0a08b4b742a3d080ddf363f2b85ed486824026b1
[linux-2.6-microblaze.git] / drivers / infiniband / ulp / rtrs / rtrs-clt.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * RDMA Transport Layer
4  *
5  * Copyright (c) 2014 - 2018 ProfitBricks GmbH. All rights reserved.
6  * Copyright (c) 2018 - 2019 1&1 IONOS Cloud GmbH. All rights reserved.
7  * Copyright (c) 2019 - 2020 1&1 IONOS SE. All rights reserved.
8  */
9
10 #undef pr_fmt
11 #define pr_fmt(fmt) KBUILD_MODNAME " L" __stringify(__LINE__) ": " fmt
12
13 #include <linux/module.h>
14 #include <linux/rculist.h>
15 #include <linux/random.h>
16
17 #include "rtrs-clt.h"
18 #include "rtrs-log.h"
19
20 #define RTRS_CONNECT_TIMEOUT_MS 30000
21 /*
22  * Wait a bit before trying to reconnect after a failure
23  * in order to give server time to finish clean up which
24  * leads to "false positives" failed reconnect attempts
25  */
26 #define RTRS_RECONNECT_BACKOFF 1000
27 /*
28  * Wait for additional random time between 0 and 8 seconds
29  * before starting to reconnect to avoid clients reconnecting
30  * all at once in case of a major network outage
31  */
32 #define RTRS_RECONNECT_SEED 8
33
34 #define FIRST_CONN 0x01
35
36 MODULE_DESCRIPTION("RDMA Transport Client");
37 MODULE_LICENSE("GPL");
38
39 static const struct rtrs_rdma_dev_pd_ops dev_pd_ops;
40 static struct rtrs_rdma_dev_pd dev_pd = {
41         .ops = &dev_pd_ops
42 };
43
44 static struct workqueue_struct *rtrs_wq;
45 static struct class *rtrs_clt_dev_class;
46
47 static inline bool rtrs_clt_is_connected(const struct rtrs_clt *clt)
48 {
49         struct rtrs_clt_sess *sess;
50         bool connected = false;
51
52         rcu_read_lock();
53         list_for_each_entry_rcu(sess, &clt->paths_list, s.entry)
54                 connected |= READ_ONCE(sess->state) == RTRS_CLT_CONNECTED;
55         rcu_read_unlock();
56
57         return connected;
58 }
59
60 static struct rtrs_permit *
61 __rtrs_get_permit(struct rtrs_clt *clt, enum rtrs_clt_con_type con_type)
62 {
63         size_t max_depth = clt->queue_depth;
64         struct rtrs_permit *permit;
65         int bit;
66
67         /*
68          * Adapted from null_blk get_tag(). Callers from different cpus may
69          * grab the same bit, since find_first_zero_bit is not atomic.
70          * But then the test_and_set_bit_lock will fail for all the
71          * callers but one, so that they will loop again.
72          * This way an explicit spinlock is not required.
73          */
74         do {
75                 bit = find_first_zero_bit(clt->permits_map, max_depth);
76                 if (unlikely(bit >= max_depth))
77                         return NULL;
78         } while (unlikely(test_and_set_bit_lock(bit, clt->permits_map)));
79
80         permit = get_permit(clt, bit);
81         WARN_ON(permit->mem_id != bit);
82         permit->cpu_id = raw_smp_processor_id();
83         permit->con_type = con_type;
84
85         return permit;
86 }
87
88 static inline void __rtrs_put_permit(struct rtrs_clt *clt,
89                                       struct rtrs_permit *permit)
90 {
91         clear_bit_unlock(permit->mem_id, clt->permits_map);
92 }
93
94 /**
95  * rtrs_clt_get_permit() - allocates permit for future RDMA operation
96  * @clt:        Current session
97  * @con_type:   Type of connection to use with the permit
98  * @can_wait:   Wait type
99  *
100  * Description:
101  *    Allocates permit for the following RDMA operation.  Permit is used
102  *    to preallocate all resources and to propagate memory pressure
103  *    up earlier.
104  *
105  * Context:
106  *    Can sleep if @wait == RTRS_TAG_WAIT
107  */
108 struct rtrs_permit *rtrs_clt_get_permit(struct rtrs_clt *clt,
109                                           enum rtrs_clt_con_type con_type,
110                                           int can_wait)
111 {
112         struct rtrs_permit *permit;
113         DEFINE_WAIT(wait);
114
115         permit = __rtrs_get_permit(clt, con_type);
116         if (likely(permit) || !can_wait)
117                 return permit;
118
119         do {
120                 prepare_to_wait(&clt->permits_wait, &wait,
121                                 TASK_UNINTERRUPTIBLE);
122                 permit = __rtrs_get_permit(clt, con_type);
123                 if (likely(permit))
124                         break;
125
126                 io_schedule();
127         } while (1);
128
129         finish_wait(&clt->permits_wait, &wait);
130
131         return permit;
132 }
133 EXPORT_SYMBOL(rtrs_clt_get_permit);
134
135 /**
136  * rtrs_clt_put_permit() - puts allocated permit
137  * @clt:        Current session
138  * @permit:     Permit to be freed
139  *
140  * Context:
141  *    Does not matter
142  */
143 void rtrs_clt_put_permit(struct rtrs_clt *clt, struct rtrs_permit *permit)
144 {
145         if (WARN_ON(!test_bit(permit->mem_id, clt->permits_map)))
146                 return;
147
148         __rtrs_put_permit(clt, permit);
149
150         /*
151          * rtrs_clt_get_permit() adds itself to the &clt->permits_wait list
152          * before calling schedule(). So if rtrs_clt_get_permit() is sleeping
153          * it must have added itself to &clt->permits_wait before
154          * __rtrs_put_permit() finished.
155          * Hence it is safe to guard wake_up() with a waitqueue_active() test.
156          */
157         if (waitqueue_active(&clt->permits_wait))
158                 wake_up(&clt->permits_wait);
159 }
160 EXPORT_SYMBOL(rtrs_clt_put_permit);
161
162 /**
163  * rtrs_permit_to_clt_con() - returns RDMA connection pointer by the permit
164  * @sess: client session pointer
165  * @permit: permit for the allocation of the RDMA buffer
166  * Note:
167  *     IO connection starts from 1.
168  *     0 connection is for user messages.
169  */
170 static
171 struct rtrs_clt_con *rtrs_permit_to_clt_con(struct rtrs_clt_sess *sess,
172                                             struct rtrs_permit *permit)
173 {
174         int id = 0;
175
176         if (likely(permit->con_type == RTRS_IO_CON))
177                 id = (permit->cpu_id % (sess->s.con_num - 1)) + 1;
178
179         return to_clt_con(sess->s.con[id]);
180 }
181
182 /**
183  * rtrs_clt_change_state() - change the session state through session state
184  * machine.
185  *
186  * @sess: client session to change the state of.
187  * @new_state: state to change to.
188  *
189  * returns true if sess's state is changed to new state, otherwise return false.
190  *
191  * Locks:
192  * state_wq lock must be hold.
193  */
194 static bool rtrs_clt_change_state(struct rtrs_clt_sess *sess,
195                                      enum rtrs_clt_state new_state)
196 {
197         enum rtrs_clt_state old_state;
198         bool changed = false;
199
200         lockdep_assert_held(&sess->state_wq.lock);
201
202         old_state = sess->state;
203         switch (new_state) {
204         case RTRS_CLT_CONNECTING:
205                 switch (old_state) {
206                 case RTRS_CLT_RECONNECTING:
207                         changed = true;
208                         fallthrough;
209                 default:
210                         break;
211                 }
212                 break;
213         case RTRS_CLT_RECONNECTING:
214                 switch (old_state) {
215                 case RTRS_CLT_CONNECTED:
216                 case RTRS_CLT_CONNECTING_ERR:
217                 case RTRS_CLT_CLOSED:
218                         changed = true;
219                         fallthrough;
220                 default:
221                         break;
222                 }
223                 break;
224         case RTRS_CLT_CONNECTED:
225                 switch (old_state) {
226                 case RTRS_CLT_CONNECTING:
227                         changed = true;
228                         fallthrough;
229                 default:
230                         break;
231                 }
232                 break;
233         case RTRS_CLT_CONNECTING_ERR:
234                 switch (old_state) {
235                 case RTRS_CLT_CONNECTING:
236                         changed = true;
237                         fallthrough;
238                 default:
239                         break;
240                 }
241                 break;
242         case RTRS_CLT_CLOSING:
243                 switch (old_state) {
244                 case RTRS_CLT_CONNECTING:
245                 case RTRS_CLT_CONNECTING_ERR:
246                 case RTRS_CLT_RECONNECTING:
247                 case RTRS_CLT_CONNECTED:
248                         changed = true;
249                         fallthrough;
250                 default:
251                         break;
252                 }
253                 break;
254         case RTRS_CLT_CLOSED:
255                 switch (old_state) {
256                 case RTRS_CLT_CLOSING:
257                         changed = true;
258                         fallthrough;
259                 default:
260                         break;
261                 }
262                 break;
263         case RTRS_CLT_DEAD:
264                 switch (old_state) {
265                 case RTRS_CLT_CLOSED:
266                         changed = true;
267                         fallthrough;
268                 default:
269                         break;
270                 }
271                 break;
272         default:
273                 break;
274         }
275         if (changed) {
276                 sess->state = new_state;
277                 wake_up_locked(&sess->state_wq);
278         }
279
280         return changed;
281 }
282
283 static bool rtrs_clt_change_state_from_to(struct rtrs_clt_sess *sess,
284                                            enum rtrs_clt_state old_state,
285                                            enum rtrs_clt_state new_state)
286 {
287         bool changed = false;
288
289         spin_lock_irq(&sess->state_wq.lock);
290         if (sess->state == old_state)
291                 changed = rtrs_clt_change_state(sess, new_state);
292         spin_unlock_irq(&sess->state_wq.lock);
293
294         return changed;
295 }
296
297 static void rtrs_rdma_error_recovery(struct rtrs_clt_con *con)
298 {
299         struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
300
301         if (rtrs_clt_change_state_from_to(sess,
302                                            RTRS_CLT_CONNECTED,
303                                            RTRS_CLT_RECONNECTING)) {
304                 struct rtrs_clt *clt = sess->clt;
305                 unsigned int delay_ms;
306
307                 /*
308                  * Normal scenario, reconnect if we were successfully connected
309                  */
310                 delay_ms = clt->reconnect_delay_sec * 1000;
311                 queue_delayed_work(rtrs_wq, &sess->reconnect_dwork,
312                                    msecs_to_jiffies(delay_ms +
313                                                     prandom_u32() % RTRS_RECONNECT_SEED));
314         } else {
315                 /*
316                  * Error can happen just on establishing new connection,
317                  * so notify waiter with error state, waiter is responsible
318                  * for cleaning the rest and reconnect if needed.
319                  */
320                 rtrs_clt_change_state_from_to(sess,
321                                                RTRS_CLT_CONNECTING,
322                                                RTRS_CLT_CONNECTING_ERR);
323         }
324 }
325
326 static void rtrs_clt_fast_reg_done(struct ib_cq *cq, struct ib_wc *wc)
327 {
328         struct rtrs_clt_con *con = cq->cq_context;
329
330         if (unlikely(wc->status != IB_WC_SUCCESS)) {
331                 rtrs_err(con->c.sess, "Failed IB_WR_REG_MR: %s\n",
332                           ib_wc_status_msg(wc->status));
333                 rtrs_rdma_error_recovery(con);
334         }
335 }
336
337 static struct ib_cqe fast_reg_cqe = {
338         .done = rtrs_clt_fast_reg_done
339 };
340
341 static void complete_rdma_req(struct rtrs_clt_io_req *req, int errno,
342                               bool notify, bool can_wait);
343
344 static void rtrs_clt_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
345 {
346         struct rtrs_clt_io_req *req =
347                 container_of(wc->wr_cqe, typeof(*req), inv_cqe);
348         struct rtrs_clt_con *con = cq->cq_context;
349
350         if (unlikely(wc->status != IB_WC_SUCCESS)) {
351                 rtrs_err(con->c.sess, "Failed IB_WR_LOCAL_INV: %s\n",
352                           ib_wc_status_msg(wc->status));
353                 rtrs_rdma_error_recovery(con);
354         }
355         req->need_inv = false;
356         if (likely(req->need_inv_comp))
357                 complete(&req->inv_comp);
358         else
359                 /* Complete request from INV callback */
360                 complete_rdma_req(req, req->inv_errno, true, false);
361 }
362
363 static int rtrs_inv_rkey(struct rtrs_clt_io_req *req)
364 {
365         struct rtrs_clt_con *con = req->con;
366         struct ib_send_wr wr = {
367                 .opcode             = IB_WR_LOCAL_INV,
368                 .wr_cqe             = &req->inv_cqe,
369                 .send_flags         = IB_SEND_SIGNALED,
370                 .ex.invalidate_rkey = req->mr->rkey,
371         };
372         req->inv_cqe.done = rtrs_clt_inv_rkey_done;
373
374         return ib_post_send(con->c.qp, &wr, NULL);
375 }
376
377 static void complete_rdma_req(struct rtrs_clt_io_req *req, int errno,
378                               bool notify, bool can_wait)
379 {
380         struct rtrs_clt_con *con = req->con;
381         struct rtrs_clt_sess *sess;
382         int err;
383
384         if (WARN_ON(!req->in_use))
385                 return;
386         if (WARN_ON(!req->con))
387                 return;
388         sess = to_clt_sess(con->c.sess);
389
390         if (req->sg_cnt) {
391                 if (unlikely(req->dir == DMA_FROM_DEVICE && req->need_inv)) {
392                         /*
393                          * We are here to invalidate read requests
394                          * ourselves.  In normal scenario server should
395                          * send INV for all read requests, but
396                          * we are here, thus two things could happen:
397                          *
398                          *    1.  this is failover, when errno != 0
399                          *        and can_wait == 1,
400                          *
401                          *    2.  something totally bad happened and
402                          *        server forgot to send INV, so we
403                          *        should do that ourselves.
404                          */
405
406                         if (likely(can_wait)) {
407                                 req->need_inv_comp = true;
408                         } else {
409                                 /* This should be IO path, so always notify */
410                                 WARN_ON(!notify);
411                                 /* Save errno for INV callback */
412                                 req->inv_errno = errno;
413                         }
414
415                         err = rtrs_inv_rkey(req);
416                         if (unlikely(err)) {
417                                 rtrs_err(con->c.sess, "Send INV WR key=%#x: %d\n",
418                                           req->mr->rkey, err);
419                         } else if (likely(can_wait)) {
420                                 wait_for_completion(&req->inv_comp);
421                         } else {
422                                 /*
423                                  * Something went wrong, so request will be
424                                  * completed from INV callback.
