usb: gadget: uvc: Expose configuration name through video node
[linux-2.6-microblaze.git] / drivers / iommu / arm-smmu-v3.c
1 /*
2  * IOMMU API for ARM architected SMMUv3 implementations.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
15  *
16  * Copyright (C) 2015 ARM Limited
17  *
18  * Author: Will Deacon <will.deacon@arm.com>
19  *
20  * This driver is powered by bad coffee and bombay mix.
21  */
22
23 #include <linux/acpi.h>
24 #include <linux/acpi_iort.h>
25 #include <linux/bitfield.h>
26 #include <linux/bitops.h>
27 #include <linux/delay.h>
28 #include <linux/dma-iommu.h>
29 #include <linux/err.h>
30 #include <linux/interrupt.h>
31 #include <linux/iommu.h>
32 #include <linux/iopoll.h>
33 #include <linux/module.h>
34 #include <linux/msi.h>
35 #include <linux/of.h>
36 #include <linux/of_address.h>
37 #include <linux/of_iommu.h>
38 #include <linux/of_platform.h>
39 #include <linux/pci.h>
40 #include <linux/platform_device.h>
41
42 #include <linux/amba/bus.h>
43
44 #include "io-pgtable.h"
45
46 /* MMIO registers */
47 #define ARM_SMMU_IDR0                   0x0
48 #define IDR0_ST_LVL                     GENMASK(28, 27)
49 #define IDR0_ST_LVL_2LVL                1
50 #define IDR0_STALL_MODEL                GENMASK(25, 24)
51 #define IDR0_STALL_MODEL_STALL          0
52 #define IDR0_STALL_MODEL_FORCE          2
53 #define IDR0_TTENDIAN                   GENMASK(22, 21)
54 #define IDR0_TTENDIAN_MIXED             0
55 #define IDR0_TTENDIAN_LE                2
56 #define IDR0_TTENDIAN_BE                3
57 #define IDR0_CD2L                       (1 << 19)
58 #define IDR0_VMID16                     (1 << 18)
59 #define IDR0_PRI                        (1 << 16)
60 #define IDR0_SEV                        (1 << 14)
61 #define IDR0_MSI                        (1 << 13)
62 #define IDR0_ASID16                     (1 << 12)
63 #define IDR0_ATS                        (1 << 10)
64 #define IDR0_HYP                        (1 << 9)
65 #define IDR0_COHACC                     (1 << 4)
66 #define IDR0_TTF                        GENMASK(3, 2)
67 #define IDR0_TTF_AARCH64                2
68 #define IDR0_TTF_AARCH32_64             3
69 #define IDR0_S1P                        (1 << 1)
70 #define IDR0_S2P                        (1 << 0)
71
72 #define ARM_SMMU_IDR1                   0x4
73 #define IDR1_TABLES_PRESET              (1 << 30)
74 #define IDR1_QUEUES_PRESET              (1 << 29)
75 #define IDR1_REL                        (1 << 28)
76 #define IDR1_CMDQS                      GENMASK(25, 21)
77 #define IDR1_EVTQS                      GENMASK(20, 16)
78 #define IDR1_PRIQS                      GENMASK(15, 11)
79 #define IDR1_SSIDSIZE                   GENMASK(10, 6)
80 #define IDR1_SIDSIZE                    GENMASK(5, 0)
81
82 #define ARM_SMMU_IDR5                   0x14
83 #define IDR5_STALL_MAX                  GENMASK(31, 16)
84 #define IDR5_GRAN64K                    (1 << 6)
85 #define IDR5_GRAN16K                    (1 << 5)
86 #define IDR5_GRAN4K                     (1 << 4)
87 #define IDR5_OAS                        GENMASK(2, 0)
88 #define IDR5_OAS_32_BIT                 0
89 #define IDR5_OAS_36_BIT                 1
90 #define IDR5_OAS_40_BIT                 2
91 #define IDR5_OAS_42_BIT                 3
92 #define IDR5_OAS_44_BIT                 4
93 #define IDR5_OAS_48_BIT                 5
94 #define IDR5_OAS_52_BIT                 6
95 #define IDR5_VAX                        GENMASK(11, 10)
96 #define IDR5_VAX_52_BIT                 1
97
98 #define ARM_SMMU_CR0                    0x20
99 #define CR0_CMDQEN                      (1 << 3)
100 #define CR0_EVTQEN                      (1 << 2)
101 #define CR0_PRIQEN                      (1 << 1)
102 #define CR0_SMMUEN                      (1 << 0)
103
104 #define ARM_SMMU_CR0ACK                 0x24
105
106 #define ARM_SMMU_CR1                    0x28
107 #define CR1_TABLE_SH                    GENMASK(11, 10)
108 #define CR1_TABLE_OC                    GENMASK(9, 8)
109 #define CR1_TABLE_IC                    GENMASK(7, 6)
110 #define CR1_QUEUE_SH                    GENMASK(5, 4)
111 #define CR1_QUEUE_OC                    GENMASK(3, 2)
112 #define CR1_QUEUE_IC                    GENMASK(1, 0)
113 /* CR1 cacheability fields don't quite follow the usual TCR-style encoding */
114 #define CR1_CACHE_NC                    0
115 #define CR1_CACHE_WB                    1
116 #define CR1_CACHE_WT                    2
117
118 #define ARM_SMMU_CR2                    0x2c
119 #define CR2_PTM                         (1 << 2)
120 #define CR2_RECINVSID                   (1 << 1)
121 #define CR2_E2H                         (1 << 0)
122
123 #define ARM_SMMU_GBPA                   0x44
124 #define GBPA_UPDATE                     (1 << 31)
125 #define GBPA_ABORT                      (1 << 20)
126
127 #define ARM_SMMU_IRQ_CTRL               0x50
128 #define IRQ_CTRL_EVTQ_IRQEN             (1 << 2)
129 #define IRQ_CTRL_PRIQ_IRQEN             (1 << 1)
130 #define IRQ_CTRL_GERROR_IRQEN           (1 << 0)
131
132 #define ARM_SMMU_IRQ_CTRLACK            0x54
133
134 #define ARM_SMMU_GERROR                 0x60
135 #define GERROR_SFM_ERR                  (1 << 8)
136 #define GERROR_MSI_GERROR_ABT_ERR       (1 << 7)
137 #define GERROR_MSI_PRIQ_ABT_ERR         (1 << 6)
138 #define GERROR_MSI_EVTQ_ABT_ERR         (1 << 5)
139 #define GERROR_MSI_CMDQ_ABT_ERR         (1 << 4)
140 #define GERROR_PRIQ_ABT_ERR             (1 << 3)
141 #define GERROR_EVTQ_ABT_ERR             (1 << 2)
142 #define GERROR_CMDQ_ERR                 (1 << 0)
143 #define GERROR_ERR_MASK                 0xfd
144
145 #define ARM_SMMU_GERRORN                0x64
146
147 #define ARM_SMMU_GERROR_IRQ_CFG0        0x68
148 #define ARM_SMMU_GERROR_IRQ_CFG1        0x70
149 #define ARM_SMMU_GERROR_IRQ_CFG2        0x74
150
151 #define ARM_SMMU_STRTAB_BASE            0x80
152 #define STRTAB_BASE_RA                  (1UL << 62)
153 #define STRTAB_BASE_ADDR_MASK           GENMASK_ULL(51, 6)
154
155 #define ARM_SMMU_STRTAB_BASE_CFG        0x88
156 #define STRTAB_BASE_CFG_FMT             GENMASK(17, 16)
157 #define STRTAB_BASE_CFG_FMT_LINEAR      0
158 #define STRTAB_BASE_CFG_FMT_2LVL        1
159 #define STRTAB_BASE_CFG_SPLIT           GENMASK(10, 6)
160 #define STRTAB_BASE_CFG_LOG2SIZE        GENMASK(5, 0)
161
162 #define ARM_SMMU_CMDQ_BASE              0x90
163 #define ARM_SMMU_CMDQ_PROD              0x98
164 #define ARM_SMMU_CMDQ_CONS              0x9c
165
166 #define ARM_SMMU_EVTQ_BASE              0xa0
167 #define ARM_SMMU_EVTQ_PROD              0x100a8
168 #define ARM_SMMU_EVTQ_CONS              0x100ac
169 #define ARM_SMMU_EVTQ_IRQ_CFG0          0xb0
170 #define ARM_SMMU_EVTQ_IRQ_CFG1          0xb8
171 #define ARM_SMMU_EVTQ_IRQ_CFG2          0xbc
172
173 #define ARM_SMMU_PRIQ_BASE              0xc0
174 #define ARM_SMMU_PRIQ_PROD              0x100c8
175 #define ARM_SMMU_PRIQ_CONS              0x100cc
176 #define ARM_SMMU_PRIQ_IRQ_CFG0          0xd0
177 #define ARM_SMMU_PRIQ_IRQ_CFG1          0xd8
178 #define ARM_SMMU_PRIQ_IRQ_CFG2          0xdc
179
180 /* Common MSI config fields */
181 #define MSI_CFG0_ADDR_MASK              GENMASK_ULL(51, 2)
182 #define MSI_CFG2_SH                     GENMASK(5, 4)
183 #define MSI_CFG2_MEMATTR                GENMASK(3, 0)
184
185 /* Common memory attribute values */
186 #define ARM_SMMU_SH_NSH                 0
187 #define ARM_SMMU_SH_OSH                 2
188 #define ARM_SMMU_SH_ISH                 3
189 #define ARM_SMMU_MEMATTR_DEVICE_nGnRE   0x1
190 #define ARM_SMMU_MEMATTR_OIWB           0xf
191
192 #define Q_IDX(q, p)                     ((p) & ((1 << (q)->max_n_shift) - 1))
193 #define Q_WRP(q, p)                     ((p) & (1 << (q)->max_n_shift))
194 #define Q_OVERFLOW_FLAG                 (1 << 31)
195 #define Q_OVF(q, p)                     ((p) & Q_OVERFLOW_FLAG)
196 #define Q_ENT(q, p)                     ((q)->base +                    \
197                                          Q_IDX(q, p) * (q)->ent_dwords)
198
199 #define Q_BASE_RWA                      (1UL << 62)
200 #define Q_BASE_ADDR_MASK                GENMASK_ULL(51, 5)
201 #define Q_BASE_LOG2SIZE                 GENMASK(4, 0)
202
203 /*
204  * Stream table.
