFIG_SUSPEND
4115 static int init_iommu_hw(void)
4116 {
4117         struct dmar_drhd_unit *drhd;
4118         struct intel_iommu *iommu = NULL;
4119
4120         for_each_active_iommu(iommu, drhd)
4121                 if (iommu->qi)
4122                         dmar_reenable_qi(iommu);
4123
4124         for_each_iommu(iommu, drhd) {
4125                 if (drhd->ignored) {
4126                         /*
4127                          * we always have to disable PMRs or DMA may fail on
4128                          * this device
4129                          */
4130                         if (force_on)
4131                                 iommu_disable_protect_mem_regions(iommu);
4132                         continue;
4133                 }
4134         
4135                 iommu_flush_write_buffer(iommu);
4136
4137                 iommu_set_root_entry(iommu);
4138
4139                 iommu->flush.flush_context(iommu, 0, 0, 0,
4140                                            DMA_CCMD_GLOBAL_INVL);
4141                 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4142                 iommu_enable_translation(iommu);
4143                 iommu_disable_protect_mem_regions(iommu);
4144         }
4145
4146         return 0;
4147 }
4148
4149 static void iommu_flush_all(void)
4150 {
4151         struct dmar_drhd_unit *drhd;
4152         struct intel_iommu *iommu;
4153
4154         for_each_active_iommu(iommu, drhd) {
4155                 iommu->flush.flush_context(iommu, 0, 0, 0,
4156                                            DMA_CCMD_GLOBAL_INVL);
4157                 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
4158                                          DMA_TLB_GLOBAL_FLUSH);
4159         }
4160 }
4161
4162 static int iommu_suspend(void)
4163 {
4164         struct dmar_drhd_unit *drhd;
4165         struct intel_iommu *iommu = NULL;
4166         unsigned long flag;
4167
4168         for_each_active_iommu(iommu, drhd) {
4169                 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
4170                                                  GFP_ATOMIC);
4171                 if (!iommu->iommu_state)
4172                         goto nomem;
4173         }
4174
4175         iommu_flush_all();
4176
4177         for_each_active_iommu(iommu, drhd) {
4178                 iommu_disable_translation(iommu);
4179
4180                 raw_spin_lock_irqsave(&iommu->register_lock, flag);
4181
4182                 iommu->iommu_state[SR_DMAR_FECTL_REG] =
4183                         readl(iommu->reg + DMAR_FECTL_REG);
4184                 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
4185                         readl(iommu->reg + DMAR_FEDATA_REG);
4186                 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
4187                         readl(iommu->reg + DMAR_FEADDR_REG);
4188                 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
4189                         readl(iommu->reg + DMAR_FEUADDR_REG);
4190
4191                 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4192         }
4193         return 0;
4194
4195 nomem:
4196         for_each_active_iommu(iommu, drhd)
4197                 kfree(iommu->iommu_state);
4198
4199         return -ENOMEM;
4200 }
4201
4202 static void iommu_resume(void)
4203 {
4204         struct dmar_drhd_unit *drhd;
4205         struct intel_iommu *iommu = NULL;
4206         unsigned long flag;
4207
4208         if (init_iommu_hw()) {
4209                 if (force_on)
4210                         panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
4211                 else
4212                         WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
4213                 return;
4214         }
4215
4216         for_each_active_iommu(iommu, drhd) {
4217
4218                 raw_spin_lock_irqsave(&iommu->register_lock, flag);
4219
4220                 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
4221                         iommu->reg + DMAR_FECTL_REG);
4222                 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
4223                         iommu->reg + DMAR_FEDATA_REG);
4224                 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
4225                         iommu->reg + DMAR_FEADDR_REG);
4226                 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
4227                         iommu->reg + DMAR_FEUADDR_REG);
4228
4229                 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4230         }
4231
4232         for_each_active_iommu(iommu, drhd)
4233                 kfree(iommu->iommu_state);
4234 }
4235
4236 static struct syscore_ops iommu_syscore_ops = {
4237         .resume         = iommu_resume,
4238         .suspend        = iommu_suspend,
4239 };
4240
4241 static void __init init_iommu_pm_ops(void)
4242 {
4243         register_syscore_ops(&iommu_syscore_ops);
4244 }
4245
4246 #else
4247 static inline void init_iommu_pm_ops(void) {}
4248 #endif  /* CONFIG_PM */
4249
4250
4251 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
4252 {
4253         struct acpi_dmar_reserved_memory *rmrr;
4254         int prot = DMA_PTE_READ|DMA_PTE_WRITE;
4255         struct dmar_rmrr_unit *rmrru;
4256         size_t length;
4257
4258         rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
4259         if (!rmrru)
4260                 goto out;
4261
4262         rmrru->hdr = header;
4263         rmrr = (struct acpi_dmar_reserved_memory *)header;
4264         rmrru->base_address = rmrr->base_address;
4265         rmrru->end_address = rmrr->end_address;
4266
4267         length = rmrr->end_address - rmrr->base_address + 1;
4268         rmrru->resv = iommu_alloc_resv_region(rmrr->base_address, length, prot,
4269                                               IOMMU_RESV_DIRECT);
4270         if (!rmrru->resv)
4271                 goto free_rmrru;
4272
4273         rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
4274                                 ((void *)rmrr) + rmrr->header.length,
4275                                 &rmrru->devices_cnt);
4276         if (rmrru->devices_cnt && rmrru->devices == NULL)
4277                 goto free_all;
4278
4279         list_add(&rmrru->list, &dmar_rmrr_units);
4280
4281         return 0;
4282 free_all:
4283         kfree(rmrru->resv);
4284 free_rmrru:
4285         kfree(rmrru);
4286 out:
4287         return -ENOMEM;
4288 }
4289
4290 static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
4291 {
4292         struct dmar_atsr_unit *atsru;
4293         struct acpi_dmar_atsr *tmp;
4294
4295         list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4296                 tmp = (struct acpi_dmar_atsr *)atsru->hdr;
4297                 if (atsr->segment != tmp->segment)
4298                         continue;
4299                 if (atsr->header.length != tmp->header.length)
4300                         continue;
4301                 if (memcmp(atsr, tmp, atsr->header.length) == 0)
4302                         return atsru;
4303         }
4304
4305         return NULL;
4306 }
4307
4308 int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4309 {
4310         struct acpi_dmar_atsr *atsr;
4311         struct dmar_atsr_unit *atsru;
4312
4313         if (system_state != SYSTEM_BOOTING && !intel_iommu_enabled)
4314                 return 0;
4315
4316         atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4317         atsru = dmar_find_atsr(atsr);
4318         if (atsru)
4319                 return 0;
4320
4321         atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
4322         if (!atsru)
4323                 return -ENOMEM;
4324
4325         /*
4326          * If memory is allocated from slab by ACPI _DSM method, we need to
4327          * copy the memory content because the memory buffer will be freed
4328          * on return.
