Linux 6.9-rc1
[linux-2.6-microblaze.git] / drivers / infiniband / sw / rdmavt / qp.c
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright(c) 2016 - 2020 Intel Corporation.
4  */
5
6 #include <linux/hash.h>
7 #include <linux/bitops.h>
8 #include <linux/lockdep.h>
9 #include <linux/vmalloc.h>
10 #include <linux/slab.h>
11 #include <rdma/ib_verbs.h>
12 #include <rdma/ib_hdrs.h>
13 #include <rdma/opa_addr.h>
14 #include <rdma/uverbs_ioctl.h>
15 #include "qp.h"
16 #include "vt.h"
17 #include "trace.h"
18
19 #define RVT_RWQ_COUNT_THRESHOLD 16
20
21 static void rvt_rc_timeout(struct timer_list *t);
22 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
23                          enum ib_qp_type type);
24
25 /*
26  * Convert the AETH RNR timeout code into the number of microseconds.
27  */
28 static const u32 ib_rvt_rnr_table[32] = {
29         655360, /* 00: 655.36 */
30         10,     /* 01:    .01 */
31         20,     /* 02     .02 */
32         30,     /* 03:    .03 */
33         40,     /* 04:    .04 */
34         60,     /* 05:    .06 */
35         80,     /* 06:    .08 */
36         120,    /* 07:    .12 */
37         160,    /* 08:    .16 */
38         240,    /* 09:    .24 */
39         320,    /* 0A:    .32 */
40         480,    /* 0B:    .48 */
41         640,    /* 0C:    .64 */
42         960,    /* 0D:    .96 */
43         1280,   /* 0E:   1.28 */
44         1920,   /* 0F:   1.92 */
45         2560,   /* 10:   2.56 */
46         3840,   /* 11:   3.84 */
47         5120,   /* 12:   5.12 */
48         7680,   /* 13:   7.68 */
49         10240,  /* 14:  10.24 */
50         15360,  /* 15:  15.36 */
51         20480,  /* 16:  20.48 */
52         30720,  /* 17:  30.72 */
53         40960,  /* 18:  40.96 */
54         61440,  /* 19:  61.44 */
55         81920,  /* 1A:  81.92 */
56         122880, /* 1B: 122.88 */
57         163840, /* 1C: 163.84 */
58         245760, /* 1D: 245.76 */
59         327680, /* 1E: 327.68 */
60         491520  /* 1F: 491.52 */
61 };
62
63 /*
64  * Note that it is OK to post send work requests in the SQE and ERR
65  * states; rvt_do_send() will process them and generate error
66  * completions as per IB 1.2 C10-96.
67  */
68 const int ib_rvt_state_ops[IB_QPS_ERR + 1] = {
69         [IB_QPS_RESET] = 0,
70         [IB_QPS_INIT] = RVT_POST_RECV_OK,
71         [IB_QPS_RTR] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK,
72         [IB_QPS_RTS] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
73             RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK |
74             RVT_PROCESS_NEXT_SEND_OK,
75         [IB_QPS_SQD] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
76             RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK,
77         [IB_QPS_SQE] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
78             RVT_POST_SEND_OK | RVT_FLUSH_SEND,
79         [IB_QPS_ERR] = RVT_POST_RECV_OK | RVT_FLUSH_RECV |
80             RVT_POST_SEND_OK | RVT_FLUSH_SEND,
81 };
82 EXPORT_SYMBOL(ib_rvt_state_ops);
83
84 /* platform specific: return the last level cache (llc) size, in KiB */
85 static int rvt_wss_llc_size(void)
86 {
87         /* assume that the boot CPU value is universal for all CPUs */
88         return boot_cpu_data.x86_cache_size;
89 }
90
91 /* platform specific: cacheless copy */
92 static void cacheless_memcpy(void *dst, void *src, size_t n)
93 {
94         /*
95          * Use the only available X64 cacheless copy.  Add a __user cast
96          * to quiet sparse.  The src agument is already in the kernel so
97          * there are no security issues.  The extra fault recovery machinery
98          * is not invoked.
99          */
100         __copy_user_nocache(dst, (void __user *)src, n);
101 }
102
103 void rvt_wss_exit(struct rvt_dev_info *rdi)
104 {
105         struct rvt_wss *wss = rdi->wss;
106
107         if (!wss)
108                 return;
109
110         /* coded to handle partially initialized and repeat callers */
111         kfree(wss->entries);
112         wss->entries = NULL;
113         kfree(rdi->wss);
114         rdi->wss = NULL;
115 }
116
117 /*
118  * rvt_wss_init - Init wss data structures
119  *
120  * Return: 0 on success
121  */
122 int rvt_wss_init(struct rvt_dev_info *rdi)
123 {
124         unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode;
125         unsigned int wss_threshold = rdi->dparms.wss_threshold;
126         unsigned int wss_clean_period = rdi->dparms.wss_clean_period;
127         long llc_size;
128         long llc_bits;
129         long table_size;
130         long table_bits;
131         struct rvt_wss *wss;
132         int node = rdi->dparms.node;
133
134         if (sge_copy_mode != RVT_SGE_COPY_ADAPTIVE) {
135                 rdi->wss = NULL;
136                 return 0;
137         }
138
139         rdi->wss = kzalloc_node(sizeof(*rdi->wss), GFP_KERNEL, node);
140         if (!rdi->wss)
141                 return -ENOMEM;
142         wss = rdi->wss;
143
144         /* check for a valid percent range - default to 80 if none or invalid */
145         if (wss_threshold < 1 || wss_threshold > 100)
146                 wss_threshold = 80;
147
148         /* reject a wildly large period */
149         if (wss_clean_period > 1000000)
150                 wss_clean_period = 256;
151
152         /* reject a zero period */
153         if (wss_clean_period == 0)
154                 wss_clean_period = 1;
155
156         /*
157          * Calculate the table size - the next power of 2 larger than the
158          * LLC size.  LLC size is in KiB.
159          */
160         llc_size = rvt_wss_llc_size() * 1024;
161         table_size = roundup_pow_of_two(llc_size);
162
163         /* one bit per page in rounded up table */
164         llc_bits = llc_size / PAGE_SIZE;
165         table_bits = table_size / PAGE_SIZE;
166         wss->pages_mask = table_bits - 1;
167         wss->num_entries = table_bits / BITS_PER_LONG;
168
169         wss->threshold = (llc_bits * wss_threshold) / 100;
170         if (wss->threshold == 0)
171                 wss->threshold = 1;
172
173         wss->clean_period = wss_clean_period;
174         atomic_set(&wss->clean_counter, wss_clean_period);
175
176         wss->entries = kcalloc_node(wss->num_entries, sizeof(*wss->entries),
177                                     GFP_KERNEL, node);
178         if (!wss->entries) {
179                 rvt_wss_exit(rdi);
180                 return -ENOMEM;
181         }
182
183         return 0;
184 }
185
186 /*
187  * Advance the clean counter.  When the clean period has expired,
188  * clean an entry.
189  *
190  * This is implemented in atomics to avoid locking.  Because multiple
191  * variables are involved, it can be racy which can lead to slightly
192  * inaccurate information.  Since this is only a heuristic, this is
193  * OK.  Any innaccuracies will clean themselves out as the counter
194  * advances.  That said, it is unlikely the entry clean operation will
195  * race - the next possible racer will not start until the next clean
196  * period.
197  *
198  * The clean counter is implemented as a decrement to zero.  When zero
199  * is reached an entry is cleaned.
200  */
201 static void wss_advance_clean_counter(struct rvt_wss *wss)
202 {
203         int entry;
204         int weight;
205         unsigned long bits;
206
207         /* become the cleaner if we decrement the counter to zero */
208         if (atomic_dec_and_test(&wss->clean_counter)) {
209                 /*
210                  * Set, not add, the clean period.  This avoids an issue
211                  * where the counter could decrement below the clean period.
212                  * Doing a set can result in lost decrements, slowing the
213                  * clean advance.  Since this a heuristic, this possible
214                  * slowdown is OK.
215                  *
216                  * An alternative is to loop, advancing the counter by a
217                  * clean period until the result is > 0. However, this could
218                  * lead to several threads keeping another in the clean loop.
219                  * This could be mitigated by limiting the number of times
220                  * we stay in the loop.
221                  */
222                 atomic_set(&wss->clean_counter, wss->clean_period);
223
224                 /*
225                  * Uniquely grab the entry to clean and move to next.
226                  * The current entry is always the lower bits of
227                  * wss.clean_entry.  The table size, wss.num_entries,
228                  * is always a power-of-2.
229                  */
230                 entry = (atomic_inc_return(&wss->clean_entry) - 1)
231                         & (wss->num_entries - 1);
232
233                 /* clear the entry and count the bits */
234                 bits = xchg(&wss->entries[entry], 0);
235                 weight = hweight64((u64)bits);
236                 /* only adjust the contended total count if needed */
237                 if (weight)
238                         atomic_sub(weight, &wss->total_count);
239         }
240 }
241
242 /*
243  * Insert the given address into the working set array.
244  */
245 static void wss_insert(struct rvt_wss *wss, void *address)
246 {
247         u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss->pages_mask;
248         u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */
249         u32 nr = page & (BITS_PER_LONG - 1);
250
251         if (!test_and_set_bit(nr, &wss->entries[entry]))
252                 atomic_inc(&wss->total_count);
253
254         wss_advance_clean_counter(wss);
255 }
256
257 /*
258  * Is the working set larger than the threshold?
259  */
260 static inline bool wss_exceeds_threshold(struct rvt_wss *wss)
261 {
262         return atomic_read(&wss->total_count) >= wss->threshold;
263 }
264
265 static void get_map_page(struct rvt_qpn_table *qpt,
266                          struct rvt_qpn_map *map)
267 {
268         unsigned long page = get_zeroed_page(GFP_KERNEL);
269
270         /*
271          * Free the page if someone raced with us installing it.
272          */
273
274         spin_lock(&qpt->lock);
275         if (map->page)
276                 free_page(page);
277         else
278                 map->page = (void *)page;
279         spin_unlock(&qpt->lock);
280 }
281
282 /**
283  * init_qpn_table - initialize the QP number table for a device
284  * @rdi: rvt dev struct
285  * @qpt: the QPN table
286  */
287 static int init_qpn_table(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt)
288 {
289         u32 offset, i;
290         struct rvt_qpn_map *map;
291         int ret = 0;
292
293         if (!(rdi->dparms.qpn_res_end >= rdi->dparms.qpn_res_start))
294                 return -EINVAL;
295
296         spin_lock_init(&qpt->lock);
297
298         qpt->last = rdi->dparms.qpn_start;
299         qpt->incr = rdi->dparms.qpn_inc << rdi->dparms.qos_shift;
300
301         /*
302          * Drivers may want some QPs beyond what we need for verbs let them use
303          * our qpn table. No need for two. Lets go ahead and mark the bitmaps
304          * for those. The reserved range must be *after* the range which verbs
305          * will pick from.
306          */
307
308         /* Figure out number of bit maps needed before reserved range */
309         qpt->nmaps = rdi->dparms.qpn_res_start / RVT_BITS_PER_PAGE;
310
311         /* This should always be zero */
312         offset = rdi->dparms.qpn_res_start & RVT_BITS_PER_PAGE_MASK;
313
314         /* Starting with the first reserved bit map */
315         map = &qpt->map[qpt->nmaps];
316
317         rvt_pr_info(rdi, "Reserving QPNs from 0x%x to 0x%x for non-verbs use\n",
318                     rdi->dparms.qpn_res_start, rdi->dparms.qpn_res_end);
319         for (i = rdi->dparms.qpn_res_start; i <= rdi->dparms.qpn_res_end; i++) {
320                 if (!map->page) {
321                         get_map_page(qpt, map);
322                         if (!map->page) {
323                                 ret = -ENOMEM;
324                                 break;
325                         }
326                 }
327                 set_bit(offset, map->page);
328                 offset++;
329                 if (offset == RVT_BITS_PER_PAGE) {
330                         /* next page */
331                         qpt->nmaps++;
332                         map++;
333                         offset = 0;
334                 }
335         }
336         return ret;
337 }
338
339 /**
340  * free_qpn_table - free the QP number table for a device
341  * @qpt: the QPN table
342  */
343 static void free_qpn_table(struct rvt_qpn_table *qpt)
344 {
345         int i;
346
347         for (i = 0; i < ARRAY_SIZE(qpt->map); i++)
348                 free_page((unsigned long)qpt->map[i].page);
349 }
350
351 /**
352  * rvt_driver_qp_init - Init driver qp resources
353  * @rdi: rvt dev strucutre
354  *
355  * Return: 0 on success
356  */
357 int rvt_driver_qp_init(struct rvt_dev_info *rdi)
358 {
359         int i;
360         int ret = -ENOMEM;
361
362         if (!rdi->dparms.qp_table_size)
363                 return -EINVAL;
364
365         /*
366          * If driver is not doing any QP allocation then make sure it is
367          * providing the necessary QP functions.
368          */
369         if (!rdi->driver_f.free_all_qps ||
370             !rdi->driver_f.qp_priv_alloc ||
371             !rdi->driver_f.qp_priv_free ||
372             !rdi->driver_f.notify_qp_reset ||
373             !rdi->driver_f.notify_restart_rc)
374                 return -EINVAL;
375
376         /* allocate parent object */
377         rdi->qp_dev = kzalloc_node(sizeof(*rdi->qp_dev), GFP_KERNEL,
378                                    rdi->dparms.node);
379         if (!rdi->qp_dev)
380                 return -ENOMEM;
381
382         /* allocate hash table */
383         rdi->qp_dev->qp_table_size = rdi->dparms.qp_table_size;
384         rdi->qp_dev->qp_table_bits = ilog2(rdi->dparms.qp_table_size);
385         rdi->qp_dev->qp_table =
386                 kmalloc_array_node(rdi->qp_dev->qp_table_size,
387                              sizeof(*rdi->qp_dev->qp_table),
388                              GFP_KERNEL, rdi->dparms.node);
389         if (!rdi->qp_dev->qp_table)
390                 goto no_qp_table;
391
392         for (i = 0; i < rdi->qp_dev->qp_table_size; i++)
393                 RCU_INIT_POINTER(rdi->qp_dev->qp_table[i], NULL);
394
395         spin_lock_init(&rdi->qp_dev->qpt_lock);
396
397         /* initialize qpn map */
398         if (init_qpn_table(rdi, &rdi->qp_dev->qpn_table))
399                 goto fail_table;
400
401         spin_lock_init(&rdi->n_qps_lock);
402
403         return 0;
404
405 fail_table:
406         kfree(rdi->qp_dev->qp_table);
407         free_qpn_table(&rdi->qp_dev->qpn_table);
408
409 no_qp_table:
410         kfree(rdi->qp_dev);
411
412         return ret;
413 }
414
415 /**
416  * rvt_free_qp_cb - callback function to reset a qp
417  * @qp: the qp to reset
418  * @v: a 64-bit value
419  *
420  * This function resets the qp and removes it from the
421  * qp hash table.
422  */
423 static void rvt_free_qp_cb(struct rvt_qp *qp, u64 v)
424 {
425         unsigned int *qp_inuse = (unsigned int *)v;
426         struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
427
428         /* Reset the qp and remove it from the qp hash list */
429         rvt_reset_qp(rdi, qp, qp->ibqp.qp_type);
430
431         /* Increment the qp_inuse count */
432         (*qp_inuse)++;
433 }
434
435 /**
436  * rvt_free_all_qps - check for QPs still in use
437  * @rdi: rvt device info structure
438  *
439  * There should not be any QPs still in use.