425                                  */
426                                 WARN_ON_ONCE(1);
427
428                                 return;
429                         }
430                 }
431                 ib_dma_unmap_sg(sess->s.dev->ib_dev, req->sglist,
432                                 req->sg_cnt, req->dir);
433         }
434         if (sess->clt->mp_policy == MP_POLICY_MIN_INFLIGHT)
435                 atomic_dec(&sess->stats->inflight);
436
437         req->in_use = false;
438         req->con = NULL;
439
440         if (notify)
441                 req->conf(req->priv, errno);
442 }
443
444 static int rtrs_post_send_rdma(struct rtrs_clt_con *con,
445                                 struct rtrs_clt_io_req *req,
446                                 struct rtrs_rbuf *rbuf, u32 off,
447                                 u32 imm, struct ib_send_wr *wr)
448 {
449         struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
450         enum ib_send_flags flags;
451         struct ib_sge sge;
452
453         if (unlikely(!req->sg_size)) {
454                 rtrs_wrn(con->c.sess,
455                          "Doing RDMA Write failed, no data supplied\n");
456                 return -EINVAL;
457         }
458
459         /* user data and user message in the first list element */
460         sge.addr   = req->iu->dma_addr;
461         sge.length = req->sg_size;
462         sge.lkey   = sess->s.dev->ib_pd->local_dma_lkey;
463
464         /*
465          * From time to time we have to post signalled sends,
466          * or send queue will fill up and only QP reset can help.
467          */
468         flags = atomic_inc_return(&con->io_cnt) % sess->queue_depth ?
469                         0 : IB_SEND_SIGNALED;
470
471         ib_dma_sync_single_for_device(sess->s.dev->ib_dev, req->iu->dma_addr,
472                                       req->sg_size, DMA_TO_DEVICE);
473
474         return rtrs_iu_post_rdma_write_imm(&con->c, req->iu, &sge, 1,
475                                             rbuf->rkey, rbuf->addr + off,
476                                             imm, flags, wr);
477 }
478
479 static void process_io_rsp(struct rtrs_clt_sess *sess, u32 msg_id,
480                            s16 errno, bool w_inval)
481 {
482         struct rtrs_clt_io_req *req;
483
484         if (WARN_ON(msg_id >= sess->queue_depth))
485                 return;
486
487         req = &sess->reqs[msg_id];
488         /* Drop need_inv if server responded with send with invalidation */
489         req->need_inv &= !w_inval;
490         complete_rdma_req(req, errno, true, false);
491 }
492
493 static void rtrs_clt_recv_done(struct rtrs_clt_con *con, struct ib_wc *wc)
494 {
495         struct rtrs_iu *iu;
496         int err;
497         struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
498
499         WARN_ON((sess->flags & RTRS_MSG_NEW_RKEY_F) == 0);
500         iu = container_of(wc->wr_cqe, struct rtrs_iu,
501                           cqe);
502         err = rtrs_iu_post_recv(&con->c, iu);
503         if (unlikely(err)) {
504                 rtrs_err(con->c.sess, "post iu failed %d\n", err);
505                 rtrs_rdma_error_recovery(con);
506         }
507 }
508
509 static void rtrs_clt_rkey_rsp_done(struct rtrs_clt_con *con, struct ib_wc *wc)
510 {
511         struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
512         struct rtrs_msg_rkey_rsp *msg;
513         u32 imm_type, imm_payload;
514         bool w_inval = false;
515         struct rtrs_iu *iu;
516         u32 buf_id;
517         int err;
518
519         WARN_ON((sess->flags & RTRS_MSG_NEW_RKEY_F) == 0);
520
521         iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
522
523         if (unlikely(wc->byte_len < sizeof(*msg))) {
524                 rtrs_err(con->c.sess, "rkey response is malformed: size %d\n",
525                           wc->byte_len);
526                 goto out;
527         }
528         ib_dma_sync_single_for_cpu(sess->s.dev->ib_dev, iu->dma_addr,
529                                    iu->size, DMA_FROM_DEVICE);
530         msg = iu->buf;
531         if (unlikely(le16_to_cpu(msg->type) != RTRS_MSG_RKEY_RSP)) {
532                 rtrs_err(sess->clt, "rkey response is malformed: type %d\n",
533                           le16_to_cpu(msg->type));
534                 goto out;
535         }
536         buf_id = le16_to_cpu(msg->buf_id);
537         if (WARN_ON(buf_id >= sess->queue_depth))
538                 goto out;
539
540         rtrs_from_imm(be32_to_cpu(wc->ex.imm_data), &imm_type, &imm_payload);
541         if (likely(imm_type == RTRS_IO_RSP_IMM ||
542                    imm_type == RTRS_IO_RSP_W_INV_IMM)) {
543                 u32 msg_id;
544
545                 w_inval = (imm_type == RTRS_IO_RSP_W_INV_IMM);
546                 rtrs_from_io_rsp_imm(imm_payload, &msg_id, &err);
547
548                 if (WARN_ON(buf_id != msg_id))
549                         goto out;
550                 sess->rbufs[buf_id].rkey = le32_to_cpu(msg->rkey);
551                 process_io_rsp(sess, msg_id, err, w_inval);
552         }
553         ib_dma_sync_single_for_device(sess->s.dev->ib_dev, iu->dma_addr,
554                                       iu->size, DMA_FROM_DEVICE);
555         return rtrs_clt_recv_done(con, wc);
556 out:
557         rtrs_rdma_error_recovery(con);
558 }
559
560 static void rtrs_clt_rdma_done(struct ib_cq *cq, struct ib_wc *wc);
561
562 static struct ib_cqe io_comp_cqe = {
563         .done = rtrs_clt_rdma_done
564 };
565
566 /*
567  * Post x2 empty WRs: first is for this RDMA with IMM,
568  * second is for RECV with INV, which happened earlier.
569  */
570 static int rtrs_post_recv_empty_x2(struct rtrs_con *con, struct ib_cqe *cqe)
571 {
572         struct ib_recv_wr wr_arr[2], *wr;
573         int i;
574
575         memset(wr_arr, 0, sizeof(wr_arr));
576         for (i = 0; i < ARRAY_SIZE(wr_arr); i++) {
577                 wr = &wr_arr[i];
578                 wr->wr_cqe  = cqe;
579                 if (i)
580                         /* Chain backwards */
581                         wr->next = &wr_arr[i - 1];
582         }
583
584         return ib_post_recv(con->qp, wr, NULL);
585 }
586
587 static void rtrs_clt_rdma_done(struct ib_cq *cq, struct ib_wc *wc)
588 {
589         struct rtrs_clt_con *con = cq->cq_context;
590         struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
591         u32 imm_type, imm_payload;
592         bool w_inval = false;
593         int err;
594
595         if (unlikely(wc->status != IB_WC_SUCCESS)) {
596                 if (wc->status != IB_WC_WR_FLUSH_ERR) {
597                         rtrs_err(sess->clt, "RDMA failed: %s\n",
598                                   ib_wc_status_msg(wc->status));
599                         rtrs_rdma_error_recovery(con);
600                 }
601                 return;
602         }
603         rtrs_clt_update_wc_stats(con);
604
605         switch (wc->opcode) {
606         case IB_WC_RECV_RDMA_WITH_IMM:
607                 /*
608                  * post_recv() RDMA write completions of IO reqs (read/write)
609                  * and hb
610                  */
611                 if (WARN_ON(wc->wr_cqe->done != rtrs_clt_rdma_done))
612                         return;
613                 rtrs_from_imm(be32_to_cpu(wc->ex.imm_data),
614                                &imm_type, &imm_payload);
615                 if (likely(imm_type == RTRS_IO_RSP_IMM ||
616                            imm_type == RTRS_IO_RSP_W_INV_IMM)) {
617                         u32 msg_id;
618
619                         w_inval = (imm_type == RTRS_IO_RSP_W_INV_IMM);
620                         rtrs_from_io_rsp_imm(imm_payload, &msg_id, &err);
621
622                         process_io_rsp(sess, msg_id, err, w_inval);
623                 } else if (imm_type == RTRS_HB_MSG_IMM) {
624                         WARN_ON(con->c.cid);
625                         rtrs_send_hb_ack(&sess->s);
626                         if (sess->flags & RTRS_MSG_NEW_RKEY_F)
627                                 return  rtrs_clt_recv_done(con, wc);
628                 } else if (imm_type == RTRS_HB_ACK_IMM) {
629                         WARN_ON(con->c.cid);
630                         sess->s.hb_missed_cnt = 0;
631                         if (sess->flags & RTRS_MSG_NEW_RKEY_F)
632                                 return  rtrs_clt_recv_done(con, wc);
633                 } else {
634                         rtrs_wrn(con->c.sess, "Unknown IMM type %u\n",
635                                   imm_type);
636                 }
637                 if (w_inval)
638                         /*
639                          * Post x2 empty WRs: first is for this RDMA with IMM,
640                          * second is for RECV with INV, which happened earlier.
641                          */
642                         err = rtrs_post_recv_empty_x2(&con->c, &io_comp_cqe);
643                 else
644                         err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
645                 if (unlikely(err)) {
646                         rtrs_err(con->c.sess, "rtrs_post_recv_empty(): %d\n",
647                                   err);
648                         rtrs_rdma_error_recovery(con);
649                         break;
650                 }
651                 break;
652         case IB_WC_RECV:
653                 /*
654                  * Key invalidations from server side
655                  */
656                 WARN_ON(!(wc->wc_flags & IB_WC_WITH_INVALIDATE ||
657                           wc->wc_flags & IB_WC_WITH_IMM));
658                 WARN_ON(wc->wr_cqe->done != rtrs_clt_rdma_done);
659                 if (sess->flags & RTRS_MSG_NEW_RKEY_F) {
660                         if (wc->wc_flags & IB_WC_WITH_INVALIDATE)
661                                 return  rtrs_clt_recv_done(con, wc);
662
663                         return  rtrs_clt_rkey_rsp_done(con, wc);
664                 }
665                 break;
666         case IB_WC_RDMA_WRITE:
667                 /*
668                  * post_send() RDMA write completions of IO reqs (read/write)
669                  */
670                 break;
671
672         default:
673                 rtrs_wrn(sess->clt, "Unexpected WC type: %d\n", wc->opcode);
674                 return;
675         }
676 }
677
678 static int post_recv_io(struct rtrs_clt_con *con, size_t q_size)
679 {
680         int err, i;
681         struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
682
683         for (i = 0; i < q_size; i++) {
684                 if (sess->flags & RTRS_MSG_NEW_RKEY_F) {
685                         struct rtrs_iu *iu = &con->rsp_ius[i];
686
687                         err = rtrs_iu_post_recv(&con->c, iu);
688                 } else {
689                         err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
690                 }
691                 if (unlikely(err))
692                         return err;
693         }
694
695         return 0;
696 }
697
698 static int post_recv_sess(struct rtrs_clt_sess *sess)
699 {
700         size_t q_size = 0;
701         int err, cid;
702
703         for (cid = 0; cid < sess->s.con_num; cid++) {
704                 if (cid == 0)
705                         q_size = SERVICE_CON_QUEUE_DEPTH;
706                 else
707                         q_size = sess->queue_depth;
708
709                 /*
710                  * x2 for RDMA read responses + FR key invalidations,
711                  * RDMA writes do not require any FR registrations.
712                  */
713                 q_size *= 2;
714
715                 err = post_recv_io(to_clt_con(sess->s.con[cid]), q_size);
716                 if (unlikely(err)) {
717                         rtrs_err(sess->clt, "post_recv_io(), err: %d\n", err);
718                         return err;
719                 }
720         }
721
722         return 0;
723 }
724
725 struct path_it {
726         int i;
727         struct list_head skip_list;
728         struct rtrs_clt *clt;
729         struct rtrs_clt_sess *(*next_path)(struct path_it *it);
730 };
731
732 /**
733  * list_next_or_null_rr_rcu - get next list element in round-robin fashion.
734  * @head:       the head for the list.
735  * @ptr:        the list head to take the next element from.
736  * @type:       the type of the struct this is embedded in.
737  * @memb:       the name of the list_head within the struct.
738  *
739  * Next element returned in round-robin fashion, i.e. head will be skipped,
740  * but if list is observed as empty, NULL will be returned.
741  *
742  * This primitive may safely run concurrently with the _rcu list-mutation
743  * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
744  */
745 #define list_next_or_null_rr_rcu(head, ptr, type, memb) \
746 ({ \
747         list_next_or_null_rcu(head, ptr, type, memb) ?: \
748                 list_next_or_null_rcu(head, READ_ONCE((ptr)->next), \
749                                       type, memb); \
750 })
751
752 /**
753  * get_next_path_rr() - Returns path in round-robin fashion.
754  * @it: the path pointer
755  *
756  * Related to @MP_POLICY_RR
757  *
758  * Locks:
759  *    rcu_read_lock() must be hold.
760  */
761 static struct rtrs_clt_sess *get_next_path_rr(struct path_it *it)
762 {
763         struct rtrs_clt_sess __rcu **ppcpu_path;
764         struct rtrs_clt_sess *path;
765         struct rtrs_clt *clt;
766
767         clt = it->clt;
768
769         /*
770          * Here we use two RCU objects: @paths_list and @pcpu_path
771          * pointer.  See rtrs_clt_remove_path_from_arr() for details
772          * how that is handled.
773          */
774
775         ppcpu_path = this_cpu_ptr(clt->pcpu_path);
776         path = rcu_dereference(*ppcpu_path);
777         if (unlikely(!path))
778                 path = list_first_or_null_rcu(&clt->paths_list,
779                                               typeof(*path), s.entry);
780         else
781                 path = list_next_or_null_rr_rcu(&clt->paths_list,
782                                                 &path->s.entry,
783                                                 typeof(*path),
784                                                 s.entry);
785         rcu_assign_pointer(*ppcpu_path, path);
786
787         return path;
788 }
789
790 /**
791  * get_next_path_min_inflight() - Returns path with minimal inflight count.
792  * @it: the path pointer
793  *
794  * Related to @MP_POLICY_MIN_INFLIGHT
795  *
796  * Locks:
797  *    rcu_read_lock() must be hold.
