Merge tag 'net-5.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
[linux-2.6-microblaze.git] / drivers / input / rmi4 / rmi_spi.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2011-2016 Synaptics Incorporated
4  * Copyright (c) 2011 Unixphere
5  */
6
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/rmi.h>
10 #include <linux/slab.h>
11 #include <linux/spi/spi.h>
12 #include <linux/of.h>
13 #include "rmi_driver.h"
14
15 #define RMI_SPI_DEFAULT_XFER_BUF_SIZE   64
16
17 #define RMI_PAGE_SELECT_REGISTER        0x00FF
18 #define RMI_SPI_PAGE(addr)              (((addr) >> 8) & 0x80)
19 #define RMI_SPI_XFER_SIZE_LIMIT         255
20
21 #define BUFFER_SIZE_INCREMENT 32
22
23 enum rmi_spi_op {
24         RMI_SPI_WRITE = 0,
25         RMI_SPI_READ,
26         RMI_SPI_V2_READ_UNIFIED,
27         RMI_SPI_V2_READ_SPLIT,
28         RMI_SPI_V2_WRITE,
29 };
30
31 struct rmi_spi_cmd {
32         enum rmi_spi_op op;
33         u16 addr;
34 };
35
36 struct rmi_spi_xport {
37         struct rmi_transport_dev xport;
38         struct spi_device *spi;
39
40         struct mutex page_mutex;
41         int page;
42
43         u8 *rx_buf;
44         u8 *tx_buf;
45         int xfer_buf_size;
46
47         struct spi_transfer *rx_xfers;
48         struct spi_transfer *tx_xfers;
49         int rx_xfer_count;
50         int tx_xfer_count;
51 };
52
53 static int rmi_spi_manage_pools(struct rmi_spi_xport *rmi_spi, int len)
54 {
55         struct spi_device *spi = rmi_spi->spi;
56         int buf_size = rmi_spi->xfer_buf_size
57                 ? rmi_spi->xfer_buf_size : RMI_SPI_DEFAULT_XFER_BUF_SIZE;
58         struct spi_transfer *xfer_buf;
59         void *buf;
60         void *tmp;
61
62         while (buf_size < len)
63                 buf_size *= 2;
64
65         if (buf_size > RMI_SPI_XFER_SIZE_LIMIT)
66                 buf_size = RMI_SPI_XFER_SIZE_LIMIT;
67
68         tmp = rmi_spi->rx_buf;
69         buf = devm_kcalloc(&spi->dev, buf_size, 2,
70                                 GFP_KERNEL | GFP_DMA);
71         if (!buf)
72                 return -ENOMEM;
73
74         rmi_spi->rx_buf = buf;
75         rmi_spi->tx_buf = &rmi_spi->rx_buf[buf_size];
76         rmi_spi->xfer_buf_size = buf_size;
77
78         if (tmp)
79                 devm_kfree(&spi->dev, tmp);
80
81         if (rmi_spi->xport.pdata.spi_data.read_delay_us)
82                 rmi_spi->rx_xfer_count = buf_size;
83         else
84                 rmi_spi->rx_xfer_count = 1;
85
86         if (rmi_spi->xport.pdata.spi_data.write_delay_us)
87                 rmi_spi->tx_xfer_count = buf_size;
88         else
89                 rmi_spi->tx_xfer_count = 1;
90
91         /*
92          * Allocate a pool of spi_transfer buffers for devices which need
93          * per byte delays.