440  * Free memory for table.
441  * Return the number of QPs still in use.
442  */
443 static unsigned rvt_free_all_qps(struct rvt_dev_info *rdi)
444 {
445         unsigned int qp_inuse = 0;
446
447         qp_inuse += rvt_mcast_tree_empty(rdi);
448
449         rvt_qp_iter(rdi, (u64)&qp_inuse, rvt_free_qp_cb);
450
451         return qp_inuse;
452 }
453
454 /**
455  * rvt_qp_exit - clean up qps on device exit
456  * @rdi: rvt dev structure
457  *
458  * Check for qp leaks and free resources.
459  */
460 void rvt_qp_exit(struct rvt_dev_info *rdi)
461 {
462         u32 qps_inuse = rvt_free_all_qps(rdi);
463
464         if (qps_inuse)
465                 rvt_pr_err(rdi, "QP memory leak! %u still in use\n",
466                            qps_inuse);
467
468         kfree(rdi->qp_dev->qp_table);
469         free_qpn_table(&rdi->qp_dev->qpn_table);
470         kfree(rdi->qp_dev);
471 }
472
473 static inline unsigned mk_qpn(struct rvt_qpn_table *qpt,
474                               struct rvt_qpn_map *map, unsigned off)
475 {
476         return (map - qpt->map) * RVT_BITS_PER_PAGE + off;
477 }
478
479 /**
480  * alloc_qpn - Allocate the next available qpn or zero/one for QP type
481  *             IB_QPT_SMI/IB_QPT_GSI
482  * @rdi: rvt device info structure
483  * @qpt: queue pair number table pointer
484  * @type: the QP type
485  * @port_num: IB port number, 1 based, comes from core
486  * @exclude_prefix: prefix of special queue pair number being allocated
487  *
488  * Return: The queue pair number
489  */
490 static int alloc_qpn(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt,
491                      enum ib_qp_type type, u8 port_num, u8 exclude_prefix)
492 {
493         u32 i, offset, max_scan, qpn;
494         struct rvt_qpn_map *map;
495         u32 ret;
496         u32 max_qpn = exclude_prefix == RVT_AIP_QP_PREFIX ?
497                 RVT_AIP_QPN_MAX : RVT_QPN_MAX;
498
499         if (rdi->driver_f.alloc_qpn)
500                 return rdi->driver_f.alloc_qpn(rdi, qpt, type, port_num);
501
502         if (type == IB_QPT_SMI || type == IB_QPT_GSI) {
503                 unsigned n;
504
505                 ret = type == IB_QPT_GSI;
506                 n = 1 << (ret + 2 * (port_num - 1));
507                 spin_lock(&qpt->lock);
508                 if (qpt->flags & n)
509                         ret = -EINVAL;
510                 else
511                         qpt->flags |= n;
512                 spin_unlock(&qpt->lock);
513                 goto bail;
514         }
515
516         qpn = qpt->last + qpt->incr;
517         if (qpn >= max_qpn)
518                 qpn = qpt->incr | ((qpt->last & 1) ^ 1);
519         /* offset carries bit 0 */
520         offset = qpn & RVT_BITS_PER_PAGE_MASK;
521         map = &qpt->map[qpn / RVT_BITS_PER_PAGE];
522         max_scan = qpt->nmaps - !offset;
523         for (i = 0;;) {
524                 if (unlikely(!map->page)) {
525                         get_map_page(qpt, map);
526                         if (unlikely(!map->page))
527                                 break;
528                 }
529                 do {
530                         if (!test_and_set_bit(offset, map->page)) {
531                                 qpt->last = qpn;
532                                 ret = qpn;
533                                 goto bail;
534                         }
535                         offset += qpt->incr;
536                         /*
537                          * This qpn might be bogus if offset >= BITS_PER_PAGE.
538                          * That is OK.   It gets re-assigned below
539                          */
540                         qpn = mk_qpn(qpt, map, offset);
541                 } while (offset < RVT_BITS_PER_PAGE && qpn < RVT_QPN_MAX);
542                 /*
543                  * In order to keep the number of pages allocated to a
544                  * minimum, we scan the all existing pages before increasing
545                  * the size of the bitmap table.
546                  */
547                 if (++i > max_scan) {
548                         if (qpt->nmaps == RVT_QPNMAP_ENTRIES)
549                                 break;
550                         map = &qpt->map[qpt->nmaps++];
551                         /* start at incr with current bit 0 */
552                         offset = qpt->incr | (offset & 1);
553                 } else if (map < &qpt->map[qpt->nmaps]) {
554                         ++map;
555                         /* start at incr with current bit 0 */
556                         offset = qpt->incr | (offset & 1);
557                 } else {
558                         map = &qpt->map[0];
559                         /* wrap to first map page, invert bit 0 */
560                         offset = qpt->incr | ((offset & 1) ^ 1);
561                 }
562                 /* there can be no set bits in low-order QoS bits */
563                 WARN_ON(rdi->dparms.qos_shift > 1 &&
564                         offset & ((BIT(rdi->dparms.qos_shift - 1) - 1) << 1));
565                 qpn = mk_qpn(qpt, map, offset);
566         }
567
568         ret = -ENOMEM;
569
570 bail:
571         return ret;
572 }
573
574 /**
575  * rvt_clear_mr_refs - Drop help mr refs
576  * @qp: rvt qp data structure
577  * @clr_sends: If shoudl clear send side or not
578  */
579 static void rvt_clear_mr_refs(struct rvt_qp *qp, int clr_sends)
580 {
581         unsigned n;
582         struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
583
584         if (test_and_clear_bit(RVT_R_REWIND_SGE, &qp->r_aflags))
585                 rvt_put_ss(&qp->s_rdma_read_sge);
586
587         rvt_put_ss(&qp->r_sge);
588
589         if (clr_sends) {
590                 while (qp->s_last != qp->s_head) {
591                         struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, qp->s_last);
592
593                         rvt_put_qp_swqe(qp, wqe);
594                         if (++qp->s_last >= qp->s_size)
595                                 qp->s_last = 0;
596                         smp_wmb(); /* see qp_set_savail */
597                 }
598                 if (qp->s_rdma_mr) {
599                         rvt_put_mr(qp->s_rdma_mr);
600                         qp->s_rdma_mr = NULL;
601                 }
602         }
603
604         for (n = 0; qp->s_ack_queue && n < rvt_max_atomic(rdi); n++) {
605                 struct rvt_ack_entry *e = &qp->s_ack_queue[n];
606
607                 if (e->rdma_sge.mr) {
608                         rvt_put_mr(e->rdma_sge.mr);
609                         e->rdma_sge.mr = NULL;
610                 }
611         }
612 }
613
614 /**
615  * rvt_swqe_has_lkey - return true if lkey is used by swqe
616  * @wqe: the send wqe
617  * @lkey: the lkey
618  *
619  * Test the swqe for using lkey
620  */
621 static bool rvt_swqe_has_lkey(struct rvt_swqe *wqe, u32 lkey)
622 {
623         int i;
624
625         for (i = 0; i < wqe->wr.num_sge; i++) {
626                 struct rvt_sge *sge = &wqe->sg_list[i];
627
628                 if (rvt_mr_has_lkey(sge->mr, lkey))
629                         return true;
630         }
631         return false;
632 }
633
634 /**
635  * rvt_qp_sends_has_lkey - return true is qp sends use lkey
636  * @qp: the rvt_qp
637  * @lkey: the lkey
638  */
639 static bool rvt_qp_sends_has_lkey(struct rvt_qp *qp, u32 lkey)
640 {
641         u32 s_last = qp->s_last;
642
643         while (s_last != qp->s_head) {
644                 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, s_last);
645
646                 if (rvt_swqe_has_lkey(wqe, lkey))
647                         return true;
648
649                 if (++s_last >= qp->s_size)
650                         s_last = 0;
651         }
652         if (qp->s_rdma_mr)
653                 if (rvt_mr_has_lkey(qp->s_rdma_mr, lkey))
654                         return true;
655         return false;
656 }
657
658 /**
659  * rvt_qp_acks_has_lkey - return true if acks have lkey
660  * @qp: the qp
661  * @lkey: the lkey
662  */
663 static bool rvt_qp_acks_has_lkey(struct rvt_qp *qp, u32 lkey)
664 {
665         int i;
666         struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
667
668         for (i = 0; qp->s_ack_queue && i < rvt_max_atomic(rdi); i++) {
669                 struct rvt_ack_entry *e = &qp->s_ack_queue[i];
670
671                 if (rvt_mr_has_lkey(e->rdma_sge.mr, lkey))
672                         return true;
673         }
674         return false;
675 }
676
677 /**
678  * rvt_qp_mr_clean - clean up remote ops for lkey
679  * @qp: the qp
680  * @lkey: the lkey that is being de-registered
681  *
682  * This routine checks if the lkey is being used by
683  * the qp.
684  *
685  * If so, the qp is put into an error state to elminate
686  * any references from the qp.
687  */
688 void rvt_qp_mr_clean(struct rvt_qp *qp, u32 lkey)
689 {
690         bool lastwqe = false;
691
692         if (qp->ibqp.qp_type == IB_QPT_SMI ||
693             qp->ibqp.qp_type == IB_QPT_GSI)
694                 /* avoid special QPs */
695                 return;
696         spin_lock_irq(&qp->r_lock);
697         spin_lock(&qp->s_hlock);
698         spin_lock(&qp->s_lock);
699
700         if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
701                 goto check_lwqe;
702
703         if (rvt_ss_has_lkey(&qp->r_sge, lkey) ||
704             rvt_qp_sends_has_lkey(qp, lkey) ||
705             rvt_qp_acks_has_lkey(qp, lkey))
706                 lastwqe = rvt_error_qp(qp, IB_WC_LOC_PROT_ERR);
707 check_lwqe:
708         spin_unlock(&qp->s_lock);
709         spin_unlock(&qp->s_hlock);
710         spin_unlock_irq(&qp->r_lock);
711         if (lastwqe) {
712                 struct ib_event ev;
713
714                 ev.device = qp->ibqp.device;
715                 ev.element.qp = &qp->ibqp;
716                 ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
717                 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
718         }
719 }
720
721 /**
722  * rvt_remove_qp - remove qp form table
723  * @rdi: rvt dev struct
724  * @qp: qp to remove
725  *
726  * Remove the QP from the table so it can't be found asynchronously by
727  * the receive routine.
728  */
729 static void rvt_remove_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
730 {
731         struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
732         u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
733         unsigned long flags;
734         int removed = 1;
735
736         spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
737
738         if (rcu_dereference_protected(rvp->qp[0],
739                         lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
740                 RCU_INIT_POINTER(rvp->qp[0], NULL);
741         } else if (rcu_dereference_protected(rvp->qp[1],
742                         lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
743                 RCU_INIT_POINTER(rvp->qp[1], NULL);
744         } else {
745                 struct rvt_qp *q;
746                 struct rvt_qp __rcu **qpp;
747
748                 removed = 0;
749                 qpp = &rdi->qp_dev->qp_table[n];
750                 for (; (q = rcu_dereference_protected(*qpp,
751                         lockdep_is_held(&rdi->qp_dev->qpt_lock))) != NULL;
752                         qpp = &q->next) {
753                         if (q == qp) {
754                                 RCU_INIT_POINTER(*qpp,
755                                      rcu_dereference_protected(qp->next,
756                                      lockdep_is_held(&rdi->qp_dev->qpt_lock)));
757                                 removed = 1;
758                                 trace_rvt_qpremove(qp, n);
759                                 break;
760                         }
761                 }
762         }
763
764         spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
765         if (removed) {
766                 synchronize_rcu();
767                 rvt_put_qp(qp);
768         }
769 }
770
771 /**
772  * rvt_alloc_rq - allocate memory for user or kernel buffer
773  * @rq: receive queue data structure
774  * @size: number of request queue entries
775  * @node: The NUMA node
776  * @udata: True if user data is available or not false
777  *
778  * Return: If memory allocation failed, return -ENONEM
779  * This function is used by both shared receive
780  * queues and non-shared receive queues to allocate
781  * memory.
782  */
783 int rvt_alloc_rq(struct rvt_rq *rq, u32 size, int node,
784                  struct ib_udata *udata)
785 {
786         if (udata) {
787                 rq->wq = vmalloc_user(sizeof(struct rvt_rwq) + size);
788                 if (!rq->wq)
789                         goto bail;
790                 /* need kwq with no buffers */
791                 rq->kwq = kzalloc_node(sizeof(*rq->kwq), GFP_KERNEL, node);
792                 if (!rq->kwq)
793                         goto bail;
794                 rq->kwq->curr_wq = rq->wq->wq;
795         } else {
796                 /* need kwq with buffers */
797                 rq->kwq =
798                         vzalloc_node(sizeof(struct rvt_krwq) + size, node);
799                 if (!rq->kwq)
800                         goto bail;
801                 rq->kwq->curr_wq = rq->kwq->wq;
802         }
803
804         spin_lock_init(&rq->kwq->p_lock);
805         spin_lock_init(&rq->kwq->c_lock);
806         return 0;
807 bail:
808         rvt_free_rq(rq);
809         return -ENOMEM;
810 }
811
812 /**
813  * rvt_init_qp - initialize the QP state to the reset state
814  * @rdi: rvt dev struct
815  * @qp: the QP to init or reinit
816  * @type: the QP type
817  *
818  * This function is called from both rvt_create_qp() and
819  * rvt_reset_qp().   The difference is that the reset
820  * patch the necessary locks to protect against concurent
821  * access.