798  */
799 static struct rtrs_clt_sess *get_next_path_min_inflight(struct path_it *it)
800 {
801         struct rtrs_clt_sess *min_path = NULL;
802         struct rtrs_clt *clt = it->clt;
803         struct rtrs_clt_sess *sess;
804         int min_inflight = INT_MAX;
805         int inflight;
806
807         list_for_each_entry_rcu(sess, &clt->paths_list, s.entry) {
808                 if (unlikely(!list_empty(raw_cpu_ptr(sess->mp_skip_entry))))
809                         continue;
810
811                 inflight = atomic_read(&sess->stats->inflight);
812
813                 if (inflight < min_inflight) {
814                         min_inflight = inflight;
815                         min_path = sess;
816                 }
817         }
818
819         /*
820          * add the path to the skip list, so that next time we can get
821          * a different one
822          */
823         if (min_path)
824                 list_add(raw_cpu_ptr(min_path->mp_skip_entry), &it->skip_list);
825
826         return min_path;
827 }
828
829 static inline void path_it_init(struct path_it *it, struct rtrs_clt *clt)
830 {
831         INIT_LIST_HEAD(&it->skip_list);
832         it->clt = clt;
833         it->i = 0;
834
835         if (clt->mp_policy == MP_POLICY_RR)
836                 it->next_path = get_next_path_rr;
837         else
838                 it->next_path = get_next_path_min_inflight;
839 }
840
841 static inline void path_it_deinit(struct path_it *it)
842 {
843         struct list_head *skip, *tmp;
844         /*
845          * The skip_list is used only for the MIN_INFLIGHT policy.
846          * We need to remove paths from it, so that next IO can insert
847          * paths (->mp_skip_entry) into a skip_list again.
848          */
849         list_for_each_safe(skip, tmp, &it->skip_list)
850                 list_del_init(skip);
851 }
852
853 /**
854  * rtrs_clt_init_req() Initialize an rtrs_clt_io_req holding information
855  * about an inflight IO.
856  * The user buffer holding user control message (not data) is copied into
857  * the corresponding buffer of rtrs_iu (req->iu->buf), which later on will
858  * also hold the control message of rtrs.
859  * @req: an io request holding information about IO.
860  * @sess: client session
861  * @conf: conformation callback function to notify upper layer.
862  * @permit: permit for allocation of RDMA remote buffer
863  * @priv: private pointer
864  * @vec: kernel vector containing control message
865  * @usr_len: length of the user message
866  * @sg: scater list for IO data
867  * @sg_cnt: number of scater list entries
868  * @data_len: length of the IO data
869  * @dir: direction of the IO.
870  */
871 static void rtrs_clt_init_req(struct rtrs_clt_io_req *req,
872                               struct rtrs_clt_sess *sess,
873                               void (*conf)(void *priv, int errno),
874                               struct rtrs_permit *permit, void *priv,
875                               const struct kvec *vec, size_t usr_len,
876                               struct scatterlist *sg, size_t sg_cnt,
877                               size_t data_len, int dir)
878 {
879         struct iov_iter iter;
880         size_t len;
881
882         req->permit = permit;
883         req->in_use = true;
884         req->usr_len = usr_len;
885         req->data_len = data_len;
886         req->sglist = sg;
887         req->sg_cnt = sg_cnt;
888         req->priv = priv;
889         req->dir = dir;
890         req->con = rtrs_permit_to_clt_con(sess, permit);
891         req->conf = conf;
892         req->need_inv = false;
893         req->need_inv_comp = false;
894         req->inv_errno = 0;
895
896         iov_iter_kvec(&iter, READ, vec, 1, usr_len);
897         len = _copy_from_iter(req->iu->buf, usr_len, &iter);
898         WARN_ON(len != usr_len);
899
900         reinit_completion(&req->inv_comp);
901 }
902
903 static struct rtrs_clt_io_req *
904 rtrs_clt_get_req(struct rtrs_clt_sess *sess,
905                  void (*conf)(void *priv, int errno),
906                  struct rtrs_permit *permit, void *priv,
907                  const struct kvec *vec, size_t usr_len,
908                  struct scatterlist *sg, size_t sg_cnt,
909                  size_t data_len, int dir)
910 {
911         struct rtrs_clt_io_req *req;
912
913         req = &sess->reqs[permit->mem_id];
914         rtrs_clt_init_req(req, sess, conf, permit, priv, vec, usr_len,
915                            sg, sg_cnt, data_len, dir);
916         return req;
917 }
918
919 static struct rtrs_clt_io_req *
920 rtrs_clt_get_copy_req(struct rtrs_clt_sess *alive_sess,
921                        struct rtrs_clt_io_req *fail_req)
922 {
923         struct rtrs_clt_io_req *req;
924         struct kvec vec = {
925                 .iov_base = fail_req->iu->buf,
926                 .iov_len  = fail_req->usr_len
927         };
928
929         req = &alive_sess->reqs[fail_req->permit->mem_id];
930         rtrs_clt_init_req(req, alive_sess, fail_req->conf, fail_req->permit,
931                            fail_req->priv, &vec, fail_req->usr_len,
932                            fail_req->sglist, fail_req->sg_cnt,
933                            fail_req->data_len, fail_req->dir);
934         return req;
935 }
936
937 static int rtrs_post_rdma_write_sg(struct rtrs_clt_con *con,
938                                     struct rtrs_clt_io_req *req,
939                                     struct rtrs_rbuf *rbuf,
940                                     u32 size, u32 imm)
941 {
942         struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
943         struct ib_sge *sge = req->sge;
944         enum ib_send_flags flags;
945         struct scatterlist *sg;
946         size_t num_sge;
947         int i;
948
949         for_each_sg(req->sglist, sg, req->sg_cnt, i) {
950                 sge[i].addr   = sg_dma_address(sg);
951                 sge[i].length = sg_dma_len(sg);
952                 sge[i].lkey   = sess->s.dev->ib_pd->local_dma_lkey;
953         }
954         sge[i].addr   = req->iu->dma_addr;
955         sge[i].length = size;
956         sge[i].lkey   = sess->s.dev->ib_pd->local_dma_lkey;
957
958         num_sge = 1 + req->sg_cnt;
959
960         /*
961          * From time to time we have to post signalled sends,
962          * or send queue will fill up and only QP reset can help.
963          */
964         flags = atomic_inc_return(&con->io_cnt) % sess->queue_depth ?
965                         0 : IB_SEND_SIGNALED;
966
967         ib_dma_sync_single_for_device(sess->s.dev->ib_dev, req->iu->dma_addr,
968                                       size, DMA_TO_DEVICE);
969
970         return rtrs_iu_post_rdma_write_imm(&con->c, req->iu, sge, num_sge,
971                                             rbuf->rkey, rbuf->addr, imm,
972                                             flags, NULL);
973 }
974
975 static int rtrs_clt_write_req(struct rtrs_clt_io_req *req)
976 {
977         struct rtrs_clt_con *con = req->con;
978         struct rtrs_sess *s = con->c.sess;
979         struct rtrs_clt_sess *sess = to_clt_sess(s);
980         struct rtrs_msg_rdma_write *msg;
981
982         struct rtrs_rbuf *rbuf;
983         int ret, count = 0;
984         u32 imm, buf_id;
985
986         const size_t tsize = sizeof(*msg) + req->data_len + req->usr_len;
987
988         if (unlikely(tsize > sess->chunk_size)) {
989                 rtrs_wrn(s, "Write request failed, size too big %zu > %d\n",
990                           tsize, sess->chunk_size);
991                 return -EMSGSIZE;
992         }
993         if (req->sg_cnt) {
994                 count = ib_dma_map_sg(sess->s.dev->ib_dev, req->sglist,
995                                       req->sg_cnt, req->dir);
996                 if (unlikely(!count)) {
997                         rtrs_wrn(s, "Write request failed, map failed\n");
998                         return -EINVAL;
999                 }
1000         }
1001         /* put rtrs msg after sg and user message */
1002         msg = req->iu->buf + req->usr_len;
1003         msg->type = cpu_to_le16(RTRS_MSG_WRITE);
1004         msg->usr_len = cpu_to_le16(req->usr_len);
1005
1006         /* rtrs message on server side will be after user data and message */
1007         imm = req->permit->mem_off + req->data_len + req->usr_len;
1008         imm = rtrs_to_io_req_imm(imm);
1009         buf_id = req->permit->mem_id;
1010         req->sg_size = tsize;
1011         rbuf = &sess->rbufs[buf_id];
1012
1013         /*
1014          * Update stats now, after request is successfully sent it is not
1015          * safe anymore to touch it.
1016          */
1017         rtrs_clt_update_all_stats(req, WRITE);
1018
1019         ret = rtrs_post_rdma_write_sg(req->con, req, rbuf,
1020                                        req->usr_len + sizeof(*msg),
1021                                        imm);
1022         if (unlikely(ret)) {
1023                 rtrs_err(s, "Write request failed: %d\n", ret);
1024                 if (sess->clt->mp_policy == MP_POLICY_MIN_INFLIGHT)
1025                         atomic_dec(&sess->stats->inflight);
1026                 if (req->sg_cnt)
1027                         ib_dma_unmap_sg(sess->s.dev->ib_dev, req->sglist,
1028                                         req->sg_cnt, req->dir);
1029         }
1030
1031         return ret;
1032 }
1033
1034 static int rtrs_map_sg_fr(struct rtrs_clt_io_req *req, size_t count)
1035 {
1036         int nr;
1037
1038         /* Align the MR to a 4K page size to match the block virt boundary */
1039         nr = ib_map_mr_sg(req->mr, req->sglist, count, NULL, SZ_4K);
1040         if (nr < 0)
1041                 return nr;
1042         if (unlikely(nr < req->sg_cnt))
1043                 return -EINVAL;
1044         ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1045
1046         return nr;
1047 }
1048
1049 static int rtrs_clt_read_req(struct rtrs_clt_io_req *req)
1050 {
1051         struct rtrs_clt_con *con = req->con;
1052         struct rtrs_sess *s = con->c.sess;
1053         struct rtrs_clt_sess *sess = to_clt_sess(s);
1054         struct rtrs_msg_rdma_read *msg;
1055         struct rtrs_ib_dev *dev;
1056
1057         struct ib_reg_wr rwr;
1058         struct ib_send_wr *wr = NULL;
1059
1060         int ret, count = 0;
1061         u32 imm, buf_id;
1062
1063         const size_t tsize = sizeof(*msg) + req->data_len + req->usr_len;
1064
1065         s = &sess->s;
1066         dev = sess->s.dev;
1067
1068         if (unlikely(tsize > sess->chunk_size)) {
1069                 rtrs_wrn(s,
1070                           "Read request failed, message size is %zu, bigger than CHUNK_SIZE %d\n",
1071                           tsize, sess->chunk_size);
1072                 return -EMSGSIZE;
1073         }
1074
1075         if (req->sg_cnt) {
1076                 count = ib_dma_map_sg(dev->ib_dev, req->sglist, req->sg_cnt,
1077                                       req->dir);
1078                 if (unlikely(!count)) {
1079                         rtrs_wrn(s,
1080                                   "Read request failed, dma map failed\n");
1081                         return -EINVAL;
1082                 }
1083         }
1084         /* put our message into req->buf after user message*/
1085         msg = req->iu->buf + req->usr_len;
1086         msg->type = cpu_to_le16(RTRS_MSG_READ);
1087         msg->usr_len = cpu_to_le16(req->usr_len);
1088
1089         if (count) {
1090                 ret = rtrs_map_sg_fr(req, count);
1091                 if (ret < 0) {
1092                         rtrs_err_rl(s,
1093                                      "Read request failed, failed to map  fast reg. data, err: %d\n",
1094                                      ret);
1095                         ib_dma_unmap_sg(dev->ib_dev, req->sglist, req->sg_cnt,
1096                                         req->dir);
1097                         return ret;
1098                 }
1099                 rwr = (struct ib_reg_wr) {
1100                         .wr.opcode = IB_WR_REG_MR,
1101                         .wr.wr_cqe = &fast_reg_cqe,
1102                         .mr = req->mr,
1103                         .key = req->mr->rkey,
1104                         .access = (IB_ACCESS_LOCAL_WRITE |
1105                                    IB_ACCESS_REMOTE_WRITE),
1106                 };
1107                 wr = &rwr.wr;
1108
1109                 msg->sg_cnt = cpu_to_le16(1);
1110                 msg->flags = cpu_to_le16(RTRS_MSG_NEED_INVAL_F);
1111
1112                 msg->desc[0].addr = cpu_to_le64(req->mr->iova);
1113                 msg->desc[0].key = cpu_to_le32(req->mr->rkey);
1114                 msg->desc[0].len = cpu_to_le32(req->mr->length);
1115
1116                 /* Further invalidation is required */
1117                 req->need_inv = !!RTRS_MSG_NEED_INVAL_F;
1118
1119         } else {
1120                 msg->sg_cnt = 0;
1121                 msg->flags = 0;
1122         }
1123         /*
1124          * rtrs message will be after the space reserved for disk data and
1125          * user message
1126          */
1127         imm = req->permit->mem_off + req->data_len + req->usr_len;
1128         imm = rtrs_to_io_req_imm(imm);
1129         buf_id = req->permit->mem_id;
1130
1131         req->sg_size  = sizeof(*msg);
1132         req->sg_size += le16_to_cpu(msg->sg_cnt) * sizeof(struct rtrs_sg_desc);
1133         req->sg_size += req->usr_len;
1134
1135         /*
1136          * Update stats now, after request is successfully sent it is not
1137          * safe anymore to touch it.
1138          */
1139         rtrs_clt_update_all_stats(req, READ);
1140
1141         ret = rtrs_post_send_rdma(req->con, req, &sess->rbufs[buf_id],
1142                                    req->data_len, imm, wr);
1143         if (unlikely(ret)) {
1144                 rtrs_err(s, "Read request failed: %d\n", ret);
1145                 if (sess->clt->mp_policy == MP_POLICY_MIN_INFLIGHT)
1146                         atomic_dec(&sess->stats->inflight);
1147                 req->need_inv = false;
1148                 if (req->sg_cnt)
1149                         ib_dma_unmap_sg(dev->ib_dev, req->sglist,
1150                                         req->sg_cnt, req->dir);
1151         }
1152
1153         return ret;
1154 }
1155
1156 /**
1157  * rtrs_clt_failover_req() Try to find an active path for a failed request
1158  * @clt: clt context
1159  * @fail_req: a failed io request.