94          */
95         tmp = rmi_spi->rx_xfers;
96         xfer_buf = devm_kcalloc(&spi->dev,
97                 rmi_spi->rx_xfer_count + rmi_spi->tx_xfer_count,
98                 sizeof(struct spi_transfer),
99                 GFP_KERNEL);
100         if (!xfer_buf)
101                 return -ENOMEM;
102
103         rmi_spi->rx_xfers = xfer_buf;
104         rmi_spi->tx_xfers = &xfer_buf[rmi_spi->rx_xfer_count];
105
106         if (tmp)
107                 devm_kfree(&spi->dev, tmp);
108
109         return 0;
110 }
111
112 static int rmi_spi_xfer(struct rmi_spi_xport *rmi_spi,
113                         const struct rmi_spi_cmd *cmd, const u8 *tx_buf,
114                         int tx_len, u8 *rx_buf, int rx_len)
115 {
116         struct spi_device *spi = rmi_spi->spi;
117         struct rmi_device_platform_data_spi *spi_data =
118                                         &rmi_spi->xport.pdata.spi_data;
119         struct spi_message msg;
120         struct spi_transfer *xfer;
121         int ret = 0;
122         int len;
123         int cmd_len = 0;
124         int total_tx_len;
125         int i;
126         u16 addr = cmd->addr;
127
128         spi_message_init(&msg);
129
130         switch (cmd->op) {
131         case RMI_SPI_WRITE:
132         case RMI_SPI_READ:
133                 cmd_len += 2;
134                 break;
135         case RMI_SPI_V2_READ_UNIFIED:
136         case RMI_SPI_V2_READ_SPLIT:
137         case RMI_SPI_V2_WRITE:
138                 cmd_len += 4;
139                 break;
140         }
141
142         total_tx_len = cmd_len + tx_len;
143         len = max(total_tx_len, rx_len);
144
145         if (len > RMI_SPI_XFER_SIZE_LIMIT)
146                 return -EINVAL;
147
148         if (rmi_spi->xfer_buf_size < len) {
149                 ret = rmi_spi_manage_pools(rmi_spi, len);
150                 if (ret < 0)
151                         return ret;
152         }
153
154         if (addr == 0)
155                 /*
156                  * SPI needs an address. Use 0x7FF if we want to keep
157                  * reading from the last position of the register pointer.
158                  */
159                 addr = 0x7FF;
160
161         switch (cmd->op) {
162         case RMI_SPI_WRITE:
163                 rmi_spi->tx_buf[0] = (addr >> 8);
164                 rmi_spi->tx_buf[1] = addr & 0xFF;
165                 break;
166         case RMI_SPI_READ:
167                 rmi_spi->tx_buf[0] = (addr >> 8) | 0x80;
168                 rmi_spi->tx_buf[1] = addr & 0xFF;
169                 break;
170         case RMI_SPI_V2_READ_UNIFIED:
171                 break;
172         case RMI_SPI_V2_READ_SPLIT:
173                 break;
174         case RMI_SPI_V2_WRITE:
175                 rmi_spi->tx_buf[0] = 0x40;
176                 rmi_spi->tx_buf[1] = (addr >> 8) & 0xFF;
177                 rmi_spi->tx_buf[2] = addr & 0xFF;
178                 rmi_spi->tx_buf[3] = tx_len;
179                 break;
180         }
181
182         if (tx_buf)
183                 memcpy(&rmi_spi->tx_buf[cmd_len], tx_buf, tx_len);
184
185         if (rmi_spi->tx_xfer_count > 1) {
186                 for (i = 0; i < total_tx_len; i++) {
187                         xfer = &rmi_spi->tx_xfers[i];
188                         memset(xfer, 0, sizeof(struct spi_transfer));
189                         xfer->tx_buf = &rmi_spi->tx_buf[i];
190                         xfer->len = 1;
191                         xfer->delay.value = spi_data->write_delay_us;
192                         xfer->delay.unit = SPI_DELAY_UNIT_USECS;
193                         spi_message_add_tail(xfer, &msg);
194                 }
195         } else {
196                 xfer = rmi_spi->tx_xfers;
197                 memset(xfer, 0, sizeof(struct spi_transfer));
198                 xfer->tx_buf = rmi_spi->tx_buf;