822  */
823 static void rvt_init_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
824                         enum ib_qp_type type)
825 {
826         qp->remote_qpn = 0;
827         qp->qkey = 0;
828         qp->qp_access_flags = 0;
829         qp->s_flags &= RVT_S_SIGNAL_REQ_WR;
830         qp->s_hdrwords = 0;
831         qp->s_wqe = NULL;
832         qp->s_draining = 0;
833         qp->s_next_psn = 0;
834         qp->s_last_psn = 0;
835         qp->s_sending_psn = 0;
836         qp->s_sending_hpsn = 0;
837         qp->s_psn = 0;
838         qp->r_psn = 0;
839         qp->r_msn = 0;
840         if (type == IB_QPT_RC) {
841                 qp->s_state = IB_OPCODE_RC_SEND_LAST;
842                 qp->r_state = IB_OPCODE_RC_SEND_LAST;
843         } else {
844                 qp->s_state = IB_OPCODE_UC_SEND_LAST;
845                 qp->r_state = IB_OPCODE_UC_SEND_LAST;
846         }
847         qp->s_ack_state = IB_OPCODE_RC_ACKNOWLEDGE;
848         qp->r_nak_state = 0;
849         qp->r_aflags = 0;
850         qp->r_flags = 0;
851         qp->s_head = 0;
852         qp->s_tail = 0;
853         qp->s_cur = 0;
854         qp->s_acked = 0;
855         qp->s_last = 0;
856         qp->s_ssn = 1;
857         qp->s_lsn = 0;
858         qp->s_mig_state = IB_MIG_MIGRATED;
859         qp->r_head_ack_queue = 0;
860         qp->s_tail_ack_queue = 0;
861         qp->s_acked_ack_queue = 0;
862         qp->s_num_rd_atomic = 0;
863         qp->r_sge.num_sge = 0;
864         atomic_set(&qp->s_reserved_used, 0);
865 }
866
867 /**
868  * _rvt_reset_qp - initialize the QP state to the reset state
869  * @rdi: rvt dev struct
870  * @qp: the QP to reset
871  * @type: the QP type
872  *
873  * r_lock, s_hlock, and s_lock are required to be held by the caller
874  */
875 static void _rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
876                           enum ib_qp_type type)
877         __must_hold(&qp->s_lock)
878         __must_hold(&qp->s_hlock)
879         __must_hold(&qp->r_lock)
880 {
881         lockdep_assert_held(&qp->r_lock);
882         lockdep_assert_held(&qp->s_hlock);
883         lockdep_assert_held(&qp->s_lock);
884         if (qp->state != IB_QPS_RESET) {
885                 qp->state = IB_QPS_RESET;
886
887                 /* Let drivers flush their waitlist */
888                 rdi->driver_f.flush_qp_waiters(qp);
889                 rvt_stop_rc_timers(qp);
890                 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_ANY_WAIT);
891                 spin_unlock(&qp->s_lock);
892                 spin_unlock(&qp->s_hlock);
893                 spin_unlock_irq(&qp->r_lock);
894
895                 /* Stop the send queue and the retry timer */
896                 rdi->driver_f.stop_send_queue(qp);
897                 rvt_del_timers_sync(qp);
898                 /* Wait for things to stop */
899                 rdi->driver_f.quiesce_qp(qp);
900
901                 /* take qp out the hash and wait for it to be unused */
902                 rvt_remove_qp(rdi, qp);
903
904                 /* grab the lock b/c it was locked at call time */
905                 spin_lock_irq(&qp->r_lock);
906                 spin_lock(&qp->s_hlock);
907                 spin_lock(&qp->s_lock);
908
909                 rvt_clear_mr_refs(qp, 1);
910                 /*
911                  * Let the driver do any tear down or re-init it needs to for
912                  * a qp that has been reset
913                  */
914                 rdi->driver_f.notify_qp_reset(qp);
915         }
916         rvt_init_qp(rdi, qp, type);
917         lockdep_assert_held(&qp->r_lock);
918         lockdep_assert_held(&qp->s_hlock);
919         lockdep_assert_held(&qp->s_lock);
920 }
921
922 /**
923  * rvt_reset_qp - initialize the QP state to the reset state
924  * @rdi: the device info
925  * @qp: the QP to reset
926  * @type: the QP type
927  *
928  * This is the wrapper function to acquire the r_lock, s_hlock, and s_lock
929  * before calling _rvt_reset_qp().
930  */
931 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
932                          enum ib_qp_type type)
933 {
934         spin_lock_irq(&qp->r_lock);
935         spin_lock(&qp->s_hlock);
936         spin_lock(&qp->s_lock);
937         _rvt_reset_qp(rdi, qp, type);
938         spin_unlock(&qp->s_lock);
939         spin_unlock(&qp->s_hlock);
940         spin_unlock_irq(&qp->r_lock);
941 }
942
943 /**
944  * rvt_free_qpn - Free a qpn from the bit map
945  * @qpt: QP table
946  * @qpn: queue pair number to free
947  */
948 static void rvt_free_qpn(struct rvt_qpn_table *qpt, u32 qpn)
949 {
950         struct rvt_qpn_map *map;
951
952         if ((qpn & RVT_AIP_QP_PREFIX_MASK) == RVT_AIP_QP_BASE)
953                 qpn &= RVT_AIP_QP_SUFFIX;
954
955         map = qpt->map + (qpn & RVT_QPN_MASK) / RVT_BITS_PER_PAGE;
956         if (map->page)
957                 clear_bit(qpn & RVT_BITS_PER_PAGE_MASK, map->page);
958 }
959
960 /**
961  * get_allowed_ops - Given a QP type return the appropriate allowed OP
962  * @type: valid, supported, QP type
963  */
964 static u8 get_allowed_ops(enum ib_qp_type type)
965 {
966         return type == IB_QPT_RC ? IB_OPCODE_RC : type == IB_QPT_UC ?
967                 IB_OPCODE_UC : IB_OPCODE_UD;
968 }
969
970 /**
971  * free_ud_wq_attr - Clean up AH attribute cache for UD QPs
972  * @qp: Valid QP with allowed_ops set
973  *
974  * The rvt_swqe data structure being used is a union, so this is
975  * only valid for UD QPs.
976  */
977 static void free_ud_wq_attr(struct rvt_qp *qp)
978 {
979         struct rvt_swqe *wqe;
980         int i;
981
982         for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) {
983                 wqe = rvt_get_swqe_ptr(qp, i);
984                 kfree(wqe->ud_wr.attr);
985                 wqe->ud_wr.attr = NULL;
986         }
987 }
988
989 /**
990  * alloc_ud_wq_attr - AH attribute cache for UD QPs
991  * @qp: Valid QP with allowed_ops set
992  * @node: Numa node for allocation
993  *
994  * The rvt_swqe data structure being used is a union, so this is
995  * only valid for UD QPs.
996  */
997 static int alloc_ud_wq_attr(struct rvt_qp *qp, int node)
998 {
999         struct rvt_swqe *wqe;
1000         int i;
1001
1002         for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) {
1003                 wqe = rvt_get_swqe_ptr(qp, i);
1004                 wqe->ud_wr.attr = kzalloc_node(sizeof(*wqe->ud_wr.attr),
1005                                                GFP_KERNEL, node);
1006                 if (!wqe->ud_wr.attr) {
1007                         free_ud_wq_attr(qp);
1008                         return -ENOMEM;
1009                 }
1010         }
1011
1012         return 0;
1013 }
1014
1015 /**
1016  * rvt_create_qp - create a queue pair for a device
1017  * @ibqp: the queue pair
1018  * @init_attr: the attributes of the queue pair
1019  * @udata: user data for libibverbs.so
1020  *
1021  * Queue pair creation is mostly an rvt issue. However, drivers have their own
1022  * unique idea of what queue pair numbers mean. For instance there is a reserved
1023  * range for PSM.
1024  *
1025  * Return: 0 on success, otherwise returns an errno.
1026  *
1027  * Called by the ib_create_qp() core verbs function.
1028  */
1029 int rvt_create_qp(struct ib_qp *ibqp, struct ib_qp_init_attr *init_attr,
1030                   struct ib_udata *udata)
1031 {
1032         struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1033         int ret = -ENOMEM;
1034         struct rvt_swqe *swq = NULL;
1035         size_t sz;
1036         size_t sg_list_sz = 0;
1037         struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1038         void *priv = NULL;
1039         size_t sqsize;
1040         u8 exclude_prefix = 0;
1041
1042         if (!rdi)
1043                 return -EINVAL;
1044
1045         if (init_attr->create_flags & ~IB_QP_CREATE_NETDEV_USE)
1046                 return -EOPNOTSUPP;
1047
1048         if (init_attr->cap.max_send_sge > rdi->dparms.props.max_send_sge ||
1049             init_attr->cap.max_send_wr > rdi->dparms.props.max_qp_wr)
1050                 return -EINVAL;
1051
1052         /* Check receive queue parameters if no SRQ is specified. */
1053         if (!init_attr->srq) {
1054                 if (init_attr->cap.max_recv_sge >
1055                     rdi->dparms.props.max_recv_sge ||
1056                     init_attr->cap.max_recv_wr > rdi->dparms.props.max_qp_wr)
1057                         return -EINVAL;
1058
1059                 if (init_attr->cap.max_send_sge +
1060                     init_attr->cap.max_send_wr +
1061                     init_attr->cap.max_recv_sge +
1062                     init_attr->cap.max_recv_wr == 0)
1063                         return -EINVAL;
1064         }
1065         sqsize =
1066                 init_attr->cap.max_send_wr + 1 +
1067                 rdi->dparms.reserved_operations;
1068         switch (init_attr->qp_type) {
1069         case IB_QPT_SMI:
1070         case IB_QPT_GSI:
1071                 if (init_attr->port_num == 0 ||
1072                     init_attr->port_num > ibqp->device->phys_port_cnt)
1073                         return -EINVAL;
1074                 fallthrough;
1075         case IB_QPT_UC:
1076         case IB_QPT_RC:
1077         case IB_QPT_UD:
1078                 sz = struct_size(swq, sg_list, init_attr->cap.max_send_sge);
1079                 swq = vzalloc_node(array_size(sz, sqsize), rdi->dparms.node);
1080                 if (!swq)
1081                         return -ENOMEM;
1082
1083                 if (init_attr->srq) {
1084                         struct rvt_srq *srq = ibsrq_to_rvtsrq(init_attr->srq);
1085
1086                         if (srq->rq.max_sge > 1)
1087                                 sg_list_sz = sizeof(*qp->r_sg_list) *
1088                                         (srq->rq.max_sge - 1);
1089                 } else if (init_attr->cap.max_recv_sge > 1)
1090                         sg_list_sz = sizeof(*qp->r_sg_list) *
1091                                 (init_attr->cap.max_recv_sge - 1);
1092                 qp->r_sg_list =
1093                         kzalloc_node(sg_list_sz, GFP_KERNEL, rdi->dparms.node);
1094                 if (!qp->r_sg_list)
1095                         goto bail_qp;
1096                 qp->allowed_ops = get_allowed_ops(init_attr->qp_type);
1097
1098                 RCU_INIT_POINTER(qp->next, NULL);
1099                 if (init_attr->qp_type == IB_QPT_RC) {
1100                         qp->s_ack_queue =
1101                                 kcalloc_node(rvt_max_atomic(rdi),
1102                                              sizeof(*qp->s_ack_queue),
1103                                              GFP_KERNEL,
1104                                              rdi->dparms.node);
1105                         if (!qp->s_ack_queue)
1106                                 goto bail_qp;
1107                 }
1108                 /* initialize timers needed for rc qp */
1109                 timer_setup(&qp->s_timer, rvt_rc_timeout, 0);
1110                 hrtimer_init(&qp->s_rnr_timer, CLOCK_MONOTONIC,
1111                              HRTIMER_MODE_REL);
1112                 qp->s_rnr_timer.function = rvt_rc_rnr_retry;
1113
1114                 /*
1115                  * Driver needs to set up it's private QP structure and do any
1116                  * initialization that is needed.
1117                  */
1118                 priv = rdi->driver_f.qp_priv_alloc(rdi, qp);
1119                 if (IS_ERR(priv)) {
1120                         ret = PTR_ERR(priv);
1121                         goto bail_qp;
1122                 }
1123                 qp->priv = priv;
1124                 qp->timeout_jiffies =
1125                         usecs_to_jiffies((4096UL * (1UL << qp->timeout)) /
1126                                 1000UL);
1127                 if (init_attr->srq) {
1128                         sz = 0;
1129                 } else {
1130                         qp->r_rq.size = init_attr->cap.max_recv_wr + 1;
1131                         qp->r_rq.max_sge = init_attr->cap.max_recv_sge;
1132                         sz = (sizeof(struct ib_sge) * qp->r_rq.max_sge) +
1133                                 sizeof(struct rvt_rwqe);
1134                         ret = rvt_alloc_rq(&qp->r_rq, qp->r_rq.size * sz,
1135                                            rdi->dparms.node, udata);
1136                         if (ret)
1137                                 goto bail_driver_priv;
1138                 }
1139
1140                 /*
1141                  * ib_create_qp() will initialize qp->ibqp
1142                  * except for qp->ibqp.qp_num.
1143                  */
1144                 spin_lock_init(&qp->r_lock);
1145                 spin_lock_init(&qp->s_hlock);
1146                 spin_lock_init(&qp->s_lock);
1147                 atomic_set(&qp->refcount, 0);
1148                 atomic_set(&qp->local_ops_pending, 0);
1149                 init_waitqueue_head(&qp->wait);
1150                 INIT_LIST_HEAD(&qp->rspwait);
1151                 qp->state = IB_QPS_RESET;
1152                 qp->s_wq = swq;
1153                 qp->s_size = sqsize;
1154                 qp->s_avail = init_attr->cap.max_send_wr;
1155                 qp->s_max_sge = init_attr->cap.max_send_sge;
1156                 if (init_attr->sq_sig_type == IB_SIGNAL_REQ_WR)
1157                         qp->s_flags = RVT_S_SIGNAL_REQ_WR;
1158                 ret = alloc_ud_wq_attr(qp, rdi->dparms.node);
1159                 if (ret)
1160                         goto bail_rq_rvt;
1161
1162                 if (init_attr->create_flags & IB_QP_CREATE_NETDEV_USE)
1163                         exclude_prefix = RVT_AIP_QP_PREFIX;
1164
1165                 ret = alloc_qpn(rdi, &rdi->qp_dev->qpn_table,
1166                                 init_attr->qp_type,
1167                                 init_attr->port_num,
1168                                 exclude_prefix);
1169                 if (ret < 0)
1170                         goto bail_rq_wq;
1171
1172                 qp->ibqp.qp_num = ret;
1173                 if (init_attr->create_flags & IB_QP_CREATE_NETDEV_USE)
1174                         qp->ibqp.qp_num |= RVT_AIP_QP_BASE;
1175                 qp->port_num = init_attr->port_num;
1176                 rvt_init_qp(rdi, qp, init_attr->qp_type);
1177                 if (rdi->driver_f.qp_priv_init) {
1178                         ret = rdi->driver_f.qp_priv_init(rdi, qp, init_attr);
1179                         if (ret)
1180                                 goto bail_rq_wq;
1181                 }
1182                 break;
1183
1184         default:
1185                 /* Don't support raw QPs */
1186                 return -EOPNOTSUPP;
1187         }
1188
1189         init_attr->cap.max_inline_data = 0;
1190
1191         /*
1192          * Return the address of the RWQ as the offset to mmap.
1193          * See rvt_mmap() for details.
1194          */
1195         if (udata && udata->outlen >= sizeof(__u64)) {
1196                 if (!qp->r_rq.wq) {
1197                         __u64 offset = 0;
1198
1199                         ret = ib_copy_to_udata(udata, &offset,
1200                                                sizeof(offset));
1201                         if (ret)
1202                                 goto bail_qpn;
1203                 } else {
1204                         u32 s = sizeof(struct rvt_rwq) + qp->r_rq.size * sz;
1205
1206                         qp->ip = rvt_create_mmap_info(rdi, s, udata,
1207                                                       qp->r_rq.wq);
1208                         if (IS_ERR(qp->ip)) {
1209                                 ret = PTR_ERR(qp->ip);
1210                                 goto bail_qpn;
1211                         }
1212
1213                         ret = ib_copy_to_udata(udata, &qp->ip->offset,
1214                                                sizeof(qp->ip->offset));
1215                         if (ret)
1216                                 goto bail_ip;
1217                 }
1218                 qp->pid = current->pid;
1219         }
1220
1221         spin_lock(&rdi->n_qps_lock);
1222         if (rdi->n_qps_allocated == rdi->dparms.props.max_qp) {
1223                 spin_unlock(&rdi->n_qps_lock);
1224                 ret = -ENOMEM;
1225                 goto bail_ip;
1226         }
1227
1228         rdi->n_qps_allocated++;
1229         /*
1230          * Maintain a busy_jiffies variable that will be added to the timeout
1231          * period in mod_retry_timer and add_retry_timer. This busy jiffies
1232          * is scaled by the number of rc qps created for the device to reduce
1233          * the number of timeouts occurring when there is a large number of
1234          * qps. busy_jiffies is incremented every rc qp scaling interval.
1235          * The scaling interval is selected based on extensive performance
1236          * evaluation of targeted workloads.
