23583b0e66a5e12dc18cbb79dbc1b8ffa6dc7552
[linux-2.6-microblaze.git] / drivers / iommu / intel / irq_remapping.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #define pr_fmt(fmt)     "DMAR-IR: " fmt
4
5 #include <linux/interrupt.h>
6 #include <linux/dmar.h>
7 #include <linux/spinlock.h>
8 #include <linux/slab.h>
9 #include <linux/jiffies.h>
10 #include <linux/hpet.h>
11 #include <linux/pci.h>
12 #include <linux/irq.h>
13 #include <linux/intel-iommu.h>
14 #include <linux/acpi.h>
15 #include <linux/irqdomain.h>
16 #include <linux/crash_dump.h>
17 #include <asm/io_apic.h>
18 #include <asm/apic.h>
19 #include <asm/smp.h>
20 #include <asm/cpu.h>
21 #include <asm/irq_remapping.h>
22 #include <asm/pci-direct.h>
23 #include <asm/msidef.h>
24
25 #include "../irq_remapping.h"
26
27 enum irq_mode {
28         IRQ_REMAPPING,
29         IRQ_POSTING,
30 };
31
32 struct ioapic_scope {
33         struct intel_iommu *iommu;
34         unsigned int id;
35         unsigned int bus;       /* PCI bus number */
36         unsigned int devfn;     /* PCI devfn number */
37 };
38
39 struct hpet_scope {
40         struct intel_iommu *iommu;
41         u8 id;
42         unsigned int bus;
43         unsigned int devfn;
44 };
45
46 struct irq_2_iommu {
47         struct intel_iommu *iommu;
48         u16 irte_index;
49         u16 sub_handle;
50         u8  irte_mask;
51         enum irq_mode mode;
52 };
53
54 struct intel_ir_data {
55         struct irq_2_iommu                      irq_2_iommu;
56         struct irte                             irte_entry;
57         union {
58                 struct msi_msg                  msi_entry;
59         };
60 };
61
62 #define IR_X2APIC_MODE(mode) (mode ? (1 << 11) : 0)
63 #define IRTE_DEST(dest) ((eim_mode) ? dest : dest << 8)
64
65 static int __read_mostly eim_mode;
66 static struct ioapic_scope ir_ioapic[MAX_IO_APICS];
67 static struct hpet_scope ir_hpet[MAX_HPET_TBS];
68
69 /*
70  * Lock ordering:
71  * ->dmar_global_lock
72  *      ->irq_2_ir_lock
73  *              ->qi->q_lock
74  *      ->iommu->register_lock
75  * Note:
76  * intel_irq_remap_ops.{supported,prepare,enable,disable,reenable} are called
77  * in single-threaded environment with interrupt disabled, so no need to tabke
78  * the dmar_global_lock.
79  */
80 DEFINE_RAW_SPINLOCK(irq_2_ir_lock);
81 static const struct irq_domain_ops intel_ir_domain_ops;
82
83 static void iommu_disable_irq_remapping(struct intel_iommu *iommu);
84 static int __init parse_ioapics_under_ir(void);
85
86 static bool ir_pre_enabled(struct intel_iommu *iommu)
87 {
88         return (iommu->flags & VTD_FLAG_IRQ_REMAP_PRE_ENABLED);
89 }
90
91 static void clear_ir_pre_enabled(struct intel_iommu *iommu)
92 {
93         iommu->flags &= ~VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
94 }
95
96 static void init_ir_status(struct intel_iommu *iommu)
97 {
98         u32 gsts;
99
100         gsts = readl(iommu->reg + DMAR_GSTS_REG);
101         if (gsts & DMA_GSTS_IRES)
102                 iommu->flags |= VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
103 }
104
105 static int alloc_irte(struct intel_iommu *iommu,
106                       struct irq_2_iommu *irq_iommu, u16 count)
107 {
108         struct ir_table *table = iommu->ir_table;
109         unsigned int mask = 0;
110         unsigned long flags;
111         int index;
112
113         if (!count || !irq_iommu)
114                 return -1;
115
116         if (count > 1) {
117                 count = __roundup_pow_of_two(count);
118                 mask = ilog2(count);
119         }
120
121         if (mask > ecap_max_handle_mask(iommu->ecap)) {
122                 pr_err("Requested mask %x exceeds the max invalidation handle"
123                        " mask value %Lx\n", mask,
124                        ecap_max_handle_mask(iommu->ecap));
125                 return -1;
126         }
127
128         raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
129         index = bitmap_find_free_region(table->bitmap,
130                                         INTR_REMAP_TABLE_ENTRIES, mask);
131         if (index < 0) {
132                 pr_warn("IR%d: can't allocate an IRTE\n", iommu->seq_id);
133         } else {
134                 irq_iommu->iommu = iommu;
135                 irq_iommu->irte_index =  index;
136                 irq_iommu->sub_handle = 0;
137                 irq_iommu->irte_mask = mask;
138                 irq_iommu->mode = IRQ_REMAPPING;
139         }
140         raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
141
142         return index;
143 }
144
145 static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask)
146 {
147         struct qi_desc desc;
148
149         desc.qw0 = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask)
150                    | QI_IEC_SELECTIVE;
151         desc.qw1 = 0;
152         desc.qw2 = 0;
153         desc.qw3 = 0;
154
155         return qi_submit_sync(iommu, &desc, 1, 0);
156 }
157
158 static int modify_irte(struct irq_2_iommu *irq_iommu,
159                        struct irte *irte_modified)
160 {
161         struct intel_iommu *iommu;
162         unsigned long flags;
163         struct irte *irte;
164         int rc, index;
165
166         if (!irq_iommu)
167                 return -1;
168
169         raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
170
171         iommu = irq_iommu->iommu;
172
173         index = irq_iommu->irte_index + irq_iommu->sub_handle;
174         irte = &iommu->ir_table->base[index];
175
176 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE)
177         if ((irte->pst == 1) || (irte_modified->pst == 1)) {
178                 bool ret;
179
180                 ret = cmpxchg_double(&irte->low, &irte->high,
181                                      irte->low, irte->high,
182                                      irte_modified->low, irte_modified->high);
183                 /*
184                  * We use cmpxchg16 to atomically update the 128-bit IRTE,
185                  * and it cannot be updated by the hardware or other processors
186                  * behind us, so the return value of cmpxchg16 should be the
187                  * same as the old value.