199                 xfer->len = total_tx_len;
200                 spi_message_add_tail(xfer, &msg);
201         }
202
203         rmi_dbg(RMI_DEBUG_XPORT, &spi->dev, "%s: cmd: %s tx_buf len: %d tx_buf: %*ph\n",
204                 __func__, cmd->op == RMI_SPI_WRITE ? "WRITE" : "READ",
205                 total_tx_len, total_tx_len, rmi_spi->tx_buf);
206
207         if (rx_buf) {
208                 if (rmi_spi->rx_xfer_count > 1) {
209                         for (i = 0; i < rx_len; i++) {
210                                 xfer = &rmi_spi->rx_xfers[i];
211                                 memset(xfer, 0, sizeof(struct spi_transfer));
212                                 xfer->rx_buf = &rmi_spi->rx_buf[i];
213                                 xfer->len = 1;
214                                 xfer->delay.value = spi_data->read_delay_us;
215                                 xfer->delay.unit = SPI_DELAY_UNIT_USECS;
216                                 spi_message_add_tail(xfer, &msg);
217                         }
218                 } else {
219                         xfer = rmi_spi->rx_xfers;
220                         memset(xfer, 0, sizeof(struct spi_transfer));
221                         xfer->rx_buf = rmi_spi->rx_buf;
222                         xfer->len = rx_len;
223                         spi_message_add_tail(xfer, &msg);
224                 }
225         }
226
227         ret = spi_sync(spi, &msg);
228         if (ret < 0) {
229                 dev_err(&spi->dev, "spi xfer failed: %d\n", ret);
230                 return ret;
231         }
232
233         if (rx_buf) {
234                 memcpy(rx_buf, rmi_spi->rx_buf, rx_len);
235                 rmi_dbg(RMI_DEBUG_XPORT, &spi->dev, "%s: (%d) %*ph\n",
236                         __func__, rx_len, rx_len, rx_buf);
237         }
238
239         return 0;
240 }
241
242 /*
243  * rmi_set_page - Set RMI page
244  * @xport: The pointer to the rmi_transport_dev struct
245  * @page: The new page address.
246  *
247  * RMI devices have 16-bit addressing, but some of the transport
248  * implementations (like SMBus) only have 8-bit addressing. So RMI implements
249  * a page address at 0xff of every page so we can reliable page addresses
250  * every 256 registers.
251  *
252  * The page_mutex lock must be held when this function is entered.
253  *
254  * Returns zero on success, non-zero on failure.
255  */
256 static int rmi_set_page(struct rmi_spi_xport *rmi_spi, u8 page)
257 {
258         struct rmi_spi_cmd cmd;
259         int ret;
260
261         cmd.op = RMI_SPI_WRITE;
262         cmd.addr = RMI_PAGE_SELECT_REGISTER;
263
264         ret = rmi_spi_xfer(rmi_spi, &cmd, &page, 1, NULL, 0);
265
266         if (ret)
267                 rmi_spi->page = page;
268
269         return ret;
270 }
271
272 static int rmi_spi_write_block(struct rmi_transport_dev *xport, u16 addr,
273                                const void *buf, size_t len)
274 {
275         struct rmi_spi_xport *rmi_spi =
276                 container_of(xport, struct rmi_spi_xport, xport);
277         struct rmi_spi_cmd cmd;
278         int ret;
279
280         mutex_lock(&rmi_spi->page_mutex);
281
282         if (RMI_SPI_PAGE(addr) != rmi_spi->page) {
283                 ret = rmi_set_page(rmi_spi, RMI_SPI_PAGE(addr));
284                 if (ret)
285                         goto exit;
286         }
287
288         cmd.op = RMI_SPI_WRITE;
289         cmd.addr = addr;
290
291         ret = rmi_spi_xfer(rmi_spi, &cmd, buf, len, NULL, 0);
292
293 exit:
294         mutex_unlock(&rmi_spi->page_mutex);
295         return ret;
296 }
297
298 static int rmi_spi_read_block(struct rmi_transport_dev *xport, u16 addr,
299                               void *buf, size_t len)
300 {
301         struct rmi_spi_xport *rmi_spi =
302                 container_of(xport, struct rmi_spi_xport, xport);
