RDMA/srp: Make the channel count configurable per target
[linux-2.6-microblaze.git] / drivers / infiniband / ulp / srp / ib_srp.c
1 /*
2  * Copyright (c) 2005 Cisco Systems.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/string.h>
40 #include <linux/parser.h>
41 #include <linux/random.h>
42 #include <linux/jiffies.h>
43 #include <linux/lockdep.h>
44 #include <linux/inet.h>
45 #include <rdma/ib_cache.h>
46
47 #include <linux/atomic.h>
48
49 #include <scsi/scsi.h>
50 #include <scsi/scsi_device.h>
51 #include <scsi/scsi_dbg.h>
52 #include <scsi/scsi_tcq.h>
53 #include <scsi/srp.h>
54 #include <scsi/scsi_transport_srp.h>
55
56 #include "ib_srp.h"
57
58 #define DRV_NAME        "ib_srp"
59 #define PFX             DRV_NAME ": "
60
61 MODULE_AUTHOR("Roland Dreier");
62 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol initiator");
63 MODULE_LICENSE("Dual BSD/GPL");
64
65 #if !defined(CONFIG_DYNAMIC_DEBUG)
66 #define DEFINE_DYNAMIC_DEBUG_METADATA(name, fmt)
67 #define DYNAMIC_DEBUG_BRANCH(descriptor) false
68 #endif
69
70 static unsigned int srp_sg_tablesize;
71 static unsigned int cmd_sg_entries;
72 static unsigned int indirect_sg_entries;
73 static bool allow_ext_sg;
74 static bool prefer_fr = true;
75 static bool register_always = true;
76 static bool never_register;
77 static int topspin_workarounds = 1;
78
79 module_param(srp_sg_tablesize, uint, 0444);
80 MODULE_PARM_DESC(srp_sg_tablesize, "Deprecated name for cmd_sg_entries");
81
82 module_param(cmd_sg_entries, uint, 0444);
83 MODULE_PARM_DESC(cmd_sg_entries,
84                  "Default number of gather/scatter entries in the SRP command (default is 12, max 255)");
85
86 module_param(indirect_sg_entries, uint, 0444);
87 MODULE_PARM_DESC(indirect_sg_entries,
88                  "Default max number of gather/scatter entries (default is 12, max is " __stringify(SG_MAX_SEGMENTS) ")");
89
90 module_param(allow_ext_sg, bool, 0444);
91 MODULE_PARM_DESC(allow_ext_sg,
92                   "Default behavior when there are more than cmd_sg_entries S/G entries after mapping; fails the request when false (default false)");
93
94 module_param(topspin_workarounds, int, 0444);
95 MODULE_PARM_DESC(topspin_workarounds,
96                  "Enable workarounds for Topspin/Cisco SRP target bugs if != 0");
97
98 module_param(prefer_fr, bool, 0444);
99 MODULE_PARM_DESC(prefer_fr,
100 "Whether to use fast registration if both FMR and fast registration are supported");
101
102 module_param(register_always, bool, 0444);
103 MODULE_PARM_DESC(register_always,
104                  "Use memory registration even for contiguous memory regions");
105
106 module_param(never_register, bool, 0444);
107 MODULE_PARM_DESC(never_register, "Never register memory");
108
109 static const struct kernel_param_ops srp_tmo_ops;
110
111 static int srp_reconnect_delay = 10;
112 module_param_cb(reconnect_delay, &srp_tmo_ops, &srp_reconnect_delay,
113                 S_IRUGO | S_IWUSR);
114 MODULE_PARM_DESC(reconnect_delay, "Time between successive reconnect attempts");
115
116 static int srp_fast_io_fail_tmo = 15;
117 module_param_cb(fast_io_fail_tmo, &srp_tmo_ops, &srp_fast_io_fail_tmo,
118                 S_IRUGO | S_IWUSR);
119 MODULE_PARM_DESC(fast_io_fail_tmo,
120                  "Number of seconds between the observation of a transport"
121                  " layer error and failing all I/O. \"off\" means that this"
122                  " functionality is disabled.");
123
124 static int srp_dev_loss_tmo = 600;
125 module_param_cb(dev_loss_tmo, &srp_tmo_ops, &srp_dev_loss_tmo,
126                 S_IRUGO | S_IWUSR);
127 MODULE_PARM_DESC(dev_loss_tmo,
128                  "Maximum number of seconds that the SRP transport should"
129                  " insulate transport layer errors. After this time has been"
130                  " exceeded the SCSI host is removed. Should be"
131                  " between 1 and " __stringify(SCSI_DEVICE_BLOCK_MAX_TIMEOUT)
132                  " if fast_io_fail_tmo has not been set. \"off\" means that"
133                  " this functionality is disabled.");
134
135 static bool srp_use_imm_data = true;
136 module_param_named(use_imm_data, srp_use_imm_data, bool, 0644);
137 MODULE_PARM_DESC(use_imm_data,
138                  "Whether or not to request permission to use immediate data during SRP login.");
139
140 static unsigned int srp_max_imm_data = 8 * 1024;
141 module_param_named(max_imm_data, srp_max_imm_data, uint, 0644);
142 MODULE_PARM_DESC(max_imm_data, "Maximum immediate data size.");
143
144 static unsigned ch_count;
145 module_param(ch_count, uint, 0444);
146 MODULE_PARM_DESC(ch_count,
147                  "Number of RDMA channels to use for communication with an SRP target. Using more than one channel improves performance if the HCA supports multiple completion vectors. The default value is the minimum of four times the number of online CPU sockets and the number of completion vectors supported by the HCA.");
148
149 static int srp_add_one(struct ib_device *device);
150 static void srp_remove_one(struct ib_device *device, void *client_data);
151 static void srp_rename_dev(struct ib_device *device, void *client_data);
152 static void srp_recv_done(struct ib_cq *cq, struct ib_wc *wc);
153 static void srp_handle_qp_err(struct ib_cq *cq, struct ib_wc *wc,
154                 const char *opname);
155 static int srp_ib_cm_handler(struct ib_cm_id *cm_id,
156                              const struct ib_cm_event *event);
157 static int srp_rdma_cm_handler(struct rdma_cm_id *cm_id,
158                                struct rdma_cm_event *event);
159
160 static struct scsi_transport_template *ib_srp_transport_template;
161 static struct workqueue_struct *srp_remove_wq;
162
163 static struct ib_client srp_client = {
164         .name   = "srp",
165         .add    = srp_add_one,
166         .remove = srp_remove_one,
167         .rename = srp_rename_dev
168 };
169
170 static struct ib_sa_client srp_sa_client;
171
172 static int srp_tmo_get(char *buffer, const struct kernel_param *kp)
173 {
174         int tmo = *(int *)kp->arg;
175
176         if (tmo >= 0)
177                 return sprintf(buffer, "%d\n", tmo);
178         else
179                 return sprintf(buffer, "off\n");
180 }
181
182 static int srp_tmo_set(const char *val, const struct kernel_param *kp)
183 {
184         int tmo, res;
185
186         res = srp_parse_tmo(&tmo, val);
187         if (res)
188                 goto out;
189
190         if (kp->arg == &srp_reconnect_delay)
191                 res = srp_tmo_valid(tmo, srp_fast_io_fail_tmo,
192                                     srp_dev_loss_tmo);
193         else if (kp->arg == &srp_fast_io_fail_tmo)
194                 res = srp_tmo_valid(srp_reconnect_delay, tmo, srp_dev_loss_tmo);
195         else
196                 res = srp_tmo_valid(srp_reconnect_delay, srp_fast_io_fail_tmo,
197                                     tmo);
198         if (res)
199                 goto out;
200         *(int *)kp->arg = tmo;
201
202 out:
203         return res;
204 }
205
206 static const struct kernel_param_ops srp_tmo_ops = {
207         .get = srp_tmo_get,
208         .set = srp_tmo_set,
209 };
210
211 static inline struct srp_target_port *host_to_target(struct Scsi_Host *host)
212 {
213         return (struct srp_target_port *) host->hostdata;
214 }
215
216 static const char *srp_target_info(struct Scsi_Host *host)
217 {
218         return host_to_target(host)->target_name;
219 }
220
221 static int srp_target_is_topspin(struct srp_target_port *target)
222 {
223         static const u8 topspin_oui[3] = { 0x00, 0x05, 0xad };
224         static const u8 cisco_oui[3]   = { 0x00, 0x1b, 0x0d };
225
226         return topspin_workarounds &&
227                 (!memcmp(&target->ioc_guid, topspin_oui, sizeof topspin_oui) ||
228                  !memcmp(&target->ioc_guid, cisco_oui, sizeof cisco_oui));
229 }
230
231 static struct srp_iu *srp_alloc_iu(struct srp_host *host, size_t size,
232                                    gfp_t gfp_mask,
233                                    enum dma_data_direction direction)
234 {
235         struct srp_iu *iu;
236
237         iu = kmalloc(sizeof *iu, gfp_mask);
238         if (!iu)
239                 goto out;
240
241         iu->buf = kzalloc(size, gfp_mask);
242         if (!iu->buf)
243                 goto out_free_iu;
244
245         iu->dma = ib_dma_map_single(host->srp_dev->dev, iu->buf, size,
246                                     direction);
247         if (ib_dma_mapping_error(host->srp_dev->dev, iu->dma))
248                 goto out_free_buf;
249
250         iu->size      = size;
251         iu->direction = direction;
252
253         return iu;
254
255 out_free_buf:
256         kfree(iu->buf);
257 out_free_iu:
258         kfree(iu);
259 out:
260         return NULL;
261 }
262
263 static void srp_free_iu(struct srp_host *host, struct srp_iu *iu)
264 {
265         if (!iu)
266                 return;
267
268         ib_dma_unmap_single(host->srp_dev->dev, iu->dma, iu->size,
269                             iu->direction);
270         kfree(iu->buf);
271         kfree(iu);
272 }
273
274 static void srp_qp_event(struct ib_event *event, void *context)
275 {
276         pr_debug("QP event %s (%d)\n",
277                  ib_event_msg(event->event), event->event);
278 }
279
280 static int srp_init_ib_qp(struct srp_target_port *target,
281                           struct ib_qp *qp)
282 {
283         struct ib_qp_attr *attr;
284         int ret;
285
286         attr = kmalloc(sizeof *attr, GFP_KERNEL);
287         if (!attr)
288                 return -ENOMEM;
289
290         ret = ib_find_cached_pkey(target->srp_host->srp_dev->dev,
291                                   target->srp_host->port,
292                                   be16_to_cpu(target->ib_cm.pkey),
293                                   &attr->pkey_index);
294         if (ret)
295                 goto out;
296
297         attr->qp_state        = IB_QPS_INIT;
298         attr->qp_access_flags = (IB_ACCESS_REMOTE_READ |
299                                     IB_ACCESS_REMOTE_WRITE);
300         attr->port_num        = target->srp_host->port;
301
302         ret = ib_modify_qp(qp, attr,
303                            IB_QP_STATE          |
304                            IB_QP_PKEY_INDEX     |
305                            IB_QP_ACCESS_FLAGS   |
306                            IB_QP_PORT);
307
308 out:
309         kfree(attr);
310         return ret;
311 }
312
313 static int srp_new_ib_cm_id(struct srp_rdma_ch *ch)
314 {
315         struct srp_target_port *target = ch->target;
316         struct ib_cm_id *new_cm_id;
317
318         new_cm_id = ib_create_cm_id(target->srp_host->srp_dev->dev,
319                                     srp_ib_cm_handler, ch);
320         if (IS_ERR(new_cm_id))
321                 return PTR_ERR(new_cm_id);
322
323         if (ch->ib_cm.cm_id)
324                 ib_destroy_cm_id(ch->ib_cm.cm_id);
325         ch->ib_cm.cm_id = new_cm_id;
326         if (rdma_cap_opa_ah(target->srp_host->srp_dev->dev,
327                             target->srp_host->port))
328                 ch->ib_cm.path.rec_type = SA_PATH_REC_TYPE_OPA;
329         else
330                 ch->ib_cm.path.rec_type = SA_PATH_REC_TYPE_IB;
331         ch->ib_cm.path.sgid = target->sgid;
332         ch->ib_cm.path.dgid = target->ib_cm.orig_dgid;
333         ch->ib_cm.path.pkey = target->ib_cm.pkey;
334         ch->ib_cm.path.service_id = target->ib_cm.service_id;
335
336         return 0;
337 }
338
339 static int srp_new_rdma_cm_id(struct srp_rdma_ch *ch)
340 {
341         struct srp_target_port *target = ch->target;
342         struct rdma_cm_id *new_cm_id;
343         int ret;
344
345         new_cm_id = rdma_create_id(target->net, srp_rdma_cm_handler, ch,
346                                    RDMA_PS_TCP, IB_QPT_RC);
347         if (IS_ERR(new_cm_id)) {
348                 ret = PTR_ERR(new_cm_id);
349                 new_cm_id = NULL;
350                 goto out;
351         }
352
353         init_completion(&ch->done);
354         ret = rdma_resolve_addr(new_cm_id, target->rdma_cm.src_specified ?
355                                 &target->rdma_cm.src.sa : NULL,
356                                 &target->rdma_cm.dst.sa,
357                                 SRP_PATH_REC_TIMEOUT_MS);
358         if (ret) {
359                 pr_err("No route available from %pISpsc to %pISpsc (%d)\n",
360                        &target->rdma_cm.src, &target->rdma_cm.dst, ret);
361                 goto out;
362         }
363         ret = wait_for_completion_interruptible(&ch->done);
364         if (ret < 0)
365                 goto out;
366
367         ret = ch->status;
368         if (ret) {
369                 pr_err("Resolving address %pISpsc failed (%d)\n",
370                        &target->rdma_cm.dst, ret);
371                 goto out;
372         }
373
374         swap(ch->rdma_cm.cm_id, new_cm_id);
375
376 out:
377         if (new_cm_id)
378                 rdma_destroy_id(new_cm_id);
379
380         return ret;
381 }
382
383 static int srp_new_cm_id(struct srp_rdma_ch *ch)
384 {
385         struct srp_target_port *target = ch->target;
386
387         return target->using_rdma_cm ? srp_new_rdma_cm_id(ch) :
388                 srp_new_ib_cm_id(ch);
389 }
390
391 static struct ib_fmr_pool *srp_alloc_fmr_pool(struct srp_target_port *target)
392 {
393         struct srp_device *dev = target->srp_host->srp_dev;
394         struct ib_fmr_pool_param fmr_param;
395
396         memset(&fmr_param, 0, sizeof(fmr_param));
397         fmr_param.pool_size         = target->mr_pool_size;
398         fmr_param.dirty_watermark   = fmr_param.pool_size / 4;
399         fmr_param.cache             = 1;
400         fmr_param.max_pages_per_fmr = dev->max_pages_per_mr;
401         fmr_param.page_shift        = ilog2(dev->mr_page_size);
402         fmr_param.access            = (IB_ACCESS_LOCAL_WRITE |
403                                        IB_ACCESS_REMOTE_WRITE |
404                                        IB_ACCESS_REMOTE_READ);
405
406         return ib_create_fmr_pool(dev->pd, &fmr_param);
407 }
408
409 /**
410  * srp_destroy_fr_pool() - free the resources owned by a pool
411  * @pool: Fast registration pool to be destroyed.
412  */
413 static void srp_destroy_fr_pool(struct srp_fr_pool *pool)
414 {
415         int i;
416         struct srp_fr_desc *d;
417
418         if (!pool)
419                 return;
420
421         for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) {
422                 if (d->mr)
423                         ib_dereg_mr(d->mr);
424         }
425         kfree(pool);
426 }
427
428 /**
429  * srp_create_fr_pool() - allocate and initialize a pool for fast registration
430  * @device:            IB device to allocate fast registration descriptors for.
431  * @pd:                Protection domain associated with the FR descriptors.
432  * @pool_size:         Number of descriptors to allocate.
433  * @max_page_list_len: Maximum fast registration work request page list length.
434  */
435 static struct srp_fr_pool *srp_create_fr_pool(struct ib_device *device,
436                                               struct ib_pd *pd, int pool_size,
437                                               int max_page_list_len)
438 {
439         struct srp_fr_pool *pool;
440         struct srp_fr_desc *d;
441         struct ib_mr *mr;
442         int i, ret = -EINVAL;
443         enum ib_mr_type mr_type;
444
445         if (pool_size <= 0)
446                 goto err;
447         ret = -ENOMEM;
448         pool = kzalloc(struct_size(pool, desc, pool_size), GFP_KERNEL);
449         if (!pool)
450                 goto err;
451         pool->size = pool_size;
452         pool->max_page_list_len = max_page_list_len;
453         spin_lock_init(&pool->lock);
454         INIT_LIST_HEAD(&pool->free_list);
455
456         if (device->attrs.device_cap_flags & IB_DEVICE_SG_GAPS_REG)
457                 mr_type = IB_MR_TYPE_SG_GAPS;
458         else
459                 mr_type = IB_MR_TYPE_MEM_REG;
460
461         for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) {
462                 mr = ib_alloc_mr(pd, mr_type, max_page_list_len);
463                 if (IS_ERR(mr)) {
464                         ret = PTR_ERR(mr);
465                         if (ret == -ENOMEM)
466                                 pr_info("%s: ib_alloc_mr() failed. Try to reduce max_cmd_per_lun, max_sect or ch_count\n",
467                                         dev_name(&device->dev));
468                         goto destroy_pool;
469                 }
470                 d->mr = mr;
471                 list_add_tail(&d->entry, &pool->free_list);
472         }
473
474 out:
475         return pool;
476
477 destroy_pool:
478         srp_destroy_fr_pool(pool);
479
480 err:
481         pool = ERR_PTR(ret);
482         goto out;
483 }
484
485 /**
486  * srp_fr_pool_get() - obtain a descriptor suitable for fast registration
487  * @pool: Pool to obtain descriptor from.
488  */
489 static struct srp_fr_desc *srp_fr_pool_get(struct srp_fr_pool *pool)
490 {
491         struct srp_fr_desc *d = NULL;
492         unsigned long flags;
493
494         spin_lock_irqsave(&pool->lock, flags);
495         if (!list_empty(&pool->free_list)) {
496                 d = list_first_entry(&pool->free_list, typeof(*d), entry);
497                 list_del(&d->entry);
498         }
499         spin_unlock_irqrestore(&pool->lock, flags);
500
501         return d;
502 }
503
504 /**
505  * srp_fr_pool_put() - put an FR descriptor back in the free list
506  * @pool: Pool the descriptor was allocated from.
507  * @desc: Pointer to an array of fast registration descriptor pointers.
508  * @n:    Number of descriptors to put back.
509  *
510  * Note: The caller must already have queued an invalidation request for
511  * desc->mr->rkey before calling this function.
512  */
513 static void srp_fr_pool_put(struct srp_fr_pool *pool, struct srp_fr_desc **desc,
514                             int n)
515 {
516         unsigned long flags;
517         int i;
518
519         spin_lock_irqsave(&pool->lock, flags);
520         for (i = 0; i < n; i++)
521                 list_add(&desc[i]->entry, &pool->free_list);
522         spin_unlock_irqrestore(&pool->lock, flags);
523 }
524
525 static struct srp_fr_pool *srp_alloc_fr_pool(struct srp_target_port *target)
526 {
527         struct srp_device *dev = target->srp_host->srp_dev;
528
529         return srp_create_fr_pool(dev->dev, dev->pd, target->mr_pool_size,
530                                   dev->max_pages_per_mr);
531 }
532
533 /**
534  * srp_destroy_qp() - destroy an RDMA queue pair
535  * @ch: SRP RDMA channel.
536  *
537  * Drain the qp before destroying it.  This avoids that the receive
538  * completion handler can access the queue pair while it is
539  * being destroyed.
