Merge tag 'devprop-5.17-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[linux-2.6-microblaze.git] / drivers / infiniband / ulp / rtrs / rtrs-srv.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * RDMA Transport Layer
4  *
5  * Copyright (c) 2014 - 2018 ProfitBricks GmbH. All rights reserved.
6  * Copyright (c) 2018 - 2019 1&1 IONOS Cloud GmbH. All rights reserved.
7  * Copyright (c) 2019 - 2020 1&1 IONOS SE. All rights reserved.
8  */
9
10 #undef pr_fmt
11 #define pr_fmt(fmt) KBUILD_MODNAME " L" __stringify(__LINE__) ": " fmt
12
13 #include <linux/module.h>
14 #include <linux/mempool.h>
15
16 #include "rtrs-srv.h"
17 #include "rtrs-log.h"
18 #include <rdma/ib_cm.h>
19 #include <rdma/ib_verbs.h>
20
21 MODULE_DESCRIPTION("RDMA Transport Server");
22 MODULE_LICENSE("GPL");
23
24 /* Must be power of 2, see mask from mr->page_size in ib_sg_to_pages() */
25 #define DEFAULT_MAX_CHUNK_SIZE (128 << 10)
26 #define DEFAULT_SESS_QUEUE_DEPTH 512
27 #define MAX_HDR_SIZE PAGE_SIZE
28
29 /* We guarantee to serve 10 paths at least */
30 #define CHUNK_POOL_SZ 10
31
32 static struct rtrs_rdma_dev_pd dev_pd;
33 static mempool_t *chunk_pool;
34 struct class *rtrs_dev_class;
35 static struct rtrs_srv_ib_ctx ib_ctx;
36
37 static int __read_mostly max_chunk_size = DEFAULT_MAX_CHUNK_SIZE;
38 static int __read_mostly sess_queue_depth = DEFAULT_SESS_QUEUE_DEPTH;
39
40 static bool always_invalidate = true;
41 module_param(always_invalidate, bool, 0444);
42 MODULE_PARM_DESC(always_invalidate,
43                  "Invalidate memory registration for contiguous memory regions before accessing.");
44
45 module_param_named(max_chunk_size, max_chunk_size, int, 0444);
46 MODULE_PARM_DESC(max_chunk_size,
47                  "Max size for each IO request, when change the unit is in byte (default: "
48                  __stringify(DEFAULT_MAX_CHUNK_SIZE) "KB)");
49
50 module_param_named(sess_queue_depth, sess_queue_depth, int, 0444);
51 MODULE_PARM_DESC(sess_queue_depth,
52                  "Number of buffers for pending I/O requests to allocate per session. Maximum: "
53                  __stringify(MAX_SESS_QUEUE_DEPTH) " (default: "
54                  __stringify(DEFAULT_SESS_QUEUE_DEPTH) ")");
55
56 static cpumask_t cq_affinity_mask = { CPU_BITS_ALL };
57
58 static struct workqueue_struct *rtrs_wq;
59
60 static inline struct rtrs_srv_con *to_srv_con(struct rtrs_con *c)
61 {
62         return container_of(c, struct rtrs_srv_con, c);
63 }
64
65 static inline struct rtrs_srv_sess *to_srv_sess(struct rtrs_sess *s)
66 {
67         return container_of(s, struct rtrs_srv_sess, s);
68 }
69
70 static bool rtrs_srv_change_state(struct rtrs_srv_sess *sess,
71                                   enum rtrs_srv_state new_state)
72 {
73         enum rtrs_srv_state old_state;
74         bool changed = false;
75
76         spin_lock_irq(&sess->state_lock);
77         old_state = sess->state;
78         switch (new_state) {
79         case RTRS_SRV_CONNECTED:
80                 if (old_state == RTRS_SRV_CONNECTING)
81                         changed = true;
82                 break;
83         case RTRS_SRV_CLOSING:
84                 if (old_state == RTRS_SRV_CONNECTING ||
85                     old_state == RTRS_SRV_CONNECTED)
86                         changed = true;
87                 break;
88         case RTRS_SRV_CLOSED:
89                 if (old_state == RTRS_SRV_CLOSING)
90                         changed = true;
91                 break;
92         default:
93                 break;
94         }
95         if (changed)
96                 sess->state = new_state;
97         spin_unlock_irq(&sess->state_lock);
98
99         return changed;
100 }
101
102 static void free_id(struct rtrs_srv_op *id)
103 {
104         if (!id)
105                 return;
106         kfree(id);
107 }
108
109 static void rtrs_srv_free_ops_ids(struct rtrs_srv_sess *sess)
110 {
111         struct rtrs_srv *srv = sess->srv;
112         int i;
113
114         if (sess->ops_ids) {
115                 for (i = 0; i < srv->queue_depth; i++)
116                         free_id(sess->ops_ids[i]);
117                 kfree(sess->ops_ids);
118                 sess->ops_ids = NULL;
119         }
120 }
121
122 static void rtrs_srv_rdma_done(struct ib_cq *cq, struct ib_wc *wc);
123
124 static struct ib_cqe io_comp_cqe = {
125         .done = rtrs_srv_rdma_done
126 };
127
128 static inline void rtrs_srv_inflight_ref_release(struct percpu_ref *ref)
129 {
130         struct rtrs_srv_sess *sess = container_of(ref, struct rtrs_srv_sess, ids_inflight_ref);
131
132         percpu_ref_exit(&sess->ids_inflight_ref);
133         complete(&sess->complete_done);
134 }
135
136 static int rtrs_srv_alloc_ops_ids(struct rtrs_srv_sess *sess)
137 {
138         struct rtrs_srv *srv = sess->srv;
139         struct rtrs_srv_op *id;
140         int i, ret;
141
142         sess->ops_ids = kcalloc(srv->queue_depth, sizeof(*sess->ops_ids),
143                                 GFP_KERNEL);
144         if (!sess->ops_ids)
145                 goto err;
146
147         for (i = 0; i < srv->queue_depth; ++i) {
148                 id = kzalloc(sizeof(*id), GFP_KERNEL);
149                 if (!id)
150                         goto err;
151
152                 sess->ops_ids[i] = id;
153         }
154
155         ret = percpu_ref_init(&sess->ids_inflight_ref,
156                               rtrs_srv_inflight_ref_release, 0, GFP_KERNEL);
157         if (ret) {
158                 pr_err("Percpu reference init failed\n");
159                 goto err;
160         }
161         init_completion(&sess->complete_done);
162
163         return 0;
164
165 err:
166         rtrs_srv_free_ops_ids(sess);
167         return -ENOMEM;
168 }
169
170 static inline void rtrs_srv_get_ops_ids(struct rtrs_srv_sess *sess)
171 {
172         percpu_ref_get(&sess->ids_inflight_ref);
173 }
174
175 static inline void rtrs_srv_put_ops_ids(struct rtrs_srv_sess *sess)
176 {
177         percpu_ref_put(&sess->ids_inflight_ref);
178 }
179
180 static void rtrs_srv_reg_mr_done(struct ib_cq *cq, struct ib_wc *wc)
181 {
182         struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context);
183         struct rtrs_sess *s = con->c.sess;
184         struct rtrs_srv_sess *sess = to_srv_sess(s);
185
186         if (wc->status != IB_WC_SUCCESS) {
187                 rtrs_err(s, "REG MR failed: %s\n",
188                           ib_wc_status_msg(wc->status));
189                 close_sess(sess);
190                 return;
191         }
192 }
193
194 static struct ib_cqe local_reg_cqe = {
195         .done = rtrs_srv_reg_mr_done
196 };
197
198 static int rdma_write_sg(struct rtrs_srv_op *id)
199 {
200         struct rtrs_sess *s = id->con->c.sess;
201         struct rtrs_srv_sess *sess = to_srv_sess(s);
202         dma_addr_t dma_addr = sess->dma_addr[id->msg_id];
203         struct rtrs_srv_mr *srv_mr;
204         struct ib_send_wr inv_wr;
205         struct ib_rdma_wr imm_wr;
206         struct ib_rdma_wr *wr = NULL;
207         enum ib_send_flags flags;
208         size_t sg_cnt;
209         int err, offset;
210         bool need_inval;
211         u32 rkey = 0;
212         struct ib_reg_wr rwr;
213         struct ib_sge *plist;
214         struct ib_sge list;
215
216         sg_cnt = le16_to_cpu(id->rd_msg->sg_cnt);
217         need_inval = le16_to_cpu(id->rd_msg->flags) & RTRS_MSG_NEED_INVAL_F;
218         if (sg_cnt != 1)
219                 return -EINVAL;
220
221         offset = 0;
222
223         wr              = &id->tx_wr;
224         plist           = &id->tx_sg;
225         plist->addr     = dma_addr + offset;
226         plist->length   = le32_to_cpu(id->rd_msg->desc[0].len);
227
228         /* WR will fail with length error
229          * if this is 0
230          */
231         if (plist->length == 0) {
232                 rtrs_err(s, "Invalid RDMA-Write sg list length 0\n");
233                 return -EINVAL;
234         }
235
236         plist->lkey = sess->s.dev->ib_pd->local_dma_lkey;
237         offset += plist->length;
238
239         wr->wr.sg_list  = plist;
240         wr->wr.num_sge  = 1;
241         wr->remote_addr = le64_to_cpu(id->rd_msg->desc[0].addr);
242         wr->rkey        = le32_to_cpu(id->rd_msg->desc[0].key);
243         if (rkey == 0)
244                 rkey = wr->rkey;
245         else
246                 /* Only one key is actually used */
247                 WARN_ON_ONCE(rkey != wr->rkey);
248
249         wr->wr.opcode = IB_WR_RDMA_WRITE;
250         wr->wr.wr_cqe   = &io_comp_cqe;
251         wr->wr.ex.imm_data = 0;
252         wr->wr.send_flags  = 0;
253
254         if (need_inval && always_invalidate) {
255                 wr->wr.next = &rwr.wr;
256                 rwr.wr.next = &inv_wr;
257                 inv_wr.next = &imm_wr.wr;
258         } else if (always_invalidate) {
259                 wr->wr.next = &rwr.wr;
260                 rwr.wr.next = &imm_wr.wr;
261         } else if (need_inval) {
262                 wr->wr.next = &inv_wr;
263                 inv_wr.next = &imm_wr.wr;
264         } else {
265                 wr->wr.next = &imm_wr.wr;
266         }
267         /*
268          * From time to time we have to post signaled sends,
269          * or send queue will fill up and only QP reset can help.
270          */
271         flags = (atomic_inc_return(&id->con->c.wr_cnt) % s->signal_interval) ?
