Merge tag 'v4.20' into for-linus
[linux-2.6-microblaze.git] / drivers / infiniband / sw / rdmavt / qp.c
1 /*
2  * Copyright(c) 2016, 2017 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47
48 #include <linux/hash.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/vmalloc.h>
52 #include <linux/slab.h>
53 #include <rdma/ib_verbs.h>
54 #include <rdma/ib_hdrs.h>
55 #include <rdma/opa_addr.h>
56 #include "qp.h"
57 #include "vt.h"
58 #include "trace.h"
59
60 static void rvt_rc_timeout(struct timer_list *t);
61
62 /*
63  * Convert the AETH RNR timeout code into the number of microseconds.
64  */
65 static const u32 ib_rvt_rnr_table[32] = {
66         655360, /* 00: 655.36 */
67         10,     /* 01:    .01 */
68         20,     /* 02     .02 */
69         30,     /* 03:    .03 */
70         40,     /* 04:    .04 */
71         60,     /* 05:    .06 */
72         80,     /* 06:    .08 */
73         120,    /* 07:    .12 */
74         160,    /* 08:    .16 */
75         240,    /* 09:    .24 */
76         320,    /* 0A:    .32 */
77         480,    /* 0B:    .48 */
78         640,    /* 0C:    .64 */
79         960,    /* 0D:    .96 */
80         1280,   /* 0E:   1.28 */
81         1920,   /* 0F:   1.92 */
82         2560,   /* 10:   2.56 */
83         3840,   /* 11:   3.84 */
84         5120,   /* 12:   5.12 */
85         7680,   /* 13:   7.68 */
86         10240,  /* 14:  10.24 */
87         15360,  /* 15:  15.36 */
88         20480,  /* 16:  20.48 */
89         30720,  /* 17:  30.72 */
90         40960,  /* 18:  40.96 */
91         61440,  /* 19:  61.44 */
92         81920,  /* 1A:  81.92 */
93         122880, /* 1B: 122.88 */
94         163840, /* 1C: 163.84 */
95         245760, /* 1D: 245.76 */
96         327680, /* 1E: 327.68 */
97         491520  /* 1F: 491.52 */
98 };
99
100 /*
101  * Note that it is OK to post send work requests in the SQE and ERR
102  * states; rvt_do_send() will process them and generate error
103  * completions as per IB 1.2 C10-96.
104  */
105 const int ib_rvt_state_ops[IB_QPS_ERR + 1] = {
106         [IB_QPS_RESET] = 0,
107         [IB_QPS_INIT] = RVT_POST_RECV_OK,
108         [IB_QPS_RTR] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK,
109         [IB_QPS_RTS] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
110             RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK |
111             RVT_PROCESS_NEXT_SEND_OK,
112         [IB_QPS_SQD] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
113             RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK,
114         [IB_QPS_SQE] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
115             RVT_POST_SEND_OK | RVT_FLUSH_SEND,
116         [IB_QPS_ERR] = RVT_POST_RECV_OK | RVT_FLUSH_RECV |
117             RVT_POST_SEND_OK | RVT_FLUSH_SEND,
118 };
119 EXPORT_SYMBOL(ib_rvt_state_ops);
120
121 /* platform specific: return the last level cache (llc) size, in KiB */
122 static int rvt_wss_llc_size(void)
123 {
124         /* assume that the boot CPU value is universal for all CPUs */
125         return boot_cpu_data.x86_cache_size;
126 }
127
128 /* platform specific: cacheless copy */
129 static void cacheless_memcpy(void *dst, void *src, size_t n)
130 {
131         /*
132          * Use the only available X64 cacheless copy.  Add a __user cast
133          * to quiet sparse.  The src agument is already in the kernel so
134          * there are no security issues.  The extra fault recovery machinery
135          * is not invoked.
136          */
137         __copy_user_nocache(dst, (void __user *)src, n, 0);
138 }
139
140 void rvt_wss_exit(struct rvt_dev_info *rdi)
141 {
142         struct rvt_wss *wss = rdi->wss;
143
144         if (!wss)
145                 return;
146
147         /* coded to handle partially initialized and repeat callers */
148         kfree(wss->entries);
149         wss->entries = NULL;
150         kfree(rdi->wss);
151         rdi->wss = NULL;
152 }
153
154 /**
155  * rvt_wss_init - Init wss data structures
156  *
157  * Return: 0 on success
158  */
159 int rvt_wss_init(struct rvt_dev_info *rdi)
160 {
161         unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode;
162         unsigned int wss_threshold = rdi->dparms.wss_threshold;
163         unsigned int wss_clean_period = rdi->dparms.wss_clean_period;
164         long llc_size;
165         long llc_bits;
166         long table_size;
167         long table_bits;
168         struct rvt_wss *wss;
169         int node = rdi->dparms.node;
170
171         if (sge_copy_mode != RVT_SGE_COPY_ADAPTIVE) {
172                 rdi->wss = NULL;
173                 return 0;
174         }
175
176         rdi->wss = kzalloc_node(sizeof(*rdi->wss), GFP_KERNEL, node);
177         if (!rdi->wss)
178                 return -ENOMEM;
179         wss = rdi->wss;
180
181         /* check for a valid percent range - default to 80 if none or invalid */
182         if (wss_threshold < 1 || wss_threshold > 100)
183                 wss_threshold = 80;
184
185         /* reject a wildly large period */
186         if (wss_clean_period > 1000000)
187                 wss_clean_period = 256;
188
189         /* reject a zero period */
190         if (wss_clean_period == 0)
191                 wss_clean_period = 1;
192
193         /*
194          * Calculate the table size - the next power of 2 larger than the
195          * LLC size.  LLC size is in KiB.
196          */
197         llc_size = rvt_wss_llc_size() * 1024;
198         table_size = roundup_pow_of_two(llc_size);
199
200         /* one bit per page in rounded up table */
201         llc_bits = llc_size / PAGE_SIZE;
202         table_bits = table_size / PAGE_SIZE;
203         wss->pages_mask = table_bits - 1;
204         wss->num_entries = table_bits / BITS_PER_LONG;
205
206         wss->threshold = (llc_bits * wss_threshold) / 100;
207         if (wss->threshold == 0)
208                 wss->threshold = 1;
209
210         wss->clean_period = wss_clean_period;
211         atomic_set(&wss->clean_counter, wss_clean_period);
212
213         wss->entries = kcalloc_node(wss->num_entries, sizeof(*wss->entries),
214                                     GFP_KERNEL, node);
215         if (!wss->entries) {
216                 rvt_wss_exit(rdi);
217                 return -ENOMEM;
218         }
219
220         return 0;
221 }
222
223 /*
224  * Advance the clean counter.  When the clean period has expired,
225  * clean an entry.
226  *
227  * This is implemented in atomics to avoid locking.  Because multiple
228  * variables are involved, it can be racy which can lead to slightly
229  * inaccurate information.  Since this is only a heuristic, this is
230  * OK.  Any innaccuracies will clean themselves out as the counter
231  * advances.  That said, it is unlikely the entry clean operation will
232  * race - the next possible racer will not start until the next clean
233  * period.
234  *
235  * The clean counter is implemented as a decrement to zero.  When zero
236  * is reached an entry is cleaned.
237  */
238 static void wss_advance_clean_counter(struct rvt_wss *wss)
239 {
240         int entry;
241         int weight;
242         unsigned long bits;
243
244         /* become the cleaner if we decrement the counter to zero */
245         if (atomic_dec_and_test(&wss->clean_counter)) {
246                 /*
247                  * Set, not add, the clean period.  This avoids an issue
248                  * where the counter could decrement below the clean period.
249                  * Doing a set can result in lost decrements, slowing the
250                  * clean advance.  Since this a heuristic, this possible
251                  * slowdown is OK.
252                  *
253                  * An alternative is to loop, advancing the counter by a
254                  * clean period until the result is > 0. However, this could
255                  * lead to several threads keeping another in the clean loop.
256                  * This could be mitigated by limiting the number of times
257                  * we stay in the loop.
258                  */
259                 atomic_set(&wss->clean_counter, wss->clean_period);
260
261                 /*
262                  * Uniquely grab the entry to clean and move to next.
263                  * The current entry is always the lower bits of
264                  * wss.clean_entry.  The table size, wss.num_entries,
265                  * is always a power-of-2.
266                  */
267                 entry = (atomic_inc_return(&wss->clean_entry) - 1)
268                         & (wss->num_entries - 1);
269
270                 /* clear the entry and count the bits */
271                 bits = xchg(&wss->entries[entry], 0);
272                 weight = hweight64((u64)bits);
273                 /* only adjust the contended total count if needed */
274                 if (weight)
275                         atomic_sub(weight, &wss->total_count);
276         }
277 }
278
279 /*
280  * Insert the given address into the working set array.
281  */
282 static void wss_insert(struct rvt_wss *wss, void *address)
283 {
284         u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss->pages_mask;
285         u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */
286         u32 nr = page & (BITS_PER_LONG - 1);
287
288         if (!test_and_set_bit(nr, &wss->entries[entry]))
289                 atomic_inc(&wss->total_count);
290
291         wss_advance_clean_counter(wss);
292 }
293
294 /*
295  * Is the working set larger than the threshold?
296  */
297 static inline bool wss_exceeds_threshold(struct rvt_wss *wss)
298 {
299         return atomic_read(&wss->total_count) >= wss->threshold;
300 }
301
302 static void get_map_page(struct rvt_qpn_table *qpt,
303                          struct rvt_qpn_map *map)
304 {
305         unsigned long page = get_zeroed_page(GFP_KERNEL);
306
307         /*
308          * Free the page if someone raced with us installing it.