188                  */
189                 WARN_ON(!ret);
190         } else
191 #endif
192         {
193                 set_64bit(&irte->low, irte_modified->low);
194                 set_64bit(&irte->high, irte_modified->high);
195         }
196         __iommu_flush_cache(iommu, irte, sizeof(*irte));
197
198         rc = qi_flush_iec(iommu, index, 0);
199
200         /* Update iommu mode according to the IRTE mode */
201         irq_iommu->mode = irte->pst ? IRQ_POSTING : IRQ_REMAPPING;
202         raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
203
204         return rc;
205 }
206
207 static struct intel_iommu *map_hpet_to_ir(u8 hpet_id)
208 {
209         int i;
210
211         for (i = 0; i < MAX_HPET_TBS; i++)
212                 if (ir_hpet[i].id == hpet_id && ir_hpet[i].iommu)
213                         return ir_hpet[i].iommu;
214         return NULL;
215 }
216
217 static struct intel_iommu *map_ioapic_to_ir(int apic)
218 {
219         int i;
220
221         for (i = 0; i < MAX_IO_APICS; i++)
222                 if (ir_ioapic[i].id == apic && ir_ioapic[i].iommu)
223                         return ir_ioapic[i].iommu;
224         return NULL;
225 }
226
227 static struct intel_iommu *map_dev_to_ir(struct pci_dev *dev)
228 {
229         struct dmar_drhd_unit *drhd;
230
231         drhd = dmar_find_matched_drhd_unit(dev);
232         if (!drhd)
233                 return NULL;
234
235         return drhd->iommu;
236 }
237
238 static int clear_entries(struct irq_2_iommu *irq_iommu)
239 {
240         struct irte *start, *entry, *end;
241         struct intel_iommu *iommu;
242         int index;
243
244         if (irq_iommu->sub_handle)
245                 return 0;
246
247         iommu = irq_iommu->iommu;
248         index = irq_iommu->irte_index;
249
250         start = iommu->ir_table->base + index;
251         end = start + (1 << irq_iommu->irte_mask);
252
253         for (entry = start; entry < end; entry++) {
254                 set_64bit(&entry->low, 0);
255                 set_64bit(&entry->high, 0);
256         }
257         bitmap_release_region(iommu->ir_table->bitmap, index,
258                               irq_iommu->irte_mask);
259
260         return qi_flush_iec(iommu, index, irq_iommu->irte_mask);
261 }
262
263 /*
264  * source validation type
265  */
266 #define SVT_NO_VERIFY           0x0  /* no verification is required */
267 #define SVT_VERIFY_SID_SQ       0x1  /* verify using SID and SQ fields */
268 #define SVT_VERIFY_BUS          0x2  /* verify bus of request-id */
269
270 /*
271  * source-id qualifier
272  */
273 #define SQ_ALL_16       0x0  /* verify all 16 bits of request-id */
274 #define SQ_13_IGNORE_1  0x1  /* verify most significant 13 bits, ignore
275                               * the third least significant bit
276                               */
277 #define SQ_13_IGNORE_2  0x2  /* verify most significant 13 bits, ignore
278                               * the second and third least significant bits
279                               */
280 #define SQ_13_IGNORE_3  0x3  /* verify most significant 13 bits, ignore
281                               * the least three significant bits
282                               */
283
284 /*
285  * set SVT, SQ and SID fields of irte to verify
286  * source ids of interrupt requests
287  */
288 static void set_irte_sid(struct irte *irte, unsigned int svt,
289                          unsigned int sq, unsigned int sid)
290 {
291         if (disable_sourceid_checking)
292                 svt = SVT_NO_VERIFY;
293         irte->svt = svt;
294         irte->sq = sq;
295         irte->sid = sid;
296 }
297
298 /*
299  * Set an IRTE to match only the bus number. Interrupt requests that reference
300  * this IRTE must have a requester-id whose bus number is between or equal
301  * to the start_bus and end_bus arguments.
302  */
303 static void set_irte_verify_bus(struct irte *irte, unsigned int start_bus,
304                                 unsigned int end_bus)
305 {
306         set_irte_sid(irte, SVT_VERIFY_BUS, SQ_ALL_16,
307                      (start_bus << 8) | end_bus);
308 }
309
310 static int set_ioapic_sid(struct irte *irte, int apic)
311 {
312         int i;
313         u16 sid = 0;
314
315         if (!irte)
316                 return -1;
317
318         down_read(&dmar_global_lock);
319         for (i = 0; i < MAX_IO_APICS; i++) {
320                 if (ir_ioapic[i].iommu && ir_ioapic[i].id == apic) {
321                         sid = (ir_ioapic[i].bus << 8) | ir_ioapic[i].devfn;
322                         break;
323                 }
324         }
325         up_read(&dmar_global_lock);
326
327         if (sid == 0) {
328                 pr_warn("Failed to set source-id of IOAPIC (%d)\n", apic);
329                 return -1;
330         }
331
332         set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, sid);
333
334         return 0;
335 }
336
337 static int set_hpet_sid(struct irte *irte, u8 id)
338 {
339         int i;
340         u16 sid = 0;
341
342         if (!irte)
343                 return -1;
344
345         down_read(&dmar_global_lock);
346         for (i = 0; i < MAX_HPET_TBS; i++) {
347                 if (ir_hpet[i].iommu && ir_hpet[i].id == id) {
348                         sid = (ir_hpet[i].bus << 8) | ir_hpet[i].devfn;
349                         break;
350                 }
351         }
352         up_read(&dmar_global_lock);
353
354         if (sid == 0) {
355                 pr_warn("Failed to set source-id of HPET block (%d)\n", id);
356                 return -1;
357         }
358
359         /*
360          * Should really use SQ_ALL_16. Some platforms are broken.
361          * While we figure out the right quirks for these broken platforms, use
362          * SQ_13_IGNORE_3 for now.
363          */
364         set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_13_IGNORE_3, sid);
365
366         return 0;
367 }
368
369 struct set_msi_sid_data {
370         struct pci_dev *pdev;
371         u16 alias;
372         int count;
373         int busmatch_count;
374 };
375
376 static int set_msi_sid_cb(struct pci_dev *pdev, u16 alias, void *opaque)
377 {
378         struct set_msi_sid_data *data = opaque;
379
380         if (data->count == 0 || PCI_BUS_NUM(alias) == PCI_BUS_NUM(data->alias))
381                 data->busmatch_count++;
382
383         data->pdev = pdev;
384         data->alias = alias;
385         data->count++;
386
387         return 0;
388 }
389
390 static int set_msi_sid(struct irte *irte, struct pci_dev *dev)
391 {
392         struct set_msi_sid_data data;
393
394         if (!irte || !dev)
395                 return -1;
396
397         data.count = 0;
398         data.busmatch_count = 0;
399         pci_for_each_dma_alias(dev, set_msi_sid_cb, &data);
400
401         /*
402          * DMA alias provides us with a PCI device and alias.  The only case
403          * where the it will return an alias on a different bus than the
404          * device is the case of a PCIe-to-PCI bridge, where the alias is for
405          * the subordinate bus.  In this case we can only verify the bus.
406          *
407          * If there are multiple aliases, all with the same bus number,
408          * then all we can do is verify the bus. This is typical in NTB
409          * hardware which use proxy IDs where the device will generate traffic
410          * from multiple devfn numbers on the same bus.