272                 0 : IB_SEND_SIGNALED;
273
274         if (need_inval) {
275                 inv_wr.sg_list = NULL;
276                 inv_wr.num_sge = 0;
277                 inv_wr.opcode = IB_WR_SEND_WITH_INV;
278                 inv_wr.wr_cqe   = &io_comp_cqe;
279                 inv_wr.send_flags = 0;
280                 inv_wr.ex.invalidate_rkey = rkey;
281         }
282
283         imm_wr.wr.next = NULL;
284         if (always_invalidate) {
285                 struct rtrs_msg_rkey_rsp *msg;
286
287                 srv_mr = &sess->mrs[id->msg_id];
288                 rwr.wr.opcode = IB_WR_REG_MR;
289                 rwr.wr.wr_cqe = &local_reg_cqe;
290                 rwr.wr.num_sge = 0;
291                 rwr.mr = srv_mr->mr;
292                 rwr.wr.send_flags = 0;
293                 rwr.key = srv_mr->mr->rkey;
294                 rwr.access = (IB_ACCESS_LOCAL_WRITE |
295                               IB_ACCESS_REMOTE_WRITE);
296                 msg = srv_mr->iu->buf;
297                 msg->buf_id = cpu_to_le16(id->msg_id);
298                 msg->type = cpu_to_le16(RTRS_MSG_RKEY_RSP);
299                 msg->rkey = cpu_to_le32(srv_mr->mr->rkey);
300
301                 list.addr   = srv_mr->iu->dma_addr;
302                 list.length = sizeof(*msg);
303                 list.lkey   = sess->s.dev->ib_pd->local_dma_lkey;
304                 imm_wr.wr.sg_list = &list;
305                 imm_wr.wr.num_sge = 1;
306                 imm_wr.wr.opcode = IB_WR_SEND_WITH_IMM;
307                 ib_dma_sync_single_for_device(sess->s.dev->ib_dev,
308                                               srv_mr->iu->dma_addr,
309                                               srv_mr->iu->size, DMA_TO_DEVICE);
310         } else {
311                 imm_wr.wr.sg_list = NULL;
312                 imm_wr.wr.num_sge = 0;
313                 imm_wr.wr.opcode = IB_WR_RDMA_WRITE_WITH_IMM;
314         }
315         imm_wr.wr.send_flags = flags;
316         imm_wr.wr.ex.imm_data = cpu_to_be32(rtrs_to_io_rsp_imm(id->msg_id,
317                                                              0, need_inval));
318
319         imm_wr.wr.wr_cqe   = &io_comp_cqe;
320         ib_dma_sync_single_for_device(sess->s.dev->ib_dev, dma_addr,
321                                       offset, DMA_BIDIRECTIONAL);
322
323         err = ib_post_send(id->con->c.qp, &id->tx_wr.wr, NULL);
324         if (err)
325                 rtrs_err(s,
326                           "Posting RDMA-Write-Request to QP failed, err: %d\n",
327                           err);
328
329         return err;
330 }
331
332 /**
333  * send_io_resp_imm() - respond to client with empty IMM on failed READ/WRITE
334  *                      requests or on successful WRITE request.
335  * @con:        the connection to send back result
336  * @id:         the id associated with the IO
337  * @errno:      the error number of the IO.
338  *
339  * Return 0 on success, errno otherwise.
340  */
341 static int send_io_resp_imm(struct rtrs_srv_con *con, struct rtrs_srv_op *id,
342                             int errno)
343 {
344         struct rtrs_sess *s = con->c.sess;
345         struct rtrs_srv_sess *sess = to_srv_sess(s);
346         struct ib_send_wr inv_wr, *wr = NULL;
347         struct ib_rdma_wr imm_wr;
348         struct ib_reg_wr rwr;
349         struct rtrs_srv_mr *srv_mr;
350         bool need_inval = false;
351         enum ib_send_flags flags;
352         u32 imm;
353         int err;
354
355         if (id->dir == READ) {
356                 struct rtrs_msg_rdma_read *rd_msg = id->rd_msg;
357                 size_t sg_cnt;
358
359                 need_inval = le16_to_cpu(rd_msg->flags) &
360                                 RTRS_MSG_NEED_INVAL_F;
361                 sg_cnt = le16_to_cpu(rd_msg->sg_cnt);
362
363                 if (need_inval) {
364                         if (sg_cnt) {
365                                 inv_wr.wr_cqe   = &io_comp_cqe;
366                                 inv_wr.sg_list = NULL;
367                                 inv_wr.num_sge = 0;
368                                 inv_wr.opcode = IB_WR_SEND_WITH_INV;
369                                 inv_wr.send_flags = 0;
370                                 /* Only one key is actually used */
371                                 inv_wr.ex.invalidate_rkey =
372                                         le32_to_cpu(rd_msg->desc[0].key);
373                         } else {
374                                 WARN_ON_ONCE(1);
375                                 need_inval = false;
376                         }
377                 }
378         }
379
380         if (need_inval && always_invalidate) {
381                 wr = &inv_wr;
382                 inv_wr.next = &rwr.wr;
383                 rwr.wr.next = &imm_wr.wr;
384         } else if (always_invalidate) {
385                 wr = &rwr.wr;
386                 rwr.wr.next = &imm_wr.wr;
387         } else if (need_inval) {
388                 wr = &inv_wr;
389                 inv_wr.next = &imm_wr.wr;
390         } else {
391                 wr = &imm_wr.wr;
392         }
393         /*
394          * From time to time we have to post signalled sends,
395          * or send queue will fill up and only QP reset can help.
396          */
397         flags = (atomic_inc_return(&con->c.wr_cnt) % s->signal_interval) ?
398                 0 : IB_SEND_SIGNALED;
399         imm = rtrs_to_io_rsp_imm(id->msg_id, errno, need_inval);
400         imm_wr.wr.next = NULL;
401         if (always_invalidate) {
402                 struct ib_sge list;
403                 struct rtrs_msg_rkey_rsp *msg;
404
405                 srv_mr = &sess->mrs[id->msg_id];
406                 rwr.wr.next = &imm_wr.wr;
407                 rwr.wr.opcode = IB_WR_REG_MR;
408                 rwr.wr.wr_cqe = &local_reg_cqe;
409                 rwr.wr.num_sge = 0;
410                 rwr.wr.send_flags = 0;
411                 rwr.mr = srv_mr->mr;
412                 rwr.key = srv_mr->mr->rkey;
413                 rwr.access = (IB_ACCESS_LOCAL_WRITE |
414                               IB_ACCESS_REMOTE_WRITE);
415                 msg = srv_mr->iu->buf;
416                 msg->buf_id = cpu_to_le16(id->msg_id);
417                 msg->type = cpu_to_le16(RTRS_MSG_RKEY_RSP);
418                 msg->rkey = cpu_to_le32(srv_mr->mr->rkey);
419
420                 list.addr   = srv_mr->iu->dma_addr;
421                 list.length = sizeof(*msg);
422                 list.lkey   = sess->s.dev->ib_pd->local_dma_lkey;
423                 imm_wr.wr.sg_list = &list;
424                 imm_wr.wr.num_sge = 1;
425                 imm_wr.wr.opcode = IB_WR_SEND_WITH_IMM;
426                 ib_dma_sync_single_for_device(sess->s.dev->ib_dev,
427                                               srv_mr->iu->dma_addr,
428                                               srv_mr->iu->size, DMA_TO_DEVICE);
429         } else {
430                 imm_wr.wr.sg_list = NULL;
431                 imm_wr.wr.num_sge = 0;
432                 imm_wr.wr.opcode = IB_WR_RDMA_WRITE_WITH_IMM;
433         }
434         imm_wr.wr.send_flags = flags;
435         imm_wr.wr.wr_cqe   = &io_comp_cqe;
436
437         imm_wr.wr.ex.imm_data = cpu_to_be32(imm);
438
439         err = ib_post_send(id->con->c.qp, wr, NULL);
440         if (err)
441                 rtrs_err_rl(s, "Posting RDMA-Reply to QP failed, err: %d\n",
442                              err);
443
444         return err;
445 }
446
447 void close_sess(struct rtrs_srv_sess *sess)
448 {
449         if (rtrs_srv_change_state(sess, RTRS_SRV_CLOSING))
450                 queue_work(rtrs_wq, &sess->close_work);
451         WARN_ON(sess->state != RTRS_SRV_CLOSING);
452 }
453
454 static inline const char *rtrs_srv_state_str(enum rtrs_srv_state state)
455 {
456         switch (state) {
457         case RTRS_SRV_CONNECTING:
458                 return "RTRS_SRV_CONNECTING";
459         case RTRS_SRV_CONNECTED:
460                 return "RTRS_SRV_CONNECTED";
461         case RTRS_SRV_CLOSING:
462                 return "RTRS_SRV_CLOSING";
463         case RTRS_SRV_CLOSED:
464                 return "RTRS_SRV_CLOSED";
465         default:
466                 return "UNKNOWN";
467         }
468 }
469
470 /**
471  * rtrs_srv_resp_rdma() - Finish an RDMA request
472  *
473  * @id:         Internal RTRS operation identifier
474  * @status:     Response Code sent to the other side for this operation.
475  *              0 = success, <=0 error
476  * Context: any
477  *
478  * Finish a RDMA operation. A message is sent to the client and the
479  * corresponding memory areas will be released.
480  */
481 bool rtrs_srv_resp_rdma(struct rtrs_srv_op *id, int status)
482 {
483         struct rtrs_srv_sess *sess;
484         struct rtrs_srv_con *con;
485         struct rtrs_sess *s;
486         int err;
487
488         if (WARN_ON(!id))
489                 return true;
490
491         con = id->con;
492         s = con->c.sess;
493         sess = to_srv_sess(s);
494
495         id->status = status;
496
497         if (sess->state != RTRS_SRV_CONNECTED) {
498                 rtrs_err_rl(s,
499                             "Sending I/O response failed,  session %s is disconnected, sess state %s\n",
500                             kobject_name(&sess->kobj),
501                             rtrs_srv_state_str(sess->state));
502                 goto out;
503         }
504         if (always_invalidate) {
505                 struct rtrs_srv_mr *mr = &sess->mrs[id->msg_id];
506
507                 ib_update_fast_reg_key(mr->mr, ib_inc_rkey(mr->mr->rkey));
508         }
509         if (atomic_sub_return(1, &con->c.sq_wr_avail) < 0) {
510                 rtrs_err(s, "IB send queue full: sess=%s cid=%d\n",
511                          kobject_name(&sess->kobj),
512                          con->c.cid);
513                 atomic_add(1, &con->c.sq_wr_avail);
514                 spin_lock(&con->rsp_wr_wait_lock);
515                 list_add_tail(&id->wait_list, &con->rsp_wr_wait_list);
516                 spin_unlock(&con->rsp_wr_wait_lock);
517                 return false;
518         }
519
520         if (status || id->dir == WRITE || !id->rd_msg->sg_cnt)
521                 err = send_io_resp_imm(con, id, status);
522         else
523                 err = rdma_write_sg(id);
524
525         if (err) {
526                 rtrs_err_rl(s, "IO response failed: %d: sess=%s\n", err,
527                             kobject_name(&sess->kobj));
528                 close_sess(sess);
529         }
530 out:
531         rtrs_srv_put_ops_ids(sess);
532         return true;
533 }
534 EXPORT_SYMBOL(rtrs_srv_resp_rdma);
535
536 /**
537  * rtrs_srv_set_sess_priv() - Set private pointer in rtrs_srv.
538  * @srv:        Session pointer
539  * @priv:       The private pointer that is associated with the session.