309          */
310
311         spin_lock(&qpt->lock);
312         if (map->page)
313                 free_page(page);
314         else
315                 map->page = (void *)page;
316         spin_unlock(&qpt->lock);
317 }
318
319 /**
320  * init_qpn_table - initialize the QP number table for a device
321  * @qpt: the QPN table
322  */
323 static int init_qpn_table(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt)
324 {
325         u32 offset, i;
326         struct rvt_qpn_map *map;
327         int ret = 0;
328
329         if (!(rdi->dparms.qpn_res_end >= rdi->dparms.qpn_res_start))
330                 return -EINVAL;
331
332         spin_lock_init(&qpt->lock);
333
334         qpt->last = rdi->dparms.qpn_start;
335         qpt->incr = rdi->dparms.qpn_inc << rdi->dparms.qos_shift;
336
337         /*
338          * Drivers may want some QPs beyond what we need for verbs let them use
339          * our qpn table. No need for two. Lets go ahead and mark the bitmaps
340          * for those. The reserved range must be *after* the range which verbs
341          * will pick from.
342          */
343
344         /* Figure out number of bit maps needed before reserved range */
345         qpt->nmaps = rdi->dparms.qpn_res_start / RVT_BITS_PER_PAGE;
346
347         /* This should always be zero */
348         offset = rdi->dparms.qpn_res_start & RVT_BITS_PER_PAGE_MASK;
349
350         /* Starting with the first reserved bit map */
351         map = &qpt->map[qpt->nmaps];
352
353         rvt_pr_info(rdi, "Reserving QPNs from 0x%x to 0x%x for non-verbs use\n",
354                     rdi->dparms.qpn_res_start, rdi->dparms.qpn_res_end);
355         for (i = rdi->dparms.qpn_res_start; i <= rdi->dparms.qpn_res_end; i++) {
356                 if (!map->page) {
357                         get_map_page(qpt, map);
358                         if (!map->page) {
359                                 ret = -ENOMEM;
360                                 break;
361                         }
362                 }
363                 set_bit(offset, map->page);
364                 offset++;
365                 if (offset == RVT_BITS_PER_PAGE) {
366                         /* next page */
367                         qpt->nmaps++;
368                         map++;
369                         offset = 0;
370                 }
371         }
372         return ret;
373 }
374
375 /**
376  * free_qpn_table - free the QP number table for a device
377  * @qpt: the QPN table
378  */
379 static void free_qpn_table(struct rvt_qpn_table *qpt)
380 {
381         int i;
382
383         for (i = 0; i < ARRAY_SIZE(qpt->map); i++)
384                 free_page((unsigned long)qpt->map[i].page);
385 }
386
387 /**
388  * rvt_driver_qp_init - Init driver qp resources
389  * @rdi: rvt dev strucutre
390  *
391  * Return: 0 on success
392  */
393 int rvt_driver_qp_init(struct rvt_dev_info *rdi)
394 {
395         int i;
396         int ret = -ENOMEM;
397
398         if (!rdi->dparms.qp_table_size)
399                 return -EINVAL;
400
401         /*
402          * If driver is not doing any QP allocation then make sure it is
403          * providing the necessary QP functions.
404          */
405         if (!rdi->driver_f.free_all_qps ||
406             !rdi->driver_f.qp_priv_alloc ||
407             !rdi->driver_f.qp_priv_free ||
408             !rdi->driver_f.notify_qp_reset ||
409             !rdi->driver_f.notify_restart_rc)
410                 return -EINVAL;
411
412         /* allocate parent object */
413         rdi->qp_dev = kzalloc_node(sizeof(*rdi->qp_dev), GFP_KERNEL,
414                                    rdi->dparms.node);
415         if (!rdi->qp_dev)
416                 return -ENOMEM;
417
418         /* allocate hash table */
419         rdi->qp_dev->qp_table_size = rdi->dparms.qp_table_size;
420         rdi->qp_dev->qp_table_bits = ilog2(rdi->dparms.qp_table_size);
421         rdi->qp_dev->qp_table =
422                 kmalloc_array_node(rdi->qp_dev->qp_table_size,
423                              sizeof(*rdi->qp_dev->qp_table),
424                              GFP_KERNEL, rdi->dparms.node);
425         if (!rdi->qp_dev->qp_table)
426                 goto no_qp_table;
427
428         for (i = 0; i < rdi->qp_dev->qp_table_size; i++)
429                 RCU_INIT_POINTER(rdi->qp_dev->qp_table[i], NULL);
430
431         spin_lock_init(&rdi->qp_dev->qpt_lock);
432
433         /* initialize qpn map */
434         if (init_qpn_table(rdi, &rdi->qp_dev->qpn_table))
435                 goto fail_table;
436
437         spin_lock_init(&rdi->n_qps_lock);
438
439         return 0;
440
441 fail_table:
442         kfree(rdi->qp_dev->qp_table);
443         free_qpn_table(&rdi->qp_dev->qpn_table);
444
445 no_qp_table:
446         kfree(rdi->qp_dev);
447
448         return ret;
449 }
450
451 /**
452  * free_all_qps - check for QPs still in use
453  * @rdi: rvt device info structure
454  *
455  * There should not be any QPs still in use.
456  * Free memory for table.
457  */
458 static unsigned rvt_free_all_qps(struct rvt_dev_info *rdi)
459 {
460         unsigned long flags;
461         struct rvt_qp *qp;
462         unsigned n, qp_inuse = 0;
463         spinlock_t *ql; /* work around too long line below */
464
465         if (rdi->driver_f.free_all_qps)
466                 qp_inuse = rdi->driver_f.free_all_qps(rdi);
467
468         qp_inuse += rvt_mcast_tree_empty(rdi);
469
470         if (!rdi->qp_dev)
471                 return qp_inuse;
472
473         ql = &rdi->qp_dev->qpt_lock;
474         spin_lock_irqsave(ql, flags);
475         for (n = 0; n < rdi->qp_dev->qp_table_size; n++) {
476                 qp = rcu_dereference_protected(rdi->qp_dev->qp_table[n],
477                                                lockdep_is_held(ql));
478                 RCU_INIT_POINTER(rdi->qp_dev->qp_table[n], NULL);
479
480                 for (; qp; qp = rcu_dereference_protected(qp->next,
481                                                           lockdep_is_held(ql)))
482                         qp_inuse++;
483         }
484         spin_unlock_irqrestore(ql, flags);
485         synchronize_rcu();
486         return qp_inuse;
487 }
488
489 /**
490  * rvt_qp_exit - clean up qps on device exit
491  * @rdi: rvt dev structure
492  *
493  * Check for qp leaks and free resources.
494  */
495 void rvt_qp_exit(struct rvt_dev_info *rdi)
496 {
497         u32 qps_inuse = rvt_free_all_qps(rdi);
498
499         if (qps_inuse)
500                 rvt_pr_err(rdi, "QP memory leak! %u still in use\n",
501                            qps_inuse);
502         if (!rdi->qp_dev)
503                 return;
504
505         kfree(rdi->qp_dev->qp_table);
506         free_qpn_table(&rdi->qp_dev->qpn_table);
507         kfree(rdi->qp_dev);
508 }
509
510 static inline unsigned mk_qpn(struct rvt_qpn_table *qpt,
511                               struct rvt_qpn_map *map, unsigned off)
512 {
513         return (map - qpt->map) * RVT_BITS_PER_PAGE + off;
514 }
515
516 /**
517  * alloc_qpn - Allocate the next available qpn or zero/one for QP type
518  *             IB_QPT_SMI/IB_QPT_GSI
519  * @rdi: rvt device info structure
520  * @qpt: queue pair number table pointer
521  * @port_num: IB port number, 1 based, comes from core
522  *
523  * Return: The queue pair number
524  */
525 static int alloc_qpn(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt,
526                      enum ib_qp_type type, u8 port_num)
527 {
528         u32 i, offset, max_scan, qpn;
529         struct rvt_qpn_map *map;
530         u32 ret;
531
532         if (rdi->driver_f.alloc_qpn)
533                 return rdi->driver_f.alloc_qpn(rdi, qpt, type, port_num);
534
535         if (type == IB_QPT_SMI || type == IB_QPT_GSI) {
536                 unsigned n;
537
538                 ret = type == IB_QPT_GSI;
539                 n = 1 << (ret + 2 * (port_num - 1));
540                 spin_lock(&qpt->lock);
541                 if (qpt->flags & n)
542                         ret = -EINVAL;
543                 else
544                         qpt->flags |= n;
545                 spin_unlock(&qpt->lock);
546                 goto bail;
547         }
548
549         qpn = qpt->last + qpt->incr;
550         if (qpn >= RVT_QPN_MAX)
551                 qpn = qpt->incr | ((qpt->last & 1) ^ 1);
552         /* offset carries bit 0 */
553         offset = qpn & RVT_BITS_PER_PAGE_MASK;
554         map = &qpt->map[qpn / RVT_BITS_PER_PAGE];
555         max_scan = qpt->nmaps - !offset;
556         for (i = 0;;) {
557                 if (unlikely(!map->page)) {
558                         get_map_page(qpt, map);
559                         if (unlikely(!map->page))
560                                 break;
561                 }
562                 do {
563                         if (!test_and_set_bit(offset, map->page)) {
564                                 qpt->last = qpn;
565                                 ret = qpn;
566                                 goto bail;
567                         }
568                         offset += qpt->incr;
569                         /*
570                          * This qpn might be bogus if offset >= BITS_PER_PAGE.
