Merge tag 'iommu-fix-v5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/joro...
[linux-2.6-microblaze.git] / drivers / iommu / exynos-iommu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2011,2016 Samsung Electronics Co., Ltd.
4  *              http://www.samsung.com
5  */
6
7 #ifdef CONFIG_EXYNOS_IOMMU_DEBUG
8 #define DEBUG
9 #endif
10
11 #include <linux/clk.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/err.h>
14 #include <linux/io.h>
15 #include <linux/iommu.h>
16 #include <linux/interrupt.h>
17 #include <linux/kmemleak.h>
18 #include <linux/list.h>
19 #include <linux/of.h>
20 #include <linux/of_iommu.h>
21 #include <linux/of_platform.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/slab.h>
25 #include <linux/dma-iommu.h>
26
27 typedef u32 sysmmu_iova_t;
28 typedef u32 sysmmu_pte_t;
29
30 /* We do not consider super section mapping (16MB) */
31 #define SECT_ORDER 20
32 #define LPAGE_ORDER 16
33 #define SPAGE_ORDER 12
34
35 #define SECT_SIZE (1 << SECT_ORDER)
36 #define LPAGE_SIZE (1 << LPAGE_ORDER)
37 #define SPAGE_SIZE (1 << SPAGE_ORDER)
38
39 #define SECT_MASK (~(SECT_SIZE - 1))
40 #define LPAGE_MASK (~(LPAGE_SIZE - 1))
41 #define SPAGE_MASK (~(SPAGE_SIZE - 1))
42
43 #define lv1ent_fault(sent) ((*(sent) == ZERO_LV2LINK) || \
44                            ((*(sent) & 3) == 0) || ((*(sent) & 3) == 3))
45 #define lv1ent_zero(sent) (*(sent) == ZERO_LV2LINK)
46 #define lv1ent_page_zero(sent) ((*(sent) & 3) == 1)
47 #define lv1ent_page(sent) ((*(sent) != ZERO_LV2LINK) && \
48                           ((*(sent) & 3) == 1))
49 #define lv1ent_section(sent) ((*(sent) & 3) == 2)
50
51 #define lv2ent_fault(pent) ((*(pent) & 3) == 0)
52 #define lv2ent_small(pent) ((*(pent) & 2) == 2)
53 #define lv2ent_large(pent) ((*(pent) & 3) == 1)
54
55 /*
56  * v1.x - v3.x SYSMMU supports 32bit physical and 32bit virtual address spaces
57  * v5.0 introduced support for 36bit physical address space by shifting
58  * all page entry values by 4 bits.
59  * All SYSMMU controllers in the system support the address spaces of the same
60  * size, so PG_ENT_SHIFT can be initialized on first SYSMMU probe to proper
61  * value (0 or 4).
62  */
63 static short PG_ENT_SHIFT = -1;
64 #define SYSMMU_PG_ENT_SHIFT 0
65 #define SYSMMU_V5_PG_ENT_SHIFT 4
66
67 static const sysmmu_pte_t *LV1_PROT;
68 static const sysmmu_pte_t SYSMMU_LV1_PROT[] = {
69         ((0 << 15) | (0 << 10)), /* no access */
70         ((1 << 15) | (1 << 10)), /* IOMMU_READ only */
71         ((0 << 15) | (1 << 10)), /* IOMMU_WRITE not supported, use read/write */
72         ((0 << 15) | (1 << 10)), /* IOMMU_READ | IOMMU_WRITE */
73 };
74 static const sysmmu_pte_t SYSMMU_V5_LV1_PROT[] = {
75         (0 << 4), /* no access */
76         (1 << 4), /* IOMMU_READ only */
77         (2 << 4), /* IOMMU_WRITE only */
78         (3 << 4), /* IOMMU_READ | IOMMU_WRITE */
79 };
80
81 static const sysmmu_pte_t *LV2_PROT;
82 static const sysmmu_pte_t SYSMMU_LV2_PROT[] = {
83         ((0 << 9) | (0 << 4)), /* no access */
84         ((1 << 9) | (1 << 4)), /* IOMMU_READ only */
85         ((0 << 9) | (1 << 4)), /* IOMMU_WRITE not supported, use read/write */
86         ((0 << 9) | (1 << 4)), /* IOMMU_READ | IOMMU_WRITE */
87 };
88 static const sysmmu_pte_t SYSMMU_V5_LV2_PROT[] = {
89         (0 << 2), /* no access */
90         (1 << 2), /* IOMMU_READ only */
91         (2 << 2), /* IOMMU_WRITE only */
92         (3 << 2), /* IOMMU_READ | IOMMU_WRITE */
93 };
94
95 #define SYSMMU_SUPPORTED_PROT_BITS (IOMMU_READ | IOMMU_WRITE)
96
97 #define sect_to_phys(ent) (((phys_addr_t) ent) << PG_ENT_SHIFT)
98 #define section_phys(sent) (sect_to_phys(*(sent)) & SECT_MASK)
99 #define section_offs(iova) (iova & (SECT_SIZE - 1))
100 #define lpage_phys(pent) (sect_to_phys(*(pent)) & LPAGE_MASK)
101 #define lpage_offs(iova) (iova & (LPAGE_SIZE - 1))
102 #define spage_phys(pent) (sect_to_phys(*(pent)) & SPAGE_MASK)
103 #define spage_offs(iova) (iova & (SPAGE_SIZE - 1))
104
105 #define NUM_LV1ENTRIES 4096
106 #define NUM_LV2ENTRIES (SECT_SIZE / SPAGE_SIZE)
107
108 static u32 lv1ent_offset(sysmmu_iova_t iova)
109 {
110         return iova >> SECT_ORDER;
111 }
112
113 static u32 lv2ent_offset(sysmmu_iova_t iova)
114 {
115         return (iova >> SPAGE_ORDER) & (NUM_LV2ENTRIES - 1);
116 }
117
118 #define LV1TABLE_SIZE (NUM_LV1ENTRIES * sizeof(sysmmu_pte_t))
119 #define LV2TABLE_SIZE (NUM_LV2ENTRIES * sizeof(sysmmu_pte_t))
120
121 #define SPAGES_PER_LPAGE (LPAGE_SIZE / SPAGE_SIZE)
122 #define lv2table_base(sent) (sect_to_phys(*(sent) & 0xFFFFFFC0))
123
124 #define mk_lv1ent_sect(pa, prot) ((pa >> PG_ENT_SHIFT) | LV1_PROT[prot] | 2)
125 #define mk_lv1ent_page(pa) ((pa >> PG_ENT_SHIFT) | 1)
126 #define mk_lv2ent_lpage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 1)
127 #define mk_lv2ent_spage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 2)
128
129 #define CTRL_ENABLE     0x5
130 #define CTRL_BLOCK      0x7
131 #define CTRL_DISABLE    0x0
132
133 #define CFG_LRU         0x1
134 #define CFG_EAP         (1 << 2)
135 #define CFG_QOS(n)      ((n & 0xF) << 7)
136 #define CFG_ACGEN       (1 << 24) /* System MMU 3.3 only */
137 #define CFG_SYSSEL      (1 << 22) /* System MMU 3.2 only */
138 #define CFG_FLPDCACHE   (1 << 20) /* System MMU 3.2+ only */
139
140 /* common registers */
141 #define REG_MMU_CTRL            0x000
142 #define REG_MMU_CFG             0x004
143 #define REG_MMU_STATUS          0x008