540  */
541 static void srp_destroy_qp(struct srp_rdma_ch *ch)
542 {
543         spin_lock_irq(&ch->lock);
544         ib_process_cq_direct(ch->send_cq, -1);
545         spin_unlock_irq(&ch->lock);
546
547         ib_drain_qp(ch->qp);
548         ib_destroy_qp(ch->qp);
549 }
550
551 static int srp_create_ch_ib(struct srp_rdma_ch *ch)
552 {
553         struct srp_target_port *target = ch->target;
554         struct srp_device *dev = target->srp_host->srp_dev;
555         const struct ib_device_attr *attr = &dev->dev->attrs;
556         struct ib_qp_init_attr *init_attr;
557         struct ib_cq *recv_cq, *send_cq;
558         struct ib_qp *qp;
559         struct ib_fmr_pool *fmr_pool = NULL;
560         struct srp_fr_pool *fr_pool = NULL;
561         const int m = 1 + dev->use_fast_reg * target->mr_per_cmd * 2;
562         int ret;
563
564         init_attr = kzalloc(sizeof *init_attr, GFP_KERNEL);
565         if (!init_attr)
566                 return -ENOMEM;
567
568         /* queue_size + 1 for ib_drain_rq() */
569         recv_cq = ib_alloc_cq(dev->dev, ch, target->queue_size + 1,
570                                 ch->comp_vector, IB_POLL_SOFTIRQ);
571         if (IS_ERR(recv_cq)) {
572                 ret = PTR_ERR(recv_cq);
573                 goto err;
574         }
575
576         send_cq = ib_alloc_cq(dev->dev, ch, m * target->queue_size,
577                                 ch->comp_vector, IB_POLL_DIRECT);
578         if (IS_ERR(send_cq)) {
579                 ret = PTR_ERR(send_cq);
580                 goto err_recv_cq;
581         }
582
583         init_attr->event_handler       = srp_qp_event;
584         init_attr->cap.max_send_wr     = m * target->queue_size;
585         init_attr->cap.max_recv_wr     = target->queue_size + 1;
586         init_attr->cap.max_recv_sge    = 1;
587         init_attr->cap.max_send_sge    = min(SRP_MAX_SGE, attr->max_send_sge);
588         init_attr->sq_sig_type         = IB_SIGNAL_REQ_WR;
589         init_attr->qp_type             = IB_QPT_RC;
590         init_attr->send_cq             = send_cq;
591         init_attr->recv_cq             = recv_cq;
592
593         ch->max_imm_sge = min(init_attr->cap.max_send_sge - 1U, 255U);
594
595         if (target->using_rdma_cm) {
596                 ret = rdma_create_qp(ch->rdma_cm.cm_id, dev->pd, init_attr);
597                 qp = ch->rdma_cm.cm_id->qp;
598         } else {
599                 qp = ib_create_qp(dev->pd, init_attr);
600                 if (!IS_ERR(qp)) {
601                         ret = srp_init_ib_qp(target, qp);
602                         if (ret)
603                                 ib_destroy_qp(qp);
604                 } else {
605                         ret = PTR_ERR(qp);
606                 }
607         }
608         if (ret) {
609                 pr_err("QP creation failed for dev %s: %d\n",
610                        dev_name(&dev->dev->dev), ret);
611                 goto err_send_cq;
612         }
613
614         if (dev->use_fast_reg) {
615                 fr_pool = srp_alloc_fr_pool(target);
616                 if (IS_ERR(fr_pool)) {
617                         ret = PTR_ERR(fr_pool);
618                         shost_printk(KERN_WARNING, target->scsi_host, PFX
619                                      "FR pool allocation failed (%d)\n", ret);
620                         goto err_qp;
621                 }
622         } else if (dev->use_fmr) {
623                 fmr_pool = srp_alloc_fmr_pool(target);
624                 if (IS_ERR(fmr_pool)) {
625                         ret = PTR_ERR(fmr_pool);
626                         shost_printk(KERN_WARNING, target->scsi_host, PFX
627                                      "FMR pool allocation failed (%d)\n", ret);
628                         goto err_qp;
629                 }
630         }
631
632         if (ch->qp)
633                 srp_destroy_qp(ch);
634         if (ch->recv_cq)
635                 ib_free_cq(ch->recv_cq);
636         if (ch->send_cq)
637                 ib_free_cq(ch->send_cq);
638
639         ch->qp = qp;
640         ch->recv_cq = recv_cq;
641         ch->send_cq = send_cq;
642
643         if (dev->use_fast_reg) {
644                 if (ch->fr_pool)
645                         srp_destroy_fr_pool(ch->fr_pool);
646                 ch->fr_pool = fr_pool;
647         } else if (dev->use_fmr) {
648                 if (ch->fmr_pool)
649                         ib_destroy_fmr_pool(ch->fmr_pool);
650                 ch->fmr_pool = fmr_pool;
651         }
652
653         kfree(init_attr);
654         return 0;
655
656 err_qp:
657         if (target->using_rdma_cm)
658                 rdma_destroy_qp(ch->rdma_cm.cm_id);
659         else
660                 ib_destroy_qp(qp);
661
662 err_send_cq:
663         ib_free_cq(send_cq);
664
665 err_recv_cq:
666         ib_free_cq(recv_cq);
667
668 err:
669         kfree(init_attr);
670         return ret;
671 }
672
673 /*
674  * Note: this function may be called without srp_alloc_iu_bufs() having been
675  * invoked. Hence the ch->[rt]x_ring checks.
676  */
677 static void srp_free_ch_ib(struct srp_target_port *target,
678                            struct srp_rdma_ch *ch)
679 {
680         struct srp_device *dev = target->srp_host->srp_dev;
681         int i;
682
683         if (!ch->target)
684                 return;
685
686         if (target->using_rdma_cm) {
687                 if (ch->rdma_cm.cm_id) {
688                         rdma_destroy_id(ch->rdma_cm.cm_id);
689                         ch->rdma_cm.cm_id = NULL;
690                 }
691         } else {
692                 if (ch->ib_cm.cm_id) {
693                         ib_destroy_cm_id(ch->ib_cm.cm_id);
694                         ch->ib_cm.cm_id = NULL;
695                 }
696         }
697
698         /* If srp_new_cm_id() succeeded but srp_create_ch_ib() not, return. */
699         if (!ch->qp)
700                 return;
701
702         if (dev->use_fast_reg) {
703                 if (ch->fr_pool)
704                         srp_destroy_fr_pool(ch->fr_pool);
705         } else if (dev->use_fmr) {
706                 if (ch->fmr_pool)
707                         ib_destroy_fmr_pool(ch->fmr_pool);
708         }
709
710         srp_destroy_qp(ch);
711         ib_free_cq(ch->send_cq);
712         ib_free_cq(ch->recv_cq);
713
714         /*
715          * Avoid that the SCSI error handler tries to use this channel after
716          * it has been freed. The SCSI error handler can namely continue
717          * trying to perform recovery actions after scsi_remove_host()
718          * returned.
719          */
720         ch->target = NULL;
721
722         ch->qp = NULL;
723         ch->send_cq = ch->recv_cq = NULL;
724
725         if (ch->rx_ring) {
726                 for (i = 0; i < target->queue_size; ++i)
727                         srp_free_iu(target->srp_host, ch->rx_ring[i]);
728                 kfree(ch->rx_ring);
729                 ch->rx_ring = NULL;
730         }
731         if (ch->tx_ring) {
732                 for (i = 0; i < target->queue_size; ++i)
733                         srp_free_iu(target->srp_host, ch->tx_ring[i]);
734                 kfree(ch->tx_ring);
735                 ch->tx_ring = NULL;
736         }
737 }
738
739 static void srp_path_rec_completion(int status,
740                                     struct sa_path_rec *pathrec,
741                                     void *ch_ptr)
742 {
743         struct srp_rdma_ch *ch = ch_ptr;
744         struct srp_target_port *target = ch->target;
745
746         ch->status = status;
747         if (status)
748                 shost_printk(KERN_ERR, target->scsi_host,
749                              PFX "Got failed path rec status %d\n", status);
750         else
751                 ch->ib_cm.path = *pathrec;
752         complete(&ch->done);
753 }
754
755 static int srp_ib_lookup_path(struct srp_rdma_ch *ch)
756 {
757         struct srp_target_port *target = ch->target;
758         int ret;
759
760         ch->ib_cm.path.numb_path = 1;
761
762         init_completion(&ch->done);
763
764         ch->ib_cm.path_query_id = ib_sa_path_rec_get(&srp_sa_client,
765                                                target->srp_host->srp_dev->dev,
766                                                target->srp_host->port,
767                                                &ch->ib_cm.path,
768                                                IB_SA_PATH_REC_SERVICE_ID |
769                                                IB_SA_PATH_REC_DGID       |
770                                                IB_SA_PATH_REC_SGID       |
771                                                IB_SA_PATH_REC_NUMB_PATH  |
772                                                IB_SA_PATH_REC_PKEY,
773                                                SRP_PATH_REC_TIMEOUT_MS,
774                                                GFP_KERNEL,
775                                                srp_path_rec_completion,
776                                                ch, &ch->ib_cm.path_query);
777         if (ch->ib_cm.path_query_id < 0)
778                 return ch->ib_cm.path_query_id;
779
780         ret = wait_for_completion_interruptible(&ch->done);
781         if (ret < 0)
782                 return ret;
783
784         if (ch->status < 0)
785                 shost_printk(KERN_WARNING, target->scsi_host,
786                              PFX "Path record query failed: sgid %pI6, dgid %pI6, pkey %#04x, service_id %#16llx\n",
787                              ch->ib_cm.path.sgid.raw, ch->ib_cm.path.dgid.raw,
788                              be16_to_cpu(target->ib_cm.pkey),
789                              be64_to_cpu(target->ib_cm.service_id));
790
791         return ch->status;
792 }
793
794 static int srp_rdma_lookup_path(struct srp_rdma_ch *ch)
795 {
796         struct srp_target_port *target = ch->target;
797         int ret;
798
799         init_completion(&ch->done);
800
801         ret = rdma_resolve_route(ch->rdma_cm.cm_id, SRP_PATH_REC_TIMEOUT_MS);
802         if (ret)
803                 return ret;
804
805         wait_for_completion_interruptible(&ch->done);
806
807         if (ch->status != 0)
808                 shost_printk(KERN_WARNING, target->scsi_host,
809                              PFX "Path resolution failed\n");
810
811         return ch->status;
812 }
813
814 static int srp_lookup_path(struct srp_rdma_ch *ch)
815 {
816         struct srp_target_port *target = ch->target;
817
818         return target->using_rdma_cm ? srp_rdma_lookup_path(ch) :
819                 srp_ib_lookup_path(ch);
820 }
821
822 static u8 srp_get_subnet_timeout(struct srp_host *host)
823 {
824         struct ib_port_attr attr;
825         int ret;
826         u8 subnet_timeout = 18;
827
828         ret = ib_query_port(host->srp_dev->dev, host->port, &attr);
829         if (ret == 0)
830                 subnet_timeout = attr.subnet_timeout;
831
832         if (unlikely(subnet_timeout < 15))
833                 pr_warn("%s: subnet timeout %d may cause SRP login to fail.\n",
834                         dev_name(&host->srp_dev->dev->dev), subnet_timeout);
835
836         return subnet_timeout;
837 }
838
839 static int srp_send_req(struct srp_rdma_ch *ch, uint32_t max_iu_len,
840                         bool multich)
841 {
842         struct srp_target_port *target = ch->target;
843         struct {
844                 struct rdma_conn_param    rdma_param;
845                 struct srp_login_req_rdma rdma_req;
846                 struct ib_cm_req_param    ib_param;
847                 struct srp_login_req      ib_req;
848         } *req = NULL;
849         char *ipi, *tpi;
850         int status;
851
852         req = kzalloc(sizeof *req, GFP_KERNEL);
853         if (!req)
854                 return -ENOMEM;
855
856         req->ib_param.flow_control = 1;
857         req->ib_param.retry_count = target->tl_retry_count;
858
859         /*
860          * Pick some arbitrary defaults here; we could make these
861          * module parameters if anyone cared about setting them.
862          */
863         req->ib_param.responder_resources = 4;
864         req->ib_param.rnr_retry_count = 7;
865         req->ib_param.max_cm_retries = 15;
866
867         req->ib_req.opcode = SRP_LOGIN_REQ;
868         req->ib_req.tag = 0;
869         req->ib_req.req_it_iu_len = cpu_to_be32(max_iu_len);
870         req->ib_req.req_buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
871                                               SRP_BUF_FORMAT_INDIRECT);
872         req->ib_req.req_flags = (multich ? SRP_MULTICHAN_MULTI :
873                                  SRP_MULTICHAN_SINGLE);
874         if (srp_use_imm_data) {
875                 req->ib_req.req_flags |= SRP_IMMED_REQUESTED;
876                 req->ib_req.imm_data_offset = cpu_to_be16(SRP_IMM_DATA_OFFSET);
877         }
878
879         if (target->using_rdma_cm) {
880                 req->rdma_param.flow_control = req->ib_param.flow_control;
881                 req->rdma_param.responder_resources =
882                         req->ib_param.responder_resources;
883                 req->rdma_param.initiator_depth = req->ib_param.initiator_depth;
884                 req->rdma_param.retry_count = req->ib_param.retry_count;
885                 req->rdma_param.rnr_retry_count = req->ib_param.rnr_retry_count;
886                 req->rdma_param.private_data = &req->rdma_req;
887                 req->rdma_param.private_data_len = sizeof(req->rdma_req);
888
889                 req->rdma_req.opcode = req->ib_req.opcode;
890                 req->rdma_req.tag = req->ib_req.tag;
891                 req->rdma_req.req_it_iu_len = req->ib_req.req_it_iu_len;
892                 req->rdma_req.req_buf_fmt = req->ib_req.req_buf_fmt;
893                 req->rdma_req.req_flags = req->ib_req.req_flags;
894                 req->rdma_req.imm_data_offset = req->ib_req.imm_data_offset;
895
896                 ipi = req->rdma_req.initiator_port_id;
897                 tpi = req->rdma_req.target_port_id;
898         } else {
899                 u8 subnet_timeout;
900
901                 subnet_timeout = srp_get_subnet_timeout(target->srp_host);
902
903                 req->ib_param.primary_path = &ch->ib_cm.path;
904                 req->ib_param.alternate_path = NULL;
905                 req->ib_param.service_id = target->ib_cm.service_id;
906                 get_random_bytes(&req->ib_param.starting_psn, 4);
907                 req->ib_param.starting_psn &= 0xffffff;
908                 req->ib_param.qp_num = ch->qp->qp_num;
909                 req->ib_param.qp_type = ch->qp->qp_type;
910                 req->ib_param.local_cm_response_timeout = subnet_timeout + 2;
911                 req->ib_param.remote_cm_response_timeout = subnet_timeout + 2;
912                 req->ib_param.private_data = &req->ib_req;
913                 req->ib_param.private_data_len = sizeof(req->ib_req);
914
915                 ipi = req->ib_req.initiator_port_id;
916                 tpi = req->ib_req.target_port_id;
917         }
918
919         /*
920          * In the published SRP specification (draft rev. 16a), the
921          * port identifier format is 8 bytes of ID extension followed
922          * by 8 bytes of GUID.  Older drafts put the two halves in the
923          * opposite order, so that the GUID comes first.
924          *
925          * Targets conforming to these obsolete drafts can be
926          * recognized by the I/O Class they report.
927          */
928         if (target->io_class == SRP_REV10_IB_IO_CLASS) {
929                 memcpy(ipi,     &target->sgid.global.interface_id, 8);
930                 memcpy(ipi + 8, &target->initiator_ext, 8);
931                 memcpy(tpi,     &target->ioc_guid, 8);
932                 memcpy(tpi + 8, &target->id_ext, 8);
933         } else {
934                 memcpy(ipi,     &target->initiator_ext, 8);
935                 memcpy(ipi + 8, &target->sgid.global.interface_id, 8);
936                 memcpy(tpi,     &target->id_ext, 8);
937                 memcpy(tpi + 8, &target->ioc_guid, 8);
938         }
939
940         /*
941          * Topspin/Cisco SRP targets will reject our login unless we
942          * zero out the first 8 bytes of our initiator port ID and set
943          * the second 8 bytes to the local node GUID.
944          */
945         if (srp_target_is_topspin(target)) {
946                 shost_printk(KERN_DEBUG, target->scsi_host,
947                              PFX "Topspin/Cisco initiator port ID workaround "
948                              "activated for target GUID %016llx\n",
949                              be64_to_cpu(target->ioc_guid));
950                 memset(ipi, 0, 8);
951                 memcpy(ipi + 8, &target->srp_host->srp_dev->dev->node_guid, 8);
952         }
953
954         if (target->using_rdma_cm)
955                 status = rdma_connect(ch->rdma_cm.cm_id, &req->rdma_param);
956         else
957                 status = ib_send_cm_req(ch->ib_cm.cm_id, &req->ib_param);
958
959         kfree(req);
960
961         return status;
962 }
963
964 static bool srp_queue_remove_work(struct srp_target_port *target)
965 {
966         bool changed = false;
967
968         spin_lock_irq(&target->lock);
969         if (target->state != SRP_TARGET_REMOVED) {
970                 target->state = SRP_TARGET_REMOVED;
971                 changed = true;
972         }
973         spin_unlock_irq(&target->lock);
974
975         if (changed)
976                 queue_work(srp_remove_wq, &target->remove_work);
977
978         return changed;
979 }
980
981 static void srp_disconnect_target(struct srp_target_port *target)
982 {
983         struct srp_rdma_ch *ch;
984         int i, ret;
985
986         /* XXX should send SRP_I_LOGOUT request */
987
988         for (i = 0; i < target->ch_count; i++) {
989                 ch = &target->ch[i];
990                 ch->connected = false;
991                 ret = 0;
992                 if (target->using_rdma_cm) {
993                         if (ch->rdma_cm.cm_id)
994                                 rdma_disconnect(ch->rdma_cm.cm_id);
995                 } else {
996                         if (ch->ib_cm.cm_id)
997                                 ret = ib_send_cm_dreq(ch->ib_cm.cm_id,
998                                                       NULL, 0);
999                 }
1000                 if (ret < 0) {
1001                         shost_printk(KERN_DEBUG, target->scsi_host,
1002                                      PFX "Sending CM DREQ failed\n");
1003                 }
1004         }
1005 }
1006
1007 static void srp_free_req_data(struct srp_target_port *target,
1008                               struct srp_rdma_ch *ch)
1009 {
1010         struct srp_device *dev = target->srp_host->srp_dev;
1011         struct ib_device *ibdev = dev->dev;
1012         struct srp_request *req;
1013         int i;
1014
1015         if (!ch->req_ring)
1016                 return;
1017
1018         for (i = 0; i < target->req_ring_size; ++i) {
1019                 req = &ch->req_ring[i];
1020                 if (dev->use_fast_reg) {
1021                         kfree(req->fr_list);
1022                 } else {
1023                         kfree(req->fmr_list);
1024                         kfree(req->map_page);
1025                 }
1026                 if (req->indirect_dma_addr) {
1027                         ib_dma_unmap_single(ibdev, req->indirect_dma_addr,
1028                                             target->indirect_size,
1029                                             DMA_TO_DEVICE);
1030                 }
1031                 kfree(req->indirect_desc);
1032         }
1033
1034         kfree(ch->req_ring);
1035         ch->req_ring = NULL;
1036 }
1037
1038 static int srp_alloc_req_data(struct srp_rdma_ch *ch)
1039 {
1040         struct srp_target_port *target = ch->target;
1041         struct srp_device *srp_dev = target->srp_host->srp_dev;
1042         struct ib_device *ibdev = srp_dev->dev;
1043         struct srp_request *req;
1044         void *mr_list;
1045         dma_addr_t dma_addr;
1046         int i, ret = -ENOMEM;
1047
1048         ch->req_ring = kcalloc(target->req_ring_size, sizeof(*ch->req_ring),
1049                                GFP_KERNEL);
1050         if (!ch->req_ring)
1051                 goto out;
1052
1053         for (i = 0; i < target->req_ring_size; ++i) {
1054                 req = &ch->req_ring[i];
1055                 mr_list = kmalloc_array(target->mr_per_cmd, sizeof(void *),
1056                                         GFP_KERNEL);
1057                 if (!mr_list)
1058                         goto out;
1059                 if (srp_dev->use_fast_reg) {
1060                         req->fr_list = mr_list;
1061                 } else {
1062                         req->fmr_list = mr_list;
1063                         req->map_page = kmalloc_array(srp_dev->max_pages_per_mr,
1064                                                       sizeof(void *),
1065                                                       GFP_KERNEL);
1066                         if (!req->map_page)
1067                                 goto out;
1068                 }
1069                 req->indirect_desc = kmalloc(target->indirect_size, GFP_KERNEL);
1070                 if (!req->indirect_desc)
1071                         goto out;
1072
1073                 dma_addr = ib_dma_map_single(ibdev, req->indirect_desc,
1074                                              target->indirect_size,
1075                                              DMA_TO_DEVICE);
1076                 if (ib_dma_mapping_error(ibdev, dma_addr))
1077                         goto out;
1078
1079                 req->indirect_dma_addr = dma_addr;
1080         }
1081         ret = 0;
1082
1083 out:
1084         return ret;
1085 }
1086
1087 /**
1088  * srp_del_scsi_host_attr() - Remove attributes defined in the host template.
1089  * @shost: SCSI host whose attributes to remove from sysfs.
1090  *
1091  * Note: Any attributes defined in the host template and that did not exist
1092  * before invocation of this function will be ignored.
1093  */
1094 static void srp_del_scsi_host_attr(struct Scsi_Host *shost)
1095 {
1096         struct device_attribute **attr;
1097
1098         for (attr = shost->hostt->shost_attrs; attr && *attr; ++attr)
1099                 device_remove_file(&shost->shost_dev, *attr);
1100 }
1101
1102 static void srp_remove_target(struct srp_target_port *target)
1103 {
1104         struct srp_rdma_ch *ch;
1105         int i;
1106
1107         WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED);
1108
1109         srp_del_scsi_host_attr(target->scsi_host);
1110         srp_rport_get(target->rport);
1111         srp_remove_host(target->scsi_host);
1112         scsi_remove_host(target->scsi_host);
1113         srp_stop_rport_timers(target->rport);
1114         srp_disconnect_target(target);
1115         kobj_ns_drop(KOBJ_NS_TYPE_NET, target->net);
1116         for (i = 0; i < target->ch_count; i++) {
1117                 ch = &target->ch[i];
1118                 srp_free_ch_ib(target, ch);
1119         }
1120         cancel_work_sync(&target->tl_err_work);
1121         srp_rport_put(target->rport);
1122         for (i = 0; i < target->ch_count; i++) {
1123                 ch = &target->ch[i];
1124                 srp_free_req_data(target, ch);
1125         }
1126         kfree(target->ch);
1127         target->ch = NULL;
1128
1129         spin_lock(&target->srp_host->target_lock);
1130         list_del(&target->list);
1131         spin_unlock(&target->srp_host->target_lock);
1132
1133         scsi_host_put(target->scsi_host);
1134 }
1135
1136 static void srp_remove_work(struct work_struct *work)
1137 {
1138         struct srp_target_port *target =
1139                 container_of(work, struct srp_target_port, remove_work);
1140
1141         WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED);
1142
1143         srp_remove_target(target);
1144 }
1145
1146 static void srp_rport_delete(struct srp_rport *rport)
1147 {
1148         struct srp_target_port *target = rport->lld_data;
1149
1150         srp_queue_remove_work(target);
1151 }
1152
1153 /**
1154  * srp_connected_ch() - number of connected channels
1155  * @target: SRP target port.