571                          * That is OK.   It gets re-assigned below
572                          */
573                         qpn = mk_qpn(qpt, map, offset);
574                 } while (offset < RVT_BITS_PER_PAGE && qpn < RVT_QPN_MAX);
575                 /*
576                  * In order to keep the number of pages allocated to a
577                  * minimum, we scan the all existing pages before increasing
578                  * the size of the bitmap table.
579                  */
580                 if (++i > max_scan) {
581                         if (qpt->nmaps == RVT_QPNMAP_ENTRIES)
582                                 break;
583                         map = &qpt->map[qpt->nmaps++];
584                         /* start at incr with current bit 0 */
585                         offset = qpt->incr | (offset & 1);
586                 } else if (map < &qpt->map[qpt->nmaps]) {
587                         ++map;
588                         /* start at incr with current bit 0 */
589                         offset = qpt->incr | (offset & 1);
590                 } else {
591                         map = &qpt->map[0];
592                         /* wrap to first map page, invert bit 0 */
593                         offset = qpt->incr | ((offset & 1) ^ 1);
594                 }
595                 /* there can be no set bits in low-order QoS bits */
596                 WARN_ON(offset & (BIT(rdi->dparms.qos_shift) - 1));
597                 qpn = mk_qpn(qpt, map, offset);
598         }
599
600         ret = -ENOMEM;
601
602 bail:
603         return ret;
604 }
605
606 /**
607  * rvt_clear_mr_refs - Drop help mr refs
608  * @qp: rvt qp data structure
609  * @clr_sends: If shoudl clear send side or not
610  */
611 static void rvt_clear_mr_refs(struct rvt_qp *qp, int clr_sends)
612 {
613         unsigned n;
614         struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
615
616         if (test_and_clear_bit(RVT_R_REWIND_SGE, &qp->r_aflags))
617                 rvt_put_ss(&qp->s_rdma_read_sge);
618
619         rvt_put_ss(&qp->r_sge);
620
621         if (clr_sends) {
622                 while (qp->s_last != qp->s_head) {
623                         struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, qp->s_last);
624
625                         rvt_put_swqe(wqe);
626
627                         if (qp->ibqp.qp_type == IB_QPT_UD ||
628                             qp->ibqp.qp_type == IB_QPT_SMI ||
629                             qp->ibqp.qp_type == IB_QPT_GSI)
630                                 atomic_dec(&ibah_to_rvtah(
631                                                 wqe->ud_wr.ah)->refcount);
632                         if (++qp->s_last >= qp->s_size)
633                                 qp->s_last = 0;
634                         smp_wmb(); /* see qp_set_savail */
635                 }
636                 if (qp->s_rdma_mr) {
637                         rvt_put_mr(qp->s_rdma_mr);
638                         qp->s_rdma_mr = NULL;
639                 }
640         }
641
642         for (n = 0; qp->s_ack_queue && n < rvt_max_atomic(rdi); n++) {
643                 struct rvt_ack_entry *e = &qp->s_ack_queue[n];
644
645                 if (e->rdma_sge.mr) {
646                         rvt_put_mr(e->rdma_sge.mr);
647                         e->rdma_sge.mr = NULL;
648                 }
649         }
650 }
651
652 /**
653  * rvt_swqe_has_lkey - return true if lkey is used by swqe
654  * @wqe - the send wqe
655  * @lkey - the lkey
656  *
657  * Test the swqe for using lkey
658  */
659 static bool rvt_swqe_has_lkey(struct rvt_swqe *wqe, u32 lkey)
660 {
661         int i;
662
663         for (i = 0; i < wqe->wr.num_sge; i++) {
664                 struct rvt_sge *sge = &wqe->sg_list[i];
665
666                 if (rvt_mr_has_lkey(sge->mr, lkey))
667                         return true;
668         }
669         return false;
670 }
671
672 /**
673  * rvt_qp_sends_has_lkey - return true is qp sends use lkey
674  * @qp - the rvt_qp
675  * @lkey - the lkey
676  */
677 static bool rvt_qp_sends_has_lkey(struct rvt_qp *qp, u32 lkey)
678 {
679         u32 s_last = qp->s_last;
680
681         while (s_last != qp->s_head) {
682                 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, s_last);
683
684                 if (rvt_swqe_has_lkey(wqe, lkey))
685                         return true;
686
687                 if (++s_last >= qp->s_size)
688                         s_last = 0;
689         }
690         if (qp->s_rdma_mr)
691                 if (rvt_mr_has_lkey(qp->s_rdma_mr, lkey))
692                         return true;
693         return false;
694 }
695
696 /**
697  * rvt_qp_acks_has_lkey - return true if acks have lkey
698  * @qp - the qp
699  * @lkey - the lkey
700  */
701 static bool rvt_qp_acks_has_lkey(struct rvt_qp *qp, u32 lkey)
702 {
703         int i;
704         struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
705
706         for (i = 0; qp->s_ack_queue && i < rvt_max_atomic(rdi); i++) {
707                 struct rvt_ack_entry *e = &qp->s_ack_queue[i];
708
709                 if (rvt_mr_has_lkey(e->rdma_sge.mr, lkey))
710                         return true;
711         }
712         return false;
713 }
714
715 /*
716  * rvt_qp_mr_clean - clean up remote ops for lkey
717  * @qp - the qp
718  * @lkey - the lkey that is being de-registered
719  *
720  * This routine checks if the lkey is being used by
721  * the qp.
722  *
723  * If so, the qp is put into an error state to elminate
724  * any references from the qp.
725  */
726 void rvt_qp_mr_clean(struct rvt_qp *qp, u32 lkey)
727 {
728         bool lastwqe = false;
729
730         if (qp->ibqp.qp_type == IB_QPT_SMI ||
731             qp->ibqp.qp_type == IB_QPT_GSI)
732                 /* avoid special QPs */
733                 return;
734         spin_lock_irq(&qp->r_lock);
735         spin_lock(&qp->s_hlock);
736         spin_lock(&qp->s_lock);
737
738         if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
739                 goto check_lwqe;
740
741         if (rvt_ss_has_lkey(&qp->r_sge, lkey) ||
742             rvt_qp_sends_has_lkey(qp, lkey) ||
743             rvt_qp_acks_has_lkey(qp, lkey))
744                 lastwqe = rvt_error_qp(qp, IB_WC_LOC_PROT_ERR);
745 check_lwqe:
746         spin_unlock(&qp->s_lock);
747         spin_unlock(&qp->s_hlock);
748         spin_unlock_irq(&qp->r_lock);
749         if (lastwqe) {
750                 struct ib_event ev;
751
752                 ev.device = qp->ibqp.device;
753                 ev.element.qp = &qp->ibqp;
754                 ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
755                 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
756         }
757 }
758
759 /**
760  * rvt_remove_qp - remove qp form table
761  * @rdi: rvt dev struct
762  * @qp: qp to remove
763  *
764  * Remove the QP from the table so it can't be found asynchronously by
765  * the receive routine.
766  */
767 static void rvt_remove_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
768 {
769         struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
770         u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
771         unsigned long flags;
772         int removed = 1;
773
774         spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
775
776         if (rcu_dereference_protected(rvp->qp[0],
777                         lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
778                 RCU_INIT_POINTER(rvp->qp[0], NULL);
779         } else if (rcu_dereference_protected(rvp->qp[1],
780                         lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
781                 RCU_INIT_POINTER(rvp->qp[1], NULL);
782         } else {
783                 struct rvt_qp *q;
784                 struct rvt_qp __rcu **qpp;
785
786                 removed = 0;
787                 qpp = &rdi->qp_dev->qp_table[n];
788                 for (; (q = rcu_dereference_protected(*qpp,
789                         lockdep_is_held(&rdi->qp_dev->qpt_lock))) != NULL;
790                         qpp = &q->next) {
791                         if (q == qp) {
792                                 RCU_INIT_POINTER(*qpp,
793                                      rcu_dereference_protected(qp->next,
794                                      lockdep_is_held(&rdi->qp_dev->qpt_lock)));
795                                 removed = 1;
796                                 trace_rvt_qpremove(qp, n);
797                                 break;
798                         }
799                 }
800         }
801
802         spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
803         if (removed) {
804                 synchronize_rcu();
805                 rvt_put_qp(qp);
806         }
807 }
808
809 /**
810  * rvt_init_qp - initialize the QP state to the reset state
811  * @qp: the QP to init or reinit
812  * @type: the QP type
813  *
814  * This function is called from both rvt_create_qp() and
815  * rvt_reset_qp().   The difference is that the reset
816  * patch the necessary locks to protect against concurent
817  * access.