303         struct rmi_spi_cmd cmd;
304         int ret;
305
306         mutex_lock(&rmi_spi->page_mutex);
307
308         if (RMI_SPI_PAGE(addr) != rmi_spi->page) {
309                 ret = rmi_set_page(rmi_spi, RMI_SPI_PAGE(addr));
310                 if (ret)
311                         goto exit;
312         }
313
314         cmd.op = RMI_SPI_READ;
315         cmd.addr = addr;
316
317         ret = rmi_spi_xfer(rmi_spi, &cmd, NULL, 0, buf, len);
318
319 exit:
320         mutex_unlock(&rmi_spi->page_mutex);
321         return ret;
322 }
323
324 static const struct rmi_transport_ops rmi_spi_ops = {
325         .write_block    = rmi_spi_write_block,
326         .read_block     = rmi_spi_read_block,
327 };
328
329 #ifdef CONFIG_OF
330 static int rmi_spi_of_probe(struct spi_device *spi,
331                         struct rmi_device_platform_data *pdata)
332 {
333         struct device *dev = &spi->dev;
334         int retval;
335
336         retval = rmi_of_property_read_u32(dev,
337                         &pdata->spi_data.read_delay_us,
338                         "spi-rx-delay-us", 1);
339         if (retval)
340                 return retval;
341
342         retval = rmi_of_property_read_u32(dev,
343                         &pdata->spi_data.write_delay_us,
344                         "spi-tx-delay-us", 1);
345         if (retval)
346                 return retval;
347
348         return 0;
349 }
350
351 static const struct of_device_id rmi_spi_of_match[] = {
352         { .compatible = "syna,rmi4-spi" },
353         {},
354 };
355 MODULE_DEVICE_TABLE(of, rmi_spi_of_match);
356 #else
357 static inline int rmi_spi_of_probe(struct spi_device *spi,
358                                 struct rmi_device_platform_data *pdata)
359 {
360         return -ENODEV;
361 }
362 #endif
363
364 static void rmi_spi_unregister_transport(void *data)
365 {
366         struct rmi_spi_xport *rmi_spi = data;
367
368         rmi_unregister_transport_device(&rmi_spi->xport);
369 }
370
371 static int rmi_spi_probe(struct spi_device *spi)
372 {
373         struct rmi_spi_xport *rmi_spi;
374         struct rmi_device_platform_data *pdata;
375         struct rmi_device_platform_data *spi_pdata = spi->dev.platform_data;
376         int error;
377
378         if (spi->master->flags & SPI_MASTER_HALF_DUPLEX)
379                 return -EINVAL;
380
381         rmi_spi = devm_kzalloc(&spi->dev, sizeof(struct rmi_spi_xport),
382                         GFP_KERNEL);
383         if (!rmi_spi)
384                 return -ENOMEM;
385
386         pdata = &rmi_spi->xport.pdata;
387
388         if (spi->dev.of_node) {
389                 error = rmi_spi_of_probe(spi, pdata);
390                 if (error)
391                         return error;
392         } else if (spi_pdata) {
393                 *pdata = *spi_pdata;
394         }
395
396         if (pdata->spi_data.bits_per_word)
397                 spi->bits_per_word = pdata->spi_data.bits_per_word;
398
399         if (pdata->spi_data.mode)
400                 spi->mode = pdata->spi_data.mode;
401
402         error = spi_setup(spi);
403         if (error < 0) {
404                 dev_err(&spi->dev, "spi_setup failed!\n");
405                 return error;
406         }
407
408         pdata->irq = spi->irq;
409
410         rmi_spi->spi = spi;
411         mutex_init(&rmi_spi->page_mutex);
412
413         rmi_spi->xport.dev = &spi->dev;
414         rmi_spi->xport.proto_name = "spi";
415         rmi_spi->xport.ops = &rmi_spi_ops;
416
417         spi_set_drvdata(spi, rmi_spi);
418
419         error = rmi_spi_manage_pools(rmi_spi, RMI_SPI_DEFAULT_XFER_BUF_SIZE);
420         if (error)
421                 return error;
422
423         /*
424          * Setting the page to zero will (a) make sure the PSR is in a
425          * known state, and (b) make sure we can talk to the device.