1160  */
1161 static int rtrs_clt_failover_req(struct rtrs_clt *clt,
1162                                  struct rtrs_clt_io_req *fail_req)
1163 {
1164         struct rtrs_clt_sess *alive_sess;
1165         struct rtrs_clt_io_req *req;
1166         int err = -ECONNABORTED;
1167         struct path_it it;
1168
1169         rcu_read_lock();
1170         for (path_it_init(&it, clt);
1171              (alive_sess = it.next_path(&it)) && it.i < it.clt->paths_num;
1172              it.i++) {
1173                 if (unlikely(READ_ONCE(alive_sess->state) !=
1174                              RTRS_CLT_CONNECTED))
1175                         continue;
1176                 req = rtrs_clt_get_copy_req(alive_sess, fail_req);
1177                 if (req->dir == DMA_TO_DEVICE)
1178                         err = rtrs_clt_write_req(req);
1179                 else
1180                         err = rtrs_clt_read_req(req);
1181                 if (unlikely(err)) {
1182                         req->in_use = false;
1183                         continue;
1184                 }
1185                 /* Success path */
1186                 rtrs_clt_inc_failover_cnt(alive_sess->stats);
1187                 break;
1188         }
1189         path_it_deinit(&it);
1190         rcu_read_unlock();
1191
1192         return err;
1193 }
1194
1195 static void fail_all_outstanding_reqs(struct rtrs_clt_sess *sess)
1196 {
1197         struct rtrs_clt *clt = sess->clt;
1198         struct rtrs_clt_io_req *req;
1199         int i, err;
1200
1201         if (!sess->reqs)
1202                 return;
1203         for (i = 0; i < sess->queue_depth; ++i) {
1204                 req = &sess->reqs[i];
1205                 if (!req->in_use)
1206                         continue;
1207
1208                 /*
1209                  * Safely (without notification) complete failed request.
1210                  * After completion this request is still useble and can
1211                  * be failovered to another path.
1212                  */
1213                 complete_rdma_req(req, -ECONNABORTED, false, true);
1214
1215                 err = rtrs_clt_failover_req(clt, req);
1216                 if (unlikely(err))
1217                         /* Failover failed, notify anyway */
1218                         req->conf(req->priv, err);
1219         }
1220 }
1221
1222 static void free_sess_reqs(struct rtrs_clt_sess *sess)
1223 {
1224         struct rtrs_clt_io_req *req;
1225         int i;
1226
1227         if (!sess->reqs)
1228                 return;
1229         for (i = 0; i < sess->queue_depth; ++i) {
1230                 req = &sess->reqs[i];
1231                 if (req->mr)
1232                         ib_dereg_mr(req->mr);
1233                 kfree(req->sge);
1234                 rtrs_iu_free(req->iu, sess->s.dev->ib_dev, 1);
1235         }
1236         kfree(sess->reqs);
1237         sess->reqs = NULL;
1238 }
1239
1240 static int alloc_sess_reqs(struct rtrs_clt_sess *sess)
1241 {
1242         struct rtrs_clt_io_req *req;
1243         struct rtrs_clt *clt = sess->clt;
1244         int i, err = -ENOMEM;
1245
1246         sess->reqs = kcalloc(sess->queue_depth, sizeof(*sess->reqs),
1247                              GFP_KERNEL);
1248         if (!sess->reqs)
1249                 return -ENOMEM;
1250
1251         for (i = 0; i < sess->queue_depth; ++i) {
1252                 req = &sess->reqs[i];
1253                 req->iu = rtrs_iu_alloc(1, sess->max_hdr_size, GFP_KERNEL,
1254                                          sess->s.dev->ib_dev,
1255                                          DMA_TO_DEVICE,
1256                                          rtrs_clt_rdma_done);
1257                 if (!req->iu)
1258                         goto out;
1259
1260                 req->sge = kmalloc_array(clt->max_segments + 1,
1261                                          sizeof(*req->sge), GFP_KERNEL);
1262                 if (!req->sge)
1263                         goto out;
1264
1265                 req->mr = ib_alloc_mr(sess->s.dev->ib_pd, IB_MR_TYPE_MEM_REG,
1266                                       sess->max_pages_per_mr);
1267                 if (IS_ERR(req->mr)) {
1268                         err = PTR_ERR(req->mr);
1269                         req->mr = NULL;
1270                         pr_err("Failed to alloc sess->max_pages_per_mr %d\n",
1271                                sess->max_pages_per_mr);
1272                         goto out;
1273                 }
1274
1275                 init_completion(&req->inv_comp);
1276         }
1277
1278         return 0;
1279
1280 out:
1281         free_sess_reqs(sess);
1282
1283         return err;
1284 }
1285
1286 static int alloc_permits(struct rtrs_clt *clt)
1287 {
1288         unsigned int chunk_bits;
1289         int err, i;
1290
1291         clt->permits_map = kcalloc(BITS_TO_LONGS(clt->queue_depth),
1292                                    sizeof(long), GFP_KERNEL);
1293         if (!clt->permits_map) {
1294                 err = -ENOMEM;
1295                 goto out_err;
1296         }
1297         clt->permits = kcalloc(clt->queue_depth, permit_size(clt), GFP_KERNEL);
1298         if (!clt->permits) {
1299                 err = -ENOMEM;
1300                 goto err_map;
1301         }
1302         chunk_bits = ilog2(clt->queue_depth - 1) + 1;
1303         for (i = 0; i < clt->queue_depth; i++) {
1304                 struct rtrs_permit *permit;
1305
1306                 permit = get_permit(clt, i);
1307                 permit->mem_id = i;
1308                 permit->mem_off = i << (MAX_IMM_PAYL_BITS - chunk_bits);
1309         }
1310
1311         return 0;
1312
1313 err_map:
1314         kfree(clt->permits_map);
1315         clt->permits_map = NULL;
1316 out_err:
1317         return err;
1318 }
1319
1320 static void free_permits(struct rtrs_clt *clt)
1321 {
1322         if (clt->permits_map) {
1323                 size_t sz = clt->queue_depth;
1324
1325                 wait_event(clt->permits_wait,
1326                            find_first_bit(clt->permits_map, sz) >= sz);
1327         }
1328         kfree(clt->permits_map);
1329         clt->permits_map = NULL;
1330         kfree(clt->permits);
1331         clt->permits = NULL;
1332 }
1333
1334 static void query_fast_reg_mode(struct rtrs_clt_sess *sess)
1335 {
1336         struct ib_device *ib_dev;
1337         u64 max_pages_per_mr;
1338         int mr_page_shift;
1339
1340         ib_dev = sess->s.dev->ib_dev;
1341
1342         /*
1343          * Use the smallest page size supported by the HCA, down to a
1344          * minimum of 4096 bytes. We're unlikely to build large sglists
1345          * out of smaller entries.
1346          */
1347         mr_page_shift      = max(12, ffs(ib_dev->attrs.page_size_cap) - 1);
1348         max_pages_per_mr   = ib_dev->attrs.max_mr_size;
1349         do_div(max_pages_per_mr, (1ull << mr_page_shift));
1350         sess->max_pages_per_mr =
1351                 min3(sess->max_pages_per_mr, (u32)max_pages_per_mr,
1352                      ib_dev->attrs.max_fast_reg_page_list_len);
1353         sess->max_send_sge = ib_dev->attrs.max_send_sge;
1354 }
1355
1356 static bool rtrs_clt_change_state_get_old(struct rtrs_clt_sess *sess,
1357                                            enum rtrs_clt_state new_state,
1358                                            enum rtrs_clt_state *old_state)
1359 {
1360         bool changed;
1361
1362         spin_lock_irq(&sess->state_wq.lock);
1363         if (old_state)
1364                 *old_state = sess->state;
1365         changed = rtrs_clt_change_state(sess, new_state);
1366         spin_unlock_irq(&sess->state_wq.lock);
1367
1368         return changed;
1369 }
1370
1371 static void rtrs_clt_hb_err_handler(struct rtrs_con *c)
1372 {
1373         struct rtrs_clt_con *con = container_of(c, typeof(*con), c);
1374
1375         rtrs_rdma_error_recovery(con);
1376 }
1377
1378 static void rtrs_clt_init_hb(struct rtrs_clt_sess *sess)
1379 {
1380         rtrs_init_hb(&sess->s, &io_comp_cqe,
1381                       RTRS_HB_INTERVAL_MS,
1382                       RTRS_HB_MISSED_MAX,
1383                       rtrs_clt_hb_err_handler,
1384                       rtrs_wq);
1385 }
1386
1387 static void rtrs_clt_start_hb(struct rtrs_clt_sess *sess)
1388 {
1389         rtrs_start_hb(&sess->s);
1390 }
1391
1392 static void rtrs_clt_stop_hb(struct rtrs_clt_sess *sess)
1393 {
1394         rtrs_stop_hb(&sess->s);
1395 }
1396
1397 static void rtrs_clt_reconnect_work(struct work_struct *work);
1398 static void rtrs_clt_close_work(struct work_struct *work);
1399
1400 static struct rtrs_clt_sess *alloc_sess(struct rtrs_clt *clt,
1401                                          const struct rtrs_addr *path,
1402                                          size_t con_num, u16 max_segments,
1403                                          size_t max_segment_size)
1404 {
1405         struct rtrs_clt_sess *sess;
1406         int err = -ENOMEM;
1407         int cpu;
1408
1409         sess = kzalloc(sizeof(*sess), GFP_KERNEL);
1410         if (!sess)
1411                 goto err;
1412
1413         /* Extra connection for user messages */
1414         con_num += 1;
1415
1416         sess->s.con = kcalloc(con_num, sizeof(*sess->s.con), GFP_KERNEL);
1417         if (!sess->s.con)
1418                 goto err_free_sess;
1419
1420         sess->stats = kzalloc(sizeof(*sess->stats), GFP_KERNEL);
1421         if (!sess->stats)
1422                 goto err_free_con;
1423
1424         mutex_init(&sess->init_mutex);
1425         uuid_gen(&sess->s.uuid);
1426         memcpy(&sess->s.dst_addr, path->dst,
1427                rdma_addr_size((struct sockaddr *)path->dst));
1428
1429         /*
1430          * rdma_resolve_addr() passes src_addr to cma_bind_addr, which
1431          * checks the sa_family to be non-zero. If user passed src_addr=NULL
1432          * the sess->src_addr will contain only zeros, which is then fine.
1433          */
1434         if (path->src)
1435                 memcpy(&sess->s.src_addr, path->src,
1436                        rdma_addr_size((struct sockaddr *)path->src));
1437         strlcpy(sess->s.sessname, clt->sessname, sizeof(sess->s.sessname));
1438         sess->s.con_num = con_num;
1439         sess->clt = clt;
1440         sess->max_pages_per_mr = max_segments * max_segment_size >> 12;
1441         init_waitqueue_head(&sess->state_wq);
1442         sess->state = RTRS_CLT_CONNECTING;
1443         atomic_set(&sess->connected_cnt, 0);
1444         INIT_WORK(&sess->close_work, rtrs_clt_close_work);
1445         INIT_DELAYED_WORK(&sess->reconnect_dwork, rtrs_clt_reconnect_work);
1446         rtrs_clt_init_hb(sess);
1447
1448         sess->mp_skip_entry = alloc_percpu(typeof(*sess->mp_skip_entry));
1449         if (!sess->mp_skip_entry)
1450                 goto err_free_stats;
1451
1452         for_each_possible_cpu(cpu)
1453                 INIT_LIST_HEAD(per_cpu_ptr(sess->mp_skip_entry, cpu));
1454
1455         err = rtrs_clt_init_stats(sess->stats);
1456         if (err)
1457                 goto err_free_percpu;
1458
1459         return sess;
1460
1461 err_free_percpu:
1462         free_percpu(sess->mp_skip_entry);
1463 err_free_stats:
1464         kfree(sess->stats);
1465 err_free_con:
1466         kfree(sess->s.con);
1467 err_free_sess:
1468         kfree(sess);
1469 err:
1470         return ERR_PTR(err);
1471 }
1472
1473 void free_sess(struct rtrs_clt_sess *sess)
1474 {
1475         free_percpu(sess->mp_skip_entry);
1476         mutex_destroy(&sess->init_mutex);
1477         kfree(sess->s.con);
1478         kfree(sess->rbufs);
1479         kfree(sess);
1480 }
1481
1482 static int create_con(struct rtrs_clt_sess *sess, unsigned int cid)
1483 {
1484         struct rtrs_clt_con *con;
1485
1486         con = kzalloc(sizeof(*con), GFP_KERNEL);
1487         if (!con)
1488                 return -ENOMEM;
1489
1490         /* Map first two connections to the first CPU */
1491         con->cpu  = (cid ? cid - 1 : 0) % nr_cpu_ids;
1492         con->c.cid = cid;
1493         con->c.sess = &sess->s;
1494         atomic_set(&con->io_cnt, 0);
1495         mutex_init(&con->con_mutex);
1496
1497         sess->s.con[cid] = &con->c;
1498
1499         return 0;
1500 }
1501
1502 static void destroy_con(struct rtrs_clt_con *con)
1503 {
1504         struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
1505
1506         sess->s.con[con->c.cid] = NULL;
1507         mutex_destroy(&con->con_mutex);
1508         kfree(con);
1509 }
1510
1511 static int create_con_cq_qp(struct rtrs_clt_con *con)
1512 {
1513         struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
1514         u32 max_send_wr, max_recv_wr, cq_size;
1515         int err, cq_vector;
1516         struct rtrs_msg_rkey_rsp *rsp;
1517
1518         lockdep_assert_held(&con->con_mutex);
1519         if (con->c.cid == 0) {
1520                 /*
1521                  * One completion for each receive and two for each send
1522                  * (send request + registration)
1523                  * + 2 for drain and heartbeat
1524                  * in case qp gets into error state
1525                  */
1526                 max_send_wr = SERVICE_CON_QUEUE_DEPTH * 2 + 2;
1527                 max_recv_wr = SERVICE_CON_QUEUE_DEPTH * 2 + 2;
1528                 /* We must be the first here */
1529                 if (WARN_ON(sess->s.dev))
1530                         return -EINVAL;
1531
1532                 /*
1533                  * The whole session uses device from user connection.
1534                  * Be careful not to close user connection before ib dev
1535                  * is gracefully put.
1536                  */
1537                 sess->s.dev = rtrs_ib_dev_find_or_add(con->c.cm_id->device,
1538                                                        &dev_pd);
1539                 if (!sess->s.dev) {
1540                         rtrs_wrn(sess->clt,
1541                                   "rtrs_ib_dev_find_get_or_add(): no memory\n");
1542                         return -ENOMEM;
1543                 }
1544                 sess->s.dev_ref = 1;
1545                 query_fast_reg_mode(sess);
1546         } else {
1547                 /*
1548                  * Here we assume that session members are correctly set.
1549                  * This is always true if user connection (cid == 0) is
1550                  * established first.