411          *
412          * If the alias device is on a different bus than our source device
413          * then we have a topology based alias, use it.
414          *
415          * Otherwise, the alias is for a device DMA quirk and we cannot
416          * assume that MSI uses the same requester ID.  Therefore use the
417          * original device.
418          */
419         if (PCI_BUS_NUM(data.alias) != data.pdev->bus->number)
420                 set_irte_verify_bus(irte, PCI_BUS_NUM(data.alias),
421                                     dev->bus->number);
422         else if (data.count >= 2 && data.busmatch_count == data.count)
423                 set_irte_verify_bus(irte, dev->bus->number, dev->bus->number);
424         else if (data.pdev->bus->number != dev->bus->number)
425                 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, data.alias);
426         else
427                 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16,
428                              pci_dev_id(dev));
429
430         return 0;
431 }
432
433 static int iommu_load_old_irte(struct intel_iommu *iommu)
434 {
435         struct irte *old_ir_table;
436         phys_addr_t irt_phys;
437         unsigned int i;
438         size_t size;
439         u64 irta;
440
441         /* Check whether the old ir-table has the same size as ours */
442         irta = dmar_readq(iommu->reg + DMAR_IRTA_REG);
443         if ((irta & INTR_REMAP_TABLE_REG_SIZE_MASK)
444              != INTR_REMAP_TABLE_REG_SIZE)
445                 return -EINVAL;
446
447         irt_phys = irta & VTD_PAGE_MASK;
448         size     = INTR_REMAP_TABLE_ENTRIES*sizeof(struct irte);
449
450         /* Map the old IR table */
451         old_ir_table = memremap(irt_phys, size, MEMREMAP_WB);
452         if (!old_ir_table)
453                 return -ENOMEM;
454
455         /* Copy data over */
456         memcpy(iommu->ir_table->base, old_ir_table, size);
457
458         __iommu_flush_cache(iommu, iommu->ir_table->base, size);
459
460         /*
461          * Now check the table for used entries and mark those as
462          * allocated in the bitmap
463          */
464         for (i = 0; i < INTR_REMAP_TABLE_ENTRIES; i++) {
465                 if (iommu->ir_table->base[i].present)
466                         bitmap_set(iommu->ir_table->bitmap, i, 1);
467         }
468
469         memunmap(old_ir_table);
470
471         return 0;
472 }
473
474
475 static void iommu_set_irq_remapping(struct intel_iommu *iommu, int mode)
476 {
477         unsigned long flags;
478         u64 addr;
479         u32 sts;
480
481         addr = virt_to_phys((void *)iommu->ir_table->base);
482
483         raw_spin_lock_irqsave(&iommu->register_lock, flags);
484
485         dmar_writeq(iommu->reg + DMAR_IRTA_REG,
486                     (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE);
487
488         /* Set interrupt-remapping table pointer */
489         writel(iommu->gcmd | DMA_GCMD_SIRTP, iommu->reg + DMAR_GCMD_REG);
490
491         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
492                       readl, (sts & DMA_GSTS_IRTPS), sts);
493         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
494
495         /*
496          * Global invalidation of interrupt entry cache to make sure the
497          * hardware uses the new irq remapping table.
498          */
499         qi_global_iec(iommu);
500 }
501
502 static void iommu_enable_irq_remapping(struct intel_iommu *iommu)
503 {
504         unsigned long flags;
505         u32 sts;
506
507         raw_spin_lock_irqsave(&iommu->register_lock, flags);
508
509         /* Enable interrupt-remapping */
510         iommu->gcmd |= DMA_GCMD_IRE;
511         iommu->gcmd &= ~DMA_GCMD_CFI;  /* Block compatibility-format MSIs */
512         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
513
514         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
515                       readl, (sts & DMA_GSTS_IRES), sts);
516
517         /*
518          * With CFI clear in the Global Command register, we should be
519          * protected from dangerous (i.e. compatibility) interrupts
520          * regardless of x2apic status.  Check just to be sure.
521          */
522         if (sts & DMA_GSTS_CFIS)
523                 WARN(1, KERN_WARNING
524                         "Compatibility-format IRQs enabled despite intr remapping;\n"
525                         "you are vulnerable to IRQ injection.\n");
526
527         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
528 }
529
530 static int intel_setup_irq_remapping(struct intel_iommu *iommu)
531 {
532         struct ir_table *ir_table;
533         struct fwnode_handle *fn;
534         unsigned long *bitmap;
535         struct page *pages;
536
537         if (iommu->ir_table)
538                 return 0;
539
540         ir_table = kzalloc(sizeof(struct ir_table), GFP_KERNEL);
541         if (!ir_table)
542                 return -ENOMEM;
543
544         pages = alloc_pages_node(iommu->node, GFP_KERNEL | __GFP_ZERO,
545                                  INTR_REMAP_PAGE_ORDER);
546         if (!pages) {
547                 pr_err("IR%d: failed to allocate pages of order %d\n",
548                        iommu->seq_id, INTR_REMAP_PAGE_ORDER);
549                 goto out_free_table;
550         }
551
552         bitmap = bitmap_zalloc(INTR_REMAP_TABLE_ENTRIES, GFP_ATOMIC);
553         if (bitmap == NULL) {
554                 pr_err("IR%d: failed to allocate bitmap\n", iommu->seq_id);
555                 goto out_free_pages;
556         }
557
558         fn = irq_domain_alloc_named_id_fwnode("INTEL-IR", iommu->seq_id);
559         if (!fn)
560                 goto out_free_bitmap;
561
562         iommu->ir_domain =
563                 irq_domain_create_hierarchy(arch_get_ir_parent_domain(),
564                                             0, INTR_REMAP_TABLE_ENTRIES,
565                                             fn, &intel_ir_domain_ops,
566                                             iommu);
567         if (!iommu->ir_domain) {
568                 irq_domain_free_fwnode(fn);
569                 pr_err("IR%d: failed to allocate irqdomain\n", iommu->seq_id);
570                 goto out_free_bitmap;
571         }
572         iommu->ir_msi_domain =
573                 arch_create_remap_msi_irq_domain(iommu->ir_domain,
574                                                  "INTEL-IR-MSI",
575                                                  iommu->seq_id);
576
577         ir_table->base = page_address(pages);
578         ir_table->bitmap = bitmap;
579         iommu->ir_table = ir_table;
580
581         /*
582          * If the queued invalidation is already initialized,
583          * shouldn't disable it.
584          */
585         if (!iommu->qi) {
586                 /*
587                  * Clear previous faults.