205  *
206  * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
207  * 2lvl: 128k L1 entries,
208  *       256 lazy entries per table (each table covers a PCI bus)
209  */
210 #define STRTAB_L1_SZ_SHIFT              20
211 #define STRTAB_SPLIT                    8
212
213 #define STRTAB_L1_DESC_DWORDS           1
214 #define STRTAB_L1_DESC_SPAN             GENMASK_ULL(4, 0)
215 #define STRTAB_L1_DESC_L2PTR_MASK       GENMASK_ULL(51, 6)
216
217 #define STRTAB_STE_DWORDS               8
218 #define STRTAB_STE_0_V                  (1UL << 0)
219 #define STRTAB_STE_0_CFG                GENMASK_ULL(3, 1)
220 #define STRTAB_STE_0_CFG_ABORT          0
221 #define STRTAB_STE_0_CFG_BYPASS         4
222 #define STRTAB_STE_0_CFG_S1_TRANS       5
223 #define STRTAB_STE_0_CFG_S2_TRANS       6
224
225 #define STRTAB_STE_0_S1FMT              GENMASK_ULL(5, 4)
226 #define STRTAB_STE_0_S1FMT_LINEAR       0
227 #define STRTAB_STE_0_S1CTXPTR_MASK      GENMASK_ULL(51, 6)
228 #define STRTAB_STE_0_S1CDMAX            GENMASK_ULL(63, 59)
229
230 #define STRTAB_STE_1_S1C_CACHE_NC       0UL
231 #define STRTAB_STE_1_S1C_CACHE_WBRA     1UL
232 #define STRTAB_STE_1_S1C_CACHE_WT       2UL
233 #define STRTAB_STE_1_S1C_CACHE_WB       3UL
234 #define STRTAB_STE_1_S1CIR              GENMASK_ULL(3, 2)
235 #define STRTAB_STE_1_S1COR              GENMASK_ULL(5, 4)
236 #define STRTAB_STE_1_S1CSH              GENMASK_ULL(7, 6)
237
238 #define STRTAB_STE_1_S1STALLD           (1UL << 27)
239
240 #define STRTAB_STE_1_EATS               GENMASK_ULL(29, 28)
241 #define STRTAB_STE_1_EATS_ABT           0UL
242 #define STRTAB_STE_1_EATS_TRANS         1UL
243 #define STRTAB_STE_1_EATS_S1CHK         2UL
244
245 #define STRTAB_STE_1_STRW               GENMASK_ULL(31, 30)
246 #define STRTAB_STE_1_STRW_NSEL1         0UL
247 #define STRTAB_STE_1_STRW_EL2           2UL
248
249 #define STRTAB_STE_1_SHCFG              GENMASK_ULL(45, 44)
250 #define STRTAB_STE_1_SHCFG_INCOMING     1UL
251
252 #define STRTAB_STE_2_S2VMID             GENMASK_ULL(15, 0)
253 #define STRTAB_STE_2_VTCR               GENMASK_ULL(50, 32)
254 #define STRTAB_STE_2_S2AA64             (1UL << 51)
255 #define STRTAB_STE_2_S2ENDI             (1UL << 52)
256 #define STRTAB_STE_2_S2PTW              (1UL << 54)
257 #define STRTAB_STE_2_S2R                (1UL << 58)
258
259 #define STRTAB_STE_3_S2TTB_MASK         GENMASK_ULL(51, 4)
260
261 /* Context descriptor (stage-1 only) */
262 #define CTXDESC_CD_DWORDS               8
263 #define CTXDESC_CD_0_TCR_T0SZ           GENMASK_ULL(5, 0)
264 #define ARM64_TCR_T0SZ                  GENMASK_ULL(5, 0)
265 #define CTXDESC_CD_0_TCR_TG0            GENMASK_ULL(7, 6)
266 #define ARM64_TCR_TG0                   GENMASK_ULL(15, 14)
267 #define CTXDESC_CD_0_TCR_IRGN0          GENMASK_ULL(9, 8)
268 #define ARM64_TCR_IRGN0                 GENMASK_ULL(9, 8)
269 #define CTXDESC_CD_0_TCR_ORGN0          GENMASK_ULL(11, 10)
270 #define ARM64_TCR_ORGN0                 GENMASK_ULL(11, 10)
271 #define CTXDESC_CD_0_TCR_SH0            GENMASK_ULL(13, 12)
272 #define ARM64_TCR_SH0                   GENMASK_ULL(13, 12)
273 #define CTXDESC_CD_0_TCR_EPD0           (1ULL << 14)
274 #define ARM64_TCR_EPD0                  (1ULL << 7)
275 #define CTXDESC_CD_0_TCR_EPD1           (1ULL << 30)
276 #define ARM64_TCR_EPD1                  (1ULL << 23)
277
278 #define CTXDESC_CD_0_ENDI               (1UL << 15)
279 #define CTXDESC_CD_0_V                  (1UL << 31)
280
281 #define CTXDESC_CD_0_TCR_IPS            GENMASK_ULL(34, 32)
282 #define ARM64_TCR_IPS                   GENMASK_ULL(34, 32)
283 #define CTXDESC_CD_0_TCR_TBI0           (1ULL << 38)
284 #define ARM64_TCR_TBI0                  (1ULL << 37)
285
286 #define CTXDESC_CD_0_AA64               (1UL << 41)
287 #define CTXDESC_CD_0_S                  (1UL << 44)
288 #define CTXDESC_CD_0_R                  (1UL << 45)
289 #define CTXDESC_CD_0_A                  (1UL << 46)
290 #define CTXDESC_CD_0_ASET               (1UL << 47)
291 #define CTXDESC_CD_0_ASID               GENMASK_ULL(63, 48)
292
293 #define CTXDESC_CD_1_TTB0_MASK          GENMASK_ULL(51, 4)
294
295 /* Convert between AArch64 (CPU) TCR format and SMMU CD format */
296 #define ARM_SMMU_TCR2CD(tcr, fld)       FIELD_PREP(CTXDESC_CD_0_TCR_##fld, \
297                                         FIELD_GET(ARM64_TCR_##fld, tcr))
298
299 /* Command queue */
300 #define CMDQ_ENT_DWORDS                 2
301 #define CMDQ_MAX_SZ_SHIFT               8
302
303 #define CMDQ_CONS_ERR                   GENMASK(30, 24)
304 #define CMDQ_ERR_CERROR_NONE_IDX        0
305 #define CMDQ_ERR_CERROR_ILL_IDX         1
306 #define CMDQ_ERR_CERROR_ABT_IDX         2
307
308 #define CMDQ_0_OP                       GENMASK_ULL(7, 0)
309 #define CMDQ_0_SSV                      (1UL << 11)
310
311 #define CMDQ_PREFETCH_0_SID             GENMASK_ULL(63, 32)
312 #define CMDQ_PREFETCH_1_SIZE            GENMASK_ULL(4, 0)
313 #define CMDQ_PREFETCH_1_ADDR_MASK       GENMASK_ULL(63, 12)
314
315 #define CMDQ_CFGI_0_SID                 GENMASK_ULL(63, 32)
316 #define CMDQ_CFGI_1_LEAF                (1UL << 0)
317 #define CMDQ_CFGI_1_RANGE               GENMASK_ULL(4, 0)
318
319 #define CMDQ_TLBI_0_VMID                GENMASK_ULL(47, 32)
320 #define CMDQ_TLBI_0_ASID                GENMASK_ULL(63, 48)
321 #define CMDQ_TLBI_1_LEAF                (1UL << 0)
322 #define CMDQ_TLBI_1_VA_MASK             GENMASK_ULL(63, 12)
323 #define CMDQ_TLBI_1_IPA_MASK            GENMASK_ULL(51, 12)
324
325 #define CMDQ_PRI_0_SSID                 GENMASK_ULL(31, 12)
326 #define CMDQ_PRI_0_SID                  GENMASK_ULL(63, 32)
327 #define CMDQ_PRI_1_GRPID                GENMASK_ULL(8, 0)
328 #define CMDQ_PRI_1_RESP                 GENMASK_ULL(13, 12)
329
330 #define CMDQ_SYNC_0_CS                  GENMASK_ULL(13, 12)
331 #define CMDQ_SYNC_0_CS_NONE             0
332 #define CMDQ_SYNC_0_CS_IRQ              1
333 #define CMDQ_SYNC_0_CS_SEV              2
334 #define CMDQ_SYNC_0_MSH                 GENMASK_ULL(23, 22)
335 #define CMDQ_SYNC_0_MSIATTR             GENMASK_ULL(27, 24)
336 #define CMDQ_SYNC_0_MSIDATA             GENMASK_ULL(63, 32)
337 #define CMDQ_SYNC_1_MSIADDR_MASK        GENMASK_ULL(51, 2)
338
339 /* Event queue */
340 #define EVTQ_ENT_DWORDS                 4
341 #define EVTQ_MAX_SZ_SHIFT               7
342
343 #define EVTQ_0_ID                       GENMASK_ULL(7, 0)
344
345 /* PRI queue */
346 #define PRIQ_ENT_DWORDS                 2
347 #define PRIQ_MAX_SZ_SHIFT               8
348
349 #define PRIQ_0_SID                      GENMASK_ULL(31, 0)
350 #define PRIQ_0_SSID                     GENMASK_ULL(51, 32)
351 #define PRIQ_0_PERM_PRIV                (1UL << 58)
352 #define PRIQ_0_PERM_EXEC                (1UL << 59)
353 #define PRIQ_0_PERM_READ                (1UL << 60)
354 #define PRIQ_0_PERM_WRITE               (1UL << 61)
355 #define PRIQ_0_PRG_LAST                 (1UL << 62)
356 #define PRIQ_0_SSID_V                   (1UL << 63)
357
358 #define PRIQ_1_PRG_IDX                  GENMASK_ULL(8, 0)
359 #define PRIQ_1_ADDR_MASK                GENMASK_ULL(63, 12)
360
361 /* High-level queue structures */
362 #define ARM_SMMU_POLL_TIMEOUT_US        100
363 #define ARM_SMMU_CMDQ_SYNC_TIMEOUT_US   1000000 /* 1s! */
364 #define ARM_SMMU_CMDQ_SYNC_SPIN_COUNT   10
365
366 #define MSI_IOVA_BASE                   0x8000000
367 #define MSI_IOVA_LENGTH                 0x100000
368
369 static bool disable_bypass;
370 module_param_named(disable_bypass, disable_bypass, bool, S_IRUGO);
371 MODULE_PARM_DESC(disable_bypass,
372         "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
373
374 enum pri_resp {
375         PRI_RESP_DENY = 0,
376         PRI_RESP_FAIL = 1,
377         PRI_RESP_SUCC = 2,
378 };
379
380 enum arm_smmu_msi_index {
381         EVTQ_MSI_INDEX,
382         GERROR_MSI_INDEX,
383         PRIQ_MSI_INDEX,
384         ARM_SMMU_MAX_MSIS,
385 };
386
387 static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
388         [EVTQ_MSI_INDEX] = {
389                 ARM_SMMU_EVTQ_IRQ_CFG0,
390                 ARM_SMMU_EVTQ_IRQ_CFG1,
391                 ARM_SMMU_EVTQ_IRQ_CFG2,
392         },
393         [GERROR_MSI_INDEX] = {
394                 ARM_SMMU_GERROR_IRQ_CFG0,
395                 ARM_SMMU_GERROR_IRQ_CFG1,
396                 ARM_SMMU_GERROR_IRQ_CFG2,
397         },
398         [PRIQ_MSI_INDEX] = {
399                 ARM_SMMU_PRIQ_IRQ_CFG0,
400                 ARM_SMMU_PRIQ_IRQ_CFG1,
401                 ARM_SMMU_PRIQ_IRQ_CFG2,
402         },
403 };
404
405 struct arm_smmu_cmdq_ent {
406         /* Common fields */
407         u8                              opcode;
408         bool                            substream_valid;
409
410         /* Command-specific fields */
411         union {
412                 #define CMDQ_OP_PREFETCH_CFG    0x1
413                 struct {
414                         u32                     sid;
415                         u8                      size;
416                         u64                     addr;
417                 } prefetch;
418
419                 #define CMDQ_OP_CFGI_STE        0x3
420                 #define CMDQ_OP_CFGI_ALL        0x4
421                 struct {
422                         u32                     sid;
423                         union {
424                                 bool            leaf;
425                                 u8              span;
426                         };
427                 } cfgi;
428
429                 #define CMDQ_OP_TLBI_NH_ASID    0x11
430                 #define CMDQ_OP_TLBI_NH_VA      0x12
431                 #define CMDQ_OP_TLBI_EL2_ALL    0x20
432                 #define CMDQ_OP_TLBI_S12_VMALL  0x28
433                 #define CMDQ_OP_TLBI_S2_IPA     0x2a
434                 #define CMDQ_OP_TLBI_NSNH_ALL   0x30
435                 struct {
436                         u16                     asid;
437                         u16                     vmid;
438                         bool                    leaf;
439                         u64                     addr;
440                 } tlbi;
441
442                 #define CMDQ_OP_PRI_RESP        0x41
443                 struct {
444                         u32                     sid;
445                         u32                     ssid;
446                         u16                     grpid;
447                         enum pri_resp           resp;
448                 } pri;
449
450                 #define CMDQ_OP_CMD_SYNC        0x46
451                 struct {
452                         u32                     msidata;
453                         u64                     msiaddr;
454                 } sync;
455         };
456 };
457
458 struct arm_smmu_queue {
459         int                             irq; /* Wired interrupt */
460
461         __le64                          *base;
462         dma_addr_t                      base_dma;
463         u64                             q_base;
464
465         size_t                          ent_dwords;
466         u32                             max_n_shift;
467         u32                             prod;
468         u32                             cons;
469
470         u32 __iomem                     *prod_reg;
471         u32 __iomem                     *cons_reg;
472 };
473
474 struct arm_smmu_cmdq {
475         struct arm_smmu_queue           q;
476         spinlock_t                      lock;
477 };
478
479 struct arm_smmu_evtq {
480         struct arm_smmu_queue           q;
481         u32                             max_stalls;
482 };
483
484 struct arm_smmu_priq {
485         struct arm_smmu_queue           q;
486 };
487
488 /* High-level stream table and context descriptor structures */
489 struct arm_smmu_strtab_l1_desc {
490         u8                              span;
491
492         __le64                          *l2ptr;
493         dma_addr_t                      l2ptr_dma;
494 };
495
496 struct arm_smmu_s1_cfg {
497         __le64                          *cdptr;
498         dma_addr_t                      cdptr_dma;
499
500         struct arm_smmu_ctx_desc {
501                 u16     asid;
502                 u64     ttbr;
503                 u64     tcr;
504                 u64     mair;
505         }                               cd;
506 };
507
508 struct arm_smmu_s2_cfg {
509         u16                             vmid;
510         u64                             vttbr;
511         u64                             vtcr;
512 };
513
514 struct arm_smmu_strtab_ent {
515         /*
516          * An STE is "assigned" if the master emitting the corresponding SID
517          * is attached to a domain. The behaviour of an unassigned STE is
518          * determined by the disable_bypass parameter, whereas an assigned
519          * STE behaves according to s1_cfg/s2_cfg, which themselves are
520          * configured according to the domain type.