1156  */
1157 static int srp_connected_ch(struct srp_target_port *target)
1158 {
1159         int i, c = 0;
1160
1161         for (i = 0; i < target->ch_count; i++)
1162                 c += target->ch[i].connected;
1163
1164         return c;
1165 }
1166
1167 static int srp_connect_ch(struct srp_rdma_ch *ch, uint32_t max_iu_len,
1168                           bool multich)
1169 {
1170         struct srp_target_port *target = ch->target;
1171         int ret;
1172
1173         WARN_ON_ONCE(!multich && srp_connected_ch(target) > 0);
1174
1175         ret = srp_lookup_path(ch);
1176         if (ret)
1177                 goto out;
1178
1179         while (1) {
1180                 init_completion(&ch->done);
1181                 ret = srp_send_req(ch, max_iu_len, multich);
1182                 if (ret)
1183                         goto out;
1184                 ret = wait_for_completion_interruptible(&ch->done);
1185                 if (ret < 0)
1186                         goto out;
1187
1188                 /*
1189                  * The CM event handling code will set status to
1190                  * SRP_PORT_REDIRECT if we get a port redirect REJ
1191                  * back, or SRP_DLID_REDIRECT if we get a lid/qp
1192                  * redirect REJ back.
1193                  */
1194                 ret = ch->status;
1195                 switch (ret) {
1196                 case 0:
1197                         ch->connected = true;
1198                         goto out;
1199
1200                 case SRP_PORT_REDIRECT:
1201                         ret = srp_lookup_path(ch);
1202                         if (ret)
1203                                 goto out;
1204                         break;
1205
1206                 case SRP_DLID_REDIRECT:
1207                         break;
1208
1209                 case SRP_STALE_CONN:
1210                         shost_printk(KERN_ERR, target->scsi_host, PFX
1211                                      "giving up on stale connection\n");
1212                         ret = -ECONNRESET;
1213                         goto out;
1214
1215                 default:
1216                         goto out;
1217                 }
1218         }
1219
1220 out:
1221         return ret <= 0 ? ret : -ENODEV;
1222 }
1223
1224 static void srp_inv_rkey_err_done(struct ib_cq *cq, struct ib_wc *wc)
1225 {
1226         srp_handle_qp_err(cq, wc, "INV RKEY");
1227 }
1228
1229 static int srp_inv_rkey(struct srp_request *req, struct srp_rdma_ch *ch,
1230                 u32 rkey)
1231 {
1232         struct ib_send_wr wr = {
1233                 .opcode             = IB_WR_LOCAL_INV,
1234                 .next               = NULL,
1235                 .num_sge            = 0,
1236                 .send_flags         = 0,
1237                 .ex.invalidate_rkey = rkey,
1238         };
1239
1240         wr.wr_cqe = &req->reg_cqe;
1241         req->reg_cqe.done = srp_inv_rkey_err_done;
1242         return ib_post_send(ch->qp, &wr, NULL);
1243 }
1244
1245 static void srp_unmap_data(struct scsi_cmnd *scmnd,
1246                            struct srp_rdma_ch *ch,
1247                            struct srp_request *req)
1248 {
1249         struct srp_target_port *target = ch->target;
1250         struct srp_device *dev = target->srp_host->srp_dev;
1251         struct ib_device *ibdev = dev->dev;
1252         int i, res;
1253
1254         if (!scsi_sglist(scmnd) ||
1255             (scmnd->sc_data_direction != DMA_TO_DEVICE &&
1256              scmnd->sc_data_direction != DMA_FROM_DEVICE))
1257                 return;
1258
1259         if (dev->use_fast_reg) {
1260                 struct srp_fr_desc **pfr;
1261
1262                 for (i = req->nmdesc, pfr = req->fr_list; i > 0; i--, pfr++) {
1263                         res = srp_inv_rkey(req, ch, (*pfr)->mr->rkey);
1264                         if (res < 0) {
1265                                 shost_printk(KERN_ERR, target->scsi_host, PFX
1266                                   "Queueing INV WR for rkey %#x failed (%d)\n",
1267                                   (*pfr)->mr->rkey, res);
1268                                 queue_work(system_long_wq,
1269                                            &target->tl_err_work);
1270                         }
1271                 }
1272                 if (req->nmdesc)
1273                         srp_fr_pool_put(ch->fr_pool, req->fr_list,
1274                                         req->nmdesc);
1275         } else if (dev->use_fmr) {
1276                 struct ib_pool_fmr **pfmr;
1277
1278                 for (i = req->nmdesc, pfmr = req->fmr_list; i > 0; i--, pfmr++)
1279                         ib_fmr_pool_unmap(*pfmr);
1280         }
1281
1282         ib_dma_unmap_sg(ibdev, scsi_sglist(scmnd), scsi_sg_count(scmnd),
1283                         scmnd->sc_data_direction);
1284 }
1285
1286 /**
1287  * srp_claim_req - Take ownership of the scmnd associated with a request.
1288  * @ch: SRP RDMA channel.
1289  * @req: SRP request.
1290  * @sdev: If not NULL, only take ownership for this SCSI device.
1291  * @scmnd: If NULL, take ownership of @req->scmnd. If not NULL, only take
1292  *         ownership of @req->scmnd if it equals @scmnd.
1293  *
1294  * Return value:
1295  * Either NULL or a pointer to the SCSI command the caller became owner of.
1296  */
1297 static struct scsi_cmnd *srp_claim_req(struct srp_rdma_ch *ch,
1298                                        struct srp_request *req,
1299                                        struct scsi_device *sdev,
1300                                        struct scsi_cmnd *scmnd)
1301 {
1302         unsigned long flags;
1303
1304         spin_lock_irqsave(&ch->lock, flags);
1305         if (req->scmnd &&
1306             (!sdev || req->scmnd->device == sdev) &&
1307             (!scmnd || req->scmnd == scmnd)) {
1308                 scmnd = req->scmnd;
1309                 req->scmnd = NULL;
1310         } else {
1311                 scmnd = NULL;
1312         }
1313         spin_unlock_irqrestore(&ch->lock, flags);
1314
1315         return scmnd;
1316 }
1317
1318 /**
1319  * srp_free_req() - Unmap data and adjust ch->req_lim.
1320  * @ch:     SRP RDMA channel.
1321  * @req:    Request to be freed.
1322  * @scmnd:  SCSI command associated with @req.
1323  * @req_lim_delta: Amount to be added to @target->req_lim.
1324  */
1325 static void srp_free_req(struct srp_rdma_ch *ch, struct srp_request *req,
1326                          struct scsi_cmnd *scmnd, s32 req_lim_delta)
1327 {
1328         unsigned long flags;
1329
1330         srp_unmap_data(scmnd, ch, req);
1331
1332         spin_lock_irqsave(&ch->lock, flags);
1333         ch->req_lim += req_lim_delta;
1334         spin_unlock_irqrestore(&ch->lock, flags);
1335 }
1336
1337 static void srp_finish_req(struct srp_rdma_ch *ch, struct srp_request *req,
1338                            struct scsi_device *sdev, int result)
1339 {
1340         struct scsi_cmnd *scmnd = srp_claim_req(ch, req, sdev, NULL);
1341
1342         if (scmnd) {
1343                 srp_free_req(ch, req, scmnd, 0);
1344                 scmnd->result = result;
1345                 scmnd->scsi_done(scmnd);
1346         }
1347 }
1348
1349 static void srp_terminate_io(struct srp_rport *rport)
1350 {
1351         struct srp_target_port *target = rport->lld_data;
1352         struct srp_rdma_ch *ch;
1353         int i, j;
1354
1355         for (i = 0; i < target->ch_count; i++) {
1356                 ch = &target->ch[i];
1357
1358                 for (j = 0; j < target->req_ring_size; ++j) {
1359                         struct srp_request *req = &ch->req_ring[j];
1360
1361                         srp_finish_req(ch, req, NULL,
1362                                        DID_TRANSPORT_FAILFAST << 16);
1363                 }
1364         }
1365 }
1366
1367 /* Calculate maximum initiator to target information unit length. */
1368 static uint32_t srp_max_it_iu_len(int cmd_sg_cnt, bool use_imm_data,
1369                                   uint32_t max_it_iu_size)
1370 {
1371         uint32_t max_iu_len = sizeof(struct srp_cmd) + SRP_MAX_ADD_CDB_LEN +
1372                 sizeof(struct srp_indirect_buf) +
1373                 cmd_sg_cnt * sizeof(struct srp_direct_buf);
1374
1375         if (use_imm_data)
1376                 max_iu_len = max(max_iu_len, SRP_IMM_DATA_OFFSET +
1377                                  srp_max_imm_data);
1378
1379         if (max_it_iu_size)
1380                 max_iu_len = min(max_iu_len, max_it_iu_size);
1381
1382         pr_debug("max_iu_len = %d\n", max_iu_len);
1383
1384         return max_iu_len;
1385 }
1386
1387 /*
1388  * It is up to the caller to ensure that srp_rport_reconnect() calls are
1389  * serialized and that no concurrent srp_queuecommand(), srp_abort(),
1390  * srp_reset_device() or srp_reset_host() calls will occur while this function
1391  * is in progress. One way to realize that is not to call this function
1392  * directly but to call srp_reconnect_rport() instead since that last function
1393  * serializes calls of this function via rport->mutex and also blocks
1394  * srp_queuecommand() calls before invoking this function.
1395  */
1396 static int srp_rport_reconnect(struct srp_rport *rport)
1397 {
1398         struct srp_target_port *target = rport->lld_data;
1399         struct srp_rdma_ch *ch;
1400         uint32_t max_iu_len = srp_max_it_iu_len(target->cmd_sg_cnt,
1401                                                 srp_use_imm_data,
1402                                                 target->max_it_iu_size);
1403         int i, j, ret = 0;
1404         bool multich = false;
1405
1406         srp_disconnect_target(target);
1407
1408         if (target->state == SRP_TARGET_SCANNING)
1409                 return -ENODEV;
1410
1411         /*
1412          * Now get a new local CM ID so that we avoid confusing the target in
1413          * case things are really fouled up. Doing so also ensures that all CM
1414          * callbacks will have finished before a new QP is allocated.
1415          */
1416         for (i = 0; i < target->ch_count; i++) {
1417                 ch = &target->ch[i];
1418                 ret += srp_new_cm_id(ch);
1419         }
1420         for (i = 0; i < target->ch_count; i++) {
1421                 ch = &target->ch[i];
1422                 for (j = 0; j < target->req_ring_size; ++j) {
1423                         struct srp_request *req = &ch->req_ring[j];
1424
1425                         srp_finish_req(ch, req, NULL, DID_RESET << 16);
1426                 }
1427         }
1428         for (i = 0; i < target->ch_count; i++) {
1429                 ch = &target->ch[i];
1430                 /*
1431                  * Whether or not creating a new CM ID succeeded, create a new
1432                  * QP. This guarantees that all completion callback function
1433                  * invocations have finished before request resetting starts.
1434                  */
1435                 ret += srp_create_ch_ib(ch);
1436
1437                 INIT_LIST_HEAD(&ch->free_tx);
1438                 for (j = 0; j < target->queue_size; ++j)
1439                         list_add(&ch->tx_ring[j]->list, &ch->free_tx);
1440         }
1441
1442         target->qp_in_error = false;
1443
1444         for (i = 0; i < target->ch_count; i++) {
1445                 ch = &target->ch[i];
1446                 if (ret)
1447                         break;
1448                 ret = srp_connect_ch(ch, max_iu_len, multich);
1449                 multich = true;
1450         }
1451
1452         if (ret == 0)
1453                 shost_printk(KERN_INFO, target->scsi_host,
1454                              PFX "reconnect succeeded\n");
1455
1456         return ret;
1457 }
1458
1459 static void srp_map_desc(struct srp_map_state *state, dma_addr_t dma_addr,
1460                          unsigned int dma_len, u32 rkey)
1461 {
1462         struct srp_direct_buf *desc = state->desc;
1463
1464         WARN_ON_ONCE(!dma_len);
1465
1466         desc->va = cpu_to_be64(dma_addr);
1467         desc->key = cpu_to_be32(rkey);
1468         desc->len = cpu_to_be32(dma_len);
1469
1470         state->total_len += dma_len;
1471         state->desc++;
1472         state->ndesc++;
1473 }
1474
1475 static int srp_map_finish_fmr(struct srp_map_state *state,
1476                               struct srp_rdma_ch *ch)
1477 {
1478         struct srp_target_port *target = ch->target;
1479         struct srp_device *dev = target->srp_host->srp_dev;
1480         struct ib_pool_fmr *fmr;
1481         u64 io_addr = 0;
1482
1483         if (state->fmr.next >= state->fmr.end) {
1484                 shost_printk(KERN_ERR, ch->target->scsi_host,
1485                              PFX "Out of MRs (mr_per_cmd = %d)\n",
1486                              ch->target->mr_per_cmd);
1487                 return -ENOMEM;
1488         }
1489
1490         WARN_ON_ONCE(!dev->use_fmr);
1491
1492         if (state->npages == 0)
1493                 return 0;
1494
1495         if (state->npages == 1 && target->global_rkey) {
1496                 srp_map_desc(state, state->base_dma_addr, state->dma_len,
1497                              target->global_rkey);
1498                 goto reset_state;
1499         }
1500
1501         fmr = ib_fmr_pool_map_phys(ch->fmr_pool, state->pages,
1502                                    state->npages, io_addr);
1503         if (IS_ERR(fmr))
1504                 return PTR_ERR(fmr);
1505
1506         *state->fmr.next++ = fmr;
1507         state->nmdesc++;
1508
1509         srp_map_desc(state, state->base_dma_addr & ~dev->mr_page_mask,
1510                      state->dma_len, fmr->fmr->rkey);
1511
1512 reset_state:
1513         state->npages = 0;
1514         state->dma_len = 0;
1515
1516         return 0;
1517 }
1518
1519 static void srp_reg_mr_err_done(struct ib_cq *cq, struct ib_wc *wc)
1520 {
1521         srp_handle_qp_err(cq, wc, "FAST REG");
1522 }
1523
1524 /*
1525  * Map up to sg_nents elements of state->sg where *sg_offset_p is the offset
1526  * where to start in the first element. If sg_offset_p != NULL then
1527  * *sg_offset_p is updated to the offset in state->sg[retval] of the first
1528  * byte that has not yet been mapped.
1529  */
1530 static int srp_map_finish_fr(struct srp_map_state *state,
1531                              struct srp_request *req,
1532                              struct srp_rdma_ch *ch, int sg_nents,
1533                              unsigned int *sg_offset_p)
1534 {
1535         struct srp_target_port *target = ch->target;
1536         struct srp_device *dev = target->srp_host->srp_dev;
1537         struct ib_reg_wr wr;
1538         struct srp_fr_desc *desc;
1539         u32 rkey;
1540         int n, err;
1541
1542         if (state->fr.next >= state->fr.end) {
1543                 shost_printk(KERN_ERR, ch->target->scsi_host,
1544                              PFX "Out of MRs (mr_per_cmd = %d)\n",
1545                              ch->target->mr_per_cmd);
1546                 return -ENOMEM;
1547         }
1548
1549         WARN_ON_ONCE(!dev->use_fast_reg);
1550
1551         if (sg_nents == 1 && target->global_rkey) {
1552                 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
1553
1554                 srp_map_desc(state, sg_dma_address(state->sg) + sg_offset,
1555                              sg_dma_len(state->sg) - sg_offset,
1556                              target->global_rkey);
1557                 if (sg_offset_p)
1558                         *sg_offset_p = 0;
1559                 return 1;
1560         }
1561
1562         desc = srp_fr_pool_get(ch->fr_pool);
1563         if (!desc)
1564                 return -ENOMEM;
1565
1566         rkey = ib_inc_rkey(desc->mr->rkey);
1567         ib_update_fast_reg_key(desc->mr, rkey);
1568
1569         n = ib_map_mr_sg(desc->mr, state->sg, sg_nents, sg_offset_p,
1570                          dev->mr_page_size);
1571         if (unlikely(n < 0)) {
1572                 srp_fr_pool_put(ch->fr_pool, &desc, 1);
1573                 pr_debug("%s: ib_map_mr_sg(%d, %d) returned %d.\n",
1574                          dev_name(&req->scmnd->device->sdev_gendev), sg_nents,
1575                          sg_offset_p ? *sg_offset_p : -1, n);
1576                 return n;
1577         }
1578
1579         WARN_ON_ONCE(desc->mr->length == 0);
1580
1581         req->reg_cqe.done = srp_reg_mr_err_done;
1582
1583         wr.wr.next = NULL;
1584         wr.wr.opcode = IB_WR_REG_MR;
1585         wr.wr.wr_cqe = &req->reg_cqe;
1586         wr.wr.num_sge = 0;
1587         wr.wr.send_flags = 0;
1588         wr.mr = desc->mr;
1589         wr.key = desc->mr->rkey;
1590         wr.access = (IB_ACCESS_LOCAL_WRITE |
1591                      IB_ACCESS_REMOTE_READ |
1592                      IB_ACCESS_REMOTE_WRITE);
1593
1594         *state->fr.next++ = desc;
1595         state->nmdesc++;
1596
1597         srp_map_desc(state, desc->mr->iova,
1598                      desc->mr->length, desc->mr->rkey);
1599
1600         err = ib_post_send(ch->qp, &wr.wr, NULL);
1601         if (unlikely(err)) {
1602                 WARN_ON_ONCE(err == -ENOMEM);
1603                 return err;
1604         }
1605
1606         return n;
1607 }
1608
1609 static int srp_map_sg_entry(struct srp_map_state *state,
1610                             struct srp_rdma_ch *ch,
1611                             struct scatterlist *sg)
1612 {
1613         struct srp_target_port *target = ch->target;
1614         struct srp_device *dev = target->srp_host->srp_dev;
1615         dma_addr_t dma_addr = sg_dma_address(sg);
1616         unsigned int dma_len = sg_dma_len(sg);
1617         unsigned int len = 0;
1618         int ret;
1619
1620         WARN_ON_ONCE(!dma_len);
1621
1622         while (dma_len) {
1623                 unsigned offset = dma_addr & ~dev->mr_page_mask;
1624
1625                 if (state->npages == dev->max_pages_per_mr ||
1626                     (state->npages > 0 && offset != 0)) {
1627                         ret = srp_map_finish_fmr(state, ch);
1628                         if (ret)
1629                                 return ret;
1630                 }
1631
1632                 len = min_t(unsigned int, dma_len, dev->mr_page_size - offset);
1633
1634                 if (!state->npages)
1635                         state->base_dma_addr = dma_addr;
1636                 state->pages[state->npages++] = dma_addr & dev->mr_page_mask;
1637                 state->dma_len += len;
1638                 dma_addr += len;
1639                 dma_len -= len;
1640         }
1641
1642         /*
1643          * If the end of the MR is not on a page boundary then we need to
1644          * close it out and start a new one -- we can only merge at page
1645          * boundaries.
1646          */
1647         ret = 0;
1648         if ((dma_addr & ~dev->mr_page_mask) != 0)
1649                 ret = srp_map_finish_fmr(state, ch);
1650         return ret;
1651 }
1652
1653 static int srp_map_sg_fmr(struct srp_map_state *state, struct srp_rdma_ch *ch,
1654                           struct srp_request *req, struct scatterlist *scat,
1655                           int count)
1656 {
1657         struct scatterlist *sg;
1658         int i, ret;
1659
1660         state->pages = req->map_page;
1661         state->fmr.next = req->fmr_list;
1662         state->fmr.end = req->fmr_list + ch->target->mr_per_cmd;
1663
1664         for_each_sg(scat, sg, count, i) {
1665                 ret = srp_map_sg_entry(state, ch, sg);
1666                 if (ret)
1667                         return ret;
1668         }
1669
1670         ret = srp_map_finish_fmr(state, ch);
1671         if (ret)
1672                 return ret;
1673
1674         return 0;
1675 }
1676
1677 static int srp_map_sg_fr(struct srp_map_state *state, struct srp_rdma_ch *ch,
1678                          struct srp_request *req, struct scatterlist *scat,
1679                          int count)
1680 {
1681         unsigned int sg_offset = 0;
1682
1683         state->fr.next = req->fr_list;
1684         state->fr.end = req->fr_list + ch->target->mr_per_cmd;
1685         state->sg = scat;
1686
1687         if (count == 0)
1688                 return 0;
1689
1690         while (count) {
1691                 int i, n;
1692
1693                 n = srp_map_finish_fr(state, req, ch, count, &sg_offset);
1694                 if (unlikely(n < 0))
1695                         return n;
1696
1697                 count -= n;
1698                 for (i = 0; i < n; i++)
1699                         state->sg = sg_next(state->sg);
1700         }
1701
1702         return 0;
1703 }
1704
1705 static int srp_map_sg_dma(struct srp_map_state *state, struct srp_rdma_ch *ch,
1706                           struct srp_request *req, struct scatterlist *scat,
1707                           int count)
1708 {
1709         struct srp_target_port *target = ch->target;
1710         struct scatterlist *sg;
1711         int i;
1712
1713         for_each_sg(scat, sg, count, i) {
1714                 srp_map_desc(state, sg_dma_address(sg), sg_dma_len(sg),
1715                              target->global_rkey);
1716         }
1717
1718         return 0;
1719 }
1720
1721 /*
1722  * Register the indirect data buffer descriptor with the HCA.
1723  *
1724  * Note: since the indirect data buffer descriptor has been allocated with
1725  * kmalloc() it is guaranteed that this buffer is a physically contiguous
1726  * memory buffer.