1237          */
1238         if (init_attr->qp_type == IB_QPT_RC) {
1239                 rdi->n_rc_qps++;
1240                 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1241         }
1242         spin_unlock(&rdi->n_qps_lock);
1243
1244         if (qp->ip) {
1245                 spin_lock_irq(&rdi->pending_lock);
1246                 list_add(&qp->ip->pending_mmaps, &rdi->pending_mmaps);
1247                 spin_unlock_irq(&rdi->pending_lock);
1248         }
1249
1250         return 0;
1251
1252 bail_ip:
1253         if (qp->ip)
1254                 kref_put(&qp->ip->ref, rvt_release_mmap_info);
1255
1256 bail_qpn:
1257         rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1258
1259 bail_rq_wq:
1260         free_ud_wq_attr(qp);
1261
1262 bail_rq_rvt:
1263         rvt_free_rq(&qp->r_rq);
1264
1265 bail_driver_priv:
1266         rdi->driver_f.qp_priv_free(rdi, qp);
1267
1268 bail_qp:
1269         kfree(qp->s_ack_queue);
1270         kfree(qp->r_sg_list);
1271         vfree(swq);
1272         return ret;
1273 }
1274
1275 /**
1276  * rvt_error_qp - put a QP into the error state
1277  * @qp: the QP to put into the error state
1278  * @err: the receive completion error to signal if a RWQE is active
1279  *
1280  * Flushes both send and receive work queues.
1281  *
1282  * Return: true if last WQE event should be generated.
1283  * The QP r_lock and s_lock should be held and interrupts disabled.
1284  * If we are already in error state, just return.
1285  */
1286 int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err)
1287 {
1288         struct ib_wc wc;
1289         int ret = 0;
1290         struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
1291
1292         lockdep_assert_held(&qp->r_lock);
1293         lockdep_assert_held(&qp->s_lock);
1294         if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
1295                 goto bail;
1296
1297         qp->state = IB_QPS_ERR;
1298
1299         if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
1300                 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
1301                 del_timer(&qp->s_timer);
1302         }
1303
1304         if (qp->s_flags & RVT_S_ANY_WAIT_SEND)
1305                 qp->s_flags &= ~RVT_S_ANY_WAIT_SEND;
1306
1307         rdi->driver_f.notify_error_qp(qp);
1308
1309         /* Schedule the sending tasklet to drain the send work queue. */
1310         if (READ_ONCE(qp->s_last) != qp->s_head)
1311                 rdi->driver_f.schedule_send(qp);
1312
1313         rvt_clear_mr_refs(qp, 0);
1314
1315         memset(&wc, 0, sizeof(wc));
1316         wc.qp = &qp->ibqp;
1317         wc.opcode = IB_WC_RECV;
1318
1319         if (test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) {
1320                 wc.wr_id = qp->r_wr_id;
1321                 wc.status = err;
1322                 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1323         }
1324         wc.status = IB_WC_WR_FLUSH_ERR;
1325
1326         if (qp->r_rq.kwq) {
1327                 u32 head;
1328                 u32 tail;
1329                 struct rvt_rwq *wq = NULL;
1330                 struct rvt_krwq *kwq = NULL;
1331
1332                 spin_lock(&qp->r_rq.kwq->c_lock);
1333                 /* qp->ip used to validate if there is a  user buffer mmaped */
1334                 if (qp->ip) {
1335                         wq = qp->r_rq.wq;
1336                         head = RDMA_READ_UAPI_ATOMIC(wq->head);
1337                         tail = RDMA_READ_UAPI_ATOMIC(wq->tail);
1338                 } else {
1339                         kwq = qp->r_rq.kwq;
1340                         head = kwq->head;
1341                         tail = kwq->tail;
1342                 }
1343                 /* sanity check pointers before trusting them */
1344                 if (head >= qp->r_rq.size)
1345                         head = 0;
1346                 if (tail >= qp->r_rq.size)
1347                         tail = 0;
1348                 while (tail != head) {
1349                         wc.wr_id = rvt_get_rwqe_ptr(&qp->r_rq, tail)->wr_id;
1350                         if (++tail >= qp->r_rq.size)
1351                                 tail = 0;
1352                         rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1353                 }
1354                 if (qp->ip)
1355                         RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail);
1356                 else
1357                         kwq->tail = tail;
1358                 spin_unlock(&qp->r_rq.kwq->c_lock);
1359         } else if (qp->ibqp.event_handler) {
1360                 ret = 1;
1361         }
1362
1363 bail:
1364         return ret;
1365 }
1366 EXPORT_SYMBOL(rvt_error_qp);
1367
1368 /*
1369  * Put the QP into the hash table.
1370  * The hash table holds a reference to the QP.
1371  */
1372 static void rvt_insert_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
1373 {
1374         struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
1375         unsigned long flags;
1376
1377         rvt_get_qp(qp);
1378         spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
1379
1380         if (qp->ibqp.qp_num <= 1) {
1381                 rcu_assign_pointer(rvp->qp[qp->ibqp.qp_num], qp);
1382         } else {
1383                 u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
1384
1385                 qp->next = rdi->qp_dev->qp_table[n];
1386                 rcu_assign_pointer(rdi->qp_dev->qp_table[n], qp);
1387                 trace_rvt_qpinsert(qp, n);
1388         }
1389
1390         spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
1391 }
1392
1393 /**
1394  * rvt_modify_qp - modify the attributes of a queue pair
1395  * @ibqp: the queue pair who's attributes we're modifying
1396  * @attr: the new attributes
1397  * @attr_mask: the mask of attributes to modify
1398  * @udata: user data for libibverbs.so
1399  *
1400  * Return: 0 on success, otherwise returns an errno.
1401  */
1402 int rvt_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1403                   int attr_mask, struct ib_udata *udata)
1404 {
1405         struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1406         struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1407         enum ib_qp_state cur_state, new_state;
1408         struct ib_event ev;
1409         int lastwqe = 0;
1410         int mig = 0;
1411         int pmtu = 0; /* for gcc warning only */
1412         int opa_ah;
1413
1414         if (attr_mask & ~IB_QP_ATTR_STANDARD_BITS)
1415                 return -EOPNOTSUPP;
1416
1417         spin_lock_irq(&qp->r_lock);
1418         spin_lock(&qp->s_hlock);
1419         spin_lock(&qp->s_lock);
1420
1421         cur_state = attr_mask & IB_QP_CUR_STATE ?
1422                 attr->cur_qp_state : qp->state;
1423         new_state = attr_mask & IB_QP_STATE ? attr->qp_state : cur_state;
1424         opa_ah = rdma_cap_opa_ah(ibqp->device, qp->port_num);
1425
1426         if (!ib_modify_qp_is_ok(cur_state, new_state, ibqp->qp_type,
1427                                 attr_mask))
1428                 goto inval;
1429
1430         if (rdi->driver_f.check_modify_qp &&
1431             rdi->driver_f.check_modify_qp(qp, attr, attr_mask, udata))
1432                 goto inval;
1433
1434         if (attr_mask & IB_QP_AV) {
1435                 if (opa_ah) {
1436                         if (rdma_ah_get_dlid(&attr->ah_attr) >=
1437                                 opa_get_mcast_base(OPA_MCAST_NR))
1438                                 goto inval;
1439                 } else {
1440                         if (rdma_ah_get_dlid(&attr->ah_attr) >=
1441                                 be16_to_cpu(IB_MULTICAST_LID_BASE))
1442                                 goto inval;
1443                 }
1444
1445                 if (rvt_check_ah(qp->ibqp.device, &attr->ah_attr))
1446                         goto inval;
1447         }
1448
1449         if (attr_mask & IB_QP_ALT_PATH) {
1450                 if (opa_ah) {
1451                         if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1452                                 opa_get_mcast_base(OPA_MCAST_NR))
1453                                 goto inval;
1454                 } else {
1455                         if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1456                                 be16_to_cpu(IB_MULTICAST_LID_BASE))
1457                                 goto inval;
1458                 }
1459
1460                 if (rvt_check_ah(qp->ibqp.device, &attr->alt_ah_attr))
1461                         goto inval;
1462                 if (attr->alt_pkey_index >= rvt_get_npkeys(rdi))
1463                         goto inval;
1464         }
1465
1466         if (attr_mask & IB_QP_PKEY_INDEX)
1467                 if (attr->pkey_index >= rvt_get_npkeys(rdi))
1468                         goto inval;
1469
1470         if (attr_mask & IB_QP_MIN_RNR_TIMER)
1471                 if (attr->min_rnr_timer > 31)
1472                         goto inval;
1473
1474         if (attr_mask & IB_QP_PORT)
1475                 if (qp->ibqp.qp_type == IB_QPT_SMI ||
1476                     qp->ibqp.qp_type == IB_QPT_GSI ||
1477                     attr->port_num == 0 ||
1478                     attr->port_num > ibqp->device->phys_port_cnt)
1479                         goto inval;
1480
1481         if (attr_mask & IB_QP_DEST_QPN)
1482                 if (attr->dest_qp_num > RVT_QPN_MASK)
1483                         goto inval;
1484
1485         if (attr_mask & IB_QP_RETRY_CNT)
1486                 if (attr->retry_cnt > 7)
1487                         goto inval;
1488
1489         if (attr_mask & IB_QP_RNR_RETRY)
1490                 if (attr->rnr_retry > 7)
1491                         goto inval;
1492
1493         /*
1494          * Don't allow invalid path_mtu values.  OK to set greater
1495          * than the active mtu (or even the max_cap, if we have tuned
1496          * that to a small mtu.  We'll set qp->path_mtu
1497          * to the lesser of requested attribute mtu and active,
1498          * for packetizing messages.
1499          * Note that the QP port has to be set in INIT and MTU in RTR.
1500          */
1501         if (attr_mask & IB_QP_PATH_MTU) {
1502                 pmtu = rdi->driver_f.get_pmtu_from_attr(rdi, qp, attr);
1503                 if (pmtu < 0)
1504                         goto inval;
1505         }
1506
1507         if (attr_mask & IB_QP_PATH_MIG_STATE) {
1508                 if (attr->path_mig_state == IB_MIG_REARM) {
1509                         if (qp->s_mig_state == IB_MIG_ARMED)
1510                                 goto inval;
1511                         if (new_state != IB_QPS_RTS)
1512                                 goto inval;
1513                 } else if (attr->path_mig_state == IB_MIG_MIGRATED) {
1514                         if (qp->s_mig_state == IB_MIG_REARM)
1515                                 goto inval;
1516                         if (new_state != IB_QPS_RTS && new_state != IB_QPS_SQD)
1517                                 goto inval;
1518                         if (qp->s_mig_state == IB_MIG_ARMED)
1519                                 mig = 1;
1520                 } else {
1521                         goto inval;
1522                 }
1523         }
1524
1525         if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1526                 if (attr->max_dest_rd_atomic > rdi->dparms.max_rdma_atomic)
1527                         goto inval;
1528
1529         switch (new_state) {
1530         case IB_QPS_RESET:
1531                 if (qp->state != IB_QPS_RESET)
1532                         _rvt_reset_qp(rdi, qp, ibqp->qp_type);
1533                 break;
1534
1535         case IB_QPS_RTR:
1536                 /* Allow event to re-trigger if QP set to RTR more than once */
1537                 qp->r_flags &= ~RVT_R_COMM_EST;
1538                 qp->state = new_state;
1539                 break;
1540
1541         case IB_QPS_SQD:
1542                 qp->s_draining = qp->s_last != qp->s_cur;
1543                 qp->state = new_state;
1544                 break;
1545
1546         case IB_QPS_SQE:
1547                 if (qp->ibqp.qp_type == IB_QPT_RC)
1548                         goto inval;
1549                 qp->state = new_state;
1550                 break;
1551
1552         case IB_QPS_ERR:
1553                 lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
1554                 break;
1555
1556         default:
1557                 qp->state = new_state;
1558                 break;
1559         }
1560
1561         if (attr_mask & IB_QP_PKEY_INDEX)
1562                 qp->s_pkey_index = attr->pkey_index;
1563
1564         if (attr_mask & IB_QP_PORT)
1565                 qp->port_num = attr->port_num;
1566
1567         if (attr_mask & IB_QP_DEST_QPN)
1568                 qp->remote_qpn = attr->dest_qp_num;
1569
1570         if (attr_mask & IB_QP_SQ_PSN) {
1571                 qp->s_next_psn = attr->sq_psn & rdi->dparms.psn_modify_mask;
1572                 qp->s_psn = qp->s_next_psn;
1573                 qp->s_sending_psn = qp->s_next_psn;
1574                 qp->s_last_psn = qp->s_next_psn - 1;
1575                 qp->s_sending_hpsn = qp->s_last_psn;
1576         }
1577
1578         if (attr_mask & IB_QP_RQ_PSN)
1579                 qp->r_psn = attr->rq_psn & rdi->dparms.psn_modify_mask;
1580
1581         if (attr_mask & IB_QP_ACCESS_FLAGS)
1582                 qp->qp_access_flags = attr->qp_access_flags;
1583
1584         if (attr_mask & IB_QP_AV) {
1585                 rdma_replace_ah_attr(&qp->remote_ah_attr, &attr->ah_attr);
1586                 qp->s_srate = rdma_ah_get_static_rate(&attr->ah_attr);
1587                 qp->srate_mbps = ib_rate_to_mbps(qp->s_srate);
1588         }
1589
1590         if (attr_mask & IB_QP_ALT_PATH) {
1591                 rdma_replace_ah_attr(&qp->alt_ah_attr, &attr->alt_ah_attr);
1592                 qp->s_alt_pkey_index = attr->alt_pkey_index;
1593         }
1594
1595         if (attr_mask & IB_QP_PATH_MIG_STATE) {
1596                 qp->s_mig_state = attr->path_mig_state;
1597                 if (mig) {
1598                         qp->remote_ah_attr = qp->alt_ah_attr;
1599                         qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr);
1600                         qp->s_pkey_index = qp->s_alt_pkey_index;
1601                 }
1602         }
1603
1604         if (attr_mask & IB_QP_PATH_MTU) {
1605                 qp->pmtu = rdi->driver_f.mtu_from_qp(rdi, qp, pmtu);
1606                 qp->log_pmtu = ilog2(qp->pmtu);
1607         }
1608
1609         if (attr_mask & IB_QP_RETRY_CNT) {
1610                 qp->s_retry_cnt = attr->retry_cnt;
1611                 qp->s_retry = attr->retry_cnt;
1612         }
1613
1614         if (attr_mask & IB_QP_RNR_RETRY) {
1615                 qp->s_rnr_retry_cnt = attr->rnr_retry;
1616                 qp->s_rnr_retry = attr->rnr_retry;
1617         }
1618
1619         if (attr_mask & IB_QP_MIN_RNR_TIMER)
1620                 qp->r_min_rnr_timer = attr->min_rnr_timer;
1621
1622         if (attr_mask & IB_QP_TIMEOUT) {
1623                 qp->timeout = attr->timeout;
1624                 qp->timeout_jiffies = rvt_timeout_to_jiffies(qp->timeout);
1625         }
1626
1627         if (attr_mask & IB_QP_QKEY)
1628                 qp->qkey = attr->qkey;
1629
1630         if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1631                 qp->r_max_rd_atomic = attr->max_dest_rd_atomic;
1632
1633         if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC)
1634                 qp->s_max_rd_atomic = attr->max_rd_atomic;
1635
1636         if (rdi->driver_f.modify_qp)
1637                 rdi->driver_f.modify_qp(qp, attr, attr_mask, udata);
1638
1639         spin_unlock(&qp->s_lock);
1640         spin_unlock(&qp->s_hlock);
1641         spin_unlock_irq(&qp->r_lock);
1642
1643         if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT)
1644                 rvt_insert_qp(rdi, qp);
1645
1646         if (lastwqe) {
1647                 ev.device = qp->ibqp.device;
1648                 ev.element.qp = &qp->ibqp;
1649                 ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
1650                 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1651         }
1652         if (mig) {
1653                 ev.device = qp->ibqp.device;
1654                 ev.element.qp = &qp->ibqp;
1655                 ev.event = IB_EVENT_PATH_MIG;
1656                 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1657         }
1658         return 0;
1659
1660 inval:
1661         spin_unlock(&qp->s_lock);
1662         spin_unlock(&qp->s_hlock);
1663         spin_unlock_irq(&qp->r_lock);
1664         return -EINVAL;
1665 }
1666
1667 /**
1668  * rvt_destroy_qp - destroy a queue pair
1669  * @ibqp: the queue pair to destroy
1670  * @udata: unused by the driver
1671  *
1672  * Note that this can be called while the QP is actively sending or
1673  * receiving!