521          */
522         bool                            assigned;
523         struct arm_smmu_s1_cfg          *s1_cfg;
524         struct arm_smmu_s2_cfg          *s2_cfg;
525 };
526
527 struct arm_smmu_strtab_cfg {
528         __le64                          *strtab;
529         dma_addr_t                      strtab_dma;
530         struct arm_smmu_strtab_l1_desc  *l1_desc;
531         unsigned int                    num_l1_ents;
532
533         u64                             strtab_base;
534         u32                             strtab_base_cfg;
535 };
536
537 /* An SMMUv3 instance */
538 struct arm_smmu_device {
539         struct device                   *dev;
540         void __iomem                    *base;
541
542 #define ARM_SMMU_FEAT_2_LVL_STRTAB      (1 << 0)
543 #define ARM_SMMU_FEAT_2_LVL_CDTAB       (1 << 1)
544 #define ARM_SMMU_FEAT_TT_LE             (1 << 2)
545 #define ARM_SMMU_FEAT_TT_BE             (1 << 3)
546 #define ARM_SMMU_FEAT_PRI               (1 << 4)
547 #define ARM_SMMU_FEAT_ATS               (1 << 5)
548 #define ARM_SMMU_FEAT_SEV               (1 << 6)
549 #define ARM_SMMU_FEAT_MSI               (1 << 7)
550 #define ARM_SMMU_FEAT_COHERENCY         (1 << 8)
551 #define ARM_SMMU_FEAT_TRANS_S1          (1 << 9)
552 #define ARM_SMMU_FEAT_TRANS_S2          (1 << 10)
553 #define ARM_SMMU_FEAT_STALLS            (1 << 11)
554 #define ARM_SMMU_FEAT_HYP               (1 << 12)
555 #define ARM_SMMU_FEAT_STALL_FORCE       (1 << 13)
556 #define ARM_SMMU_FEAT_VAX               (1 << 14)
557         u32                             features;
558
559 #define ARM_SMMU_OPT_SKIP_PREFETCH      (1 << 0)
560 #define ARM_SMMU_OPT_PAGE0_REGS_ONLY    (1 << 1)
561         u32                             options;
562
563         struct arm_smmu_cmdq            cmdq;
564         struct arm_smmu_evtq            evtq;
565         struct arm_smmu_priq            priq;
566
567         int                             gerr_irq;
568         int                             combined_irq;
569         atomic_t                        sync_nr;
570
571         unsigned long                   ias; /* IPA */
572         unsigned long                   oas; /* PA */
573         unsigned long                   pgsize_bitmap;
574
575 #define ARM_SMMU_MAX_ASIDS              (1 << 16)
576         unsigned int                    asid_bits;
577         DECLARE_BITMAP(asid_map, ARM_SMMU_MAX_ASIDS);
578
579 #define ARM_SMMU_MAX_VMIDS              (1 << 16)
580         unsigned int                    vmid_bits;
581         DECLARE_BITMAP(vmid_map, ARM_SMMU_MAX_VMIDS);
582
583         unsigned int                    ssid_bits;
584         unsigned int                    sid_bits;
585
586         struct arm_smmu_strtab_cfg      strtab_cfg;
587
588         u32                             sync_count;
589
590         /* IOMMU core code handle */
591         struct iommu_device             iommu;
592 };
593
594 /* SMMU private data for each master */
595 struct arm_smmu_master_data {
596         struct arm_smmu_device          *smmu;
597         struct arm_smmu_strtab_ent      ste;
598 };
599
600 /* SMMU private data for an IOMMU domain */
601 enum arm_smmu_domain_stage {
602         ARM_SMMU_DOMAIN_S1 = 0,
603         ARM_SMMU_DOMAIN_S2,
604         ARM_SMMU_DOMAIN_NESTED,
605         ARM_SMMU_DOMAIN_BYPASS,
606 };
607
608 struct arm_smmu_domain {
609         struct arm_smmu_device          *smmu;
610         struct mutex                    init_mutex; /* Protects smmu pointer */
611
612         struct io_pgtable_ops           *pgtbl_ops;
613
614         enum arm_smmu_domain_stage      stage;
615         union {
616                 struct arm_smmu_s1_cfg  s1_cfg;
617                 struct arm_smmu_s2_cfg  s2_cfg;
618         };
619
620         struct iommu_domain             domain;
621 };
622
623 struct arm_smmu_option_prop {
624         u32 opt;
625         const char *prop;
626 };
627
628 static struct arm_smmu_option_prop arm_smmu_options[] = {
629         { ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
630         { ARM_SMMU_OPT_PAGE0_REGS_ONLY, "cavium,cn9900-broken-page1-regspace"},
631         { 0, NULL},
632 };
633
634 static inline void __iomem *arm_smmu_page1_fixup(unsigned long offset,
635                                                  struct arm_smmu_device *smmu)
636 {
637         if ((offset > SZ_64K) &&
638             (smmu->options & ARM_SMMU_OPT_PAGE0_REGS_ONLY))
639                 offset -= SZ_64K;
640
641         return smmu->base + offset;
642 }
643
644 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
645 {
646         return container_of(dom, struct arm_smmu_domain, domain);
647 }
648
649 static void parse_driver_options(struct arm_smmu_device *smmu)
650 {
651         int i = 0;
652
653         do {
654                 if (of_property_read_bool(smmu->dev->of_node,
655                                                 arm_smmu_options[i].prop)) {
656                         smmu->options |= arm_smmu_options[i].opt;
657                         dev_notice(smmu->dev, "option %s\n",
658                                 arm_smmu_options[i].prop);
659                 }
660         } while (arm_smmu_options[++i].opt);
661 }
662
663 /* Low-level queue manipulation functions */
664 static bool queue_full(struct arm_smmu_queue *q)
665 {
666         return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
667                Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
668 }
669
670 static bool queue_empty(struct arm_smmu_queue *q)
671 {
672         return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
673                Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
674 }
675
676 static void queue_sync_cons(struct arm_smmu_queue *q)
677 {
678         q->cons = readl_relaxed(q->cons_reg);
679 }
680
681 static void queue_inc_cons(struct arm_smmu_queue *q)
682 {
683         u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
684
685         q->cons = Q_OVF(q, q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
686         writel(q->cons, q->cons_reg);
687 }
688
689 static int queue_sync_prod(struct arm_smmu_queue *q)
690 {
691         int ret = 0;
692         u32 prod = readl_relaxed(q->prod_reg);
693
694         if (Q_OVF(q, prod) != Q_OVF(q, q->prod))
695                 ret = -EOVERFLOW;
696
697         q->prod = prod;
698         return ret;
699 }
700
701 static void queue_inc_prod(struct arm_smmu_queue *q)
702 {
703         u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + 1;
704
705         q->prod = Q_OVF(q, q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
706         writel(q->prod, q->prod_reg);
707 }
708
709 /*
710  * Wait for the SMMU to consume items. If drain is true, wait until the queue
711  * is empty. Otherwise, wait until there is at least one free slot.
712  */
713 static int queue_poll_cons(struct arm_smmu_queue *q, bool sync, bool wfe)
714 {
715         ktime_t timeout;
716         unsigned int delay = 1, spin_cnt = 0;
717
718         /* Wait longer if it's a CMD_SYNC */
719         timeout = ktime_add_us(ktime_get(), sync ?
720                                             ARM_SMMU_CMDQ_SYNC_TIMEOUT_US :
721                                             ARM_SMMU_POLL_TIMEOUT_US);
722
723         while (queue_sync_cons(q), (sync ? !queue_empty(q) : queue_full(q))) {
724                 if (ktime_compare(ktime_get(), timeout) > 0)
725                         return -ETIMEDOUT;
726
727                 if (wfe) {
728                         wfe();
729                 } else if (++spin_cnt < ARM_SMMU_CMDQ_SYNC_SPIN_COUNT) {
730                         cpu_relax();
731                         continue;
732                 } else {
733                         udelay(delay);
734                         delay *= 2;
735                         spin_cnt = 0;
736                 }
737         }
738
739         return 0;
740 }
741
742 static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
743 {
744         int i;
745
746         for (i = 0; i < n_dwords; ++i)
747                 *dst++ = cpu_to_le64(*src++);
748 }
749
750 static int queue_insert_raw(struct arm_smmu_queue *q, u64 *ent)
751 {
752         if (queue_full(q))
753                 return -ENOSPC;
754
755         queue_write(Q_ENT(q, q->prod), ent, q->ent_dwords);
756         queue_inc_prod(q);
757         return 0;
758 }
759
760 static void queue_read(__le64 *dst, u64 *src, size_t n_dwords)
761 {
762         int i;
763
764         for (i = 0; i < n_dwords; ++i)
765                 *dst++ = le64_to_cpu(*src++);
766 }
767
768 static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
769 {
770         if (queue_empty(q))
771                 return -EAGAIN;
772
773         queue_read(ent, Q_ENT(q, q->cons), q->ent_dwords);
774         queue_inc_cons(q);
775         return 0;
776 }
777
778 /* High-level queue accessors */
779 static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
780 {
781         memset(cmd, 0, CMDQ_ENT_DWORDS << 3);
782         cmd[0] |= FIELD_PREP(CMDQ_0_OP, ent->opcode);
783
784         switch (ent->opcode) {
785         case CMDQ_OP_TLBI_EL2_ALL:
786         case CMDQ_OP_TLBI_NSNH_ALL:
787                 break;
788         case CMDQ_OP_PREFETCH_CFG:
789                 cmd[0] |= FIELD_PREP(CMDQ_PREFETCH_0_SID, ent->prefetch.sid);
790                 cmd[1] |= FIELD_PREP(CMDQ_PREFETCH_1_SIZE, ent->prefetch.size);
791                 cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
792                 break;
793         case CMDQ_OP_CFGI_STE:
794                 cmd[0] |= FIELD_PREP(CMDQ_CFGI_0_SID, ent->cfgi.sid);
795                 cmd[1] |= FIELD_PREP(CMDQ_CFGI_1_LEAF, ent->cfgi.leaf);
796                 break;
797         case CMDQ_OP_CFGI_ALL:
798                 /* Cover the entire SID range */
799                 cmd[1] |= FIELD_PREP(CMDQ_CFGI_1_RANGE, 31);
800                 break;
801         case CMDQ_OP_TLBI_NH_VA:
802                 cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_ASID, ent->tlbi.asid);
803                 cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_LEAF, ent->tlbi.leaf);
804                 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
805                 break;
806         case CMDQ_OP_TLBI_S2_IPA:
807                 cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID, ent->tlbi.vmid);
808                 cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_LEAF, ent->tlbi.leaf);
809                 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
810                 break;
811         case CMDQ_OP_TLBI_NH_ASID:
812                 cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_ASID, ent->tlbi.asid);
813                 /* Fallthrough */
814         case CMDQ_OP_TLBI_S12_VMALL:
815                 cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID, ent->tlbi.vmid);
816                 break;
817         case CMDQ_OP_PRI_RESP:
818                 cmd[0] |= FIELD_PREP(CMDQ_0_SSV, ent->substream_valid);
819                 cmd[0] |= FIELD_PREP(CMDQ_PRI_0_SSID, ent->pri.ssid);
820                 cmd[0] |= FIELD_PREP(CMDQ_PRI_0_SID, ent->pri.sid);
821                 cmd[1] |= FIELD_PREP(CMDQ_PRI_1_GRPID, ent->pri.grpid);
822                 switch (ent->pri.resp) {
823                 case PRI_RESP_DENY:
824                 case PRI_RESP_FAIL:
825                 case PRI_RESP_SUCC:
826                         break;
827                 default:
828                         return -EINVAL;
829                 }
830                 cmd[1] |= FIELD_PREP(CMDQ_PRI_1_RESP, ent->pri.resp);
831                 break;
832         case CMDQ_OP_CMD_SYNC:
833                 if (ent->sync.msiaddr)
834                         cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_CS, CMDQ_SYNC_0_CS_IRQ);
835                 else
836                         cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_CS, CMDQ_SYNC_0_CS_SEV);
837                 cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_MSH, ARM_SMMU_SH_ISH);
838                 cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_MSIATTR, ARM_SMMU_MEMATTR_OIWB);
839                 cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_MSIDATA, ent->sync.msidata);
840                 cmd[1] |= ent->sync.msiaddr & CMDQ_SYNC_1_MSIADDR_MASK;
841                 break;
842         default:
843                 return -ENOENT;
844         }
845
846         return 0;
847 }
848
849 static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
850 {
851         static const char *cerror_str[] = {
852                 [CMDQ_ERR_CERROR_NONE_IDX]      = "No error",
853                 [CMDQ_ERR_CERROR_ILL_IDX]       = "Illegal command",
854                 [CMDQ_ERR_CERROR_ABT_IDX]       = "Abort on command fetch",
855         };
856
857         int i;
858         u64 cmd[CMDQ_ENT_DWORDS];
859         struct arm_smmu_queue *q = &smmu->cmdq.q;
860         u32 cons = readl_relaxed(q->cons_reg);
861         u32 idx = FIELD_GET(CMDQ_CONS_ERR, cons);
862         struct arm_smmu_cmdq_ent cmd_sync = {
863                 .opcode = CMDQ_OP_CMD_SYNC,
864         };
865
866         dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
867                 idx < ARRAY_SIZE(cerror_str) ?  cerror_str[idx] : "Unknown");
868
869         switch (idx) {
870         case CMDQ_ERR_CERROR_ABT_IDX:
871                 dev_err(smmu->dev, "retrying command fetch\n");
872         case CMDQ_ERR_CERROR_NONE_IDX:
873                 return;
874         case CMDQ_ERR_CERROR_ILL_IDX:
875                 /* Fallthrough */
876         default:
877                 break;
878         }
879
880         /*
881          * We may have concurrent producers, so we need to be careful
882          * not to touch any of the shadow cmdq state.
883          */
884         queue_read(cmd, Q_ENT(q, cons), q->ent_dwords);
885         dev_err(smmu->dev, "skipping command in error state:\n");
886         for (i = 0; i < ARRAY_SIZE(cmd); ++i)
887                 dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);
888
889         /* Convert the erroneous command into a CMD_SYNC */
890         if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
891                 dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
892                 return;
893         }
894
895         queue_write(Q_ENT(q, cons), cmd, q->ent_dwords);
896 }
897
898 static void arm_smmu_cmdq_insert_cmd(struct arm_smmu_device *smmu, u64 *cmd)
899 {
900         struct arm_smmu_queue *q = &smmu->cmdq.q;
901         bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
902
903         while (queue_insert_raw(q, cmd) == -ENOSPC) {
904                 if (queue_poll_cons(q, false, wfe))
905                         dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
906         }
907 }
908
909 static void arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
910                                     struct arm_smmu_cmdq_ent *ent)
911 {
912         u64 cmd[CMDQ_ENT_DWORDS];
913         unsigned long flags;
914
915         if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
916                 dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
917                          ent->opcode);
918                 return;
919         }
920
921         spin_lock_irqsave(&smmu->cmdq.lock, flags);
922         arm_smmu_cmdq_insert_cmd(smmu, cmd);
923         spin_unlock_irqrestore(&smmu->cmdq.lock, flags);
924 }
925
926 /*
927  * The difference between val and sync_idx is bounded by the maximum size of
928  * a queue at 2^20 entries, so 32 bits is plenty for wrap-safe arithmetic.