1727  */
1728 static int srp_map_idb(struct srp_rdma_ch *ch, struct srp_request *req,
1729                        void **next_mr, void **end_mr, u32 idb_len,
1730                        __be32 *idb_rkey)
1731 {
1732         struct srp_target_port *target = ch->target;
1733         struct srp_device *dev = target->srp_host->srp_dev;
1734         struct srp_map_state state;
1735         struct srp_direct_buf idb_desc;
1736         u64 idb_pages[1];
1737         struct scatterlist idb_sg[1];
1738         int ret;
1739
1740         memset(&state, 0, sizeof(state));
1741         memset(&idb_desc, 0, sizeof(idb_desc));
1742         state.gen.next = next_mr;
1743         state.gen.end = end_mr;
1744         state.desc = &idb_desc;
1745         state.base_dma_addr = req->indirect_dma_addr;
1746         state.dma_len = idb_len;
1747
1748         if (dev->use_fast_reg) {
1749                 state.sg = idb_sg;
1750                 sg_init_one(idb_sg, req->indirect_desc, idb_len);
1751                 idb_sg->dma_address = req->indirect_dma_addr; /* hack! */
1752 #ifdef CONFIG_NEED_SG_DMA_LENGTH
1753                 idb_sg->dma_length = idb_sg->length;          /* hack^2 */
1754 #endif
1755                 ret = srp_map_finish_fr(&state, req, ch, 1, NULL);
1756                 if (ret < 0)
1757                         return ret;
1758                 WARN_ON_ONCE(ret < 1);
1759         } else if (dev->use_fmr) {
1760                 state.pages = idb_pages;
1761                 state.pages[0] = (req->indirect_dma_addr &
1762                                   dev->mr_page_mask);
1763                 state.npages = 1;
1764                 ret = srp_map_finish_fmr(&state, ch);
1765                 if (ret < 0)
1766                         return ret;
1767         } else {
1768                 return -EINVAL;
1769         }
1770
1771         *idb_rkey = idb_desc.key;
1772
1773         return 0;
1774 }
1775
1776 static void srp_check_mapping(struct srp_map_state *state,
1777                               struct srp_rdma_ch *ch, struct srp_request *req,
1778                               struct scatterlist *scat, int count)
1779 {
1780         struct srp_device *dev = ch->target->srp_host->srp_dev;
1781         struct srp_fr_desc **pfr;
1782         u64 desc_len = 0, mr_len = 0;
1783         int i;
1784
1785         for (i = 0; i < state->ndesc; i++)
1786                 desc_len += be32_to_cpu(req->indirect_desc[i].len);
1787         if (dev->use_fast_reg)
1788                 for (i = 0, pfr = req->fr_list; i < state->nmdesc; i++, pfr++)
1789                         mr_len += (*pfr)->mr->length;
1790         else if (dev->use_fmr)
1791                 for (i = 0; i < state->nmdesc; i++)
1792                         mr_len += be32_to_cpu(req->indirect_desc[i].len);
1793         if (desc_len != scsi_bufflen(req->scmnd) ||
1794             mr_len > scsi_bufflen(req->scmnd))
1795                 pr_err("Inconsistent: scsi len %d <> desc len %lld <> mr len %lld; ndesc %d; nmdesc = %d\n",
1796                        scsi_bufflen(req->scmnd), desc_len, mr_len,
1797                        state->ndesc, state->nmdesc);
1798 }
1799
1800 /**
1801  * srp_map_data() - map SCSI data buffer onto an SRP request
1802  * @scmnd: SCSI command to map
1803  * @ch: SRP RDMA channel
1804  * @req: SRP request
1805  *
1806  * Returns the length in bytes of the SRP_CMD IU or a negative value if
1807  * mapping failed. The size of any immediate data is not included in the
1808  * return value.
1809  */
1810 static int srp_map_data(struct scsi_cmnd *scmnd, struct srp_rdma_ch *ch,
1811                         struct srp_request *req)
1812 {
1813         struct srp_target_port *target = ch->target;
1814         struct scatterlist *scat, *sg;
1815         struct srp_cmd *cmd = req->cmd->buf;
1816         int i, len, nents, count, ret;
1817         struct srp_device *dev;
1818         struct ib_device *ibdev;
1819         struct srp_map_state state;
1820         struct srp_indirect_buf *indirect_hdr;
1821         u64 data_len;
1822         u32 idb_len, table_len;
1823         __be32 idb_rkey;
1824         u8 fmt;
1825
1826         req->cmd->num_sge = 1;
1827
1828         if (!scsi_sglist(scmnd) || scmnd->sc_data_direction == DMA_NONE)
1829                 return sizeof(struct srp_cmd) + cmd->add_cdb_len;
1830
1831         if (scmnd->sc_data_direction != DMA_FROM_DEVICE &&
1832             scmnd->sc_data_direction != DMA_TO_DEVICE) {
1833                 shost_printk(KERN_WARNING, target->scsi_host,
1834                              PFX "Unhandled data direction %d\n",
1835                              scmnd->sc_data_direction);
1836                 return -EINVAL;
1837         }
1838
1839         nents = scsi_sg_count(scmnd);
1840         scat  = scsi_sglist(scmnd);
1841         data_len = scsi_bufflen(scmnd);
1842
1843         dev = target->srp_host->srp_dev;
1844         ibdev = dev->dev;
1845
1846         count = ib_dma_map_sg(ibdev, scat, nents, scmnd->sc_data_direction);
1847         if (unlikely(count == 0))
1848                 return -EIO;
1849
1850         if (ch->use_imm_data &&
1851             count <= ch->max_imm_sge &&
1852             SRP_IMM_DATA_OFFSET + data_len <= ch->max_it_iu_len &&
1853             scmnd->sc_data_direction == DMA_TO_DEVICE) {
1854                 struct srp_imm_buf *buf;
1855                 struct ib_sge *sge = &req->cmd->sge[1];
1856
1857                 fmt = SRP_DATA_DESC_IMM;
1858                 len = SRP_IMM_DATA_OFFSET;
1859                 req->nmdesc = 0;
1860                 buf = (void *)cmd->add_data + cmd->add_cdb_len;
1861                 buf->len = cpu_to_be32(data_len);
1862                 WARN_ON_ONCE((void *)(buf + 1) > (void *)cmd + len);
1863                 for_each_sg(scat, sg, count, i) {
1864                         sge[i].addr   = sg_dma_address(sg);
1865                         sge[i].length = sg_dma_len(sg);
1866                         sge[i].lkey   = target->lkey;
1867                 }
1868                 req->cmd->num_sge += count;
1869                 goto map_complete;
1870         }
1871
1872         fmt = SRP_DATA_DESC_DIRECT;
1873         len = sizeof(struct srp_cmd) + cmd->add_cdb_len +
1874                 sizeof(struct srp_direct_buf);
1875
1876         if (count == 1 && target->global_rkey) {
1877                 /*
1878                  * The midlayer only generated a single gather/scatter
1879                  * entry, or DMA mapping coalesced everything to a
1880                  * single entry.  So a direct descriptor along with
1881                  * the DMA MR suffices.
1882                  */
1883                 struct srp_direct_buf *buf;
1884
1885                 buf = (void *)cmd->add_data + cmd->add_cdb_len;
1886                 buf->va  = cpu_to_be64(sg_dma_address(scat));
1887                 buf->key = cpu_to_be32(target->global_rkey);
1888                 buf->len = cpu_to_be32(sg_dma_len(scat));
1889
1890                 req->nmdesc = 0;
1891                 goto map_complete;
1892         }
1893
1894         /*
1895          * We have more than one scatter/gather entry, so build our indirect
1896          * descriptor table, trying to merge as many entries as we can.
1897          */
1898         indirect_hdr = (void *)cmd->add_data + cmd->add_cdb_len;
1899
1900         ib_dma_sync_single_for_cpu(ibdev, req->indirect_dma_addr,
1901                                    target->indirect_size, DMA_TO_DEVICE);
1902
1903         memset(&state, 0, sizeof(state));
1904         state.desc = req->indirect_desc;
1905         if (dev->use_fast_reg)
1906                 ret = srp_map_sg_fr(&state, ch, req, scat, count);
1907         else if (dev->use_fmr)
1908                 ret = srp_map_sg_fmr(&state, ch, req, scat, count);
1909         else
1910                 ret = srp_map_sg_dma(&state, ch, req, scat, count);
1911         req->nmdesc = state.nmdesc;
1912         if (ret < 0)
1913                 goto unmap;
1914
1915         {
1916                 DEFINE_DYNAMIC_DEBUG_METADATA(ddm,
1917                         "Memory mapping consistency check");
1918                 if (DYNAMIC_DEBUG_BRANCH(ddm))
1919                         srp_check_mapping(&state, ch, req, scat, count);
1920         }
1921
1922         /* We've mapped the request, now pull as much of the indirect
1923          * descriptor table as we can into the command buffer. If this
1924          * target is not using an external indirect table, we are
1925          * guaranteed to fit into the command, as the SCSI layer won't
1926          * give us more S/G entries than we allow.
1927          */
1928         if (state.ndesc == 1) {
1929                 /*
1930                  * Memory registration collapsed the sg-list into one entry,
1931                  * so use a direct descriptor.
1932                  */
1933                 struct srp_direct_buf *buf;
1934
1935                 buf = (void *)cmd->add_data + cmd->add_cdb_len;
1936                 *buf = req->indirect_desc[0];
1937                 goto map_complete;
1938         }
1939
1940         if (unlikely(target->cmd_sg_cnt < state.ndesc &&
1941                                                 !target->allow_ext_sg)) {
1942                 shost_printk(KERN_ERR, target->scsi_host,
1943                              "Could not fit S/G list into SRP_CMD\n");
1944                 ret = -EIO;
1945                 goto unmap;
1946         }
1947
1948         count = min(state.ndesc, target->cmd_sg_cnt);
1949         table_len = state.ndesc * sizeof (struct srp_direct_buf);
1950         idb_len = sizeof(struct srp_indirect_buf) + table_len;
1951
1952         fmt = SRP_DATA_DESC_INDIRECT;
1953         len = sizeof(struct srp_cmd) + cmd->add_cdb_len +
1954                 sizeof(struct srp_indirect_buf);
1955         len += count * sizeof (struct srp_direct_buf);
1956
1957         memcpy(indirect_hdr->desc_list, req->indirect_desc,
1958                count * sizeof (struct srp_direct_buf));
1959
1960         if (!target->global_rkey) {
1961                 ret = srp_map_idb(ch, req, state.gen.next, state.gen.end,
1962                                   idb_len, &idb_rkey);
1963                 if (ret < 0)
1964                         goto unmap;
1965                 req->nmdesc++;
1966         } else {
1967                 idb_rkey = cpu_to_be32(target->global_rkey);
1968         }
1969
1970         indirect_hdr->table_desc.va = cpu_to_be64(req->indirect_dma_addr);
1971         indirect_hdr->table_desc.key = idb_rkey;
1972         indirect_hdr->table_desc.len = cpu_to_be32(table_len);
1973         indirect_hdr->len = cpu_to_be32(state.total_len);
1974
1975         if (scmnd->sc_data_direction == DMA_TO_DEVICE)
1976                 cmd->data_out_desc_cnt = count;
1977         else
1978                 cmd->data_in_desc_cnt = count;
1979
1980         ib_dma_sync_single_for_device(ibdev, req->indirect_dma_addr, table_len,
1981                                       DMA_TO_DEVICE);
1982
1983 map_complete:
1984         if (scmnd->sc_data_direction == DMA_TO_DEVICE)
1985                 cmd->buf_fmt = fmt << 4;
1986         else
1987                 cmd->buf_fmt = fmt;
1988
1989         return len;
1990
1991 unmap:
1992         srp_unmap_data(scmnd, ch, req);
1993         if (ret == -ENOMEM && req->nmdesc >= target->mr_pool_size)
1994                 ret = -E2BIG;
1995         return ret;
1996 }
1997
1998 /*
1999  * Return an IU and possible credit to the free pool
2000  */
2001 static void srp_put_tx_iu(struct srp_rdma_ch *ch, struct srp_iu *iu,
2002                           enum srp_iu_type iu_type)
2003 {
2004         unsigned long flags;
2005
2006         spin_lock_irqsave(&ch->lock, flags);
2007         list_add(&iu->list, &ch->free_tx);
2008         if (iu_type != SRP_IU_RSP)
2009                 ++ch->req_lim;
2010         spin_unlock_irqrestore(&ch->lock, flags);
2011 }
2012
2013 /*
2014  * Must be called with ch->lock held to protect req_lim and free_tx.
2015  * If IU is not sent, it must be returned using srp_put_tx_iu().
2016  *
2017  * Note:
2018  * An upper limit for the number of allocated information units for each
2019  * request type is:
2020  * - SRP_IU_CMD: SRP_CMD_SQ_SIZE, since the SCSI mid-layer never queues
2021  *   more than Scsi_Host.can_queue requests.
2022  * - SRP_IU_TSK_MGMT: SRP_TSK_MGMT_SQ_SIZE.
2023  * - SRP_IU_RSP: 1, since a conforming SRP target never sends more than
2024  *   one unanswered SRP request to an initiator.
2025  */
2026 static struct srp_iu *__srp_get_tx_iu(struct srp_rdma_ch *ch,
2027                                       enum srp_iu_type iu_type)
2028 {
2029         struct srp_target_port *target = ch->target;
2030         s32 rsv = (iu_type == SRP_IU_TSK_MGMT) ? 0 : SRP_TSK_MGMT_SQ_SIZE;
2031         struct srp_iu *iu;
2032
2033         lockdep_assert_held(&ch->lock);
2034
2035         ib_process_cq_direct(ch->send_cq, -1);
2036
2037         if (list_empty(&ch->free_tx))
2038                 return NULL;
2039
2040         /* Initiator responses to target requests do not consume credits */
2041         if (iu_type != SRP_IU_RSP) {
2042                 if (ch->req_lim <= rsv) {
2043                         ++target->zero_req_lim;
2044                         return NULL;
2045                 }
2046
2047                 --ch->req_lim;
2048         }
2049
2050         iu = list_first_entry(&ch->free_tx, struct srp_iu, list);
2051         list_del(&iu->list);
2052         return iu;
2053 }
2054
2055 /*
2056  * Note: if this function is called from inside ib_drain_sq() then it will
2057  * be called without ch->lock being held. If ib_drain_sq() dequeues a WQE
2058  * with status IB_WC_SUCCESS then that's a bug.
2059  */
2060 static void srp_send_done(struct ib_cq *cq, struct ib_wc *wc)
2061 {
2062         struct srp_iu *iu = container_of(wc->wr_cqe, struct srp_iu, cqe);
2063         struct srp_rdma_ch *ch = cq->cq_context;
2064
2065         if (unlikely(wc->status != IB_WC_SUCCESS)) {
2066                 srp_handle_qp_err(cq, wc, "SEND");
2067                 return;
2068         }
2069
2070         lockdep_assert_held(&ch->lock);
2071
2072         list_add(&iu->list, &ch->free_tx);
2073 }
2074
2075 /**
2076  * srp_post_send() - send an SRP information unit
2077  * @ch: RDMA channel over which to send the information unit.
2078  * @iu: Information unit to send.
2079  * @len: Length of the information unit excluding immediate data.
2080  */
2081 static int srp_post_send(struct srp_rdma_ch *ch, struct srp_iu *iu, int len)
2082 {
2083         struct srp_target_port *target = ch->target;
2084         struct ib_send_wr wr;
2085
2086         if (WARN_ON_ONCE(iu->num_sge > SRP_MAX_SGE))
2087                 return -EINVAL;
2088
2089         iu->sge[0].addr   = iu->dma;
2090         iu->sge[0].length = len;
2091         iu->sge[0].lkey   = target->lkey;
2092
2093         iu->cqe.done = srp_send_done;
2094
2095         wr.next       = NULL;
2096         wr.wr_cqe     = &iu->cqe;
2097         wr.sg_list    = &iu->sge[0];
2098         wr.num_sge    = iu->num_sge;
2099         wr.opcode     = IB_WR_SEND;
2100         wr.send_flags = IB_SEND_SIGNALED;
2101
2102         return ib_post_send(ch->qp, &wr, NULL);
2103 }
2104
2105 static int srp_post_recv(struct srp_rdma_ch *ch, struct srp_iu *iu)
2106 {
2107         struct srp_target_port *target = ch->target;
2108         struct ib_recv_wr wr;
2109         struct ib_sge list;
2110
2111         list.addr   = iu->dma;
2112         list.length = iu->size;
2113         list.lkey   = target->lkey;
2114
2115         iu->cqe.done = srp_recv_done;
2116
2117         wr.next     = NULL;
2118         wr.wr_cqe   = &iu->cqe;
2119         wr.sg_list  = &list;
2120         wr.num_sge  = 1;
2121
2122         return ib_post_recv(ch->qp, &wr, NULL);
2123 }
2124
2125 static void srp_process_rsp(struct srp_rdma_ch *ch, struct srp_rsp *rsp)
2126 {
2127         struct srp_target_port *target = ch->target;
2128         struct srp_request *req;
2129         struct scsi_cmnd *scmnd;
2130         unsigned long flags;
2131
2132         if (unlikely(rsp->tag & SRP_TAG_TSK_MGMT)) {
2133                 spin_lock_irqsave(&ch->lock, flags);
2134                 ch->req_lim += be32_to_cpu(rsp->req_lim_delta);
2135                 if (rsp->tag == ch->tsk_mgmt_tag) {
2136                         ch->tsk_mgmt_status = -1;
2137                         if (be32_to_cpu(rsp->resp_data_len) >= 4)
2138                                 ch->tsk_mgmt_status = rsp->data[3];
2139                         complete(&ch->tsk_mgmt_done);
2140                 } else {
2141                         shost_printk(KERN_ERR, target->scsi_host,
2142                                      "Received tsk mgmt response too late for tag %#llx\n",
2143                                      rsp->tag);
2144                 }
2145                 spin_unlock_irqrestore(&ch->lock, flags);
2146         } else {
2147                 scmnd = scsi_host_find_tag(target->scsi_host, rsp->tag);
2148                 if (scmnd && scmnd->host_scribble) {
2149                         req = (void *)scmnd->host_scribble;
2150                         scmnd = srp_claim_req(ch, req, NULL, scmnd);
2151                 } else {
2152                         scmnd = NULL;
2153                 }
2154                 if (!scmnd) {
2155                         shost_printk(KERN_ERR, target->scsi_host,
2156                                      "Null scmnd for RSP w/tag %#016llx received on ch %td / QP %#x\n",
2157                                      rsp->tag, ch - target->ch, ch->qp->qp_num);
2158
2159                         spin_lock_irqsave(&ch->lock, flags);
2160                         ch->req_lim += be32_to_cpu(rsp->req_lim_delta);
2161                         spin_unlock_irqrestore(&ch->lock, flags);
2162
2163                         return;
2164                 }
2165                 scmnd->result = rsp->status;
2166
2167                 if (rsp->flags & SRP_RSP_FLAG_SNSVALID) {
2168                         memcpy(scmnd->sense_buffer, rsp->data +
2169                                be32_to_cpu(rsp->resp_data_len),
2170                                min_t(int, be32_to_cpu(rsp->sense_data_len),
2171                                      SCSI_SENSE_BUFFERSIZE));
2172                 }
2173
2174                 if (unlikely(rsp->flags & SRP_RSP_FLAG_DIUNDER))
2175                         scsi_set_resid(scmnd, be32_to_cpu(rsp->data_in_res_cnt));
2176                 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DIOVER))
2177                         scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_in_res_cnt));
2178                 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOUNDER))
2179                         scsi_set_resid(scmnd, be32_to_cpu(rsp->data_out_res_cnt));
2180                 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOOVER))
2181                         scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_out_res_cnt));
2182
2183                 srp_free_req(ch, req, scmnd,
2184                              be32_to_cpu(rsp->req_lim_delta));
2185
2186                 scmnd->host_scribble = NULL;
2187                 scmnd->scsi_done(scmnd);
2188         }
2189 }
2190
2191 static int srp_response_common(struct srp_rdma_ch *ch, s32 req_delta,
2192                                void *rsp, int len)
2193 {
2194         struct srp_target_port *target = ch->target;
2195         struct ib_device *dev = target->srp_host->srp_dev->dev;
2196         unsigned long flags;
2197         struct srp_iu *iu;
2198         int err;
2199
2200         spin_lock_irqsave(&ch->lock, flags);
2201         ch->req_lim += req_delta;
2202         iu = __srp_get_tx_iu(ch, SRP_IU_RSP);
2203         spin_unlock_irqrestore(&ch->lock, flags);
2204
2205         if (!iu) {
2206                 shost_printk(KERN_ERR, target->scsi_host, PFX
2207                              "no IU available to send response\n");
2208                 return 1;
2209         }
2210
2211         iu->num_sge = 1;
2212         ib_dma_sync_single_for_cpu(dev, iu->dma, len, DMA_TO_DEVICE);
2213         memcpy(iu->buf, rsp, len);
2214         ib_dma_sync_single_for_device(dev, iu->dma, len, DMA_TO_DEVICE);
2215
2216         err = srp_post_send(ch, iu, len);
2217         if (err) {
2218                 shost_printk(KERN_ERR, target->scsi_host, PFX
2219                              "unable to post response: %d\n", err);
2220                 srp_put_tx_iu(ch, iu, SRP_IU_RSP);
2221         }
2222
2223         return err;
2224 }
2225
2226 static void srp_process_cred_req(struct srp_rdma_ch *ch,
2227                                  struct srp_cred_req *req)
2228 {
2229         struct srp_cred_rsp rsp = {
2230                 .opcode = SRP_CRED_RSP,
2231                 .tag = req->tag,
2232         };
2233         s32 delta = be32_to_cpu(req->req_lim_delta);
2234
2235         if (srp_response_common(ch, delta, &rsp, sizeof(rsp)))
2236                 shost_printk(KERN_ERR, ch->target->scsi_host, PFX
2237                              "problems processing SRP_CRED_REQ\n");
2238 }
2239
2240 static void srp_process_aer_req(struct srp_rdma_ch *ch,
2241                                 struct srp_aer_req *req)
2242 {
2243         struct srp_target_port *target = ch->target;
2244         struct srp_aer_rsp rsp = {
2245                 .opcode = SRP_AER_RSP,
2246                 .tag = req->tag,
2247         };
2248         s32 delta = be32_to_cpu(req->req_lim_delta);
2249
2250         shost_printk(KERN_ERR, target->scsi_host, PFX
2251                      "ignoring AER for LUN %llu\n", scsilun_to_int(&req->lun));
2252
2253         if (srp_response_common(ch, delta, &rsp, sizeof(rsp)))
2254                 shost_printk(KERN_ERR, target->scsi_host, PFX
2255                              "problems processing SRP_AER_REQ\n");
2256 }
2257
2258 static void srp_recv_done(struct ib_cq *cq, struct ib_wc *wc)
2259 {
2260         struct srp_iu *iu = container_of(wc->wr_cqe, struct srp_iu, cqe);
2261         struct srp_rdma_ch *ch = cq->cq_context;
2262         struct srp_target_port *target = ch->target;
2263         struct ib_device *dev = target->srp_host->srp_dev->dev;
2264         int res;
2265         u8 opcode;
2266
2267         if (unlikely(wc->status != IB_WC_SUCCESS)) {
2268                 srp_handle_qp_err(cq, wc, "RECV");
2269                 return;
2270         }
2271
2272         ib_dma_sync_single_for_cpu(dev, iu->dma, ch->max_ti_iu_len,
2273                                    DMA_FROM_DEVICE);
2274
2275         opcode = *(u8 *) iu->buf;
2276
2277         if (0) {
2278                 shost_printk(KERN_ERR, target->scsi_host,
2279                              PFX "recv completion, opcode 0x%02x\n", opcode);
2280                 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 8, 1,
2281                                iu->buf, wc->byte_len, true);
2282         }
2283
2284         switch (opcode) {
2285         case SRP_RSP:
2286                 srp_process_rsp(ch, iu->buf);
2287                 break;
2288
2289         case SRP_CRED_REQ:
2290                 srp_process_cred_req(ch, iu->buf);
2291                 break;
2292
2293         case SRP_AER_REQ:
2294                 srp_process_aer_req(ch, iu->buf);
2295                 break;
2296
2297         case SRP_T_LOGOUT:
2298                 /* XXX Handle target logout */
2299                 shost_printk(KERN_WARNING, target->scsi_host,
2300                              PFX "Got target logout request\n");
2301                 break;
2302
2303         default:
2304                 shost_printk(KERN_WARNING, target->scsi_host,
2305                              PFX "Unhandled SRP opcode 0x%02x\n", opcode);
2306                 break;
2307         }
2308
2309         ib_dma_sync_single_for_device(dev, iu->dma, ch->max_ti_iu_len,
2310                                       DMA_FROM_DEVICE);
2311
2312         res = srp_post_recv(ch, iu);
2313         if (res != 0)
2314                 shost_printk(KERN_ERR, target->scsi_host,
2315                              PFX "Recv failed with error code %d\n", res);
2316 }
2317
2318 /**
2319  * srp_tl_err_work() - handle a transport layer error
2320  * @work: Work structure embedded in an SRP target port.