540  */
541 void rtrs_srv_set_sess_priv(struct rtrs_srv *srv, void *priv)
542 {
543         srv->priv = priv;
544 }
545 EXPORT_SYMBOL(rtrs_srv_set_sess_priv);
546
547 static void unmap_cont_bufs(struct rtrs_srv_sess *sess)
548 {
549         int i;
550
551         for (i = 0; i < sess->mrs_num; i++) {
552                 struct rtrs_srv_mr *srv_mr;
553
554                 srv_mr = &sess->mrs[i];
555                 rtrs_iu_free(srv_mr->iu, sess->s.dev->ib_dev, 1);
556                 ib_dereg_mr(srv_mr->mr);
557                 ib_dma_unmap_sg(sess->s.dev->ib_dev, srv_mr->sgt.sgl,
558                                 srv_mr->sgt.nents, DMA_BIDIRECTIONAL);
559                 sg_free_table(&srv_mr->sgt);
560         }
561         kfree(sess->mrs);
562 }
563
564 static int map_cont_bufs(struct rtrs_srv_sess *sess)
565 {
566         struct rtrs_srv *srv = sess->srv;
567         struct rtrs_sess *ss = &sess->s;
568         int i, mri, err, mrs_num;
569         unsigned int chunk_bits;
570         int chunks_per_mr = 1;
571
572         /*
573          * Here we map queue_depth chunks to MR.  Firstly we have to
574          * figure out how many chunks can we map per MR.
575          */
576         if (always_invalidate) {
577                 /*
578                  * in order to do invalidate for each chunks of memory, we needs
579                  * more memory regions.
580                  */
581                 mrs_num = srv->queue_depth;
582         } else {
583                 chunks_per_mr =
584                         sess->s.dev->ib_dev->attrs.max_fast_reg_page_list_len;
585                 mrs_num = DIV_ROUND_UP(srv->queue_depth, chunks_per_mr);
586                 chunks_per_mr = DIV_ROUND_UP(srv->queue_depth, mrs_num);
587         }
588
589         sess->mrs = kcalloc(mrs_num, sizeof(*sess->mrs), GFP_KERNEL);
590         if (!sess->mrs)
591                 return -ENOMEM;
592
593         sess->mrs_num = mrs_num;
594
595         for (mri = 0; mri < mrs_num; mri++) {
596                 struct rtrs_srv_mr *srv_mr = &sess->mrs[mri];
597                 struct sg_table *sgt = &srv_mr->sgt;
598                 struct scatterlist *s;
599                 struct ib_mr *mr;
600                 int nr, chunks;
601
602                 chunks = chunks_per_mr * mri;
603                 if (!always_invalidate)
604                         chunks_per_mr = min_t(int, chunks_per_mr,
605                                               srv->queue_depth - chunks);
606
607                 err = sg_alloc_table(sgt, chunks_per_mr, GFP_KERNEL);
608                 if (err)
609                         goto err;
610
611                 for_each_sg(sgt->sgl, s, chunks_per_mr, i)
612                         sg_set_page(s, srv->chunks[chunks + i],
613                                     max_chunk_size, 0);
614
615                 nr = ib_dma_map_sg(sess->s.dev->ib_dev, sgt->sgl,
616                                    sgt->nents, DMA_BIDIRECTIONAL);
617                 if (nr < sgt->nents) {
618                         err = nr < 0 ? nr : -EINVAL;
619                         goto free_sg;
620                 }
621                 mr = ib_alloc_mr(sess->s.dev->ib_pd, IB_MR_TYPE_MEM_REG,
622                                  sgt->nents);
623                 if (IS_ERR(mr)) {
624                         err = PTR_ERR(mr);
625                         goto unmap_sg;
626                 }
627                 nr = ib_map_mr_sg(mr, sgt->sgl, sgt->nents,
628                                   NULL, max_chunk_size);
629                 if (nr < 0 || nr < sgt->nents) {
630                         err = nr < 0 ? nr : -EINVAL;
631                         goto dereg_mr;
632                 }
633
634                 if (always_invalidate) {
635                         srv_mr->iu = rtrs_iu_alloc(1,
636                                         sizeof(struct rtrs_msg_rkey_rsp),
637                                         GFP_KERNEL, sess->s.dev->ib_dev,
638                                         DMA_TO_DEVICE, rtrs_srv_rdma_done);
639                         if (!srv_mr->iu) {
640                                 err = -ENOMEM;
641                                 rtrs_err(ss, "rtrs_iu_alloc(), err: %d\n", err);
642                                 goto dereg_mr;
643                         }
644                 }
645                 /* Eventually dma addr for each chunk can be cached */
646                 for_each_sg(sgt->sgl, s, sgt->orig_nents, i)
647                         sess->dma_addr[chunks + i] = sg_dma_address(s);
648
649                 ib_update_fast_reg_key(mr, ib_inc_rkey(mr->rkey));
650                 srv_mr->mr = mr;
651
652                 continue;
653 err:
654                 while (mri--) {
655                         srv_mr = &sess->mrs[mri];
656                         sgt = &srv_mr->sgt;
657                         mr = srv_mr->mr;
658                         rtrs_iu_free(srv_mr->iu, sess->s.dev->ib_dev, 1);
659 dereg_mr:
660                         ib_dereg_mr(mr);
661 unmap_sg:
662                         ib_dma_unmap_sg(sess->s.dev->ib_dev, sgt->sgl,
663                                         sgt->nents, DMA_BIDIRECTIONAL);
664 free_sg:
665                         sg_free_table(sgt);
666                 }
667                 kfree(sess->mrs);
668
669                 return err;
670         }
671
672         chunk_bits = ilog2(srv->queue_depth - 1) + 1;
673         sess->mem_bits = (MAX_IMM_PAYL_BITS - chunk_bits);
674
675         return 0;
676 }
677
678 static void rtrs_srv_hb_err_handler(struct rtrs_con *c)
679 {
680         close_sess(to_srv_sess(c->sess));
681 }
682
683 static void rtrs_srv_init_hb(struct rtrs_srv_sess *sess)
684 {
685         rtrs_init_hb(&sess->s, &io_comp_cqe,
686                       RTRS_HB_INTERVAL_MS,
687                       RTRS_HB_MISSED_MAX,
688                       rtrs_srv_hb_err_handler,
689                       rtrs_wq);
690 }
691
692 static void rtrs_srv_start_hb(struct rtrs_srv_sess *sess)
693 {
694         rtrs_start_hb(&sess->s);
695 }
696
697 static void rtrs_srv_stop_hb(struct rtrs_srv_sess *sess)
698 {
699         rtrs_stop_hb(&sess->s);
700 }
701
702 static void rtrs_srv_info_rsp_done(struct ib_cq *cq, struct ib_wc *wc)
703 {
704         struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context);
705         struct rtrs_sess *s = con->c.sess;
706         struct rtrs_srv_sess *sess = to_srv_sess(s);
707         struct rtrs_iu *iu;
708
709         iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
710         rtrs_iu_free(iu, sess->s.dev->ib_dev, 1);
711
712         if (wc->status != IB_WC_SUCCESS) {
713                 rtrs_err(s, "Sess info response send failed: %s\n",
714                           ib_wc_status_msg(wc->status));
715                 close_sess(sess);
716                 return;
717         }
718         WARN_ON(wc->opcode != IB_WC_SEND);
719 }
720
721 static void rtrs_srv_sess_up(struct rtrs_srv_sess *sess)
722 {
723         struct rtrs_srv *srv = sess->srv;
724         struct rtrs_srv_ctx *ctx = srv->ctx;
725         int up;
726
727         mutex_lock(&srv->paths_ev_mutex);
728         up = ++srv->paths_up;
729         if (up == 1)
730                 ctx->ops.link_ev(srv, RTRS_SRV_LINK_EV_CONNECTED, NULL);
731         mutex_unlock(&srv->paths_ev_mutex);
732
733         /* Mark session as established */
734         sess->established = true;
735 }
736
737 static void rtrs_srv_sess_down(struct rtrs_srv_sess *sess)
738 {
739         struct rtrs_srv *srv = sess->srv;
740         struct rtrs_srv_ctx *ctx = srv->ctx;
741
742         if (!sess->established)
743                 return;
744
745         sess->established = false;
746         mutex_lock(&srv->paths_ev_mutex);
747         WARN_ON(!srv->paths_up);
748         if (--srv->paths_up == 0)
749                 ctx->ops.link_ev(srv, RTRS_SRV_LINK_EV_DISCONNECTED, srv->priv);
750         mutex_unlock(&srv->paths_ev_mutex);
751 }
752
753 static bool exist_sessname(struct rtrs_srv_ctx *ctx,
754                            const char *sessname, const uuid_t *path_uuid)
755 {
756         struct rtrs_srv *srv;
757         struct rtrs_srv_sess *sess;
758         bool found = false;
759
760         mutex_lock(&ctx->srv_mutex);
761         list_for_each_entry(srv, &ctx->srv_list, ctx_list) {
762                 mutex_lock(&srv->paths_mutex);
763
764                 /* when a client with same uuid and same sessname tried to add a path */
765                 if (uuid_equal(&srv->paths_uuid, path_uuid)) {
766                         mutex_unlock(&srv->paths_mutex);
767                         continue;
768                 }
769
770                 list_for_each_entry(sess, &srv->paths_list, s.entry) {
771                         if (strlen(sess->s.sessname) == strlen(sessname) &&
772                             !strcmp(sess->s.sessname, sessname)) {
773                                 found = true;
774                                 break;
775                         }
776                 }
777                 mutex_unlock(&srv->paths_mutex);
778                 if (found)
779                         break;
780         }
781         mutex_unlock(&ctx->srv_mutex);
782         return found;
783 }
784
785 static int post_recv_sess(struct rtrs_srv_sess *sess);
786 static int rtrs_rdma_do_reject(struct rdma_cm_id *cm_id, int errno);
787
788 static int process_info_req(struct rtrs_srv_con *con,
789                             struct rtrs_msg_info_req *msg)
790 {
791         struct rtrs_sess *s = con->c.sess;
792         struct rtrs_srv_sess *sess = to_srv_sess(s);
793         struct ib_send_wr *reg_wr = NULL;
794         struct rtrs_msg_info_rsp *rsp;
795         struct rtrs_iu *tx_iu;
796         struct ib_reg_wr *rwr;
797         int mri, err;
798         size_t tx_sz;
799
800         err = post_recv_sess(sess);
801         if (err) {
802                 rtrs_err(s, "post_recv_sess(), err: %d\n", err);
803                 return err;
804         }
805
806         if (strchr(msg->sessname, '/') || strchr(msg->sessname, '.')) {
807                 rtrs_err(s, "sessname cannot contain / and .\n");
808                 return -EINVAL;
809         }
810
811         if (exist_sessname(sess->srv->ctx,
812                            msg->sessname, &sess->srv->paths_uuid)) {
813                 rtrs_err(s, "sessname is duplicated: %s\n", msg->sessname);
814                 return -EPERM;
815         }
816         strscpy(sess->s.sessname, msg->sessname, sizeof(sess->s.sessname));
817
818         rwr = kcalloc(sess->mrs_num, sizeof(*rwr), GFP_KERNEL);
819         if (!rwr)
820                 return -ENOMEM;
821
822         tx_sz  = sizeof(*rsp);
823         tx_sz += sizeof(rsp->desc[0]) * sess->mrs_num;
824         tx_iu = rtrs_iu_alloc(1, tx_sz, GFP_KERNEL, sess->s.dev->ib_dev,
825                                DMA_TO_DEVICE, rtrs_srv_info_rsp_done);
826         if (!tx_iu) {
827                 err = -ENOMEM;
828                 goto rwr_free;
829         }
830
831         rsp = tx_iu->buf;
832         rsp->type = cpu_to_le16(RTRS_MSG_INFO_RSP);
833         rsp->sg_cnt = cpu_to_le16(sess->mrs_num);
834
835         for (mri = 0; mri < sess->mrs_num; mri++) {
836                 struct ib_mr *mr = sess->mrs[mri].mr;
837
838                 rsp->desc[mri].addr = cpu_to_le64(mr->iova);
839                 rsp->desc[mri].key  = cpu_to_le32(mr->rkey);
840                 rsp->desc[mri].len  = cpu_to_le32(mr->length);
841
842                 /*
843                  * Fill in reg MR request and chain them *backwards*
844                  */
845                 rwr[mri].wr.next = mri ? &rwr[mri - 1].wr : NULL;
846                 rwr[mri].wr.opcode = IB_WR_REG_MR;
847                 rwr[mri].wr.wr_cqe = &local_reg_cqe;
848                 rwr[mri].wr.num_sge = 0;
849                 rwr[mri].wr.send_flags = 0;
850                 rwr[mri].mr = mr;
851                 rwr[mri].key = mr->rkey;
852                 rwr[mri].access = (IB_ACCESS_LOCAL_WRITE |
853                                    IB_ACCESS_REMOTE_WRITE);
854                 reg_wr = &rwr[mri].wr;
855         }
856
857         err = rtrs_srv_create_sess_files(sess);
858         if (err)
859                 goto iu_free;
860         kobject_get(&sess->kobj);
861         get_device(&sess->srv->dev);
862         rtrs_srv_change_state(sess, RTRS_SRV_CONNECTED);
863         rtrs_srv_start_hb(sess);
864
865         /*
866          * We do not account number of established connections at the current
867          * moment, we rely on the client, which should send info request when
868          * all connections are successfully established.  Thus, simply notify
869          * listener with a proper event if we are the first path.