144 #define REG_MMU_VERSION         0x034
145
146 #define MMU_MAJ_VER(val)        ((val) >> 7)
147 #define MMU_MIN_VER(val)        ((val) & 0x7F)
148 #define MMU_RAW_VER(reg)        (((reg) >> 21) & ((1 << 11) - 1)) /* 11 bits */
149
150 #define MAKE_MMU_VER(maj, min)  ((((maj) & 0xF) << 7) | ((min) & 0x7F))
151
152 /* v1.x - v3.x registers */
153 #define REG_MMU_FLUSH           0x00C
154 #define REG_MMU_FLUSH_ENTRY     0x010
155 #define REG_PT_BASE_ADDR        0x014
156 #define REG_INT_STATUS          0x018
157 #define REG_INT_CLEAR           0x01C
158
159 #define REG_PAGE_FAULT_ADDR     0x024
160 #define REG_AW_FAULT_ADDR       0x028
161 #define REG_AR_FAULT_ADDR       0x02C
162 #define REG_DEFAULT_SLAVE_ADDR  0x030
163
164 /* v5.x registers */
165 #define REG_V5_PT_BASE_PFN      0x00C
166 #define REG_V5_MMU_FLUSH_ALL    0x010
167 #define REG_V5_MMU_FLUSH_ENTRY  0x014
168 #define REG_V5_MMU_FLUSH_RANGE  0x018
169 #define REG_V5_MMU_FLUSH_START  0x020
170 #define REG_V5_MMU_FLUSH_END    0x024
171 #define REG_V5_INT_STATUS       0x060
172 #define REG_V5_INT_CLEAR        0x064
173 #define REG_V5_FAULT_AR_VA      0x070
174 #define REG_V5_FAULT_AW_VA      0x080
175
176 #define has_sysmmu(dev)         (dev_iommu_priv_get(dev) != NULL)
177
178 static struct device *dma_dev;
179 static struct kmem_cache *lv2table_kmem_cache;
180 static sysmmu_pte_t *zero_lv2_table;
181 #define ZERO_LV2LINK mk_lv1ent_page(virt_to_phys(zero_lv2_table))
182
183 static sysmmu_pte_t *section_entry(sysmmu_pte_t *pgtable, sysmmu_iova_t iova)
184 {
185         return pgtable + lv1ent_offset(iova);
186 }
187
188 static sysmmu_pte_t *page_entry(sysmmu_pte_t *sent, sysmmu_iova_t iova)
189 {
190         return (sysmmu_pte_t *)phys_to_virt(
191                                 lv2table_base(sent)) + lv2ent_offset(iova);
192 }
193
194 /*
195  * IOMMU fault information register
196  */
197 struct sysmmu_fault_info {
198         unsigned int bit;       /* bit number in STATUS register */
199         unsigned short addr_reg; /* register to read VA fault address */
200         const char *name;       /* human readable fault name */
201         unsigned int type;      /* fault type for report_iommu_fault */
202 };
203
204 static const struct sysmmu_fault_info sysmmu_faults[] = {
205         { 0, REG_PAGE_FAULT_ADDR, "PAGE", IOMMU_FAULT_READ },
206         { 1, REG_AR_FAULT_ADDR, "AR MULTI-HIT", IOMMU_FAULT_READ },
207         { 2, REG_AW_FAULT_ADDR, "AW MULTI-HIT", IOMMU_FAULT_WRITE },
208         { 3, REG_DEFAULT_SLAVE_ADDR, "BUS ERROR", IOMMU_FAULT_READ },
209         { 4, REG_AR_FAULT_ADDR, "AR SECURITY PROTECTION", IOMMU_FAULT_READ },
210         { 5, REG_AR_FAULT_ADDR, "AR ACCESS PROTECTION", IOMMU_FAULT_READ },
211         { 6, REG_AW_FAULT_ADDR, "AW SECURITY PROTECTION", IOMMU_FAULT_WRITE },
212         { 7, REG_AW_FAULT_ADDR, "AW ACCESS PROTECTION", IOMMU_FAULT_WRITE },
213 };
214
215 static const struct sysmmu_fault_info sysmmu_v5_faults[] = {
216         { 0, REG_V5_FAULT_AR_VA, "AR PTW", IOMMU_FAULT_READ },
217         { 1, REG_V5_FAULT_AR_VA, "AR PAGE", IOMMU_FAULT_READ },
218         { 2, REG_V5_FAULT_AR_VA, "AR MULTI-HIT", IOMMU_FAULT_READ },
219         { 3, REG_V5_FAULT_AR_VA, "AR ACCESS PROTECTION", IOMMU_FAULT_READ },
220         { 4, REG_V5_FAULT_AR_VA, "AR SECURITY PROTECTION", IOMMU_FAULT_READ },
221         { 16, REG_V5_FAULT_AW_VA, "AW PTW", IOMMU_FAULT_WRITE },
222         { 17, REG_V5_FAULT_AW_VA, "AW PAGE", IOMMU_FAULT_WRITE },
223         { 18, REG_V5_FAULT_AW_VA, "AW MULTI-HIT", IOMMU_FAULT_WRITE },
224         { 19, REG_V5_FAULT_AW_VA, "AW ACCESS PROTECTION", IOMMU_FAULT_WRITE },
225         { 20, REG_V5_FAULT_AW_VA, "AW SECURITY PROTECTION", IOMMU_FAULT_WRITE },
226 };
227
228 /*
229  * This structure is attached to dev->iommu->priv of the master device
230  * on device add, contains a list of SYSMMU controllers defined by device tree,
231  * which are bound to given master device. It is usually referenced by 'owner'
232  * pointer.
233 */
234 struct exynos_iommu_owner {
235         struct list_head controllers;   /* list of sysmmu_drvdata.owner_node */
236         struct iommu_domain *domain;    /* domain this device is attached */
237         struct mutex rpm_lock;          /* for runtime pm of all sysmmus */
238 };
239
240 /*
241  * This structure exynos specific generalization of struct iommu_domain.
242  * It contains list of SYSMMU controllers from all master devices, which has
243  * been attached to this domain and page tables of IO address space defined by
244  * it. It is usually referenced by 'domain' pointer.
245  */
246 struct exynos_iommu_domain {
247         struct list_head clients; /* list of sysmmu_drvdata.domain_node */
248         sysmmu_pte_t *pgtable;  /* lv1 page table, 16KB */
249         short *lv2entcnt;       /* free lv2 entry counter for each section */
250         spinlock_t lock;        /* lock for modyfying list of clients */
251         spinlock_t pgtablelock; /* lock for modifying page table @ pgtable */
252         struct iommu_domain domain; /* generic domain data structure */
253 };
254
255 /*
256  * This structure hold all data of a single SYSMMU controller, this includes
257  * hw resources like registers and clocks, pointers and list nodes to connect
258  * it to all other structures, internal state and parameters read from device
259  * tree. It is usually referenced by 'data' pointer.