2321  *
2322  * Note: This function may get invoked before the rport has been created,
2323  * hence the target->rport test.
2324  */
2325 static void srp_tl_err_work(struct work_struct *work)
2326 {
2327         struct srp_target_port *target;
2328
2329         target = container_of(work, struct srp_target_port, tl_err_work);
2330         if (target->rport)
2331                 srp_start_tl_fail_timers(target->rport);
2332 }
2333
2334 static void srp_handle_qp_err(struct ib_cq *cq, struct ib_wc *wc,
2335                 const char *opname)
2336 {
2337         struct srp_rdma_ch *ch = cq->cq_context;
2338         struct srp_target_port *target = ch->target;
2339
2340         if (ch->connected && !target->qp_in_error) {
2341                 shost_printk(KERN_ERR, target->scsi_host,
2342                              PFX "failed %s status %s (%d) for CQE %p\n",
2343                              opname, ib_wc_status_msg(wc->status), wc->status,
2344                              wc->wr_cqe);
2345                 queue_work(system_long_wq, &target->tl_err_work);
2346         }
2347         target->qp_in_error = true;
2348 }
2349
2350 static int srp_queuecommand(struct Scsi_Host *shost, struct scsi_cmnd *scmnd)
2351 {
2352         struct srp_target_port *target = host_to_target(shost);
2353         struct srp_rdma_ch *ch;
2354         struct srp_request *req;
2355         struct srp_iu *iu;
2356         struct srp_cmd *cmd;
2357         struct ib_device *dev;
2358         unsigned long flags;
2359         u32 tag;
2360         u16 idx;
2361         int len, ret;
2362
2363         scmnd->result = srp_chkready(target->rport);
2364         if (unlikely(scmnd->result))
2365                 goto err;
2366
2367         WARN_ON_ONCE(scmnd->request->tag < 0);
2368         tag = blk_mq_unique_tag(scmnd->request);
2369         ch = &target->ch[blk_mq_unique_tag_to_hwq(tag)];
2370         idx = blk_mq_unique_tag_to_tag(tag);
2371         WARN_ONCE(idx >= target->req_ring_size, "%s: tag %#x: idx %d >= %d\n",
2372                   dev_name(&shost->shost_gendev), tag, idx,
2373                   target->req_ring_size);
2374
2375         spin_lock_irqsave(&ch->lock, flags);
2376         iu = __srp_get_tx_iu(ch, SRP_IU_CMD);
2377         spin_unlock_irqrestore(&ch->lock, flags);
2378
2379         if (!iu)
2380                 goto err;
2381
2382         req = &ch->req_ring[idx];
2383         dev = target->srp_host->srp_dev->dev;
2384         ib_dma_sync_single_for_cpu(dev, iu->dma, ch->max_it_iu_len,
2385                                    DMA_TO_DEVICE);
2386
2387         scmnd->host_scribble = (void *) req;
2388
2389         cmd = iu->buf;
2390         memset(cmd, 0, sizeof *cmd);
2391
2392         cmd->opcode = SRP_CMD;
2393         int_to_scsilun(scmnd->device->lun, &cmd->lun);
2394         cmd->tag    = tag;
2395         memcpy(cmd->cdb, scmnd->cmnd, scmnd->cmd_len);
2396         if (unlikely(scmnd->cmd_len > sizeof(cmd->cdb))) {
2397                 cmd->add_cdb_len = round_up(scmnd->cmd_len - sizeof(cmd->cdb),
2398                                             4);
2399                 if (WARN_ON_ONCE(cmd->add_cdb_len > SRP_MAX_ADD_CDB_LEN))
2400                         goto err_iu;
2401         }
2402
2403         req->scmnd    = scmnd;
2404         req->cmd      = iu;
2405
2406         len = srp_map_data(scmnd, ch, req);
2407         if (len < 0) {
2408                 shost_printk(KERN_ERR, target->scsi_host,
2409                              PFX "Failed to map data (%d)\n", len);
2410                 /*
2411                  * If we ran out of memory descriptors (-ENOMEM) because an
2412                  * application is queuing many requests with more than
2413                  * max_pages_per_mr sg-list elements, tell the SCSI mid-layer
2414                  * to reduce queue depth temporarily.
2415                  */
2416                 scmnd->result = len == -ENOMEM ?
2417                         DID_OK << 16 | QUEUE_FULL << 1 : DID_ERROR << 16;
2418                 goto err_iu;
2419         }
2420
2421         ib_dma_sync_single_for_device(dev, iu->dma, ch->max_it_iu_len,
2422                                       DMA_TO_DEVICE);
2423
2424         if (srp_post_send(ch, iu, len)) {
2425                 shost_printk(KERN_ERR, target->scsi_host, PFX "Send failed\n");
2426                 scmnd->result = DID_ERROR << 16;
2427                 goto err_unmap;
2428         }
2429
2430         return 0;
2431
2432 err_unmap:
2433         srp_unmap_data(scmnd, ch, req);
2434
2435 err_iu:
2436         srp_put_tx_iu(ch, iu, SRP_IU_CMD);
2437
2438         /*
2439          * Avoid that the loops that iterate over the request ring can
2440          * encounter a dangling SCSI command pointer.
2441          */
2442         req->scmnd = NULL;
2443
2444 err:
2445         if (scmnd->result) {
2446                 scmnd->scsi_done(scmnd);
2447                 ret = 0;
2448         } else {
2449                 ret = SCSI_MLQUEUE_HOST_BUSY;
2450         }
2451
2452         return ret;
2453 }
2454
2455 /*
2456  * Note: the resources allocated in this function are freed in
2457  * srp_free_ch_ib().
2458  */
2459 static int srp_alloc_iu_bufs(struct srp_rdma_ch *ch)
2460 {
2461         struct srp_target_port *target = ch->target;
2462         int i;
2463
2464         ch->rx_ring = kcalloc(target->queue_size, sizeof(*ch->rx_ring),
2465                               GFP_KERNEL);
2466         if (!ch->rx_ring)
2467                 goto err_no_ring;
2468         ch->tx_ring = kcalloc(target->queue_size, sizeof(*ch->tx_ring),
2469                               GFP_KERNEL);
2470         if (!ch->tx_ring)
2471                 goto err_no_ring;
2472
2473         for (i = 0; i < target->queue_size; ++i) {
2474                 ch->rx_ring[i] = srp_alloc_iu(target->srp_host,
2475                                               ch->max_ti_iu_len,
2476                                               GFP_KERNEL, DMA_FROM_DEVICE);
2477                 if (!ch->rx_ring[i])
2478                         goto err;
2479         }
2480
2481         for (i = 0; i < target->queue_size; ++i) {
2482                 ch->tx_ring[i] = srp_alloc_iu(target->srp_host,
2483                                               ch->max_it_iu_len,
2484                                               GFP_KERNEL, DMA_TO_DEVICE);
2485                 if (!ch->tx_ring[i])
2486                         goto err;
2487
2488                 list_add(&ch->tx_ring[i]->list, &ch->free_tx);
2489         }
2490
2491         return 0;
2492
2493 err:
2494         for (i = 0; i < target->queue_size; ++i) {
2495                 srp_free_iu(target->srp_host, ch->rx_ring[i]);
2496                 srp_free_iu(target->srp_host, ch->tx_ring[i]);
2497         }
2498
2499
2500 err_no_ring:
2501         kfree(ch->tx_ring);
2502         ch->tx_ring = NULL;
2503         kfree(ch->rx_ring);
2504         ch->rx_ring = NULL;
2505
2506         return -ENOMEM;
2507 }
2508
2509 static uint32_t srp_compute_rq_tmo(struct ib_qp_attr *qp_attr, int attr_mask)
2510 {
2511         uint64_t T_tr_ns, max_compl_time_ms;
2512         uint32_t rq_tmo_jiffies;
2513
2514         /*
2515          * According to section 11.2.4.2 in the IBTA spec (Modify Queue Pair,
2516          * table 91), both the QP timeout and the retry count have to be set
2517          * for RC QP's during the RTR to RTS transition.
2518          */
2519         WARN_ON_ONCE((attr_mask & (IB_QP_TIMEOUT | IB_QP_RETRY_CNT)) !=
2520                      (IB_QP_TIMEOUT | IB_QP_RETRY_CNT));
2521
2522         /*
2523          * Set target->rq_tmo_jiffies to one second more than the largest time
2524          * it can take before an error completion is generated. See also
2525          * C9-140..142 in the IBTA spec for more information about how to
2526          * convert the QP Local ACK Timeout value to nanoseconds.
2527          */
2528         T_tr_ns = 4096 * (1ULL << qp_attr->timeout);
2529         max_compl_time_ms = qp_attr->retry_cnt * 4 * T_tr_ns;
2530         do_div(max_compl_time_ms, NSEC_PER_MSEC);
2531         rq_tmo_jiffies = msecs_to_jiffies(max_compl_time_ms + 1000);
2532
2533         return rq_tmo_jiffies;
2534 }
2535
2536 static void srp_cm_rep_handler(struct ib_cm_id *cm_id,
2537                                const struct srp_login_rsp *lrsp,
2538                                struct srp_rdma_ch *ch)
2539 {
2540         struct srp_target_port *target = ch->target;
2541         struct ib_qp_attr *qp_attr = NULL;
2542         int attr_mask = 0;
2543         int ret = 0;
2544         int i;
2545
2546         if (lrsp->opcode == SRP_LOGIN_RSP) {
2547                 ch->max_ti_iu_len = be32_to_cpu(lrsp->max_ti_iu_len);
2548                 ch->req_lim       = be32_to_cpu(lrsp->req_lim_delta);
2549                 ch->use_imm_data  = srp_use_imm_data &&
2550                         (lrsp->rsp_flags & SRP_LOGIN_RSP_IMMED_SUPP);
2551                 ch->max_it_iu_len = srp_max_it_iu_len(target->cmd_sg_cnt,
2552                                                       ch->use_imm_data,
2553                                                       target->max_it_iu_size);
2554                 WARN_ON_ONCE(ch->max_it_iu_len >
2555                              be32_to_cpu(lrsp->max_it_iu_len));
2556
2557                 if (ch->use_imm_data)
2558                         shost_printk(KERN_DEBUG, target->scsi_host,
2559                                      PFX "using immediate data\n");
2560
2561                 /*
2562                  * Reserve credits for task management so we don't
2563                  * bounce requests back to the SCSI mid-layer.
2564                  */
2565                 target->scsi_host->can_queue
2566                         = min(ch->req_lim - SRP_TSK_MGMT_SQ_SIZE,
2567                               target->scsi_host->can_queue);
2568                 target->scsi_host->cmd_per_lun
2569                         = min_t(int, target->scsi_host->can_queue,
2570                                 target->scsi_host->cmd_per_lun);
2571         } else {
2572                 shost_printk(KERN_WARNING, target->scsi_host,
2573                              PFX "Unhandled RSP opcode %#x\n", lrsp->opcode);
2574                 ret = -ECONNRESET;
2575                 goto error;
2576         }
2577
2578         if (!ch->rx_ring) {
2579                 ret = srp_alloc_iu_bufs(ch);
2580                 if (ret)
2581                         goto error;
2582         }
2583
2584         for (i = 0; i < target->queue_size; i++) {
2585                 struct srp_iu *iu = ch->rx_ring[i];
2586
2587                 ret = srp_post_recv(ch, iu);
2588                 if (ret)
2589                         goto error;
2590         }
2591
2592         if (!target->using_rdma_cm) {
2593                 ret = -ENOMEM;
2594                 qp_attr = kmalloc(sizeof(*qp_attr), GFP_KERNEL);
2595                 if (!qp_attr)
2596                         goto error;
2597
2598                 qp_attr->qp_state = IB_QPS_RTR;
2599                 ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask);
2600                 if (ret)
2601                         goto error_free;
2602
2603                 ret = ib_modify_qp(ch->qp, qp_attr, attr_mask);
2604                 if (ret)
2605                         goto error_free;
2606
2607                 qp_attr->qp_state = IB_QPS_RTS;
2608                 ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask);
2609                 if (ret)
2610                         goto error_free;
2611
2612                 target->rq_tmo_jiffies = srp_compute_rq_tmo(qp_attr, attr_mask);
2613
2614                 ret = ib_modify_qp(ch->qp, qp_attr, attr_mask);
2615                 if (ret)
2616                         goto error_free;
2617
2618                 ret = ib_send_cm_rtu(cm_id, NULL, 0);
2619         }
2620
2621 error_free:
2622         kfree(qp_attr);
2623
2624 error:
2625         ch->status = ret;
2626 }
2627
2628 static void srp_ib_cm_rej_handler(struct ib_cm_id *cm_id,
2629                                   const struct ib_cm_event *event,
2630                                   struct srp_rdma_ch *ch)
2631 {
2632         struct srp_target_port *target = ch->target;
2633         struct Scsi_Host *shost = target->scsi_host;
2634         struct ib_class_port_info *cpi;
2635         int opcode;
2636         u16 dlid;
2637
2638         switch (event->param.rej_rcvd.reason) {
2639         case IB_CM_REJ_PORT_CM_REDIRECT:
2640                 cpi = event->param.rej_rcvd.ari;
2641                 dlid = be16_to_cpu(cpi->redirect_lid);
2642                 sa_path_set_dlid(&ch->ib_cm.path, dlid);
2643                 ch->ib_cm.path.pkey = cpi->redirect_pkey;
2644                 cm_id->remote_cm_qpn = be32_to_cpu(cpi->redirect_qp) & 0x00ffffff;
2645                 memcpy(ch->ib_cm.path.dgid.raw, cpi->redirect_gid, 16);
2646
2647                 ch->status = dlid ? SRP_DLID_REDIRECT : SRP_PORT_REDIRECT;
2648                 break;
2649
2650         case IB_CM_REJ_PORT_REDIRECT:
2651                 if (srp_target_is_topspin(target)) {
2652                         union ib_gid *dgid = &ch->ib_cm.path.dgid;
2653
2654                         /*
2655                          * Topspin/Cisco SRP gateways incorrectly send
2656                          * reject reason code 25 when they mean 24
2657                          * (port redirect).
2658                          */
2659                         memcpy(dgid->raw, event->param.rej_rcvd.ari, 16);
2660
2661                         shost_printk(KERN_DEBUG, shost,
2662                                      PFX "Topspin/Cisco redirect to target port GID %016llx%016llx\n",
2663                                      be64_to_cpu(dgid->global.subnet_prefix),
2664                                      be64_to_cpu(dgid->global.interface_id));
2665
2666                         ch->status = SRP_PORT_REDIRECT;
2667                 } else {
2668                         shost_printk(KERN_WARNING, shost,
2669                                      "  REJ reason: IB_CM_REJ_PORT_REDIRECT\n");
2670                         ch->status = -ECONNRESET;
2671                 }
2672                 break;
2673
2674         case IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID:
2675                 shost_printk(KERN_WARNING, shost,
2676                             "  REJ reason: IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID\n");
2677                 ch->status = -ECONNRESET;
2678                 break;
2679
2680         case IB_CM_REJ_CONSUMER_DEFINED:
2681                 opcode = *(u8 *) event->private_data;
2682                 if (opcode == SRP_LOGIN_REJ) {
2683                         struct srp_login_rej *rej = event->private_data;
2684                         u32 reason = be32_to_cpu(rej->reason);
2685
2686                         if (reason == SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE)
2687                                 shost_printk(KERN_WARNING, shost,
2688                                              PFX "SRP_LOGIN_REJ: requested max_it_iu_len too large\n");
2689                         else
2690                                 shost_printk(KERN_WARNING, shost, PFX
2691                                              "SRP LOGIN from %pI6 to %pI6 REJECTED, reason 0x%08x\n",
2692                                              target->sgid.raw,
2693                                              target->ib_cm.orig_dgid.raw,
2694                                              reason);
2695                 } else
2696                         shost_printk(KERN_WARNING, shost,
2697                                      "  REJ reason: IB_CM_REJ_CONSUMER_DEFINED,"
2698                                      " opcode 0x%02x\n", opcode);
2699                 ch->status = -ECONNRESET;
2700                 break;
2701
2702         case IB_CM_REJ_STALE_CONN:
2703                 shost_printk(KERN_WARNING, shost, "  REJ reason: stale connection\n");
2704                 ch->status = SRP_STALE_CONN;
2705                 break;
2706
2707         default:
2708                 shost_printk(KERN_WARNING, shost, "  REJ reason 0x%x\n",
2709                              event->param.rej_rcvd.reason);
2710                 ch->status = -ECONNRESET;
2711         }
2712 }
2713
2714 static int srp_ib_cm_handler(struct ib_cm_id *cm_id,
2715                              const struct ib_cm_event *event)
2716 {
2717         struct srp_rdma_ch *ch = cm_id->context;
2718         struct srp_target_port *target = ch->target;
2719         int comp = 0;
2720
2721         switch (event->event) {
2722         case IB_CM_REQ_ERROR:
2723                 shost_printk(KERN_DEBUG, target->scsi_host,
2724                              PFX "Sending CM REQ failed\n");
2725                 comp = 1;
2726                 ch->status = -ECONNRESET;
2727                 break;
2728
2729         case IB_CM_REP_RECEIVED:
2730                 comp = 1;
2731                 srp_cm_rep_handler(cm_id, event->private_data, ch);
2732                 break;
2733
2734         case IB_CM_REJ_RECEIVED:
2735                 shost_printk(KERN_DEBUG, target->scsi_host, PFX "REJ received\n");
2736                 comp = 1;
2737
2738                 srp_ib_cm_rej_handler(cm_id, event, ch);
2739                 break;
2740
2741         case IB_CM_DREQ_RECEIVED:
2742                 shost_printk(KERN_WARNING, target->scsi_host,
2743                              PFX "DREQ received - connection closed\n");
2744                 ch->connected = false;
2745                 if (ib_send_cm_drep(cm_id, NULL, 0))
2746                         shost_printk(KERN_ERR, target->scsi_host,
2747                                      PFX "Sending CM DREP failed\n");
2748                 queue_work(system_long_wq, &target->tl_err_work);
2749                 break;
2750
2751         case IB_CM_TIMEWAIT_EXIT:
2752                 shost_printk(KERN_ERR, target->scsi_host,
2753                              PFX "connection closed\n");
2754                 comp = 1;
2755
2756                 ch->status = 0;
2757                 break;
2758
2759         case IB_CM_MRA_RECEIVED:
2760         case IB_CM_DREQ_ERROR:
2761         case IB_CM_DREP_RECEIVED:
2762                 break;
2763
2764         default:
2765                 shost_printk(KERN_WARNING, target->scsi_host,
2766                              PFX "Unhandled CM event %d\n", event->event);
2767                 break;
2768         }
2769
2770         if (comp)
2771                 complete(&ch->done);
2772
2773         return 0;
2774 }
2775
2776 static void srp_rdma_cm_rej_handler(struct srp_rdma_ch *ch,
2777                                     struct rdma_cm_event *event)
2778 {
2779         struct srp_target_port *target = ch->target;
2780         struct Scsi_Host *shost = target->scsi_host;
2781         int opcode;
2782
2783         switch (event->status) {
2784         case IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID:
2785                 shost_printk(KERN_WARNING, shost,
2786                             "  REJ reason: IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID\n");
2787                 ch->status = -ECONNRESET;
2788                 break;
2789
2790         case IB_CM_REJ_CONSUMER_DEFINED:
2791                 opcode = *(u8 *) event->param.conn.private_data;
2792                 if (opcode == SRP_LOGIN_REJ) {
2793                         struct srp_login_rej *rej =
2794                                 (struct srp_login_rej *)
2795                                 event->param.conn.private_data;
2796                         u32 reason = be32_to_cpu(rej->reason);
2797
2798                         if (reason == SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE)
2799                                 shost_printk(KERN_WARNING, shost,
2800                                              PFX "SRP_LOGIN_REJ: requested max_it_iu_len too large\n");
2801                         else
2802                                 shost_printk(KERN_WARNING, shost,
2803                                             PFX "SRP LOGIN REJECTED, reason 0x%08x\n", reason);
2804                 } else {
2805                         shost_printk(KERN_WARNING, shost,
2806                                      "  REJ reason: IB_CM_REJ_CONSUMER_DEFINED, opcode 0x%02x\n",
2807                                      opcode);
2808                 }
2809                 ch->status = -ECONNRESET;
2810                 break;
2811
2812         case IB_CM_REJ_STALE_CONN:
2813                 shost_printk(KERN_WARNING, shost,
2814                              "  REJ reason: stale connection\n");
2815                 ch->status = SRP_STALE_CONN;
2816                 break;
2817
2818         default:
2819                 shost_printk(KERN_WARNING, shost, "  REJ reason 0x%x\n",
2820                              event->status);
2821                 ch->status = -ECONNRESET;
2822                 break;
2823         }
2824 }
2825
2826 static int srp_rdma_cm_handler(struct rdma_cm_id *cm_id,
2827                                struct rdma_cm_event *event)
2828 {
2829         struct srp_rdma_ch *ch = cm_id->context;
2830         struct srp_target_port *target = ch->target;
2831         int comp = 0;
2832
2833         switch (event->event) {
2834         case RDMA_CM_EVENT_ADDR_RESOLVED:
2835                 ch->status = 0;
2836                 comp = 1;
2837                 break;
2838
2839         case RDMA_CM_EVENT_ADDR_ERROR:
2840                 ch->status = -ENXIO;
2841                 comp = 1;
2842                 break;
2843
2844         case RDMA_CM_EVENT_ROUTE_RESOLVED:
2845                 ch->status = 0;
2846                 comp = 1;
2847                 break;
2848
2849         case RDMA_CM_EVENT_ROUTE_ERROR:
2850         case RDMA_CM_EVENT_UNREACHABLE:
2851                 ch->status = -EHOSTUNREACH;
2852                 comp = 1;
2853                 break;
2854
2855         case RDMA_CM_EVENT_CONNECT_ERROR:
2856                 shost_printk(KERN_DEBUG, target->scsi_host,
2857                              PFX "Sending CM REQ failed\n");
2858                 comp = 1;
2859                 ch->status = -ECONNRESET;
2860                 break;
2861
2862         case RDMA_CM_EVENT_ESTABLISHED:
2863                 comp = 1;
2864                 srp_cm_rep_handler(NULL, event->param.conn.private_data, ch);
2865                 break;
2866
2867         case RDMA_CM_EVENT_REJECTED:
2868                 shost_printk(KERN_DEBUG, target->scsi_host, PFX "REJ received\n");
2869                 comp = 1;
2870
2871                 srp_rdma_cm_rej_handler(ch, event);
2872                 break;
2873
2874         case RDMA_CM_EVENT_DISCONNECTED:
2875                 if (ch->connected) {
2876                         shost_printk(KERN_WARNING, target->scsi_host,
2877                                      PFX "received DREQ\n");
2878                         rdma_disconnect(ch->rdma_cm.cm_id);
2879                         comp = 1;
2880                         ch->status = 0;
2881                         queue_work(system_long_wq, &target->tl_err_work);
2882                 }
2883                 break;
2884
2885         case RDMA_CM_EVENT_TIMEWAIT_EXIT:
2886                 shost_printk(KERN_ERR, target->scsi_host,
2887                              PFX "connection closed\n");
2888
2889                 comp = 1;
2890                 ch->status = 0;
2891                 break;
2892
2893         default:
2894                 shost_printk(KERN_WARNING, target->scsi_host,
2895                              PFX "Unhandled CM event %d\n", event->event);
2896                 break;
2897         }
2898
2899         if (comp)
2900                 complete(&ch->done);
2901
2902         return 0;
2903 }
2904
2905 /**
2906  * srp_change_queue_depth - setting device queue depth
2907  * @sdev: scsi device struct
2908  * @qdepth: requested queue depth
2909  *
2910  * Returns queue depth.