1674  *
1675  * Return: 0 on success.
1676  */
1677 int rvt_destroy_qp(struct ib_qp *ibqp, struct ib_udata *udata)
1678 {
1679         struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1680         struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1681
1682         rvt_reset_qp(rdi, qp, ibqp->qp_type);
1683
1684         wait_event(qp->wait, !atomic_read(&qp->refcount));
1685         /* qpn is now available for use again */
1686         rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1687
1688         spin_lock(&rdi->n_qps_lock);
1689         rdi->n_qps_allocated--;
1690         if (qp->ibqp.qp_type == IB_QPT_RC) {
1691                 rdi->n_rc_qps--;
1692                 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1693         }
1694         spin_unlock(&rdi->n_qps_lock);
1695
1696         if (qp->ip)
1697                 kref_put(&qp->ip->ref, rvt_release_mmap_info);
1698         kvfree(qp->r_rq.kwq);
1699         rdi->driver_f.qp_priv_free(rdi, qp);
1700         kfree(qp->s_ack_queue);
1701         kfree(qp->r_sg_list);
1702         rdma_destroy_ah_attr(&qp->remote_ah_attr);
1703         rdma_destroy_ah_attr(&qp->alt_ah_attr);
1704         free_ud_wq_attr(qp);
1705         vfree(qp->s_wq);
1706         return 0;
1707 }
1708
1709 /**
1710  * rvt_query_qp - query an ipbq
1711  * @ibqp: IB qp to query
1712  * @attr: attr struct to fill in
1713  * @attr_mask: attr mask ignored
1714  * @init_attr: struct to fill in
1715  *
1716  * Return: always 0
1717  */
1718 int rvt_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1719                  int attr_mask, struct ib_qp_init_attr *init_attr)
1720 {
1721         struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1722         struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1723
1724         attr->qp_state = qp->state;
1725         attr->cur_qp_state = attr->qp_state;
1726         attr->path_mtu = rdi->driver_f.mtu_to_path_mtu(qp->pmtu);
1727         attr->path_mig_state = qp->s_mig_state;
1728         attr->qkey = qp->qkey;
1729         attr->rq_psn = qp->r_psn & rdi->dparms.psn_mask;
1730         attr->sq_psn = qp->s_next_psn & rdi->dparms.psn_mask;
1731         attr->dest_qp_num = qp->remote_qpn;
1732         attr->qp_access_flags = qp->qp_access_flags;
1733         attr->cap.max_send_wr = qp->s_size - 1 -
1734                 rdi->dparms.reserved_operations;
1735         attr->cap.max_recv_wr = qp->ibqp.srq ? 0 : qp->r_rq.size - 1;
1736         attr->cap.max_send_sge = qp->s_max_sge;
1737         attr->cap.max_recv_sge = qp->r_rq.max_sge;
1738         attr->cap.max_inline_data = 0;
1739         attr->ah_attr = qp->remote_ah_attr;
1740         attr->alt_ah_attr = qp->alt_ah_attr;
1741         attr->pkey_index = qp->s_pkey_index;
1742         attr->alt_pkey_index = qp->s_alt_pkey_index;
1743         attr->en_sqd_async_notify = 0;
1744         attr->sq_draining = qp->s_draining;
1745         attr->max_rd_atomic = qp->s_max_rd_atomic;
1746         attr->max_dest_rd_atomic = qp->r_max_rd_atomic;
1747         attr->min_rnr_timer = qp->r_min_rnr_timer;
1748         attr->port_num = qp->port_num;
1749         attr->timeout = qp->timeout;
1750         attr->retry_cnt = qp->s_retry_cnt;
1751         attr->rnr_retry = qp->s_rnr_retry_cnt;
1752         attr->alt_port_num =
1753                 rdma_ah_get_port_num(&qp->alt_ah_attr);
1754         attr->alt_timeout = qp->alt_timeout;
1755
1756         init_attr->event_handler = qp->ibqp.event_handler;
1757         init_attr->qp_context = qp->ibqp.qp_context;
1758         init_attr->send_cq = qp->ibqp.send_cq;
1759         init_attr->recv_cq = qp->ibqp.recv_cq;
1760         init_attr->srq = qp->ibqp.srq;
1761         init_attr->cap = attr->cap;
1762         if (qp->s_flags & RVT_S_SIGNAL_REQ_WR)
1763                 init_attr->sq_sig_type = IB_SIGNAL_REQ_WR;
1764         else
1765                 init_attr->sq_sig_type = IB_SIGNAL_ALL_WR;
1766         init_attr->qp_type = qp->ibqp.qp_type;
1767         init_attr->port_num = qp->port_num;
1768         return 0;
1769 }
1770
1771 /**
1772  * rvt_post_recv - post a receive on a QP
1773  * @ibqp: the QP to post the receive on
1774  * @wr: the WR to post
1775  * @bad_wr: the first bad WR is put here
1776  *
1777  * This may be called from interrupt context.
1778  *
1779  * Return: 0 on success otherwise errno
1780  */
1781 int rvt_post_recv(struct ib_qp *ibqp, const struct ib_recv_wr *wr,
1782                   const struct ib_recv_wr **bad_wr)
1783 {
1784         struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1785         struct rvt_krwq *wq = qp->r_rq.kwq;
1786         unsigned long flags;
1787         int qp_err_flush = (ib_rvt_state_ops[qp->state] & RVT_FLUSH_RECV) &&
1788                                 !qp->ibqp.srq;
1789
1790         /* Check that state is OK to post receive. */
1791         if (!(ib_rvt_state_ops[qp->state] & RVT_POST_RECV_OK) || !wq) {
1792                 *bad_wr = wr;
1793                 return -EINVAL;
1794         }
1795
1796         for (; wr; wr = wr->next) {
1797                 struct rvt_rwqe *wqe;
1798                 u32 next;
1799                 int i;
1800
1801                 if ((unsigned)wr->num_sge > qp->r_rq.max_sge) {
1802                         *bad_wr = wr;
1803                         return -EINVAL;
1804                 }
1805
1806                 spin_lock_irqsave(&qp->r_rq.kwq->p_lock, flags);
1807                 next = wq->head + 1;
1808                 if (next >= qp->r_rq.size)
1809                         next = 0;
1810                 if (next == READ_ONCE(wq->tail)) {
1811                         spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags);
1812                         *bad_wr = wr;
1813                         return -ENOMEM;
1814                 }
1815                 if (unlikely(qp_err_flush)) {
1816                         struct ib_wc wc;
1817
1818                         memset(&wc, 0, sizeof(wc));
1819                         wc.qp = &qp->ibqp;
1820                         wc.opcode = IB_WC_RECV;
1821                         wc.wr_id = wr->wr_id;
1822                         wc.status = IB_WC_WR_FLUSH_ERR;
1823                         rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1824                 } else {
1825                         wqe = rvt_get_rwqe_ptr(&qp->r_rq, wq->head);
1826                         wqe->wr_id = wr->wr_id;
1827                         wqe->num_sge = wr->num_sge;
1828                         for (i = 0; i < wr->num_sge; i++) {
1829                                 wqe->sg_list[i].addr = wr->sg_list[i].addr;
1830                                 wqe->sg_list[i].length = wr->sg_list[i].length;
1831                                 wqe->sg_list[i].lkey = wr->sg_list[i].lkey;
1832                         }
1833                         /*
1834                          * Make sure queue entry is written
1835                          * before the head index.
1836                          */
1837                         smp_store_release(&wq->head, next);
1838                 }
1839                 spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags);
1840         }
1841         return 0;
1842 }
1843
1844 /**
1845  * rvt_qp_valid_operation - validate post send wr request
1846  * @qp: the qp
1847  * @post_parms: the post send table for the driver
1848  * @wr: the work request
1849  *
1850  * The routine validates the operation based on the
1851  * validation table an returns the length of the operation
1852  * which can extend beyond the ib_send_bw.  Operation
1853  * dependent flags key atomic operation validation.
1854  *
1855  * There is an exception for UD qps that validates the pd and
1856  * overrides the length to include the additional UD specific
1857  * length.
1858  *
1859  * Returns a negative error or the length of the work request
1860  * for building the swqe.
1861  */
1862 static inline int rvt_qp_valid_operation(
1863         struct rvt_qp *qp,
1864         const struct rvt_operation_params *post_parms,
1865         const struct ib_send_wr *wr)
1866 {
1867         int len;
1868
1869         if (wr->opcode >= RVT_OPERATION_MAX || !post_parms[wr->opcode].length)
1870                 return -EINVAL;
1871         if (!(post_parms[wr->opcode].qpt_support & BIT(qp->ibqp.qp_type)))
1872                 return -EINVAL;
1873         if ((post_parms[wr->opcode].flags & RVT_OPERATION_PRIV) &&
1874             ibpd_to_rvtpd(qp->ibqp.pd)->user)
1875                 return -EINVAL;
1876         if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC_SGE &&
1877             (wr->num_sge == 0 ||
1878              wr->sg_list[0].length < sizeof(u64) ||
1879              wr->sg_list[0].addr & (sizeof(u64) - 1)))
1880                 return -EINVAL;
1881         if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC &&
1882             !qp->s_max_rd_atomic)
1883                 return -EINVAL;
1884         len = post_parms[wr->opcode].length;
1885         /* UD specific */
1886         if (qp->ibqp.qp_type != IB_QPT_UC &&
1887             qp->ibqp.qp_type != IB_QPT_RC) {
1888                 if (qp->ibqp.pd != ud_wr(wr)->ah->pd)
1889                         return -EINVAL;
1890                 len = sizeof(struct ib_ud_wr);
1891         }
1892         return len;
1893 }
1894
1895 /**
1896  * rvt_qp_is_avail - determine queue capacity
1897  * @qp: the qp
1898  * @rdi: the rdmavt device
1899  * @reserved_op: is reserved operation
1900  *
1901  * This assumes the s_hlock is held but the s_last
1902  * qp variable is uncontrolled.
1903  *
1904  * For non reserved operations, the qp->s_avail
1905  * may be changed.
1906  *
1907  * The return value is zero or a -ENOMEM.
1908  */
1909 static inline int rvt_qp_is_avail(
1910         struct rvt_qp *qp,
1911         struct rvt_dev_info *rdi,
1912         bool reserved_op)
1913 {
1914         u32 slast;
1915         u32 avail;
1916         u32 reserved_used;
1917
1918         /* see rvt_qp_wqe_unreserve() */
1919         smp_mb__before_atomic();
1920         if (unlikely(reserved_op)) {
1921                 /* see rvt_qp_wqe_unreserve() */
1922                 reserved_used = atomic_read(&qp->s_reserved_used);
1923                 if (reserved_used >= rdi->dparms.reserved_operations)
1924                         return -ENOMEM;
1925                 return 0;
1926         }
1927         /* non-reserved operations */
1928         if (likely(qp->s_avail))
1929                 return 0;
1930         /* See rvt_qp_complete_swqe() */
1931         slast = smp_load_acquire(&qp->s_last);
1932         if (qp->s_head >= slast)
1933                 avail = qp->s_size - (qp->s_head - slast);
1934         else
1935                 avail = slast - qp->s_head;
1936
1937         reserved_used = atomic_read(&qp->s_reserved_used);
1938         avail =  avail - 1 -
1939                 (rdi->dparms.reserved_operations - reserved_used);
1940         /* insure we don't assign a negative s_avail */
1941         if ((s32)avail <= 0)
1942                 return -ENOMEM;
1943         qp->s_avail = avail;
1944         if (WARN_ON(qp->s_avail >
1945                     (qp->s_size - 1 - rdi->dparms.reserved_operations)))
1946                 rvt_pr_err(rdi,
1947                            "More avail entries than QP RB size.\nQP: %u, size: %u, avail: %u\nhead: %u, tail: %u, cur: %u, acked: %u, last: %u",
1948                            qp->ibqp.qp_num, qp->s_size, qp->s_avail,
1949                            qp->s_head, qp->s_tail, qp->s_cur,
1950                            qp->s_acked, qp->s_last);
1951         return 0;
1952 }
1953
1954 /**
1955  * rvt_post_one_wr - post one RC, UC, or UD send work request
1956  * @qp: the QP to post on
1957  * @wr: the work request to send
1958  * @call_send: kick the send engine into gear
1959  */
1960 static int rvt_post_one_wr(struct rvt_qp *qp,
1961                            const struct ib_send_wr *wr,
1962                            bool *call_send)
1963 {
1964         struct rvt_swqe *wqe;
1965         u32 next;
1966         int i;
1967         int j;
1968         int acc;
1969         struct rvt_lkey_table *rkt;
1970         struct rvt_pd *pd;
1971         struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
1972         u8 log_pmtu;
1973         int ret;
1974         size_t cplen;
1975         bool reserved_op;
1976         int local_ops_delayed = 0;
1977
1978         BUILD_BUG_ON(IB_QPT_MAX >= (sizeof(u32) * BITS_PER_BYTE));
1979
1980         /* IB spec says that num_sge == 0 is OK. */
1981         if (unlikely(wr->num_sge > qp->s_max_sge))
1982                 return -EINVAL;
1983
1984         ret = rvt_qp_valid_operation(qp, rdi->post_parms, wr);
1985         if (ret < 0)
1986                 return ret;
1987         cplen = ret;
1988
1989         /*
1990          * Local operations include fast register and local invalidate.
1991          * Fast register needs to be processed immediately because the
1992          * registered lkey may be used by following work requests and the
1993          * lkey needs to be valid at the time those requests are posted.
1994          * Local invalidate can be processed immediately if fencing is
1995          * not required and no previous local invalidate ops are pending.
1996          * Signaled local operations that have been processed immediately
1997          * need to have requests with "completion only" flags set posted
1998          * to the send queue in order to generate completions.
1999          */
2000         if ((rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) {
2001                 switch (wr->opcode) {
2002                 case IB_WR_REG_MR:
2003                         ret = rvt_fast_reg_mr(qp,
2004                                               reg_wr(wr)->mr,
2005                                               reg_wr(wr)->key,
2006                                               reg_wr(wr)->access);
2007                         if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
2008                                 return ret;
2009                         break;
2010                 case IB_WR_LOCAL_INV:
2011                         if ((wr->send_flags & IB_SEND_FENCE) ||
2012                             atomic_read(&qp->local_ops_pending)) {
2013                                 local_ops_delayed = 1;
2014                         } else {
2015                                 ret = rvt_invalidate_rkey(
2016                                         qp, wr->ex.invalidate_rkey);
2017                                 if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
2018                                         return ret;
2019                         }
2020                         break;
2021                 default:
2022                         return -EINVAL;
2023                 }
2024         }
2025
2026         reserved_op = rdi->post_parms[wr->opcode].flags &
2027                         RVT_OPERATION_USE_RESERVE;
2028         /* check for avail */
2029         ret = rvt_qp_is_avail(qp, rdi, reserved_op);
2030         if (ret)
2031                 return ret;
2032         next = qp->s_head + 1;
2033         if (next >= qp->s_size)
2034                 next = 0;
2035
2036         rkt = &rdi->lkey_table;
2037         pd = ibpd_to_rvtpd(qp->ibqp.pd);
2038         wqe = rvt_get_swqe_ptr(qp, qp->s_head);
2039
2040         /* cplen has length from above */
2041         memcpy(&wqe->ud_wr, wr, cplen);
2042
2043         wqe->length = 0;
2044         j = 0;
2045         if (wr->num_sge) {
2046                 struct rvt_sge *last_sge = NULL;
2047
2048                 acc = wr->opcode >= IB_WR_RDMA_READ ?