818  */
819 static void rvt_init_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
820                         enum ib_qp_type type)
821 {
822         qp->remote_qpn = 0;
823         qp->qkey = 0;
824         qp->qp_access_flags = 0;
825         qp->s_flags &= RVT_S_SIGNAL_REQ_WR;
826         qp->s_hdrwords = 0;
827         qp->s_wqe = NULL;
828         qp->s_draining = 0;
829         qp->s_next_psn = 0;
830         qp->s_last_psn = 0;
831         qp->s_sending_psn = 0;
832         qp->s_sending_hpsn = 0;
833         qp->s_psn = 0;
834         qp->r_psn = 0;
835         qp->r_msn = 0;
836         if (type == IB_QPT_RC) {
837                 qp->s_state = IB_OPCODE_RC_SEND_LAST;
838                 qp->r_state = IB_OPCODE_RC_SEND_LAST;
839         } else {
840                 qp->s_state = IB_OPCODE_UC_SEND_LAST;
841                 qp->r_state = IB_OPCODE_UC_SEND_LAST;
842         }
843         qp->s_ack_state = IB_OPCODE_RC_ACKNOWLEDGE;
844         qp->r_nak_state = 0;
845         qp->r_aflags = 0;
846         qp->r_flags = 0;
847         qp->s_head = 0;
848         qp->s_tail = 0;
849         qp->s_cur = 0;
850         qp->s_acked = 0;
851         qp->s_last = 0;
852         qp->s_ssn = 1;
853         qp->s_lsn = 0;
854         qp->s_mig_state = IB_MIG_MIGRATED;
855         qp->r_head_ack_queue = 0;
856         qp->s_tail_ack_queue = 0;
857         qp->s_num_rd_atomic = 0;
858         if (qp->r_rq.wq) {
859                 qp->r_rq.wq->head = 0;
860                 qp->r_rq.wq->tail = 0;
861         }
862         qp->r_sge.num_sge = 0;
863         atomic_set(&qp->s_reserved_used, 0);
864 }
865
866 /**
867  * rvt_reset_qp - initialize the QP state to the reset state
868  * @qp: the QP to reset
869  * @type: the QP type
870  *
871  * r_lock, s_hlock, and s_lock are required to be held by the caller
872  */
873 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
874                          enum ib_qp_type type)
875         __must_hold(&qp->s_lock)
876         __must_hold(&qp->s_hlock)
877         __must_hold(&qp->r_lock)
878 {
879         lockdep_assert_held(&qp->r_lock);
880         lockdep_assert_held(&qp->s_hlock);
881         lockdep_assert_held(&qp->s_lock);
882         if (qp->state != IB_QPS_RESET) {
883                 qp->state = IB_QPS_RESET;
884
885                 /* Let drivers flush their waitlist */
886                 rdi->driver_f.flush_qp_waiters(qp);
887                 rvt_stop_rc_timers(qp);
888                 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_ANY_WAIT);
889                 spin_unlock(&qp->s_lock);
890                 spin_unlock(&qp->s_hlock);
891                 spin_unlock_irq(&qp->r_lock);
892
893                 /* Stop the send queue and the retry timer */
894                 rdi->driver_f.stop_send_queue(qp);
895                 rvt_del_timers_sync(qp);
896                 /* Wait for things to stop */
897                 rdi->driver_f.quiesce_qp(qp);
898
899                 /* take qp out the hash and wait for it to be unused */
900                 rvt_remove_qp(rdi, qp);
901
902                 /* grab the lock b/c it was locked at call time */
903                 spin_lock_irq(&qp->r_lock);
904                 spin_lock(&qp->s_hlock);
905                 spin_lock(&qp->s_lock);
906
907                 rvt_clear_mr_refs(qp, 1);
908                 /*
909                  * Let the driver do any tear down or re-init it needs to for
910                  * a qp that has been reset
911                  */
912                 rdi->driver_f.notify_qp_reset(qp);
913         }
914         rvt_init_qp(rdi, qp, type);
915         lockdep_assert_held(&qp->r_lock);
916         lockdep_assert_held(&qp->s_hlock);
917         lockdep_assert_held(&qp->s_lock);
918 }
919
920 /** rvt_free_qpn - Free a qpn from the bit map
921  * @qpt: QP table
922  * @qpn: queue pair number to free
923  */
924 static void rvt_free_qpn(struct rvt_qpn_table *qpt, u32 qpn)
925 {
926         struct rvt_qpn_map *map;
927
928         map = qpt->map + (qpn & RVT_QPN_MASK) / RVT_BITS_PER_PAGE;
929         if (map->page)
930                 clear_bit(qpn & RVT_BITS_PER_PAGE_MASK, map->page);
931 }
932
933 /**
934  * rvt_create_qp - create a queue pair for a device
935  * @ibpd: the protection domain who's device we create the queue pair for
936  * @init_attr: the attributes of the queue pair
937  * @udata: user data for libibverbs.so
938  *
939  * Queue pair creation is mostly an rvt issue. However, drivers have their own
940  * unique idea of what queue pair numbers mean. For instance there is a reserved
941  * range for PSM.
942  *
943  * Return: the queue pair on success, otherwise returns an errno.
944  *
945  * Called by the ib_create_qp() core verbs function.
946  */
947 struct ib_qp *rvt_create_qp(struct ib_pd *ibpd,
948                             struct ib_qp_init_attr *init_attr,
949                             struct ib_udata *udata)
950 {
951         struct rvt_qp *qp;
952         int err;
953         struct rvt_swqe *swq = NULL;
954         size_t sz;
955         size_t sg_list_sz;
956         struct ib_qp *ret = ERR_PTR(-ENOMEM);
957         struct rvt_dev_info *rdi = ib_to_rvt(ibpd->device);
958         void *priv = NULL;
959         size_t sqsize;
960
961         if (!rdi)
962                 return ERR_PTR(-EINVAL);
963
964         if (init_attr->cap.max_send_sge > rdi->dparms.props.max_send_sge ||
965             init_attr->cap.max_send_wr > rdi->dparms.props.max_qp_wr ||
966             init_attr->create_flags)
967                 return ERR_PTR(-EINVAL);
968
969         /* Check receive queue parameters if no SRQ is specified. */
970         if (!init_attr->srq) {
971                 if (init_attr->cap.max_recv_sge >
972                     rdi->dparms.props.max_recv_sge ||
973                     init_attr->cap.max_recv_wr > rdi->dparms.props.max_qp_wr)
974                         return ERR_PTR(-EINVAL);
975
976                 if (init_attr->cap.max_send_sge +
977                     init_attr->cap.max_send_wr +
978                     init_attr->cap.max_recv_sge +
979                     init_attr->cap.max_recv_wr == 0)
980                         return ERR_PTR(-EINVAL);
981         }
982         sqsize =
983                 init_attr->cap.max_send_wr + 1 +
984                 rdi->dparms.reserved_operations;
985         switch (init_attr->qp_type) {
986         case IB_QPT_SMI:
987         case IB_QPT_GSI:
988                 if (init_attr->port_num == 0 ||
989                     init_attr->port_num > ibpd->device->phys_port_cnt)
990                         return ERR_PTR(-EINVAL);
991                 /* fall through */
992         case IB_QPT_UC:
993         case IB_QPT_RC:
994         case IB_QPT_UD:
995                 sz = sizeof(struct rvt_sge) *
996                         init_attr->cap.max_send_sge +
997                         sizeof(struct rvt_swqe);
998                 swq = vzalloc_node(array_size(sz, sqsize), rdi->dparms.node);
999                 if (!swq)
1000                         return ERR_PTR(-ENOMEM);
1001
1002                 sz = sizeof(*qp);
1003                 sg_list_sz = 0;
1004                 if (init_attr->srq) {
1005                         struct rvt_srq *srq = ibsrq_to_rvtsrq(init_attr->srq);
1006
1007                         if (srq->rq.max_sge > 1)
1008                                 sg_list_sz = sizeof(*qp->r_sg_list) *
1009                                         (srq->rq.max_sge - 1);
1010                 } else if (init_attr->cap.max_recv_sge > 1)
1011                         sg_list_sz = sizeof(*qp->r_sg_list) *
1012                                 (init_attr->cap.max_recv_sge - 1);
1013                 qp = kzalloc_node(sz + sg_list_sz, GFP_KERNEL,
1014                                   rdi->dparms.node);
1015                 if (!qp)
1016                         goto bail_swq;
1017
1018                 RCU_INIT_POINTER(qp->next, NULL);
1019                 if (init_attr->qp_type == IB_QPT_RC) {
1020                         qp->s_ack_queue =
1021                                 kcalloc_node(rvt_max_atomic(rdi),
1022                                              sizeof(*qp->s_ack_queue),
1023                                              GFP_KERNEL,
1024                                              rdi->dparms.node);
1025                         if (!qp->s_ack_queue)
1026                                 goto bail_qp;
1027                 }
1028                 /* initialize timers needed for rc qp */
1029                 timer_setup(&qp->s_timer, rvt_rc_timeout, 0);
1030                 hrtimer_init(&qp->s_rnr_timer, CLOCK_MONOTONIC,
1031                              HRTIMER_MODE_REL);
1032                 qp->s_rnr_timer.function = rvt_rc_rnr_retry;
1033
1034                 /*
1035                  * Driver needs to set up it's private QP structure and do any
1036                  * initialization that is needed.
1037                  */
1038                 priv = rdi->driver_f.qp_priv_alloc(rdi, qp);
1039                 if (IS_ERR(priv)) {
1040                         ret = priv;
1041                         goto bail_qp;
1042                 }
1043                 qp->priv = priv;
1044                 qp->timeout_jiffies =
1045                         usecs_to_jiffies((4096UL * (1UL << qp->timeout)) /
1046                                 1000UL);
1047                 if (init_attr->srq) {
1048                         sz = 0;
1049                 } else {
1050                         qp->r_rq.size = init_attr->cap.max_recv_wr + 1;
1051                         qp->r_rq.max_sge = init_attr->cap.max_recv_sge;
1052                         sz = (sizeof(struct ib_sge) * qp->r_rq.max_sge) +
1053                                 sizeof(struct rvt_rwqe);
1054                         if (udata)
1055                                 qp->r_rq.wq = vmalloc_user(
1056                                                 sizeof(struct rvt_rwq) +
1057                                                 qp->r_rq.size * sz);
1058                         else
1059                                 qp->r_rq.wq = vzalloc_node(
1060                                                 sizeof(struct rvt_rwq) +
1061                                                 qp->r_rq.size * sz,
1062                                                 rdi->dparms.node);
1063                         if (!qp->r_rq.wq)
1064                                 goto bail_driver_priv;
1065                 }
1066
1067                 /*
1068                  * ib_create_qp() will initialize qp->ibqp
1069                  * except for qp->ibqp.qp_num.