260  */
261 struct sysmmu_drvdata {
262         struct device *sysmmu;          /* SYSMMU controller device */
263         struct device *master;          /* master device (owner) */
264         struct device_link *link;       /* runtime PM link to master */
265         void __iomem *sfrbase;          /* our registers */
266         struct clk *clk;                /* SYSMMU's clock */
267         struct clk *aclk;               /* SYSMMU's aclk clock */
268         struct clk *pclk;               /* SYSMMU's pclk clock */
269         struct clk *clk_master;         /* master's device clock */
270         spinlock_t lock;                /* lock for modyfying state */
271         bool active;                    /* current status */
272         struct exynos_iommu_domain *domain; /* domain we belong to */
273         struct list_head domain_node;   /* node for domain clients list */
274         struct list_head owner_node;    /* node for owner controllers list */
275         phys_addr_t pgtable;            /* assigned page table structure */
276         unsigned int version;           /* our version */
277
278         struct iommu_device iommu;      /* IOMMU core handle */
279 };
280
281 static struct exynos_iommu_domain *to_exynos_domain(struct iommu_domain *dom)
282 {
283         return container_of(dom, struct exynos_iommu_domain, domain);
284 }
285
286 static void sysmmu_unblock(struct sysmmu_drvdata *data)
287 {
288         writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
289 }
290
291 static bool sysmmu_block(struct sysmmu_drvdata *data)
292 {
293         int i = 120;
294
295         writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
296         while ((i > 0) && !(readl(data->sfrbase + REG_MMU_STATUS) & 1))
297                 --i;
298
299         if (!(readl(data->sfrbase + REG_MMU_STATUS) & 1)) {
300                 sysmmu_unblock(data);
301                 return false;
302         }
303
304         return true;
305 }
306
307 static void __sysmmu_tlb_invalidate(struct sysmmu_drvdata *data)
308 {
309         if (MMU_MAJ_VER(data->version) < 5)
310                 writel(0x1, data->sfrbase + REG_MMU_FLUSH);
311         else
312                 writel(0x1, data->sfrbase + REG_V5_MMU_FLUSH_ALL);
313 }
314
315 static void __sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
316                                 sysmmu_iova_t iova, unsigned int num_inv)
317 {
318         unsigned int i;
319
320         if (MMU_MAJ_VER(data->version) < 5) {
321                 for (i = 0; i < num_inv; i++) {
322                         writel((iova & SPAGE_MASK) | 1,
323                                      data->sfrbase + REG_MMU_FLUSH_ENTRY);
324                         iova += SPAGE_SIZE;
325                 }
326         } else {
327                 if (num_inv == 1) {
328                         writel((iova & SPAGE_MASK) | 1,
329                                      data->sfrbase + REG_V5_MMU_FLUSH_ENTRY);
330                 } else {
331                         writel((iova & SPAGE_MASK),
332                                      data->sfrbase + REG_V5_MMU_FLUSH_START);
333                         writel((iova & SPAGE_MASK) + (num_inv - 1) * SPAGE_SIZE,
334                                      data->sfrbase + REG_V5_MMU_FLUSH_END);
335                         writel(1, data->sfrbase + REG_V5_MMU_FLUSH_RANGE);
336                 }
337         }
338 }
339
340 static void __sysmmu_set_ptbase(struct sysmmu_drvdata *data, phys_addr_t pgd)
341 {
342         if (MMU_MAJ_VER(data->version) < 5)
343                 writel(pgd, data->sfrbase + REG_PT_BASE_ADDR);
344         else
345                 writel(pgd >> PAGE_SHIFT,
346                              data->sfrbase + REG_V5_PT_BASE_PFN);
347
348         __sysmmu_tlb_invalidate(data);
349 }
350
351 static void __sysmmu_enable_clocks(struct sysmmu_drvdata *data)
352 {
353         BUG_ON(clk_prepare_enable(data->clk_master));
354         BUG_ON(clk_prepare_enable(data->clk));
355         BUG_ON(clk_prepare_enable(data->pclk));
356         BUG_ON(clk_prepare_enable(data->aclk));
357 }
358
359 static void __sysmmu_disable_clocks(struct sysmmu_drvdata *data)
360 {
361         clk_disable_unprepare(data->aclk);
362         clk_disable_unprepare(data->pclk);
363         clk_disable_unprepare(data->clk);
364         clk_disable_unprepare(data->clk_master);
365 }
366
367 static void __sysmmu_get_version(struct sysmmu_drvdata *data)
368 {
369         u32 ver;
370
371         __sysmmu_enable_clocks(data);
372
373         ver = readl(data->sfrbase + REG_MMU_VERSION);
374
375         /* controllers on some SoCs don't report proper version */
376         if (ver == 0x80000001u)
377                 data->version = MAKE_MMU_VER(1, 0);
378         else
379                 data->version = MMU_RAW_VER(ver);
380
381         dev_dbg(data->sysmmu, "hardware version: %d.%d\n",
382                 MMU_MAJ_VER(data->version), MMU_MIN_VER(data->version));
383
384         __sysmmu_disable_clocks(data);
385 }
386
387 static void show_fault_information(struct sysmmu_drvdata *data,
388                                    const struct sysmmu_fault_info *finfo,
389                                    sysmmu_iova_t fault_addr)
390 {
391         sysmmu_pte_t *ent;
392
393         dev_err(data->sysmmu, "%s: %s FAULT occurred at %#x\n",
394                 dev_name(data->master), finfo->name, fault_addr);
395         dev_dbg(data->sysmmu, "Page table base: %pa\n", &data->pgtable);
396         ent = section_entry(phys_to_virt(data->pgtable), fault_addr);
397         dev_dbg(data->sysmmu, "\tLv1 entry: %#x\n", *ent);
398         if (lv1ent_page(ent)) {
399                 ent = page_entry(ent, fault_addr);
400                 dev_dbg(data->sysmmu, "\t Lv2 entry: %#x\n", *ent);
401         }
402 }
403
404 static irqreturn_t exynos_sysmmu_irq(int irq, void *dev_id)
405 {
406         /* SYSMMU is in blocked state when interrupt occurred. */
407         struct sysmmu_drvdata *data = dev_id;
408         const struct sysmmu_fault_info *finfo;
409         unsigned int i, n, itype;
410         sysmmu_iova_t fault_addr = -1;
411         unsigned short reg_status, reg_clear;
412         int ret = -ENOSYS;
413
414         WARN_ON(!data->active);
415
416         if (MMU_MAJ_VER(data->version) < 5) {
417                 reg_status = REG_INT_STATUS;
418                 reg_clear = REG_INT_CLEAR;
419                 finfo = sysmmu_faults;
420                 n = ARRAY_SIZE(sysmmu_faults);
421         } else {
422                 reg_status = REG_V5_INT_STATUS;
423                 reg_clear = REG_V5_INT_CLEAR;
424                 finfo = sysmmu_v5_faults;
425                 n = ARRAY_SIZE(sysmmu_v5_faults);
426         }
427
428         spin_lock(&data->lock);
429
430         clk_enable(data->clk_master);
431
432         itype = __ffs(readl(data->sfrbase + reg_status));
433         for (i = 0; i < n; i++, finfo++)
434                 if (finfo->bit == itype)
435                         break;
436         /* unknown/unsupported fault */
437         BUG_ON(i == n);
438
439         /* print debug message */
440         fault_addr = readl(data->sfrbase + finfo->addr_reg);
441         show_fault_information(data, finfo, fault_addr);
442
443         if (data->domain)