588                  */
589                 dmar_fault(-1, iommu);
590                 dmar_disable_qi(iommu);
591
592                 if (dmar_enable_qi(iommu)) {
593                         pr_err("Failed to enable queued invalidation\n");
594                         goto out_free_bitmap;
595                 }
596         }
597
598         init_ir_status(iommu);
599
600         if (ir_pre_enabled(iommu)) {
601                 if (!is_kdump_kernel()) {
602                         pr_warn("IRQ remapping was enabled on %s but we are not in kdump mode\n",
603                                 iommu->name);
604                         clear_ir_pre_enabled(iommu);
605                         iommu_disable_irq_remapping(iommu);
606                 } else if (iommu_load_old_irte(iommu))
607                         pr_err("Failed to copy IR table for %s from previous kernel\n",
608                                iommu->name);
609                 else
610                         pr_info("Copied IR table for %s from previous kernel\n",
611                                 iommu->name);
612         }
613
614         iommu_set_irq_remapping(iommu, eim_mode);
615
616         return 0;
617
618 out_free_bitmap:
619         bitmap_free(bitmap);
620 out_free_pages:
621         __free_pages(pages, INTR_REMAP_PAGE_ORDER);
622 out_free_table:
623         kfree(ir_table);
624
625         iommu->ir_table  = NULL;
626
627         return -ENOMEM;
628 }
629
630 static void intel_teardown_irq_remapping(struct intel_iommu *iommu)
631 {
632         struct fwnode_handle *fn;
633
634         if (iommu && iommu->ir_table) {
635                 if (iommu->ir_msi_domain) {
636                         fn = iommu->ir_msi_domain->fwnode;
637
638                         irq_domain_remove(iommu->ir_msi_domain);
639                         irq_domain_free_fwnode(fn);
640                         iommu->ir_msi_domain = NULL;
641                 }
642                 if (iommu->ir_domain) {
643                         fn = iommu->ir_domain->fwnode;
644
645                         irq_domain_remove(iommu->ir_domain);
646                         irq_domain_free_fwnode(fn);
647                         iommu->ir_domain = NULL;
648                 }
649                 free_pages((unsigned long)iommu->ir_table->base,
650                            INTR_REMAP_PAGE_ORDER);
651                 bitmap_free(iommu->ir_table->bitmap);
652                 kfree(iommu->ir_table);
653                 iommu->ir_table = NULL;
654         }
655 }
656
657 /*
658  * Disable Interrupt Remapping.
659  */
660 static void iommu_disable_irq_remapping(struct intel_iommu *iommu)
661 {
662         unsigned long flags;
663         u32 sts;
664
665         if (!ecap_ir_support(iommu->ecap))
666                 return;
667
668         /*
669          * global invalidation of interrupt entry cache before disabling
670          * interrupt-remapping.
671          */
672         qi_global_iec(iommu);
673
674         raw_spin_lock_irqsave(&iommu->register_lock, flags);
675
676         sts = readl(iommu->reg + DMAR_GSTS_REG);
677         if (!(sts & DMA_GSTS_IRES))
678                 goto end;
679
680         iommu->gcmd &= ~DMA_GCMD_IRE;
681         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
682
683         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
684                       readl, !(sts & DMA_GSTS_IRES), sts);
685
686 end:
687         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
688 }
689
690 static int __init dmar_x2apic_optout(void)
691 {
692         struct acpi_table_dmar *dmar;
693         dmar = (struct acpi_table_dmar *)dmar_tbl;
694         if (!dmar || no_x2apic_optout)
695                 return 0;
696         return dmar->flags & DMAR_X2APIC_OPT_OUT;
697 }
698
699 static void __init intel_cleanup_irq_remapping(void)
700 {
701         struct dmar_drhd_unit *drhd;
702         struct intel_iommu *iommu;
703
704         for_each_iommu(iommu, drhd) {
705                 if (ecap_ir_support(iommu->ecap)) {
706                         iommu_disable_irq_remapping(iommu);
707                         intel_teardown_irq_remapping(iommu);
708                 }
709         }
710
711         if (x2apic_supported())
712                 pr_warn("Failed to enable irq remapping. You are vulnerable to irq-injection attacks.\n");
713 }
714
715 static int __init intel_prepare_irq_remapping(void)
716 {
717         struct dmar_drhd_unit *drhd;
718         struct intel_iommu *iommu;
719         int eim = 0;
720
721         if (irq_remap_broken) {
722                 pr_warn("This system BIOS has enabled interrupt remapping\n"
723                         "on a chipset that contains an erratum making that\n"
724                         "feature unstable.  To maintain system stability\n"
725                         "interrupt remapping is being disabled.  Please\n"
726                         "contact your BIOS vendor for an update\n");
727                 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
728                 return -ENODEV;
729         }
730
731         if (dmar_table_init() < 0)
732                 return -ENODEV;
733
734         if (!dmar_ir_support())
735                 return -ENODEV;
736
737         if (parse_ioapics_under_ir()) {
738                 pr_info("Not enabling interrupt remapping\n");
739                 goto error;
740         }
741
742         /* First make sure all IOMMUs support IRQ remapping */
743         for_each_iommu(iommu, drhd)
744                 if (!ecap_ir_support(iommu->ecap))
745                         goto error;
746
747         /* Detect remapping mode: lapic or x2apic */
748         if (x2apic_supported()) {
749                 eim = !dmar_x2apic_optout();
750                 if (!eim) {
751                         pr_info("x2apic is disabled because BIOS sets x2apic opt out bit.");
752                         pr_info("Use 'intremap=no_x2apic_optout' to override the BIOS setting.\n");
753                 }
754         }
755
756         for_each_iommu(iommu, drhd) {
757                 if (eim && !ecap_eim_support(iommu->ecap)) {
758                         pr_info("%s does not support EIM\n", iommu->name);
759                         eim = 0;
760                 }
761         }
762
763         eim_mode = eim;
764         if (eim)
765                 pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n");
766
767         /* Do the initializations early */
768         for_each_iommu(iommu, drhd) {
769                 if (intel_setup_irq_remapping(iommu)) {
770                         pr_err("Failed to setup irq remapping for %s\n",
771                                iommu->name);
772                         goto error;
773                 }
774         }
775
776         return 0;
777
778 error:
779         intel_cleanup_irq_remapping();
780         return -ENODEV;
781 }
782
783 /*
784  * Set Posted-Interrupts capability.
785  */
786 static inline void set_irq_posting_cap(void)
787 {
788         struct dmar_drhd_unit *drhd;
789         struct intel_iommu *iommu;
790
791         if (!disable_irq_post) {
792                 /*
793                  * If IRTE is in posted format, the 'pda' field goes across the
794                  * 64-bit boundary, we need use cmpxchg16b to atomically update
795                  * it. We only expose posted-interrupt when X86_FEATURE_CX16
796                  * is supported. Actually, hardware platforms supporting PI
797                  * should have X86_FEATURE_CX16 support, this has been confirmed
798                  * with Intel hardware guys.