4329          */
4330         atsru->hdr = (void *)(atsru + 1);
4331         memcpy(atsru->hdr, hdr, hdr->length);
4332         atsru->include_all = atsr->flags & 0x1;
4333         if (!atsru->include_all) {
4334                 atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
4335                                 (void *)atsr + atsr->header.length,
4336                                 &atsru->devices_cnt);
4337                 if (atsru->devices_cnt && atsru->devices == NULL) {
4338                         kfree(atsru);
4339                         return -ENOMEM;
4340                 }
4341         }
4342
4343         list_add_rcu(&atsru->list, &dmar_atsr_units);
4344
4345         return 0;
4346 }
4347
4348 static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
4349 {
4350         dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
4351         kfree(atsru);
4352 }
4353
4354 int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4355 {
4356         struct acpi_dmar_atsr *atsr;
4357         struct dmar_atsr_unit *atsru;
4358
4359         atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4360         atsru = dmar_find_atsr(atsr);
4361         if (atsru) {
4362                 list_del_rcu(&atsru->list);
4363                 synchronize_rcu();
4364                 intel_iommu_free_atsr(atsru);
4365         }
4366
4367         return 0;
4368 }
4369
4370 int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4371 {
4372         int i;
4373         struct device *dev;
4374         struct acpi_dmar_atsr *atsr;
4375         struct dmar_atsr_unit *atsru;
4376
4377         atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4378         atsru = dmar_find_atsr(atsr);
4379         if (!atsru)
4380                 return 0;
4381
4382         if (!atsru->include_all && atsru->devices && atsru->devices_cnt) {
4383                 for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
4384                                           i, dev)
4385                         return -EBUSY;
4386         }
4387
4388         return 0;
4389 }
4390
4391 static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
4392 {
4393         int sp, ret = 0;
4394         struct intel_iommu *iommu = dmaru->iommu;
4395
4396         if (g_iommus[iommu->seq_id])
4397                 return 0;
4398
4399         if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
4400                 pr_warn("%s: Doesn't support hardware pass through.\n",
4401                         iommu->name);
4402                 return -ENXIO;
4403         }
4404         if (!ecap_sc_support(iommu->ecap) &&
4405             domain_update_iommu_snooping(iommu)) {
4406                 pr_warn("%s: Doesn't support snooping.\n",
4407                         iommu->name);
4408                 return -ENXIO;
4409         }
4410         sp = domain_update_iommu_superpage(iommu) - 1;
4411         if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
4412                 pr_warn("%s: Doesn't support large page.\n",
4413                         iommu->name);
4414                 return -ENXIO;
4415         }
4416
4417         /*
4418          * Disable translation if already enabled prior to OS handover.
4419          */
4420         if (iommu->gcmd & DMA_GCMD_TE)
4421                 iommu_disable_translation(iommu);
4422
4423         g_iommus[iommu->seq_id] = iommu;
4424         ret = iommu_init_domains(iommu);
4425         if (ret == 0)
4426                 ret = iommu_alloc_root_entry(iommu);
4427         if (ret)
4428                 goto out;
4429
4430 #ifdef CONFIG_INTEL_IOMMU_SVM
4431         if (pasid_enabled(iommu))
4432                 intel_svm_alloc_pasid_tables(iommu);
4433 #endif
4434
4435         if (dmaru->ignored) {
4436                 /*
4437                  * we always have to disable PMRs or DMA may fail on this device
4438                  */
4439                 if (force_on)
4440                         iommu_disable_protect_mem_regions(iommu);
4441                 return 0;
4442         }
4443
4444         intel_iommu_init_qi(iommu);
4445         iommu_flush_write_buffer(iommu);
4446
4447 #ifdef CONFIG_INTEL_IOMMU_SVM
4448         if (pasid_enabled(iommu) && ecap_prs(iommu->ecap)) {
4449                 ret = intel_svm_enable_prq(iommu);
4450                 if (ret)
4451                         goto disable_iommu;
4452         }
4453 #endif
4454         ret = dmar_set_interrupt(iommu);
4455         if (ret)
4456                 goto disable_iommu;
4457
4458         iommu_set_root_entry(iommu);
4459         iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
4460         iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4461         iommu_enable_translation(iommu);
4462
4463         iommu_disable_protect_mem_regions(iommu);
4464         return 0;
4465
4466 disable_iommu:
4467         disable_dmar_iommu(iommu);
4468 out:
4469         free_dmar_iommu(iommu);
4470         return ret;
4471 }
4472
4473 int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
4474 {
4475         int ret = 0;
4476         struct intel_iommu *iommu = dmaru->iommu;
4477
4478         if (!intel_iommu_enabled)
4479                 return 0;
4480         if (iommu == NULL)
4481                 return -EINVAL;
4482
4483         if (insert) {
4484                 ret = intel_iommu_add(dmaru);
4485         } else {
4486                 disable_dmar_iommu(iommu);
4487                 free_dmar_iommu(iommu);
4488         }
4489
4490         return ret;
4491 }
4492
4493 static void intel_iommu_free_dmars(void)
4494 {
4495         struct dmar_rmrr_unit *rmrru, *rmrr_n;
4496         struct dmar_atsr_unit *atsru, *atsr_n;
4497
4498         list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
4499                 list_del(&rmrru->list);
4500                 dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
4501                 kfree(rmrru->resv);
4502                 kfree(rmrru);
4503         }
4504
4505         list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
4506                 list_del(&atsru->list);
4507                 intel_iommu_free_atsr(atsru);
4508         }
4509 }
4510
4511 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
4512 {
4513         int i, ret = 1;
4514         struct pci_bus *bus;
4515         struct pci_dev *bridge = NULL;
4516         struct device *tmp;
4517         struct acpi_dmar_atsr *atsr;
4518         struct dmar_atsr_unit *atsru;
4519
4520         dev = pci_physfn(dev);
4521         for (bus = dev->bus; bus; bus = bus->parent) {
4522                 bridge = bus->self;
4523                 /* If it's an integrated device, allow ATS */
4524                 if (!bridge)
4525                         return 1;
4526                 /* Connected via non-PCIe: no ATS */
4527                 if (!pci_is_pcie(bridge) ||