870          */
871         rtrs_srv_sess_up(sess);
872
873         ib_dma_sync_single_for_device(sess->s.dev->ib_dev, tx_iu->dma_addr,
874                                       tx_iu->size, DMA_TO_DEVICE);
875
876         /* Send info response */
877         err = rtrs_iu_post_send(&con->c, tx_iu, tx_sz, reg_wr);
878         if (err) {
879                 rtrs_err(s, "rtrs_iu_post_send(), err: %d\n", err);
880 iu_free:
881                 rtrs_iu_free(tx_iu, sess->s.dev->ib_dev, 1);
882         }
883 rwr_free:
884         kfree(rwr);
885
886         return err;
887 }
888
889 static void rtrs_srv_info_req_done(struct ib_cq *cq, struct ib_wc *wc)
890 {
891         struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context);
892         struct rtrs_sess *s = con->c.sess;
893         struct rtrs_srv_sess *sess = to_srv_sess(s);
894         struct rtrs_msg_info_req *msg;
895         struct rtrs_iu *iu;
896         int err;
897
898         WARN_ON(con->c.cid);
899
900         iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
901         if (wc->status != IB_WC_SUCCESS) {
902                 rtrs_err(s, "Sess info request receive failed: %s\n",
903                           ib_wc_status_msg(wc->status));
904                 goto close;
905         }
906         WARN_ON(wc->opcode != IB_WC_RECV);
907
908         if (wc->byte_len < sizeof(*msg)) {
909                 rtrs_err(s, "Sess info request is malformed: size %d\n",
910                           wc->byte_len);
911                 goto close;
912         }
913         ib_dma_sync_single_for_cpu(sess->s.dev->ib_dev, iu->dma_addr,
914                                    iu->size, DMA_FROM_DEVICE);
915         msg = iu->buf;
916         if (le16_to_cpu(msg->type) != RTRS_MSG_INFO_REQ) {
917                 rtrs_err(s, "Sess info request is malformed: type %d\n",
918                           le16_to_cpu(msg->type));
919                 goto close;
920         }
921         err = process_info_req(con, msg);
922         if (err)
923                 goto close;
924
925 out:
926         rtrs_iu_free(iu, sess->s.dev->ib_dev, 1);
927         return;
928 close:
929         close_sess(sess);
930         goto out;
931 }
932
933 static int post_recv_info_req(struct rtrs_srv_con *con)
934 {
935         struct rtrs_sess *s = con->c.sess;
936         struct rtrs_srv_sess *sess = to_srv_sess(s);
937         struct rtrs_iu *rx_iu;
938         int err;
939
940         rx_iu = rtrs_iu_alloc(1, sizeof(struct rtrs_msg_info_req),
941                                GFP_KERNEL, sess->s.dev->ib_dev,
942                                DMA_FROM_DEVICE, rtrs_srv_info_req_done);
943         if (!rx_iu)
944                 return -ENOMEM;
945         /* Prepare for getting info response */
946         err = rtrs_iu_post_recv(&con->c, rx_iu);
947         if (err) {
948                 rtrs_err(s, "rtrs_iu_post_recv(), err: %d\n", err);
949                 rtrs_iu_free(rx_iu, sess->s.dev->ib_dev, 1);
950                 return err;
951         }
952
953         return 0;
954 }
955
956 static int post_recv_io(struct rtrs_srv_con *con, size_t q_size)
957 {
958         int i, err;
959
960         for (i = 0; i < q_size; i++) {
961                 err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
962                 if (err)
963                         return err;
964         }
965
966         return 0;
967 }
968
969 static int post_recv_sess(struct rtrs_srv_sess *sess)
970 {
971         struct rtrs_srv *srv = sess->srv;
972         struct rtrs_sess *s = &sess->s;
973         size_t q_size;
974         int err, cid;
975
976         for (cid = 0; cid < sess->s.con_num; cid++) {
977                 if (cid == 0)
978                         q_size = SERVICE_CON_QUEUE_DEPTH;
979                 else
980                         q_size = srv->queue_depth;
981
982                 err = post_recv_io(to_srv_con(sess->s.con[cid]), q_size);
983                 if (err) {
984                         rtrs_err(s, "post_recv_io(), err: %d\n", err);
985                         return err;
986                 }
987         }
988
989         return 0;
990 }
991
992 static void process_read(struct rtrs_srv_con *con,
993                          struct rtrs_msg_rdma_read *msg,
994                          u32 buf_id, u32 off)
995 {
996         struct rtrs_sess *s = con->c.sess;
997         struct rtrs_srv_sess *sess = to_srv_sess(s);
998         struct rtrs_srv *srv = sess->srv;
999         struct rtrs_srv_ctx *ctx = srv->ctx;
1000         struct rtrs_srv_op *id;
1001
1002         size_t usr_len, data_len;
1003         void *data;
1004         int ret;
1005
1006         if (sess->state != RTRS_SRV_CONNECTED) {
1007                 rtrs_err_rl(s,
1008                              "Processing read request failed,  session is disconnected, sess state %s\n",
1009                              rtrs_srv_state_str(sess->state));
1010                 return;
1011         }
1012         if (msg->sg_cnt != 1 && msg->sg_cnt != 0) {
1013                 rtrs_err_rl(s,
1014                             "Processing read request failed, invalid message\n");
1015                 return;
1016         }
1017         rtrs_srv_get_ops_ids(sess);
1018         rtrs_srv_update_rdma_stats(sess->stats, off, READ);
1019         id = sess->ops_ids[buf_id];
1020         id->con         = con;
1021         id->dir         = READ;
1022         id->msg_id      = buf_id;
1023         id->rd_msg      = msg;
1024         usr_len = le16_to_cpu(msg->usr_len);
1025         data_len = off - usr_len;
1026         data = page_address(srv->chunks[buf_id]);
1027         ret = ctx->ops.rdma_ev(srv->priv, id, READ, data, data_len,
1028                            data + data_len, usr_len);
1029
1030         if (ret) {
1031                 rtrs_err_rl(s,
1032                              "Processing read request failed, user module cb reported for msg_id %d, err: %d\n",
1033                              buf_id, ret);
1034                 goto send_err_msg;
1035         }
1036
1037         return;
1038
1039 send_err_msg:
1040         ret = send_io_resp_imm(con, id, ret);
1041         if (ret < 0) {
1042                 rtrs_err_rl(s,
1043                              "Sending err msg for failed RDMA-Write-Req failed, msg_id %d, err: %d\n",
1044                              buf_id, ret);
1045                 close_sess(sess);
1046         }
1047         rtrs_srv_put_ops_ids(sess);
1048 }
1049
1050 static void process_write(struct rtrs_srv_con *con,
1051                           struct rtrs_msg_rdma_write *req,
1052                           u32 buf_id, u32 off)
1053 {
1054         struct rtrs_sess *s = con->c.sess;
1055         struct rtrs_srv_sess *sess = to_srv_sess(s);
1056         struct rtrs_srv *srv = sess->srv;
1057         struct rtrs_srv_ctx *ctx = srv->ctx;
1058         struct rtrs_srv_op *id;
1059
1060         size_t data_len, usr_len;
1061         void *data;
1062         int ret;
1063
1064         if (sess->state != RTRS_SRV_CONNECTED) {
1065                 rtrs_err_rl(s,
1066                              "Processing write request failed,  session is disconnected, sess state %s\n",
1067                              rtrs_srv_state_str(sess->state));
1068                 return;
1069         }
1070         rtrs_srv_get_ops_ids(sess);
1071         rtrs_srv_update_rdma_stats(sess->stats, off, WRITE);
1072         id = sess->ops_ids[buf_id];
1073         id->con    = con;
1074         id->dir    = WRITE;
1075         id->msg_id = buf_id;
1076
1077         usr_len = le16_to_cpu(req->usr_len);
1078         data_len = off - usr_len;
1079         data = page_address(srv->chunks[buf_id]);
1080         ret = ctx->ops.rdma_ev(srv->priv, id, WRITE, data, data_len,
1081                                data + data_len, usr_len);
1082         if (ret) {
1083                 rtrs_err_rl(s,
1084                              "Processing write request failed, user module callback reports err: %d\n",
1085                              ret);
1086                 goto send_err_msg;
1087         }
1088
1089         return;
1090
1091 send_err_msg:
1092         ret = send_io_resp_imm(con, id, ret);
1093         if (ret < 0) {
1094                 rtrs_err_rl(s,
1095                              "Processing write request failed, sending I/O response failed, msg_id %d, err: %d\n",
1096                              buf_id, ret);
1097                 close_sess(sess);
1098         }
1099         rtrs_srv_put_ops_ids(sess);
1100 }
1101
1102 static void process_io_req(struct rtrs_srv_con *con, void *msg,
1103                            u32 id, u32 off)
1104 {
1105         struct rtrs_sess *s = con->c.sess;
1106         struct rtrs_srv_sess *sess = to_srv_sess(s);
1107         struct rtrs_msg_rdma_hdr *hdr;
1108         unsigned int type;
1109
1110         ib_dma_sync_single_for_cpu(sess->s.dev->ib_dev, sess->dma_addr[id],
1111                                    max_chunk_size, DMA_BIDIRECTIONAL);
1112         hdr = msg;
1113         type = le16_to_cpu(hdr->type);
1114
1115         switch (type) {
1116         case RTRS_MSG_WRITE:
1117                 process_write(con, msg, id, off);
1118                 break;
1119         case RTRS_MSG_READ:
1120                 process_read(con, msg, id, off);
1121                 break;
1122         default:
1123                 rtrs_err(s,
1124                           "Processing I/O request failed, unknown message type received: 0x%02x\n",
1125                           type);
1126                 goto err;
1127         }
1128
1129         return;
1130
1131 err:
1132         close_sess(sess);
1133 }
1134
1135 static void rtrs_srv_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1136 {
1137         struct rtrs_srv_mr *mr =