799                  */
800                 if (boot_cpu_has(X86_FEATURE_CX16))
801                         intel_irq_remap_ops.capability |= 1 << IRQ_POSTING_CAP;
802
803                 for_each_iommu(iommu, drhd)
804                         if (!cap_pi_support(iommu->cap)) {
805                                 intel_irq_remap_ops.capability &=
806                                                 ~(1 << IRQ_POSTING_CAP);
807                                 break;
808                         }
809         }
810 }
811
812 static int __init intel_enable_irq_remapping(void)
813 {
814         struct dmar_drhd_unit *drhd;
815         struct intel_iommu *iommu;
816         bool setup = false;
817
818         /*
819          * Setup Interrupt-remapping for all the DRHD's now.
820          */
821         for_each_iommu(iommu, drhd) {
822                 if (!ir_pre_enabled(iommu))
823                         iommu_enable_irq_remapping(iommu);
824                 setup = true;
825         }
826
827         if (!setup)
828                 goto error;
829
830         irq_remapping_enabled = 1;
831
832         set_irq_posting_cap();
833
834         pr_info("Enabled IRQ remapping in %s mode\n", eim_mode ? "x2apic" : "xapic");
835
836         return eim_mode ? IRQ_REMAP_X2APIC_MODE : IRQ_REMAP_XAPIC_MODE;
837
838 error:
839         intel_cleanup_irq_remapping();
840         return -1;
841 }
842
843 static int ir_parse_one_hpet_scope(struct acpi_dmar_device_scope *scope,
844                                    struct intel_iommu *iommu,
845                                    struct acpi_dmar_hardware_unit *drhd)
846 {
847         struct acpi_dmar_pci_path *path;
848         u8 bus;
849         int count, free = -1;
850
851         bus = scope->bus;
852         path = (struct acpi_dmar_pci_path *)(scope + 1);
853         count = (scope->length - sizeof(struct acpi_dmar_device_scope))
854                 / sizeof(struct acpi_dmar_pci_path);
855
856         while (--count > 0) {
857                 /*
858                  * Access PCI directly due to the PCI
859                  * subsystem isn't initialized yet.
860                  */
861                 bus = read_pci_config_byte(bus, path->device, path->function,
862                                            PCI_SECONDARY_BUS);
863                 path++;
864         }
865
866         for (count = 0; count < MAX_HPET_TBS; count++) {
867                 if (ir_hpet[count].iommu == iommu &&
868                     ir_hpet[count].id == scope->enumeration_id)
869                         return 0;
870                 else if (ir_hpet[count].iommu == NULL && free == -1)
871                         free = count;
872         }
873         if (free == -1) {
874                 pr_warn("Exceeded Max HPET blocks\n");
875                 return -ENOSPC;
876         }
877
878         ir_hpet[free].iommu = iommu;
879         ir_hpet[free].id    = scope->enumeration_id;
880         ir_hpet[free].bus   = bus;
881         ir_hpet[free].devfn = PCI_DEVFN(path->device, path->function);
882         pr_info("HPET id %d under DRHD base 0x%Lx\n",
883                 scope->enumeration_id, drhd->address);
884
885         return 0;
886 }
887
888 static int ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope *scope,
889                                      struct intel_iommu *iommu,
890                                      struct acpi_dmar_hardware_unit *drhd)
891 {
892         struct acpi_dmar_pci_path *path;
893         u8 bus;
894         int count, free = -1;
895
896         bus = scope->bus;
897         path = (struct acpi_dmar_pci_path *)(scope + 1);
898         count = (scope->length - sizeof(struct acpi_dmar_device_scope))
899                 / sizeof(struct acpi_dmar_pci_path);
900
901         while (--count > 0) {
902                 /*
903                  * Access PCI directly due to the PCI
904                  * subsystem isn't initialized yet.
905                  */
906                 bus = read_pci_config_byte(bus, path->device, path->function,
907                                            PCI_SECONDARY_BUS);
908                 path++;
909         }
910
911         for (count = 0; count < MAX_IO_APICS; count++) {
912                 if (ir_ioapic[count].iommu == iommu &&
913                     ir_ioapic[count].id == scope->enumeration_id)
914                         return 0;
915                 else if (ir_ioapic[count].iommu == NULL && free == -1)
916                         free = count;
917         }
918         if (free == -1) {
919                 pr_warn("Exceeded Max IO APICS\n");
920                 return -ENOSPC;
921         }
922
923         ir_ioapic[free].bus   = bus;
924         ir_ioapic[free].devfn = PCI_DEVFN(path->device, path->function);
925         ir_ioapic[free].iommu = iommu;
926         ir_ioapic[free].id    = scope->enumeration_id;
927         pr_info("IOAPIC id %d under DRHD base  0x%Lx IOMMU %d\n",
928                 scope->enumeration_id, drhd->address, iommu->seq_id);
929
930         return 0;
931 }
932
933 static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header *header,
934                                       struct intel_iommu *iommu)
935 {
936         int ret = 0;
937         struct acpi_dmar_hardware_unit *drhd;
938         struct acpi_dmar_device_scope *scope;
939         void *start, *end;
940
941         drhd = (struct acpi_dmar_hardware_unit *)header;
942         start = (void *)(drhd + 1);
943         end = ((void *)drhd) + header->length;
944
945         while (start < end && ret == 0) {
946                 scope = start;
947                 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC)
948                         ret = ir_parse_one_ioapic_scope(scope, iommu, drhd);
949                 else if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_HPET)
950                         ret = ir_parse_one_hpet_scope(scope, iommu, drhd);
951                 start += scope->length;
952         }
953
954         return ret;
955 }
956
957 static void ir_remove_ioapic_hpet_scope(struct intel_iommu *iommu)
958 {
959         int i;
960
961         for (i = 0; i < MAX_HPET_TBS; i++)
962                 if (ir_hpet[i].iommu == iommu)
963                         ir_hpet[i].iommu = NULL;
964
965         for (i = 0; i < MAX_IO_APICS; i++)
966                 if (ir_ioapic[i].iommu == iommu)
967                         ir_ioapic[i].iommu = NULL;
968 }
969
970 /*
971  * Finds the assocaition between IOAPIC's and its Interrupt-remapping
972  * hardware unit.
973  */
974 static int __init parse_ioapics_under_ir(void)
975 {
976         struct dmar_drhd_unit *drhd;
977         struct intel_iommu *iommu;
978         bool ir_supported = false;
979         int ioapic_idx;
980
981         for_each_iommu(iommu, drhd) {
982                 int ret;
983
984                 if (!ecap_ir_support(iommu->ecap))
985                         continue;
986
987                 ret = ir_parse_ioapic_hpet_scope(drhd->hdr, iommu);
988                 if (ret)
989                         return ret;
990
991                 ir_supported = true;
992         }
993
994         if (!ir_supported)
995                 return -ENODEV;
996
997         for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++) {
998                 int ioapic_id = mpc_ioapic_id(ioapic_idx);
999                 if (!map_ioapic_to_ir(ioapic_id)) {
1000                         pr_err(FW_BUG "ioapic %d has no mapping iommu, "
1001                                "interrupt remapping will be disabled\n",
1002                                ioapic_id);
1003                         return -1;
1004                 }
1005         }
1006
1007         return 0;
1008 }
1009
1010 static int __init ir_dev_scope_init(void)
1011 {
1012         int ret;
1013
1014         if (!irq_remapping_enabled)
1015                 return 0;
1016
1017         down_write(&dmar_global_lock);
1018         ret = dmar_dev_scope_init();
1019         up_write(&dmar_global_lock);
1020
1021         return ret;
1022 }
1023 rootfs_initcall(ir_dev_scope_init);
1024
1025 static void disable_irq_remapping(void)
1026 {
1027         struct dmar_drhd_unit *drhd;
1028         struct intel_iommu *iommu = NULL;
1029
1030         /*
1031          * Disable Interrupt-remapping for all the DRHD's now.