4528                     pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
4529                         return 0;
4530                 /* If we found the root port, look it up in the ATSR */
4531                 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
4532                         break;
4533         }
4534
4535         rcu_read_lock();
4536         list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4537                 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4538                 if (atsr->segment != pci_domain_nr(dev->bus))
4539                         continue;
4540
4541                 for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
4542                         if (tmp == &bridge->dev)
4543                                 goto out;
4544
4545                 if (atsru->include_all)
4546                         goto out;
4547         }
4548         ret = 0;
4549 out:
4550         rcu_read_unlock();
4551
4552         return ret;
4553 }
4554
4555 int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
4556 {
4557         int ret = 0;
4558         struct dmar_rmrr_unit *rmrru;
4559         struct dmar_atsr_unit *atsru;
4560         struct acpi_dmar_atsr *atsr;
4561         struct acpi_dmar_reserved_memory *rmrr;
4562
4563         if (!intel_iommu_enabled && system_state != SYSTEM_BOOTING)
4564                 return 0;
4565
4566         list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
4567                 rmrr = container_of(rmrru->hdr,
4568                                     struct acpi_dmar_reserved_memory, header);
4569                 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4570                         ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
4571                                 ((void *)rmrr) + rmrr->header.length,
4572                                 rmrr->segment, rmrru->devices,
4573                                 rmrru->devices_cnt);
4574                         if(ret < 0)
4575                                 return ret;
4576                 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4577                         dmar_remove_dev_scope(info, rmrr->segment,
4578                                 rmrru->devices, rmrru->devices_cnt);
4579                 }
4580         }
4581
4582         list_for_each_entry(atsru, &dmar_atsr_units, list) {
4583                 if (atsru->include_all)
4584                         continue;
4585
4586                 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4587                 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4588                         ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
4589                                         (void *)atsr + atsr->header.length,
4590                                         atsr->segment, atsru->devices,
4591                                         atsru->devices_cnt);
4592                         if (ret > 0)
4593                                 break;
4594                         else if(ret < 0)
4595                                 return ret;
4596                 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4597                         if (dmar_remove_dev_scope(info, atsr->segment,
4598                                         atsru->devices, atsru->devices_cnt))
4599                                 break;
4600                 }
4601         }
4602
4603         return 0;
4604 }
4605
4606 /*
4607  * Here we only respond to action of unbound device from driver.
4608  *
4609  * Added device is not attached to its DMAR domain here yet. That will happen
4610  * when mapping the device to iova.
4611  */
4612 static int device_notifier(struct notifier_block *nb,
4613                                   unsigned long action, void *data)
4614 {
4615         struct device *dev = data;
4616         struct dmar_domain *domain;
4617
4618         if (iommu_dummy(dev))
4619                 return 0;
4620
4621         if (action != BUS_NOTIFY_REMOVED_DEVICE)
4622                 return 0;
4623
4624         domain = find_domain(dev);
4625         if (!domain)
4626                 return 0;
4627
4628         dmar_remove_one_dev_info(domain, dev);
4629         if (!domain_type_is_vm_or_si(domain) && list_empty(&domain->devices))
4630                 domain_exit(domain);
4631
4632         return 0;
4633 }
4634
4635 static struct notifier_block device_nb = {
4636         .notifier_call = device_notifier,
4637 };
4638
4639 static int intel_iommu_memory_notifier(struct notifier_block *nb,
4640                                        unsigned long val, void *v)
4641 {
4642         struct memory_notify *mhp = v;
4643         unsigned long long start, end;
4644         unsigned long start_vpfn, last_vpfn;
4645
4646         switch (val) {
4647         case MEM_GOING_ONLINE:
4648                 start = mhp->start_pfn << PAGE_SHIFT;
4649                 end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
4650                 if (iommu_domain_identity_map(si_domain, start, end)) {
4651                         pr_warn("Failed to build identity map for [%llx-%llx]\n",
4652                                 start, end);
4653                         return NOTIFY_BAD;
4654                 }
4655                 break;
4656
4657         case MEM_OFFLINE:
4658         case MEM_CANCEL_ONLINE:
4659                 start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
4660                 last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
4661                 while (start_vpfn <= last_vpfn) {
4662                         struct iova *iova;
4663                         struct dmar_drhd_unit *drhd;
4664                         struct intel_iommu *iommu;
4665                         struct page *freelist;
4666
4667                         iova = find_iova(&si_domain->iovad, start_vpfn);
4668                         if (iova == NULL) {
4669                                 pr_debug("Failed get IOVA for PFN %lx\n",
4670                                          start_vpfn);
4671                                 break;
4672                         }
4673
4674                         iova = split_and_remove_iova(&si_domain->iovad, iova,
4675                                                      start_vpfn, last_vpfn);
4676                         if (iova == NULL) {
4677                                 pr_warn("Failed to split IOVA PFN [%lx-%lx]\n",
4678                                         start_vpfn, last_vpfn);
4679                                 return NOTIFY_BAD;
4680                         }
4681
4682                         freelist = domain_unmap(si_domain, iova->pfn_lo,
4683                                                iova->pfn_hi);
4684
4685                         rcu_read_lock();
4686                         for_each_active_iommu(iommu, drhd)