1551                  */
1552                 if (WARN_ON(!sess->s.dev))
1553                         return -EINVAL;
1554                 if (WARN_ON(!sess->queue_depth))
1555                         return -EINVAL;
1556
1557                 /* Shared between connections */
1558                 sess->s.dev_ref++;
1559                 max_send_wr =
1560                         min_t(int, sess->s.dev->ib_dev->attrs.max_qp_wr,
1561                               /* QD * (REQ + RSP + FR REGS or INVS) + drain */
1562                               sess->queue_depth * 3 + 1);
1563                 max_recv_wr =
1564                         min_t(int, sess->s.dev->ib_dev->attrs.max_qp_wr,
1565                               sess->queue_depth * 3 + 1);
1566         }
1567         /* alloc iu to recv new rkey reply when server reports flags set */
1568         if (sess->flags & RTRS_MSG_NEW_RKEY_F || con->c.cid == 0) {
1569                 con->rsp_ius = rtrs_iu_alloc(max_recv_wr, sizeof(*rsp),
1570                                               GFP_KERNEL, sess->s.dev->ib_dev,
1571                                               DMA_FROM_DEVICE,
1572                                               rtrs_clt_rdma_done);
1573                 if (!con->rsp_ius)
1574                         return -ENOMEM;
1575                 con->queue_size = max_recv_wr;
1576         }
1577         cq_size = max_send_wr + max_recv_wr;
1578         cq_vector = con->cpu % sess->s.dev->ib_dev->num_comp_vectors;
1579         err = rtrs_cq_qp_create(&sess->s, &con->c, sess->max_send_sge,
1580                                  cq_vector, cq_size, max_send_wr,
1581                                  max_recv_wr, IB_POLL_SOFTIRQ);
1582         /*
1583          * In case of error we do not bother to clean previous allocations,
1584          * since destroy_con_cq_qp() must be called.
1585          */
1586         return err;
1587 }
1588
1589 static void destroy_con_cq_qp(struct rtrs_clt_con *con)
1590 {
1591         struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
1592
1593         /*
1594          * Be careful here: destroy_con_cq_qp() can be called even
1595          * create_con_cq_qp() failed, see comments there.
1596          */
1597         lockdep_assert_held(&con->con_mutex);
1598         rtrs_cq_qp_destroy(&con->c);
1599         if (con->rsp_ius) {
1600                 rtrs_iu_free(con->rsp_ius, sess->s.dev->ib_dev, con->queue_size);
1601                 con->rsp_ius = NULL;
1602                 con->queue_size = 0;
1603         }
1604         if (sess->s.dev_ref && !--sess->s.dev_ref) {
1605                 rtrs_ib_dev_put(sess->s.dev);
1606                 sess->s.dev = NULL;
1607         }
1608 }
1609
1610 static void stop_cm(struct rtrs_clt_con *con)
1611 {
1612         rdma_disconnect(con->c.cm_id);
1613         if (con->c.qp)
1614                 ib_drain_qp(con->c.qp);
1615 }
1616
1617 static void destroy_cm(struct rtrs_clt_con *con)
1618 {
1619         rdma_destroy_id(con->c.cm_id);
1620         con->c.cm_id = NULL;
1621 }
1622
1623 static int rtrs_rdma_addr_resolved(struct rtrs_clt_con *con)
1624 {
1625         struct rtrs_sess *s = con->c.sess;
1626         int err;
1627
1628         mutex_lock(&con->con_mutex);
1629         err = create_con_cq_qp(con);
1630         mutex_unlock(&con->con_mutex);
1631         if (err) {
1632                 rtrs_err(s, "create_con_cq_qp(), err: %d\n", err);
1633                 return err;
1634         }
1635         err = rdma_resolve_route(con->c.cm_id, RTRS_CONNECT_TIMEOUT_MS);
1636         if (err)
1637                 rtrs_err(s, "Resolving route failed, err: %d\n", err);
1638
1639         return err;
1640 }
1641
1642 static int rtrs_rdma_route_resolved(struct rtrs_clt_con *con)
1643 {
1644         struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
1645         struct rtrs_clt *clt = sess->clt;
1646         struct rtrs_msg_conn_req msg;
1647         struct rdma_conn_param param;
1648
1649         int err;
1650
1651         param = (struct rdma_conn_param) {
1652                 .retry_count = 7,
1653                 .rnr_retry_count = 7,
1654                 .private_data = &msg,
1655                 .private_data_len = sizeof(msg),
1656         };
1657
1658         msg = (struct rtrs_msg_conn_req) {
1659                 .magic = cpu_to_le16(RTRS_MAGIC),
1660                 .version = cpu_to_le16(RTRS_PROTO_VER),
1661                 .cid = cpu_to_le16(con->c.cid),
1662                 .cid_num = cpu_to_le16(sess->s.con_num),
1663                 .recon_cnt = cpu_to_le16(sess->s.recon_cnt),
1664         };
1665         msg.first_conn = sess->for_new_clt ? FIRST_CONN : 0;
1666         uuid_copy(&msg.sess_uuid, &sess->s.uuid);
1667         uuid_copy(&msg.paths_uuid, &clt->paths_uuid);
1668
1669         err = rdma_connect_locked(con->c.cm_id, &param);
1670         if (err)
1671                 rtrs_err(clt, "rdma_connect_locked(): %d\n", err);
1672
1673         return err;
1674 }
1675
1676 static int rtrs_rdma_conn_established(struct rtrs_clt_con *con,
1677                                        struct rdma_cm_event *ev)
1678 {
1679         struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
1680         struct rtrs_clt *clt = sess->clt;
1681         const struct rtrs_msg_conn_rsp *msg;
1682         u16 version, queue_depth;
1683         int errno;
1684         u8 len;
1685
1686         msg = ev->param.conn.private_data;
1687         len = ev->param.conn.private_data_len;
1688         if (len < sizeof(*msg)) {
1689                 rtrs_err(clt, "Invalid RTRS connection response\n");
1690                 return -ECONNRESET;
1691         }
1692         if (le16_to_cpu(msg->magic) != RTRS_MAGIC) {
1693                 rtrs_err(clt, "Invalid RTRS magic\n");
1694                 return -ECONNRESET;
1695         }
1696         version = le16_to_cpu(msg->version);
1697         if (version >> 8 != RTRS_PROTO_VER_MAJOR) {
1698                 rtrs_err(clt, "Unsupported major RTRS version: %d, expected %d\n",
1699                           version >> 8, RTRS_PROTO_VER_MAJOR);
1700                 return -ECONNRESET;
1701         }
1702         errno = le16_to_cpu(msg->errno);
1703         if (errno) {
1704                 rtrs_err(clt, "Invalid RTRS message: errno %d\n",
1705                           errno);
1706                 return -ECONNRESET;
1707         }
1708         if (con->c.cid == 0) {
1709                 queue_depth = le16_to_cpu(msg->queue_depth);
1710
1711                 if (queue_depth > MAX_SESS_QUEUE_DEPTH) {
1712                         rtrs_err(clt, "Invalid RTRS message: queue=%d\n",
1713                                   queue_depth);
1714                         return -ECONNRESET;
1715                 }
1716                 if (!sess->rbufs || sess->queue_depth < queue_depth) {
1717                         kfree(sess->rbufs);
1718                         sess->rbufs = kcalloc(queue_depth, sizeof(*sess->rbufs),
1719                                               GFP_KERNEL);
1720                         if (!sess->rbufs)
1721                                 return -ENOMEM;
1722                 }
1723                 sess->queue_depth = queue_depth;
1724                 sess->max_hdr_size = le32_to_cpu(msg->max_hdr_size);
1725                 sess->max_io_size = le32_to_cpu(msg->max_io_size);
1726                 sess->flags = le32_to_cpu(msg->flags);
1727                 sess->chunk_size = sess->max_io_size + sess->max_hdr_size;
1728
1729                 /*
1730                  * Global queue depth and IO size is always a minimum.
1731                  * If while a reconnection server sends us a value a bit
1732                  * higher - client does not care and uses cached minimum.
1733                  *
1734                  * Since we can have several sessions (paths) restablishing
1735                  * connections in parallel, use lock.
1736                  */
1737                 mutex_lock(&clt->paths_mutex);
1738                 clt->queue_depth = min_not_zero(sess->queue_depth,
1739                                                 clt->queue_depth);
1740                 clt->max_io_size = min_not_zero(sess->max_io_size,
1741                                                 clt->max_io_size);
1742                 mutex_unlock(&clt->paths_mutex);
1743
1744                 /*
1745                  * Cache the hca_port and hca_name for sysfs
1746                  */
1747                 sess->hca_port = con->c.cm_id->port_num;
1748                 scnprintf(sess->hca_name, sizeof(sess->hca_name),
1749                           sess->s.dev->ib_dev->name);
1750                 sess->s.src_addr = con->c.cm_id->route.addr.src_addr;
1751                 /* set for_new_clt, to allow future reconnect on any path */
1752                 sess->for_new_clt = 1;
1753         }
1754
1755         return 0;
1756 }
1757
1758 static inline void flag_success_on_conn(struct rtrs_clt_con *con)
1759 {
1760         struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
1761
1762         atomic_inc(&sess->connected_cnt);
1763         con->cm_err = 1;
1764 }
1765
1766 static int rtrs_rdma_conn_rejected(struct rtrs_clt_con *con,
1767                                     struct rdma_cm_event *ev)
1768 {
1769         struct rtrs_sess *s = con->c.sess;
1770         const struct rtrs_msg_conn_rsp *msg;
1771         const char *rej_msg;
1772         int status, errno;
1773         u8 data_len;
1774
1775         status = ev->status;
1776         rej_msg = rdma_reject_msg(con->c.cm_id, status);
1777         msg = rdma_consumer_reject_data(con->c.cm_id, ev, &data_len);
1778
1779         if (msg && data_len >= sizeof(*msg)) {
1780                 errno = (int16_t)le16_to_cpu(msg->errno);
1781                 if (errno == -EBUSY)
1782                         rtrs_err(s,
1783                                   "Previous session is still exists on the server, please reconnect later\n");
1784                 else
1785                         rtrs_err(s,
1786                                   "Connect rejected: status %d (%s), rtrs errno %d\n",
1787                                   status, rej_msg, errno);
1788         } else {
1789                 rtrs_err(s,
1790                           "Connect rejected but with malformed message: status %d (%s)\n",
1791                           status, rej_msg);
1792         }
1793
1794         return -ECONNRESET;
1795 }
1796
1797 static void rtrs_clt_close_conns(struct rtrs_clt_sess *sess, bool wait)
1798 {
1799         if (rtrs_clt_change_state_get_old(sess, RTRS_CLT_CLOSING, NULL))
1800                 queue_work(rtrs_wq, &sess->close_work);
1801         if (wait)
1802                 flush_work(&sess->close_work);
1803 }
1804
1805 static inline void flag_error_on_conn(struct rtrs_clt_con *con, int cm_err)
1806 {
1807         if (con->cm_err == 1) {
1808                 struct rtrs_clt_sess *sess;
1809
1810                 sess = to_clt_sess(con->c.sess);
1811                 if (atomic_dec_and_test(&sess->connected_cnt))
1812
1813                         wake_up(&sess->state_wq);
1814         }
1815         con->cm_err = cm_err;
1816 }
1817
1818 static int rtrs_clt_rdma_cm_handler(struct rdma_cm_id *cm_id,
1819                                      struct rdma_cm_event *ev)
1820 {
1821         struct rtrs_clt_con *con = cm_id->context;
1822         struct rtrs_sess *s = con->c.sess;
1823         struct rtrs_clt_sess *sess = to_clt_sess(s);
1824         int cm_err = 0;
1825
1826         switch (ev->event) {
1827         case RDMA_CM_EVENT_ADDR_RESOLVED:
1828                 cm_err = rtrs_rdma_addr_resolved(con);
1829                 break;
1830         case RDMA_CM_EVENT_ROUTE_RESOLVED:
1831                 cm_err = rtrs_rdma_route_resolved(con);
1832                 break;
1833         case RDMA_CM_EVENT_ESTABLISHED:
1834                 cm_err = rtrs_rdma_conn_established(con, ev);
1835                 if (likely(!cm_err)) {
1836                         /*
1837                          * Report success and wake up. Here we abuse state_wq,
1838                          * i.e. wake up without state change, but we set cm_err.
1839                          */
1840                         flag_success_on_conn(con);
1841                         wake_up(&sess->state_wq);
1842                         return 0;
1843                 }
1844                 break;
1845         case RDMA_CM_EVENT_REJECTED:
1846                 cm_err = rtrs_rdma_conn_rejected(con, ev);
1847                 break;
1848         case RDMA_CM_EVENT_DISCONNECTED:
1849                 /* No message for disconnecting */
1850                 cm_err = -ECONNRESET;
1851                 break;
1852         case RDMA_CM_EVENT_CONNECT_ERROR:
1853         case RDMA_CM_EVENT_UNREACHABLE:
1854         case RDMA_CM_EVENT_ADDR_CHANGE:
1855         case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1856                 rtrs_wrn(s, "CM error event %d\n", ev->event);
1857                 cm_err = -ECONNRESET;
1858                 break;
1859         case RDMA_CM_EVENT_ADDR_ERROR:
1860         case RDMA_CM_EVENT_ROUTE_ERROR:
1861                 rtrs_wrn(s, "CM error event %d\n", ev->event);
1862                 cm_err = -EHOSTUNREACH;
1863                 break;
1864         case RDMA_CM_EVENT_DEVICE_REMOVAL:
1865                 /*
1866                  * Device removal is a special case.  Queue close and return 0.
1867                  */
1868                 rtrs_clt_close_conns(sess, false);
1869                 return 0;
1870         default:
1871                 rtrs_err(s, "Unexpected RDMA CM event (%d)\n", ev->event);
1872                 cm_err = -ECONNRESET;
1873                 break;
1874         }
1875
1876         if (cm_err) {
1877                 /*
1878                  * cm error makes sense only on connection establishing,
1879                  * in other cases we rely on normal procedure of reconnecting.
1880                  */
1881                 flag_error_on_conn(con, cm_err);
1882                 rtrs_rdma_error_recovery(con);
1883         }
1884
1885         return 0;
1886 }
1887
1888 static int create_cm(struct rtrs_clt_con *con)
1889 {
1890         struct rtrs_sess *s = con->c.sess;
1891         struct rtrs_clt_sess *sess = to_clt_sess(s);
1892         struct rdma_cm_id *cm_id;
1893         int err;
1894
1895         cm_id = rdma_create_id(&init_net, rtrs_clt_rdma_cm_handler, con,
1896                                sess->s.dst_addr.ss_family == AF_IB ?