929  */
930 static int __arm_smmu_sync_poll_msi(struct arm_smmu_device *smmu, u32 sync_idx)
931 {
932         ktime_t timeout;
933         u32 val;
934
935         timeout = ktime_add_us(ktime_get(), ARM_SMMU_CMDQ_SYNC_TIMEOUT_US);
936         val = smp_cond_load_acquire(&smmu->sync_count,
937                                     (int)(VAL - sync_idx) >= 0 ||
938                                     !ktime_before(ktime_get(), timeout));
939
940         return (int)(val - sync_idx) < 0 ? -ETIMEDOUT : 0;
941 }
942
943 static int __arm_smmu_cmdq_issue_sync_msi(struct arm_smmu_device *smmu)
944 {
945         u64 cmd[CMDQ_ENT_DWORDS];
946         unsigned long flags;
947         struct arm_smmu_cmdq_ent ent = {
948                 .opcode = CMDQ_OP_CMD_SYNC,
949                 .sync   = {
950                         .msidata = atomic_inc_return_relaxed(&smmu->sync_nr),
951                         .msiaddr = virt_to_phys(&smmu->sync_count),
952                 },
953         };
954
955         arm_smmu_cmdq_build_cmd(cmd, &ent);
956
957         spin_lock_irqsave(&smmu->cmdq.lock, flags);
958         arm_smmu_cmdq_insert_cmd(smmu, cmd);
959         spin_unlock_irqrestore(&smmu->cmdq.lock, flags);
960
961         return __arm_smmu_sync_poll_msi(smmu, ent.sync.msidata);
962 }
963
964 static int __arm_smmu_cmdq_issue_sync(struct arm_smmu_device *smmu)
965 {
966         u64 cmd[CMDQ_ENT_DWORDS];
967         unsigned long flags;
968         bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
969         struct arm_smmu_cmdq_ent ent = { .opcode = CMDQ_OP_CMD_SYNC };
970         int ret;
971
972         arm_smmu_cmdq_build_cmd(cmd, &ent);
973
974         spin_lock_irqsave(&smmu->cmdq.lock, flags);
975         arm_smmu_cmdq_insert_cmd(smmu, cmd);
976         ret = queue_poll_cons(&smmu->cmdq.q, true, wfe);
977         spin_unlock_irqrestore(&smmu->cmdq.lock, flags);
978
979         return ret;
980 }
981
982 static void arm_smmu_cmdq_issue_sync(struct arm_smmu_device *smmu)
983 {
984         int ret;
985         bool msi = (smmu->features & ARM_SMMU_FEAT_MSI) &&
986                    (smmu->features & ARM_SMMU_FEAT_COHERENCY);
987
988         ret = msi ? __arm_smmu_cmdq_issue_sync_msi(smmu)
989                   : __arm_smmu_cmdq_issue_sync(smmu);
990         if (ret)
991                 dev_err_ratelimited(smmu->dev, "CMD_SYNC timeout\n");
992 }
993
994 /* Context descriptor manipulation functions */
995 static u64 arm_smmu_cpu_tcr_to_cd(u64 tcr)
996 {
997         u64 val = 0;
998
999         /* Repack the TCR. Just care about TTBR0 for now */
1000         val |= ARM_SMMU_TCR2CD(tcr, T0SZ);
1001         val |= ARM_SMMU_TCR2CD(tcr, TG0);
1002         val |= ARM_SMMU_TCR2CD(tcr, IRGN0);
1003         val |= ARM_SMMU_TCR2CD(tcr, ORGN0);
1004         val |= ARM_SMMU_TCR2CD(tcr, SH0);
1005         val |= ARM_SMMU_TCR2CD(tcr, EPD0);
1006         val |= ARM_SMMU_TCR2CD(tcr, EPD1);
1007         val |= ARM_SMMU_TCR2CD(tcr, IPS);
1008         val |= ARM_SMMU_TCR2CD(tcr, TBI0);
1009
1010         return val;
1011 }
1012
1013 static void arm_smmu_write_ctx_desc(struct arm_smmu_device *smmu,
1014                                     struct arm_smmu_s1_cfg *cfg)
1015 {
1016         u64 val;
1017
1018         /*
1019          * We don't need to issue any invalidation here, as we'll invalidate
1020          * the STE when installing the new entry anyway.
1021          */
1022         val = arm_smmu_cpu_tcr_to_cd(cfg->cd.tcr) |
1023 #ifdef __BIG_ENDIAN
1024               CTXDESC_CD_0_ENDI |
1025 #endif
1026               CTXDESC_CD_0_R | CTXDESC_CD_0_A | CTXDESC_CD_0_ASET |
1027               CTXDESC_CD_0_AA64 | FIELD_PREP(CTXDESC_CD_0_ASID, cfg->cd.asid) |
1028               CTXDESC_CD_0_V;
1029
1030         /* STALL_MODEL==0b10 && CD.S==0 is ILLEGAL */
1031         if (smmu->features & ARM_SMMU_FEAT_STALL_FORCE)
1032                 val |= CTXDESC_CD_0_S;
1033
1034         cfg->cdptr[0] = cpu_to_le64(val);
1035
1036         val = cfg->cd.ttbr & CTXDESC_CD_1_TTB0_MASK;
1037         cfg->cdptr[1] = cpu_to_le64(val);
1038
1039         cfg->cdptr[3] = cpu_to_le64(cfg->cd.mair);
1040 }
1041
1042 /* Stream table manipulation functions */
1043 static void
1044 arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
1045 {
1046         u64 val = 0;
1047
1048         val |= FIELD_PREP(STRTAB_L1_DESC_SPAN, desc->span);
1049         val |= desc->l2ptr_dma & STRTAB_L1_DESC_L2PTR_MASK;
1050
1051         *dst = cpu_to_le64(val);
1052 }
1053
1054 static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
1055 {
1056         struct arm_smmu_cmdq_ent cmd = {
1057                 .opcode = CMDQ_OP_CFGI_STE,
1058                 .cfgi   = {
1059                         .sid    = sid,
1060                         .leaf   = true,
1061                 },
1062         };
1063
1064         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1065         arm_smmu_cmdq_issue_sync(smmu);
1066 }
1067
1068 static void arm_smmu_write_strtab_ent(struct arm_smmu_device *smmu, u32 sid,
1069                                       __le64 *dst, struct arm_smmu_strtab_ent *ste)
1070 {
1071         /*
1072          * This is hideously complicated, but we only really care about
1073          * three cases at the moment:
1074          *
1075          * 1. Invalid (all zero) -> bypass/fault (init)
1076          * 2. Bypass/fault -> translation/bypass (attach)
1077          * 3. Translation/bypass -> bypass/fault (detach)
1078          *
1079          * Given that we can't update the STE atomically and the SMMU
1080          * doesn't read the thing in a defined order, that leaves us
1081          * with the following maintenance requirements:
1082          *
1083          * 1. Update Config, return (init time STEs aren't live)
1084          * 2. Write everything apart from dword 0, sync, write dword 0, sync
1085          * 3. Update Config, sync
1086          */
1087         u64 val = le64_to_cpu(dst[0]);
1088         bool ste_live = false;
1089         struct arm_smmu_cmdq_ent prefetch_cmd = {
1090                 .opcode         = CMDQ_OP_PREFETCH_CFG,
1091                 .prefetch       = {
1092                         .sid    = sid,
1093                 },
1094         };
1095
1096         if (val & STRTAB_STE_0_V) {
1097                 switch (FIELD_GET(STRTAB_STE_0_CFG, val)) {
1098                 case STRTAB_STE_0_CFG_BYPASS:
1099                         break;
1100                 case STRTAB_STE_0_CFG_S1_TRANS:
1101                 case STRTAB_STE_0_CFG_S2_TRANS:
1102                         ste_live = true;
1103                         break;
1104                 case STRTAB_STE_0_CFG_ABORT:
1105                         if (disable_bypass)
1106                                 break;
1107                 default:
1108                         BUG(); /* STE corruption */
1109                 }
1110         }
1111
1112         /* Nuke the existing STE_0 value, as we're going to rewrite it */
1113         val = STRTAB_STE_0_V;
1114
1115         /* Bypass/fault */
1116         if (!ste->assigned || !(ste->s1_cfg || ste->s2_cfg)) {
1117                 if (!ste->assigned && disable_bypass)
1118                         val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_ABORT);
1119                 else
1120                         val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_BYPASS);
1121
1122                 dst[0] = cpu_to_le64(val);
1123                 dst[1] = cpu_to_le64(FIELD_PREP(STRTAB_STE_1_SHCFG,
1124                                                 STRTAB_STE_1_SHCFG_INCOMING));
1125                 dst[2] = 0; /* Nuke the VMID */
1126                 /*
1127                  * The SMMU can perform negative caching, so we must sync
1128                  * the STE regardless of whether the old value was live.
1129                  */
1130                 if (smmu)
1131                         arm_smmu_sync_ste_for_sid(smmu, sid);
1132                 return;
1133         }
1134
1135         if (ste->s1_cfg) {
1136                 BUG_ON(ste_live);
1137                 dst[1] = cpu_to_le64(
1138                          FIELD_PREP(STRTAB_STE_1_S1CIR, STRTAB_STE_1_S1C_CACHE_WBRA) |
1139                          FIELD_PREP(STRTAB_STE_1_S1COR, STRTAB_STE_1_S1C_CACHE_WBRA) |
1140                          FIELD_PREP(STRTAB_STE_1_S1CSH, ARM_SMMU_SH_ISH) |
1141 #ifdef CONFIG_PCI_ATS
1142                          FIELD_PREP(STRTAB_STE_1_EATS, STRTAB_STE_1_EATS_TRANS) |
1143 #endif
1144                          FIELD_PREP(STRTAB_STE_1_STRW, STRTAB_STE_1_STRW_NSEL1));
1145
1146                 if (smmu->features & ARM_SMMU_FEAT_STALLS &&
1147                    !(smmu->features & ARM_SMMU_FEAT_STALL_FORCE))
1148                         dst[1] |= cpu_to_le64(STRTAB_STE_1_S1STALLD);
1149
1150                 val |= (ste->s1_cfg->cdptr_dma & STRTAB_STE_0_S1CTXPTR_MASK) |
1151                         FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_S1_TRANS);
1152         }
1153
1154         if (ste->s2_cfg) {
1155                 BUG_ON(ste_live);
1156                 dst[2] = cpu_to_le64(
1157                          FIELD_PREP(STRTAB_STE_2_S2VMID, ste->s2_cfg->vmid) |
1158                          FIELD_PREP(STRTAB_STE_2_VTCR, ste->s2_cfg->vtcr) |
1159 #ifdef __BIG_ENDIAN
1160                          STRTAB_STE_2_S2ENDI |
1161 #endif
1162                          STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
1163                          STRTAB_STE_2_S2R);
1164
1165                 dst[3] = cpu_to_le64(ste->s2_cfg->vttbr & STRTAB_STE_3_S2TTB_MASK);
1166
1167                 val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_S2_TRANS);
1168         }
1169
1170         arm_smmu_sync_ste_for_sid(smmu, sid);
1171         dst[0] = cpu_to_le64(val);
1172         arm_smmu_sync_ste_for_sid(smmu, sid);
1173
1174         /* It's likely that we'll want to use the new STE soon */
1175         if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
1176                 arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
1177 }
1178
1179 static void arm_smmu_init_bypass_stes(u64 *strtab, unsigned int nent)
1180 {
1181         unsigned int i;
1182         struct arm_smmu_strtab_ent ste = { .assigned = false };
1183
1184         for (i = 0; i < nent; ++i) {
1185                 arm_smmu_write_strtab_ent(NULL, -1, strtab, &ste);
1186                 strtab += STRTAB_STE_DWORDS;
1187         }
1188 }
1189
1190 static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
1191 {
1192         size_t size;
1193         void *strtab;
1194         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1195         struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];
1196
1197         if (desc->l2ptr)
1198                 return 0;
1199
1200         size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1201         strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
1202
1203         desc->span = STRTAB_SPLIT + 1;
1204         desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
1205                                           GFP_KERNEL | __GFP_ZERO);
1206         if (!desc->l2ptr) {
1207                 dev_err(smmu->dev,
1208                         "failed to allocate l2 stream table for SID %u\n",
1209                         sid);
1210                 return -ENOMEM;
1211         }
1212
1213         arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
1214         arm_smmu_write_strtab_l1_desc(strtab, desc);
1215         return 0;
1216 }
1217
1218 /* IRQ and event handlers */
1219 static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
1220 {
1221         int i;
1222         struct arm_smmu_device *smmu = dev;
1223         struct arm_smmu_queue *q = &smmu->evtq.q;
1224         u64 evt[EVTQ_ENT_DWORDS];
1225
1226         do {
1227                 while (!queue_remove_raw(q, evt)) {
1228                         u8 id = FIELD_GET(EVTQ_0_ID, evt[0]);
1229
1230                         dev_info(smmu->dev, "event 0x%02x received:\n", id);
1231                         for (i = 0; i < ARRAY_SIZE(evt); ++i)
1232                                 dev_info(smmu->dev, "\t0x%016llx\n",
1233                                          (unsigned long long)evt[i]);
1234
1235                 }
1236
1237                 /*
1238                  * Not much we can do on overflow, so scream and pretend we're
1239                  * trying harder.