4687                                 iommu_flush_iotlb_psi(iommu, si_domain,
4688                                         iova->pfn_lo, iova_size(iova),
4689                                         !freelist, 0);
4690                         rcu_read_unlock();
4691                         dma_free_pagelist(freelist);
4692
4693                         start_vpfn = iova->pfn_hi + 1;
4694                         free_iova_mem(iova);
4695                 }
4696                 break;
4697         }
4698
4699         return NOTIFY_OK;
4700 }
4701
4702 static struct notifier_block intel_iommu_memory_nb = {
4703         .notifier_call = intel_iommu_memory_notifier,
4704         .priority = 0
4705 };
4706
4707 static void free_all_cpu_cached_iovas(unsigned int cpu)
4708 {
4709         int i;
4710
4711         for (i = 0; i < g_num_of_iommus; i++) {
4712                 struct intel_iommu *iommu = g_iommus[i];
4713                 struct dmar_domain *domain;
4714                 int did;
4715
4716                 if (!iommu)
4717                         continue;
4718
4719                 for (did = 0; did < cap_ndoms(iommu->cap); did++) {
4720                         domain = get_iommu_domain(iommu, (u16)did);
4721
4722                         if (!domain)
4723                                 continue;
4724                         free_cpu_cached_iovas(cpu, &domain->iovad);
4725                 }
4726         }
4727 }
4728
4729 static int intel_iommu_cpu_dead(unsigned int cpu)
4730 {
4731         free_all_cpu_cached_iovas(cpu);
4732         flush_unmaps_timeout(cpu);
4733         return 0;
4734 }
4735
4736 static void intel_disable_iommus(void)
4737 {
4738         struct intel_iommu *iommu = NULL;
4739         struct dmar_drhd_unit *drhd;
4740
4741         for_each_iommu(iommu, drhd)
4742                 iommu_disable_translation(iommu);
4743 }
4744
4745 static inline struct intel_iommu *dev_to_intel_iommu(struct device *dev)
4746 {
4747         return container_of(dev, struct intel_iommu, iommu.dev);
4748 }
4749
4750 static ssize_t intel_iommu_show_version(struct device *dev,
4751                                         struct device_attribute *attr,
4752                                         char *buf)
4753 {
4754         struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4755         u32 ver = readl(iommu->reg + DMAR_VER_REG);
4756         return sprintf(buf, "%d:%d\n",
4757                        DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
4758 }
4759 static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);
4760
4761 static ssize_t intel_iommu_show_address(struct device *dev,
4762                                         struct device_attribute *attr,
4763                                         char *buf)
4764 {
4765         struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4766         return sprintf(buf, "%llx\n", iommu->reg_phys);
4767 }
4768 static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);
4769
4770 static ssize_t intel_iommu_show_cap(struct device *dev,
4771                                     struct device_attribute *attr,
4772                                     char *buf)
4773 {
4774         struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4775         return sprintf(buf, "%llx\n", iommu->cap);
4776 }
4777 static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);
4778
4779 static ssize_t intel_iommu_show_ecap(struct device *dev,
4780                                     struct device_attribute *attr,
4781                                     char *buf)
4782 {
4783         struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4784         return sprintf(buf, "%llx\n", iommu->ecap);
4785 }
4786 static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);
4787
4788 static ssize_t intel_iommu_show_ndoms(struct device *dev,
4789                                       struct device_attribute *attr,
4790                                       char *buf)
4791 {
4792         struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4793         return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap));
4794 }
4795 static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL);
4796
4797 static ssize_t intel_iommu_show_ndoms_used(struct device *dev,
4798                                            struct device_attribute *attr,
4799                                            char *buf)
4800 {
4801         struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4802         return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids,
4803                                                   cap_ndoms(iommu->cap)));
4804 }
4805 static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL);
4806
4807 static struct attribute *intel_iommu_attrs[] = {
4808         &dev_attr_version.attr,
4809         &dev_attr_address.attr,
4810         &dev_attr_cap.attr,
4811         &dev_attr_ecap.attr,
4812         &dev_attr_domains_supported.attr,
4813         &dev_attr_domains_used.attr,
4814         NULL,
4815 };
4816
4817 static struct attribute_group intel_iommu_group = {
4818         .name = "intel-iommu",
4819         .attrs = intel_iommu_attrs,
4820 };
4821
4822 const struct attribute_group *intel_iommu_groups[] = {
4823         &intel_iommu_group,
4824         NULL,
4825 };
4826
4827 int __init intel_iommu_init(void)
4828 {
4829         int ret = -ENODEV;
4830         struct dmar_drhd_unit *drhd;
4831         struct intel_iommu *iommu;
4832
4833         /* VT-d is required for a TXT/tboot launch, so enforce that */
4834         force_on = tboot_force_iommu();
4835
4836         if (iommu_init_mempool()) {
4837                 if (force_on)
4838                         panic("tboot: Failed to initialize iommu memory\n");
4839                 return -ENOMEM;
4840         }
4841
4842         down_write(&dmar_global_lock);
4843         if (dmar_table_init()) {
4844                 if (force_on)
4845                         panic("tboot: Failed to initialize DMAR table\n");
4846                 goto out_free_dmar;
4847         }
4848
4849         if (dmar_dev_scope_init() < 0) {
4850                 if (force_on)
4851                         panic("tboot: Failed to initialize DMAR device scope\n");
4852                 goto out_free_dmar;
4853         }
4854
4855         if (no_iommu || dmar_disabled) {
4856                 /*
4857                  * We exit the function here to ensure IOMMU's remapping and
4858                  * mempool aren't setup, which means that the IOMMU's PMRs
4859                  * won't be disabled via the call to init_dmars(). So disable
4860                  * it explicitly here. The PMRs were setup by tboot prior to
4861                  * calling SENTER, but the kernel is expected to reset/tear
4862                  * down the PMRs.