2049                         IB_ACCESS_LOCAL_WRITE : 0;
2050                 for (i = 0; i < wr->num_sge; i++) {
2051                         u32 length = wr->sg_list[i].length;
2052
2053                         if (length == 0)
2054                                 continue;
2055                         ret = rvt_lkey_ok(rkt, pd, &wqe->sg_list[j], last_sge,
2056                                           &wr->sg_list[i], acc);
2057                         if (unlikely(ret < 0))
2058                                 goto bail_inval_free;
2059                         wqe->length += length;
2060                         if (ret)
2061                                 last_sge = &wqe->sg_list[j];
2062                         j += ret;
2063                 }
2064                 wqe->wr.num_sge = j;
2065         }
2066
2067         /*
2068          * Calculate and set SWQE PSN values prior to handing it off
2069          * to the driver's check routine. This give the driver the
2070          * opportunity to adjust PSN values based on internal checks.
2071          */
2072         log_pmtu = qp->log_pmtu;
2073         if (qp->allowed_ops == IB_OPCODE_UD) {
2074                 struct rvt_ah *ah = rvt_get_swqe_ah(wqe);
2075
2076                 log_pmtu = ah->log_pmtu;
2077                 rdma_copy_ah_attr(wqe->ud_wr.attr, &ah->attr);
2078         }
2079
2080         if (rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL) {
2081                 if (local_ops_delayed)
2082                         atomic_inc(&qp->local_ops_pending);
2083                 else
2084                         wqe->wr.send_flags |= RVT_SEND_COMPLETION_ONLY;
2085                 wqe->ssn = 0;
2086                 wqe->psn = 0;
2087                 wqe->lpsn = 0;
2088         } else {
2089                 wqe->ssn = qp->s_ssn++;
2090                 wqe->psn = qp->s_next_psn;
2091                 wqe->lpsn = wqe->psn +
2092                                 (wqe->length ?
2093                                         ((wqe->length - 1) >> log_pmtu) :
2094                                         0);
2095         }
2096
2097         /* general part of wqe valid - allow for driver checks */
2098         if (rdi->driver_f.setup_wqe) {
2099                 ret = rdi->driver_f.setup_wqe(qp, wqe, call_send);
2100                 if (ret < 0)
2101                         goto bail_inval_free_ref;
2102         }
2103
2104         if (!(rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL))
2105                 qp->s_next_psn = wqe->lpsn + 1;
2106
2107         if (unlikely(reserved_op)) {
2108                 wqe->wr.send_flags |= RVT_SEND_RESERVE_USED;
2109                 rvt_qp_wqe_reserve(qp, wqe);
2110         } else {
2111                 wqe->wr.send_flags &= ~RVT_SEND_RESERVE_USED;
2112                 qp->s_avail--;
2113         }
2114         trace_rvt_post_one_wr(qp, wqe, wr->num_sge);
2115         smp_wmb(); /* see request builders */
2116         qp->s_head = next;
2117
2118         return 0;
2119
2120 bail_inval_free_ref:
2121         if (qp->allowed_ops == IB_OPCODE_UD)
2122                 rdma_destroy_ah_attr(wqe->ud_wr.attr);
2123 bail_inval_free:
2124         /* release mr holds */
2125         while (j) {
2126                 struct rvt_sge *sge = &wqe->sg_list[--j];
2127
2128                 rvt_put_mr(sge->mr);
2129         }
2130         return ret;
2131 }
2132
2133 /**
2134  * rvt_post_send - post a send on a QP
2135  * @ibqp: the QP to post the send on
2136  * @wr: the list of work requests to post
2137  * @bad_wr: the first bad WR is put here
2138  *
2139  * This may be called from interrupt context.
2140  *
2141  * Return: 0 on success else errno
2142  */
2143 int rvt_post_send(struct ib_qp *ibqp, const struct ib_send_wr *wr,
2144                   const struct ib_send_wr **bad_wr)
2145 {
2146         struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
2147         struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
2148         unsigned long flags = 0;
2149         bool call_send;
2150         unsigned nreq = 0;
2151         int err = 0;
2152
2153         spin_lock_irqsave(&qp->s_hlock, flags);
2154
2155         /*
2156          * Ensure QP state is such that we can send. If not bail out early,
2157          * there is no need to do this every time we post a send.
2158          */
2159         if (unlikely(!(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))) {
2160                 spin_unlock_irqrestore(&qp->s_hlock, flags);
2161                 return -EINVAL;
2162         }
2163
2164         /*
2165          * If the send queue is empty, and we only have a single WR then just go
2166          * ahead and kick the send engine into gear. Otherwise we will always
2167          * just schedule the send to happen later.
2168          */
2169         call_send = qp->s_head == READ_ONCE(qp->s_last) && !wr->next;
2170
2171         for (; wr; wr = wr->next) {
2172                 err = rvt_post_one_wr(qp, wr, &call_send);
2173                 if (unlikely(err)) {
2174                         *bad_wr = wr;
2175                         goto bail;
2176                 }
2177                 nreq++;
2178         }
2179 bail:
2180         spin_unlock_irqrestore(&qp->s_hlock, flags);
2181         if (nreq) {
2182                 /*
2183                  * Only call do_send if there is exactly one packet, and the
2184                  * driver said it was ok.
2185                  */
2186                 if (nreq == 1 && call_send)
2187                         rdi->driver_f.do_send(qp);
2188                 else
2189                         rdi->driver_f.schedule_send_no_lock(qp);
2190         }
2191         return err;
2192 }
2193
2194 /**
2195  * rvt_post_srq_recv - post a receive on a shared receive queue
2196  * @ibsrq: the SRQ to post the receive on
2197  * @wr: the list of work requests to post
2198  * @bad_wr: A pointer to the first WR to cause a problem is put here
2199  *
2200  * This may be called from interrupt context.
2201  *
2202  * Return: 0 on success else errno
2203  */
2204 int rvt_post_srq_recv(struct ib_srq *ibsrq, const struct ib_recv_wr *wr,
2205                       const struct ib_recv_wr **bad_wr)
2206 {
2207         struct rvt_srq *srq = ibsrq_to_rvtsrq(ibsrq);
2208         struct rvt_krwq *wq;
2209         unsigned long flags;
2210
2211         for (; wr; wr = wr->next) {
2212                 struct rvt_rwqe *wqe;
2213                 u32 next;
2214                 int i;
2215
2216                 if ((unsigned)wr->num_sge > srq->rq.max_sge) {
2217                         *bad_wr = wr;
2218                         return -EINVAL;
2219                 }
2220
2221                 spin_lock_irqsave(&srq->rq.kwq->p_lock, flags);
2222                 wq = srq->rq.kwq;
2223                 next = wq->head + 1;
2224                 if (next >= srq->rq.size)
2225                         next = 0;
2226                 if (next == READ_ONCE(wq->tail)) {
2227                         spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags);
2228                         *bad_wr = wr;
2229                         return -ENOMEM;
2230                 }
2231
2232                 wqe = rvt_get_rwqe_ptr(&srq->rq, wq->head);
2233                 wqe->wr_id = wr->wr_id;
2234                 wqe->num_sge = wr->num_sge;
2235                 for (i = 0; i < wr->num_sge; i++) {
2236                         wqe->sg_list[i].addr = wr->sg_list[i].addr;
2237                         wqe->sg_list[i].length = wr->sg_list[i].length;
2238                         wqe->sg_list[i].lkey = wr->sg_list[i].lkey;
2239                 }
2240                 /* Make sure queue entry is written before the head index. */
2241                 smp_store_release(&wq->head, next);
2242                 spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags);
2243         }
2244         return 0;
2245 }
2246
2247 /*
2248  * rvt used the internal kernel struct as part of its ABI, for now make sure
2249  * the kernel struct does not change layout. FIXME: rvt should never cast the
2250  * user struct to a kernel struct.
2251  */
2252 static struct ib_sge *rvt_cast_sge(struct rvt_wqe_sge *sge)
2253 {
2254         BUILD_BUG_ON(offsetof(struct ib_sge, addr) !=
2255                      offsetof(struct rvt_wqe_sge, addr));
2256         BUILD_BUG_ON(offsetof(struct ib_sge, length) !=
2257                      offsetof(struct rvt_wqe_sge, length));
2258         BUILD_BUG_ON(offsetof(struct ib_sge, lkey) !=
2259                      offsetof(struct rvt_wqe_sge, lkey));
2260         return (struct ib_sge *)sge;
2261 }
2262
2263 /*
2264  * Validate a RWQE and fill in the SGE state.
2265  * Return 1 if OK.
2266  */
2267 static int init_sge(struct rvt_qp *qp, struct rvt_rwqe *wqe)
2268 {
2269         int i, j, ret;
2270         struct ib_wc wc;
2271         struct rvt_lkey_table *rkt;
2272         struct rvt_pd *pd;
2273         struct rvt_sge_state *ss;
2274         struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2275
2276         rkt = &rdi->lkey_table;
2277         pd = ibpd_to_rvtpd(qp->ibqp.srq ? qp->ibqp.srq->pd : qp->ibqp.pd);
2278         ss = &qp->r_sge;
2279         ss->sg_list = qp->r_sg_list;
2280         qp->r_len = 0;
2281         for (i = j = 0; i < wqe->num_sge; i++) {
2282                 if (wqe->sg_list[i].length == 0)
2283                         continue;
2284                 /* Check LKEY */
2285                 ret = rvt_lkey_ok(rkt, pd, j ? &ss->sg_list[j - 1] : &ss->sge,
2286                                   NULL, rvt_cast_sge(&wqe->sg_list[i]),
2287                                   IB_ACCESS_LOCAL_WRITE);
2288                 if (unlikely(ret <= 0))
2289                         goto bad_lkey;
2290                 qp->r_len += wqe->sg_list[i].length;
2291                 j++;
2292         }
2293         ss->num_sge = j;
2294         ss->total_len = qp->r_len;
2295         return 1;
2296
2297 bad_lkey:
2298         while (j) {
2299                 struct rvt_sge *sge = --j ? &ss->sg_list[j - 1] : &ss->sge;
2300
2301                 rvt_put_mr(sge->mr);
2302         }
2303         ss->num_sge = 0;
2304         memset(&wc, 0, sizeof(wc));
2305         wc.wr_id = wqe->wr_id;
2306         wc.status = IB_WC_LOC_PROT_ERR;
2307         wc.opcode = IB_WC_RECV;
2308         wc.qp = &qp->ibqp;
2309         /* Signal solicited completion event. */
2310         rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
2311         return 0;
2312 }
2313
2314 /**
2315  * get_rvt_head - get head indices of the circular buffer
2316  * @rq: data structure for request queue entry
2317  * @ip: the QP
2318  *
2319  * Return - head index value
2320  */
2321 static inline u32 get_rvt_head(struct rvt_rq *rq, void *ip)
2322 {
2323         u32 head;
2324
2325         if (ip)
2326                 head = RDMA_READ_UAPI_ATOMIC(rq->wq->head);
2327         else
2328                 head = rq->kwq->head;
2329
2330         return head;
2331 }
2332
2333 /**
2334  * rvt_get_rwqe - copy the next RWQE into the QP's RWQE
2335  * @qp: the QP
2336  * @wr_id_only: update qp->r_wr_id only, not qp->r_sge
2337  *
2338  * Return -1 if there is a local error, 0 if no RWQE is available,
2339  * otherwise return 1.
2340  *
2341  * Can be called from interrupt level.
2342  */
2343 int rvt_get_rwqe(struct rvt_qp *qp, bool wr_id_only)
2344 {
2345         unsigned long flags;
2346         struct rvt_rq *rq;
2347         struct rvt_krwq *kwq = NULL;
2348         struct rvt_rwq *wq;
2349         struct rvt_srq *srq;
2350         struct rvt_rwqe *wqe;
2351         void (*handler)(struct ib_event *, void *);
2352         u32 tail;
2353         u32 head;
2354         int ret;
2355         void *ip = NULL;
2356
2357         if (qp->ibqp.srq) {
2358                 srq = ibsrq_to_rvtsrq(qp->ibqp.srq);
2359                 handler = srq->ibsrq.event_handler;
2360                 rq = &srq->rq;
2361                 ip = srq->ip;
2362         } else {
2363                 srq = NULL;
2364                 handler = NULL;
2365                 rq = &qp->r_rq;
2366                 ip = qp->ip;
2367         }
2368
2369         spin_lock_irqsave(&rq->kwq->c_lock, flags);
2370         if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) {
2371                 ret = 0;
2372                 goto unlock;
2373         }
2374         kwq = rq->kwq;
2375         if (ip) {
2376                 wq = rq->wq;
2377                 tail = RDMA_READ_UAPI_ATOMIC(wq->tail);
2378         } else {
2379                 tail = kwq->tail;
2380         }
2381
2382         /* Validate tail before using it since it is user writable. */
2383         if (tail >= rq->size)
2384                 tail = 0;
2385
2386         if (kwq->count < RVT_RWQ_COUNT_THRESHOLD) {
2387                 head = get_rvt_head(rq, ip);
2388                 kwq->count = rvt_get_rq_count(rq, head, tail);
2389         }
2390         if (unlikely(kwq->count == 0)) {
2391                 ret = 0;
2392                 goto unlock;
2393         }
2394         /* Make sure entry is read after the count is read. */
2395         smp_rmb();
2396         wqe = rvt_get_rwqe_ptr(rq, tail);
2397         /*
2398          * Even though we update the tail index in memory, the verbs
2399          * consumer is not supposed to post more entries until a
2400          * completion is generated.
2401          */
2402         if (++tail >= rq->size)
2403                 tail = 0;
2404         if (ip)
2405                 RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail);
2406         else
2407                 kwq->tail = tail;
2408         if (!wr_id_only && !init_sge(qp, wqe)) {
2409                 ret = -1;
2410                 goto unlock;
2411         }
2412         qp->r_wr_id = wqe->wr_id;
2413
2414         kwq->count--;
2415         ret = 1;
2416         set_bit(RVT_R_WRID_VALID, &qp->r_aflags);
2417         if (handler) {
2418                 /*
2419                  * Validate head pointer value and compute
2420                  * the number of remaining WQEs.