1240                  */
1241                 if (queue_sync_prod(q) == -EOVERFLOW)
1242                         dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1243         } while (!queue_empty(q));
1244
1245         /* Sync our overflow flag, as we believe we're up to speed */
1246         q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1247         return IRQ_HANDLED;
1248 }
1249
1250 static void arm_smmu_handle_ppr(struct arm_smmu_device *smmu, u64 *evt)
1251 {
1252         u32 sid, ssid;
1253         u16 grpid;
1254         bool ssv, last;
1255
1256         sid = FIELD_GET(PRIQ_0_SID, evt[0]);
1257         ssv = FIELD_GET(PRIQ_0_SSID_V, evt[0]);
1258         ssid = ssv ? FIELD_GET(PRIQ_0_SSID, evt[0]) : 0;
1259         last = FIELD_GET(PRIQ_0_PRG_LAST, evt[0]);
1260         grpid = FIELD_GET(PRIQ_1_PRG_IDX, evt[1]);
1261
1262         dev_info(smmu->dev, "unexpected PRI request received:\n");
1263         dev_info(smmu->dev,
1264                  "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
1265                  sid, ssid, grpid, last ? "L" : "",
1266                  evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
1267                  evt[0] & PRIQ_0_PERM_READ ? "R" : "",
1268                  evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
1269                  evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1270                  evt[1] & PRIQ_1_ADDR_MASK);
1271
1272         if (last) {
1273                 struct arm_smmu_cmdq_ent cmd = {
1274                         .opcode                 = CMDQ_OP_PRI_RESP,
1275                         .substream_valid        = ssv,
1276                         .pri                    = {
1277                                 .sid    = sid,
1278                                 .ssid   = ssid,
1279                                 .grpid  = grpid,
1280                                 .resp   = PRI_RESP_DENY,
1281                         },
1282                 };
1283
1284                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1285         }
1286 }
1287
1288 static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
1289 {
1290         struct arm_smmu_device *smmu = dev;
1291         struct arm_smmu_queue *q = &smmu->priq.q;
1292         u64 evt[PRIQ_ENT_DWORDS];
1293
1294         do {
1295                 while (!queue_remove_raw(q, evt))
1296                         arm_smmu_handle_ppr(smmu, evt);
1297
1298                 if (queue_sync_prod(q) == -EOVERFLOW)
1299                         dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
1300         } while (!queue_empty(q));
1301
1302         /* Sync our overflow flag, as we believe we're up to speed */
1303         q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1304         return IRQ_HANDLED;
1305 }
1306
1307 static int arm_smmu_device_disable(struct arm_smmu_device *smmu);
1308
1309 static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
1310 {
1311         u32 gerror, gerrorn, active;
1312         struct arm_smmu_device *smmu = dev;
1313
1314         gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
1315         gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);
1316
1317         active = gerror ^ gerrorn;
1318         if (!(active & GERROR_ERR_MASK))
1319                 return IRQ_NONE; /* No errors pending */
1320
1321         dev_warn(smmu->dev,
1322                  "unexpected global error reported (0x%08x), this could be serious\n",
1323                  active);
1324
1325         if (active & GERROR_SFM_ERR) {
1326                 dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
1327                 arm_smmu_device_disable(smmu);
1328         }
1329
1330         if (active & GERROR_MSI_GERROR_ABT_ERR)
1331                 dev_warn(smmu->dev, "GERROR MSI write aborted\n");
1332
1333         if (active & GERROR_MSI_PRIQ_ABT_ERR)
1334                 dev_warn(smmu->dev, "PRIQ MSI write aborted\n");
1335
1336         if (active & GERROR_MSI_EVTQ_ABT_ERR)
1337                 dev_warn(smmu->dev, "EVTQ MSI write aborted\n");
1338
1339         if (active & GERROR_MSI_CMDQ_ABT_ERR)
1340                 dev_warn(smmu->dev, "CMDQ MSI write aborted\n");
1341
1342         if (active & GERROR_PRIQ_ABT_ERR)
1343                 dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");
1344
1345         if (active & GERROR_EVTQ_ABT_ERR)
1346                 dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");
1347
1348         if (active & GERROR_CMDQ_ERR)
1349                 arm_smmu_cmdq_skip_err(smmu);
1350
1351         writel(gerror, smmu->base + ARM_SMMU_GERRORN);
1352         return IRQ_HANDLED;
1353 }
1354
1355 static irqreturn_t arm_smmu_combined_irq_thread(int irq, void *dev)
1356 {
1357         struct arm_smmu_device *smmu = dev;
1358
1359         arm_smmu_evtq_thread(irq, dev);
1360         if (smmu->features & ARM_SMMU_FEAT_PRI)
1361                 arm_smmu_priq_thread(irq, dev);
1362
1363         return IRQ_HANDLED;
1364 }
1365
1366 static irqreturn_t arm_smmu_combined_irq_handler(int irq, void *dev)
1367 {
1368         arm_smmu_gerror_handler(irq, dev);
1369         return IRQ_WAKE_THREAD;
1370 }
1371
1372 /* IO_PGTABLE API */
1373 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
1374 {
1375         arm_smmu_cmdq_issue_sync(smmu);
1376 }
1377
1378 static void arm_smmu_tlb_sync(void *cookie)
1379 {
1380         struct arm_smmu_domain *smmu_domain = cookie;
1381         __arm_smmu_tlb_sync(smmu_domain->smmu);
1382 }
1383
1384 static void arm_smmu_tlb_inv_context(void *cookie)
1385 {
1386         struct arm_smmu_domain *smmu_domain = cookie;
1387         struct arm_smmu_device *smmu = smmu_domain->smmu;
1388         struct arm_smmu_cmdq_ent cmd;
1389
1390         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1391                 cmd.opcode      = CMDQ_OP_TLBI_NH_ASID;
1392                 cmd.tlbi.asid   = smmu_domain->s1_cfg.cd.asid;
1393                 cmd.tlbi.vmid   = 0;
1394         } else {
1395                 cmd.opcode      = CMDQ_OP_TLBI_S12_VMALL;
1396                 cmd.tlbi.vmid   = smmu_domain->s2_cfg.vmid;
1397         }
1398
1399         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1400         __arm_smmu_tlb_sync(smmu);
1401 }
1402
1403 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
1404                                           size_t granule, bool leaf, void *cookie)
1405 {
1406         struct arm_smmu_domain *smmu_domain = cookie;
1407         struct arm_smmu_device *smmu = smmu_domain->smmu;
1408         struct arm_smmu_cmdq_ent cmd = {
1409                 .tlbi = {
1410                         .leaf   = leaf,
1411                         .addr   = iova,
1412                 },
1413         };
1414
1415         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1416                 cmd.opcode      = CMDQ_OP_TLBI_NH_VA;
1417                 cmd.tlbi.asid   = smmu_domain->s1_cfg.cd.asid;
1418         } else {
1419                 cmd.opcode      = CMDQ_OP_TLBI_S2_IPA;
1420                 cmd.tlbi.vmid   = smmu_domain->s2_cfg.vmid;
1421         }
1422
1423         do {
1424                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1425                 cmd.tlbi.addr += granule;
1426         } while (size -= granule);
1427 }
1428
1429 static const struct iommu_gather_ops arm_smmu_gather_ops = {
1430         .tlb_flush_all  = arm_smmu_tlb_inv_context,
1431         .tlb_add_flush  = arm_smmu_tlb_inv_range_nosync,
1432         .tlb_sync       = arm_smmu_tlb_sync,
1433 };
1434
1435 /* IOMMU API */
1436 static bool arm_smmu_capable(enum iommu_cap cap)
1437 {
1438         switch (cap) {
1439         case IOMMU_CAP_CACHE_COHERENCY:
1440                 return true;
1441         case IOMMU_CAP_NOEXEC:
1442                 return true;
1443         default:
1444                 return false;
1445         }
1446 }
1447
1448 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1449 {
1450         struct arm_smmu_domain *smmu_domain;
1451
1452         if (type != IOMMU_DOMAIN_UNMANAGED &&
1453             type != IOMMU_DOMAIN_DMA &&
1454             type != IOMMU_DOMAIN_IDENTITY)
1455                 return NULL;
1456
1457         /*
1458          * Allocate the domain and initialise some of its data structures.
1459          * We can't really do anything meaningful until we've added a
1460          * master.
1461          */
1462         smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
1463         if (!smmu_domain)
1464                 return NULL;
1465
1466         if (type == IOMMU_DOMAIN_DMA &&
1467             iommu_get_dma_cookie(&smmu_domain->domain)) {
1468                 kfree(smmu_domain);
1469                 return NULL;
1470         }
1471
1472         mutex_init(&smmu_domain->init_mutex);
1473         return &smmu_domain->domain;
1474 }
1475
1476 static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
1477 {
1478         int idx, size = 1 << span;
1479
1480         do {
1481                 idx = find_first_zero_bit(map, size);
1482                 if (idx == size)
1483                         return -ENOSPC;
1484         } while (test_and_set_bit(idx, map));
1485
1486         return idx;
1487 }
1488
1489 static void arm_smmu_bitmap_free(unsigned long *map, int idx)
1490 {
1491         clear_bit(idx, map);
1492 }
1493
1494 static void arm_smmu_domain_free(struct iommu_domain *domain)
1495 {
1496         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1497         struct arm_smmu_device *smmu = smmu_domain->smmu;
1498
1499         iommu_put_dma_cookie(domain);
1500         free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1501
1502         /* Free the CD and ASID, if we allocated them */
1503         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1504                 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1505
1506                 if (cfg->cdptr) {
1507                         dmam_free_coherent(smmu_domain->smmu->dev,
1508                                            CTXDESC_CD_DWORDS << 3,
1509                                            cfg->cdptr,
1510                                            cfg->cdptr_dma);
1511
1512                         arm_smmu_bitmap_free(smmu->asid_map, cfg->cd.asid);
1513                 }
1514         } else {
1515                 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1516                 if (cfg->vmid)
1517                         arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
1518         }
1519
1520         kfree(smmu_domain);
1521 }
1522
1523 static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
1524                                        struct io_pgtable_cfg *pgtbl_cfg)
1525 {
1526         int ret;
1527         int asid;
1528         struct arm_smmu_device *smmu = smmu_domain->smmu;
1529         struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1530
1531         asid = arm_smmu_bitmap_alloc(smmu->asid_map, smmu->asid_bits);
1532         if (asid < 0)
1533                 return asid;
1534
1535         cfg->cdptr = dmam_alloc_coherent(smmu->dev, CTXDESC_CD_DWORDS << 3,
1536                                          &cfg->cdptr_dma,
1537                                          GFP_KERNEL | __GFP_ZERO);
1538         if (!cfg->cdptr) {
1539                 dev_warn(smmu->dev, "failed to allocate context descriptor\n");
1540                 ret = -ENOMEM;
1541                 goto out_free_asid;
1542         }
1543
1544         cfg->cd.asid    = (u16)asid;
1545         cfg->cd.ttbr    = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
1546         cfg->cd.tcr     = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
1547         cfg->cd.mair    = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
1548         return 0;
1549
1550 out_free_asid:
1551         arm_smmu_bitmap_free(smmu->asid_map, asid);
1552         return ret;
1553 }
1554
1555 static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
1556                                        struct io_pgtable_cfg *pgtbl_cfg)
1557 {
1558         int vmid;
1559         struct arm_smmu_device *smmu = smmu_domain->smmu;
1560         struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1561
1562         vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
1563         if (vmid < 0)
1564                 return vmid;
1565
1566         cfg->vmid       = (u16)vmid;
1567         cfg->vttbr      = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
1568         cfg->vtcr       = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
1569         return 0;
1570 }
1571
1572 static int arm_smmu_domain_finalise(struct iommu_domain *domain)
1573 {
1574         int ret;
1575         unsigned long ias, oas;
1576         enum io_pgtable_fmt fmt;
1577         struct io_pgtable_cfg pgtbl_cfg;
1578         struct io_pgtable_ops *pgtbl_ops;
1579         int (*finalise_stage_fn)(struct arm_smmu_domain *,
1580                                  struct io_pgtable_cfg *);
1581         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1582         struct arm_smmu_device *smmu = smmu_domain->smmu;
1583
1584         if (domain->type == IOMMU_DOMAIN_IDENTITY) {
1585                 smmu_domain->stage = ARM_SMMU_DOMAIN_BYPASS;
1586                 return 0;
1587         }
1588
1589         /* Restrict the stage to what we can actually support */
1590         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
1591                 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
1592         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
1593                 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1594
1595         switch (smmu_domain->stage) {
1596         case ARM_SMMU_DOMAIN_S1:
1597                 ias = (smmu->features & ARM_SMMU_FEAT_VAX) ? 52 : 48;
1598                 ias = min_t(unsigned long, ias, VA_BITS);
1599                 oas = smmu->ias;
1600                 fmt = ARM_64_LPAE_S1;
1601                 finalise_stage_fn = arm_smmu_domain_finalise_s1;
1602                 break;
1603         case ARM_SMMU_DOMAIN_NESTED:
1604         case ARM_SMMU_DOMAIN_S2:
1605                 ias = smmu->ias;
1606                 oas = smmu->oas;
1607                 fmt = ARM_64_LPAE_S2;
1608                 finalise_stage_fn = arm_smmu_domain_finalise_s2;
1609                 break;
1610         default:
1611                 return -EINVAL;
1612         }
1613
1614         pgtbl_cfg = (struct io_pgtable_cfg) {
1615                 .pgsize_bitmap  = smmu->pgsize_bitmap,
1616                 .ias            = ias,
1617                 .oas            = oas,
1618                 .tlb            = &arm_smmu_gather_ops,
1619                 .iommu_dev      = smmu->dev,
1620         };
1621
1622         if (smmu->features & ARM_SMMU_FEAT_COHERENCY)
1623                 pgtbl_cfg.quirks = IO_PGTABLE_QUIRK_NO_DMA;
1624
1625         pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
1626         if (!pgtbl_ops)
1627                 return -ENOMEM;
1628
1629         domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
1630         domain->geometry.aperture_end = (1UL << pgtbl_cfg.ias) - 1;
1631         domain->geometry.force_aperture = true;
1632
1633         ret = finalise_stage_fn(smmu_domain, &pgtbl_cfg);
1634         if (ret < 0) {
1635                 free_io_pgtable_ops(pgtbl_ops);
1636                 return ret;
1637         }
1638
1639         smmu_domain->pgtbl_ops = pgtbl_ops;
1640         return 0;
1641 }
1642
1643 static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
1644 {
1645         __le64 *step;
1646         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1647
1648         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1649                 struct arm_smmu_strtab_l1_desc *l1_desc;
1650                 int idx;
1651
1652                 /* Two-level walk */
1653                 idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
1654                 l1_desc = &cfg->l1_desc[idx];
1655                 idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
1656                 step = &l1_desc->l2ptr[idx];
1657         } else {
1658                 /* Simple linear lookup */
1659                 step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
1660         }
1661
1662         return step;
1663 }
1664
1665 static void arm_smmu_install_ste_for_dev(struct iommu_fwspec *fwspec)
1666 {
1667         int i, j;
1668         struct arm_smmu_master_data *master = fwspec->iommu_priv;
1669         struct arm_smmu_device *smmu = master->smmu;
1670
1671         for (i = 0; i < fwspec->num_ids; ++i) {
1672                 u32 sid = fwspec->ids[i];
1673                 __le64 *step = arm_smmu_get_step_for_sid(smmu, sid);
1674
1675                 /* Bridged PCI devices may end up with duplicated IDs */
1676                 for (j = 0; j < i; j++)
1677                         if (fwspec->ids[j] == sid)
1678                                 break;
1679                 if (j < i)
1680                         continue;
1681
1682                 arm_smmu_write_strtab_ent(smmu, sid, step, &master->ste);
1683         }
1684 }
1685
1686 static void arm_smmu_detach_dev(struct device *dev)
1687 {
1688         struct arm_smmu_master_data *master = dev->iommu_fwspec->iommu_priv;
1689
1690         master->ste.assigned = false;
1691         arm_smmu_install_ste_for_dev(dev->iommu_fwspec);
1692 }
1693
1694 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1695 {
1696         int ret = 0;
1697         struct arm_smmu_device *smmu;
1698         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1699         struct arm_smmu_master_data *master;
1700         struct arm_smmu_strtab_ent *ste;
1701
1702         if (!dev->iommu_fwspec)
1703                 return -ENOENT;
1704
1705         master = dev->iommu_fwspec->iommu_priv;
1706         smmu = master->smmu;
1707         ste = &master->ste;
1708
1709         /* Already attached to a different domain? */
1710         if (ste->assigned)
1711                 arm_smmu_detach_dev(dev);
1712
1713         mutex_lock(&smmu_domain->init_mutex);
1714
1715         if (!smmu_domain->smmu) {
1716                 smmu_domain->smmu = smmu;
1717                 ret = arm_smmu_domain_finalise(domain);
1718                 if (ret) {
1719                         smmu_domain->smmu = NULL;
1720                         goto out_unlock;
1721                 }
1722         } else if (smmu_domain->smmu != smmu) {
1723                 dev_err(dev,
1724                         "cannot attach to SMMU %s (upstream of %s)\n",
1725                         dev_name(smmu_domain->smmu->dev),
1726                         dev_name(smmu->dev));
1727                 ret = -ENXIO;
1728                 goto out_unlock;
1729         }
1730
1731         ste->assigned = true;
1732
1733         if (smmu_domain->stage == ARM_SMMU_DOMAIN_BYPASS) {
1734                 ste->s1_cfg = NULL;
1735                 ste->s2_cfg = NULL;
1736         } else if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1737                 ste->s1_cfg = &smmu_domain->s1_cfg;
1738                 ste->s2_cfg = NULL;
1739                 arm_smmu_write_ctx_desc(smmu, ste->s1_cfg);
1740         } else {
1741                 ste->s1_cfg = NULL;
1742                 ste->s2_cfg = &smmu_domain->s2_cfg;
1743         }
1744
1745         arm_smmu_install_ste_for_dev(dev->iommu_fwspec);
1746 out_unlock:
1747         mutex_unlock(&smmu_domain->init_mutex);
1748         return ret;
1749 }
1750
1751 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1752                         phys_addr_t paddr, size_t size, int prot)
1753 {
1754         struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
1755
1756         if (!ops)
1757                 return -ENODEV;
1758
1759         return ops->map(ops, iova, paddr, size, prot);
1760 }
1761
1762 static size_t
1763 arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size)
1764 {
1765         struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
1766
1767         if (!ops)
1768                 return 0;
1769
1770         return ops->unmap(ops, iova, size);
1771 }
1772
1773 static void arm_smmu_iotlb_sync(struct iommu_domain *domain)
1774 {
1775         struct arm_smmu_device *smmu = to_smmu_domain(domain)->smmu;
1776
1777         if (smmu)
1778                 __arm_smmu_tlb_sync(smmu);
1779 }
1780
1781 static phys_addr_t
1782 arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1783 {
1784         struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
1785
1786         if (domain->type == IOMMU_DOMAIN_IDENTITY)
1787                 return iova;
1788
1789         if (!ops)
1790                 return 0;
1791
1792         return ops->iova_to_phys(ops, iova);
1793 }
1794
1795 static struct platform_driver arm_smmu_driver;
1796
1797 static int arm_smmu_match_node(struct device *dev, void *data)
1798 {
1799         return dev->fwnode == data;
1800 }
1801
1802 static
1803 struct arm_smmu_device *arm_smmu_get_by_fwnode(struct fwnode_handle *fwnode)
1804 {
1805         struct device *dev = driver_find_device(&arm_smmu_driver.driver, NULL,
1806                                                 fwnode, arm_smmu_match_node);
1807         put_device(dev);
1808         return dev ? dev_get_drvdata(dev) : NULL;
1809 }
1810
1811 static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
1812 {
1813         unsigned long limit = smmu->strtab_cfg.num_l1_ents;
1814
1815         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
1816                 limit *= 1UL << STRTAB_SPLIT;
1817
1818         return sid < limit;
1819 }
1820
1821 static struct iommu_ops arm_smmu_ops;
1822
1823 static int arm_smmu_add_device(struct device *dev)
1824 {
1825         int i, ret;
1826         struct arm_smmu_device *smmu;
1827         struct arm_smmu_master_data *master;
1828         struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1829         struct iommu_group *group;
1830
1831         if (!fwspec || fwspec->ops != &arm_smmu_ops)
1832                 return -ENODEV;
1833         /*
1834          * We _can_ actually withstand dodgy bus code re-calling add_device()
1835          * without an intervening remove_device()/of_xlate() sequence, but
1836          * we're not going to do so quietly...