4863                  */
4864                 if (intel_iommu_tboot_noforce) {
4865                         for_each_iommu(iommu, drhd)
4866                                 iommu_disable_protect_mem_regions(iommu);
4867                 }
4868
4869                 /*
4870                  * Make sure the IOMMUs are switched off, even when we
4871                  * boot into a kexec kernel and the previous kernel left
4872                  * them enabled
4873                  */
4874                 intel_disable_iommus();
4875                 goto out_free_dmar;
4876         }
4877
4878         if (list_empty(&dmar_rmrr_units))
4879                 pr_info("No RMRR found\n");
4880
4881         if (list_empty(&dmar_atsr_units))
4882                 pr_info("No ATSR found\n");
4883
4884         if (dmar_init_reserved_ranges()) {
4885                 if (force_on)
4886                         panic("tboot: Failed to reserve iommu ranges\n");
4887                 goto out_free_reserved_range;
4888         }
4889
4890         init_no_remapping_devices();
4891
4892         ret = init_dmars();
4893         if (ret) {
4894                 if (force_on)
4895                         panic("tboot: Failed to initialize DMARs\n");
4896                 pr_err("Initialization failed\n");
4897                 goto out_free_reserved_range;
4898         }
4899         up_write(&dmar_global_lock);
4900         pr_info("Intel(R) Virtualization Technology for Directed I/O\n");
4901
4902 #ifdef CONFIG_SWIOTLB
4903         swiotlb = 0;
4904 #endif
4905         dma_ops = &intel_dma_ops;
4906
4907         init_iommu_pm_ops();
4908
4909         for_each_active_iommu(iommu, drhd) {
4910                 iommu_device_sysfs_add(&iommu->iommu, NULL,
4911                                        intel_iommu_groups,
4912                                        "%s", iommu->name);
4913                 iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
4914                 iommu_device_register(&iommu->iommu);
4915         }
4916
4917         bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
4918         bus_register_notifier(&pci_bus_type, &device_nb);
4919         if (si_domain && !hw_pass_through)
4920                 register_memory_notifier(&intel_iommu_memory_nb);
4921         cpuhp_setup_state(CPUHP_IOMMU_INTEL_DEAD, "iommu/intel:dead", NULL,
4922                           intel_iommu_cpu_dead);
4923         intel_iommu_enabled = 1;
4924
4925         return 0;
4926
4927 out_free_reserved_range:
4928         put_iova_domain(&reserved_iova_list);
4929 out_free_dmar:
4930         intel_iommu_free_dmars();
4931         up_write(&dmar_global_lock);
4932         iommu_exit_mempool();
4933         return ret;
4934 }
4935
4936 static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque)
4937 {
4938         struct intel_iommu *iommu = opaque;
4939
4940         domain_context_clear_one(iommu, PCI_BUS_NUM(alias), alias & 0xff);
4941         return 0;
4942 }
4943
4944 /*
4945  * NB - intel-iommu lacks any sort of reference counting for the users of
4946  * dependent devices.  If multiple endpoints have intersecting dependent
4947  * devices, unbinding the driver from any one of them will possibly leave
4948  * the others unable to operate.
4949  */
4950 static void domain_context_clear(struct intel_iommu *iommu, struct device *dev)
4951 {
4952         if (!iommu || !dev || !dev_is_pci(dev))
4953                 return;
4954
4955         pci_for_each_dma_alias(to_pci_dev(dev), &domain_context_clear_one_cb, iommu);
4956 }
4957
4958 static void __dmar_remove_one_dev_info(struct device_domain_info *info)
4959 {
4960         struct intel_iommu *iommu;
4961         unsigned long flags;
4962
4963         assert_spin_locked(&device_domain_lock);
4964
4965         if (WARN_ON(!info))
4966                 return;
4967
4968         iommu = info->iommu;
4969
4970         if (info->dev) {
4971                 iommu_disable_dev_iotlb(info);
4972                 domain_context_clear(iommu, info->dev);
4973         }
4974
4975         unlink_domain_info(info);
4976
4977         spin_lock_irqsave(&iommu->lock, flags);
4978         domain_detach_iommu(info->domain, iommu);
4979         spin_unlock_irqrestore(&iommu->lock, flags);
4980
4981         free_devinfo_mem(info);
4982 }
4983
4984 static void dmar_remove_one_dev_info(struct dmar_domain *domain,
4985                                      struct device *dev)
4986 {
4987         struct device_domain_info *info;
4988         unsigned long flags;
4989
4990         spin_lock_irqsave(&device_domain_lock, flags);
4991         info = dev->archdata.iommu;
4992         __dmar_remove_one_dev_info(info);
4993         spin_unlock_irqrestore(&device_domain_lock, flags);
4994 }
4995
4996 static int md_domain_init(struct dmar_domain *domain, int guest_width)
4997 {
4998         int adjust_width;
4999
5000         init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN,
5001                         DMA_32BIT_PFN);
5002         domain_reserve_special_ranges(domain);
5003
5004         /* calculate AGAW */
5005         domain->gaw = guest_width;
5006         adjust_width = guestwidth_to_adjustwidth(guest_width);
5007         domain->agaw = width_to_agaw(adjust_width);
5008
5009         domain->iommu_coherency = 0;
5010         domain->iommu_snooping = 0;
5011         domain->iommu_superpage = 0;
5012         domain->max_addr = 0;
5013
5014         /* always allocate the top pgd */
5015         domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
5016         if (!domain->pgd)
5017                 return -ENOMEM;
5018         domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
5019         return 0;
5020 }
5021
5022 static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
5023 {
5024         struct dmar_domain *dmar_domain;
5025         struct iommu_domain *domain;
5026
5027         if (type != IOMMU_DOMAIN_UNMANAGED)
5028                 return NULL;
5029
5030         dmar_domain = alloc_domain(DOMAIN_FLAG_VIRTUAL_MACHINE);
5031         if (!dmar_domain) {
5032                 pr_err("Can't allocate dmar_domain\n");
5033                 return NULL;
5034         }
5035         if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