1897                                RDMA_PS_IB : RDMA_PS_TCP, IB_QPT_RC);
1898         if (IS_ERR(cm_id)) {
1899                 err = PTR_ERR(cm_id);
1900                 rtrs_err(s, "Failed to create CM ID, err: %d\n", err);
1901
1902                 return err;
1903         }
1904         con->c.cm_id = cm_id;
1905         con->cm_err = 0;
1906         /* allow the port to be reused */
1907         err = rdma_set_reuseaddr(cm_id, 1);
1908         if (err != 0) {
1909                 rtrs_err(s, "Set address reuse failed, err: %d\n", err);
1910                 goto destroy_cm;
1911         }
1912         err = rdma_resolve_addr(cm_id, (struct sockaddr *)&sess->s.src_addr,
1913                                 (struct sockaddr *)&sess->s.dst_addr,
1914                                 RTRS_CONNECT_TIMEOUT_MS);
1915         if (err) {
1916                 rtrs_err(s, "Failed to resolve address, err: %d\n", err);
1917                 goto destroy_cm;
1918         }
1919         /*
1920          * Combine connection status and session events. This is needed
1921          * for waiting two possible cases: cm_err has something meaningful
1922          * or session state was really changed to error by device removal.
1923          */
1924         err = wait_event_interruptible_timeout(
1925                         sess->state_wq,
1926                         con->cm_err || sess->state != RTRS_CLT_CONNECTING,
1927                         msecs_to_jiffies(RTRS_CONNECT_TIMEOUT_MS));
1928         if (err == 0 || err == -ERESTARTSYS) {
1929                 if (err == 0)
1930                         err = -ETIMEDOUT;
1931                 /* Timedout or interrupted */
1932                 goto errr;
1933         }
1934         if (con->cm_err < 0) {
1935                 err = con->cm_err;
1936                 goto errr;
1937         }
1938         if (READ_ONCE(sess->state) != RTRS_CLT_CONNECTING) {
1939                 /* Device removal */
1940                 err = -ECONNABORTED;
1941                 goto errr;
1942         }
1943
1944         return 0;
1945
1946 errr:
1947         stop_cm(con);
1948         mutex_lock(&con->con_mutex);
1949         destroy_con_cq_qp(con);
1950         mutex_unlock(&con->con_mutex);
1951 destroy_cm:
1952         destroy_cm(con);
1953
1954         return err;
1955 }
1956
1957 static void rtrs_clt_sess_up(struct rtrs_clt_sess *sess)
1958 {
1959         struct rtrs_clt *clt = sess->clt;
1960         int up;
1961
1962         /*
1963          * We can fire RECONNECTED event only when all paths were
1964          * connected on rtrs_clt_open(), then each was disconnected
1965          * and the first one connected again.  That's why this nasty
1966          * game with counter value.
1967          */
1968
1969         mutex_lock(&clt->paths_ev_mutex);
1970         up = ++clt->paths_up;
1971         /*
1972          * Here it is safe to access paths num directly since up counter
1973          * is greater than MAX_PATHS_NUM only while rtrs_clt_open() is
1974          * in progress, thus paths removals are impossible.
1975          */
1976         if (up > MAX_PATHS_NUM && up == MAX_PATHS_NUM + clt->paths_num)
1977                 clt->paths_up = clt->paths_num;
1978         else if (up == 1)
1979                 clt->link_ev(clt->priv, RTRS_CLT_LINK_EV_RECONNECTED);
1980         mutex_unlock(&clt->paths_ev_mutex);
1981
1982         /* Mark session as established */
1983         sess->established = true;
1984         sess->reconnect_attempts = 0;
1985         sess->stats->reconnects.successful_cnt++;
1986 }
1987
1988 static void rtrs_clt_sess_down(struct rtrs_clt_sess *sess)
1989 {
1990         struct rtrs_clt *clt = sess->clt;
1991
1992         if (!sess->established)
1993                 return;
1994
1995         sess->established = false;
1996         mutex_lock(&clt->paths_ev_mutex);
1997         WARN_ON(!clt->paths_up);
1998         if (--clt->paths_up == 0)
1999                 clt->link_ev(clt->priv, RTRS_CLT_LINK_EV_DISCONNECTED);
2000         mutex_unlock(&clt->paths_ev_mutex);
2001 }
2002
2003 static void rtrs_clt_stop_and_destroy_conns(struct rtrs_clt_sess *sess)
2004 {
2005         struct rtrs_clt_con *con;
2006         unsigned int cid;
2007
2008         WARN_ON(READ_ONCE(sess->state) == RTRS_CLT_CONNECTED);
2009
2010         /*
2011          * Possible race with rtrs_clt_open(), when DEVICE_REMOVAL comes
2012          * exactly in between.  Start destroying after it finishes.
2013          */
2014         mutex_lock(&sess->init_mutex);
2015         mutex_unlock(&sess->init_mutex);
2016
2017         /*
2018          * All IO paths must observe !CONNECTED state before we
2019          * free everything.
2020          */
2021         synchronize_rcu();
2022
2023         rtrs_clt_stop_hb(sess);
2024
2025         /*
2026          * The order it utterly crucial: firstly disconnect and complete all
2027          * rdma requests with error (thus set in_use=false for requests),
2028          * then fail outstanding requests checking in_use for each, and
2029          * eventually notify upper layer about session disconnection.
2030          */
2031
2032         for (cid = 0; cid < sess->s.con_num; cid++) {
2033                 if (!sess->s.con[cid])
2034                         break;
2035                 con = to_clt_con(sess->s.con[cid]);
2036                 stop_cm(con);
2037         }
2038         fail_all_outstanding_reqs(sess);
2039         free_sess_reqs(sess);
2040         rtrs_clt_sess_down(sess);
2041
2042         /*
2043          * Wait for graceful shutdown, namely when peer side invokes
2044          * rdma_disconnect(). 'connected_cnt' is decremented only on
2045          * CM events, thus if other side had crashed and hb has detected
2046          * something is wrong, here we will stuck for exactly timeout ms,
2047          * since CM does not fire anything.  That is fine, we are not in
2048          * hurry.
2049          */
2050         wait_event_timeout(sess->state_wq, !atomic_read(&sess->connected_cnt),
2051                            msecs_to_jiffies(RTRS_CONNECT_TIMEOUT_MS));
2052
2053         for (cid = 0; cid < sess->s.con_num; cid++) {
2054                 if (!sess->s.con[cid])
2055                         break;
2056                 con = to_clt_con(sess->s.con[cid]);
2057                 mutex_lock(&con->con_mutex);
2058                 destroy_con_cq_qp(con);
2059                 mutex_unlock(&con->con_mutex);
2060                 destroy_cm(con);
2061                 destroy_con(con);
2062         }
2063 }
2064
2065 static inline bool xchg_sessions(struct rtrs_clt_sess __rcu **rcu_ppcpu_path,
2066                                  struct rtrs_clt_sess *sess,
2067                                  struct rtrs_clt_sess *next)
2068 {
2069         struct rtrs_clt_sess **ppcpu_path;
2070
2071         /* Call cmpxchg() without sparse warnings */
2072         ppcpu_path = (typeof(ppcpu_path))rcu_ppcpu_path;
2073         return sess == cmpxchg(ppcpu_path, sess, next);
2074 }
2075
2076 static void rtrs_clt_remove_path_from_arr(struct rtrs_clt_sess *sess)
2077 {
2078         struct rtrs_clt *clt = sess->clt;
2079         struct rtrs_clt_sess *next;
2080         bool wait_for_grace = false;
2081         int cpu;
2082
2083         mutex_lock(&clt->paths_mutex);
2084         list_del_rcu(&sess->s.entry);
2085
2086         /* Make sure everybody observes path removal. */
2087         synchronize_rcu();
2088
2089         /*
2090          * At this point nobody sees @sess in the list, but still we have
2091          * dangling pointer @pcpu_path which _can_ point to @sess.  Since
2092          * nobody can observe @sess in the list, we guarantee that IO path
2093          * will not assign @sess to @pcpu_path, i.e. @pcpu_path can be equal
2094          * to @sess, but can never again become @sess.
2095          */
2096
2097         /*
2098          * Decrement paths number only after grace period, because
2099          * caller of do_each_path() must firstly observe list without
2100          * path and only then decremented paths number.
2101          *
2102          * Otherwise there can be the following situation:
2103          *    o Two paths exist and IO is coming.
2104          *    o One path is removed:
2105          *      CPU#0                          CPU#1
2106          *      do_each_path():                rtrs_clt_remove_path_from_arr():
2107          *          path = get_next_path()
2108          *          ^^^                            list_del_rcu(path)
2109          *          [!CONNECTED path]              clt->paths_num--
2110          *                                              ^^^^^^^^^
2111          *          load clt->paths_num                 from 2 to 1
2112          *                    ^^^^^^^^^
2113          *                    sees 1
2114          *
2115          *      path is observed as !CONNECTED, but do_each_path() loop
2116          *      ends, because expression i < clt->paths_num is false.
2117          */
2118         clt->paths_num--;
2119
2120         /*
2121          * Get @next connection from current @sess which is going to be
2122          * removed.  If @sess is the last element, then @next is NULL.
2123          */
2124         rcu_read_lock();
2125         next = list_next_or_null_rr_rcu(&clt->paths_list, &sess->s.entry,
2126                                         typeof(*next), s.entry);
2127         rcu_read_unlock();
2128
2129         /*
2130          * @pcpu paths can still point to the path which is going to be
2131          * removed, so change the pointer manually.
2132          */
2133         for_each_possible_cpu(cpu) {
2134                 struct rtrs_clt_sess __rcu **ppcpu_path;
2135
2136                 ppcpu_path = per_cpu_ptr(clt->pcpu_path, cpu);
2137                 if (rcu_dereference_protected(*ppcpu_path,
2138                         lockdep_is_held(&clt->paths_mutex)) != sess)
2139                         /*
2140                          * synchronize_rcu() was called just after deleting
2141                          * entry from the list, thus IO code path cannot
2142                          * change pointer back to the pointer which is going
2143                          * to be removed, we are safe here.
2144                          */
2145                         continue;
2146
2147                 /*
2148                  * We race with IO code path, which also changes pointer,
2149                  * thus we have to be careful not to overwrite it.
2150                  */
2151                 if (xchg_sessions(ppcpu_path, sess, next))
2152                         /*
2153                          * @ppcpu_path was successfully replaced with @next,
2154                          * that means that someone could also pick up the
2155                          * @sess and dereferencing it right now, so wait for
2156                          * a grace period is required.
2157                          */
2158                         wait_for_grace = true;
2159         }
2160         if (wait_for_grace)
2161                 synchronize_rcu();
2162
2163         mutex_unlock(&clt->paths_mutex);
2164 }
2165
2166 static void rtrs_clt_add_path_to_arr(struct rtrs_clt_sess *sess)
2167 {
2168         struct rtrs_clt *clt = sess->clt;
2169
2170         mutex_lock(&clt->paths_mutex);
2171         clt->paths_num++;
2172
2173         list_add_tail_rcu(&sess->s.entry, &clt->paths_list);
2174         mutex_unlock(&clt->paths_mutex);
2175 }
2176
2177 static void rtrs_clt_close_work(struct work_struct *work)
2178 {
2179         struct rtrs_clt_sess *sess;
2180
2181         sess = container_of(work, struct rtrs_clt_sess, close_work);
2182
2183         cancel_delayed_work_sync(&sess->reconnect_dwork);
2184         rtrs_clt_stop_and_destroy_conns(sess);
2185         rtrs_clt_change_state_get_old(sess, RTRS_CLT_CLOSED, NULL);
2186 }
2187
2188 static int init_conns(struct rtrs_clt_sess *sess)
2189 {
2190         unsigned int cid;
2191         int err;
2192
2193         /*
2194          * On every new session connections increase reconnect counter
2195          * to avoid clashes with previous sessions not yet closed
2196          * sessions on a server side.
2197          */
2198         sess->s.recon_cnt++;
2199
2200         /* Establish all RDMA connections  */
2201         for (cid = 0; cid < sess->s.con_num; cid++) {
2202                 err = create_con(sess, cid);
2203                 if (err)
2204                         goto destroy;
2205
2206                 err = create_cm(to_clt_con(sess->s.con[cid]));
2207                 if (err) {
2208                         destroy_con(to_clt_con(sess->s.con[cid]));
2209                         goto destroy;
2210                 }
2211         }
2212         err = alloc_sess_reqs(sess);
2213         if (err)
2214                 goto destroy;
2215
2216         rtrs_clt_start_hb(sess);
2217
2218         return 0;
2219
2220 destroy:
2221         while (cid--) {
2222                 struct rtrs_clt_con *con = to_clt_con(sess->s.con[cid]);
2223
2224                 stop_cm(con);
2225
2226                 mutex_lock(&con->con_mutex);
2227                 destroy_con_cq_qp(con);
2228                 mutex_unlock(&con->con_mutex);
2229                 destroy_cm(con);
2230                 destroy_con(con);
2231         }
2232         /*
2233          * If we've never taken async path and got an error, say,
2234          * doing rdma_resolve_addr(), switch to CONNECTION_ERR state
2235          * manually to keep reconnecting.
2236          */
2237         rtrs_clt_change_state_get_old(sess, RTRS_CLT_CONNECTING_ERR, NULL);
2238
2239         return err;
2240 }
2241
2242 static void rtrs_clt_info_req_done(struct ib_cq *cq, struct ib_wc *wc)
2243 {
2244         struct rtrs_clt_con *con = cq->cq_context;
2245         struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
2246         struct rtrs_iu *iu;
2247
2248         iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
2249         rtrs_iu_free(iu, sess->s.dev->ib_dev, 1);
2250
2251         if (unlikely(wc->status != IB_WC_SUCCESS)) {
2252                 rtrs_err(sess->clt, "Sess info request send failed: %s\n",
2253                           ib_wc_status_msg(wc->status));
2254                 rtrs_clt_change_state_get_old(sess, RTRS_CLT_CONNECTING_ERR, NULL);
2255                 return;
2256         }
2257
2258         rtrs_clt_update_wc_stats(con);
2259 }
2260
2261 static int process_info_rsp(struct rtrs_clt_sess *sess,
2262                             const struct rtrs_msg_info_rsp *msg)
2263 {
2264         unsigned int sg_cnt, total_len;
2265         int i, sgi;
2266
2267         sg_cnt = le16_to_cpu(msg->sg_cnt);
2268         if (unlikely(!sg_cnt || (sess->queue_depth % sg_cnt))) {
2269                 rtrs_err(sess->clt, "Incorrect sg_cnt %d, is not multiple\n",
2270                           sg_cnt);
2271                 return -EINVAL;
2272         }
2273
2274         /*
2275          * Check if IB immediate data size is enough to hold the mem_id and
2276          * the offset inside the memory chunk.