2421                  */
2422                 if (kwq->count < srq->limit) {
2423                         kwq->count =
2424                                 rvt_get_rq_count(rq,
2425                                                  get_rvt_head(rq, ip), tail);
2426                         if (kwq->count < srq->limit) {
2427                                 struct ib_event ev;
2428
2429                                 srq->limit = 0;
2430                                 spin_unlock_irqrestore(&rq->kwq->c_lock, flags);
2431                                 ev.device = qp->ibqp.device;
2432                                 ev.element.srq = qp->ibqp.srq;
2433                                 ev.event = IB_EVENT_SRQ_LIMIT_REACHED;
2434                                 handler(&ev, srq->ibsrq.srq_context);
2435                                 goto bail;
2436                         }
2437                 }
2438         }
2439 unlock:
2440         spin_unlock_irqrestore(&rq->kwq->c_lock, flags);
2441 bail:
2442         return ret;
2443 }
2444 EXPORT_SYMBOL(rvt_get_rwqe);
2445
2446 /**
2447  * rvt_comm_est - handle trap with QP established
2448  * @qp: the QP
2449  */
2450 void rvt_comm_est(struct rvt_qp *qp)
2451 {
2452         qp->r_flags |= RVT_R_COMM_EST;
2453         if (qp->ibqp.event_handler) {
2454                 struct ib_event ev;
2455
2456                 ev.device = qp->ibqp.device;
2457                 ev.element.qp = &qp->ibqp;
2458                 ev.event = IB_EVENT_COMM_EST;
2459                 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2460         }
2461 }
2462 EXPORT_SYMBOL(rvt_comm_est);
2463
2464 void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err)
2465 {
2466         unsigned long flags;
2467         int lastwqe;
2468
2469         spin_lock_irqsave(&qp->s_lock, flags);
2470         lastwqe = rvt_error_qp(qp, err);
2471         spin_unlock_irqrestore(&qp->s_lock, flags);
2472
2473         if (lastwqe) {
2474                 struct ib_event ev;
2475
2476                 ev.device = qp->ibqp.device;
2477                 ev.element.qp = &qp->ibqp;
2478                 ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
2479                 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2480         }
2481 }
2482 EXPORT_SYMBOL(rvt_rc_error);
2483
2484 /*
2485  *  rvt_rnr_tbl_to_usec - return index into ib_rvt_rnr_table
2486  *  @index - the index
2487  *  return usec from an index into ib_rvt_rnr_table
2488  */
2489 unsigned long rvt_rnr_tbl_to_usec(u32 index)
2490 {
2491         return ib_rvt_rnr_table[(index & IB_AETH_CREDIT_MASK)];
2492 }
2493 EXPORT_SYMBOL(rvt_rnr_tbl_to_usec);
2494
2495 static inline unsigned long rvt_aeth_to_usec(u32 aeth)
2496 {
2497         return ib_rvt_rnr_table[(aeth >> IB_AETH_CREDIT_SHIFT) &
2498                                   IB_AETH_CREDIT_MASK];
2499 }
2500
2501 /*
2502  *  rvt_add_retry_timer_ext - add/start a retry timer
2503  *  @qp - the QP
2504  *  @shift - timeout shift to wait for multiple packets
2505  *  add a retry timer on the QP
2506  */
2507 void rvt_add_retry_timer_ext(struct rvt_qp *qp, u8 shift)
2508 {
2509         struct ib_qp *ibqp = &qp->ibqp;
2510         struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
2511
2512         lockdep_assert_held(&qp->s_lock);
2513         qp->s_flags |= RVT_S_TIMER;
2514        /* 4.096 usec. * (1 << qp->timeout) */
2515         qp->s_timer.expires = jiffies + rdi->busy_jiffies +
2516                               (qp->timeout_jiffies << shift);
2517         add_timer(&qp->s_timer);
2518 }
2519 EXPORT_SYMBOL(rvt_add_retry_timer_ext);
2520
2521 /**
2522  * rvt_add_rnr_timer - add/start an rnr timer on the QP
2523  * @qp: the QP
2524  * @aeth: aeth of RNR timeout, simulated aeth for loopback
2525  */
2526 void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth)
2527 {
2528         u32 to;
2529
2530         lockdep_assert_held(&qp->s_lock);
2531         qp->s_flags |= RVT_S_WAIT_RNR;
2532         to = rvt_aeth_to_usec(aeth);
2533         trace_rvt_rnrnak_add(qp, to);
2534         hrtimer_start(&qp->s_rnr_timer,
2535                       ns_to_ktime(1000 * to), HRTIMER_MODE_REL_PINNED);
2536 }
2537 EXPORT_SYMBOL(rvt_add_rnr_timer);
2538
2539 /**
2540  * rvt_stop_rc_timers - stop all timers
2541  * @qp: the QP
2542  * stop any pending timers
2543  */
2544 void rvt_stop_rc_timers(struct rvt_qp *qp)
2545 {
2546         lockdep_assert_held(&qp->s_lock);
2547         /* Remove QP from all timers */
2548         if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
2549                 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
2550                 del_timer(&qp->s_timer);
2551                 hrtimer_try_to_cancel(&qp->s_rnr_timer);
2552         }
2553 }
2554 EXPORT_SYMBOL(rvt_stop_rc_timers);
2555
2556 /**
2557  * rvt_stop_rnr_timer - stop an rnr timer
2558  * @qp: the QP
2559  *
2560  * stop an rnr timer and return if the timer
2561  * had been pending.
2562  */
2563 static void rvt_stop_rnr_timer(struct rvt_qp *qp)
2564 {
2565         lockdep_assert_held(&qp->s_lock);
2566         /* Remove QP from rnr timer */
2567         if (qp->s_flags & RVT_S_WAIT_RNR) {
2568                 qp->s_flags &= ~RVT_S_WAIT_RNR;
2569                 trace_rvt_rnrnak_stop(qp, 0);
2570         }
2571 }
2572
2573 /**
2574  * rvt_del_timers_sync - wait for any timeout routines to exit
2575  * @qp: the QP
2576  */
2577 void rvt_del_timers_sync(struct rvt_qp *qp)
2578 {
2579         del_timer_sync(&qp->s_timer);
2580         hrtimer_cancel(&qp->s_rnr_timer);
2581 }
2582 EXPORT_SYMBOL(rvt_del_timers_sync);
2583
2584 /*
2585  * This is called from s_timer for missing responses.
2586  */
2587 static void rvt_rc_timeout(struct timer_list *t)
2588 {
2589         struct rvt_qp *qp = from_timer(qp, t, s_timer);
2590         struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2591         unsigned long flags;
2592
2593         spin_lock_irqsave(&qp->r_lock, flags);
2594         spin_lock(&qp->s_lock);
2595         if (qp->s_flags & RVT_S_TIMER) {
2596                 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
2597
2598                 qp->s_flags &= ~RVT_S_TIMER;
2599                 rvp->n_rc_timeouts++;
2600                 del_timer(&qp->s_timer);
2601                 trace_rvt_rc_timeout(qp, qp->s_last_psn + 1);
2602                 if (rdi->driver_f.notify_restart_rc)
2603                         rdi->driver_f.notify_restart_rc(qp,
2604                                                         qp->s_last_psn + 1,
2605                                                         1);
2606                 rdi->driver_f.schedule_send(qp);
2607         }
2608         spin_unlock(&qp->s_lock);
2609         spin_unlock_irqrestore(&qp->r_lock, flags);
2610 }
2611
2612 /*
2613  * This is called from s_timer for RNR timeouts.
2614  */
2615 enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t)
2616 {
2617         struct rvt_qp *qp = container_of(t, struct rvt_qp, s_rnr_timer);
2618         struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2619         unsigned long flags;
2620
2621         spin_lock_irqsave(&qp->s_lock, flags);
2622         rvt_stop_rnr_timer(qp);
2623         trace_rvt_rnrnak_timeout(qp, 0);
2624         rdi->driver_f.schedule_send(qp);
2625         spin_unlock_irqrestore(&qp->s_lock, flags);
2626         return HRTIMER_NORESTART;
2627 }
2628 EXPORT_SYMBOL(rvt_rc_rnr_retry);
2629
2630 /**
2631  * rvt_qp_iter_init - initial for QP iteration
2632  * @rdi: rvt devinfo
2633  * @v: u64 value
2634  * @cb: user-defined callback
2635  *
2636  * This returns an iterator suitable for iterating QPs
2637  * in the system.
2638  *
2639  * The @cb is a user-defined callback and @v is a 64-bit
2640  * value passed to and relevant for processing in the
2641  * @cb.  An example use case would be to alter QP processing
2642  * based on criteria not part of the rvt_qp.
2643  *
2644  * Use cases that require memory allocation to succeed
2645  * must preallocate appropriately.
2646  *
2647  * Return: a pointer to an rvt_qp_iter or NULL
2648  */
2649 struct rvt_qp_iter *rvt_qp_iter_init(struct rvt_dev_info *rdi,
2650                                      u64 v,
2651                                      void (*cb)(struct rvt_qp *qp, u64 v))
2652 {
2653         struct rvt_qp_iter *i;
2654
2655         i = kzalloc(sizeof(*i), GFP_KERNEL);
2656         if (!i)
2657                 return NULL;
2658
2659         i->rdi = rdi;
2660         /* number of special QPs (SMI/GSI) for device */
2661         i->specials = rdi->ibdev.phys_port_cnt * 2;
2662         i->v = v;
2663         i->cb = cb;
2664
2665         return i;
2666 }
2667 EXPORT_SYMBOL(rvt_qp_iter_init);
2668
2669 /**
2670  * rvt_qp_iter_next - return the next QP in iter
2671  * @iter: the iterator
2672  *
2673  * Fine grained QP iterator suitable for use
2674  * with debugfs seq_file mechanisms.
2675  *
2676  * Updates iter->qp with the current QP when the return
2677  * value is 0.
2678  *
2679  * Return: 0 - iter->qp is valid 1 - no more QPs
2680  */
2681 int rvt_qp_iter_next(struct rvt_qp_iter *iter)
2682         __must_hold(RCU)
2683 {
2684         int n = iter->n;
2685         int ret = 1;
2686         struct rvt_qp *pqp = iter->qp;
2687         struct rvt_qp *qp;
2688         struct rvt_dev_info *rdi = iter->rdi;
2689
2690         /*
2691          * The approach is to consider the special qps
2692          * as additional table entries before the
2693          * real hash table.  Since the qp code sets
2694          * the qp->next hash link to NULL, this works just fine.
2695          *
2696          * iter->specials is 2 * # ports
2697          *
2698          * n = 0..iter->specials is the special qp indices
2699          *
2700          * n = iter->specials..rdi->qp_dev->qp_table_size+iter->specials are
2701          * the potential hash bucket entries
2702          *
2703          */
2704         for (; n <  rdi->qp_dev->qp_table_size + iter->specials; n++) {
2705                 if (pqp) {
2706                         qp = rcu_dereference(pqp->next);
2707                 } else {
2708                         if (n < iter->specials) {
2709                                 struct rvt_ibport *rvp;
2710                                 int pidx;
2711
2712                                 pidx = n % rdi->ibdev.phys_port_cnt;
2713                                 rvp = rdi->ports[pidx];
2714                                 qp = rcu_dereference(rvp->qp[n & 1]);
2715                         } else {
2716                                 qp = rcu_dereference(
2717                                         rdi->qp_dev->qp_table[
2718                                                 (n - iter->specials)]);
2719                         }
2720                 }
2721                 pqp = qp;
2722                 if (qp) {
2723                         iter->qp = qp;
2724                         iter->n = n;
2725                         return 0;
2726                 }
2727         }
2728         return ret;
2729 }
2730 EXPORT_SYMBOL(rvt_qp_iter_next);
2731
2732 /**
2733  * rvt_qp_iter - iterate all QPs
2734  * @rdi: rvt devinfo
2735  * @v: a 64-bit value
2736  * @cb: a callback
2737  *
2738  * This provides a way for iterating all QPs.
2739  *
2740  * The @cb is a user-defined callback and @v is a 64-bit
2741  * value passed to and relevant for processing in the
2742  * cb.  An example use case would be to alter QP processing
2743  * based on criteria not part of the rvt_qp.
2744  *
2745  * The code has an internal iterator to simplify
2746  * non seq_file use cases.
2747  */
2748 void rvt_qp_iter(struct rvt_dev_info *rdi,
2749                  u64 v,
2750                  void (*cb)(struct rvt_qp *qp, u64 v))
2751 {
2752         int ret;
2753         struct rvt_qp_iter i = {
2754                 .rdi = rdi,
2755                 .specials = rdi->ibdev.phys_port_cnt * 2,
2756                 .v = v,
2757                 .cb = cb
2758         };
2759
2760         rcu_read_lock();
2761         do {
2762                 ret = rvt_qp_iter_next(&i);
2763                 if (!ret) {
2764                         rvt_get_qp(i.qp);
2765                         rcu_read_unlock();
2766                         i.cb(i.qp, i.v);
2767                         rcu_read_lock();
2768                         rvt_put_qp(i.qp);
2769                 }
2770         } while (!ret);
2771         rcu_read_unlock();
2772 }
2773 EXPORT_SYMBOL(rvt_qp_iter);
2774
2775 /*
2776  * This should be called with s_lock and r_lock held.
2777  */
2778 void rvt_send_complete(struct rvt_qp *qp, struct rvt_swqe *wqe,
2779                        enum ib_wc_status status)
2780 {
2781         u32 old_last, last;
2782         struct rvt_dev_info *rdi;
2783
2784         if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_OR_FLUSH_SEND))
2785                 return;
2786         rdi = ib_to_rvt(qp->ibqp.device);
2787
2788         old_last = qp->s_last;
2789         trace_rvt_qp_send_completion(qp, wqe, old_last);
2790         last = rvt_qp_complete_swqe(qp, wqe, rdi->wc_opcode[wqe->wr.opcode],
2791                                     status);
2792         if (qp->s_acked == old_last)
2793                 qp->s_acked = last;
2794         if (qp->s_cur == old_last)
2795                 qp->s_cur = last;
2796         if (qp->s_tail == old_last)
2797                 qp->s_tail = last;
2798         if (qp->state == IB_QPS_SQD && last == qp->s_cur)
2799                 qp->s_draining = 0;
2800 }
2801 EXPORT_SYMBOL(rvt_send_complete);
2802
2803 /**
2804  * rvt_copy_sge - copy data to SGE memory
2805  * @qp: associated QP
2806  * @ss: the SGE state
2807  * @data: the data to copy
2808  * @length: the length of the data
2809  * @release: boolean to release MR
2810  * @copy_last: do a separate copy of the last 8 bytes
2811  */
2812 void rvt_copy_sge(struct rvt_qp *qp, struct rvt_sge_state *ss,
2813                   void *data, u32 length,
2814                   bool release, bool copy_last)
2815 {
2816         struct rvt_sge *sge = &ss->sge;
2817         int i;
2818         bool in_last = false;
2819         bool cacheless_copy = false;
2820         struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2821         struct rvt_wss *wss = rdi->wss;
2822         unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode;
2823
2824         if (sge_copy_mode == RVT_SGE_COPY_CACHELESS) {
2825                 cacheless_copy = length >= PAGE_SIZE;
2826         } else if (sge_copy_mode == RVT_SGE_COPY_ADAPTIVE) {
2827                 if (length >= PAGE_SIZE) {
2828                         /*
2829                          * NOTE: this *assumes*:
2830                          * o The first vaddr is the dest.
2831                          * o If multiple pages, then vaddr is sequential.