1070                  */
1071                 spin_lock_init(&qp->r_lock);
1072                 spin_lock_init(&qp->s_hlock);
1073                 spin_lock_init(&qp->s_lock);
1074                 spin_lock_init(&qp->r_rq.lock);
1075                 atomic_set(&qp->refcount, 0);
1076                 atomic_set(&qp->local_ops_pending, 0);
1077                 init_waitqueue_head(&qp->wait);
1078                 INIT_LIST_HEAD(&qp->rspwait);
1079                 qp->state = IB_QPS_RESET;
1080                 qp->s_wq = swq;
1081                 qp->s_size = sqsize;
1082                 qp->s_avail = init_attr->cap.max_send_wr;
1083                 qp->s_max_sge = init_attr->cap.max_send_sge;
1084                 if (init_attr->sq_sig_type == IB_SIGNAL_REQ_WR)
1085                         qp->s_flags = RVT_S_SIGNAL_REQ_WR;
1086
1087                 err = alloc_qpn(rdi, &rdi->qp_dev->qpn_table,
1088                                 init_attr->qp_type,
1089                                 init_attr->port_num);
1090                 if (err < 0) {
1091                         ret = ERR_PTR(err);
1092                         goto bail_rq_wq;
1093                 }
1094                 qp->ibqp.qp_num = err;
1095                 qp->port_num = init_attr->port_num;
1096                 rvt_init_qp(rdi, qp, init_attr->qp_type);
1097                 break;
1098
1099         default:
1100                 /* Don't support raw QPs */
1101                 return ERR_PTR(-EINVAL);
1102         }
1103
1104         init_attr->cap.max_inline_data = 0;
1105
1106         /*
1107          * Return the address of the RWQ as the offset to mmap.
1108          * See rvt_mmap() for details.
1109          */
1110         if (udata && udata->outlen >= sizeof(__u64)) {
1111                 if (!qp->r_rq.wq) {
1112                         __u64 offset = 0;
1113
1114                         err = ib_copy_to_udata(udata, &offset,
1115                                                sizeof(offset));
1116                         if (err) {
1117                                 ret = ERR_PTR(err);
1118                                 goto bail_qpn;
1119                         }
1120                 } else {
1121                         u32 s = sizeof(struct rvt_rwq) + qp->r_rq.size * sz;
1122
1123                         qp->ip = rvt_create_mmap_info(rdi, s,
1124                                                       ibpd->uobject->context,
1125                                                       qp->r_rq.wq);
1126                         if (!qp->ip) {
1127                                 ret = ERR_PTR(-ENOMEM);
1128                                 goto bail_qpn;
1129                         }
1130
1131                         err = ib_copy_to_udata(udata, &qp->ip->offset,
1132                                                sizeof(qp->ip->offset));
1133                         if (err) {
1134                                 ret = ERR_PTR(err);
1135                                 goto bail_ip;
1136                         }
1137                 }
1138                 qp->pid = current->pid;
1139         }
1140
1141         spin_lock(&rdi->n_qps_lock);
1142         if (rdi->n_qps_allocated == rdi->dparms.props.max_qp) {
1143                 spin_unlock(&rdi->n_qps_lock);
1144                 ret = ERR_PTR(-ENOMEM);
1145                 goto bail_ip;
1146         }
1147
1148         rdi->n_qps_allocated++;
1149         /*
1150          * Maintain a busy_jiffies variable that will be added to the timeout
1151          * period in mod_retry_timer and add_retry_timer. This busy jiffies
1152          * is scaled by the number of rc qps created for the device to reduce
1153          * the number of timeouts occurring when there is a large number of
1154          * qps. busy_jiffies is incremented every rc qp scaling interval.
1155          * The scaling interval is selected based on extensive performance
1156          * evaluation of targeted workloads.
1157          */
1158         if (init_attr->qp_type == IB_QPT_RC) {
1159                 rdi->n_rc_qps++;
1160                 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1161         }
1162         spin_unlock(&rdi->n_qps_lock);
1163
1164         if (qp->ip) {
1165                 spin_lock_irq(&rdi->pending_lock);
1166                 list_add(&qp->ip->pending_mmaps, &rdi->pending_mmaps);
1167                 spin_unlock_irq(&rdi->pending_lock);
1168         }
1169
1170         ret = &qp->ibqp;
1171
1172         /*
1173          * We have our QP and its good, now keep track of what types of opcodes
1174          * can be processed on this QP. We do this by keeping track of what the
1175          * 3 high order bits of the opcode are.
1176          */
1177         switch (init_attr->qp_type) {
1178         case IB_QPT_SMI:
1179         case IB_QPT_GSI:
1180         case IB_QPT_UD:
1181                 qp->allowed_ops = IB_OPCODE_UD;
1182                 break;
1183         case IB_QPT_RC:
1184                 qp->allowed_ops = IB_OPCODE_RC;
1185                 break;
1186         case IB_QPT_UC:
1187                 qp->allowed_ops = IB_OPCODE_UC;
1188                 break;
1189         default:
1190                 ret = ERR_PTR(-EINVAL);
1191                 goto bail_ip;
1192         }
1193
1194         return ret;
1195
1196 bail_ip:
1197         if (qp->ip)
1198                 kref_put(&qp->ip->ref, rvt_release_mmap_info);
1199
1200 bail_qpn:
1201         rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1202
1203 bail_rq_wq:
1204         if (!qp->ip)
1205                 vfree(qp->r_rq.wq);
1206
1207 bail_driver_priv:
1208         rdi->driver_f.qp_priv_free(rdi, qp);
1209
1210 bail_qp:
1211         kfree(qp->s_ack_queue);
1212         kfree(qp);
1213
1214 bail_swq:
1215         vfree(swq);
1216
1217         return ret;
1218 }
1219
1220 /**
1221  * rvt_error_qp - put a QP into the error state
1222  * @qp: the QP to put into the error state
1223  * @err: the receive completion error to signal if a RWQE is active
1224  *
1225  * Flushes both send and receive work queues.
1226  *
1227  * Return: true if last WQE event should be generated.
1228  * The QP r_lock and s_lock should be held and interrupts disabled.
1229  * If we are already in error state, just return.
1230  */
1231 int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err)
1232 {
1233         struct ib_wc wc;
1234         int ret = 0;
1235         struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
1236
1237         lockdep_assert_held(&qp->r_lock);
1238         lockdep_assert_held(&qp->s_lock);
1239         if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
1240                 goto bail;
1241
1242         qp->state = IB_QPS_ERR;
1243
1244         if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
1245                 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
1246                 del_timer(&qp->s_timer);
1247         }
1248
1249         if (qp->s_flags & RVT_S_ANY_WAIT_SEND)
1250                 qp->s_flags &= ~RVT_S_ANY_WAIT_SEND;
1251
1252         rdi->driver_f.notify_error_qp(qp);
1253
1254         /* Schedule the sending tasklet to drain the send work queue. */
1255         if (READ_ONCE(qp->s_last) != qp->s_head)
1256                 rdi->driver_f.schedule_send(qp);
1257
1258         rvt_clear_mr_refs(qp, 0);
1259
1260         memset(&wc, 0, sizeof(wc));
1261         wc.qp = &qp->ibqp;
1262         wc.opcode = IB_WC_RECV;
1263
1264         if (test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) {
1265                 wc.wr_id = qp->r_wr_id;
1266                 wc.status = err;
1267                 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1268         }
1269         wc.status = IB_WC_WR_FLUSH_ERR;
1270
1271         if (qp->r_rq.wq) {
1272                 struct rvt_rwq *wq;
1273                 u32 head;
1274                 u32 tail;
1275
1276                 spin_lock(&qp->r_rq.lock);
1277
1278                 /* sanity check pointers before trusting them */
1279                 wq = qp->r_rq.wq;
1280                 head = wq->head;
1281                 if (head >= qp->r_rq.size)
1282                         head = 0;
1283                 tail = wq->tail;
1284                 if (tail >= qp->r_rq.size)
1285                         tail = 0;
1286                 while (tail != head) {
1287                         wc.wr_id = rvt_get_rwqe_ptr(&qp->r_rq, tail)->wr_id;
1288                         if (++tail >= qp->r_rq.size)
1289                                 tail = 0;
1290                         rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1291                 }
1292                 wq->tail = tail;
1293
1294                 spin_unlock(&qp->r_rq.lock);
1295         } else if (qp->ibqp.event_handler) {
1296                 ret = 1;
1297         }
1298
1299 bail:
1300         return ret;
1301 }
1302 EXPORT_SYMBOL(rvt_error_qp);
1303
1304 /*
1305  * Put the QP into the hash table.
1306  * The hash table holds a reference to the QP.
1307  */
1308 static void rvt_insert_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
1309 {
1310         struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
1311         unsigned long flags;
1312
1313         rvt_get_qp(qp);
1314         spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
1315
1316         if (qp->ibqp.qp_num <= 1) {
1317                 rcu_assign_pointer(rvp->qp[qp->ibqp.qp_num], qp);
1318         } else {
1319                 u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
1320
1321                 qp->next = rdi->qp_dev->qp_table[n];
1322                 rcu_assign_pointer(rdi->qp_dev->qp_table[n], qp);
1323                 trace_rvt_qpinsert(qp, n);
1324         }
1325
1326         spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
1327 }
1328
1329 /**
1330  * rvt_modify_qp - modify the attributes of a queue pair
1331  * @ibqp: the queue pair who's attributes we're modifying
1332  * @attr: the new attributes
1333  * @attr_mask: the mask of attributes to modify
1334  * @udata: user data for libibverbs.so
1335  *
1336  * Return: 0 on success, otherwise returns an errno.