1138                 container_of(wc->wr_cqe, typeof(*mr), inv_cqe);
1139         struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context);
1140         struct rtrs_sess *s = con->c.sess;
1141         struct rtrs_srv_sess *sess = to_srv_sess(s);
1142         struct rtrs_srv *srv = sess->srv;
1143         u32 msg_id, off;
1144         void *data;
1145
1146         if (wc->status != IB_WC_SUCCESS) {
1147                 rtrs_err(s, "Failed IB_WR_LOCAL_INV: %s\n",
1148                           ib_wc_status_msg(wc->status));
1149                 close_sess(sess);
1150         }
1151         msg_id = mr->msg_id;
1152         off = mr->msg_off;
1153         data = page_address(srv->chunks[msg_id]) + off;
1154         process_io_req(con, data, msg_id, off);
1155 }
1156
1157 static int rtrs_srv_inv_rkey(struct rtrs_srv_con *con,
1158                               struct rtrs_srv_mr *mr)
1159 {
1160         struct ib_send_wr wr = {
1161                 .opcode             = IB_WR_LOCAL_INV,
1162                 .wr_cqe             = &mr->inv_cqe,
1163                 .send_flags         = IB_SEND_SIGNALED,
1164                 .ex.invalidate_rkey = mr->mr->rkey,
1165         };
1166         mr->inv_cqe.done = rtrs_srv_inv_rkey_done;
1167
1168         return ib_post_send(con->c.qp, &wr, NULL);
1169 }
1170
1171 static void rtrs_rdma_process_wr_wait_list(struct rtrs_srv_con *con)
1172 {
1173         spin_lock(&con->rsp_wr_wait_lock);
1174         while (!list_empty(&con->rsp_wr_wait_list)) {
1175                 struct rtrs_srv_op *id;
1176                 int ret;
1177
1178                 id = list_entry(con->rsp_wr_wait_list.next,
1179                                 struct rtrs_srv_op, wait_list);
1180                 list_del(&id->wait_list);
1181
1182                 spin_unlock(&con->rsp_wr_wait_lock);
1183                 ret = rtrs_srv_resp_rdma(id, id->status);
1184                 spin_lock(&con->rsp_wr_wait_lock);
1185
1186                 if (!ret) {
1187                         list_add(&id->wait_list, &con->rsp_wr_wait_list);
1188                         break;
1189                 }
1190         }
1191         spin_unlock(&con->rsp_wr_wait_lock);
1192 }
1193
1194 static void rtrs_srv_rdma_done(struct ib_cq *cq, struct ib_wc *wc)
1195 {
1196         struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context);
1197         struct rtrs_sess *s = con->c.sess;
1198         struct rtrs_srv_sess *sess = to_srv_sess(s);
1199         struct rtrs_srv *srv = sess->srv;
1200         u32 imm_type, imm_payload;
1201         int err;
1202
1203         if (wc->status != IB_WC_SUCCESS) {
1204                 if (wc->status != IB_WC_WR_FLUSH_ERR) {
1205                         rtrs_err(s,
1206                                   "%s (wr_cqe: %p, type: %d, vendor_err: 0x%x, len: %u)\n",
1207                                   ib_wc_status_msg(wc->status), wc->wr_cqe,
1208                                   wc->opcode, wc->vendor_err, wc->byte_len);
1209                         close_sess(sess);
1210                 }
1211                 return;
1212         }
1213
1214         switch (wc->opcode) {
1215         case IB_WC_RECV_RDMA_WITH_IMM:
1216                 /*
1217                  * post_recv() RDMA write completions of IO reqs (read/write)
1218                  * and hb
1219                  */
1220                 if (WARN_ON(wc->wr_cqe != &io_comp_cqe))
1221                         return;
1222                 err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
1223                 if (err) {
1224                         rtrs_err(s, "rtrs_post_recv(), err: %d\n", err);
1225                         close_sess(sess);
1226                         break;
1227                 }
1228                 rtrs_from_imm(be32_to_cpu(wc->ex.imm_data),
1229                                &imm_type, &imm_payload);
1230                 if (imm_type == RTRS_IO_REQ_IMM) {
1231                         u32 msg_id, off;
1232                         void *data;
1233
1234                         msg_id = imm_payload >> sess->mem_bits;
1235                         off = imm_payload & ((1 << sess->mem_bits) - 1);
1236                         if (msg_id >= srv->queue_depth || off >= max_chunk_size) {
1237                                 rtrs_err(s, "Wrong msg_id %u, off %u\n",
1238                                           msg_id, off);
1239                                 close_sess(sess);
1240                                 return;
1241                         }
1242                         if (always_invalidate) {
1243                                 struct rtrs_srv_mr *mr = &sess->mrs[msg_id];
1244
1245                                 mr->msg_off = off;
1246                                 mr->msg_id = msg_id;
1247                                 err = rtrs_srv_inv_rkey(con, mr);
1248                                 if (err) {
1249                                         rtrs_err(s, "rtrs_post_recv(), err: %d\n",
1250                                                   err);
1251                                         close_sess(sess);
1252                                         break;
1253                                 }
1254                         } else {
1255                                 data = page_address(srv->chunks[msg_id]) + off;
1256                                 process_io_req(con, data, msg_id, off);
1257                         }
1258                 } else if (imm_type == RTRS_HB_MSG_IMM) {
1259                         WARN_ON(con->c.cid);
1260                         rtrs_send_hb_ack(&sess->s);
1261                 } else if (imm_type == RTRS_HB_ACK_IMM) {
1262                         WARN_ON(con->c.cid);
1263                         sess->s.hb_missed_cnt = 0;
1264                 } else {
1265                         rtrs_wrn(s, "Unknown IMM type %u\n", imm_type);
1266                 }
1267                 break;
1268         case IB_WC_RDMA_WRITE:
1269         case IB_WC_SEND:
1270                 /*
1271                  * post_send() RDMA write completions of IO reqs (read/write)
1272                  * and hb.
1273                  */
1274                 atomic_add(s->signal_interval, &con->c.sq_wr_avail);
1275
1276                 if (!list_empty_careful(&con->rsp_wr_wait_list))
1277                         rtrs_rdma_process_wr_wait_list(con);
1278
1279                 break;
1280         default:
1281                 rtrs_wrn(s, "Unexpected WC type: %d\n", wc->opcode);
1282                 return;
1283         }
1284 }
1285
1286 /**
1287  * rtrs_srv_get_sess_name() - Get rtrs_srv peer hostname.
1288  * @srv:        Session
1289  * @sessname:   Sessname buffer
1290  * @len:        Length of sessname buffer
1291  */
1292 int rtrs_srv_get_sess_name(struct rtrs_srv *srv, char *sessname, size_t len)
1293 {
1294         struct rtrs_srv_sess *sess;
1295         int err = -ENOTCONN;
1296
1297         mutex_lock(&srv->paths_mutex);
1298         list_for_each_entry(sess, &srv->paths_list, s.entry) {
1299                 if (sess->state != RTRS_SRV_CONNECTED)
1300                         continue;
1301                 strscpy(sessname, sess->s.sessname,
1302                        min_t(size_t, sizeof(sess->s.sessname), len));
1303                 err = 0;
1304                 break;
1305         }
1306         mutex_unlock(&srv->paths_mutex);
1307
1308         return err;
1309 }
1310 EXPORT_SYMBOL(rtrs_srv_get_sess_name);
1311
1312 /**
1313  * rtrs_srv_get_queue_depth() - Get rtrs_srv qdepth.
1314  * @srv:        Session
1315  */
1316 int rtrs_srv_get_queue_depth(struct rtrs_srv *srv)
1317 {
1318         return srv->queue_depth;
1319 }
1320 EXPORT_SYMBOL(rtrs_srv_get_queue_depth);
1321
1322 static int find_next_bit_ring(struct rtrs_srv_sess *sess)
1323 {
1324         struct ib_device *ib_dev = sess->s.dev->ib_dev;
1325         int v;
1326
1327         v = cpumask_next(sess->cur_cq_vector, &cq_affinity_mask);
1328         if (v >= nr_cpu_ids || v >= ib_dev->num_comp_vectors)
1329                 v = cpumask_first(&cq_affinity_mask);
1330         return v;
1331 }
1332
1333 static int rtrs_srv_get_next_cq_vector(struct rtrs_srv_sess *sess)
1334 {
1335         sess->cur_cq_vector = find_next_bit_ring(sess);
1336
1337         return sess->cur_cq_vector;
1338 }
1339
1340 static void rtrs_srv_dev_release(struct device *dev)
1341 {
1342         struct rtrs_srv *srv = container_of(dev, struct rtrs_srv, dev);
1343
1344         kfree(srv);
1345 }
1346
1347 static void free_srv(struct rtrs_srv *srv)
1348 {
1349         int i;
1350
1351         WARN_ON(refcount_read(&srv->refcount));
1352         for (i = 0; i < srv->queue_depth; i++)
1353                 mempool_free(srv->chunks[i], chunk_pool);
1354         kfree(srv->chunks);
1355         mutex_destroy(&srv->paths_mutex);
1356         mutex_destroy(&srv->paths_ev_mutex);
1357         /* last put to release the srv structure */
1358         put_device(&srv->dev);
1359 }
1360
1361 static struct rtrs_srv *get_or_create_srv(struct rtrs_srv_ctx *ctx,
1362                                           const uuid_t *paths_uuid,
1363                                           bool first_conn)
1364 {
1365         struct rtrs_srv *srv;
1366         int i;
1367
1368         mutex_lock(&ctx->srv_mutex);
1369         list_for_each_entry(srv, &ctx->srv_list, ctx_list) {
1370                 if (uuid_equal(&srv->paths_uuid, paths_uuid) &&
1371                     refcount_inc_not_zero(&srv->refcount)) {
1372                         mutex_unlock(&ctx->srv_mutex);
1373                         return srv;
1374                 }
1375         }
1376         mutex_unlock(&ctx->srv_mutex);
1377         /*
1378          * If this request is not the first connection request from the
1379          * client for this session then fail and return error.