5036                 pr_err("Domain initialization failed\n");
5037                 domain_exit(dmar_domain);
5038                 return NULL;
5039         }
5040         domain_update_iommu_cap(dmar_domain);
5041
5042         domain = &dmar_domain->domain;
5043         domain->geometry.aperture_start = 0;
5044         domain->geometry.aperture_end   = __DOMAIN_MAX_ADDR(dmar_domain->gaw);
5045         domain->geometry.force_aperture = true;
5046
5047         return domain;
5048 }
5049
5050 static void intel_iommu_domain_free(struct iommu_domain *domain)
5051 {
5052         domain_exit(to_dmar_domain(domain));
5053 }
5054
5055 static int intel_iommu_attach_device(struct iommu_domain *domain,
5056                                      struct device *dev)
5057 {
5058         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5059         struct intel_iommu *iommu;
5060         int addr_width;
5061         u8 bus, devfn;
5062
5063         if (device_is_rmrr_locked(dev)) {
5064                 dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement.  Contact your platform vendor.\n");
5065                 return -EPERM;
5066         }
5067
5068         /* normally dev is not mapped */
5069         if (unlikely(domain_context_mapped(dev))) {
5070                 struct dmar_domain *old_domain;
5071
5072                 old_domain = find_domain(dev);
5073                 if (old_domain) {
5074                         rcu_read_lock();
5075                         dmar_remove_one_dev_info(old_domain, dev);
5076                         rcu_read_unlock();
5077
5078                         if (!domain_type_is_vm_or_si(old_domain) &&
5079                              list_empty(&old_domain->devices))
5080                                 domain_exit(old_domain);
5081                 }
5082         }
5083
5084         iommu = device_to_iommu(dev, &bus, &devfn);
5085         if (!iommu)
5086                 return -ENODEV;
5087
5088         /* check if this iommu agaw is sufficient for max mapped address */
5089         addr_width = agaw_to_width(iommu->agaw);
5090         if (addr_width > cap_mgaw(iommu->cap))
5091                 addr_width = cap_mgaw(iommu->cap);
5092
5093         if (dmar_domain->max_addr > (1LL << addr_width)) {
5094                 pr_err("%s: iommu width (%d) is not "
5095                        "sufficient for the mapped address (%llx)\n",
5096                        __func__, addr_width, dmar_domain->max_addr);
5097                 return -EFAULT;
5098         }
5099         dmar_domain->gaw = addr_width;
5100
5101         /*
5102          * Knock out extra levels of page tables if necessary
5103          */
5104         while (iommu->agaw < dmar_domain->agaw) {
5105                 struct dma_pte *pte;
5106
5107                 pte = dmar_domain->pgd;
5108                 if (dma_pte_present(pte)) {
5109                         dmar_domain->pgd = (struct dma_pte *)
5110                                 phys_to_virt(dma_pte_addr(pte));
5111                         free_pgtable_page(pte);
5112                 }
5113                 dmar_domain->agaw--;
5114         }
5115
5116         return domain_add_dev_info(dmar_domain, dev);
5117 }
5118
5119 static void intel_iommu_detach_device(struct iommu_domain *domain,
5120                                       struct device *dev)
5121 {
5122         dmar_remove_one_dev_info(to_dmar_domain(domain), dev);
5123 }
5124
5125 static int intel_iommu_map(struct iommu_domain *domain,
5126                            unsigned long iova, phys_addr_t hpa,
5127                            size_t size, int iommu_prot)
5128 {
5129         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5130         u64 max_addr;
5131         int prot = 0;
5132         int ret;
5133
5134         if (iommu_prot & IOMMU_READ)
5135                 prot |= DMA_PTE_READ;
5136         if (iommu_prot & IOMMU_WRITE)
5137                 prot |= DMA_PTE_WRITE;
5138         if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
5139                 prot |= DMA_PTE_SNP;
5140
5141         max_addr = iova + size;
5142         if (dmar_domain->max_addr < max_addr) {
5143                 u64 end;
5144
5145                 /* check if minimum agaw is sufficient for mapped address */
5146                 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
5147                 if (end < max_addr) {
5148                         pr_err("%s: iommu width (%d) is not "
5149                                "sufficient for the mapped address (%llx)\n",
5150                                __func__, dmar_domain->gaw, max_addr);
5151                         return -EFAULT;
5152                 }
5153                 dmar_domain->max_addr = max_addr;
5154         }
5155         /* Round up size to next multiple of PAGE_SIZE, if it and
5156            the low bits of hpa would take us onto the next page */
5157         size = aligned_nrpages(hpa, size);
5158         ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
5159                                  hpa >> VTD_PAGE_SHIFT, size, prot);
5160         return ret;
5161 }
5162
5163 static size_t intel_iommu_unmap(struct iommu_domain *domain,
5164                                 unsigned long iova, size_t size)
5165 {
5166         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5167         struct page *freelist = NULL;
5168         struct intel_iommu *iommu;
5169         unsigned long start_pfn, last_pfn;
5170         unsigned int npages;
5171         int iommu_id, level = 0;
5172
5173         /* Cope with horrid API which requires us to unmap more than the
5174            size argument if it happens to be a large-page mapping. */
5175         BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level));
5176
5177         if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
5178                 size = VTD_PAGE_SIZE << level_to_offset_bits(level);
5179
5180         start_pfn = iova >> VTD_PAGE_SHIFT;
5181         last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
5182
5183         freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);
5184
5185         npages = last_pfn - start_pfn + 1;
5186
5187         for_each_domain_iommu(iommu_id, dmar_domain) {