444                 ret = report_iommu_fault(&data->domain->domain,
445                                         data->master, fault_addr, finfo->type);
446         /* fault is not recovered by fault handler */
447         BUG_ON(ret != 0);
448
449         writel(1 << itype, data->sfrbase + reg_clear);
450
451         sysmmu_unblock(data);
452
453         clk_disable(data->clk_master);
454
455         spin_unlock(&data->lock);
456
457         return IRQ_HANDLED;
458 }
459
460 static void __sysmmu_disable(struct sysmmu_drvdata *data)
461 {
462         unsigned long flags;
463
464         clk_enable(data->clk_master);
465
466         spin_lock_irqsave(&data->lock, flags);
467         writel(CTRL_DISABLE, data->sfrbase + REG_MMU_CTRL);
468         writel(0, data->sfrbase + REG_MMU_CFG);
469         data->active = false;
470         spin_unlock_irqrestore(&data->lock, flags);
471
472         __sysmmu_disable_clocks(data);
473 }
474
475 static void __sysmmu_init_config(struct sysmmu_drvdata *data)
476 {
477         unsigned int cfg;
478
479         if (data->version <= MAKE_MMU_VER(3, 1))
480                 cfg = CFG_LRU | CFG_QOS(15);
481         else if (data->version <= MAKE_MMU_VER(3, 2))
482                 cfg = CFG_LRU | CFG_QOS(15) | CFG_FLPDCACHE | CFG_SYSSEL;
483         else
484                 cfg = CFG_QOS(15) | CFG_FLPDCACHE | CFG_ACGEN;
485
486         cfg |= CFG_EAP; /* enable access protection bits check */
487
488         writel(cfg, data->sfrbase + REG_MMU_CFG);
489 }
490
491 static void __sysmmu_enable(struct sysmmu_drvdata *data)
492 {
493         unsigned long flags;
494
495         __sysmmu_enable_clocks(data);
496
497         spin_lock_irqsave(&data->lock, flags);
498         writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
499         __sysmmu_init_config(data);
500         __sysmmu_set_ptbase(data, data->pgtable);
501         writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
502         data->active = true;
503         spin_unlock_irqrestore(&data->lock, flags);
504
505         /*
506          * SYSMMU driver keeps master's clock enabled only for the short
507          * time, while accessing the registers. For performing address
508          * translation during DMA transaction it relies on the client
509          * driver to enable it.
510          */
511         clk_disable(data->clk_master);
512 }
513
514 static void sysmmu_tlb_invalidate_flpdcache(struct sysmmu_drvdata *data,
515                                             sysmmu_iova_t iova)
516 {
517         unsigned long flags;
518
519         spin_lock_irqsave(&data->lock, flags);
520         if (data->active && data->version >= MAKE_MMU_VER(3, 3)) {
521                 clk_enable(data->clk_master);
522                 if (sysmmu_block(data)) {
523                         if (data->version >= MAKE_MMU_VER(5, 0))
524                                 __sysmmu_tlb_invalidate(data);
525                         else
526                                 __sysmmu_tlb_invalidate_entry(data, iova, 1);
527                         sysmmu_unblock(data);
528                 }
529                 clk_disable(data->clk_master);
530         }
531         spin_unlock_irqrestore(&data->lock, flags);
532 }
533
534 static void sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
535                                         sysmmu_iova_t iova, size_t size)
536 {
537         unsigned long flags;
538
539         spin_lock_irqsave(&data->lock, flags);
540         if (data->active) {
541                 unsigned int num_inv = 1;
542
543                 clk_enable(data->clk_master);
544
545                 /*
546                  * L2TLB invalidation required
547                  * 4KB page: 1 invalidation
548                  * 64KB page: 16 invalidations
549                  * 1MB page: 64 invalidations
550                  * because it is set-associative TLB
551                  * with 8-way and 64 sets.
552                  * 1MB page can be cached in one of all sets.
553                  * 64KB page can be one of 16 consecutive sets.
554                  */
555                 if (MMU_MAJ_VER(data->version) == 2)
556                         num_inv = min_t(unsigned int, size / PAGE_SIZE, 64);
557
558                 if (sysmmu_block(data)) {
559                         __sysmmu_tlb_invalidate_entry(data, iova, num_inv);
560                         sysmmu_unblock(data);
561                 }
562                 clk_disable(data->clk_master);
563         }
564         spin_unlock_irqrestore(&data->lock, flags);
565 }
566
567 static const struct iommu_ops exynos_iommu_ops;
568
569 static int exynos_sysmmu_probe(struct platform_device *pdev)
570 {
571         int irq, ret;
572         struct device *dev = &pdev->dev;
573         struct sysmmu_drvdata *data;
574         struct resource *res;
575
576         data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
577         if (!data)
578                 return -ENOMEM;
579
580         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
581         data->sfrbase = devm_ioremap_resource(dev, res);
582         if (IS_ERR(data->sfrbase))
583                 return PTR_ERR(data->sfrbase);
584
585         irq = platform_get_irq(pdev, 0);
586         if (irq <= 0)
587                 return irq;
588
589         ret = devm_request_irq(dev, irq, exynos_sysmmu_irq, 0,
590                                 dev_name(dev), data);
591         if (ret) {
592                 dev_err(dev, "Unabled to register handler of irq %d\n", irq);
593                 return ret;
594         }
595
596         data->clk = devm_clk_get(dev, "sysmmu");
597         if (PTR_ERR(data->clk) == -ENOENT)
598                 data->clk = NULL;
599         else if (IS_ERR(data->clk))
600                 return PTR_ERR(data->clk);
601
602         data->aclk = devm_clk_get(dev, "aclk");
603         if (PTR_ERR(data->aclk) == -ENOENT)
604                 data->aclk = NULL;
605         else if (IS_ERR(data->aclk))
606                 return PTR_ERR(data->aclk);
607
608         data->pclk = devm_clk_get(dev, "pclk");
609         if (PTR_ERR(data->pclk) == -ENOENT)
610                 data->pclk = NULL;
611         else if (IS_ERR(data->pclk))
612                 return PTR_ERR(data->pclk);
613
614         if (!data->clk && (!data->aclk || !data->pclk)) {
615                 dev_err(dev, "Failed to get device clock(s)!\n");
616                 return -ENOSYS;
617         }
618
619         data->clk_master = devm_clk_get(dev, "master");
620         if (PTR_ERR(data->clk_master) == -ENOENT)
621                 data->clk_master = NULL;
622         else if (IS_ERR(data->clk_master))
623                 return PTR_ERR(data->clk_master);
624
625         data->sysmmu = dev;
626         spin_lock_init(&data->lock);
627
628         ret = iommu_device_sysfs_add(&data->iommu, &pdev->dev, NULL,
629                                      dev_name(data->sysmmu));
630         if (ret)
631                 return ret;
632
633         iommu_device_set_ops(&data->iommu, &exynos_iommu_ops);
634         iommu_device_set_fwnode(&data->iommu, &dev->of_node->fwnode);
635
636         ret = iommu_device_register(&data->iommu);
637         if (ret)
638                 return ret;
639
640         platform_set_drvdata(pdev, data);
641