426          */
427         error = rmi_set_page(rmi_spi, 0);
428         if (error) {
429                 dev_err(&spi->dev, "Failed to set page select to 0.\n");
430                 return error;
431         }
432
433         dev_info(&spi->dev, "registering SPI-connected sensor\n");
434
435         error = rmi_register_transport_device(&rmi_spi->xport);
436         if (error) {
437                 dev_err(&spi->dev, "failed to register sensor: %d\n", error);
438                 return error;
439         }
440
441         error = devm_add_action_or_reset(&spi->dev,
442                                           rmi_spi_unregister_transport,
443                                           rmi_spi);
444         if (error)
445                 return error;
446
447         return 0;
448 }
449
450 #ifdef CONFIG_PM_SLEEP
451 static int rmi_spi_suspend(struct device *dev)
452 {
453         struct spi_device *spi = to_spi_device(dev);
454         struct rmi_spi_xport *rmi_spi = spi_get_drvdata(spi);
455         int ret;
456
457         ret = rmi_driver_suspend(rmi_spi->xport.rmi_dev, true);
458         if (ret)
459                 dev_warn(dev, "Failed to resume device: %d\n", ret);
460
461         return ret;
462 }
463
464 static int rmi_spi_resume(struct device *dev)
465 {
466         struct spi_device *spi = to_spi_device(dev);
467         struct rmi_spi_xport *rmi_spi = spi_get_drvdata(spi);
468         int ret;
469
470         ret = rmi_driver_resume(rmi_spi->xport.rmi_dev, true);
471         if (ret)
472                 dev_warn(dev, "Failed to resume device: %d\n", ret);
473
474         return ret;
475 }
476 #endif
477
478 #ifdef CONFIG_PM
479 static int rmi_spi_runtime_suspend(struct device *dev)
480 {
481         struct spi_device *spi = to_spi_device(dev);
482         struct rmi_spi_xport *rmi_spi = spi_get_drvdata(spi);
483         int ret;
484
485         ret = rmi_driver_suspend(rmi_spi->xport.rmi_dev, false);
486         if (ret)
487                 dev_warn(dev, "Failed to resume device: %d\n", ret);
488
489         return 0;
490 }
491
492 static int rmi_spi_runtime_resume(struct device *dev)
493 {
494         struct spi_device *spi = to_spi_device(dev);
495         struct rmi_spi_xport *rmi_spi = spi_get_drvdata(spi);
496         int ret;
497
498         ret = rmi_driver_resume(rmi_spi->xport.rmi_dev, false);
499         if (ret)
500                 dev_warn(dev, "Failed to resume device: %d\n", ret);
501
502         return 0;
503 }
504 #endif
505
506 static const struct dev_pm_ops rmi_spi_pm = {
507         SET_SYSTEM_SLEEP_PM_OPS(rmi_spi_suspend, rmi_spi_resume)
508         SET_RUNTIME_PM_OPS(rmi_spi_runtime_suspend, rmi_spi_runtime_resume,
509                            NULL)
510 };
511
512 static const struct spi_device_id rmi_id[] = {
513         { "rmi4_spi", 0 },
514         { }
515 };
516 MODULE_DEVICE_TABLE(spi, rmi_id);
517
518 static struct spi_driver rmi_spi_driver = {
519         .driver = {
520                 .name   = "rmi4_spi",
521                 .pm     = &rmi_spi_pm,
522                 .of_match_table = of_match_ptr(rmi_spi_of_match),
523         },
524         .id_table       = rmi_id,
525         .probe          = rmi_spi_probe,
526 };
527
528 module_spi_driver(rmi_spi_driver);
529
530 MODULE_AUTHOR("Christopher Heiny <cheiny@synaptics.com>");
531 MODULE_AUTHOR("Andrew Duggan <aduggan@synaptics.com>");
532 MODULE_DESCRIPTION("RMI SPI driver");
533 MODULE_LICENSE("GPL");