1380          */
1381         if (!first_conn) {
1382                 pr_err_ratelimited("Error: Not the first connection request for this session\n");
1383                 return ERR_PTR(-ENXIO);
1384         }
1385
1386         /* need to allocate a new srv */
1387         srv = kzalloc(sizeof(*srv), GFP_KERNEL);
1388         if  (!srv)
1389                 return ERR_PTR(-ENOMEM);
1390
1391         INIT_LIST_HEAD(&srv->paths_list);
1392         mutex_init(&srv->paths_mutex);
1393         mutex_init(&srv->paths_ev_mutex);
1394         uuid_copy(&srv->paths_uuid, paths_uuid);
1395         srv->queue_depth = sess_queue_depth;
1396         srv->ctx = ctx;
1397         device_initialize(&srv->dev);
1398         srv->dev.release = rtrs_srv_dev_release;
1399
1400         srv->chunks = kcalloc(srv->queue_depth, sizeof(*srv->chunks),
1401                               GFP_KERNEL);
1402         if (!srv->chunks)
1403                 goto err_free_srv;
1404
1405         for (i = 0; i < srv->queue_depth; i++) {
1406                 srv->chunks[i] = mempool_alloc(chunk_pool, GFP_KERNEL);
1407                 if (!srv->chunks[i])
1408                         goto err_free_chunks;
1409         }
1410         refcount_set(&srv->refcount, 1);
1411         mutex_lock(&ctx->srv_mutex);
1412         list_add(&srv->ctx_list, &ctx->srv_list);
1413         mutex_unlock(&ctx->srv_mutex);
1414
1415         return srv;
1416
1417 err_free_chunks:
1418         while (i--)
1419                 mempool_free(srv->chunks[i], chunk_pool);
1420         kfree(srv->chunks);
1421
1422 err_free_srv:
1423         kfree(srv);
1424         return ERR_PTR(-ENOMEM);
1425 }
1426
1427 static void put_srv(struct rtrs_srv *srv)
1428 {
1429         if (refcount_dec_and_test(&srv->refcount)) {
1430                 struct rtrs_srv_ctx *ctx = srv->ctx;
1431
1432                 WARN_ON(srv->dev.kobj.state_in_sysfs);
1433
1434                 mutex_lock(&ctx->srv_mutex);
1435                 list_del(&srv->ctx_list);
1436                 mutex_unlock(&ctx->srv_mutex);
1437                 free_srv(srv);
1438         }
1439 }
1440
1441 static void __add_path_to_srv(struct rtrs_srv *srv,
1442                               struct rtrs_srv_sess *sess)
1443 {
1444         list_add_tail(&sess->s.entry, &srv->paths_list);
1445         srv->paths_num++;
1446         WARN_ON(srv->paths_num >= MAX_PATHS_NUM);
1447 }
1448
1449 static void del_path_from_srv(struct rtrs_srv_sess *sess)
1450 {
1451         struct rtrs_srv *srv = sess->srv;
1452
1453         if (WARN_ON(!srv))
1454                 return;
1455
1456         mutex_lock(&srv->paths_mutex);
1457         list_del(&sess->s.entry);
1458         WARN_ON(!srv->paths_num);
1459         srv->paths_num--;
1460         mutex_unlock(&srv->paths_mutex);
1461 }
1462
1463 /* return true if addresses are the same, error other wise */
1464 static int sockaddr_cmp(const struct sockaddr *a, const struct sockaddr *b)
1465 {
1466         switch (a->sa_family) {
1467         case AF_IB:
1468                 return memcmp(&((struct sockaddr_ib *)a)->sib_addr,
1469                               &((struct sockaddr_ib *)b)->sib_addr,
1470                               sizeof(struct ib_addr)) &&
1471                         (b->sa_family == AF_IB);
1472         case AF_INET:
1473                 return memcmp(&((struct sockaddr_in *)a)->sin_addr,
1474                               &((struct sockaddr_in *)b)->sin_addr,
1475                               sizeof(struct in_addr)) &&
1476                         (b->sa_family == AF_INET);
1477         case AF_INET6:
1478                 return memcmp(&((struct sockaddr_in6 *)a)->sin6_addr,
1479                               &((struct sockaddr_in6 *)b)->sin6_addr,
1480                               sizeof(struct in6_addr)) &&
1481                         (b->sa_family == AF_INET6);
1482         default:
1483                 return -ENOENT;
1484         }
1485 }
1486
1487 static bool __is_path_w_addr_exists(struct rtrs_srv *srv,
1488                                     struct rdma_addr *addr)
1489 {
1490         struct rtrs_srv_sess *sess;
1491
1492         list_for_each_entry(sess, &srv->paths_list, s.entry)
1493                 if (!sockaddr_cmp((struct sockaddr *)&sess->s.dst_addr,
1494                                   (struct sockaddr *)&addr->dst_addr) &&
1495                     !sockaddr_cmp((struct sockaddr *)&sess->s.src_addr,
1496                                   (struct sockaddr *)&addr->src_addr))
1497                         return true;
1498
1499         return false;
1500 }
1501
1502 static void free_sess(struct rtrs_srv_sess *sess)
1503 {
1504         if (sess->kobj.state_in_sysfs) {
1505                 kobject_del(&sess->kobj);
1506                 kobject_put(&sess->kobj);
1507         } else {
1508                 kfree(sess->stats);
1509                 kfree(sess);
1510         }
1511 }
1512
1513 static void rtrs_srv_close_work(struct work_struct *work)
1514 {
1515         struct rtrs_srv_sess *sess;
1516         struct rtrs_srv_con *con;
1517         int i;
1518
1519         sess = container_of(work, typeof(*sess), close_work);
1520
1521         rtrs_srv_destroy_sess_files(sess);
1522         rtrs_srv_stop_hb(sess);
1523
1524         for (i = 0; i < sess->s.con_num; i++) {
1525                 if (!sess->s.con[i])
1526                         continue;
1527                 con = to_srv_con(sess->s.con[i]);
1528                 rdma_disconnect(con->c.cm_id);
1529                 ib_drain_qp(con->c.qp);
1530         }
1531
1532         /*
1533          * Degrade ref count to the usual model with a single shared
1534          * atomic_t counter
1535          */
1536         percpu_ref_kill(&sess->ids_inflight_ref);
1537
1538         /* Wait for all completion */
1539         wait_for_completion(&sess->complete_done);
1540
1541         /* Notify upper layer if we are the last path */
1542         rtrs_srv_sess_down(sess);
1543
1544         unmap_cont_bufs(sess);
1545         rtrs_srv_free_ops_ids(sess);
1546
1547         for (i = 0; i < sess->s.con_num; i++) {
1548                 if (!sess->s.con[i])
1549                         continue;
1550                 con = to_srv_con(sess->s.con[i]);
1551                 rtrs_cq_qp_destroy(&con->c);
1552                 rdma_destroy_id(con->c.cm_id);
1553                 kfree(con);
1554         }
1555         rtrs_ib_dev_put(sess->s.dev);
1556
1557         del_path_from_srv(sess);
1558         put_srv(sess->srv);
1559         sess->srv = NULL;
1560         rtrs_srv_change_state(sess, RTRS_SRV_CLOSED);
1561
1562         kfree(sess->dma_addr);
1563         kfree(sess->s.con);
1564         free_sess(sess);
1565 }
1566
1567 static int rtrs_rdma_do_accept(struct rtrs_srv_sess *sess,
1568                                struct rdma_cm_id *cm_id)
1569 {
1570         struct rtrs_srv *srv = sess->srv;
1571         struct rtrs_msg_conn_rsp msg;
1572         struct rdma_conn_param param;
1573         int err;
1574
1575         param = (struct rdma_conn_param) {
1576                 .rnr_retry_count = 7,
1577                 .private_data = &msg,
1578                 .private_data_len = sizeof(msg),
1579         };
1580
1581         msg = (struct rtrs_msg_conn_rsp) {
1582                 .magic = cpu_to_le16(RTRS_MAGIC),
1583                 .version = cpu_to_le16(RTRS_PROTO_VER),
1584                 .queue_depth = cpu_to_le16(srv->queue_depth),
1585                 .max_io_size = cpu_to_le32(max_chunk_size - MAX_HDR_SIZE),
1586                 .max_hdr_size = cpu_to_le32(MAX_HDR_SIZE),
1587         };
1588
1589         if (always_invalidate)
1590                 msg.flags = cpu_to_le32(RTRS_MSG_NEW_RKEY_F);
1591
1592         err = rdma_accept(cm_id, &param);
1593         if (err)
1594                 pr_err("rdma_accept(), err: %d\n", err);
1595
1596         return err;
1597 }
1598
1599 static int rtrs_rdma_do_reject(struct rdma_cm_id *cm_id, int errno)
1600 {
1601         struct rtrs_msg_conn_rsp msg;
1602         int err;
1603
1604         msg = (struct rtrs_msg_conn_rsp) {
1605                 .magic = cpu_to_le16(RTRS_MAGIC),
1606                 .version = cpu_to_le16(RTRS_PROTO_VER),
1607                 .errno = cpu_to_le16(errno),
1608         };
1609
1610         err = rdma_reject(cm_id, &msg, sizeof(msg), IB_CM_REJ_CONSUMER_DEFINED);
1611         if (err)
1612                 pr_err("rdma_reject(), err: %d\n", err);
1613
1614         /* Bounce errno back */
1615         return errno;
1616 }
1617
1618 static struct rtrs_srv_sess *
1619 __find_sess(struct rtrs_srv *srv, const uuid_t *sess_uuid)
1620 {
1621         struct rtrs_srv_sess *sess;
1622
1623         list_for_each_entry(sess, &srv->paths_list, s.entry) {
1624                 if (uuid_equal(&sess->s.uuid, sess_uuid))
1625                         return sess;
1626         }
1627
1628         return NULL;
1629 }
1630
1631 static int create_con(struct rtrs_srv_sess *sess,
1632                       struct rdma_cm_id *cm_id,
1633                       unsigned int cid)
1634 {
1635         struct rtrs_srv *srv = sess->srv;
1636         struct rtrs_sess *s = &sess->s;
1637         struct rtrs_srv_con *con;
1638
1639         u32 cq_num, max_send_wr, max_recv_wr, wr_limit;
1640         int err, cq_vector;
1641
1642         con = kzalloc(sizeof(*con), GFP_KERNEL);
1643         if (!con) {
1644                 err = -ENOMEM;
1645                 goto err;
1646         }
1647
1648         spin_lock_init(&con->rsp_wr_wait_lock);
1649         INIT_LIST_HEAD(&con->rsp_wr_wait_list);
1650         con->c.cm_id = cm_id;
1651         con->c.sess = &sess->s;
1652         con->c.cid = cid;
1653         atomic_set(&con->c.wr_cnt, 1);
1654         wr_limit = sess->s.dev->ib_dev->attrs.max_qp_wr;
1655
1656         if (con->c.cid == 0) {
1657                 /*
1658                  * All receive and all send (each requiring invalidate)
1659                  * + 2 for drain and heartbeat
1660                  */
1661                 max_send_wr = min_t(int, wr_limit,
1662                                     SERVICE_CON_QUEUE_DEPTH * 2 + 2);
1663                 max_recv_wr = max_send_wr;
1664                 s->signal_interval = min_not_zero(srv->queue_depth,
1665                                                   (size_t)SERVICE_CON_QUEUE_DEPTH);
1666         } else {
1667                 /* when always_invlaidate enalbed, we need linv+rinv+mr+imm */
1668                 if (always_invalidate)
1669                         max_send_wr =
1670                                 min_t(int, wr_limit,
1671                                       srv->queue_depth * (1 + 4) + 1);
1672                 else
1673                         max_send_wr =
1674                                 min_t(int, wr_limit,
1675                                       srv->queue_depth * (1 + 2) + 1);
1676
1677                 max_recv_wr = srv->queue_depth + 1;
1678                 /*
1679                  * If we have all receive requests posted and
1680                  * all write requests posted and each read request
1681                  * requires an invalidate request + drain
1682                  * and qp gets into error state.
1683                  */
1684         }
1685         cq_num = max_send_wr + max_recv_wr;
1686         atomic_set(&con->c.sq_wr_avail, max_send_wr);
1687         cq_vector = rtrs_srv_get_next_cq_vector(sess);
1688
1689         /* TODO: SOFTIRQ can be faster, but be careful with softirq context */
1690         err = rtrs_cq_qp_create(&sess->s, &con->c, 1, cq_vector, cq_num,
1691                                  max_send_wr, max_recv_wr,
1692                                  IB_POLL_WORKQUEUE);
1693         if (err) {
1694                 rtrs_err(s, "rtrs_cq_qp_create(), err: %d\n", err);
1695                 goto free_con;
1696         }
1697         if (con->c.cid == 0) {
1698                 err = post_recv_info_req(con);
1699                 if (err)
1700                         goto free_cqqp;
1701         }
1702         WARN_ON(sess->s.con[cid]);
1703         sess->s.con[cid] = &con->c;
1704
1705         /*
1706          * Change context from server to current connection.  The other
1707          * way is to use cm_id->qp->qp_context, which does not work on OFED.