1337  */
1338 int rvt_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1339                   int attr_mask, struct ib_udata *udata)
1340 {
1341         struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1342         struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1343         enum ib_qp_state cur_state, new_state;
1344         struct ib_event ev;
1345         int lastwqe = 0;
1346         int mig = 0;
1347         int pmtu = 0; /* for gcc warning only */
1348         int opa_ah;
1349
1350         spin_lock_irq(&qp->r_lock);
1351         spin_lock(&qp->s_hlock);
1352         spin_lock(&qp->s_lock);
1353
1354         cur_state = attr_mask & IB_QP_CUR_STATE ?
1355                 attr->cur_qp_state : qp->state;
1356         new_state = attr_mask & IB_QP_STATE ? attr->qp_state : cur_state;
1357         opa_ah = rdma_cap_opa_ah(ibqp->device, qp->port_num);
1358
1359         if (!ib_modify_qp_is_ok(cur_state, new_state, ibqp->qp_type,
1360                                 attr_mask))
1361                 goto inval;
1362
1363         if (rdi->driver_f.check_modify_qp &&
1364             rdi->driver_f.check_modify_qp(qp, attr, attr_mask, udata))
1365                 goto inval;
1366
1367         if (attr_mask & IB_QP_AV) {
1368                 if (opa_ah) {
1369                         if (rdma_ah_get_dlid(&attr->ah_attr) >=
1370                                 opa_get_mcast_base(OPA_MCAST_NR))
1371                                 goto inval;
1372                 } else {
1373                         if (rdma_ah_get_dlid(&attr->ah_attr) >=
1374                                 be16_to_cpu(IB_MULTICAST_LID_BASE))
1375                                 goto inval;
1376                 }
1377
1378                 if (rvt_check_ah(qp->ibqp.device, &attr->ah_attr))
1379                         goto inval;
1380         }
1381
1382         if (attr_mask & IB_QP_ALT_PATH) {
1383                 if (opa_ah) {
1384                         if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1385                                 opa_get_mcast_base(OPA_MCAST_NR))
1386                                 goto inval;
1387                 } else {
1388                         if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1389                                 be16_to_cpu(IB_MULTICAST_LID_BASE))
1390                                 goto inval;
1391                 }
1392
1393                 if (rvt_check_ah(qp->ibqp.device, &attr->alt_ah_attr))
1394                         goto inval;
1395                 if (attr->alt_pkey_index >= rvt_get_npkeys(rdi))
1396                         goto inval;
1397         }
1398
1399         if (attr_mask & IB_QP_PKEY_INDEX)
1400                 if (attr->pkey_index >= rvt_get_npkeys(rdi))
1401                         goto inval;
1402
1403         if (attr_mask & IB_QP_MIN_RNR_TIMER)
1404                 if (attr->min_rnr_timer > 31)
1405                         goto inval;
1406
1407         if (attr_mask & IB_QP_PORT)
1408                 if (qp->ibqp.qp_type == IB_QPT_SMI ||
1409                     qp->ibqp.qp_type == IB_QPT_GSI ||
1410                     attr->port_num == 0 ||
1411                     attr->port_num > ibqp->device->phys_port_cnt)
1412                         goto inval;
1413
1414         if (attr_mask & IB_QP_DEST_QPN)
1415                 if (attr->dest_qp_num > RVT_QPN_MASK)
1416                         goto inval;
1417
1418         if (attr_mask & IB_QP_RETRY_CNT)
1419                 if (attr->retry_cnt > 7)
1420                         goto inval;
1421
1422         if (attr_mask & IB_QP_RNR_RETRY)
1423                 if (attr->rnr_retry > 7)
1424                         goto inval;
1425
1426         /*
1427          * Don't allow invalid path_mtu values.  OK to set greater
1428          * than the active mtu (or even the max_cap, if we have tuned
1429          * that to a small mtu.  We'll set qp->path_mtu
1430          * to the lesser of requested attribute mtu and active,
1431          * for packetizing messages.
1432          * Note that the QP port has to be set in INIT and MTU in RTR.
1433          */
1434         if (attr_mask & IB_QP_PATH_MTU) {
1435                 pmtu = rdi->driver_f.get_pmtu_from_attr(rdi, qp, attr);
1436                 if (pmtu < 0)
1437                         goto inval;
1438         }
1439
1440         if (attr_mask & IB_QP_PATH_MIG_STATE) {
1441                 if (attr->path_mig_state == IB_MIG_REARM) {
1442                         if (qp->s_mig_state == IB_MIG_ARMED)
1443                                 goto inval;
1444                         if (new_state != IB_QPS_RTS)
1445                                 goto inval;
1446                 } else if (attr->path_mig_state == IB_MIG_MIGRATED) {
1447                         if (qp->s_mig_state == IB_MIG_REARM)
1448                                 goto inval;
1449                         if (new_state != IB_QPS_RTS && new_state != IB_QPS_SQD)
1450                                 goto inval;
1451                         if (qp->s_mig_state == IB_MIG_ARMED)
1452                                 mig = 1;
1453                 } else {
1454                         goto inval;
1455                 }
1456         }
1457
1458         if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1459                 if (attr->max_dest_rd_atomic > rdi->dparms.max_rdma_atomic)
1460                         goto inval;
1461
1462         switch (new_state) {
1463         case IB_QPS_RESET:
1464                 if (qp->state != IB_QPS_RESET)
1465                         rvt_reset_qp(rdi, qp, ibqp->qp_type);
1466                 break;
1467
1468         case IB_QPS_RTR:
1469                 /* Allow event to re-trigger if QP set to RTR more than once */
1470                 qp->r_flags &= ~RVT_R_COMM_EST;
1471                 qp->state = new_state;
1472                 break;
1473
1474         case IB_QPS_SQD:
1475                 qp->s_draining = qp->s_last != qp->s_cur;
1476                 qp->state = new_state;
1477                 break;
1478
1479         case IB_QPS_SQE:
1480                 if (qp->ibqp.qp_type == IB_QPT_RC)
1481                         goto inval;
1482                 qp->state = new_state;
1483                 break;
1484
1485         case IB_QPS_ERR:
1486                 lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
1487                 break;
1488
1489         default:
1490                 qp->state = new_state;
1491                 break;
1492         }
1493
1494         if (attr_mask & IB_QP_PKEY_INDEX)
1495                 qp->s_pkey_index = attr->pkey_index;
1496
1497         if (attr_mask & IB_QP_PORT)
1498                 qp->port_num = attr->port_num;
1499
1500         if (attr_mask & IB_QP_DEST_QPN)
1501                 qp->remote_qpn = attr->dest_qp_num;
1502
1503         if (attr_mask & IB_QP_SQ_PSN) {
1504                 qp->s_next_psn = attr->sq_psn & rdi->dparms.psn_modify_mask;
1505                 qp->s_psn = qp->s_next_psn;
1506                 qp->s_sending_psn = qp->s_next_psn;
1507                 qp->s_last_psn = qp->s_next_psn - 1;
1508                 qp->s_sending_hpsn = qp->s_last_psn;
1509         }
1510
1511         if (attr_mask & IB_QP_RQ_PSN)
1512                 qp->r_psn = attr->rq_psn & rdi->dparms.psn_modify_mask;
1513
1514         if (attr_mask & IB_QP_ACCESS_FLAGS)
1515                 qp->qp_access_flags = attr->qp_access_flags;
1516
1517         if (attr_mask & IB_QP_AV) {
1518                 rdma_replace_ah_attr(&qp->remote_ah_attr, &attr->ah_attr);
1519                 qp->s_srate = rdma_ah_get_static_rate(&attr->ah_attr);
1520                 qp->srate_mbps = ib_rate_to_mbps(qp->s_srate);
1521         }
1522
1523         if (attr_mask & IB_QP_ALT_PATH) {
1524                 rdma_replace_ah_attr(&qp->alt_ah_attr, &attr->alt_ah_attr);
1525                 qp->s_alt_pkey_index = attr->alt_pkey_index;
1526         }
1527
1528         if (attr_mask & IB_QP_PATH_MIG_STATE) {
1529                 qp->s_mig_state = attr->path_mig_state;
1530                 if (mig) {
1531                         qp->remote_ah_attr = qp->alt_ah_attr;
1532                         qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr);
1533                         qp->s_pkey_index = qp->s_alt_pkey_index;
1534                 }
1535         }
1536
1537         if (attr_mask & IB_QP_PATH_MTU) {
1538                 qp->pmtu = rdi->driver_f.mtu_from_qp(rdi, qp, pmtu);
1539                 qp->log_pmtu = ilog2(qp->pmtu);
1540         }
1541
1542         if (attr_mask & IB_QP_RETRY_CNT) {
1543                 qp->s_retry_cnt = attr->retry_cnt;
1544                 qp->s_retry = attr->retry_cnt;
1545         }
1546
1547         if (attr_mask & IB_QP_RNR_RETRY) {
1548                 qp->s_rnr_retry_cnt = attr->rnr_retry;
1549                 qp->s_rnr_retry = attr->rnr_retry;
1550         }
1551
1552         if (attr_mask & IB_QP_MIN_RNR_TIMER)
1553                 qp->r_min_rnr_timer = attr->min_rnr_timer;
1554
1555         if (attr_mask & IB_QP_TIMEOUT) {
1556                 qp->timeout = attr->timeout;
1557                 qp->timeout_jiffies = rvt_timeout_to_jiffies(qp->timeout);
1558         }
1559
1560         if (attr_mask & IB_QP_QKEY)
1561                 qp->qkey = attr->qkey;
1562
1563         if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1564                 qp->r_max_rd_atomic = attr->max_dest_rd_atomic;
1565
1566         if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC)
1567                 qp->s_max_rd_atomic = attr->max_rd_atomic;
1568
1569         if (rdi->driver_f.modify_qp)
1570                 rdi->driver_f.modify_qp(qp, attr, attr_mask, udata);
1571
1572         spin_unlock(&qp->s_lock);
1573         spin_unlock(&qp->s_hlock);
1574         spin_unlock_irq(&qp->r_lock);
1575
1576         if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT)
1577                 rvt_insert_qp(rdi, qp);
1578
1579         if (lastwqe) {
1580                 ev.device = qp->ibqp.device;
1581                 ev.element.qp = &qp->ibqp;
1582                 ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
1583                 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1584         }
1585         if (mig) {
1586                 ev.device = qp->ibqp.device;
1587                 ev.element.qp = &qp->ibqp;
1588                 ev.event = IB_EVENT_PATH_MIG;
1589                 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1590         }
1591         return 0;
1592
1593 inval:
1594         spin_unlock(&qp->s_lock);
1595         spin_unlock(&qp->s_hlock);
1596         spin_unlock_irq(&qp->r_lock);
1597         return -EINVAL;
1598 }
1599
1600 /**
1601  * rvt_destroy_qp - destroy a queue pair
1602  * @ibqp: the queue pair to destroy
1603  *
1604  * Note that this can be called while the QP is actively sending or
1605  * receiving!