2277          */
2278         if (unlikely((ilog2(sg_cnt - 1) + 1) +
2279                      (ilog2(sess->chunk_size - 1) + 1) >
2280                      MAX_IMM_PAYL_BITS)) {
2281                 rtrs_err(sess->clt,
2282                           "RDMA immediate size (%db) not enough to encode %d buffers of size %dB\n",
2283                           MAX_IMM_PAYL_BITS, sg_cnt, sess->chunk_size);
2284                 return -EINVAL;
2285         }
2286         total_len = 0;
2287         for (sgi = 0, i = 0; sgi < sg_cnt && i < sess->queue_depth; sgi++) {
2288                 const struct rtrs_sg_desc *desc = &msg->desc[sgi];
2289                 u32 len, rkey;
2290                 u64 addr;
2291
2292                 addr = le64_to_cpu(desc->addr);
2293                 rkey = le32_to_cpu(desc->key);
2294                 len  = le32_to_cpu(desc->len);
2295
2296                 total_len += len;
2297
2298                 if (unlikely(!len || (len % sess->chunk_size))) {
2299                         rtrs_err(sess->clt, "Incorrect [%d].len %d\n", sgi,
2300                                   len);
2301                         return -EINVAL;
2302                 }
2303                 for ( ; len && i < sess->queue_depth; i++) {
2304                         sess->rbufs[i].addr = addr;
2305                         sess->rbufs[i].rkey = rkey;
2306
2307                         len  -= sess->chunk_size;
2308                         addr += sess->chunk_size;
2309                 }
2310         }
2311         /* Sanity check */
2312         if (unlikely(sgi != sg_cnt || i != sess->queue_depth)) {
2313                 rtrs_err(sess->clt, "Incorrect sg vector, not fully mapped\n");
2314                 return -EINVAL;
2315         }
2316         if (unlikely(total_len != sess->chunk_size * sess->queue_depth)) {
2317                 rtrs_err(sess->clt, "Incorrect total_len %d\n", total_len);
2318                 return -EINVAL;
2319         }
2320
2321         return 0;
2322 }
2323
2324 static void rtrs_clt_info_rsp_done(struct ib_cq *cq, struct ib_wc *wc)
2325 {
2326         struct rtrs_clt_con *con = cq->cq_context;
2327         struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
2328         struct rtrs_msg_info_rsp *msg;
2329         enum rtrs_clt_state state;
2330         struct rtrs_iu *iu;
2331         size_t rx_sz;
2332         int err;
2333
2334         state = RTRS_CLT_CONNECTING_ERR;
2335
2336         WARN_ON(con->c.cid);
2337         iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
2338         if (unlikely(wc->status != IB_WC_SUCCESS)) {
2339                 rtrs_err(sess->clt, "Sess info response recv failed: %s\n",
2340                           ib_wc_status_msg(wc->status));
2341                 goto out;
2342         }
2343         WARN_ON(wc->opcode != IB_WC_RECV);
2344
2345         if (unlikely(wc->byte_len < sizeof(*msg))) {
2346                 rtrs_err(sess->clt, "Sess info response is malformed: size %d\n",
2347                           wc->byte_len);
2348                 goto out;
2349         }
2350         ib_dma_sync_single_for_cpu(sess->s.dev->ib_dev, iu->dma_addr,
2351                                    iu->size, DMA_FROM_DEVICE);
2352         msg = iu->buf;
2353         if (unlikely(le16_to_cpu(msg->type) != RTRS_MSG_INFO_RSP)) {
2354                 rtrs_err(sess->clt, "Sess info response is malformed: type %d\n",
2355                           le16_to_cpu(msg->type));
2356                 goto out;
2357         }
2358         rx_sz  = sizeof(*msg);
2359         rx_sz += sizeof(msg->desc[0]) * le16_to_cpu(msg->sg_cnt);
2360         if (unlikely(wc->byte_len < rx_sz)) {
2361                 rtrs_err(sess->clt, "Sess info response is malformed: size %d\n",
2362                           wc->byte_len);
2363                 goto out;
2364         }
2365         err = process_info_rsp(sess, msg);
2366         if (unlikely(err))
2367                 goto out;
2368
2369         err = post_recv_sess(sess);
2370         if (unlikely(err))
2371                 goto out;
2372
2373         state = RTRS_CLT_CONNECTED;
2374
2375 out:
2376         rtrs_clt_update_wc_stats(con);
2377         rtrs_iu_free(iu, sess->s.dev->ib_dev, 1);
2378         rtrs_clt_change_state_get_old(sess, state, NULL);
2379 }
2380
2381 static int rtrs_send_sess_info(struct rtrs_clt_sess *sess)
2382 {
2383         struct rtrs_clt_con *usr_con = to_clt_con(sess->s.con[0]);
2384         struct rtrs_msg_info_req *msg;
2385         struct rtrs_iu *tx_iu, *rx_iu;
2386         size_t rx_sz;
2387         int err;
2388
2389         rx_sz  = sizeof(struct rtrs_msg_info_rsp);
2390         rx_sz += sizeof(u64) * MAX_SESS_QUEUE_DEPTH;
2391
2392         tx_iu = rtrs_iu_alloc(1, sizeof(struct rtrs_msg_info_req), GFP_KERNEL,
2393                                sess->s.dev->ib_dev, DMA_TO_DEVICE,
2394                                rtrs_clt_info_req_done);
2395         rx_iu = rtrs_iu_alloc(1, rx_sz, GFP_KERNEL, sess->s.dev->ib_dev,
2396                                DMA_FROM_DEVICE, rtrs_clt_info_rsp_done);
2397         if (unlikely(!tx_iu || !rx_iu)) {
2398                 err = -ENOMEM;
2399                 goto out;
2400         }
2401         /* Prepare for getting info response */
2402         err = rtrs_iu_post_recv(&usr_con->c, rx_iu);
2403         if (unlikely(err)) {
2404                 rtrs_err(sess->clt, "rtrs_iu_post_recv(), err: %d\n", err);
2405                 goto out;
2406         }
2407         rx_iu = NULL;
2408
2409         msg = tx_iu->buf;
2410         msg->type = cpu_to_le16(RTRS_MSG_INFO_REQ);
2411         memcpy(msg->sessname, sess->s.sessname, sizeof(msg->sessname));
2412
2413         ib_dma_sync_single_for_device(sess->s.dev->ib_dev, tx_iu->dma_addr,
2414                                       tx_iu->size, DMA_TO_DEVICE);
2415
2416         /* Send info request */
2417         err = rtrs_iu_post_send(&usr_con->c, tx_iu, sizeof(*msg), NULL);
2418         if (unlikely(err)) {
2419                 rtrs_err(sess->clt, "rtrs_iu_post_send(), err: %d\n", err);
2420                 goto out;
2421         }
2422         tx_iu = NULL;
2423
2424         /* Wait for state change */
2425         wait_event_interruptible_timeout(sess->state_wq,
2426                                          sess->state != RTRS_CLT_CONNECTING,
2427                                          msecs_to_jiffies(
2428                                                  RTRS_CONNECT_TIMEOUT_MS));
2429         if (unlikely(READ_ONCE(sess->state) != RTRS_CLT_CONNECTED)) {
2430                 if (READ_ONCE(sess->state) == RTRS_CLT_CONNECTING_ERR)
2431                         err = -ECONNRESET;
2432                 else
2433                         err = -ETIMEDOUT;
2434         }
2435
2436 out:
2437         if (tx_iu)
2438                 rtrs_iu_free(tx_iu, sess->s.dev->ib_dev, 1);
2439         if (rx_iu)
2440                 rtrs_iu_free(rx_iu, sess->s.dev->ib_dev, 1);
2441         if (unlikely(err))
2442                 /* If we've never taken async path because of malloc problems */
2443                 rtrs_clt_change_state_get_old(sess, RTRS_CLT_CONNECTING_ERR, NULL);
2444
2445         return err;
2446 }
2447
2448 /**
2449  * init_sess() - establishes all session connections and does handshake
2450  * @sess: client session.
2451  * In case of error full close or reconnect procedure should be taken,
2452  * because reconnect or close async works can be started.
2453  */
2454 static int init_sess(struct rtrs_clt_sess *sess)
2455 {
2456         int err;
2457
2458         mutex_lock(&sess->init_mutex);
2459         err = init_conns(sess);
2460         if (err) {
2461                 rtrs_err(sess->clt, "init_conns(), err: %d\n", err);
2462                 goto out;
2463         }
2464         err = rtrs_send_sess_info(sess);
2465         if (err) {
2466                 rtrs_err(sess->clt, "rtrs_send_sess_info(), err: %d\n", err);
2467                 goto out;
2468         }
2469         rtrs_clt_sess_up(sess);
2470 out:
2471         mutex_unlock(&sess->init_mutex);
2472
2473         return err;
2474 }
2475
2476 static void rtrs_clt_reconnect_work(struct work_struct *work)
2477 {
2478         struct rtrs_clt_sess *sess;
2479         struct rtrs_clt *clt;
2480         unsigned int delay_ms;
2481         int err;
2482
2483         sess = container_of(to_delayed_work(work), struct rtrs_clt_sess,
2484                             reconnect_dwork);
2485         clt = sess->clt;
2486
2487         if (READ_ONCE(sess->state) != RTRS_CLT_RECONNECTING)
2488                 return;
2489
2490         if (sess->reconnect_attempts >= clt->max_reconnect_attempts) {
2491                 /* Close a session completely if max attempts is reached */
2492                 rtrs_clt_close_conns(sess, false);
2493                 return;
2494         }
2495         sess->reconnect_attempts++;
2496
2497         /* Stop everything */
2498         rtrs_clt_stop_and_destroy_conns(sess);
2499         msleep(RTRS_RECONNECT_BACKOFF);
2500         if (rtrs_clt_change_state_get_old(sess, RTRS_CLT_CONNECTING, NULL)) {
2501                 err = init_sess(sess);
2502                 if (err)
2503                         goto reconnect_again;
2504         }
2505
2506         return;
2507
2508 reconnect_again:
2509         if (rtrs_clt_change_state_get_old(sess, RTRS_CLT_RECONNECTING, NULL)) {
2510                 sess->stats->reconnects.fail_cnt++;
2511                 delay_ms = clt->reconnect_delay_sec * 1000;
2512                 queue_delayed_work(rtrs_wq, &sess->reconnect_dwork,
2513                                    msecs_to_jiffies(delay_ms +
2514                                                     prandom_u32() %
2515                                                     RTRS_RECONNECT_SEED));
2516         }
2517 }
2518
2519 static void rtrs_clt_dev_release(struct device *dev)
2520 {
2521         struct rtrs_clt *clt = container_of(dev, struct rtrs_clt, dev);
2522
2523         kfree(clt);
2524 }
2525
2526 static struct rtrs_clt *alloc_clt(const char *sessname, size_t paths_num,
2527                                   u16 port, size_t pdu_sz, void *priv,
2528                                   void  (*link_ev)(void *priv,
2529                                                    enum rtrs_clt_link_ev ev),
2530                                   unsigned int max_segments,
2531                                   size_t max_segment_size,
2532                                   unsigned int reconnect_delay_sec,
2533                                   unsigned int max_reconnect_attempts)
2534 {
2535         struct rtrs_clt *clt;
2536         int err;
2537
2538         if (!paths_num || paths_num > MAX_PATHS_NUM)
2539                 return ERR_PTR(-EINVAL);
2540
2541         if (strlen(sessname) >= sizeof(clt->sessname))
2542                 return ERR_PTR(-EINVAL);
2543
2544         clt = kzalloc(sizeof(*clt), GFP_KERNEL);
2545         if (!clt)
2546                 return ERR_PTR(-ENOMEM);
2547
2548         clt->pcpu_path = alloc_percpu(typeof(*clt->pcpu_path));
2549         if (!clt->pcpu_path) {
2550                 kfree(clt);
2551                 return ERR_PTR(-ENOMEM);
2552         }
2553
2554         uuid_gen(&clt->paths_uuid);
2555         INIT_LIST_HEAD_RCU(&clt->paths_list);
2556         clt->paths_num = paths_num;
2557         clt->paths_up = MAX_PATHS_NUM;
2558         clt->port = port;
2559         clt->pdu_sz = pdu_sz;
2560         clt->max_segments = max_segments;
2561         clt->max_segment_size = max_segment_size;
2562         clt->reconnect_delay_sec = reconnect_delay_sec;
2563         clt->max_reconnect_attempts = max_reconnect_attempts;
2564         clt->priv = priv;
2565         clt->link_ev = link_ev;
2566         clt->mp_policy = MP_POLICY_MIN_INFLIGHT;
2567         strlcpy(clt->sessname, sessname, sizeof(clt->sessname));
2568         init_waitqueue_head(&clt->permits_wait);
2569         mutex_init(&clt->paths_ev_mutex);
2570         mutex_init(&clt->paths_mutex);
2571
2572         clt->dev.class = rtrs_clt_dev_class;
2573         clt->dev.release = rtrs_clt_dev_release;
2574         err = dev_set_name(&clt->dev, "%s", sessname);
2575         if (err)
2576                 goto err;
2577         /*
2578          * Suppress user space notification until
2579          * sysfs files are created
2580          */
2581         dev_set_uevent_suppress(&clt->dev, true);
2582         err = device_register(&clt->dev);
2583         if (err) {
2584                 put_device(&clt->dev);
2585                 goto err;
2586         }
2587
2588         clt->kobj_paths = kobject_create_and_add("paths", &clt->dev.kobj);
2589         if (!clt->kobj_paths) {
2590                 err = -ENOMEM;
2591                 goto err_dev;
2592         }
2593         err = rtrs_clt_create_sysfs_root_files(clt);
2594         if (err) {
2595                 kobject_del(clt->kobj_paths);
2596                 kobject_put(clt->kobj_paths);
2597                 goto err_dev;
2598         }
2599         dev_set_uevent_suppress(&clt->dev, false);
2600         kobject_uevent(&clt->dev.kobj, KOBJ_ADD);
2601
2602         return clt;
2603 err_dev:
2604         device_unregister(&clt->dev);
2605 err:
2606         free_percpu(clt->pcpu_path);
2607         kfree(clt);
2608         return ERR_PTR(err);
2609 }
2610
2611 static void free_clt(struct rtrs_clt *clt)
2612 {
2613         free_permits(clt);
2614         free_percpu(clt->pcpu_path);
2615         mutex_destroy(&clt->paths_ev_mutex);
2616         mutex_destroy(&clt->paths_mutex);
2617         /* release callback will free clt in last put */
2618         device_unregister(&clt->dev);
2619 }
2620
2621 /**
2622  * rtrs_clt_open() - Open a session to an RTRS server
2623  * @ops: holds the link event callback and the private pointer.