2832                          */
2833                         wss_insert(wss, sge->vaddr);
2834                         if (length >= (2 * PAGE_SIZE))
2835                                 wss_insert(wss, (sge->vaddr + PAGE_SIZE));
2836
2837                         cacheless_copy = wss_exceeds_threshold(wss);
2838                 } else {
2839                         wss_advance_clean_counter(wss);
2840                 }
2841         }
2842
2843         if (copy_last) {
2844                 if (length > 8) {
2845                         length -= 8;
2846                 } else {
2847                         copy_last = false;
2848                         in_last = true;
2849                 }
2850         }
2851
2852 again:
2853         while (length) {
2854                 u32 len = rvt_get_sge_length(sge, length);
2855
2856                 WARN_ON_ONCE(len == 0);
2857                 if (unlikely(in_last)) {
2858                         /* enforce byte transfer ordering */
2859                         for (i = 0; i < len; i++)
2860                                 ((u8 *)sge->vaddr)[i] = ((u8 *)data)[i];
2861                 } else if (cacheless_copy) {
2862                         cacheless_memcpy(sge->vaddr, data, len);
2863                 } else {
2864                         memcpy(sge->vaddr, data, len);
2865                 }
2866                 rvt_update_sge(ss, len, release);
2867                 data += len;
2868                 length -= len;
2869         }
2870
2871         if (copy_last) {
2872                 copy_last = false;
2873                 in_last = true;
2874                 length = 8;
2875                 goto again;
2876         }
2877 }
2878 EXPORT_SYMBOL(rvt_copy_sge);
2879
2880 static enum ib_wc_status loopback_qp_drop(struct rvt_ibport *rvp,
2881                                           struct rvt_qp *sqp)
2882 {
2883         rvp->n_pkt_drops++;
2884         /*
2885          * For RC, the requester would timeout and retry so
2886          * shortcut the timeouts and just signal too many retries.
2887          */
2888         return sqp->ibqp.qp_type == IB_QPT_RC ?
2889                 IB_WC_RETRY_EXC_ERR : IB_WC_SUCCESS;
2890 }
2891
2892 /**
2893  * rvt_ruc_loopback - handle UC and RC loopback requests
2894  * @sqp: the sending QP
2895  *
2896  * This is called from rvt_do_send() to forward a WQE addressed to the same HFI
2897  * Note that although we are single threaded due to the send engine, we still
2898  * have to protect against post_send().  We don't have to worry about
2899  * receive interrupts since this is a connected protocol and all packets
2900  * will pass through here.
2901  */
2902 void rvt_ruc_loopback(struct rvt_qp *sqp)
2903 {
2904         struct rvt_ibport *rvp =  NULL;
2905         struct rvt_dev_info *rdi = ib_to_rvt(sqp->ibqp.device);
2906         struct rvt_qp *qp;
2907         struct rvt_swqe *wqe;
2908         struct rvt_sge *sge;
2909         unsigned long flags;
2910         struct ib_wc wc;
2911         u64 sdata;
2912         atomic64_t *maddr;
2913         enum ib_wc_status send_status;
2914         bool release;
2915         int ret;
2916         bool copy_last = false;
2917         int local_ops = 0;
2918
2919         rcu_read_lock();
2920         rvp = rdi->ports[sqp->port_num - 1];
2921
2922         /*
2923          * Note that we check the responder QP state after
2924          * checking the requester's state.
2925          */
2926
2927         qp = rvt_lookup_qpn(ib_to_rvt(sqp->ibqp.device), rvp,
2928                             sqp->remote_qpn);
2929
2930         spin_lock_irqsave(&sqp->s_lock, flags);
2931
2932         /* Return if we are already busy processing a work request. */
2933         if ((sqp->s_flags & (RVT_S_BUSY | RVT_S_ANY_WAIT)) ||
2934             !(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_OR_FLUSH_SEND))
2935                 goto unlock;
2936
2937         sqp->s_flags |= RVT_S_BUSY;
2938
2939 again:
2940         if (sqp->s_last == READ_ONCE(sqp->s_head))
2941                 goto clr_busy;
2942         wqe = rvt_get_swqe_ptr(sqp, sqp->s_last);
2943
2944         /* Return if it is not OK to start a new work request. */
2945         if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_NEXT_SEND_OK)) {
2946                 if (!(ib_rvt_state_ops[sqp->state] & RVT_FLUSH_SEND))
2947                         goto clr_busy;
2948                 /* We are in the error state, flush the work request. */
2949                 send_status = IB_WC_WR_FLUSH_ERR;
2950                 goto flush_send;
2951         }
2952
2953         /*
2954          * We can rely on the entry not changing without the s_lock
2955          * being held until we update s_last.
2956          * We increment s_cur to indicate s_last is in progress.
2957          */
2958         if (sqp->s_last == sqp->s_cur) {
2959                 if (++sqp->s_cur >= sqp->s_size)
2960                         sqp->s_cur = 0;
2961         }
2962         spin_unlock_irqrestore(&sqp->s_lock, flags);
2963
2964         if (!qp) {
2965                 send_status = loopback_qp_drop(rvp, sqp);
2966                 goto serr_no_r_lock;
2967         }
2968         spin_lock_irqsave(&qp->r_lock, flags);
2969         if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) ||
2970             qp->ibqp.qp_type != sqp->ibqp.qp_type) {
2971                 send_status = loopback_qp_drop(rvp, sqp);
2972                 goto serr;
2973         }
2974
2975         memset(&wc, 0, sizeof(wc));
2976         send_status = IB_WC_SUCCESS;
2977
2978         release = true;
2979         sqp->s_sge.sge = wqe->sg_list[0];
2980         sqp->s_sge.sg_list = wqe->sg_list + 1;
2981         sqp->s_sge.num_sge = wqe->wr.num_sge;
2982         sqp->s_len = wqe->length;
2983         switch (wqe->wr.opcode) {
2984         case IB_WR_REG_MR:
2985                 goto send_comp;
2986
2987         case IB_WR_LOCAL_INV:
2988                 if (!(wqe->wr.send_flags & RVT_SEND_COMPLETION_ONLY)) {
2989                         if (rvt_invalidate_rkey(sqp,
2990                                                 wqe->wr.ex.invalidate_rkey))
2991                                 send_status = IB_WC_LOC_PROT_ERR;
2992                         local_ops = 1;
2993                 }
2994                 goto send_comp;
2995
2996         case IB_WR_SEND_WITH_INV:
2997         case IB_WR_SEND_WITH_IMM:
2998         case IB_WR_SEND:
2999                 ret = rvt_get_rwqe(qp, false);
3000                 if (ret < 0)
3001                         goto op_err;
3002                 if (!ret)
3003                         goto rnr_nak;
3004                 if (wqe->length > qp->r_len)
3005                         goto inv_err;
3006                 switch (wqe->wr.opcode) {
3007                 case IB_WR_SEND_WITH_INV:
3008                         if (!rvt_invalidate_rkey(qp,
3009                                                  wqe->wr.ex.invalidate_rkey)) {
3010                                 wc.wc_flags = IB_WC_WITH_INVALIDATE;
3011                                 wc.ex.invalidate_rkey =
3012                                         wqe->wr.ex.invalidate_rkey;
3013                         }
3014                         break;
3015                 case IB_WR_SEND_WITH_IMM:
3016                         wc.wc_flags = IB_WC_WITH_IMM;
3017                         wc.ex.imm_data = wqe->wr.ex.imm_data;
3018                         break;
3019                 default:
3020                         break;
3021                 }
3022                 break;
3023
3024         case IB_WR_RDMA_WRITE_WITH_IMM:
3025                 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
3026                         goto inv_err;
3027                 wc.wc_flags = IB_WC_WITH_IMM;
3028                 wc.ex.imm_data = wqe->wr.ex.imm_data;
3029                 ret = rvt_get_rwqe(qp, true);
3030                 if (ret < 0)
3031                         goto op_err;
3032                 if (!ret)
3033                         goto rnr_nak;
3034                 /* skip copy_last set and qp_access_flags recheck */
3035                 goto do_write;
3036         case IB_WR_RDMA_WRITE:
3037                 copy_last = rvt_is_user_qp(qp);
3038                 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
3039                         goto inv_err;
3040 do_write:
3041                 if (wqe->length == 0)
3042                         break;
3043                 if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, wqe->length,
3044                                           wqe->rdma_wr.remote_addr,
3045                                           wqe->rdma_wr.rkey,
3046                                           IB_ACCESS_REMOTE_WRITE)))
3047                         goto acc_err;
3048                 qp->r_sge.sg_list = NULL;
3049                 qp->r_sge.num_sge = 1;
3050                 qp->r_sge.total_len = wqe->length;
3051                 break;
3052
3053         case IB_WR_RDMA_READ:
3054                 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ)))
3055                         goto inv_err;
3056                 if (unlikely(!rvt_rkey_ok(qp, &sqp->s_sge.sge, wqe->length,
3057                                           wqe->rdma_wr.remote_addr,
3058                                           wqe->rdma_wr.rkey,
3059                                           IB_ACCESS_REMOTE_READ)))
3060                         goto acc_err;
3061                 release = false;
3062                 sqp->s_sge.sg_list = NULL;
3063                 sqp->s_sge.num_sge = 1;
3064                 qp->r_sge.sge = wqe->sg_list[0];
3065                 qp->r_sge.sg_list = wqe->sg_list + 1;
3066                 qp->r_sge.num_sge = wqe->wr.num_sge;
3067                 qp->r_sge.total_len = wqe->length;
3068                 break;
3069
3070         case IB_WR_ATOMIC_CMP_AND_SWP:
3071         case IB_WR_ATOMIC_FETCH_AND_ADD:
3072                 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_ATOMIC)))
3073                         goto inv_err;
3074                 if (unlikely(wqe->atomic_wr.remote_addr & (sizeof(u64) - 1)))
3075                         goto inv_err;
3076                 if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, sizeof(u64),
3077                                           wqe->atomic_wr.remote_addr,
3078                                           wqe->atomic_wr.rkey,
3079                                           IB_ACCESS_REMOTE_ATOMIC)))
3080                         goto acc_err;
3081                 /* Perform atomic OP and save result. */
3082                 maddr = (atomic64_t *)qp->r_sge.sge.vaddr;
3083                 sdata = wqe->atomic_wr.compare_add;
3084                 *(u64 *)sqp->s_sge.sge.vaddr =
3085                         (wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) ?
3086                         (u64)atomic64_add_return(sdata, maddr) - sdata :
3087                         (u64)cmpxchg((u64 *)qp->r_sge.sge.vaddr,
3088                                       sdata, wqe->atomic_wr.swap);
3089                 rvt_put_mr(qp->r_sge.sge.mr);
3090                 qp->r_sge.num_sge = 0;
3091                 goto send_comp;
3092
3093         default:
3094                 send_status = IB_WC_LOC_QP_OP_ERR;
3095                 goto serr;
3096         }
3097
3098         sge = &sqp->s_sge.sge;
3099         while (sqp->s_len) {
3100                 u32 len = rvt_get_sge_length(sge, sqp->s_len);
3101
3102                 WARN_ON_ONCE(len == 0);
3103                 rvt_copy_sge(qp, &qp->r_sge, sge->vaddr,
3104                              len, release, copy_last);
3105                 rvt_update_sge(&sqp->s_sge, len, !release);
3106                 sqp->s_len -= len;
3107         }
3108         if (release)
3109                 rvt_put_ss(&qp->r_sge);
3110
3111         if (!test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags))
3112                 goto send_comp;
3113
3114         if (wqe->wr.opcode == IB_WR_RDMA_WRITE_WITH_IMM)
3115                 wc.opcode = IB_WC_RECV_RDMA_WITH_IMM;
3116         else
3117                 wc.opcode = IB_WC_RECV;
3118         wc.wr_id = qp->r_wr_id;
3119         wc.status = IB_WC_SUCCESS;
3120         wc.byte_len = wqe->length;
3121         wc.qp = &qp->ibqp;
3122         wc.src_qp = qp->remote_qpn;
3123         wc.slid = rdma_ah_get_dlid(&qp->remote_ah_attr) & U16_MAX;
3124         wc.sl = rdma_ah_get_sl(&qp->remote_ah_attr);
3125         wc.port_num = 1;
3126         /* Signal completion event if the solicited bit is set. */
3127         rvt_recv_cq(qp, &wc, wqe->wr.send_flags & IB_SEND_SOLICITED);
3128
3129 send_comp:
3130         spin_unlock_irqrestore(&qp->r_lock, flags);
3131         spin_lock_irqsave(&sqp->s_lock, flags);
3132         rvp->n_loop_pkts++;
3133 flush_send:
3134         sqp->s_rnr_retry = sqp->s_rnr_retry_cnt;
3135         spin_lock(&sqp->r_lock);
3136         rvt_send_complete(sqp, wqe, send_status);
3137         spin_unlock(&sqp->r_lock);
3138         if (local_ops) {
3139                 atomic_dec(&sqp->local_ops_pending);
3140                 local_ops = 0;
3141         }
3142         goto again;
3143
3144 rnr_nak:
3145         /* Handle RNR NAK */
3146         if (qp->ibqp.qp_type == IB_QPT_UC)
3147                 goto send_comp;
3148         rvp->n_rnr_naks++;
3149         /*
3150          * Note: we don't need the s_lock held since the BUSY flag
3151          * makes this single threaded.
3152          */
3153         if (sqp->s_rnr_retry == 0) {
3154                 send_status = IB_WC_RNR_RETRY_EXC_ERR;
3155                 goto serr;
3156         }
3157         if (sqp->s_rnr_retry_cnt < 7)
3158                 sqp->s_rnr_retry--;
3159         spin_unlock_irqrestore(&qp->r_lock, flags);
3160         spin_lock_irqsave(&sqp->s_lock, flags);
3161         if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_RECV_OK))
3162                 goto clr_busy;
3163         rvt_add_rnr_timer(sqp, qp->r_min_rnr_timer <<
3164                                 IB_AETH_CREDIT_SHIFT);
3165         goto clr_busy;
3166
3167 op_err:
3168         send_status = IB_WC_REM_OP_ERR;
3169         wc.status = IB_WC_LOC_QP_OP_ERR;
3170         goto err;
3171
3172 inv_err:
3173         send_status =
3174                 sqp->ibqp.qp_type == IB_QPT_RC ?
3175                         IB_WC_REM_INV_REQ_ERR :
3176                         IB_WC_SUCCESS;
3177         wc.status = IB_WC_LOC_QP_OP_ERR;
3178         goto err;
3179
3180 acc_err:
3181         send_status = IB_WC_REM_ACCESS_ERR;
3182         wc.status = IB_WC_LOC_PROT_ERR;
3183 err:
3184         /* responder goes to error state */
3185         rvt_rc_error(qp, wc.status);
3186
3187 serr:
3188         spin_unlock_irqrestore(&qp->r_lock, flags);
3189 serr_no_r_lock:
3190         spin_lock_irqsave(&sqp->s_lock, flags);
3191         spin_lock(&sqp->r_lock);
3192         rvt_send_complete(sqp, wqe, send_status);
3193         spin_unlock(&sqp->r_lock);
3194         if (sqp->ibqp.qp_type == IB_QPT_RC) {
3195                 int lastwqe;
3196
3197                 spin_lock(&sqp->r_lock);
3198                 lastwqe = rvt_error_qp(sqp, IB_WC_WR_FLUSH_ERR);
3199                 spin_unlock(&sqp->r_lock);
3200
3201                 sqp->s_flags &= ~RVT_S_BUSY;
3202                 spin_unlock_irqrestore(&sqp->s_lock, flags);
3203                 if (lastwqe) {
3204                         struct ib_event ev;
3205
3206                         ev.device = sqp->ibqp.device;
3207                         ev.element.qp = &sqp->ibqp;
3208                         ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
3209                         sqp->ibqp.event_handler(&ev, sqp->ibqp.qp_context);
3210                 }
3211                 goto done;
3212         }
3213 clr_busy:
3214         sqp->s_flags &= ~RVT_S_BUSY;
3215 unlock:
3216         spin_unlock_irqrestore(&sqp->s_lock, flags);
3217 done:
3218         rcu_read_unlock();
3219 }
3220 EXPORT_SYMBOL(rvt_ruc_loopback);