1032          */
1033         for_each_iommu(iommu, drhd) {
1034                 if (!ecap_ir_support(iommu->ecap))
1035                         continue;
1036
1037                 iommu_disable_irq_remapping(iommu);
1038         }
1039
1040         /*
1041          * Clear Posted-Interrupts capability.
1042          */
1043         if (!disable_irq_post)
1044                 intel_irq_remap_ops.capability &= ~(1 << IRQ_POSTING_CAP);
1045 }
1046
1047 static int reenable_irq_remapping(int eim)
1048 {
1049         struct dmar_drhd_unit *drhd;
1050         bool setup = false;
1051         struct intel_iommu *iommu = NULL;
1052
1053         for_each_iommu(iommu, drhd)
1054                 if (iommu->qi)
1055                         dmar_reenable_qi(iommu);
1056
1057         /*
1058          * Setup Interrupt-remapping for all the DRHD's now.
1059          */
1060         for_each_iommu(iommu, drhd) {
1061                 if (!ecap_ir_support(iommu->ecap))
1062                         continue;
1063
1064                 /* Set up interrupt remapping for iommu.*/
1065                 iommu_set_irq_remapping(iommu, eim);
1066                 iommu_enable_irq_remapping(iommu);
1067                 setup = true;
1068         }
1069
1070         if (!setup)
1071                 goto error;
1072
1073         set_irq_posting_cap();
1074
1075         return 0;
1076
1077 error:
1078         /*
1079          * handle error condition gracefully here!
1080          */
1081         return -1;
1082 }
1083
1084 static void prepare_irte(struct irte *irte, int vector, unsigned int dest)
1085 {
1086         memset(irte, 0, sizeof(*irte));
1087
1088         irte->present = 1;
1089         irte->dst_mode = apic->irq_dest_mode;
1090         /*
1091          * Trigger mode in the IRTE will always be edge, and for IO-APIC, the
1092          * actual level or edge trigger will be setup in the IO-APIC
1093          * RTE. This will help simplify level triggered irq migration.
1094          * For more details, see the comments (in io_apic.c) explainig IO-APIC
1095          * irq migration in the presence of interrupt-remapping.
1096         */
1097         irte->trigger_mode = 0;
1098         irte->dlvry_mode = apic->irq_delivery_mode;
1099         irte->vector = vector;
1100         irte->dest_id = IRTE_DEST(dest);
1101         irte->redir_hint = 1;
1102 }
1103
1104 static struct irq_domain *intel_get_ir_irq_domain(struct irq_alloc_info *info)
1105 {
1106         struct intel_iommu *iommu = NULL;
1107
1108         if (!info)
1109                 return NULL;
1110
1111         switch (info->type) {
1112         case X86_IRQ_ALLOC_TYPE_IOAPIC:
1113                 iommu = map_ioapic_to_ir(info->ioapic_id);
1114                 break;
1115         case X86_IRQ_ALLOC_TYPE_HPET:
1116                 iommu = map_hpet_to_ir(info->hpet_id);
1117                 break;
1118         case X86_IRQ_ALLOC_TYPE_MSI:
1119         case X86_IRQ_ALLOC_TYPE_MSIX:
1120                 iommu = map_dev_to_ir(info->msi_dev);
1121                 break;
1122         default:
1123                 BUG_ON(1);
1124                 break;
1125         }
1126
1127         return iommu ? iommu->ir_domain : NULL;
1128 }
1129
1130 static struct irq_domain *intel_get_irq_domain(struct irq_alloc_info *info)
1131 {
1132         struct intel_iommu *iommu;
1133
1134         if (!info)
1135                 return NULL;
1136
1137         switch (info->type) {
1138         case X86_IRQ_ALLOC_TYPE_MSI:
1139         case X86_IRQ_ALLOC_TYPE_MSIX:
1140                 iommu = map_dev_to_ir(info->msi_dev);
1141                 if (iommu)
1142                         return iommu->ir_msi_domain;
1143                 break;
1144         default:
1145                 break;
1146         }
1147
1148         return NULL;
1149 }
1150
1151 struct irq_remap_ops intel_irq_remap_ops = {
1152         .prepare                = intel_prepare_irq_remapping,
1153         .enable                 = intel_enable_irq_remapping,
1154         .disable                = disable_irq_remapping,
1155         .reenable               = reenable_irq_remapping,
1156         .enable_faulting        = enable_drhd_fault_handling,
1157         .get_ir_irq_domain      = intel_get_ir_irq_domain,
1158         .get_irq_domain         = intel_get_irq_domain,
1159 };
1160
1161 static void intel_ir_reconfigure_irte(struct irq_data *irqd, bool force)
1162 {
1163         struct intel_ir_data *ir_data = irqd->chip_data;
1164         struct irte *irte = &ir_data->irte_entry;
1165         struct irq_cfg *cfg = irqd_cfg(irqd);
1166
1167         /*
1168          * Atomically updates the IRTE with the new destination, vector
1169          * and flushes the interrupt entry cache.
1170          */
1171         irte->vector = cfg->vector;
1172         irte->dest_id = IRTE_DEST(cfg->dest_apicid);
1173
1174         /* Update the hardware only if the interrupt is in remapped mode. */
1175         if (force || ir_data->irq_2_iommu.mode == IRQ_REMAPPING)
1176                 modify_irte(&ir_data->irq_2_iommu, irte);
1177 }
1178
1179 /*
1180  * Migrate the IO-APIC irq in the presence of intr-remapping.
1181  *
1182  * For both level and edge triggered, irq migration is a simple atomic
1183  * update(of vector and cpu destination) of IRTE and flush the hardware cache.
1184  *
1185  * For level triggered, we eliminate the io-apic RTE modification (with the
1186  * updated vector information), by using a virtual vector (io-apic pin number).
1187  * Real vector that is used for interrupting cpu will be coming from
1188  * the interrupt-remapping table entry.
1189  *
1190  * As the migration is a simple atomic update of IRTE, the same mechanism
1191  * is used to migrate MSI irq's in the presence of interrupt-remapping.