1837          */
1838         if (WARN_ON_ONCE(fwspec->iommu_priv)) {
1839                 master = fwspec->iommu_priv;
1840                 smmu = master->smmu;
1841         } else {
1842                 smmu = arm_smmu_get_by_fwnode(fwspec->iommu_fwnode);
1843                 if (!smmu)
1844                         return -ENODEV;
1845                 master = kzalloc(sizeof(*master), GFP_KERNEL);
1846                 if (!master)
1847                         return -ENOMEM;
1848
1849                 master->smmu = smmu;
1850                 fwspec->iommu_priv = master;
1851         }
1852
1853         /* Check the SIDs are in range of the SMMU and our stream table */
1854         for (i = 0; i < fwspec->num_ids; i++) {
1855                 u32 sid = fwspec->ids[i];
1856
1857                 if (!arm_smmu_sid_in_range(smmu, sid))
1858                         return -ERANGE;
1859
1860                 /* Ensure l2 strtab is initialised */
1861                 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1862                         ret = arm_smmu_init_l2_strtab(smmu, sid);
1863                         if (ret)
1864                                 return ret;
1865                 }
1866         }
1867
1868         group = iommu_group_get_for_dev(dev);
1869         if (!IS_ERR(group)) {
1870                 iommu_group_put(group);
1871                 iommu_device_link(&smmu->iommu, dev);
1872         }
1873
1874         return PTR_ERR_OR_ZERO(group);
1875 }
1876
1877 static void arm_smmu_remove_device(struct device *dev)
1878 {
1879         struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1880         struct arm_smmu_master_data *master;
1881         struct arm_smmu_device *smmu;
1882
1883         if (!fwspec || fwspec->ops != &arm_smmu_ops)
1884                 return;
1885
1886         master = fwspec->iommu_priv;
1887         smmu = master->smmu;
1888         if (master && master->ste.assigned)
1889                 arm_smmu_detach_dev(dev);
1890         iommu_group_remove_device(dev);
1891         iommu_device_unlink(&smmu->iommu, dev);
1892         kfree(master);
1893         iommu_fwspec_free(dev);
1894 }
1895
1896 static struct iommu_group *arm_smmu_device_group(struct device *dev)
1897 {
1898         struct iommu_group *group;
1899
1900         /*
1901          * We don't support devices sharing stream IDs other than PCI RID
1902          * aliases, since the necessary ID-to-device lookup becomes rather
1903          * impractical given a potential sparse 32-bit stream ID space.
1904          */
1905         if (dev_is_pci(dev))
1906                 group = pci_device_group(dev);
1907         else
1908                 group = generic_device_group(dev);
1909
1910         return group;
1911 }
1912
1913 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1914                                     enum iommu_attr attr, void *data)
1915 {
1916         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1917
1918         if (domain->type != IOMMU_DOMAIN_UNMANAGED)
1919                 return -EINVAL;
1920
1921         switch (attr) {
1922         case DOMAIN_ATTR_NESTING:
1923                 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1924                 return 0;
1925         default:
1926                 return -ENODEV;
1927         }
1928 }
1929
1930 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1931                                     enum iommu_attr attr, void *data)
1932 {
1933         int ret = 0;
1934         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1935
1936         if (domain->type != IOMMU_DOMAIN_UNMANAGED)
1937                 return -EINVAL;
1938
1939         mutex_lock(&smmu_domain->init_mutex);
1940
1941         switch (attr) {
1942         case DOMAIN_ATTR_NESTING:
1943                 if (smmu_domain->smmu) {
1944                         ret = -EPERM;
1945                         goto out_unlock;
1946                 }
1947
1948                 if (*(int *)data)
1949                         smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1950                 else
1951                         smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1952
1953                 break;
1954         default:
1955                 ret = -ENODEV;
1956         }
1957
1958 out_unlock:
1959         mutex_unlock(&smmu_domain->init_mutex);
1960         return ret;
1961 }
1962
1963 static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args)
1964 {
1965         return iommu_fwspec_add_ids(dev, args->args, 1);
1966 }
1967
1968 static void arm_smmu_get_resv_regions(struct device *dev,
1969                                       struct list_head *head)
1970 {
1971         struct iommu_resv_region *region;
1972         int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1973
1974         region = iommu_alloc_resv_region(MSI_IOVA_BASE, MSI_IOVA_LENGTH,
1975                                          prot, IOMMU_RESV_SW_MSI);
1976         if (!region)
1977                 return;
1978
1979         list_add_tail(&region->list, head);
1980
1981         iommu_dma_get_resv_regions(dev, head);
1982 }
1983
1984 static void arm_smmu_put_resv_regions(struct device *dev,
1985                                       struct list_head *head)
1986 {
1987         struct iommu_resv_region *entry, *next;
1988
1989         list_for_each_entry_safe(entry, next, head, list)
1990                 kfree(entry);
1991 }
1992
1993 static struct iommu_ops arm_smmu_ops = {
1994         .capable                = arm_smmu_capable,
1995         .domain_alloc           = arm_smmu_domain_alloc,
1996         .domain_free            = arm_smmu_domain_free,
1997         .attach_dev             = arm_smmu_attach_dev,
1998         .map                    = arm_smmu_map,
1999         .unmap                  = arm_smmu_unmap,
2000         .map_sg                 = default_iommu_map_sg,
2001         .flush_iotlb_all        = arm_smmu_iotlb_sync,
2002         .iotlb_sync             = arm_smmu_iotlb_sync,
2003         .iova_to_phys           = arm_smmu_iova_to_phys,
2004         .add_device             = arm_smmu_add_device,
2005         .remove_device          = arm_smmu_remove_device,
2006         .device_group           = arm_smmu_device_group,
2007         .domain_get_attr        = arm_smmu_domain_get_attr,
2008         .domain_set_attr        = arm_smmu_domain_set_attr,
2009         .of_xlate               = arm_smmu_of_xlate,
2010         .get_resv_regions       = arm_smmu_get_resv_regions,
2011         .put_resv_regions       = arm_smmu_put_resv_regions,
2012         .pgsize_bitmap          = -1UL, /* Restricted during device attach */
2013 };
2014
2015 /* Probing and initialisation functions */
2016 static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
2017                                    struct arm_smmu_queue *q,
2018                                    unsigned long prod_off,
2019                                    unsigned long cons_off,
2020                                    size_t dwords)
2021 {
2022         size_t qsz = ((1 << q->max_n_shift) * dwords) << 3;
2023
2024         q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma, GFP_KERNEL);
2025         if (!q->base) {
2026                 dev_err(smmu->dev, "failed to allocate queue (0x%zx bytes)\n",
2027                         qsz);
2028                 return -ENOMEM;
2029         }
2030
2031         q->prod_reg     = arm_smmu_page1_fixup(prod_off, smmu);
2032         q->cons_reg     = arm_smmu_page1_fixup(cons_off, smmu);
2033         q->ent_dwords   = dwords;
2034
2035         q->q_base  = Q_BASE_RWA;
2036         q->q_base |= q->base_dma & Q_BASE_ADDR_MASK;
2037         q->q_base |= FIELD_PREP(Q_BASE_LOG2SIZE, q->max_n_shift);
2038
2039         q->prod = q->cons = 0;
2040         return 0;
2041 }
2042
2043 static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
2044 {
2045         int ret;
2046
2047         /* cmdq */
2048         spin_lock_init(&smmu->cmdq.lock);
2049         ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
2050                                       ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS);
2051         if (ret)
2052                 return ret;
2053
2054         /* evtq */
2055         ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
2056                                       ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS);
2057         if (ret)
2058                 return ret;
2059
2060         /* priq */
2061         if (!(smmu->features & ARM_SMMU_FEAT_PRI))
2062                 return 0;
2063
2064         return arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
2065                                        ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS);
2066 }
2067
2068 static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
2069 {
2070         unsigned int i;
2071         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2072         size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
2073         void *strtab = smmu->strtab_cfg.strtab;
2074
2075         cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
2076         if (!cfg->l1_desc) {
2077                 dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
2078                 return -ENOMEM;
2079         }
2080
2081         for (i = 0; i < cfg->num_l1_ents; ++i) {
2082                 arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
2083                 strtab += STRTAB_L1_DESC_DWORDS << 3;
2084         }
2085
2086         return 0;
2087 }
2088
2089 static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
2090 {
2091         void *strtab;
2092         u64 reg;
2093         u32 size, l1size;
2094         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2095
2096         /* Calculate the L1 size, capped to the SIDSIZE. */
2097         size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
2098         size = min(size, smmu->sid_bits - STRTAB_SPLIT);
2099         cfg->num_l1_ents = 1 << size;
2100
2101         size += STRTAB_SPLIT;
2102         if (size < smmu->sid_bits)
2103                 dev_warn(smmu->dev,
2104                          "2-level strtab only covers %u/%u bits of SID\n",
2105                          size, smmu->sid_bits);
2106
2107         l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
2108         strtab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
2109                                      GFP_KERNEL | __GFP_ZERO);
2110         if (!strtab) {
2111                 dev_err(smmu->dev,
2112                         "failed to allocate l1 stream table (%u bytes)\n",
2113                         size);
2114                 return -ENOMEM;
2115         }
2116         cfg->strtab = strtab;
2117
2118         /* Configure strtab_base_cfg for 2 levels */
2119         reg  = FIELD_PREP(STRTAB_BASE_CFG_FMT, STRTAB_BASE_CFG_FMT_2LVL);
2120         reg |= FIELD_PREP(STRTAB_BASE_CFG_LOG2SIZE, size);
2121         reg |= FIELD_PREP(STRTAB_BASE_CFG_SPLIT, STRTAB_SPLIT);
2122         cfg->strtab_base_cfg = reg;
2123
2124         return arm_smmu_init_l1_strtab(smmu);
2125 }
2126
2127 static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
2128 {
2129         void *strtab;
2130         u64 reg;
2131         u32 size;
2132         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2133
2134         size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
2135         strtab = dmam_alloc_coherent(smmu->dev, size, &cfg->strtab_dma,
2136                                      GFP_KERNEL | __GFP_ZERO);
2137         if (!strtab) {
2138                 dev_err(smmu->dev,
2139                         "failed to allocate linear stream table (%u bytes)\n",
2140                         size);
2141                 return -ENOMEM;
2142         }
2143         cfg->strtab = strtab;
2144         cfg->num_l1_ents = 1 << smmu->sid_bits;
2145
2146         /* Configure strtab_base_cfg for a linear table covering all SIDs */
2147         reg  = FIELD_PREP(STRTAB_BASE_CFG_FMT, STRTAB_BASE_CFG_FMT_LINEAR);
2148         reg |= FIELD_PREP(STRTAB_BASE_CFG_LOG2SIZE, smmu->sid_bits);
2149         cfg->strtab_base_cfg = reg;
2150
2151         arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
2152         return 0;
2153 }
2154
2155 static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
2156 {
2157         u64 reg;
2158         int ret;
2159
2160         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
2161                 ret = arm_smmu_init_strtab_2lvl(smmu);
2162         else
2163                 ret = arm_smmu_init_strtab_linear(smmu);
2164
2165         if (ret)
2166                 return ret;
2167
2168         /* Set the strtab base address */
2169         reg  = smmu->strtab_cfg.strtab_dma & STRTAB_BASE_ADDR_MASK;
2170         reg |= STRTAB_BASE_RA;
2171         smmu->strtab_cfg.strtab_base = reg;
2172
2173         /* Allocate the first VMID for stage-2 bypass STEs */
2174         set_bit(0, smmu->vmid_map);
2175         return 0;
2176 }
2177
2178 static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
2179 {
2180         int ret;
2181
2182         atomic_set(&smmu->sync_nr, 0);
2183         ret = arm_smmu_init_queues(smmu);
2184         if (ret)
2185                 return ret;
2186
2187         return arm_smmu_init_strtab(smmu);
2188 }
2189
2190 static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
2191                                    unsigned int reg_off, unsigned int ack_off)
2192 {
2193         u32 reg;
2194
2195         writel_relaxed(val, smmu->base + reg_off);
2196         return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
2197                                           1, ARM_SMMU_POLL_TIMEOUT_US);
2198 }
2199
2200 /* GBPA is "special" */