642         __sysmmu_get_version(data);
643         if (PG_ENT_SHIFT < 0) {
644                 if (MMU_MAJ_VER(data->version) < 5) {
645                         PG_ENT_SHIFT = SYSMMU_PG_ENT_SHIFT;
646                         LV1_PROT = SYSMMU_LV1_PROT;
647                         LV2_PROT = SYSMMU_LV2_PROT;
648                 } else {
649                         PG_ENT_SHIFT = SYSMMU_V5_PG_ENT_SHIFT;
650                         LV1_PROT = SYSMMU_V5_LV1_PROT;
651                         LV2_PROT = SYSMMU_V5_LV2_PROT;
652                 }
653         }
654
655         /*
656          * use the first registered sysmmu device for performing
657          * dma mapping operations on iommu page tables (cpu cache flush)
658          */
659         if (!dma_dev)
660                 dma_dev = &pdev->dev;
661
662         pm_runtime_enable(dev);
663
664         return 0;
665 }
666
667 static int __maybe_unused exynos_sysmmu_suspend(struct device *dev)
668 {
669         struct sysmmu_drvdata *data = dev_get_drvdata(dev);
670         struct device *master = data->master;
671
672         if (master) {
673                 struct exynos_iommu_owner *owner = dev_iommu_priv_get(master);
674
675                 mutex_lock(&owner->rpm_lock);
676                 if (data->domain) {
677                         dev_dbg(data->sysmmu, "saving state\n");
678                         __sysmmu_disable(data);
679                 }
680                 mutex_unlock(&owner->rpm_lock);
681         }
682         return 0;
683 }
684
685 static int __maybe_unused exynos_sysmmu_resume(struct device *dev)
686 {
687         struct sysmmu_drvdata *data = dev_get_drvdata(dev);
688         struct device *master = data->master;
689
690         if (master) {
691                 struct exynos_iommu_owner *owner = dev_iommu_priv_get(master);
692
693                 mutex_lock(&owner->rpm_lock);
694                 if (data->domain) {
695                         dev_dbg(data->sysmmu, "restoring state\n");
696                         __sysmmu_enable(data);
697                 }
698                 mutex_unlock(&owner->rpm_lock);
699         }
700         return 0;
701 }
702
703 static const struct dev_pm_ops sysmmu_pm_ops = {
704         SET_RUNTIME_PM_OPS(exynos_sysmmu_suspend, exynos_sysmmu_resume, NULL)
705         SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
706                                 pm_runtime_force_resume)
707 };
708
709 static const struct of_device_id sysmmu_of_match[] = {
710         { .compatible   = "samsung,exynos-sysmmu", },
711         { },
712 };
713
714 static struct platform_driver exynos_sysmmu_driver __refdata = {
715         .probe  = exynos_sysmmu_probe,
716         .driver = {
717                 .name           = "exynos-sysmmu",
718                 .of_match_table = sysmmu_of_match,
719                 .pm             = &sysmmu_pm_ops,
720                 .suppress_bind_attrs = true,
721         }
722 };
723
724 static inline void exynos_iommu_set_pte(sysmmu_pte_t *ent, sysmmu_pte_t val)
725 {
726         dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent), sizeof(*ent),
727                                 DMA_TO_DEVICE);
728         *ent = cpu_to_le32(val);
729         dma_sync_single_for_device(dma_dev, virt_to_phys(ent), sizeof(*ent),
730                                    DMA_TO_DEVICE);
731 }
732
733 static struct iommu_domain *exynos_iommu_domain_alloc(unsigned type)
734 {
735         struct exynos_iommu_domain *domain;
736         dma_addr_t handle;
737         int i;
738
739         /* Check if correct PTE offsets are initialized */
740         BUG_ON(PG_ENT_SHIFT < 0 || !dma_dev);
741
742         domain = kzalloc(sizeof(*domain), GFP_KERNEL);
743         if (!domain)
744                 return NULL;
745
746         if (type == IOMMU_DOMAIN_DMA) {
747                 if (iommu_get_dma_cookie(&domain->domain) != 0)
748                         goto err_pgtable;
749         } else if (type != IOMMU_DOMAIN_UNMANAGED) {
750                 goto err_pgtable;
751         }
752
753         domain->pgtable = (sysmmu_pte_t *)__get_free_pages(GFP_KERNEL, 2);
754         if (!domain->pgtable)
755                 goto err_dma_cookie;
756
757         domain->lv2entcnt = (short *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1);
758         if (!domain->lv2entcnt)
759                 goto err_counter;
760
761         /* Workaround for System MMU v3.3 to prevent caching 1MiB mapping */
762         for (i = 0; i < NUM_LV1ENTRIES; i++)
763                 domain->pgtable[i] = ZERO_LV2LINK;
764
765         handle = dma_map_single(dma_dev, domain->pgtable, LV1TABLE_SIZE,
766                                 DMA_TO_DEVICE);
767         /* For mapping page table entries we rely on dma == phys */
768         BUG_ON(handle != virt_to_phys(domain->pgtable));
769         if (dma_mapping_error(dma_dev, handle))
770                 goto err_lv2ent;
771
772         spin_lock_init(&domain->lock);
773         spin_lock_init(&domain->pgtablelock);
774         INIT_LIST_HEAD(&domain->clients);
775
776         domain->domain.geometry.aperture_start = 0;
777         domain->domain.geometry.aperture_end   = ~0UL;
778         domain->domain.geometry.force_aperture = true;
779
780         return &domain->domain;
781
782 err_lv2ent:
783         free_pages((unsigned long)domain->lv2entcnt, 1);
784 err_counter:
785         free_pages((unsigned long)domain->pgtable, 2);
786 err_dma_cookie:
787         if (type == IOMMU_DOMAIN_DMA)
788                 iommu_put_dma_cookie(&domain->domain);
789 err_pgtable:
790         kfree(domain);
791         return NULL;
792 }
793
794 static void exynos_iommu_domain_free(struct iommu_domain *iommu_domain)
795 {
796         struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
797         struct sysmmu_drvdata *data, *next;
798         unsigned long flags;
799         int i;
800
801         WARN_ON(!list_empty(&domain->clients));
802
803         spin_lock_irqsave(&domain->lock, flags);
804
805         list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
806                 spin_lock(&data->lock);
807                 __sysmmu_disable(data);
808                 data->pgtable = 0;
809                 data->domain = NULL;
810                 list_del_init(&data->domain_node);
811                 spin_unlock(&data->lock);
812         }
813
814         spin_unlock_irqrestore(&domain->lock, flags);
815
816         if (iommu_domain->type == IOMMU_DOMAIN_DMA)
817                 iommu_put_dma_cookie(iommu_domain);
818
819         dma_unmap_single(dma_dev, virt_to_phys(domain->pgtable), LV1TABLE_SIZE,
820                          DMA_TO_DEVICE);
821
822         for (i = 0; i < NUM_LV1ENTRIES; i++)
823                 if (lv1ent_page(domain->pgtable + i)) {
824                         phys_addr_t base = lv2table_base(domain->pgtable + i);
825
826                         dma_unmap_single(dma_dev, base, LV2TABLE_SIZE,
827                                          DMA_TO_DEVICE);
828                         kmem_cache_free(lv2table_kmem_cache,
829                                         phys_to_virt(base));
830                 }
831
832         free_pages((unsigned long)domain->pgtable, 2);
833         free_pages((unsigned long)domain->lv2entcnt, 1);
834         kfree(domain);