2911  */
2912 static int
2913 srp_change_queue_depth(struct scsi_device *sdev, int qdepth)
2914 {
2915         if (!sdev->tagged_supported)
2916                 qdepth = 1;
2917         return scsi_change_queue_depth(sdev, qdepth);
2918 }
2919
2920 static int srp_send_tsk_mgmt(struct srp_rdma_ch *ch, u64 req_tag, u64 lun,
2921                              u8 func, u8 *status)
2922 {
2923         struct srp_target_port *target = ch->target;
2924         struct srp_rport *rport = target->rport;
2925         struct ib_device *dev = target->srp_host->srp_dev->dev;
2926         struct srp_iu *iu;
2927         struct srp_tsk_mgmt *tsk_mgmt;
2928         int res;
2929
2930         if (!ch->connected || target->qp_in_error)
2931                 return -1;
2932
2933         /*
2934          * Lock the rport mutex to avoid that srp_create_ch_ib() is
2935          * invoked while a task management function is being sent.
2936          */
2937         mutex_lock(&rport->mutex);
2938         spin_lock_irq(&ch->lock);
2939         iu = __srp_get_tx_iu(ch, SRP_IU_TSK_MGMT);
2940         spin_unlock_irq(&ch->lock);
2941
2942         if (!iu) {
2943                 mutex_unlock(&rport->mutex);
2944
2945                 return -1;
2946         }
2947
2948         iu->num_sge = 1;
2949
2950         ib_dma_sync_single_for_cpu(dev, iu->dma, sizeof *tsk_mgmt,
2951                                    DMA_TO_DEVICE);
2952         tsk_mgmt = iu->buf;
2953         memset(tsk_mgmt, 0, sizeof *tsk_mgmt);
2954
2955         tsk_mgmt->opcode        = SRP_TSK_MGMT;
2956         int_to_scsilun(lun, &tsk_mgmt->lun);
2957         tsk_mgmt->tsk_mgmt_func = func;
2958         tsk_mgmt->task_tag      = req_tag;
2959
2960         spin_lock_irq(&ch->lock);
2961         ch->tsk_mgmt_tag = (ch->tsk_mgmt_tag + 1) | SRP_TAG_TSK_MGMT;
2962         tsk_mgmt->tag = ch->tsk_mgmt_tag;
2963         spin_unlock_irq(&ch->lock);
2964
2965         init_completion(&ch->tsk_mgmt_done);
2966
2967         ib_dma_sync_single_for_device(dev, iu->dma, sizeof *tsk_mgmt,
2968                                       DMA_TO_DEVICE);
2969         if (srp_post_send(ch, iu, sizeof(*tsk_mgmt))) {
2970                 srp_put_tx_iu(ch, iu, SRP_IU_TSK_MGMT);
2971                 mutex_unlock(&rport->mutex);
2972
2973                 return -1;
2974         }
2975         res = wait_for_completion_timeout(&ch->tsk_mgmt_done,
2976                                         msecs_to_jiffies(SRP_ABORT_TIMEOUT_MS));
2977         if (res > 0 && status)
2978                 *status = ch->tsk_mgmt_status;
2979         mutex_unlock(&rport->mutex);
2980
2981         WARN_ON_ONCE(res < 0);
2982
2983         return res > 0 ? 0 : -1;
2984 }
2985
2986 static int srp_abort(struct scsi_cmnd *scmnd)
2987 {
2988         struct srp_target_port *target = host_to_target(scmnd->device->host);
2989         struct srp_request *req = (struct srp_request *) scmnd->host_scribble;
2990         u32 tag;
2991         u16 ch_idx;
2992         struct srp_rdma_ch *ch;
2993         int ret;
2994
2995         shost_printk(KERN_ERR, target->scsi_host, "SRP abort called\n");
2996
2997         if (!req)
2998                 return SUCCESS;
2999         tag = blk_mq_unique_tag(scmnd->request);
3000         ch_idx = blk_mq_unique_tag_to_hwq(tag);
3001         if (WARN_ON_ONCE(ch_idx >= target->ch_count))
3002                 return SUCCESS;
3003         ch = &target->ch[ch_idx];
3004         if (!srp_claim_req(ch, req, NULL, scmnd))
3005                 return SUCCESS;
3006         shost_printk(KERN_ERR, target->scsi_host,
3007                      "Sending SRP abort for tag %#x\n", tag);
3008         if (srp_send_tsk_mgmt(ch, tag, scmnd->device->lun,
3009                               SRP_TSK_ABORT_TASK, NULL) == 0)
3010                 ret = SUCCESS;
3011         else if (target->rport->state == SRP_RPORT_LOST)
3012                 ret = FAST_IO_FAIL;
3013         else
3014                 ret = FAILED;
3015         if (ret == SUCCESS) {
3016                 srp_free_req(ch, req, scmnd, 0);
3017                 scmnd->result = DID_ABORT << 16;
3018                 scmnd->scsi_done(scmnd);
3019         }
3020
3021         return ret;
3022 }
3023
3024 static int srp_reset_device(struct scsi_cmnd *scmnd)
3025 {
3026         struct srp_target_port *target = host_to_target(scmnd->device->host);
3027         struct srp_rdma_ch *ch;
3028         u8 status;
3029
3030         shost_printk(KERN_ERR, target->scsi_host, "SRP reset_device called\n");
3031
3032         ch = &target->ch[0];
3033         if (srp_send_tsk_mgmt(ch, SRP_TAG_NO_REQ, scmnd->device->lun,
3034                               SRP_TSK_LUN_RESET, &status))
3035                 return FAILED;
3036         if (status)
3037                 return FAILED;
3038
3039         return SUCCESS;
3040 }
3041
3042 static int srp_reset_host(struct scsi_cmnd *scmnd)
3043 {
3044         struct srp_target_port *target = host_to_target(scmnd->device->host);
3045
3046         shost_printk(KERN_ERR, target->scsi_host, PFX "SRP reset_host called\n");
3047
3048         return srp_reconnect_rport(target->rport) == 0 ? SUCCESS : FAILED;
3049 }
3050
3051 static int srp_target_alloc(struct scsi_target *starget)
3052 {
3053         struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
3054         struct srp_target_port *target = host_to_target(shost);
3055
3056         if (target->target_can_queue)
3057                 starget->can_queue = target->target_can_queue;
3058         return 0;
3059 }
3060
3061 static int srp_slave_configure(struct scsi_device *sdev)
3062 {
3063         struct Scsi_Host *shost = sdev->host;
3064         struct srp_target_port *target = host_to_target(shost);
3065         struct request_queue *q = sdev->request_queue;
3066         unsigned long timeout;
3067
3068         if (sdev->type == TYPE_DISK) {
3069                 timeout = max_t(unsigned, 30 * HZ, target->rq_tmo_jiffies);
3070                 blk_queue_rq_timeout(q, timeout);
3071         }
3072
3073         return 0;
3074 }
3075
3076 static ssize_t show_id_ext(struct device *dev, struct device_attribute *attr,
3077                            char *buf)
3078 {
3079         struct srp_target_port *target = host_to_target(class_to_shost(dev));
3080
3081         return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->id_ext));
3082 }
3083
3084 static ssize_t show_ioc_guid(struct device *dev, struct device_attribute *attr,
3085                              char *buf)
3086 {
3087         struct srp_target_port *target = host_to_target(class_to_shost(dev));
3088
3089         return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->ioc_guid));
3090 }
3091
3092 static ssize_t show_service_id(struct device *dev,
3093                                struct device_attribute *attr, char *buf)
3094 {
3095         struct srp_target_port *target = host_to_target(class_to_shost(dev));
3096
3097         if (target->using_rdma_cm)
3098                 return -ENOENT;
3099         return sprintf(buf, "0x%016llx\n",
3100                        be64_to_cpu(target->ib_cm.service_id));
3101 }
3102
3103 static ssize_t show_pkey(struct device *dev, struct device_attribute *attr,
3104                          char *buf)
3105 {
3106         struct srp_target_port *target = host_to_target(class_to_shost(dev));
3107
3108         if (target->using_rdma_cm)
3109                 return -ENOENT;
3110         return sprintf(buf, "0x%04x\n", be16_to_cpu(target->ib_cm.pkey));
3111 }
3112
3113 static ssize_t show_sgid(struct device *dev, struct device_attribute *attr,
3114                          char *buf)
3115 {
3116         struct srp_target_port *target = host_to_target(class_to_shost(dev));
3117
3118         return sprintf(buf, "%pI6\n", target->sgid.raw);
3119 }
3120
3121 static ssize_t show_dgid(struct device *dev, struct device_attribute *attr,
3122                          char *buf)
3123 {
3124         struct srp_target_port *target = host_to_target(class_to_shost(dev));
3125         struct srp_rdma_ch *ch = &target->ch[0];
3126
3127         if (target->using_rdma_cm)
3128                 return -ENOENT;
3129         return sprintf(buf, "%pI6\n", ch->ib_cm.path.dgid.raw);
3130 }
3131
3132 static ssize_t show_orig_dgid(struct device *dev,
3133                               struct device_attribute *attr, char *buf)
3134 {
3135         struct srp_target_port *target = host_to_target(class_to_shost(dev));
3136
3137         if (target->using_rdma_cm)
3138                 return -ENOENT;
3139         return sprintf(buf, "%pI6\n", target->ib_cm.orig_dgid.raw);
3140 }
3141
3142 static ssize_t show_req_lim(struct device *dev,
3143                             struct device_attribute *attr, char *buf)
3144 {
3145         struct srp_target_port *target = host_to_target(class_to_shost(dev));
3146         struct srp_rdma_ch *ch;
3147         int i, req_lim = INT_MAX;
3148
3149         for (i = 0; i < target->ch_count; i++) {
3150                 ch = &target->ch[i];
3151                 req_lim = min(req_lim, ch->req_lim);
3152         }
3153         return sprintf(buf, "%d\n", req_lim);
3154 }
3155
3156 static ssize_t show_zero_req_lim(struct device *dev,
3157                                  struct device_attribute *attr, char *buf)
3158 {
3159         struct srp_target_port *target = host_to_target(class_to_shost(dev));
3160
3161         return sprintf(buf, "%d\n", target->zero_req_lim);
3162 }
3163
3164 static ssize_t show_local_ib_port(struct device *dev,
3165                                   struct device_attribute *attr, char *buf)
3166 {
3167         struct srp_target_port *target = host_to_target(class_to_shost(dev));
3168
3169         return sprintf(buf, "%d\n", target->srp_host->port);
3170 }
3171
3172 static ssize_t show_local_ib_device(struct device *dev,
3173                                     struct device_attribute *attr, char *buf)
3174 {
3175         struct srp_target_port *target = host_to_target(class_to_shost(dev));
3176
3177         return sprintf(buf, "%s\n",
3178                        dev_name(&target->srp_host->srp_dev->dev->dev));
3179 }
3180
3181 static ssize_t show_ch_count(struct device *dev, struct device_attribute *attr,
3182                              char *buf)
3183 {
3184         struct srp_target_port *target = host_to_target(class_to_shost(dev));
3185
3186         return sprintf(buf, "%d\n", target->ch_count);
3187 }
3188
3189 static ssize_t show_comp_vector(struct device *dev,
3190                                 struct device_attribute *attr, char *buf)
3191 {
3192         struct srp_target_port *target = host_to_target(class_to_shost(dev));
3193
3194         return sprintf(buf, "%d\n", target->comp_vector);
3195 }
3196
3197 static ssize_t show_tl_retry_count(struct device *dev,
3198                                    struct device_attribute *attr, char *buf)
3199 {
3200         struct srp_target_port *target = host_to_target(class_to_shost(dev));
3201
3202         return sprintf(buf, "%d\n", target->tl_retry_count);
3203 }
3204
3205 static ssize_t show_cmd_sg_entries(struct device *dev,
3206                                    struct device_attribute *attr, char *buf)
3207 {
3208         struct srp_target_port *target = host_to_target(class_to_shost(dev));
3209
3210         return sprintf(buf, "%u\n", target->cmd_sg_cnt);
3211 }
3212
3213 static ssize_t show_allow_ext_sg(struct device *dev,
3214                                  struct device_attribute *attr, char *buf)
3215 {
3216         struct srp_target_port *target = host_to_target(class_to_shost(dev));
3217
3218         return sprintf(buf, "%s\n", target->allow_ext_sg ? "true" : "false");
3219 }
3220
3221 static DEVICE_ATTR(id_ext,          S_IRUGO, show_id_ext,          NULL);
3222 static DEVICE_ATTR(ioc_guid,        S_IRUGO, show_ioc_guid,        NULL);
3223 static DEVICE_ATTR(service_id,      S_IRUGO, show_service_id,      NULL);
3224 static DEVICE_ATTR(pkey,            S_IRUGO, show_pkey,            NULL);
3225 static DEVICE_ATTR(sgid,            S_IRUGO, show_sgid,            NULL);
3226 static DEVICE_ATTR(dgid,            S_IRUGO, show_dgid,            NULL);
3227 static DEVICE_ATTR(orig_dgid,       S_IRUGO, show_orig_dgid,       NULL);
3228 static DEVICE_ATTR(req_lim,         S_IRUGO, show_req_lim,         NULL);
3229 static DEVICE_ATTR(zero_req_lim,    S_IRUGO, show_zero_req_lim,    NULL);
3230 static DEVICE_ATTR(local_ib_port,   S_IRUGO, show_local_ib_port,   NULL);
3231 static DEVICE_ATTR(local_ib_device, S_IRUGO, show_local_ib_device, NULL);
3232 static DEVICE_ATTR(ch_count,        S_IRUGO, show_ch_count,        NULL);
3233 static DEVICE_ATTR(comp_vector,     S_IRUGO, show_comp_vector,     NULL);
3234 static DEVICE_ATTR(tl_retry_count,  S_IRUGO, show_tl_retry_count,  NULL);
3235 static DEVICE_ATTR(cmd_sg_entries,  S_IRUGO, show_cmd_sg_entries,  NULL);
3236 static DEVICE_ATTR(allow_ext_sg,    S_IRUGO, show_allow_ext_sg,    NULL);
3237
3238 static struct device_attribute *srp_host_attrs[] = {
3239         &dev_attr_id_ext,
3240         &dev_attr_ioc_guid,
3241         &dev_attr_service_id,
3242         &dev_attr_pkey,
3243         &dev_attr_sgid,
3244         &dev_attr_dgid,
3245         &dev_attr_orig_dgid,
3246         &dev_attr_req_lim,
3247         &dev_attr_zero_req_lim,
3248         &dev_attr_local_ib_port,
3249         &dev_attr_local_ib_device,
3250         &dev_attr_ch_count,
3251         &dev_attr_comp_vector,
3252         &dev_attr_tl_retry_count,
3253         &dev_attr_cmd_sg_entries,
3254         &dev_attr_allow_ext_sg,
3255         NULL
3256 };
3257
3258 static struct scsi_host_template srp_template = {
3259         .module                         = THIS_MODULE,
3260         .name                           = "InfiniBand SRP initiator",
3261         .proc_name                      = DRV_NAME,
3262         .target_alloc                   = srp_target_alloc,
3263         .slave_configure                = srp_slave_configure,
3264         .info                           = srp_target_info,
3265         .queuecommand                   = srp_queuecommand,
3266         .change_queue_depth             = srp_change_queue_depth,
3267         .eh_timed_out                   = srp_timed_out,
3268         .eh_abort_handler               = srp_abort,
3269         .eh_device_reset_handler        = srp_reset_device,
3270         .eh_host_reset_handler          = srp_reset_host,
3271         .skip_settle_delay              = true,
3272         .sg_tablesize                   = SRP_DEF_SG_TABLESIZE,
3273         .can_queue                      = SRP_DEFAULT_CMD_SQ_SIZE,
3274         .this_id                        = -1,
3275         .cmd_per_lun                    = SRP_DEFAULT_CMD_SQ_SIZE,
3276         .shost_attrs                    = srp_host_attrs,
3277         .track_queue_depth              = 1,
3278 };
3279
3280 static int srp_sdev_count(struct Scsi_Host *host)
3281 {
3282         struct scsi_device *sdev;
3283         int c = 0;
3284
3285         shost_for_each_device(sdev, host)
3286                 c++;
3287
3288         return c;
3289 }
3290
3291 /*
3292  * Return values:
3293  * < 0 upon failure. Caller is responsible for SRP target port cleanup.
3294  * 0 and target->state == SRP_TARGET_REMOVED if asynchronous target port
3295  *    removal has been scheduled.
3296  * 0 and target->state != SRP_TARGET_REMOVED upon success.