1192  */
1193 static int
1194 intel_ir_set_affinity(struct irq_data *data, const struct cpumask *mask,
1195                       bool force)
1196 {
1197         struct irq_data *parent = data->parent_data;
1198         struct irq_cfg *cfg = irqd_cfg(data);
1199         int ret;
1200
1201         ret = parent->chip->irq_set_affinity(parent, mask, force);
1202         if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
1203                 return ret;
1204
1205         intel_ir_reconfigure_irte(data, false);
1206         /*
1207          * After this point, all the interrupts will start arriving
1208          * at the new destination. So, time to cleanup the previous
1209          * vector allocation.
1210          */
1211         send_cleanup_vector(cfg);
1212
1213         return IRQ_SET_MASK_OK_DONE;
1214 }
1215
1216 static void intel_ir_compose_msi_msg(struct irq_data *irq_data,
1217                                      struct msi_msg *msg)
1218 {
1219         struct intel_ir_data *ir_data = irq_data->chip_data;
1220
1221         *msg = ir_data->msi_entry;
1222 }
1223
1224 static int intel_ir_set_vcpu_affinity(struct irq_data *data, void *info)
1225 {
1226         struct intel_ir_data *ir_data = data->chip_data;
1227         struct vcpu_data *vcpu_pi_info = info;
1228
1229         /* stop posting interrupts, back to remapping mode */
1230         if (!vcpu_pi_info) {
1231                 modify_irte(&ir_data->irq_2_iommu, &ir_data->irte_entry);
1232         } else {
1233                 struct irte irte_pi;
1234
1235                 /*
1236                  * We are not caching the posted interrupt entry. We
1237                  * copy the data from the remapped entry and modify
1238                  * the fields which are relevant for posted mode. The
1239                  * cached remapped entry is used for switching back to
1240                  * remapped mode.
1241                  */
1242                 memset(&irte_pi, 0, sizeof(irte_pi));
1243                 dmar_copy_shared_irte(&irte_pi, &ir_data->irte_entry);
1244
1245                 /* Update the posted mode fields */
1246                 irte_pi.p_pst = 1;
1247                 irte_pi.p_urgent = 0;
1248                 irte_pi.p_vector = vcpu_pi_info->vector;
1249                 irte_pi.pda_l = (vcpu_pi_info->pi_desc_addr >>
1250                                 (32 - PDA_LOW_BIT)) & ~(-1UL << PDA_LOW_BIT);
1251                 irte_pi.pda_h = (vcpu_pi_info->pi_desc_addr >> 32) &
1252                                 ~(-1UL << PDA_HIGH_BIT);
1253
1254                 modify_irte(&ir_data->irq_2_iommu, &irte_pi);
1255         }
1256
1257         return 0;
1258 }
1259
1260 static struct irq_chip intel_ir_chip = {
1261         .name                   = "INTEL-IR",
1262         .irq_ack                = apic_ack_irq,
1263         .irq_set_affinity       = intel_ir_set_affinity,
1264         .irq_compose_msi_msg    = intel_ir_compose_msi_msg,
1265         .irq_set_vcpu_affinity  = intel_ir_set_vcpu_affinity,
1266 };
1267
1268 static void intel_irq_remapping_prepare_irte(struct intel_ir_data *data,
1269                                              struct irq_cfg *irq_cfg,
1270                                              struct irq_alloc_info *info,
1271                                              int index, int sub_handle)
1272 {
1273         struct IR_IO_APIC_route_entry *entry;
1274         struct irte *irte = &data->irte_entry;
1275         struct msi_msg *msg = &data->msi_entry;
1276
1277         prepare_irte(irte, irq_cfg->vector, irq_cfg->dest_apicid);
1278         switch (info->type) {
1279         case X86_IRQ_ALLOC_TYPE_IOAPIC:
1280                 /* Set source-id of interrupt request */
1281                 set_ioapic_sid(irte, info->ioapic_id);
1282                 apic_printk(APIC_VERBOSE, KERN_DEBUG "IOAPIC[%d]: Set IRTE entry (P:%d FPD:%d Dst_Mode:%d Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X Avail:%X Vector:%02X Dest:%08X SID:%04X SQ:%X SVT:%X)\n",
1283                         info->ioapic_id, irte->present, irte->fpd,
1284                         irte->dst_mode, irte->redir_hint,
1285                         irte->trigger_mode, irte->dlvry_mode,
1286                         irte->avail, irte->vector, irte->dest_id,
1287                         irte->sid, irte->sq, irte->svt);
1288
1289                 entry = (struct IR_IO_APIC_route_entry *)info->ioapic_entry;
1290                 info->ioapic_entry = NULL;
1291                 memset(entry, 0, sizeof(*entry));
1292                 entry->index2   = (index >> 15) & 0x1;
1293                 entry->zero     = 0;
1294                 entry->format   = 1;
1295                 entry->index    = (index & 0x7fff);
1296                 /*
1297                  * IO-APIC RTE will be configured with virtual vector.
1298                  * irq handler will do the explicit EOI to the io-apic.
1299                  */
1300                 entry->vector   = info->ioapic_pin;
1301                 entry->mask     = 0;                    /* enable IRQ */
1302                 entry->trigger  = info->ioapic_trigger;
1303                 entry->polarity = info->ioapic_polarity;
1304                 if (info->ioapic_trigger)
1305                         entry->mask = 1; /* Mask level triggered irqs. */
1306                 break;
1307
1308         case X86_IRQ_ALLOC_TYPE_HPET:
1309         case X86_IRQ_ALLOC_TYPE_MSI:
1310         case X86_IRQ_ALLOC_TYPE_MSIX:
1311                 if (info->type == X86_IRQ_ALLOC_TYPE_HPET)
1312                         set_hpet_sid(irte, info->hpet_id);
1313                 else
1314                         set_msi_sid(irte, info->msi_dev);
1315
1316                 msg->address_hi = MSI_ADDR_BASE_HI;
1317                 msg->data = sub_handle;
1318                 msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT |
1319                                   MSI_ADDR_IR_SHV |
1320                                   MSI_ADDR_IR_INDEX1(index) |
1321                                   MSI_ADDR_IR_INDEX2(index);
1322                 break;
1323
1324         default:
1325                 BUG_ON(1);
1326                 break;
1327         }
1328 }
1329
1330 static void intel_free_irq_resources(struct irq_domain *domain,
1331                                      unsigned int virq, unsigned int nr_irqs)
1332 {
1333         struct irq_data *irq_data;
1334         struct intel_ir_data *data;
1335         struct irq_2_iommu *irq_iommu;
1336         unsigned long flags;
1337         int i;
1338         for (i = 0; i < nr_irqs; i++) {
1339                 irq_data = irq_domain_get_irq_data(domain, virq  + i);
1340                 if (irq_data && irq_data->chip_data) {
1341                         data = irq_data->chip_data;
1342                         irq_iommu = &data->irq_2_iommu;
1343                         raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
1344                         clear_entries(irq_iommu);
1345                         raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
1346                         irq_domain_reset_irq_data(irq_data);
1347                         kfree(data);
1348                 }
1349         }
1350 }
1351
1352 static int intel_irq_remapping_alloc(struct irq_domain *domain,
1353                                      unsigned int virq, unsigned int nr_irqs,
1354                                      void *arg)
1355 {
1356         struct intel_iommu *iommu = domain->host_data;
1357         struct irq_alloc_info *info = arg;
1358         struct intel_ir_data *data, *ird;
1359         struct irq_data *irq_data;
1360         struct irq_cfg *irq_cfg;
1361         int i, ret, index;
1362
1363         if (!info || !iommu)
1364                 return -EINVAL;
1365         if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
1366             info->type != X86_IRQ_ALLOC_TYPE_MSIX)
1367                 return -EINVAL;
1368
1369         /*
1370          * With IRQ remapping enabled, don't need contiguous CPU vectors
1371          * to support multiple MSI interrupts.