835 }
836
837 static void exynos_iommu_detach_device(struct iommu_domain *iommu_domain,
838                                     struct device *dev)
839 {
840         struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
841         struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
842         phys_addr_t pagetable = virt_to_phys(domain->pgtable);
843         struct sysmmu_drvdata *data, *next;
844         unsigned long flags;
845
846         if (!has_sysmmu(dev) || owner->domain != iommu_domain)
847                 return;
848
849         mutex_lock(&owner->rpm_lock);
850
851         list_for_each_entry(data, &owner->controllers, owner_node) {
852                 pm_runtime_get_noresume(data->sysmmu);
853                 if (pm_runtime_active(data->sysmmu))
854                         __sysmmu_disable(data);
855                 pm_runtime_put(data->sysmmu);
856         }
857
858         spin_lock_irqsave(&domain->lock, flags);
859         list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
860                 spin_lock(&data->lock);
861                 data->pgtable = 0;
862                 data->domain = NULL;
863                 list_del_init(&data->domain_node);
864                 spin_unlock(&data->lock);
865         }
866         owner->domain = NULL;
867         spin_unlock_irqrestore(&domain->lock, flags);
868
869         mutex_unlock(&owner->rpm_lock);
870
871         dev_dbg(dev, "%s: Detached IOMMU with pgtable %pa\n", __func__,
872                 &pagetable);
873 }
874
875 static int exynos_iommu_attach_device(struct iommu_domain *iommu_domain,
876                                    struct device *dev)
877 {
878         struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
879         struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
880         struct sysmmu_drvdata *data;
881         phys_addr_t pagetable = virt_to_phys(domain->pgtable);
882         unsigned long flags;
883
884         if (!has_sysmmu(dev))
885                 return -ENODEV;
886
887         if (owner->domain)
888                 exynos_iommu_detach_device(owner->domain, dev);
889
890         mutex_lock(&owner->rpm_lock);
891
892         spin_lock_irqsave(&domain->lock, flags);
893         list_for_each_entry(data, &owner->controllers, owner_node) {
894                 spin_lock(&data->lock);
895                 data->pgtable = pagetable;
896                 data->domain = domain;
897                 list_add_tail(&data->domain_node, &domain->clients);
898                 spin_unlock(&data->lock);
899         }
900         owner->domain = iommu_domain;
901         spin_unlock_irqrestore(&domain->lock, flags);
902
903         list_for_each_entry(data, &owner->controllers, owner_node) {
904                 pm_runtime_get_noresume(data->sysmmu);
905                 if (pm_runtime_active(data->sysmmu))
906                         __sysmmu_enable(data);
907                 pm_runtime_put(data->sysmmu);
908         }
909
910         mutex_unlock(&owner->rpm_lock);
911
912         dev_dbg(dev, "%s: Attached IOMMU with pgtable %pa\n", __func__,
913                 &pagetable);
914
915         return 0;
916 }
917
918 static sysmmu_pte_t *alloc_lv2entry(struct exynos_iommu_domain *domain,
919                 sysmmu_pte_t *sent, sysmmu_iova_t iova, short *pgcounter)
920 {
921         if (lv1ent_section(sent)) {
922                 WARN(1, "Trying mapping on %#08x mapped with 1MiB page", iova);
923                 return ERR_PTR(-EADDRINUSE);
924         }
925
926         if (lv1ent_fault(sent)) {
927                 dma_addr_t handle;
928                 sysmmu_pte_t *pent;
929                 bool need_flush_flpd_cache = lv1ent_zero(sent);
930
931                 pent = kmem_cache_zalloc(lv2table_kmem_cache, GFP_ATOMIC);
932                 BUG_ON((uintptr_t)pent & (LV2TABLE_SIZE - 1));
933                 if (!pent)
934                         return ERR_PTR(-ENOMEM);
935
936                 exynos_iommu_set_pte(sent, mk_lv1ent_page(virt_to_phys(pent)));
937                 kmemleak_ignore(pent);
938                 *pgcounter = NUM_LV2ENTRIES;
939                 handle = dma_map_single(dma_dev, pent, LV2TABLE_SIZE,
940                                         DMA_TO_DEVICE);
941                 if (dma_mapping_error(dma_dev, handle)) {
942                         kmem_cache_free(lv2table_kmem_cache, pent);
943                         return ERR_PTR(-EADDRINUSE);
944                 }
945
946                 /*
947                  * If pre-fetched SLPD is a faulty SLPD in zero_l2_table,
948                  * FLPD cache may cache the address of zero_l2_table. This
949                  * function replaces the zero_l2_table with new L2 page table
950                  * to write valid mappings.
951                  * Accessing the valid area may cause page fault since FLPD
952                  * cache may still cache zero_l2_table for the valid area
953                  * instead of new L2 page table that has the mapping
954                  * information of the valid area.
955                  * Thus any replacement of zero_l2_table with other valid L2
956                  * page table must involve FLPD cache invalidation for System
957                  * MMU v3.3.
958                  * FLPD cache invalidation is performed with TLB invalidation
959                  * by VPN without blocking. It is safe to invalidate TLB without
960                  * blocking because the target address of TLB invalidation is
961                  * not currently mapped.
962                  */
963                 if (need_flush_flpd_cache) {
964                         struct sysmmu_drvdata *data;
965
966                         spin_lock(&domain->lock);
967                         list_for_each_entry(data, &domain->clients, domain_node)
968                                 sysmmu_tlb_invalidate_flpdcache(data, iova);
969                         spin_unlock(&domain->lock);
970                 }
971         }
972
973         return page_entry(sent, iova);
974 }
975
976 static int lv1set_section(struct exynos_iommu_domain *domain,
977                           sysmmu_pte_t *sent, sysmmu_iova_t iova,
978                           phys_addr_t paddr, int prot, short *pgcnt)
979 {
980         if (lv1ent_section(sent)) {
981                 WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
982                         iova);
983                 return -EADDRINUSE;
984         }
985
986         if (lv1ent_page(sent)) {
987                 if (*pgcnt != NUM_LV2ENTRIES) {
988                         WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
989                                 iova);
990                         return -EADDRINUSE;
991                 }
992
993                 kmem_cache_free(lv2table_kmem_cache, page_entry(sent, 0));
994                 *pgcnt = 0;
995         }
996
997         exynos_iommu_set_pte(sent, mk_lv1ent_sect(paddr, prot));
998
999         spin_lock(&domain->lock);
1000         if (lv1ent_page_zero(sent)) {
1001                 struct sysmmu_drvdata *data;
1002                 /*
1003                  * Flushing FLPD cache in System MMU v3.3 that may cache a FLPD
1004                  * entry by speculative prefetch of SLPD which has no mapping.