1708          */
1709         cm_id->context = &con->c;
1710
1711         return 0;
1712
1713 free_cqqp:
1714         rtrs_cq_qp_destroy(&con->c);
1715 free_con:
1716         kfree(con);
1717
1718 err:
1719         return err;
1720 }
1721
1722 static struct rtrs_srv_sess *__alloc_sess(struct rtrs_srv *srv,
1723                                            struct rdma_cm_id *cm_id,
1724                                            unsigned int con_num,
1725                                            unsigned int recon_cnt,
1726                                            const uuid_t *uuid)
1727 {
1728         struct rtrs_srv_sess *sess;
1729         int err = -ENOMEM;
1730         char str[NAME_MAX];
1731         struct rtrs_addr path;
1732
1733         if (srv->paths_num >= MAX_PATHS_NUM) {
1734                 err = -ECONNRESET;
1735                 goto err;
1736         }
1737         if (__is_path_w_addr_exists(srv, &cm_id->route.addr)) {
1738                 err = -EEXIST;
1739                 pr_err("Path with same addr exists\n");
1740                 goto err;
1741         }
1742         sess = kzalloc(sizeof(*sess), GFP_KERNEL);
1743         if (!sess)
1744                 goto err;
1745
1746         sess->stats = kzalloc(sizeof(*sess->stats), GFP_KERNEL);
1747         if (!sess->stats)
1748                 goto err_free_sess;
1749
1750         sess->stats->sess = sess;
1751
1752         sess->dma_addr = kcalloc(srv->queue_depth, sizeof(*sess->dma_addr),
1753                                  GFP_KERNEL);
1754         if (!sess->dma_addr)
1755                 goto err_free_stats;
1756
1757         sess->s.con = kcalloc(con_num, sizeof(*sess->s.con), GFP_KERNEL);
1758         if (!sess->s.con)
1759                 goto err_free_dma_addr;
1760
1761         sess->state = RTRS_SRV_CONNECTING;
1762         sess->srv = srv;
1763         sess->cur_cq_vector = -1;
1764         sess->s.dst_addr = cm_id->route.addr.dst_addr;
1765         sess->s.src_addr = cm_id->route.addr.src_addr;
1766
1767         /* temporary until receiving session-name from client */
1768         path.src = &sess->s.src_addr;
1769         path.dst = &sess->s.dst_addr;
1770         rtrs_addr_to_str(&path, str, sizeof(str));
1771         strscpy(sess->s.sessname, str, sizeof(sess->s.sessname));
1772
1773         sess->s.con_num = con_num;
1774         sess->s.irq_con_num = con_num;
1775         sess->s.recon_cnt = recon_cnt;
1776         uuid_copy(&sess->s.uuid, uuid);
1777         spin_lock_init(&sess->state_lock);
1778         INIT_WORK(&sess->close_work, rtrs_srv_close_work);
1779         rtrs_srv_init_hb(sess);
1780
1781         sess->s.dev = rtrs_ib_dev_find_or_add(cm_id->device, &dev_pd);
1782         if (!sess->s.dev) {
1783                 err = -ENOMEM;
1784                 goto err_free_con;
1785         }
1786         err = map_cont_bufs(sess);
1787         if (err)
1788                 goto err_put_dev;
1789
1790         err = rtrs_srv_alloc_ops_ids(sess);
1791         if (err)
1792                 goto err_unmap_bufs;
1793
1794         __add_path_to_srv(srv, sess);
1795
1796         return sess;
1797
1798 err_unmap_bufs:
1799         unmap_cont_bufs(sess);
1800 err_put_dev:
1801         rtrs_ib_dev_put(sess->s.dev);
1802 err_free_con:
1803         kfree(sess->s.con);
1804 err_free_dma_addr:
1805         kfree(sess->dma_addr);
1806 err_free_stats:
1807         kfree(sess->stats);
1808 err_free_sess:
1809         kfree(sess);
1810 err:
1811         return ERR_PTR(err);
1812 }
1813
1814 static int rtrs_rdma_connect(struct rdma_cm_id *cm_id,
1815                               const struct rtrs_msg_conn_req *msg,
1816                               size_t len)
1817 {
1818         struct rtrs_srv_ctx *ctx = cm_id->context;
1819         struct rtrs_srv_sess *sess;
1820         struct rtrs_srv *srv;
1821
1822         u16 version, con_num, cid;
1823         u16 recon_cnt;
1824         int err = -ECONNRESET;
1825
1826         if (len < sizeof(*msg)) {
1827                 pr_err("Invalid RTRS connection request\n");
1828                 goto reject_w_err;
1829         }
1830         if (le16_to_cpu(msg->magic) != RTRS_MAGIC) {
1831                 pr_err("Invalid RTRS magic\n");
1832                 goto reject_w_err;
1833         }
1834         version = le16_to_cpu(msg->version);
1835         if (version >> 8 != RTRS_PROTO_VER_MAJOR) {
1836                 pr_err("Unsupported major RTRS version: %d, expected %d\n",
1837                        version >> 8, RTRS_PROTO_VER_MAJOR);
1838                 goto reject_w_err;
1839         }
1840         con_num = le16_to_cpu(msg->cid_num);
1841         if (con_num > 4096) {
1842                 /* Sanity check */
1843                 pr_err("Too many connections requested: %d\n", con_num);
1844                 goto reject_w_err;
1845         }
1846         cid = le16_to_cpu(msg->cid);
1847         if (cid >= con_num) {
1848                 /* Sanity check */
1849                 pr_err("Incorrect cid: %d >= %d\n", cid, con_num);
1850                 goto reject_w_err;
1851         }
1852         recon_cnt = le16_to_cpu(msg->recon_cnt);
1853         srv = get_or_create_srv(ctx, &msg->paths_uuid, msg->first_conn);
1854         if (IS_ERR(srv)) {
1855                 err = PTR_ERR(srv);
1856                 pr_err("get_or_create_srv(), error %d\n", err);
1857                 goto reject_w_err;
1858         }
1859         mutex_lock(&srv->paths_mutex);
1860         sess = __find_sess(srv, &msg->sess_uuid);
1861         if (sess) {
1862                 struct rtrs_sess *s = &sess->s;
1863
1864                 /* Session already holds a reference */
1865                 put_srv(srv);
1866
1867                 if (sess->state != RTRS_SRV_CONNECTING) {
1868                         rtrs_err(s, "Session in wrong state: %s\n",
1869                                   rtrs_srv_state_str(sess->state));
1870                         mutex_unlock(&srv->paths_mutex);
1871                         goto reject_w_err;
1872                 }
1873                 /*
1874                  * Sanity checks
1875                  */
1876                 if (con_num != s->con_num || cid >= s->con_num) {
1877                         rtrs_err(s, "Incorrect request: %d, %d\n",
1878                                   cid, con_num);
1879                         mutex_unlock(&srv->paths_mutex);
1880                         goto reject_w_err;
1881                 }
1882                 if (s->con[cid]) {
1883                         rtrs_err(s, "Connection already exists: %d\n",
1884                                   cid);
1885                         mutex_unlock(&srv->paths_mutex);
1886                         goto reject_w_err;
1887                 }
1888         } else {
1889                 sess = __alloc_sess(srv, cm_id, con_num, recon_cnt,
1890                                     &msg->sess_uuid);
1891                 if (IS_ERR(sess)) {
1892                         mutex_unlock(&srv->paths_mutex);
1893                         put_srv(srv);
1894                         err = PTR_ERR(sess);
1895                         pr_err("RTRS server session allocation failed: %d\n", err);
1896                         goto reject_w_err;
1897                 }
1898         }
1899         err = create_con(sess, cm_id, cid);
1900         if (err) {
1901                 rtrs_err((&sess->s), "create_con(), error %d\n", err);
1902                 rtrs_rdma_do_reject(cm_id, err);
1903                 /*
1904                  * Since session has other connections we follow normal way
1905                  * through workqueue, but still return an error to tell cma.c
1906                  * to call rdma_destroy_id() for current connection.
1907                  */
1908                 goto close_and_return_err;
1909         }
1910         err = rtrs_rdma_do_accept(sess, cm_id);
1911         if (err) {
1912                 rtrs_err((&sess->s), "rtrs_rdma_do_accept(), error %d\n", err);
1913                 rtrs_rdma_do_reject(cm_id, err);
1914                 /*
1915                  * Since current connection was successfully added to the
1916                  * session we follow normal way through workqueue to close the
1917                  * session, thus return 0 to tell cma.c we call
1918                  * rdma_destroy_id() ourselves.
1919                  */
1920                 err = 0;
1921                 goto close_and_return_err;
1922         }
1923         mutex_unlock(&srv->paths_mutex);
1924
1925         return 0;
1926
1927 reject_w_err:
1928         return rtrs_rdma_do_reject(cm_id, err);
1929
1930 close_and_return_err:
1931         mutex_unlock(&srv->paths_mutex);
1932         close_sess(sess);
1933
1934         return err;
1935 }
1936
1937 static int rtrs_srv_rdma_cm_handler(struct rdma_cm_id *cm_id,
1938                                      struct rdma_cm_event *ev)
1939 {
1940         struct rtrs_srv_sess *sess = NULL;
1941         struct rtrs_sess *s = NULL;
1942
1943         if (ev->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
1944                 struct rtrs_con *c = cm_id->context;
1945
1946                 s = c->sess;
1947                 sess = to_srv_sess(s);
1948         }
1949
1950         switch (ev->event) {
1951         case RDMA_CM_EVENT_CONNECT_REQUEST:
1952                 /*
1953                  * In case of error cma.c will destroy cm_id,
1954                  * see cma_process_remove()
1955                  */
1956                 return rtrs_rdma_connect(cm_id, ev->param.conn.private_data,
1957                                           ev->param.conn.private_data_len);
1958         case RDMA_CM_EVENT_ESTABLISHED:
1959                 /* Nothing here */
1960                 break;
1961         case RDMA_CM_EVENT_REJECTED:
1962         case RDMA_CM_EVENT_CONNECT_ERROR:
1963         case RDMA_CM_EVENT_UNREACHABLE:
1964                 rtrs_err(s, "CM error (CM event: %s, err: %d)\n",
1965                           rdma_event_msg(ev->event), ev->status);
1966                 fallthrough;
1967         case RDMA_CM_EVENT_DISCONNECTED:
1968         case RDMA_CM_EVENT_ADDR_CHANGE:
1969         case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1970         case RDMA_CM_EVENT_DEVICE_REMOVAL:
1971                 close_sess(sess);
1972                 break;
1973         default:
1974                 pr_err("Ignoring unexpected CM event %s, err %d\n",
1975                        rdma_event_msg(ev->event), ev->status);
1976                 break;
1977         }
1978
1979         return 0;
1980 }
1981
1982 static struct rdma_cm_id *rtrs_srv_cm_init(struct rtrs_srv_ctx *ctx,
1983                                             struct sockaddr *addr,
1984                                             enum rdma_ucm_port_space ps)
1985 {
1986         struct rdma_cm_id *cm_id;
1987         int ret;
1988
1989         cm_id = rdma_create_id(&init_net, rtrs_srv_rdma_cm_handler,
1990                                ctx, ps, IB_QPT_RC);
1991         if (IS_ERR(cm_id)) {
1992                 ret = PTR_ERR(cm_id);
1993                 pr_err("Creating id for RDMA connection failed, err: %d\n",
1994                        ret);
1995                 goto err_out;
1996         }
1997         ret = rdma_bind_addr(cm_id, addr);
1998         if (ret) {
1999                 pr_err("Binding RDMA address failed, err: %d\n", ret);
2000                 goto err_cm;
2001         }
2002         ret = rdma_listen(cm_id, 64);
2003         if (ret) {
2004                 pr_err("Listening on RDMA connection failed, err: %d\n",
2005                        ret);
2006                 goto err_cm;
2007         }
2008
2009         return cm_id;
2010
2011 err_cm:
2012         rdma_destroy_id(cm_id);
2013 err_out:
2014
2015         return ERR_PTR(ret);
2016 }
2017
2018 static int rtrs_srv_rdma_init(struct rtrs_srv_ctx *ctx, u16 port)
2019 {
2020         struct sockaddr_in6 sin = {
2021                 .sin6_family    = AF_INET6,
2022                 .sin6_addr      = IN6ADDR_ANY_INIT,
2023                 .sin6_port      = htons(port),
2024         };
2025         struct sockaddr_ib sib = {
2026                 .sib_family                     = AF_IB,
2027                 .sib_sid        = cpu_to_be64(RDMA_IB_IP_PS_IB | port),
2028                 .sib_sid_mask   = cpu_to_be64(0xffffffffffffffffULL),
2029                 .sib_pkey       = cpu_to_be16(0xffff),
2030         };
2031         struct rdma_cm_id *cm_ip, *cm_ib;
2032         int ret;
2033
2034         /*
2035          * We accept both IPoIB and IB connections, so we need to keep
2036          * two cm id's, one for each socket type and port space.