3297  */
3298 static int srp_add_target(struct srp_host *host, struct srp_target_port *target)
3299 {
3300         struct srp_rport_identifiers ids;
3301         struct srp_rport *rport;
3302
3303         target->state = SRP_TARGET_SCANNING;
3304         sprintf(target->target_name, "SRP.T10:%016llX",
3305                 be64_to_cpu(target->id_ext));
3306
3307         if (scsi_add_host(target->scsi_host, host->srp_dev->dev->dev.parent))
3308                 return -ENODEV;
3309
3310         memcpy(ids.port_id, &target->id_ext, 8);
3311         memcpy(ids.port_id + 8, &target->ioc_guid, 8);
3312         ids.roles = SRP_RPORT_ROLE_TARGET;
3313         rport = srp_rport_add(target->scsi_host, &ids);
3314         if (IS_ERR(rport)) {
3315                 scsi_remove_host(target->scsi_host);
3316                 return PTR_ERR(rport);
3317         }
3318
3319         rport->lld_data = target;
3320         target->rport = rport;
3321
3322         spin_lock(&host->target_lock);
3323         list_add_tail(&target->list, &host->target_list);
3324         spin_unlock(&host->target_lock);
3325
3326         scsi_scan_target(&target->scsi_host->shost_gendev,
3327                          0, target->scsi_id, SCAN_WILD_CARD, SCSI_SCAN_INITIAL);
3328
3329         if (srp_connected_ch(target) < target->ch_count ||
3330             target->qp_in_error) {
3331                 shost_printk(KERN_INFO, target->scsi_host,
3332                              PFX "SCSI scan failed - removing SCSI host\n");
3333                 srp_queue_remove_work(target);
3334                 goto out;
3335         }
3336
3337         pr_debug("%s: SCSI scan succeeded - detected %d LUNs\n",
3338                  dev_name(&target->scsi_host->shost_gendev),
3339                  srp_sdev_count(target->scsi_host));
3340
3341         spin_lock_irq(&target->lock);
3342         if (target->state == SRP_TARGET_SCANNING)
3343                 target->state = SRP_TARGET_LIVE;
3344         spin_unlock_irq(&target->lock);
3345
3346 out:
3347         return 0;
3348 }
3349
3350 static void srp_release_dev(struct device *dev)
3351 {
3352         struct srp_host *host =
3353                 container_of(dev, struct srp_host, dev);
3354
3355         complete(&host->released);
3356 }
3357
3358 static struct class srp_class = {
3359         .name    = "infiniband_srp",
3360         .dev_release = srp_release_dev
3361 };
3362
3363 /**
3364  * srp_conn_unique() - check whether the connection to a target is unique
3365  * @host:   SRP host.
3366  * @target: SRP target port.
3367  */
3368 static bool srp_conn_unique(struct srp_host *host,
3369                             struct srp_target_port *target)
3370 {
3371         struct srp_target_port *t;
3372         bool ret = false;
3373
3374         if (target->state == SRP_TARGET_REMOVED)
3375                 goto out;
3376
3377         ret = true;
3378
3379         spin_lock(&host->target_lock);
3380         list_for_each_entry(t, &host->target_list, list) {
3381                 if (t != target &&
3382                     target->id_ext == t->id_ext &&
3383                     target->ioc_guid == t->ioc_guid &&
3384                     target->initiator_ext == t->initiator_ext) {
3385                         ret = false;
3386                         break;
3387                 }
3388         }
3389         spin_unlock(&host->target_lock);
3390
3391 out:
3392         return ret;
3393 }
3394
3395 /*
3396  * Target ports are added by writing
3397  *
3398  *     id_ext=<SRP ID ext>,ioc_guid=<SRP IOC GUID>,dgid=<dest GID>,
3399  *     pkey=<P_Key>,service_id=<service ID>
3400  * or
3401  *     id_ext=<SRP ID ext>,ioc_guid=<SRP IOC GUID>,
3402  *     [src=<IPv4 address>,]dest=<IPv4 address>:<port number>
3403  *
3404  * to the add_target sysfs attribute.
3405  */
3406 enum {
3407         SRP_OPT_ERR             = 0,
3408         SRP_OPT_ID_EXT          = 1 << 0,
3409         SRP_OPT_IOC_GUID        = 1 << 1,
3410         SRP_OPT_DGID            = 1 << 2,
3411         SRP_OPT_PKEY            = 1 << 3,
3412         SRP_OPT_SERVICE_ID      = 1 << 4,
3413         SRP_OPT_MAX_SECT        = 1 << 5,
3414         SRP_OPT_MAX_CMD_PER_LUN = 1 << 6,
3415         SRP_OPT_IO_CLASS        = 1 << 7,
3416         SRP_OPT_INITIATOR_EXT   = 1 << 8,
3417         SRP_OPT_CMD_SG_ENTRIES  = 1 << 9,
3418         SRP_OPT_ALLOW_EXT_SG    = 1 << 10,
3419         SRP_OPT_SG_TABLESIZE    = 1 << 11,
3420         SRP_OPT_COMP_VECTOR     = 1 << 12,
3421         SRP_OPT_TL_RETRY_COUNT  = 1 << 13,
3422         SRP_OPT_QUEUE_SIZE      = 1 << 14,
3423         SRP_OPT_IP_SRC          = 1 << 15,
3424         SRP_OPT_IP_DEST         = 1 << 16,
3425         SRP_OPT_TARGET_CAN_QUEUE= 1 << 17,
3426         SRP_OPT_MAX_IT_IU_SIZE  = 1 << 18,
3427         SRP_OPT_CH_COUNT        = 1 << 19,
3428 };
3429
3430 static unsigned int srp_opt_mandatory[] = {
3431         SRP_OPT_ID_EXT          |
3432         SRP_OPT_IOC_GUID        |
3433         SRP_OPT_DGID            |
3434         SRP_OPT_PKEY            |
3435         SRP_OPT_SERVICE_ID,
3436         SRP_OPT_ID_EXT          |
3437         SRP_OPT_IOC_GUID        |
3438         SRP_OPT_IP_DEST,
3439 };
3440
3441 static const match_table_t srp_opt_tokens = {
3442         { SRP_OPT_ID_EXT,               "id_ext=%s"             },
3443         { SRP_OPT_IOC_GUID,             "ioc_guid=%s"           },
3444         { SRP_OPT_DGID,                 "dgid=%s"               },
3445         { SRP_OPT_PKEY,                 "pkey=%x"               },
3446         { SRP_OPT_SERVICE_ID,           "service_id=%s"         },
3447         { SRP_OPT_MAX_SECT,             "max_sect=%d"           },
3448         { SRP_OPT_MAX_CMD_PER_LUN,      "max_cmd_per_lun=%d"    },
3449         { SRP_OPT_TARGET_CAN_QUEUE,     "target_can_queue=%d"   },
3450         { SRP_OPT_IO_CLASS,             "io_class=%x"           },
3451         { SRP_OPT_INITIATOR_EXT,        "initiator_ext=%s"      },
3452         { SRP_OPT_CMD_SG_ENTRIES,       "cmd_sg_entries=%u"     },
3453         { SRP_OPT_ALLOW_EXT_SG,         "allow_ext_sg=%u"       },
3454         { SRP_OPT_SG_TABLESIZE,         "sg_tablesize=%u"       },
3455         { SRP_OPT_COMP_VECTOR,          "comp_vector=%u"        },
3456         { SRP_OPT_TL_RETRY_COUNT,       "tl_retry_count=%u"     },
3457         { SRP_OPT_QUEUE_SIZE,           "queue_size=%d"         },
3458         { SRP_OPT_IP_SRC,               "src=%s"                },
3459         { SRP_OPT_IP_DEST,              "dest=%s"               },
3460         { SRP_OPT_MAX_IT_IU_SIZE,       "max_it_iu_size=%d"     },
3461         { SRP_OPT_CH_COUNT,             "ch_count=%u",          },
3462         { SRP_OPT_ERR,                  NULL                    }
3463 };
3464
3465 /**
3466  * srp_parse_in - parse an IP address and port number combination
3467  * @net:           [in]  Network namespace.
3468  * @sa:            [out] Address family, IP address and port number.
3469  * @addr_port_str: [in]  IP address and port number.
3470  * @has_port:      [out] Whether or not @addr_port_str includes a port number.
3471  *
3472  * Parse the following address formats:
3473  * - IPv4: <ip_address>:<port>, e.g. 1.2.3.4:5.
3474  * - IPv6: \[<ipv6_address>\]:<port>, e.g. [1::2:3%4]:5.
3475  */
3476 static int srp_parse_in(struct net *net, struct sockaddr_storage *sa,
3477                         const char *addr_port_str, bool *has_port)
3478 {
3479         char *addr_end, *addr = kstrdup(addr_port_str, GFP_KERNEL);
3480         char *port_str;
3481         int ret;
3482
3483         if (!addr)
3484                 return -ENOMEM;
3485         port_str = strrchr(addr, ':');
3486         if (port_str && strchr(port_str, ']'))
3487                 port_str = NULL;
3488         if (port_str)
3489                 *port_str++ = '\0';
3490         if (has_port)
3491                 *has_port = port_str != NULL;
3492         ret = inet_pton_with_scope(net, AF_INET, addr, port_str, sa);
3493         if (ret && addr[0]) {
3494                 addr_end = addr + strlen(addr) - 1;
3495                 if (addr[0] == '[' && *addr_end == ']') {
3496                         *addr_end = '\0';
3497                         ret = inet_pton_with_scope(net, AF_INET6, addr + 1,
3498                                                    port_str, sa);
3499                 }
3500         }
3501         kfree(addr);
3502         pr_debug("%s -> %pISpfsc\n", addr_port_str, sa);
3503         return ret;
3504 }
3505
3506 static int srp_parse_options(struct net *net, const char *buf,
3507                              struct srp_target_port *target)
3508 {
3509         char *options, *sep_opt;
3510         char *p;
3511         substring_t args[MAX_OPT_ARGS];
3512         unsigned long long ull;
3513         bool has_port;
3514         int opt_mask = 0;
3515         int token;
3516         int ret = -EINVAL;
3517         int i;
3518
3519         options = kstrdup(buf, GFP_KERNEL);
3520         if (!options)
3521                 return -ENOMEM;
3522
3523         sep_opt = options;
3524         while ((p = strsep(&sep_opt, ",\n")) != NULL) {
3525                 if (!*p)
3526                         continue;
3527
3528                 token = match_token(p, srp_opt_tokens, args);
3529                 opt_mask |= token;
3530
3531                 switch (token) {
3532                 case SRP_OPT_ID_EXT:
3533                         p = match_strdup(args);
3534                         if (!p) {
3535                                 ret = -ENOMEM;
3536                                 goto out;
3537                         }
3538                         ret = kstrtoull(p, 16, &ull);
3539                         if (ret) {
3540                                 pr_warn("invalid id_ext parameter '%s'\n", p);
3541                                 kfree(p);
3542                                 goto out;
3543                         }
3544                         target->id_ext = cpu_to_be64(ull);
3545                         kfree(p);
3546                         break;
3547
3548                 case SRP_OPT_IOC_GUID:
3549                         p = match_strdup(args);
3550                         if (!p) {
3551                                 ret = -ENOMEM;
3552                                 goto out;
3553                         }
3554                         ret = kstrtoull(p, 16, &ull);
3555                         if (ret) {
3556                                 pr_warn("invalid ioc_guid parameter '%s'\n", p);
3557                                 kfree(p);
3558                                 goto out;
3559                         }
3560                         target->ioc_guid = cpu_to_be64(ull);
3561                         kfree(p);
3562                         break;
3563
3564                 case SRP_OPT_DGID:
3565                         p = match_strdup(args);
3566                         if (!p) {
3567                                 ret = -ENOMEM;
3568                                 goto out;
3569                         }
3570                         if (strlen(p) != 32) {
3571                                 pr_warn("bad dest GID parameter '%s'\n", p);
3572                                 kfree(p);
3573                                 goto out;
3574                         }
3575
3576                         ret = hex2bin(target->ib_cm.orig_dgid.raw, p, 16);
3577                         kfree(p);
3578                         if (ret < 0)
3579                                 goto out;
3580                         break;
3581
3582                 case SRP_OPT_PKEY:
3583                         if (match_hex(args, &token)) {
3584                                 pr_warn("bad P_Key parameter '%s'\n", p);
3585                                 goto out;
3586                         }
3587                         target->ib_cm.pkey = cpu_to_be16(token);
3588                         break;
3589
3590                 case SRP_OPT_SERVICE_ID:
3591                         p = match_strdup(args);
3592                         if (!p) {
3593                                 ret = -ENOMEM;
3594                                 goto out;
3595                         }
3596                         ret = kstrtoull(p, 16, &ull);
3597                         if (ret) {
3598                                 pr_warn("bad service_id parameter '%s'\n", p);
3599                                 kfree(p);
3600                                 goto out;
3601                         }
3602                         target->ib_cm.service_id = cpu_to_be64(ull);
3603                         kfree(p);
3604                         break;
3605
3606                 case SRP_OPT_IP_SRC:
3607                         p = match_strdup(args);
3608                         if (!p) {
3609                                 ret = -ENOMEM;
3610                                 goto out;
3611                         }
3612                         ret = srp_parse_in(net, &target->rdma_cm.src.ss, p,
3613                                            NULL);
3614                         if (ret < 0) {
3615                                 pr_warn("bad source parameter '%s'\n", p);
3616                                 kfree(p);
3617                                 goto out;
3618                         }
3619                         target->rdma_cm.src_specified = true;
3620                         kfree(p);
3621                         break;
3622
3623                 case SRP_OPT_IP_DEST:
3624                         p = match_strdup(args);
3625                         if (!p) {
3626                                 ret = -ENOMEM;
3627                                 goto out;
3628                         }
3629                         ret = srp_parse_in(net, &target->rdma_cm.dst.ss, p,
3630                                            &has_port);
3631                         if (!has_port)
3632                                 ret = -EINVAL;
3633                         if (ret < 0) {
3634                                 pr_warn("bad dest parameter '%s'\n", p);
3635                                 kfree(p);
3636                                 goto out;
3637                         }
3638                         target->using_rdma_cm = true;
3639                         kfree(p);
3640                         break;
3641
3642                 case SRP_OPT_MAX_SECT:
3643                         if (match_int(args, &token)) {
3644                                 pr_warn("bad max sect parameter '%s'\n", p);
3645                                 goto out;
3646                         }
3647                         target->scsi_host->max_sectors = token;
3648                         break;
3649
3650                 case SRP_OPT_QUEUE_SIZE:
3651                         if (match_int(args, &token) || token < 1) {
3652                                 pr_warn("bad queue_size parameter '%s'\n", p);
3653                                 goto out;
3654                         }
3655                         target->scsi_host->can_queue = token;
3656                         target->queue_size = token + SRP_RSP_SQ_SIZE +
3657                                              SRP_TSK_MGMT_SQ_SIZE;
3658                         if (!(opt_mask & SRP_OPT_MAX_CMD_PER_LUN))
3659                                 target->scsi_host->cmd_per_lun = token;
3660                         break;
3661
3662                 case SRP_OPT_MAX_CMD_PER_LUN:
3663                         if (match_int(args, &token) || token < 1) {
3664                                 pr_warn("bad max cmd_per_lun parameter '%s'\n",
3665                                         p);
3666                                 goto out;
3667                         }
3668                         target->scsi_host->cmd_per_lun = token;
3669                         break;
3670
3671                 case SRP_OPT_TARGET_CAN_QUEUE:
3672                         if (match_int(args, &token) || token < 1) {
3673                                 pr_warn("bad max target_can_queue parameter '%s'\n",
3674                                         p);
3675                                 goto out;
3676                         }
3677                         target->target_can_queue = token;
3678                         break;
3679
3680                 case SRP_OPT_IO_CLASS:
3681                         if (match_hex(args, &token)) {
3682                                 pr_warn("bad IO class parameter '%s'\n", p);
3683                                 goto out;
3684                         }
3685                         if (token != SRP_REV10_IB_IO_CLASS &&
3686                             token != SRP_REV16A_IB_IO_CLASS) {
3687                                 pr_warn("unknown IO class parameter value %x specified (use %x or %x).\n",
3688                                         token, SRP_REV10_IB_IO_CLASS,
3689                                         SRP_REV16A_IB_IO_CLASS);
3690                                 goto out;
3691                         }
3692                         target->io_class = token;
3693                         break;
3694
3695                 case SRP_OPT_INITIATOR_EXT:
3696                         p = match_strdup(args);
3697                         if (!p) {
3698                                 ret = -ENOMEM;
3699                                 goto out;
3700                         }
3701                         ret = kstrtoull(p, 16, &ull);
3702                         if (ret) {
3703                                 pr_warn("bad initiator_ext value '%s'\n", p);
3704                                 kfree(p);
3705                                 goto out;
3706                         }
3707                         target->initiator_ext = cpu_to_be64(ull);
3708                         kfree(p);
3709                         break;
3710
3711                 case SRP_OPT_CMD_SG_ENTRIES:
3712                         if (match_int(args, &token) || token < 1 || token > 255) {
3713                                 pr_warn("bad max cmd_sg_entries parameter '%s'\n",
3714                                         p);
3715                                 goto out;
3716                         }
3717                         target->cmd_sg_cnt = token;
3718                         break;
3719
3720                 case SRP_OPT_ALLOW_EXT_SG:
3721                         if (match_int(args, &token)) {
3722                                 pr_warn("bad allow_ext_sg parameter '%s'\n", p);
3723                                 goto out;
3724                         }
3725                         target->allow_ext_sg = !!token;
3726                         break;
3727
3728                 case SRP_OPT_SG_TABLESIZE:
3729                         if (match_int(args, &token) || token < 1 ||
3730                                         token > SG_MAX_SEGMENTS) {
3731                                 pr_warn("bad max sg_tablesize parameter '%s'\n",
3732                                         p);
3733                                 goto out;
3734                         }
3735                         target->sg_tablesize = token;
3736                         break;
3737
3738                 case SRP_OPT_COMP_VECTOR:
3739                         if (match_int(args, &token) || token < 0) {
3740                                 pr_warn("bad comp_vector parameter '%s'\n", p);
3741                                 goto out;
3742                         }
3743                         target->comp_vector = token;
3744                         break;
3745
3746                 case SRP_OPT_TL_RETRY_COUNT:
3747                         if (match_int(args, &token) || token < 2 || token > 7) {
3748                                 pr_warn("bad tl_retry_count parameter '%s' (must be a number between 2 and 7)\n",
3749                                         p);
3750                                 goto out;
3751                         }
3752                         target->tl_retry_count = token;
3753                         break;
3754
3755                 case SRP_OPT_MAX_IT_IU_SIZE:
3756                         if (match_int(args, &token) || token < 0) {
3757                                 pr_warn("bad maximum initiator to target IU size '%s'\n", p);
3758                                 goto out;
3759                         }
3760                         target->max_it_iu_size = token;
3761                         break;
3762
3763                 case SRP_OPT_CH_COUNT:
3764                         if (match_int(args, &token) || token < 1) {
3765                                 pr_warn("bad channel count %s\n", p);
3766                                 goto out;
3767                         }
3768                         target->ch_count = token;
3769                         break;
3770
3771                 default:
3772                         pr_warn("unknown parameter or missing value '%s' in target creation request\n",
3773                                 p);
3774                         goto out;
3775                 }
3776         }
3777
3778         for (i = 0; i < ARRAY_SIZE(srp_opt_mandatory); i++) {
3779                 if ((opt_mask & srp_opt_mandatory[i]) == srp_opt_mandatory[i]) {
3780                         ret = 0;
3781                         break;
3782                 }
3783         }
3784         if (ret)
3785                 pr_warn("target creation request is missing one or more parameters\n");
3786
3787         if (target->scsi_host->cmd_per_lun > target->scsi_host->can_queue
3788             && (opt_mask & SRP_OPT_MAX_CMD_PER_LUN))
3789                 pr_warn("cmd_per_lun = %d > queue_size = %d\n",
3790                         target->scsi_host->cmd_per_lun,
3791                         target->scsi_host->can_queue);
3792
3793 out:
3794         kfree(options);
3795         return ret;
3796 }
3797
3798 static ssize_t srp_create_target(struct device *dev,
3799                                  struct device_attribute *attr,
3800                                  const char *buf, size_t count)
3801 {
3802         struct srp_host *host =
3803                 container_of(dev, struct srp_host, dev);
3804         struct Scsi_Host *target_host;
3805         struct srp_target_port *target;
3806         struct srp_rdma_ch *ch;
3807         struct srp_device *srp_dev = host->srp_dev;
3808         struct ib_device *ibdev = srp_dev->dev;
3809         int ret, node_idx, node, cpu, i;
3810         unsigned int max_sectors_per_mr, mr_per_cmd = 0;
3811         bool multich = false;
3812         uint32_t max_iu_len;
3813
3814         target_host = scsi_host_alloc(&srp_template,
3815                                       sizeof (struct srp_target_port));
3816         if (!target_host)
3817                 return -ENOMEM;
3818
3819         target_host->transportt  = ib_srp_transport_template;
3820         target_host->max_channel = 0;
3821         target_host->max_id      = 1;
3822         target_host->max_lun     = -1LL;
3823         target_host->max_cmd_len = sizeof ((struct srp_cmd *) (void *) 0L)->cdb;
3824         target_host->max_segment_size = ib_dma_max_seg_size(ibdev);
3825
3826         if (!(ibdev->attrs.device_cap_flags & IB_DEVICE_SG_GAPS_REG))
3827                 target_host->virt_boundary_mask = ~srp_dev->mr_page_mask;
3828
3829         target = host_to_target(target_host);
3830
3831         target->net             = kobj_ns_grab_current(KOBJ_NS_TYPE_NET);
3832         target->io_class        = SRP_REV16A_IB_IO_CLASS;
3833         target->scsi_host       = target_host;
3834         target->srp_host        = host;
3835         target->lkey            = host->srp_dev->pd->local_dma_lkey;
3836         target->global_rkey     = host->srp_dev->global_rkey;
3837         target->cmd_sg_cnt      = cmd_sg_entries;
3838         target->sg_tablesize    = indirect_sg_entries ? : cmd_sg_entries;
3839         target->allow_ext_sg    = allow_ext_sg;
3840         target->tl_retry_count  = 7;
3841         target->queue_size      = SRP_DEFAULT_QUEUE_SIZE;
3842
3843         /*
3844          * Avoid that the SCSI host can be removed by srp_remove_target()
3845          * before this function returns.