2201 static int arm_smmu_update_gbpa(struct arm_smmu_device *smmu, u32 set, u32 clr)
2202 {
2203         int ret;
2204         u32 reg, __iomem *gbpa = smmu->base + ARM_SMMU_GBPA;
2205
2206         ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
2207                                          1, ARM_SMMU_POLL_TIMEOUT_US);
2208         if (ret)
2209                 return ret;
2210
2211         reg &= ~clr;
2212         reg |= set;
2213         writel_relaxed(reg | GBPA_UPDATE, gbpa);
2214         return readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
2215                                           1, ARM_SMMU_POLL_TIMEOUT_US);
2216 }
2217
2218 static void arm_smmu_free_msis(void *data)
2219 {
2220         struct device *dev = data;
2221         platform_msi_domain_free_irqs(dev);
2222 }
2223
2224 static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
2225 {
2226         phys_addr_t doorbell;
2227         struct device *dev = msi_desc_to_dev(desc);
2228         struct arm_smmu_device *smmu = dev_get_drvdata(dev);
2229         phys_addr_t *cfg = arm_smmu_msi_cfg[desc->platform.msi_index];
2230
2231         doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
2232         doorbell &= MSI_CFG0_ADDR_MASK;
2233
2234         writeq_relaxed(doorbell, smmu->base + cfg[0]);
2235         writel_relaxed(msg->data, smmu->base + cfg[1]);
2236         writel_relaxed(ARM_SMMU_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
2237 }
2238
2239 static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
2240 {
2241         struct msi_desc *desc;
2242         int ret, nvec = ARM_SMMU_MAX_MSIS;
2243         struct device *dev = smmu->dev;
2244
2245         /* Clear the MSI address regs */
2246         writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
2247         writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);
2248
2249         if (smmu->features & ARM_SMMU_FEAT_PRI)
2250                 writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
2251         else
2252                 nvec--;
2253
2254         if (!(smmu->features & ARM_SMMU_FEAT_MSI))
2255                 return;
2256
2257         if (!dev->msi_domain) {
2258                 dev_info(smmu->dev, "msi_domain absent - falling back to wired irqs\n");
2259                 return;
2260         }
2261
2262         /* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
2263         ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
2264         if (ret) {
2265                 dev_warn(dev, "failed to allocate MSIs - falling back to wired irqs\n");
2266                 return;
2267         }
2268
2269         for_each_msi_entry(desc, dev) {
2270                 switch (desc->platform.msi_index) {
2271                 case EVTQ_MSI_INDEX:
2272                         smmu->evtq.q.irq = desc->irq;
2273                         break;
2274                 case GERROR_MSI_INDEX:
2275                         smmu->gerr_irq = desc->irq;
2276                         break;
2277                 case PRIQ_MSI_INDEX:
2278                         smmu->priq.q.irq = desc->irq;
2279                         break;
2280                 default:        /* Unknown */
2281                         continue;
2282                 }
2283         }
2284
2285         /* Add callback to free MSIs on teardown */
2286         devm_add_action(dev, arm_smmu_free_msis, dev);
2287 }
2288
2289 static void arm_smmu_setup_unique_irqs(struct arm_smmu_device *smmu)
2290 {
2291         int irq, ret;
2292
2293         arm_smmu_setup_msis(smmu);
2294
2295         /* Request interrupt lines */
2296         irq = smmu->evtq.q.irq;
2297         if (irq) {
2298                 ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2299                                                 arm_smmu_evtq_thread,
2300                                                 IRQF_ONESHOT,
2301                                                 "arm-smmu-v3-evtq", smmu);
2302                 if (ret < 0)
2303                         dev_warn(smmu->dev, "failed to enable evtq irq\n");
2304         } else {
2305                 dev_warn(smmu->dev, "no evtq irq - events will not be reported!\n");
2306         }
2307
2308         irq = smmu->gerr_irq;
2309         if (irq) {
2310                 ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
2311                                        0, "arm-smmu-v3-gerror", smmu);
2312                 if (ret < 0)
2313                         dev_warn(smmu->dev, "failed to enable gerror irq\n");
2314         } else {
2315                 dev_warn(smmu->dev, "no gerr irq - errors will not be reported!\n");
2316         }
2317
2318         if (smmu->features & ARM_SMMU_FEAT_PRI) {
2319                 irq = smmu->priq.q.irq;
2320                 if (irq) {
2321                         ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2322                                                         arm_smmu_priq_thread,
2323                                                         IRQF_ONESHOT,
2324                                                         "arm-smmu-v3-priq",
2325                                                         smmu);
2326                         if (ret < 0)
2327                                 dev_warn(smmu->dev,
2328                                          "failed to enable priq irq\n");
2329                 } else {
2330                         dev_warn(smmu->dev, "no priq irq - PRI will be broken\n");
2331                 }
2332         }
2333 }
2334
2335 static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
2336 {
2337         int ret, irq;
2338         u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;
2339
2340         /* Disable IRQs first */
2341         ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
2342                                       ARM_SMMU_IRQ_CTRLACK);
2343         if (ret) {
2344                 dev_err(smmu->dev, "failed to disable irqs\n");
2345                 return ret;
2346         }
2347
2348         irq = smmu->combined_irq;
2349         if (irq) {
2350                 /*
2351                  * Cavium ThunderX2 implementation doesn't not support unique
2352                  * irq lines. Use single irq line for all the SMMUv3 interrupts.
2353                  */
2354                 ret = devm_request_threaded_irq(smmu->dev, irq,
2355                                         arm_smmu_combined_irq_handler,
2356                                         arm_smmu_combined_irq_thread,
2357                                         IRQF_ONESHOT,
2358                                         "arm-smmu-v3-combined-irq", smmu);
2359                 if (ret < 0)
2360                         dev_warn(smmu->dev, "failed to enable combined irq\n");
2361         } else
2362                 arm_smmu_setup_unique_irqs(smmu);
2363
2364         if (smmu->features & ARM_SMMU_FEAT_PRI)
2365                 irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
2366
2367         /* Enable interrupt generation on the SMMU */
2368         ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
2369                                       ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
2370         if (ret)
2371                 dev_warn(smmu->dev, "failed to enable irqs\n");
2372
2373         return 0;
2374 }
2375
2376 static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
2377 {
2378         int ret;
2379
2380         ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
2381         if (ret)
2382                 dev_err(smmu->dev, "failed to clear cr0\n");
2383
2384         return ret;
2385 }
2386
2387 static int arm_smmu_device_reset(struct arm_smmu_device *smmu, bool bypass)
2388 {
2389         int ret;
2390         u32 reg, enables;
2391         struct arm_smmu_cmdq_ent cmd;
2392
2393         /* Clear CR0 and sync (disables SMMU and queue processing) */
2394         reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
2395         if (reg & CR0_SMMUEN)
2396                 dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
2397
2398         ret = arm_smmu_device_disable(smmu);
2399         if (ret)
2400                 return ret;
2401
2402         /* CR1 (table and queue memory attributes) */
2403         reg = FIELD_PREP(CR1_TABLE_SH, ARM_SMMU_SH_ISH) |
2404               FIELD_PREP(CR1_TABLE_OC, CR1_CACHE_WB) |
2405               FIELD_PREP(CR1_TABLE_IC, CR1_CACHE_WB) |
2406               FIELD_PREP(CR1_QUEUE_SH, ARM_SMMU_SH_ISH) |
2407               FIELD_PREP(CR1_QUEUE_OC, CR1_CACHE_WB) |
2408               FIELD_PREP(CR1_QUEUE_IC, CR1_CACHE_WB);
2409         writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);
2410
2411         /* CR2 (random crap) */
2412         reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
2413         writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);
2414
2415         /* Stream table */
2416         writeq_relaxed(smmu->strtab_cfg.strtab_base,
2417                        smmu->base + ARM_SMMU_STRTAB_BASE);
2418         writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
2419                        smmu->base + ARM_SMMU_STRTAB_BASE_CFG);
2420
2421         /* Command queue */
2422         writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
2423         writel_relaxed(smmu->cmdq.q.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
2424         writel_relaxed(smmu->cmdq.q.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
2425
2426         enables = CR0_CMDQEN;
2427         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2428                                       ARM_SMMU_CR0ACK);
2429         if (ret) {
2430                 dev_err(smmu->dev, "failed to enable command queue\n");
2431                 return ret;
2432         }
2433
2434         /* Invalidate any cached configuration */
2435         cmd.opcode = CMDQ_OP_CFGI_ALL;
2436         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2437         arm_smmu_cmdq_issue_sync(smmu);
2438
2439         /* Invalidate any stale TLB entries */
2440         if (smmu->features & ARM_SMMU_FEAT_HYP) {
2441                 cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
2442                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2443         }
2444
2445         cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
2446         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2447         arm_smmu_cmdq_issue_sync(smmu);
2448
2449         /* Event queue */
2450         writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
2451         writel_relaxed(smmu->evtq.q.prod,
2452                        arm_smmu_page1_fixup(ARM_SMMU_EVTQ_PROD, smmu));
2453         writel_relaxed(smmu->evtq.q.cons,
2454                        arm_smmu_page1_fixup(ARM_SMMU_EVTQ_CONS, smmu));
2455
2456         enables |= CR0_EVTQEN;
2457         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2458                                       ARM_SMMU_CR0ACK);
2459         if (ret) {
2460                 dev_err(smmu->dev, "failed to enable event queue\n");
2461                 return ret;
2462         }
2463
2464         /* PRI queue */
2465         if (smmu->features & ARM_SMMU_FEAT_PRI) {
2466                 writeq_relaxed(smmu->priq.q.q_base,
2467                                smmu->base + ARM_SMMU_PRIQ_BASE);
2468                 writel_relaxed(smmu->priq.q.prod,
2469                                arm_smmu_page1_fixup(ARM_SMMU_PRIQ_PROD, smmu));
2470                 writel_relaxed(smmu->priq.q.cons,
2471                                arm_smmu_page1_fixup(ARM_SMMU_PRIQ_CONS, smmu));
2472
2473                 enables |= CR0_PRIQEN;
2474                 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2475                                               ARM_SMMU_CR0ACK);
2476                 if (ret) {
2477                         dev_err(smmu->dev, "failed to enable PRI queue\n");
2478                         return ret;
2479                 }
2480         }
2481
2482         ret = arm_smmu_setup_irqs(smmu);
2483         if (ret) {
2484                 dev_err(smmu->dev, "failed to setup irqs\n");
2485                 return ret;
2486         }
2487
2488
2489         /* Enable the SMMU interface, or ensure bypass */
2490         if (!bypass || disable_bypass) {
2491                 enables |= CR0_SMMUEN;
2492         } else {
2493                 ret = arm_smmu_update_gbpa(smmu, 0, GBPA_ABORT);
2494                 if (ret) {
2495                         dev_err(smmu->dev, "GBPA not responding to update\n");
2496                         return ret;
2497                 }
2498         }
2499         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2500                                       ARM_SMMU_CR0ACK);
2501         if (ret) {
2502                 dev_err(smmu->dev, "failed to enable SMMU interface\n");
2503                 return ret;
2504         }
2505
2506         return 0;
2507 }
2508
2509 static int arm_smmu_device_hw_probe(struct arm_smmu_device *smmu)
2510 {
2511         u32 reg;
2512         bool coherent = smmu->features & ARM_SMMU_FEAT_COHERENCY;
2513
2514         /* IDR0 */
2515         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);
2516
2517         /* 2-level structures */
2518         if (FIELD_GET(IDR0_ST_LVL, reg) == IDR0_ST_LVL_2LVL)
2519                 smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;
2520
2521         if (reg & IDR0_CD2L)
2522                 smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;
2523
2524         /*
2525          * Translation table endianness.
2526          * We currently require the same endianness as the CPU, but this
2527          * could be changed later by adding a new IO_PGTABLE_QUIRK.