2037          * If the cm initialization of one of the id's fails, we abort
2038          * everything.
2039          */
2040         cm_ip = rtrs_srv_cm_init(ctx, (struct sockaddr *)&sin, RDMA_PS_TCP);
2041         if (IS_ERR(cm_ip))
2042                 return PTR_ERR(cm_ip);
2043
2044         cm_ib = rtrs_srv_cm_init(ctx, (struct sockaddr *)&sib, RDMA_PS_IB);
2045         if (IS_ERR(cm_ib)) {
2046                 ret = PTR_ERR(cm_ib);
2047                 goto free_cm_ip;
2048         }
2049
2050         ctx->cm_id_ip = cm_ip;
2051         ctx->cm_id_ib = cm_ib;
2052
2053         return 0;
2054
2055 free_cm_ip:
2056         rdma_destroy_id(cm_ip);
2057
2058         return ret;
2059 }
2060
2061 static struct rtrs_srv_ctx *alloc_srv_ctx(struct rtrs_srv_ops *ops)
2062 {
2063         struct rtrs_srv_ctx *ctx;
2064
2065         ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2066         if (!ctx)
2067                 return NULL;
2068
2069         ctx->ops = *ops;
2070         mutex_init(&ctx->srv_mutex);
2071         INIT_LIST_HEAD(&ctx->srv_list);
2072
2073         return ctx;
2074 }
2075
2076 static void free_srv_ctx(struct rtrs_srv_ctx *ctx)
2077 {
2078         WARN_ON(!list_empty(&ctx->srv_list));
2079         mutex_destroy(&ctx->srv_mutex);
2080         kfree(ctx);
2081 }
2082
2083 static int rtrs_srv_add_one(struct ib_device *device)
2084 {
2085         struct rtrs_srv_ctx *ctx;
2086         int ret = 0;
2087
2088         mutex_lock(&ib_ctx.ib_dev_mutex);
2089         if (ib_ctx.ib_dev_count)
2090                 goto out;
2091
2092         /*
2093          * Since our CM IDs are NOT bound to any ib device we will create them
2094          * only once
2095          */
2096         ctx = ib_ctx.srv_ctx;
2097         ret = rtrs_srv_rdma_init(ctx, ib_ctx.port);
2098         if (ret) {
2099                 /*
2100                  * We errored out here.
2101                  * According to the ib code, if we encounter an error here then the
2102                  * error code is ignored, and no more calls to our ops are made.
2103                  */
2104                 pr_err("Failed to initialize RDMA connection");
2105                 goto err_out;
2106         }
2107
2108 out:
2109         /*
2110          * Keep a track on the number of ib devices added
2111          */
2112         ib_ctx.ib_dev_count++;
2113
2114 err_out:
2115         mutex_unlock(&ib_ctx.ib_dev_mutex);
2116         return ret;
2117 }
2118
2119 static void rtrs_srv_remove_one(struct ib_device *device, void *client_data)
2120 {
2121         struct rtrs_srv_ctx *ctx;
2122
2123         mutex_lock(&ib_ctx.ib_dev_mutex);
2124         ib_ctx.ib_dev_count--;
2125
2126         if (ib_ctx.ib_dev_count)
2127                 goto out;
2128
2129         /*
2130          * Since our CM IDs are NOT bound to any ib device we will remove them
2131          * only once, when the last device is removed
2132          */
2133         ctx = ib_ctx.srv_ctx;
2134         rdma_destroy_id(ctx->cm_id_ip);
2135         rdma_destroy_id(ctx->cm_id_ib);
2136
2137 out:
2138         mutex_unlock(&ib_ctx.ib_dev_mutex);
2139 }
2140
2141 static struct ib_client rtrs_srv_client = {
2142         .name   = "rtrs_server",
2143         .add    = rtrs_srv_add_one,
2144         .remove = rtrs_srv_remove_one
2145 };
2146
2147 /**
2148  * rtrs_srv_open() - open RTRS server context
2149  * @ops:                callback functions
2150  * @port:               port to listen on
2151  *
2152  * Creates server context with specified callbacks.
2153  *
2154  * Return a valid pointer on success otherwise PTR_ERR.
2155  */
2156 struct rtrs_srv_ctx *rtrs_srv_open(struct rtrs_srv_ops *ops, u16 port)
2157 {
2158         struct rtrs_srv_ctx *ctx;
2159         int err;
2160
2161         ctx = alloc_srv_ctx(ops);
2162         if (!ctx)
2163                 return ERR_PTR(-ENOMEM);
2164
2165         mutex_init(&ib_ctx.ib_dev_mutex);
2166         ib_ctx.srv_ctx = ctx;
2167         ib_ctx.port = port;
2168
2169         err = ib_register_client(&rtrs_srv_client);
2170         if (err) {
2171                 free_srv_ctx(ctx);
2172                 return ERR_PTR(err);
2173         }
2174
2175         return ctx;
2176 }
2177 EXPORT_SYMBOL(rtrs_srv_open);
2178
2179 static void close_sessions(struct rtrs_srv *srv)
2180 {
2181         struct rtrs_srv_sess *sess;
2182
2183         mutex_lock(&srv->paths_mutex);
2184         list_for_each_entry(sess, &srv->paths_list, s.entry)
2185                 close_sess(sess);
2186         mutex_unlock(&srv->paths_mutex);
2187 }
2188
2189 static void close_ctx(struct rtrs_srv_ctx *ctx)
2190 {
2191         struct rtrs_srv *srv;
2192
2193         mutex_lock(&ctx->srv_mutex);
2194         list_for_each_entry(srv, &ctx->srv_list, ctx_list)
2195                 close_sessions(srv);
2196         mutex_unlock(&ctx->srv_mutex);
2197         flush_workqueue(rtrs_wq);
2198 }
2199
2200 /**
2201  * rtrs_srv_close() - close RTRS server context
2202  * @ctx: pointer to server context
2203  *
2204  * Closes RTRS server context with all client sessions.
2205  */
2206 void rtrs_srv_close(struct rtrs_srv_ctx *ctx)
2207 {
2208         ib_unregister_client(&rtrs_srv_client);
2209         mutex_destroy(&ib_ctx.ib_dev_mutex);
2210         close_ctx(ctx);
2211         free_srv_ctx(ctx);
2212 }
2213 EXPORT_SYMBOL(rtrs_srv_close);
2214
2215 static int check_module_params(void)
2216 {
2217         if (sess_queue_depth < 1 || sess_queue_depth > MAX_SESS_QUEUE_DEPTH) {
2218                 pr_err("Invalid sess_queue_depth value %d, has to be >= %d, <= %d.\n",
2219                        sess_queue_depth, 1, MAX_SESS_QUEUE_DEPTH);
2220                 return -EINVAL;
2221         }
2222         if (max_chunk_size < MIN_CHUNK_SIZE || !is_power_of_2(max_chunk_size)) {
2223                 pr_err("Invalid max_chunk_size value %d, has to be >= %d and should be power of two.\n",
2224                        max_chunk_size, MIN_CHUNK_SIZE);
2225                 return -EINVAL;
2226         }
2227
2228         /*
2229          * Check if IB immediate data size is enough to hold the mem_id and the
2230          * offset inside the memory chunk
2231          */
2232         if ((ilog2(sess_queue_depth - 1) + 1) +
2233             (ilog2(max_chunk_size - 1) + 1) > MAX_IMM_PAYL_BITS) {
2234                 pr_err("RDMA immediate size (%db) not enough to encode %d buffers of size %dB. Reduce 'sess_queue_depth' or 'max_chunk_size' parameters.\n",
2235                        MAX_IMM_PAYL_BITS, sess_queue_depth, max_chunk_size);
2236                 return -EINVAL;
2237         }
2238
2239         return 0;
2240 }
2241
2242 static int __init rtrs_server_init(void)
2243 {
2244         int err;
2245
2246         pr_info("Loading module %s, proto %s: (max_chunk_size: %d (pure IO %ld, headers %ld) , sess_queue_depth: %d, always_invalidate: %d)\n",
2247                 KBUILD_MODNAME, RTRS_PROTO_VER_STRING,
2248                 max_chunk_size, max_chunk_size - MAX_HDR_SIZE, MAX_HDR_SIZE,
2249                 sess_queue_depth, always_invalidate);
2250
2251         rtrs_rdma_dev_pd_init(0, &dev_pd);
2252
2253         err = check_module_params();
2254         if (err) {
2255                 pr_err("Failed to load module, invalid module parameters, err: %d\n",
2256                        err);
2257                 return err;
2258         }
2259         chunk_pool = mempool_create_page_pool(sess_queue_depth * CHUNK_POOL_SZ,
2260                                               get_order(max_chunk_size));
2261         if (!chunk_pool)
2262                 return -ENOMEM;
2263         rtrs_dev_class = class_create(THIS_MODULE, "rtrs-server");
2264         if (IS_ERR(rtrs_dev_class)) {
2265                 err = PTR_ERR(rtrs_dev_class);
2266                 goto out_chunk_pool;
2267         }
2268         rtrs_wq = alloc_workqueue("rtrs_server_wq", 0, 0);
2269         if (!rtrs_wq) {
2270                 err = -ENOMEM;
2271                 goto out_dev_class;
2272         }
2273
2274         return 0;
2275
2276 out_dev_class:
2277         class_destroy(rtrs_dev_class);
2278 out_chunk_pool:
2279         mempool_destroy(chunk_pool);
2280
2281         return err;
2282 }
2283
2284 static void __exit rtrs_server_exit(void)
2285 {
2286         destroy_workqueue(rtrs_wq);
2287         class_destroy(rtrs_dev_class);
2288         mempool_destroy(chunk_pool);
2289         rtrs_rdma_dev_pd_deinit(&dev_pd);
2290 }
2291
2292 module_init(rtrs_server_init);
2293 module_exit(rtrs_server_exit);