5188                 iommu = g_iommus[iommu_id];
5189
5190                 iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain,
5191                                       start_pfn, npages, !freelist, 0);
5192         }
5193
5194         dma_free_pagelist(freelist);
5195
5196         if (dmar_domain->max_addr == iova + size)
5197                 dmar_domain->max_addr = iova;
5198
5199         return size;
5200 }
5201
5202 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
5203                                             dma_addr_t iova)
5204 {
5205         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5206         struct dma_pte *pte;
5207         int level = 0;
5208         u64 phys = 0;
5209
5210         pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
5211         if (pte)
5212                 phys = dma_pte_addr(pte);
5213
5214         return phys;
5215 }
5216
5217 static bool intel_iommu_capable(enum iommu_cap cap)
5218 {
5219         if (cap == IOMMU_CAP_CACHE_COHERENCY)
5220                 return domain_update_iommu_snooping(NULL) == 1;
5221         if (cap == IOMMU_CAP_INTR_REMAP)
5222                 return irq_remapping_enabled == 1;
5223
5224         return false;
5225 }
5226
5227 static int intel_iommu_add_device(struct device *dev)
5228 {
5229         struct intel_iommu *iommu;
5230         struct iommu_group *group;
5231         u8 bus, devfn;
5232
5233         iommu = device_to_iommu(dev, &bus, &devfn);
5234         if (!iommu)
5235                 return -ENODEV;
5236
5237         iommu_device_link(&iommu->iommu, dev);
5238
5239         group = iommu_group_get_for_dev(dev);
5240
5241         if (IS_ERR(group))
5242                 return PTR_ERR(group);
5243
5244         iommu_group_put(group);
5245         return 0;
5246 }
5247
5248 static void intel_iommu_remove_device(struct device *dev)
5249 {
5250         struct intel_iommu *iommu;
5251         u8 bus, devfn;
5252
5253         iommu = device_to_iommu(dev, &bus, &devfn);
5254         if (!iommu)
5255                 return;
5256
5257         iommu_group_remove_device(dev);
5258
5259         iommu_device_unlink(&iommu->iommu, dev);
5260 }
5261
5262 static void intel_iommu_get_resv_regions(struct device *device,
5263                                          struct list_head *head)
5264 {
5265         struct iommu_resv_region *reg;
5266         struct dmar_rmrr_unit *rmrr;
5267         struct device *i_dev;
5268         int i;
5269
5270         rcu_read_lock();
5271         for_each_rmrr_units(rmrr) {
5272                 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
5273                                           i, i_dev) {
5274                         if (i_dev != device)
5275                                 continue;
5276
5277                         list_add_tail(&rmrr->resv->list, head);
5278                 }
5279         }
5280         rcu_read_unlock();
5281
5282         reg = iommu_alloc_resv_region(IOAPIC_RANGE_START,
5283                                       IOAPIC_RANGE_END - IOAPIC_RANGE_START + 1,
5284                                       0, IOMMU_RESV_MSI);
5285         if (!reg)
5286                 return;
5287         list_add_tail(&reg->list, head);
5288 }
5289
5290 static void intel_iommu_put_resv_regions(struct device *dev,
5291                                          struct list_head *head)
5292 {
5293         struct iommu_resv_region *entry, *next;
5294
5295         list_for_each_entry_safe(entry, next, head, list) {
5296                 if (entry->type == IOMMU_RESV_RESERVED)
5297                         kfree(entry);
5298         }
5299 }
5300
5301 #ifdef CONFIG_INTEL_IOMMU_SVM
5302 #define MAX_NR_PASID_BITS (20)
5303 static inline unsigned long intel_iommu_get_pts(struct intel_iommu *iommu)
5304 {
5305         /*
5306          * Convert ecap_pss to extend context entry pts encoding, also
5307          * respect the soft pasid_max value set by the iommu.
5308          * - number of PASID bits = ecap_pss + 1
5309          * - number of PASID table entries = 2^(pts + 5)
5310          * Therefore, pts = ecap_pss - 4
5311          * e.g. KBL ecap_pss = 0x13, PASID has 20 bits, pts = 15
5312          */
5313         if (ecap_pss(iommu->ecap) < 5)
5314                 return 0;
5315
5316         /* pasid_max is encoded as actual number of entries not the bits */
5317         return find_first_bit((unsigned long *)&iommu->pasid_max,
5318                         MAX_NR_PASID_BITS) - 5;
5319 }
5320
5321 int intel_iommu_enable_pasid(struct intel_iommu *iommu, struct intel_svm_dev *sdev)
5322 {
5323         struct device_domain_info *info;
5324         struct context_entry *context;
5325         struct dmar_domain *domain;
5326         unsigned long flags;
5327         u64 ctx_lo;
5328         int ret;
5329
5330         domain = get_valid_domain_for_dev(sdev->dev);
5331         if (!domain)
5332                 return -EINVAL;
5333
5334         spin_lock_irqsave(&device_domain_lock, flags);
5335         spin_lock(&iommu->lock);
5336
5337         ret = -EINVAL;
5338         info = sdev->dev->archdata.iommu;
5339         if (!info || !info->pasid_supported)
5340                 goto out;
5341
5342         context = iommu_context_addr(iommu, info->bus, info->devfn, 0);
5343         if (WARN_ON(!context))
5344                 goto out;
5345
5346         ctx_lo = context[0].lo;
5347
5348         sdev->did = domain->iommu_did[iommu->seq_id];
5349         sdev->sid = PCI_DEVID(info->bus, info->devfn);
5350
5351         if (!(ctx_lo & CONTEXT_PASIDE)) {
5352                 context[1].hi = (u64)virt_to_phys(iommu->pasid_state_table);
5353                 context[1].lo = (u64)virt_to_phys(iommu->pasid_table) |
5354                         intel_iommu_get_pts(iommu);
5355
5356                 wmb();
5357                 /* CONTEXT_TT_MULTI_LEVEL and CONTEXT_TT_DEV_IOTLB are both
5358                  * extended to permit requests-with-PASID if the PASIDE bit
5359                  * is set. which makes sense. For CONTEXT_TT_PASS_THROUGH,
5360                  * however, the PASIDE bit is ignored and requests-with-PASID
5361                  * are unconditionally blocked. Which makes less sense.