1606  *
1607  * Return: 0 on success.
1608  */
1609 int rvt_destroy_qp(struct ib_qp *ibqp)
1610 {
1611         struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1612         struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1613
1614         spin_lock_irq(&qp->r_lock);
1615         spin_lock(&qp->s_hlock);
1616         spin_lock(&qp->s_lock);
1617         rvt_reset_qp(rdi, qp, ibqp->qp_type);
1618         spin_unlock(&qp->s_lock);
1619         spin_unlock(&qp->s_hlock);
1620         spin_unlock_irq(&qp->r_lock);
1621
1622         wait_event(qp->wait, !atomic_read(&qp->refcount));
1623         /* qpn is now available for use again */
1624         rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1625
1626         spin_lock(&rdi->n_qps_lock);
1627         rdi->n_qps_allocated--;
1628         if (qp->ibqp.qp_type == IB_QPT_RC) {
1629                 rdi->n_rc_qps--;
1630                 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1631         }
1632         spin_unlock(&rdi->n_qps_lock);
1633
1634         if (qp->ip)
1635                 kref_put(&qp->ip->ref, rvt_release_mmap_info);
1636         else
1637                 vfree(qp->r_rq.wq);
1638         vfree(qp->s_wq);
1639         rdi->driver_f.qp_priv_free(rdi, qp);
1640         kfree(qp->s_ack_queue);
1641         rdma_destroy_ah_attr(&qp->remote_ah_attr);
1642         rdma_destroy_ah_attr(&qp->alt_ah_attr);
1643         kfree(qp);
1644         return 0;
1645 }
1646
1647 /**
1648  * rvt_query_qp - query an ipbq
1649  * @ibqp: IB qp to query
1650  * @attr: attr struct to fill in
1651  * @attr_mask: attr mask ignored
1652  * @init_attr: struct to fill in
1653  *
1654  * Return: always 0
1655  */
1656 int rvt_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1657                  int attr_mask, struct ib_qp_init_attr *init_attr)
1658 {
1659         struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1660         struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1661
1662         attr->qp_state = qp->state;
1663         attr->cur_qp_state = attr->qp_state;
1664         attr->path_mtu = rdi->driver_f.mtu_to_path_mtu(qp->pmtu);
1665         attr->path_mig_state = qp->s_mig_state;
1666         attr->qkey = qp->qkey;
1667         attr->rq_psn = qp->r_psn & rdi->dparms.psn_mask;
1668         attr->sq_psn = qp->s_next_psn & rdi->dparms.psn_mask;
1669         attr->dest_qp_num = qp->remote_qpn;
1670         attr->qp_access_flags = qp->qp_access_flags;
1671         attr->cap.max_send_wr = qp->s_size - 1 -
1672                 rdi->dparms.reserved_operations;
1673         attr->cap.max_recv_wr = qp->ibqp.srq ? 0 : qp->r_rq.size - 1;
1674         attr->cap.max_send_sge = qp->s_max_sge;
1675         attr->cap.max_recv_sge = qp->r_rq.max_sge;
1676         attr->cap.max_inline_data = 0;
1677         attr->ah_attr = qp->remote_ah_attr;
1678         attr->alt_ah_attr = qp->alt_ah_attr;
1679         attr->pkey_index = qp->s_pkey_index;
1680         attr->alt_pkey_index = qp->s_alt_pkey_index;
1681         attr->en_sqd_async_notify = 0;
1682         attr->sq_draining = qp->s_draining;
1683         attr->max_rd_atomic = qp->s_max_rd_atomic;
1684         attr->max_dest_rd_atomic = qp->r_max_rd_atomic;
1685         attr->min_rnr_timer = qp->r_min_rnr_timer;
1686         attr->port_num = qp->port_num;
1687         attr->timeout = qp->timeout;
1688         attr->retry_cnt = qp->s_retry_cnt;
1689         attr->rnr_retry = qp->s_rnr_retry_cnt;
1690         attr->alt_port_num =
1691                 rdma_ah_get_port_num(&qp->alt_ah_attr);
1692         attr->alt_timeout = qp->alt_timeout;
1693
1694         init_attr->event_handler = qp->ibqp.event_handler;
1695         init_attr->qp_context = qp->ibqp.qp_context;
1696         init_attr->send_cq = qp->ibqp.send_cq;
1697         init_attr->recv_cq = qp->ibqp.recv_cq;
1698         init_attr->srq = qp->ibqp.srq;
1699         init_attr->cap = attr->cap;
1700         if (qp->s_flags & RVT_S_SIGNAL_REQ_WR)
1701                 init_attr->sq_sig_type = IB_SIGNAL_REQ_WR;
1702         else
1703                 init_attr->sq_sig_type = IB_SIGNAL_ALL_WR;
1704         init_attr->qp_type = qp->ibqp.qp_type;
1705         init_attr->port_num = qp->port_num;
1706         return 0;
1707 }
1708
1709 /**
1710  * rvt_post_receive - post a receive on a QP
1711  * @ibqp: the QP to post the receive on
1712  * @wr: the WR to post
1713  * @bad_wr: the first bad WR is put here
1714  *
1715  * This may be called from interrupt context.
1716  *
1717  * Return: 0 on success otherwise errno
1718  */
1719 int rvt_post_recv(struct ib_qp *ibqp, const struct ib_recv_wr *wr,
1720                   const struct ib_recv_wr **bad_wr)
1721 {
1722         struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1723         struct rvt_rwq *wq = qp->r_rq.wq;
1724         unsigned long flags;
1725         int qp_err_flush = (ib_rvt_state_ops[qp->state] & RVT_FLUSH_RECV) &&
1726                                 !qp->ibqp.srq;
1727
1728         /* Check that state is OK to post receive. */
1729         if (!(ib_rvt_state_ops[qp->state] & RVT_POST_RECV_OK) || !wq) {
1730                 *bad_wr = wr;
1731                 return -EINVAL;
1732         }
1733
1734         for (; wr; wr = wr->next) {
1735                 struct rvt_rwqe *wqe;
1736                 u32 next;
1737                 int i;
1738
1739                 if ((unsigned)wr->num_sge > qp->r_rq.max_sge) {
1740                         *bad_wr = wr;
1741                         return -EINVAL;
1742                 }
1743
1744                 spin_lock_irqsave(&qp->r_rq.lock, flags);
1745                 next = wq->head + 1;
1746                 if (next >= qp->r_rq.size)
1747                         next = 0;
1748                 if (next == wq->tail) {
1749                         spin_unlock_irqrestore(&qp->r_rq.lock, flags);
1750                         *bad_wr = wr;
1751                         return -ENOMEM;
1752                 }
1753                 if (unlikely(qp_err_flush)) {
1754                         struct ib_wc wc;
1755
1756                         memset(&wc, 0, sizeof(wc));
1757                         wc.qp = &qp->ibqp;
1758                         wc.opcode = IB_WC_RECV;
1759                         wc.wr_id = wr->wr_id;
1760                         wc.status = IB_WC_WR_FLUSH_ERR;
1761                         rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1762                 } else {
1763                         wqe = rvt_get_rwqe_ptr(&qp->r_rq, wq->head);
1764                         wqe->wr_id = wr->wr_id;
1765                         wqe->num_sge = wr->num_sge;
1766                         for (i = 0; i < wr->num_sge; i++)
1767                                 wqe->sg_list[i] = wr->sg_list[i];
1768                         /*
1769                          * Make sure queue entry is written
1770                          * before the head index.
1771                          */
1772                         smp_wmb();
1773                         wq->head = next;
1774                 }
1775                 spin_unlock_irqrestore(&qp->r_rq.lock, flags);
1776         }
1777         return 0;
1778 }
1779
1780 /**
1781  * rvt_qp_valid_operation - validate post send wr request
1782  * @qp - the qp
1783  * @post-parms - the post send table for the driver
1784  * @wr - the work request
1785  *
1786  * The routine validates the operation based on the
1787  * validation table an returns the length of the operation
1788  * which can extend beyond the ib_send_bw.  Operation
1789  * dependent flags key atomic operation validation.