1372          */
1373         if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
1374                 info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
1375
1376         ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
1377         if (ret < 0)
1378                 return ret;
1379
1380         ret = -ENOMEM;
1381         data = kzalloc(sizeof(*data), GFP_KERNEL);
1382         if (!data)
1383                 goto out_free_parent;
1384
1385         down_read(&dmar_global_lock);
1386         index = alloc_irte(iommu, &data->irq_2_iommu, nr_irqs);
1387         up_read(&dmar_global_lock);
1388         if (index < 0) {
1389                 pr_warn("Failed to allocate IRTE\n");
1390                 kfree(data);
1391                 goto out_free_parent;
1392         }
1393
1394         for (i = 0; i < nr_irqs; i++) {
1395                 irq_data = irq_domain_get_irq_data(domain, virq + i);
1396                 irq_cfg = irqd_cfg(irq_data);
1397                 if (!irq_data || !irq_cfg) {
1398                         ret = -EINVAL;
1399                         goto out_free_data;
1400                 }
1401
1402                 if (i > 0) {
1403                         ird = kzalloc(sizeof(*ird), GFP_KERNEL);
1404                         if (!ird)
1405                                 goto out_free_data;
1406                         /* Initialize the common data */
1407                         ird->irq_2_iommu = data->irq_2_iommu;
1408                         ird->irq_2_iommu.sub_handle = i;
1409                 } else {
1410                         ird = data;
1411                 }
1412
1413                 irq_data->hwirq = (index << 16) + i;
1414                 irq_data->chip_data = ird;
1415                 irq_data->chip = &intel_ir_chip;
1416                 intel_irq_remapping_prepare_irte(ird, irq_cfg, info, index, i);
1417                 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
1418         }
1419         return 0;
1420
1421 out_free_data:
1422         intel_free_irq_resources(domain, virq, i);
1423 out_free_parent:
1424         irq_domain_free_irqs_common(domain, virq, nr_irqs);
1425         return ret;
1426 }
1427
1428 static void intel_irq_remapping_free(struct irq_domain *domain,
1429                                      unsigned int virq, unsigned int nr_irqs)
1430 {
1431         intel_free_irq_resources(domain, virq, nr_irqs);
1432         irq_domain_free_irqs_common(domain, virq, nr_irqs);
1433 }
1434
1435 static int intel_irq_remapping_activate(struct irq_domain *domain,
1436                                         struct irq_data *irq_data, bool reserve)
1437 {
1438         intel_ir_reconfigure_irte(irq_data, true);
1439         return 0;
1440 }
1441
1442 static void intel_irq_remapping_deactivate(struct irq_domain *domain,
1443                                            struct irq_data *irq_data)
1444 {
1445         struct intel_ir_data *data = irq_data->chip_data;
1446         struct irte entry;
1447
1448         memset(&entry, 0, sizeof(entry));
1449         modify_irte(&data->irq_2_iommu, &entry);
1450 }
1451
1452 static const struct irq_domain_ops intel_ir_domain_ops = {
1453         .alloc = intel_irq_remapping_alloc,
1454         .free = intel_irq_remapping_free,
1455         .activate = intel_irq_remapping_activate,
1456         .deactivate = intel_irq_remapping_deactivate,
1457 };
1458
1459 /*
1460  * Support of Interrupt Remapping Unit Hotplug
1461  */
1462 static int dmar_ir_add(struct dmar_drhd_unit *dmaru, struct intel_iommu *iommu)
1463 {
1464         int ret;
1465         int eim = x2apic_enabled();
1466
1467         if (eim && !ecap_eim_support(iommu->ecap)) {
1468                 pr_info("DRHD %Lx: EIM not supported by DRHD, ecap %Lx\n",
1469                         iommu->reg_phys, iommu->ecap);
1470                 return -ENODEV;
1471         }
1472
1473         if (ir_parse_ioapic_hpet_scope(dmaru->hdr, iommu)) {
1474                 pr_warn("DRHD %Lx: failed to parse managed IOAPIC/HPET\n",
1475                         iommu->reg_phys);
1476                 return -ENODEV;
1477         }
1478
1479         /* TODO: check all IOAPICs are covered by IOMMU */
1480
1481         /* Setup Interrupt-remapping now. */
1482         ret = intel_setup_irq_remapping(iommu);
1483         if (ret) {
1484                 pr_err("Failed to setup irq remapping for %s\n",
1485                        iommu->name);
1486                 intel_teardown_irq_remapping(iommu);
1487                 ir_remove_ioapic_hpet_scope(iommu);
1488         } else {
1489                 iommu_enable_irq_remapping(iommu);
1490         }
1491
1492         return ret;
1493 }
1494
1495 int dmar_ir_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
1496 {
1497         int ret = 0;
1498         struct intel_iommu *iommu = dmaru->iommu;
1499
1500         if (!irq_remapping_enabled)
1501                 return 0;
1502         if (iommu == NULL)
1503                 return -EINVAL;
1504         if (!ecap_ir_support(iommu->ecap))
1505                 return 0;
1506         if (irq_remapping_cap(IRQ_POSTING_CAP) &&
1507             !cap_pi_support(iommu->cap))
1508                 return -EBUSY;
1509
1510         if (insert) {
1511                 if (!iommu->ir_table)
1512                         ret = dmar_ir_add(dmaru, iommu);
1513         } else {
1514                 if (iommu->ir_table) {
1515                         if (!bitmap_empty(iommu->ir_table->bitmap,
1516                                           INTR_REMAP_TABLE_ENTRIES)) {
1517                                 ret = -EBUSY;
1518                         } else {
1519                                 iommu_disable_irq_remapping(iommu);
1520                                 intel_teardown_irq_remapping(iommu);
1521                                 ir_remove_ioapic_hpet_scope(iommu);
1522                         }
1523                 }
1524         }
1525
1526         return ret;
1527 }