2528          */
2529         switch (FIELD_GET(IDR0_TTENDIAN, reg)) {
2530         case IDR0_TTENDIAN_MIXED:
2531                 smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
2532                 break;
2533 #ifdef __BIG_ENDIAN
2534         case IDR0_TTENDIAN_BE:
2535                 smmu->features |= ARM_SMMU_FEAT_TT_BE;
2536                 break;
2537 #else
2538         case IDR0_TTENDIAN_LE:
2539                 smmu->features |= ARM_SMMU_FEAT_TT_LE;
2540                 break;
2541 #endif
2542         default:
2543                 dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
2544                 return -ENXIO;
2545         }
2546
2547         /* Boolean feature flags */
2548         if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
2549                 smmu->features |= ARM_SMMU_FEAT_PRI;
2550
2551         if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
2552                 smmu->features |= ARM_SMMU_FEAT_ATS;
2553
2554         if (reg & IDR0_SEV)
2555                 smmu->features |= ARM_SMMU_FEAT_SEV;
2556
2557         if (reg & IDR0_MSI)
2558                 smmu->features |= ARM_SMMU_FEAT_MSI;
2559
2560         if (reg & IDR0_HYP)
2561                 smmu->features |= ARM_SMMU_FEAT_HYP;
2562
2563         /*
2564          * The coherency feature as set by FW is used in preference to the ID
2565          * register, but warn on mismatch.
2566          */
2567         if (!!(reg & IDR0_COHACC) != coherent)
2568                 dev_warn(smmu->dev, "IDR0.COHACC overridden by FW configuration (%s)\n",
2569                          coherent ? "true" : "false");
2570
2571         switch (FIELD_GET(IDR0_STALL_MODEL, reg)) {
2572         case IDR0_STALL_MODEL_FORCE:
2573                 smmu->features |= ARM_SMMU_FEAT_STALL_FORCE;
2574                 /* Fallthrough */
2575         case IDR0_STALL_MODEL_STALL:
2576                 smmu->features |= ARM_SMMU_FEAT_STALLS;
2577         }
2578
2579         if (reg & IDR0_S1P)
2580                 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
2581
2582         if (reg & IDR0_S2P)
2583                 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
2584
2585         if (!(reg & (IDR0_S1P | IDR0_S2P))) {
2586                 dev_err(smmu->dev, "no translation support!\n");
2587                 return -ENXIO;
2588         }
2589
2590         /* We only support the AArch64 table format at present */
2591         switch (FIELD_GET(IDR0_TTF, reg)) {
2592         case IDR0_TTF_AARCH32_64:
2593                 smmu->ias = 40;
2594                 /* Fallthrough */
2595         case IDR0_TTF_AARCH64:
2596                 break;
2597         default:
2598                 dev_err(smmu->dev, "AArch64 table format not supported!\n");
2599                 return -ENXIO;
2600         }
2601
2602         /* ASID/VMID sizes */
2603         smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
2604         smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;
2605
2606         /* IDR1 */
2607         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
2608         if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
2609                 dev_err(smmu->dev, "embedded implementation not supported\n");
2610                 return -ENXIO;
2611         }
2612
2613         /* Queue sizes, capped at 4k */
2614         smmu->cmdq.q.max_n_shift = min_t(u32, CMDQ_MAX_SZ_SHIFT,
2615                                          FIELD_GET(IDR1_CMDQS, reg));
2616         if (!smmu->cmdq.q.max_n_shift) {
2617                 /* Odd alignment restrictions on the base, so ignore for now */
2618                 dev_err(smmu->dev, "unit-length command queue not supported\n");
2619                 return -ENXIO;
2620         }
2621
2622         smmu->evtq.q.max_n_shift = min_t(u32, EVTQ_MAX_SZ_SHIFT,
2623                                          FIELD_GET(IDR1_EVTQS, reg));
2624         smmu->priq.q.max_n_shift = min_t(u32, PRIQ_MAX_SZ_SHIFT,
2625                                          FIELD_GET(IDR1_PRIQS, reg));
2626
2627         /* SID/SSID sizes */
2628         smmu->ssid_bits = FIELD_GET(IDR1_SSIDSIZE, reg);
2629         smmu->sid_bits = FIELD_GET(IDR1_SIDSIZE, reg);
2630
2631         /*
2632          * If the SMMU supports fewer bits than would fill a single L2 stream
2633          * table, use a linear table instead.
2634          */
2635         if (smmu->sid_bits <= STRTAB_SPLIT)
2636                 smmu->features &= ~ARM_SMMU_FEAT_2_LVL_STRTAB;
2637
2638         /* IDR5 */
2639         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);
2640
2641         /* Maximum number of outstanding stalls */
2642         smmu->evtq.max_stalls = FIELD_GET(IDR5_STALL_MAX, reg);
2643
2644         /* Page sizes */
2645         if (reg & IDR5_GRAN64K)
2646                 smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
2647         if (reg & IDR5_GRAN16K)
2648                 smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
2649         if (reg & IDR5_GRAN4K)
2650                 smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
2651
2652         /* Input address size */
2653         if (FIELD_GET(IDR5_VAX, reg) == IDR5_VAX_52_BIT)
2654                 smmu->features |= ARM_SMMU_FEAT_VAX;
2655
2656         /* Output address size */
2657         switch (FIELD_GET(IDR5_OAS, reg)) {
2658         case IDR5_OAS_32_BIT:
2659                 smmu->oas = 32;
2660                 break;
2661         case IDR5_OAS_36_BIT:
2662                 smmu->oas = 36;
2663                 break;
2664         case IDR5_OAS_40_BIT:
2665                 smmu->oas = 40;
2666                 break;
2667         case IDR5_OAS_42_BIT:
2668                 smmu->oas = 42;
2669                 break;
2670         case IDR5_OAS_44_BIT:
2671                 smmu->oas = 44;
2672                 break;
2673         case IDR5_OAS_52_BIT:
2674                 smmu->oas = 52;
2675                 smmu->pgsize_bitmap |= 1ULL << 42; /* 4TB */
2676                 break;
2677         default:
2678                 dev_info(smmu->dev,
2679                         "unknown output address size. Truncating to 48-bit\n");
2680                 /* Fallthrough */
2681         case IDR5_OAS_48_BIT:
2682                 smmu->oas = 48;
2683         }
2684
2685         if (arm_smmu_ops.pgsize_bitmap == -1UL)
2686                 arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
2687         else
2688                 arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
2689
2690         /* Set the DMA mask for our table walker */
2691         if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
2692                 dev_warn(smmu->dev,
2693                          "failed to set DMA mask for table walker\n");
2694
2695         smmu->ias = max(smmu->ias, smmu->oas);
2696
2697         dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
2698                  smmu->ias, smmu->oas, smmu->features);
2699         return 0;
2700 }
2701
2702 #ifdef CONFIG_ACPI
2703 static void acpi_smmu_get_options(u32 model, struct arm_smmu_device *smmu)
2704 {
2705         switch (model) {
2706         case ACPI_IORT_SMMU_V3_CAVIUM_CN99XX:
2707                 smmu->options |= ARM_SMMU_OPT_PAGE0_REGS_ONLY;
2708                 break;
2709         case ACPI_IORT_SMMU_V3_HISILICON_HI161X:
2710                 smmu->options |= ARM_SMMU_OPT_SKIP_PREFETCH;
2711                 break;
2712         }
2713
2714         dev_notice(smmu->dev, "option mask 0x%x\n", smmu->options);
2715 }
2716
2717 static int arm_smmu_device_acpi_probe(struct platform_device *pdev,
2718                                       struct arm_smmu_device *smmu)
2719 {
2720         struct acpi_iort_smmu_v3 *iort_smmu;
2721         struct device *dev = smmu->dev;
2722         struct acpi_iort_node *node;
2723
2724         node = *(struct acpi_iort_node **)dev_get_platdata(dev);
2725
2726         /* Retrieve SMMUv3 specific data */
2727         iort_smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
2728
2729         acpi_smmu_get_options(iort_smmu->model, smmu);
2730
2731         if (iort_smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE)
2732                 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2733
2734         return 0;
2735 }
2736 #else
2737 static inline int arm_smmu_device_acpi_probe(struct platform_device *pdev,
2738                                              struct arm_smmu_device *smmu)
2739 {
2740         return -ENODEV;
2741 }
2742 #endif
2743
2744 static int arm_smmu_device_dt_probe(struct platform_device *pdev,
2745                                     struct arm_smmu_device *smmu)
2746 {
2747         struct device *dev = &pdev->dev;
2748         u32 cells;
2749         int ret = -EINVAL;
2750
2751         if (of_property_read_u32(dev->of_node, "#iommu-cells", &cells))
2752                 dev_err(dev, "missing #iommu-cells property\n");
2753         else if (cells != 1)
2754                 dev_err(dev, "invalid #iommu-cells value (%d)\n", cells);
2755         else
2756                 ret = 0;
2757
2758         parse_driver_options(smmu);
2759
2760         if (of_dma_is_coherent(dev->of_node))
2761                 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2762
2763         return ret;
2764 }
2765
2766 static unsigned long arm_smmu_resource_size(struct arm_smmu_device *smmu)
2767 {
2768         if (smmu->options & ARM_SMMU_OPT_PAGE0_REGS_ONLY)
2769                 return SZ_64K;
2770         else
2771                 return SZ_128K;
2772 }
2773
2774 static int arm_smmu_device_probe(struct platform_device *pdev)
2775 {
2776         int irq, ret;
2777         struct resource *res;
2778         resource_size_t ioaddr;
2779         struct arm_smmu_device *smmu;
2780         struct device *dev = &pdev->dev;
2781         bool bypass;
2782
2783         smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
2784         if (!smmu) {
2785                 dev_err(dev, "failed to allocate arm_smmu_device\n");
2786                 return -ENOMEM;
2787         }
2788         smmu->dev = dev;
2789
2790         if (dev->of_node) {
2791                 ret = arm_smmu_device_dt_probe(pdev, smmu);
2792         } else {
2793                 ret = arm_smmu_device_acpi_probe(pdev, smmu);
2794                 if (ret == -ENODEV)
2795                         return ret;
2796         }
2797
2798         /* Set bypass mode according to firmware probing result */
2799         bypass = !!ret;
2800
2801         /* Base address */
2802         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2803         if (resource_size(res) + 1 < arm_smmu_resource_size(smmu)) {
2804                 dev_err(dev, "MMIO region too small (%pr)\n", res);
2805                 return -EINVAL;
2806         }
2807         ioaddr = res->start;
2808
2809         smmu->base = devm_ioremap_resource(dev, res);
2810         if (IS_ERR(smmu->base))
2811                 return PTR_ERR(smmu->base);
2812
2813         /* Interrupt lines */
2814
2815         irq = platform_get_irq_byname(pdev, "combined");
2816         if (irq > 0)
2817                 smmu->combined_irq = irq;
2818         else {
2819                 irq = platform_get_irq_byname(pdev, "eventq");
2820                 if (irq > 0)
2821                         smmu->evtq.q.irq = irq;
2822
2823                 irq = platform_get_irq_byname(pdev, "priq");
2824                 if (irq > 0)
2825                         smmu->priq.q.irq = irq;
2826
2827                 irq = platform_get_irq_byname(pdev, "gerror");
2828                 if (irq > 0)
2829                         smmu->gerr_irq = irq;
2830         }
2831         /* Probe the h/w */
2832         ret = arm_smmu_device_hw_probe(smmu);
2833         if (ret)
2834                 return ret;
2835
2836         /* Initialise in-memory data structures */
2837         ret = arm_smmu_init_structures(smmu);
2838         if (ret)
2839                 return ret;
2840
2841         /* Record our private device structure */
2842         platform_set_drvdata(pdev, smmu);
2843
2844         /* Reset the device */
2845         ret = arm_smmu_device_reset(smmu, bypass);
2846         if (ret)
2847                 return ret;
2848
2849         /* And we're up. Go go go! */
2850         ret = iommu_device_sysfs_add(&smmu->iommu, dev, NULL,
2851                                      "smmu3.%pa", &ioaddr);
2852         if (ret)
2853                 return ret;
2854
2855         iommu_device_set_ops(&smmu->iommu, &arm_smmu_ops);
2856         iommu_device_set_fwnode(&smmu->iommu, dev->fwnode);
2857
2858         ret = iommu_device_register(&smmu->iommu);
2859         if (ret) {
2860                 dev_err(dev, "Failed to register iommu\n");
2861                 return ret;
2862         }
2863
2864 #ifdef CONFIG_PCI
2865         if (pci_bus_type.iommu_ops != &arm_smmu_ops) {
2866                 pci_request_acs();
2867                 ret = bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2868                 if (ret)
2869                         return ret;
2870         }
2871 #endif
2872 #ifdef CONFIG_ARM_AMBA
2873         if (amba_bustype.iommu_ops != &arm_smmu_ops) {
2874                 ret = bus_set_iommu(&amba_bustype, &arm_smmu_ops);
2875                 if (ret)
2876                         return ret;
2877         }
2878 #endif
2879         if (platform_bus_type.iommu_ops != &arm_smmu_ops) {
2880                 ret = bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
2881                 if (ret)
2882                         return ret;
2883         }
2884         return 0;
2885 }
2886
2887 static int arm_smmu_device_remove(struct platform_device *pdev)
2888 {
2889         struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
2890
2891         arm_smmu_device_disable(smmu);
2892
2893         return 0;
2894 }
2895
2896 static void arm_smmu_device_shutdown(struct platform_device *pdev)
2897 {
2898         arm_smmu_device_remove(pdev);
2899 }
2900
2901 static const struct of_device_id arm_smmu_of_match[] = {
2902         { .compatible = "arm,smmu-v3", },
2903         { },
2904 };
2905 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
2906
2907 static struct platform_driver arm_smmu_driver = {
2908         .driver = {
2909                 .name           = "arm-smmu-v3",
2910                 .of_match_table = of_match_ptr(arm_smmu_of_match),
2911         },
2912         .probe  = arm_smmu_device_probe,
2913         .remove = arm_smmu_device_remove,
2914         .shutdown = arm_smmu_device_shutdown,
2915 };
2916 module_platform_driver(arm_smmu_driver);
2917
2918 IOMMU_OF_DECLARE(arm_smmuv3, "arm,smmu-v3");
2919
2920 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
2921 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2922 MODULE_LICENSE("GPL v2");