2624  * @sessname: name of the session
2625  * @paths: Paths to be established defined by their src and dst addresses
2626  * @paths_num: Number of elements in the @paths array
2627  * @port: port to be used by the RTRS session
2628  * @pdu_sz: Size of extra payload which can be accessed after permit allocation.
2629  * @reconnect_delay_sec: time between reconnect tries
2630  * @max_segments: Max. number of segments per IO request
2631  * @max_segment_size: Max. size of one segment
2632  * @max_reconnect_attempts: Number of times to reconnect on error before giving
2633  *                          up, 0 for * disabled, -1 for forever
2634  *
2635  * Starts session establishment with the rtrs_server. The function can block
2636  * up to ~2000ms before it returns.
2637  *
2638  * Return a valid pointer on success otherwise PTR_ERR.
2639  */
2640 struct rtrs_clt *rtrs_clt_open(struct rtrs_clt_ops *ops,
2641                                  const char *sessname,
2642                                  const struct rtrs_addr *paths,
2643                                  size_t paths_num, u16 port,
2644                                  size_t pdu_sz, u8 reconnect_delay_sec,
2645                                  u16 max_segments,
2646                                  size_t max_segment_size,
2647                                  s16 max_reconnect_attempts)
2648 {
2649         struct rtrs_clt_sess *sess, *tmp;
2650         struct rtrs_clt *clt;
2651         int err, i;
2652
2653         clt = alloc_clt(sessname, paths_num, port, pdu_sz, ops->priv,
2654                         ops->link_ev,
2655                         max_segments, max_segment_size, reconnect_delay_sec,
2656                         max_reconnect_attempts);
2657         if (IS_ERR(clt)) {
2658                 err = PTR_ERR(clt);
2659                 goto out;
2660         }
2661         for (i = 0; i < paths_num; i++) {
2662                 struct rtrs_clt_sess *sess;
2663
2664                 sess = alloc_sess(clt, &paths[i], nr_cpu_ids,
2665                                   max_segments, max_segment_size);
2666                 if (IS_ERR(sess)) {
2667                         err = PTR_ERR(sess);
2668                         goto close_all_sess;
2669                 }
2670                 if (!i)
2671                         sess->for_new_clt = 1;
2672                 list_add_tail_rcu(&sess->s.entry, &clt->paths_list);
2673
2674                 err = init_sess(sess);
2675                 if (err) {
2676                         list_del_rcu(&sess->s.entry);
2677                         rtrs_clt_close_conns(sess, true);
2678                         free_sess(sess);
2679                         goto close_all_sess;
2680                 }
2681
2682                 err = rtrs_clt_create_sess_files(sess);
2683                 if (err) {
2684                         list_del_rcu(&sess->s.entry);
2685                         rtrs_clt_close_conns(sess, true);
2686                         free_sess(sess);
2687                         goto close_all_sess;
2688                 }
2689         }
2690         err = alloc_permits(clt);
2691         if (err)
2692                 goto close_all_sess;
2693
2694         return clt;
2695
2696 close_all_sess:
2697         list_for_each_entry_safe(sess, tmp, &clt->paths_list, s.entry) {
2698                 rtrs_clt_destroy_sess_files(sess, NULL);
2699                 rtrs_clt_close_conns(sess, true);
2700                 kobject_put(&sess->kobj);
2701         }
2702         rtrs_clt_destroy_sysfs_root(clt);
2703         free_clt(clt);
2704
2705 out:
2706         return ERR_PTR(err);
2707 }
2708 EXPORT_SYMBOL(rtrs_clt_open);
2709
2710 /**
2711  * rtrs_clt_close() - Close a session
2712  * @clt: Session handle. Session is freed upon return.
2713  */
2714 void rtrs_clt_close(struct rtrs_clt *clt)
2715 {
2716         struct rtrs_clt_sess *sess, *tmp;
2717
2718         /* Firstly forbid sysfs access */
2719         rtrs_clt_destroy_sysfs_root(clt);
2720
2721         /* Now it is safe to iterate over all paths without locks */
2722         list_for_each_entry_safe(sess, tmp, &clt->paths_list, s.entry) {
2723                 rtrs_clt_destroy_sess_files(sess, NULL);
2724                 rtrs_clt_close_conns(sess, true);
2725                 kobject_put(&sess->kobj);
2726         }
2727         free_clt(clt);
2728 }
2729 EXPORT_SYMBOL(rtrs_clt_close);
2730
2731 int rtrs_clt_reconnect_from_sysfs(struct rtrs_clt_sess *sess)
2732 {
2733         enum rtrs_clt_state old_state;
2734         int err = -EBUSY;
2735         bool changed;
2736
2737         changed = rtrs_clt_change_state_get_old(sess, RTRS_CLT_RECONNECTING,
2738                                                  &old_state);
2739         if (changed) {
2740                 sess->reconnect_attempts = 0;
2741                 queue_delayed_work(rtrs_wq, &sess->reconnect_dwork, 0);
2742         }
2743         if (changed || old_state == RTRS_CLT_RECONNECTING) {
2744                 /*
2745                  * flush_delayed_work() queues pending work for immediate
2746                  * execution, so do the flush if we have queued something
2747                  * right now or work is pending.
2748                  */
2749                 flush_delayed_work(&sess->reconnect_dwork);
2750                 err = (READ_ONCE(sess->state) ==
2751                        RTRS_CLT_CONNECTED ? 0 : -ENOTCONN);
2752         }
2753
2754         return err;
2755 }
2756
2757 int rtrs_clt_disconnect_from_sysfs(struct rtrs_clt_sess *sess)
2758 {
2759         rtrs_clt_close_conns(sess, true);
2760
2761         return 0;
2762 }
2763
2764 int rtrs_clt_remove_path_from_sysfs(struct rtrs_clt_sess *sess,
2765                                      const struct attribute *sysfs_self)
2766 {
2767         enum rtrs_clt_state old_state;
2768         bool changed;
2769
2770         /*
2771          * Continue stopping path till state was changed to DEAD or
2772          * state was observed as DEAD:
2773          * 1. State was changed to DEAD - we were fast and nobody
2774          *    invoked rtrs_clt_reconnect(), which can again start
2775          *    reconnecting.
2776          * 2. State was observed as DEAD - we have someone in parallel
2777          *    removing the path.
2778          */
2779         do {
2780                 rtrs_clt_close_conns(sess, true);
2781                 changed = rtrs_clt_change_state_get_old(sess,
2782                                                         RTRS_CLT_DEAD,
2783                                                         &old_state);
2784         } while (!changed && old_state != RTRS_CLT_DEAD);
2785
2786         if (likely(changed)) {
2787                 rtrs_clt_destroy_sess_files(sess, sysfs_self);
2788                 rtrs_clt_remove_path_from_arr(sess);
2789                 kobject_put(&sess->kobj);
2790         }
2791
2792         return 0;
2793 }
2794
2795 void rtrs_clt_set_max_reconnect_attempts(struct rtrs_clt *clt, int value)
2796 {
2797         clt->max_reconnect_attempts = (unsigned int)value;
2798 }
2799
2800 int rtrs_clt_get_max_reconnect_attempts(const struct rtrs_clt *clt)
2801 {
2802         return (int)clt->max_reconnect_attempts;
2803 }
2804
2805 /**
2806  * rtrs_clt_request() - Request data transfer to/from server via RDMA.
2807  *
2808  * @dir:        READ/WRITE
2809  * @ops:        callback function to be called as confirmation, and the pointer.
2810  * @clt:        Session
2811  * @permit:     Preallocated permit
2812  * @vec:        Message that is sent to server together with the request.
2813  *              Sum of len of all @vec elements limited to <= IO_MSG_SIZE.
2814  *              Since the msg is copied internally it can be allocated on stack.
2815  * @nr:         Number of elements in @vec.
2816  * @data_len:   length of data sent to/from server
2817  * @sg:         Pages to be sent/received to/from server.
2818  * @sg_cnt:     Number of elements in the @sg
2819  *
2820  * Return:
2821  * 0:           Success
2822  * <0:          Error
2823  *
2824  * On dir=READ rtrs client will request a data transfer from Server to client.
2825  * The data that the server will respond with will be stored in @sg when
2826  * the user receives an %RTRS_CLT_RDMA_EV_RDMA_REQUEST_WRITE_COMPL event.
2827  * On dir=WRITE rtrs client will rdma write data in sg to server side.
2828  */
2829 int rtrs_clt_request(int dir, struct rtrs_clt_req_ops *ops,
2830                      struct rtrs_clt *clt, struct rtrs_permit *permit,
2831                       const struct kvec *vec, size_t nr, size_t data_len,
2832                       struct scatterlist *sg, unsigned int sg_cnt)
2833 {
2834         struct rtrs_clt_io_req *req;
2835         struct rtrs_clt_sess *sess;
2836
2837         enum dma_data_direction dma_dir;
2838         int err = -ECONNABORTED, i;
2839         size_t usr_len, hdr_len;
2840         struct path_it it;
2841
2842         /* Get kvec length */
2843         for (i = 0, usr_len = 0; i < nr; i++)
2844                 usr_len += vec[i].iov_len;
2845
2846         if (dir == READ) {
2847                 hdr_len = sizeof(struct rtrs_msg_rdma_read) +
2848                           sg_cnt * sizeof(struct rtrs_sg_desc);
2849                 dma_dir = DMA_FROM_DEVICE;
2850         } else {
2851                 hdr_len = sizeof(struct rtrs_msg_rdma_write);
2852                 dma_dir = DMA_TO_DEVICE;
2853         }
2854
2855         rcu_read_lock();
2856         for (path_it_init(&it, clt);
2857              (sess = it.next_path(&it)) && it.i < it.clt->paths_num; it.i++) {
2858                 if (unlikely(READ_ONCE(sess->state) != RTRS_CLT_CONNECTED))
2859                         continue;
2860
2861                 if (unlikely(usr_len + hdr_len > sess->max_hdr_size)) {
2862                         rtrs_wrn_rl(sess->clt,
2863                                      "%s request failed, user message size is %zu and header length %zu, but max size is %u\n",
2864                                      dir == READ ? "Read" : "Write",
2865                                      usr_len, hdr_len, sess->max_hdr_size);
2866                         err = -EMSGSIZE;
2867                         break;
2868                 }
2869                 req = rtrs_clt_get_req(sess, ops->conf_fn, permit, ops->priv,
2870                                        vec, usr_len, sg, sg_cnt, data_len,
2871                                        dma_dir);
2872                 if (dir == READ)
2873                         err = rtrs_clt_read_req(req);
2874                 else
2875                         err = rtrs_clt_write_req(req);
2876                 if (unlikely(err)) {
2877                         req->in_use = false;
2878                         continue;
2879                 }
2880                 /* Success path */
2881                 break;
2882         }
2883         path_it_deinit(&it);
2884         rcu_read_unlock();
2885
2886         return err;
2887 }
2888 EXPORT_SYMBOL(rtrs_clt_request);
2889
2890 /**
2891  * rtrs_clt_query() - queries RTRS session attributes
2892  *@clt: session pointer
2893  *@attr: query results for session attributes.
2894  * Returns:
2895  *    0 on success
2896  *    -ECOMM            no connection to the server
2897  */
2898 int rtrs_clt_query(struct rtrs_clt *clt, struct rtrs_attrs *attr)
2899 {
2900         if (!rtrs_clt_is_connected(clt))
2901                 return -ECOMM;
2902
2903         attr->queue_depth      = clt->queue_depth;
2904         attr->max_io_size      = clt->max_io_size;
2905         attr->sess_kobj        = &clt->dev.kobj;
2906         strlcpy(attr->sessname, clt->sessname, sizeof(attr->sessname));
2907
2908         return 0;
2909 }
2910 EXPORT_SYMBOL(rtrs_clt_query);
2911
2912 int rtrs_clt_create_path_from_sysfs(struct rtrs_clt *clt,
2913                                      struct rtrs_addr *addr)
2914 {
2915         struct rtrs_clt_sess *sess;
2916         int err;
2917
2918         sess = alloc_sess(clt, addr, nr_cpu_ids, clt->max_segments,
2919                           clt->max_segment_size);
2920         if (IS_ERR(sess))
2921                 return PTR_ERR(sess);
2922
2923         /*
2924          * It is totally safe to add path in CONNECTING state: coming
2925          * IO will never grab it.  Also it is very important to add
2926          * path before init, since init fires LINK_CONNECTED event.
2927          */
2928         rtrs_clt_add_path_to_arr(sess);
2929
2930         err = init_sess(sess);
2931         if (err)
2932                 goto close_sess;
2933
2934         err = rtrs_clt_create_sess_files(sess);
2935         if (err)
2936                 goto close_sess;
2937
2938         return 0;
2939
2940 close_sess:
2941         rtrs_clt_remove_path_from_arr(sess);
2942         rtrs_clt_close_conns(sess, true);
2943         free_sess(sess);
2944
2945         return err;
2946 }
2947
2948 static int rtrs_clt_ib_dev_init(struct rtrs_ib_dev *dev)
2949 {
2950         if (!(dev->ib_dev->attrs.device_cap_flags &
2951               IB_DEVICE_MEM_MGT_EXTENSIONS)) {
2952                 pr_err("Memory registrations not supported.\n");
2953                 return -ENOTSUPP;
2954         }
2955
2956         return 0;
2957 }
2958
2959 static const struct rtrs_rdma_dev_pd_ops dev_pd_ops = {
2960         .init = rtrs_clt_ib_dev_init
2961 };
2962
2963 static int __init rtrs_client_init(void)
2964 {
2965         rtrs_rdma_dev_pd_init(0, &dev_pd);
2966
2967         rtrs_clt_dev_class = class_create(THIS_MODULE, "rtrs-client");
2968         if (IS_ERR(rtrs_clt_dev_class)) {
2969                 pr_err("Failed to create rtrs-client dev class\n");
2970                 return PTR_ERR(rtrs_clt_dev_class);
2971         }
2972         rtrs_wq = alloc_workqueue("rtrs_client_wq", 0, 0);
2973         if (!rtrs_wq) {
2974                 class_destroy(rtrs_clt_dev_class);
2975                 return -ENOMEM;
2976         }
2977
2978         return 0;
2979 }
2980
2981 static void __exit rtrs_client_exit(void)
2982 {
2983         destroy_workqueue(rtrs_wq);
2984         class_destroy(rtrs_clt_dev_class);
2985         rtrs_rdma_dev_pd_deinit(&dev_pd);
2986 }
2987
2988 module_init(rtrs_client_init);
2989 module_exit(rtrs_client_exit);