3846          */
3847         scsi_host_get(target->scsi_host);
3848
3849         ret = mutex_lock_interruptible(&host->add_target_mutex);
3850         if (ret < 0)
3851                 goto put;
3852
3853         ret = srp_parse_options(target->net, buf, target);
3854         if (ret)
3855                 goto out;
3856
3857         target->req_ring_size = target->queue_size - SRP_TSK_MGMT_SQ_SIZE;
3858
3859         if (!srp_conn_unique(target->srp_host, target)) {
3860                 if (target->using_rdma_cm) {
3861                         shost_printk(KERN_INFO, target->scsi_host,
3862                                      PFX "Already connected to target port with id_ext=%016llx;ioc_guid=%016llx;dest=%pIS\n",
3863                                      be64_to_cpu(target->id_ext),
3864                                      be64_to_cpu(target->ioc_guid),
3865                                      &target->rdma_cm.dst);
3866                 } else {
3867                         shost_printk(KERN_INFO, target->scsi_host,
3868                                      PFX "Already connected to target port with id_ext=%016llx;ioc_guid=%016llx;initiator_ext=%016llx\n",
3869                                      be64_to_cpu(target->id_ext),
3870                                      be64_to_cpu(target->ioc_guid),
3871                                      be64_to_cpu(target->initiator_ext));
3872                 }
3873                 ret = -EEXIST;
3874                 goto out;
3875         }
3876
3877         if (!srp_dev->has_fmr && !srp_dev->has_fr && !target->allow_ext_sg &&
3878             target->cmd_sg_cnt < target->sg_tablesize) {
3879                 pr_warn("No MR pool and no external indirect descriptors, limiting sg_tablesize to cmd_sg_cnt\n");
3880                 target->sg_tablesize = target->cmd_sg_cnt;
3881         }
3882
3883         if (srp_dev->use_fast_reg || srp_dev->use_fmr) {
3884                 bool gaps_reg = (ibdev->attrs.device_cap_flags &
3885                                  IB_DEVICE_SG_GAPS_REG);
3886
3887                 max_sectors_per_mr = srp_dev->max_pages_per_mr <<
3888                                   (ilog2(srp_dev->mr_page_size) - 9);
3889                 if (!gaps_reg) {
3890                         /*
3891                          * FR and FMR can only map one HCA page per entry. If
3892                          * the start address is not aligned on a HCA page
3893                          * boundary two entries will be used for the head and
3894                          * the tail although these two entries combined
3895                          * contain at most one HCA page of data. Hence the "+
3896                          * 1" in the calculation below.
3897                          *
3898                          * The indirect data buffer descriptor is contiguous
3899                          * so the memory for that buffer will only be
3900                          * registered if register_always is true. Hence add
3901                          * one to mr_per_cmd if register_always has been set.
3902                          */
3903                         mr_per_cmd = register_always +
3904                                 (target->scsi_host->max_sectors + 1 +
3905                                  max_sectors_per_mr - 1) / max_sectors_per_mr;
3906                 } else {
3907                         mr_per_cmd = register_always +
3908                                 (target->sg_tablesize +
3909                                  srp_dev->max_pages_per_mr - 1) /
3910                                 srp_dev->max_pages_per_mr;
3911                 }
3912                 pr_debug("max_sectors = %u; max_pages_per_mr = %u; mr_page_size = %u; max_sectors_per_mr = %u; mr_per_cmd = %u\n",
3913                          target->scsi_host->max_sectors, srp_dev->max_pages_per_mr, srp_dev->mr_page_size,
3914                          max_sectors_per_mr, mr_per_cmd);
3915         }
3916
3917         target_host->sg_tablesize = target->sg_tablesize;
3918         target->mr_pool_size = target->scsi_host->can_queue * mr_per_cmd;
3919         target->mr_per_cmd = mr_per_cmd;
3920         target->indirect_size = target->sg_tablesize *
3921                                 sizeof (struct srp_direct_buf);
3922         max_iu_len = srp_max_it_iu_len(target->cmd_sg_cnt,
3923                                        srp_use_imm_data,
3924                                        target->max_it_iu_size);
3925
3926         INIT_WORK(&target->tl_err_work, srp_tl_err_work);
3927         INIT_WORK(&target->remove_work, srp_remove_work);
3928         spin_lock_init(&target->lock);
3929         ret = rdma_query_gid(ibdev, host->port, 0, &target->sgid);
3930         if (ret)
3931                 goto out;
3932
3933         ret = -ENOMEM;
3934         if (target->ch_count == 0)
3935                 target->ch_count =
3936                         max_t(unsigned int, num_online_nodes(),
3937                               min(ch_count ?:
3938                                           min(4 * num_online_nodes(),
3939                                               ibdev->num_comp_vectors),
3940                                   num_online_cpus()));
3941         target->ch = kcalloc(target->ch_count, sizeof(*target->ch),
3942                              GFP_KERNEL);
3943         if (!target->ch)
3944                 goto out;
3945
3946         node_idx = 0;
3947         for_each_online_node(node) {
3948                 const int ch_start = (node_idx * target->ch_count /
3949                                       num_online_nodes());
3950                 const int ch_end = ((node_idx + 1) * target->ch_count /
3951                                     num_online_nodes());
3952                 const int cv_start = node_idx * ibdev->num_comp_vectors /
3953                                      num_online_nodes();
3954                 const int cv_end = (node_idx + 1) * ibdev->num_comp_vectors /
3955                                    num_online_nodes();
3956                 int cpu_idx = 0;
3957
3958                 for_each_online_cpu(cpu) {
3959                         if (cpu_to_node(cpu) != node)
3960                                 continue;
3961                         if (ch_start + cpu_idx >= ch_end)
3962                                 continue;
3963                         ch = &target->ch[ch_start + cpu_idx];
3964                         ch->target = target;
3965                         ch->comp_vector = cv_start == cv_end ? cv_start :
3966                                 cv_start + cpu_idx % (cv_end - cv_start);
3967                         spin_lock_init(&ch->lock);
3968                         INIT_LIST_HEAD(&ch->free_tx);
3969                         ret = srp_new_cm_id(ch);
3970                         if (ret)
3971                                 goto err_disconnect;
3972
3973                         ret = srp_create_ch_ib(ch);
3974                         if (ret)
3975                                 goto err_disconnect;
3976
3977                         ret = srp_alloc_req_data(ch);
3978                         if (ret)
3979                                 goto err_disconnect;
3980
3981                         ret = srp_connect_ch(ch, max_iu_len, multich);
3982                         if (ret) {
3983                                 char dst[64];
3984
3985                                 if (target->using_rdma_cm)
3986                                         snprintf(dst, sizeof(dst), "%pIS",
3987                                                  &target->rdma_cm.dst);
3988                                 else
3989                                         snprintf(dst, sizeof(dst), "%pI6",
3990                                                  target->ib_cm.orig_dgid.raw);
3991                                 shost_printk(KERN_ERR, target->scsi_host,
3992                                              PFX "Connection %d/%d to %s failed\n",
3993                                              ch_start + cpu_idx,
3994                                              target->ch_count, dst);
3995                                 if (node_idx == 0 && cpu_idx == 0) {
3996                                         goto free_ch;
3997                                 } else {
3998                                         srp_free_ch_ib(target, ch);
3999                                         srp_free_req_data(target, ch);
4000                                         target->ch_count = ch - target->ch;
4001                                         goto connected;
4002                                 }
4003                         }
4004
4005                         multich = true;
4006                         cpu_idx++;
4007                 }
4008                 node_idx++;
4009         }
4010
4011 connected:
4012         target->scsi_host->nr_hw_queues = target->ch_count;
4013
4014         ret = srp_add_target(host, target);
4015         if (ret)
4016                 goto err_disconnect;
4017
4018         if (target->state != SRP_TARGET_REMOVED) {
4019                 if (target->using_rdma_cm) {
4020                         shost_printk(KERN_DEBUG, target->scsi_host, PFX
4021                                      "new target: id_ext %016llx ioc_guid %016llx sgid %pI6 dest %pIS\n",
4022                                      be64_to_cpu(target->id_ext),
4023                                      be64_to_cpu(target->ioc_guid),
4024                                      target->sgid.raw, &target->rdma_cm.dst);
4025                 } else {
4026                         shost_printk(KERN_DEBUG, target->scsi_host, PFX
4027                                      "new target: id_ext %016llx ioc_guid %016llx pkey %04x service_id %016llx sgid %pI6 dgid %pI6\n",
4028                                      be64_to_cpu(target->id_ext),
4029                                      be64_to_cpu(target->ioc_guid),
4030                                      be16_to_cpu(target->ib_cm.pkey),
4031                                      be64_to_cpu(target->ib_cm.service_id),
4032                                      target->sgid.raw,
4033                                      target->ib_cm.orig_dgid.raw);
4034                 }
4035         }
4036
4037         ret = count;
4038
4039 out:
4040         mutex_unlock(&host->add_target_mutex);
4041
4042 put:
4043         scsi_host_put(target->scsi_host);
4044         if (ret < 0) {
4045                 /*
4046                  * If a call to srp_remove_target() has not been scheduled,
4047                  * drop the network namespace reference now that was obtained
4048                  * earlier in this function.
4049                  */
4050                 if (target->state != SRP_TARGET_REMOVED)
4051                         kobj_ns_drop(KOBJ_NS_TYPE_NET, target->net);
4052                 scsi_host_put(target->scsi_host);
4053         }
4054
4055         return ret;
4056
4057 err_disconnect:
4058         srp_disconnect_target(target);
4059
4060 free_ch:
4061         for (i = 0; i < target->ch_count; i++) {
4062                 ch = &target->ch[i];
4063                 srp_free_ch_ib(target, ch);
4064                 srp_free_req_data(target, ch);
4065         }
4066
4067         kfree(target->ch);
4068         goto out;
4069 }
4070
4071 static DEVICE_ATTR(add_target, S_IWUSR, NULL, srp_create_target);
4072
4073 static ssize_t show_ibdev(struct device *dev, struct device_attribute *attr,
4074                           char *buf)
4075 {
4076         struct srp_host *host = container_of(dev, struct srp_host, dev);
4077
4078         return sprintf(buf, "%s\n", dev_name(&host->srp_dev->dev->dev));
4079 }
4080
4081 static DEVICE_ATTR(ibdev, S_IRUGO, show_ibdev, NULL);
4082
4083 static ssize_t show_port(struct device *dev, struct device_attribute *attr,
4084                          char *buf)
4085 {
4086         struct srp_host *host = container_of(dev, struct srp_host, dev);
4087
4088         return sprintf(buf, "%d\n", host->port);
4089 }
4090
4091 static DEVICE_ATTR(port, S_IRUGO, show_port, NULL);
4092
4093 static struct srp_host *srp_add_port(struct srp_device *device, u8 port)
4094 {
4095         struct srp_host *host;
4096
4097         host = kzalloc(sizeof *host, GFP_KERNEL);
4098         if (!host)
4099                 return NULL;
4100
4101         INIT_LIST_HEAD(&host->target_list);
4102         spin_lock_init(&host->target_lock);
4103         init_completion(&host->released);
4104         mutex_init(&host->add_target_mutex);
4105         host->srp_dev = device;
4106         host->port = port;
4107
4108         host->dev.class = &srp_class;
4109         host->dev.parent = device->dev->dev.parent;
4110         dev_set_name(&host->dev, "srp-%s-%d", dev_name(&device->dev->dev),
4111                      port);
4112
4113         if (device_register(&host->dev))
4114                 goto free_host;
4115         if (device_create_file(&host->dev, &dev_attr_add_target))
4116                 goto err_class;
4117         if (device_create_file(&host->dev, &dev_attr_ibdev))
4118                 goto err_class;
4119         if (device_create_file(&host->dev, &dev_attr_port))
4120                 goto err_class;
4121
4122         return host;
4123
4124 err_class:
4125         device_unregister(&host->dev);
4126
4127 free_host:
4128         kfree(host);
4129
4130         return NULL;
4131 }
4132
4133 static void srp_rename_dev(struct ib_device *device, void *client_data)
4134 {
4135         struct srp_device *srp_dev = client_data;
4136         struct srp_host *host, *tmp_host;
4137
4138         list_for_each_entry_safe(host, tmp_host, &srp_dev->dev_list, list) {
4139                 char name[IB_DEVICE_NAME_MAX + 8];
4140
4141                 snprintf(name, sizeof(name), "srp-%s-%d",
4142                          dev_name(&device->dev), host->port);
4143                 device_rename(&host->dev, name);
4144         }
4145 }
4146
4147 static int srp_add_one(struct ib_device *device)
4148 {
4149         struct srp_device *srp_dev;
4150         struct ib_device_attr *attr = &device->attrs;
4151         struct srp_host *host;
4152         int mr_page_shift;
4153         unsigned int p;
4154         u64 max_pages_per_mr;
4155         unsigned int flags = 0;
4156
4157         srp_dev = kzalloc(sizeof(*srp_dev), GFP_KERNEL);
4158         if (!srp_dev)
4159                 return -ENOMEM;
4160
4161         /*
4162          * Use the smallest page size supported by the HCA, down to a
4163          * minimum of 4096 bytes. We're unlikely to build large sglists
4164          * out of smaller entries.
4165          */
4166         mr_page_shift           = max(12, ffs(attr->page_size_cap) - 1);
4167         srp_dev->mr_page_size   = 1 << mr_page_shift;
4168         srp_dev->mr_page_mask   = ~((u64) srp_dev->mr_page_size - 1);
4169         max_pages_per_mr        = attr->max_mr_size;
4170         do_div(max_pages_per_mr, srp_dev->mr_page_size);
4171         pr_debug("%s: %llu / %u = %llu <> %u\n", __func__,
4172                  attr->max_mr_size, srp_dev->mr_page_size,
4173                  max_pages_per_mr, SRP_MAX_PAGES_PER_MR);
4174         srp_dev->max_pages_per_mr = min_t(u64, SRP_MAX_PAGES_PER_MR,
4175                                           max_pages_per_mr);
4176
4177         srp_dev->has_fmr = (device->ops.alloc_fmr &&
4178                             device->ops.dealloc_fmr &&
4179                             device->ops.map_phys_fmr &&
4180                             device->ops.unmap_fmr);
4181         srp_dev->has_fr = (attr->device_cap_flags &
4182                            IB_DEVICE_MEM_MGT_EXTENSIONS);
4183         if (!never_register && !srp_dev->has_fmr && !srp_dev->has_fr) {
4184                 dev_warn(&device->dev, "neither FMR nor FR is supported\n");
4185         } else if (!never_register &&
4186                    attr->max_mr_size >= 2 * srp_dev->mr_page_size) {
4187                 srp_dev->use_fast_reg = (srp_dev->has_fr &&
4188                                          (!srp_dev->has_fmr || prefer_fr));
4189                 srp_dev->use_fmr = !srp_dev->use_fast_reg && srp_dev->has_fmr;
4190         }
4191
4192         if (never_register || !register_always ||
4193             (!srp_dev->has_fmr && !srp_dev->has_fr))
4194                 flags |= IB_PD_UNSAFE_GLOBAL_RKEY;
4195
4196         if (srp_dev->use_fast_reg) {
4197                 srp_dev->max_pages_per_mr =
4198                         min_t(u32, srp_dev->max_pages_per_mr,
4199                               attr->max_fast_reg_page_list_len);
4200         }
4201         srp_dev->mr_max_size    = srp_dev->mr_page_size *
4202                                    srp_dev->max_pages_per_mr;
4203         pr_debug("%s: mr_page_shift = %d, device->max_mr_size = %#llx, device->max_fast_reg_page_list_len = %u, max_pages_per_mr = %d, mr_max_size = %#x\n",
4204                  dev_name(&device->dev), mr_page_shift, attr->max_mr_size,
4205                  attr->max_fast_reg_page_list_len,
4206                  srp_dev->max_pages_per_mr, srp_dev->mr_max_size);
4207
4208         INIT_LIST_HEAD(&srp_dev->dev_list);
4209
4210         srp_dev->dev = device;
4211         srp_dev->pd  = ib_alloc_pd(device, flags);
4212         if (IS_ERR(srp_dev->pd)) {
4213                 int ret = PTR_ERR(srp_dev->pd);
4214
4215                 kfree(srp_dev);
4216                 return ret;
4217         }
4218
4219         if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
4220                 srp_dev->global_rkey = srp_dev->pd->unsafe_global_rkey;
4221                 WARN_ON_ONCE(srp_dev->global_rkey == 0);
4222         }
4223
4224         rdma_for_each_port (device, p) {
4225                 host = srp_add_port(srp_dev, p);
4226                 if (host)
4227                         list_add_tail(&host->list, &srp_dev->dev_list);
4228         }
4229
4230         ib_set_client_data(device, &srp_client, srp_dev);
4231         return 0;
4232 }
4233
4234 static void srp_remove_one(struct ib_device *device, void *client_data)
4235 {
4236         struct srp_device *srp_dev;
4237         struct srp_host *host, *tmp_host;
4238         struct srp_target_port *target;
4239
4240         srp_dev = client_data;
4241
4242         list_for_each_entry_safe(host, tmp_host, &srp_dev->dev_list, list) {
4243                 device_unregister(&host->dev);
4244                 /*
4245                  * Wait for the sysfs entry to go away, so that no new
4246                  * target ports can be created.
4247                  */
4248                 wait_for_completion(&host->released);
4249
4250                 /*
4251                  * Remove all target ports.
4252                  */
4253                 spin_lock(&host->target_lock);
4254                 list_for_each_entry(target, &host->target_list, list)
4255                         srp_queue_remove_work(target);
4256                 spin_unlock(&host->target_lock);
4257
4258                 /*
4259                  * Wait for tl_err and target port removal tasks.
4260                  */
4261                 flush_workqueue(system_long_wq);
4262                 flush_workqueue(srp_remove_wq);
4263
4264                 kfree(host);
4265         }
4266
4267         ib_dealloc_pd(srp_dev->pd);
4268
4269         kfree(srp_dev);
4270 }
4271
4272 static struct srp_function_template ib_srp_transport_functions = {
4273         .has_rport_state         = true,
4274         .reset_timer_if_blocked  = true,
4275         .reconnect_delay         = &srp_reconnect_delay,
4276         .fast_io_fail_tmo        = &srp_fast_io_fail_tmo,
4277         .dev_loss_tmo            = &srp_dev_loss_tmo,
4278         .reconnect               = srp_rport_reconnect,
4279         .rport_delete            = srp_rport_delete,
4280         .terminate_rport_io      = srp_terminate_io,
4281 };
4282
4283 static int __init srp_init_module(void)
4284 {
4285         int ret;
4286
4287         BUILD_BUG_ON(sizeof(struct srp_imm_buf) != 4);
4288         BUILD_BUG_ON(sizeof(struct srp_login_req) != 64);
4289         BUILD_BUG_ON(sizeof(struct srp_login_req_rdma) != 56);
4290         BUILD_BUG_ON(sizeof(struct srp_cmd) != 48);
4291
4292         if (srp_sg_tablesize) {
4293                 pr_warn("srp_sg_tablesize is deprecated, please use cmd_sg_entries\n");
4294                 if (!cmd_sg_entries)
4295                         cmd_sg_entries = srp_sg_tablesize;
4296         }
4297
4298         if (!cmd_sg_entries)
4299                 cmd_sg_entries = SRP_DEF_SG_TABLESIZE;
4300
4301         if (cmd_sg_entries > 255) {
4302                 pr_warn("Clamping cmd_sg_entries to 255\n");
4303                 cmd_sg_entries = 255;
4304         }
4305
4306         if (!indirect_sg_entries)
4307                 indirect_sg_entries = cmd_sg_entries;
4308         else if (indirect_sg_entries < cmd_sg_entries) {
4309                 pr_warn("Bumping up indirect_sg_entries to match cmd_sg_entries (%u)\n",
4310                         cmd_sg_entries);
4311                 indirect_sg_entries = cmd_sg_entries;
4312         }
4313
4314         if (indirect_sg_entries > SG_MAX_SEGMENTS) {
4315                 pr_warn("Clamping indirect_sg_entries to %u\n",
4316                         SG_MAX_SEGMENTS);
4317                 indirect_sg_entries = SG_MAX_SEGMENTS;
4318         }
4319
4320         srp_remove_wq = create_workqueue("srp_remove");
4321         if (!srp_remove_wq) {
4322                 ret = -ENOMEM;
4323                 goto out;
4324         }
4325
4326         ret = -ENOMEM;
4327         ib_srp_transport_template =
4328                 srp_attach_transport(&ib_srp_transport_functions);
4329         if (!ib_srp_transport_template)
4330                 goto destroy_wq;
4331
4332         ret = class_register(&srp_class);
4333         if (ret) {
4334                 pr_err("couldn't register class infiniband_srp\n");
4335                 goto release_tr;
4336         }
4337
4338         ib_sa_register_client(&srp_sa_client);
4339
4340         ret = ib_register_client(&srp_client);
4341         if (ret) {
4342                 pr_err("couldn't register IB client\n");
4343                 goto unreg_sa;
4344         }
4345
4346 out:
4347         return ret;
4348
4349 unreg_sa:
4350         ib_sa_unregister_client(&srp_sa_client);
4351         class_unregister(&srp_class);
4352
4353 release_tr:
4354         srp_release_transport(ib_srp_transport_template);
4355
4356 destroy_wq:
4357         destroy_workqueue(srp_remove_wq);
4358         goto out;
4359 }
4360
4361 static void __exit srp_cleanup_module(void)
4362 {
4363         ib_unregister_client(&srp_client);
4364         ib_sa_unregister_client(&srp_sa_client);
4365         class_unregister(&srp_class);
4366         srp_release_transport(ib_srp_transport_template);
4367         destroy_workqueue(srp_remove_wq);
4368 }
4369
4370 module_init(srp_init_module);
4371 module_exit(srp_cleanup_module);