1005                  */
1006                 list_for_each_entry(data, &domain->clients, domain_node)
1007                         sysmmu_tlb_invalidate_flpdcache(data, iova);
1008         }
1009         spin_unlock(&domain->lock);
1010
1011         return 0;
1012 }
1013
1014 static int lv2set_page(sysmmu_pte_t *pent, phys_addr_t paddr, size_t size,
1015                        int prot, short *pgcnt)
1016 {
1017         if (size == SPAGE_SIZE) {
1018                 if (WARN_ON(!lv2ent_fault(pent)))
1019                         return -EADDRINUSE;
1020
1021                 exynos_iommu_set_pte(pent, mk_lv2ent_spage(paddr, prot));
1022                 *pgcnt -= 1;
1023         } else { /* size == LPAGE_SIZE */
1024                 int i;
1025                 dma_addr_t pent_base = virt_to_phys(pent);
1026
1027                 dma_sync_single_for_cpu(dma_dev, pent_base,
1028                                         sizeof(*pent) * SPAGES_PER_LPAGE,
1029                                         DMA_TO_DEVICE);
1030                 for (i = 0; i < SPAGES_PER_LPAGE; i++, pent++) {
1031                         if (WARN_ON(!lv2ent_fault(pent))) {
1032                                 if (i > 0)
1033                                         memset(pent - i, 0, sizeof(*pent) * i);
1034                                 return -EADDRINUSE;
1035                         }
1036
1037                         *pent = mk_lv2ent_lpage(paddr, prot);
1038                 }
1039                 dma_sync_single_for_device(dma_dev, pent_base,
1040                                            sizeof(*pent) * SPAGES_PER_LPAGE,
1041                                            DMA_TO_DEVICE);
1042                 *pgcnt -= SPAGES_PER_LPAGE;
1043         }
1044
1045         return 0;
1046 }
1047
1048 /*
1049  * *CAUTION* to the I/O virtual memory managers that support exynos-iommu:
1050  *
1051  * System MMU v3.x has advanced logic to improve address translation
1052  * performance with caching more page table entries by a page table walk.
1053  * However, the logic has a bug that while caching faulty page table entries,
1054  * System MMU reports page fault if the cached fault entry is hit even though
1055  * the fault entry is updated to a valid entry after the entry is cached.
1056  * To prevent caching faulty page table entries which may be updated to valid
1057  * entries later, the virtual memory manager should care about the workaround
1058  * for the problem. The following describes the workaround.
1059  *
1060  * Any two consecutive I/O virtual address regions must have a hole of 128KiB
1061  * at maximum to prevent misbehavior of System MMU 3.x (workaround for h/w bug).
1062  *
1063  * Precisely, any start address of I/O virtual region must be aligned with
1064  * the following sizes for System MMU v3.1 and v3.2.
1065  * System MMU v3.1: 128KiB
1066  * System MMU v3.2: 256KiB
1067  *
1068  * Because System MMU v3.3 caches page table entries more aggressively, it needs
1069  * more workarounds.
1070  * - Any two consecutive I/O virtual regions must have a hole of size larger
1071  *   than or equal to 128KiB.
1072  * - Start address of an I/O virtual region must be aligned by 128KiB.
1073  */
1074 static int exynos_iommu_map(struct iommu_domain *iommu_domain,
1075                             unsigned long l_iova, phys_addr_t paddr, size_t size,
1076                             int prot, gfp_t gfp)
1077 {
1078         struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1079         sysmmu_pte_t *entry;
1080         sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
1081         unsigned long flags;
1082         int ret = -ENOMEM;
1083
1084         BUG_ON(domain->pgtable == NULL);
1085         prot &= SYSMMU_SUPPORTED_PROT_BITS;
1086
1087         spin_lock_irqsave(&domain->pgtablelock, flags);
1088
1089         entry = section_entry(domain->pgtable, iova);
1090
1091         if (size == SECT_SIZE) {
1092                 ret = lv1set_section(domain, entry, iova, paddr, prot,
1093                                      &domain->lv2entcnt[lv1ent_offset(iova)]);
1094         } else {
1095                 sysmmu_pte_t *pent;
1096
1097                 pent = alloc_lv2entry(domain, entry, iova,
1098                                       &domain->lv2entcnt[lv1ent_offset(iova)]);
1099
1100                 if (IS_ERR(pent))
1101                         ret = PTR_ERR(pent);
1102                 else
1103                         ret = lv2set_page(pent, paddr, size, prot,
1104                                        &domain->lv2entcnt[lv1ent_offset(iova)]);
1105         }
1106
1107         if (ret)
1108                 pr_err("%s: Failed(%d) to map %#zx bytes @ %#x\n",
1109                         __func__, ret, size, iova);
1110
1111         spin_unlock_irqrestore(&domain->pgtablelock, flags);
1112
1113         return ret;
1114 }
1115
1116 static void exynos_iommu_tlb_invalidate_entry(struct exynos_iommu_domain *domain,
1117                                               sysmmu_iova_t iova, size_t size)
1118 {
1119         struct sysmmu_drvdata *data;
1120         unsigned long flags;
1121
1122         spin_lock_irqsave(&domain->lock, flags);
1123
1124         list_for_each_entry(data, &domain->clients, domain_node)
1125                 sysmmu_tlb_invalidate_entry(data, iova, size);
1126
1127         spin_unlock_irqrestore(&domain->lock, flags);
1128 }
1129
1130 static size_t exynos_iommu_unmap(struct iommu_domain *iommu_domain,
1131                                  unsigned long l_iova, size_t size,
1132                                  struct iommu_iotlb_gather *gather)
1133 {
1134         struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1135         sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
1136         sysmmu_pte_t *ent;
1137         size_t err_pgsize;
1138         unsigned long flags;
1139
1140         BUG_ON(domain->pgtable == NULL);
1141
1142         spin_lock_irqsave(&domain->pgtablelock, flags);
1143
1144         ent = section_entry(domain->pgtable, iova);
1145
1146         if (lv1ent_section(ent)) {
1147                 if (WARN_ON(size < SECT_SIZE)) {
1148                         err_pgsize = SECT_SIZE;
1149                         goto err;
1150                 }
1151
1152                 /* workaround for h/w bug in System MMU v3.3 */
1153                 exynos_iommu_set_pte(ent, ZERO_LV2LINK);
1154                 size = SECT_SIZE;
1155                 goto done;
1156         }
1157
1158         if (unlikely(lv1ent_fault(ent))) {
1159                 if (size > SECT_SIZE)
1160                         size = SECT_SIZE;
1161                 goto done;
1162         }
1163
1164         /* lv1ent_page(sent) == true here */
1165
1166         ent = page_entry(ent, iova);
1167
1168         if (unlikely(lv2ent_fault(ent))) {
1169                 size = SPAGE_SIZE;
1170                 goto done;
1171         }
1172
1173         if (lv2ent_small(ent)) {
1174                 exynos_iommu_set_pte(ent, 0);
1175                 size = SPAGE_SIZE;
1176                 domain->lv2entcnt[lv1ent_offset(iova)] += 1;
1177                 goto done;
1178         }
1179
1180         /* lv1ent_large(ent) == true here */
1181         if (WARN_ON(size < LPAGE_SIZE)) {
1182                 err_pgsize = LPAGE_SIZE;
1183                 goto err;
1184         }
1185
1186         dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent),
1187                                 sizeof(*ent) * SPAGES_PER_LPAGE,
1188                                 DMA_TO_DEVICE);
1189         memset(ent, 0, sizeof(*ent) * SPAGES_PER_LPAGE);
1190         dma_sync_single_for_device(dma_dev, virt_to_phys(ent),
1191                                    sizeof(*ent) * SPAGES_PER_LPAGE,
1192                                    DMA_TO_DEVICE);
1193         size = LPAGE_SIZE;
1194         domain->lv2entcnt[lv1ent_offset(iova)] += SPAGES_PER_LPAGE;
1195 done:
1196         spin_unlock_irqrestore(&domain->pgtablelock, flags);
1197
1198         exynos_iommu_tlb_invalidate_entry(domain, iova, size);
1199
1200         return size;
1201 err:
1202         spin_unlock_irqrestore(&domain->pgtablelock, flags);
1203
1204         pr_err("%s: Failed: size(%#zx) @ %#x is smaller than page size %#zx\n",
1205                 __func__, size, iova, err_pgsize);
1206
1207         return 0;
1208 }
1209
1210 static phys_addr_t exynos_iommu_iova_to_phys(struct iommu_domain *iommu_domain,
1211                                           dma_addr_t iova)
1212 {
1213         struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1214         sysmmu_pte_t *entry;
1215         unsigned long flags;
1216         phys_addr_t phys = 0;
1217
1218         spin_lock_irqsave(&domain->pgtablelock, flags);
1219
1220         entry = section_entry(domain->pgtable, iova);
1221
1222         if (lv1ent_section(entry)) {
1223                 phys = section_phys(entry) + section_offs(iova);
1224         } else if (lv1ent_page(entry)) {
1225                 entry = page_entry(entry, iova);
1226
1227                 if (lv2ent_large(entry))
1228                         phys = lpage_phys(entry) + lpage_offs(iova);
1229                 else if (lv2ent_small(entry))
1230                         phys = spage_phys(entry) + spage_offs(iova);
1231         }
1232
1233         spin_unlock_irqrestore(&domain->pgtablelock, flags);
1234
1235         return phys;
1236 }
1237
1238 static struct iommu_device *exynos_iommu_probe_device(struct device *dev)
1239 {
1240         struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
1241         struct sysmmu_drvdata *data;
1242
1243         if (!has_sysmmu(dev))
1244                 return ERR_PTR(-ENODEV);
1245
1246         list_for_each_entry(data, &owner->controllers, owner_node) {
1247                 /*
1248                  * SYSMMU will be runtime activated via device link
1249                  * (dependency) to its master device, so there are no
1250                  * direct calls to pm_runtime_get/put in this driver.