5362                  * So convert from CONTEXT_TT_PASS_THROUGH to one of the new
5363                  * "guest mode" translation types depending on whether ATS
5364                  * is available or not. Annoyingly, we can't use the new
5365                  * modes *unless* PASIDE is set. */
5366                 if ((ctx_lo & CONTEXT_TT_MASK) == (CONTEXT_TT_PASS_THROUGH << 2)) {
5367                         ctx_lo &= ~CONTEXT_TT_MASK;
5368                         if (info->ats_supported)
5369                                 ctx_lo |= CONTEXT_TT_PT_PASID_DEV_IOTLB << 2;
5370                         else
5371                                 ctx_lo |= CONTEXT_TT_PT_PASID << 2;
5372                 }
5373                 ctx_lo |= CONTEXT_PASIDE;
5374                 if (iommu->pasid_state_table)
5375                         ctx_lo |= CONTEXT_DINVE;
5376                 if (info->pri_supported)
5377                         ctx_lo |= CONTEXT_PRS;
5378                 context[0].lo = ctx_lo;
5379                 wmb();
5380                 iommu->flush.flush_context(iommu, sdev->did, sdev->sid,
5381                                            DMA_CCMD_MASK_NOBIT,
5382                                            DMA_CCMD_DEVICE_INVL);
5383         }
5384
5385         /* Enable PASID support in the device, if it wasn't already */
5386         if (!info->pasid_enabled)
5387                 iommu_enable_dev_iotlb(info);
5388
5389         if (info->ats_enabled) {
5390                 sdev->dev_iotlb = 1;
5391                 sdev->qdep = info->ats_qdep;
5392                 if (sdev->qdep >= QI_DEV_EIOTLB_MAX_INVS)
5393                         sdev->qdep = 0;
5394         }
5395         ret = 0;
5396
5397  out:
5398         spin_unlock(&iommu->lock);
5399         spin_unlock_irqrestore(&device_domain_lock, flags);
5400
5401         return ret;
5402 }
5403
5404 struct intel_iommu *intel_svm_device_to_iommu(struct device *dev)
5405 {
5406         struct intel_iommu *iommu;
5407         u8 bus, devfn;
5408
5409         if (iommu_dummy(dev)) {
5410                 dev_warn(dev,
5411                          "No IOMMU translation for device; cannot enable SVM\n");
5412                 return NULL;
5413         }
5414
5415         iommu = device_to_iommu(dev, &bus, &devfn);
5416         if ((!iommu)) {
5417                 dev_err(dev, "No IOMMU for device; cannot enable SVM\n");
5418                 return NULL;
5419         }
5420
5421         if (!iommu->pasid_table) {
5422                 dev_err(dev, "PASID not enabled on IOMMU; cannot enable SVM\n");
5423                 return NULL;
5424         }
5425
5426         return iommu;
5427 }
5428 #endif /* CONFIG_INTEL_IOMMU_SVM */
5429
5430 const struct iommu_ops intel_iommu_ops = {
5431         .capable                = intel_iommu_capable,
5432         .domain_alloc           = intel_iommu_domain_alloc,
5433         .domain_free            = intel_iommu_domain_free,
5434         .attach_dev             = intel_iommu_attach_device,
5435         .detach_dev             = intel_iommu_detach_device,
5436         .map                    = intel_iommu_map,
5437         .unmap                  = intel_iommu_unmap,
5438         .map_sg                 = default_iommu_map_sg,
5439         .iova_to_phys           = intel_iommu_iova_to_phys,
5440         .add_device             = intel_iommu_add_device,
5441         .remove_device          = intel_iommu_remove_device,
5442         .get_resv_regions       = intel_iommu_get_resv_regions,
5443         .put_resv_regions       = intel_iommu_put_resv_regions,
5444         .device_group           = pci_device_group,
5445         .pgsize_bitmap          = INTEL_IOMMU_PGSIZES,
5446 };
5447
5448 static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
5449 {
5450         /* G4x/GM45 integrated gfx dmar support is totally busted. */
5451         pr_info("Disabling IOMMU for graphics on this chipset\n");
5452         dmar_map_gfx = 0;
5453 }
5454
5455 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
5456 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
5457 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
5458 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
5459 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
5460 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
5461 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);
5462
5463 static void quirk_iommu_rwbf(struct pci_dev *dev)
5464 {
5465         /*
5466          * Mobile 4 Series Chipset neglects to set RWBF capability,
5467          * but needs it. Same seems to hold for the desktop versions.
5468          */
5469         pr_info("Forcing write-buffer flush capability\n");
5470         rwbf_quirk = 1;
5471 }
5472
5473 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
5474 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
5475 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
5476 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
5477 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
5478 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
5479 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
5480
5481 #define GGC 0x52
5482 #define GGC_MEMORY_SIZE_MASK    (0xf << 8)
5483 #define GGC_MEMORY_SIZE_NONE    (0x0 << 8)
5484 #define GGC_MEMORY_SIZE_1M      (0x1 << 8)
5485 #define GGC_MEMORY_SIZE_2M      (0x3 << 8)
5486 #define GGC_MEMORY_VT_ENABLED   (0x8 << 8)
5487 #define GGC_MEMORY_SIZE_2M_VT   (0x9 << 8)
5488 #define GGC_MEMORY_SIZE_3M_VT   (0xa << 8)
5489 #define GGC_MEMORY_SIZE_4M_VT   (0xb << 8)
5490
5491 static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
5492 {
5493         unsigned short ggc;
5494
5495         if (pci_read_config_word(dev, GGC, &ggc))
5496                 return;
5497
5498         if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
5499                 pr_info("BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
5500                 dmar_map_gfx = 0;
5501         } else if (dmar_map_gfx) {
5502                 /* we have to ensure the gfx device is idle before we flush */
5503                 pr_info("Disabling batched IOTLB flush on Ironlake\n");
5504                 intel_iommu_strict = 1;
5505        }
5506 }
5507 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
5508 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
5509 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
5510 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
5511
5512 /* On Tylersburg chipsets, some BIOSes have been known to enable the
5513    ISOCH DMAR unit for the Azalia sound device, but not give it any
5514    TLB entries, which causes it to deadlock. Check for that.  We do
5515    this in a function called from init_dmars(), instead of in a PCI
5516    quirk, because we don't want to print the obnoxious "BIOS broken"
5517    message if VT-d is actually disabled.
5518 */
5519 static void __init check_tylersburg_isoch(void)
5520 {
5521         struct pci_dev *pdev;
5522         uint32_t vtisochctrl;
5523
5524         /* If there's no Azalia in the system anyway, forget it. */
5525         pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
5526         if (!pdev)
5527                 return;
5528         pci_dev_put(pdev);
5529
5530         /* System Management Registers. Might be hidden, in which case
5531            we can't do the sanity check. But that's OK, because the
5532            known-broken BIOSes _don't_ actually hide it, so far. */
5533         pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
5534         if (!pdev)
5535                 return;
5536
5537         if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
5538                 pci_dev_put(pdev);
5539                 return;
5540         }
5541
5542         pci_dev_put(pdev);
5543
5544         /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
5545         if (vtisochctrl & 1)
5546                 return;
5547
5548         /* Drop all bits other than the number of TLB entries */
5549         vtisochctrl &= 0x1c;
5550
5551         /* If we have the recommended number of TLB entries (16), fine. */
5552         if (vtisochctrl == 0x10)
5553                 return;
5554
5555         /* Zero TLB entries? You get to ride the short bus to school. */
5556         if (!vtisochctrl) {
5557                 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
5558                      "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
5559                      dmi_get_system_info(DMI_BIOS_VENDOR),
5560                      dmi_get_system_info(DMI_BIOS_VERSION),
5561                      dmi_get_system_info(DMI_PRODUCT_VERSION));
5562                 iommu_identity_mapping |= IDENTMAP_AZALIA;
5563                 return;
5564         }
5565
5566         pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
5567                vtisochctrl);
5568 }