1251                  */
1252                 data->link = device_link_add(dev, data->sysmmu,
1253                                              DL_FLAG_STATELESS |
1254                                              DL_FLAG_PM_RUNTIME);
1255         }
1256
1257         /* There is always at least one entry, see exynos_iommu_of_xlate() */
1258         data = list_first_entry(&owner->controllers,
1259                                 struct sysmmu_drvdata, owner_node);
1260
1261         return &data->iommu;
1262 }
1263
1264 static void exynos_iommu_release_device(struct device *dev)
1265 {
1266         struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
1267         struct sysmmu_drvdata *data;
1268
1269         if (!has_sysmmu(dev))
1270                 return;
1271
1272         if (owner->domain) {
1273                 struct iommu_group *group = iommu_group_get(dev);
1274
1275                 if (group) {
1276                         WARN_ON(owner->domain !=
1277                                 iommu_group_default_domain(group));
1278                         exynos_iommu_detach_device(owner->domain, dev);
1279                         iommu_group_put(group);
1280                 }
1281         }
1282
1283         list_for_each_entry(data, &owner->controllers, owner_node)
1284                 device_link_del(data->link);
1285 }
1286
1287 static int exynos_iommu_of_xlate(struct device *dev,
1288                                  struct of_phandle_args *spec)
1289 {
1290         struct platform_device *sysmmu = of_find_device_by_node(spec->np);
1291         struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
1292         struct sysmmu_drvdata *data, *entry;
1293
1294         if (!sysmmu)
1295                 return -ENODEV;
1296
1297         data = platform_get_drvdata(sysmmu);
1298         if (!data) {
1299                 put_device(&sysmmu->dev);
1300                 return -ENODEV;
1301         }
1302
1303         if (!owner) {
1304                 owner = kzalloc(sizeof(*owner), GFP_KERNEL);
1305                 if (!owner) {
1306                         put_device(&sysmmu->dev);
1307                         return -ENOMEM;
1308                 }
1309
1310                 INIT_LIST_HEAD(&owner->controllers);
1311                 mutex_init(&owner->rpm_lock);
1312                 dev_iommu_priv_set(dev, owner);
1313         }
1314
1315         list_for_each_entry(entry, &owner->controllers, owner_node)
1316                 if (entry == data)
1317                         return 0;
1318
1319         list_add_tail(&data->owner_node, &owner->controllers);
1320         data->master = dev;
1321
1322         return 0;
1323 }
1324
1325 static const struct iommu_ops exynos_iommu_ops = {
1326         .domain_alloc = exynos_iommu_domain_alloc,
1327         .domain_free = exynos_iommu_domain_free,
1328         .attach_dev = exynos_iommu_attach_device,
1329         .detach_dev = exynos_iommu_detach_device,
1330         .map = exynos_iommu_map,
1331         .unmap = exynos_iommu_unmap,
1332         .iova_to_phys = exynos_iommu_iova_to_phys,
1333         .device_group = generic_device_group,
1334         .probe_device = exynos_iommu_probe_device,
1335         .release_device = exynos_iommu_release_device,
1336         .pgsize_bitmap = SECT_SIZE | LPAGE_SIZE | SPAGE_SIZE,
1337         .of_xlate = exynos_iommu_of_xlate,
1338 };
1339
1340 static int __init exynos_iommu_init(void)
1341 {
1342         struct device_node *np;
1343         int ret;
1344
1345         np = of_find_matching_node(NULL, sysmmu_of_match);
1346         if (!np)
1347                 return 0;
1348
1349         of_node_put(np);
1350
1351         lv2table_kmem_cache = kmem_cache_create("exynos-iommu-lv2table",
1352                                 LV2TABLE_SIZE, LV2TABLE_SIZE, 0, NULL);
1353         if (!lv2table_kmem_cache) {
1354                 pr_err("%s: Failed to create kmem cache\n", __func__);
1355                 return -ENOMEM;
1356         }
1357
1358         ret = platform_driver_register(&exynos_sysmmu_driver);
1359         if (ret) {
1360                 pr_err("%s: Failed to register driver\n", __func__);
1361                 goto err_reg_driver;
1362         }
1363
1364         zero_lv2_table = kmem_cache_zalloc(lv2table_kmem_cache, GFP_KERNEL);
1365         if (zero_lv2_table == NULL) {
1366                 pr_err("%s: Failed to allocate zero level2 page table\n",
1367                         __func__);
1368                 ret = -ENOMEM;
1369                 goto err_zero_lv2;
1370         }
1371
1372         ret = bus_set_iommu(&platform_bus_type, &exynos_iommu_ops);
1373         if (ret) {
1374                 pr_err("%s: Failed to register exynos-iommu driver.\n",
1375                                                                 __func__);
1376                 goto err_set_iommu;
1377         }
1378
1379         return 0;
1380 err_set_iommu:
1381         kmem_cache_free(lv2table_kmem_cache, zero_lv2_table);
1382 err_zero_lv2:
1383         platform_driver_unregister(&exynos_sysmmu_driver);
1384 err_reg_driver:
1385         kmem_cache_destroy(lv2table_kmem_cache);
1386         return ret;
1387 }
1388 core_initcall(exynos_iommu_init);