1790  *
1791  * There is an exception for UD qps that validates the pd and
1792  * overrides the length to include the additional UD specific
1793  * length.
1794  *
1795  * Returns a negative error or the length of the work request
1796  * for building the swqe.
1797  */
1798 static inline int rvt_qp_valid_operation(
1799         struct rvt_qp *qp,
1800         const struct rvt_operation_params *post_parms,
1801         const struct ib_send_wr *wr)
1802 {
1803         int len;
1804
1805         if (wr->opcode >= RVT_OPERATION_MAX || !post_parms[wr->opcode].length)
1806                 return -EINVAL;
1807         if (!(post_parms[wr->opcode].qpt_support & BIT(qp->ibqp.qp_type)))
1808                 return -EINVAL;
1809         if ((post_parms[wr->opcode].flags & RVT_OPERATION_PRIV) &&
1810             ibpd_to_rvtpd(qp->ibqp.pd)->user)
1811                 return -EINVAL;
1812         if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC_SGE &&
1813             (wr->num_sge == 0 ||
1814              wr->sg_list[0].length < sizeof(u64) ||
1815              wr->sg_list[0].addr & (sizeof(u64) - 1)))
1816                 return -EINVAL;
1817         if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC &&
1818             !qp->s_max_rd_atomic)
1819                 return -EINVAL;
1820         len = post_parms[wr->opcode].length;
1821         /* UD specific */
1822         if (qp->ibqp.qp_type != IB_QPT_UC &&
1823             qp->ibqp.qp_type != IB_QPT_RC) {
1824                 if (qp->ibqp.pd != ud_wr(wr)->ah->pd)
1825                         return -EINVAL;
1826                 len = sizeof(struct ib_ud_wr);
1827         }
1828         return len;
1829 }
1830
1831 /**
1832  * rvt_qp_is_avail - determine queue capacity
1833  * @qp: the qp
1834  * @rdi: the rdmavt device
1835  * @reserved_op: is reserved operation
1836  *
1837  * This assumes the s_hlock is held but the s_last
1838  * qp variable is uncontrolled.
1839  *
1840  * For non reserved operations, the qp->s_avail
1841  * may be changed.
1842  *
1843  * The return value is zero or a -ENOMEM.
1844  */
1845 static inline int rvt_qp_is_avail(
1846         struct rvt_qp *qp,
1847         struct rvt_dev_info *rdi,
1848         bool reserved_op)
1849 {
1850         u32 slast;
1851         u32 avail;
1852         u32 reserved_used;
1853
1854         /* see rvt_qp_wqe_unreserve() */
1855         smp_mb__before_atomic();
1856         reserved_used = atomic_read(&qp->s_reserved_used);
1857         if (unlikely(reserved_op)) {
1858                 /* see rvt_qp_wqe_unreserve() */
1859                 smp_mb__before_atomic();
1860                 if (reserved_used >= rdi->dparms.reserved_operations)
1861                         return -ENOMEM;
1862                 return 0;
1863         }
1864         /* non-reserved operations */
1865         if (likely(qp->s_avail))
1866                 return 0;
1867         slast = READ_ONCE(qp->s_last);
1868         if (qp->s_head >= slast)
1869                 avail = qp->s_size - (qp->s_head - slast);
1870         else
1871                 avail = slast - qp->s_head;
1872
1873         /* see rvt_qp_wqe_unreserve() */
1874         smp_mb__before_atomic();
1875         reserved_used = atomic_read(&qp->s_reserved_used);
1876         avail =  avail - 1 -
1877                 (rdi->dparms.reserved_operations - reserved_used);
1878         /* insure we don't assign a negative s_avail */
1879         if ((s32)avail <= 0)
1880                 return -ENOMEM;
1881         qp->s_avail = avail;
1882         if (WARN_ON(qp->s_avail >
1883                     (qp->s_size - 1 - rdi->dparms.reserved_operations)))
1884                 rvt_pr_err(rdi,
1885                            "More avail entries than QP RB size.\nQP: %u, size: %u, avail: %u\nhead: %u, tail: %u, cur: %u, acked: %u, last: %u",
1886                            qp->ibqp.qp_num, qp->s_size, qp->s_avail,
1887                            qp->s_head, qp->s_tail, qp->s_cur,
1888                            qp->s_acked, qp->s_last);
1889         return 0;
1890 }
1891
1892 /**
1893  * rvt_post_one_wr - post one RC, UC, or UD send work request
1894  * @qp: the QP to post on
1895  * @wr: the work request to send
1896  */
1897 static int rvt_post_one_wr(struct rvt_qp *qp,
1898                            const struct ib_send_wr *wr,
1899                            bool *call_send)
1900 {
1901         struct rvt_swqe *wqe;
1902         u32 next;
1903         int i;
1904         int j;
1905         int acc;
1906         struct rvt_lkey_table *rkt;
1907         struct rvt_pd *pd;
1908         struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
1909         u8 log_pmtu;
1910         int ret;
1911         size_t cplen;
1912         bool reserved_op;
1913         int local_ops_delayed = 0;
1914
1915         BUILD_BUG_ON(IB_QPT_MAX >= (sizeof(u32) * BITS_PER_BYTE));
1916
1917         /* IB spec says that num_sge == 0 is OK. */
1918         if (unlikely(wr->num_sge > qp->s_max_sge))
1919                 return -EINVAL;
1920
1921         ret = rvt_qp_valid_operation(qp, rdi->post_parms, wr);
1922         if (ret < 0)
1923                 return ret;
1924         cplen = ret;
1925
1926         /*
1927          * Local operations include fast register and local invalidate.
1928          * Fast register needs to be processed immediately because the
1929          * registered lkey may be used by following work requests and the
1930          * lkey needs to be valid at the time those requests are posted.
1931          * Local invalidate can be processed immediately if fencing is
1932          * not required and no previous local invalidate ops are pending.
1933          * Signaled local operations that have been processed immediately
1934          * need to have requests with "completion only" flags set posted
1935          * to the send queue in order to generate completions.
1936          */
1937         if ((rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) {
1938                 switch (wr->opcode) {
1939                 case IB_WR_REG_MR:
1940                         ret = rvt_fast_reg_mr(qp,
1941                                               reg_wr(wr)->mr,
1942                                               reg_wr(wr)->key,
1943                                               reg_wr(wr)->access);
1944                         if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
1945                                 return ret;
1946                         break;
1947                 case IB_WR_LOCAL_INV:
1948                         if ((wr->send_flags & IB_SEND_FENCE) ||
1949                             atomic_read(&qp->local_ops_pending)) {
1950                                 local_ops_delayed = 1;
1951                         } else {
1952                                 ret = rvt_invalidate_rkey(
1953                                         qp, wr->ex.invalidate_rkey);
1954                                 if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
1955                                         return ret;
1956                         }
1957                         break;
1958                 default:
1959                         return -EINVAL;
1960                 }
1961         }
1962
1963         reserved_op = rdi->post_parms[wr->opcode].flags &
1964                         RVT_OPERATION_USE_RESERVE;
1965         /* check for avail */
1966         ret = rvt_qp_is_avail(qp, rdi, reserved_op);
1967         if (ret)
1968                 return ret;
1969         next = qp->s_head + 1;
1970         if (next >= qp->s_size)
1971                 next = 0;
1972
1973         rkt = &rdi->lkey_table;
1974         pd = ibpd_to_rvtpd(qp->ibqp.pd);
1975         wqe = rvt_get_swqe_ptr(qp, qp->s_head);
1976
1977         /* cplen has length from above */
1978         memcpy(&wqe->wr, wr, cplen);
1979
1980         wqe->length = 0;
1981         j = 0;
1982         if (wr->num_sge) {
1983                 struct rvt_sge *last_sge = NULL;
1984
1985                 acc = wr->opcode >= IB_WR_RDMA_READ ?
1986                         IB_ACCESS_LOCAL_WRITE : 0;
1987                 for (i = 0; i < wr->num_sge; i++) {
1988                         u32 length = wr->sg_list[i].length;
1989
1990                         if (length == 0)
1991                                 continue;
1992                         ret = rvt_lkey_ok(rkt, pd, &wqe->sg_list[j], last_sge,
1993                                           &wr->sg_list[i], acc);
1994                         if (unlikely(ret < 0))
1995                                 goto bail_inval_free;
1996                         wqe->length += length;
1997                         if (ret)
1998                                 last_sge = &wqe->sg_list[j];
1999                         j += ret;
2000                 }
2001                 wqe->wr.num_sge = j;
2002         }
2003
2004         /*
2005          * Calculate and set SWQE PSN values prior to handing it off
2006          * to the driver's check routine. This give the driver the
2007          * opportunity to adjust PSN values based on internal checks.
2008          */
2009         log_pmtu = qp->log_pmtu;
2010         if (qp->ibqp.qp_type != IB_QPT_UC &&
2011             qp->ibqp.qp_type != IB_QPT_RC) {
2012                 struct rvt_ah *ah = ibah_to_rvtah(wqe->ud_wr.ah);
2013
2014                 log_pmtu = ah->log_pmtu;
2015                 atomic_inc(&ibah_to_rvtah(ud_wr(wr)->ah)->refcount);
2016         }
2017
2018         if (rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL) {
2019                 if (local_ops_delayed)
2020                         atomic_inc(&qp->local_ops_pending);
2021                 else
2022                         wqe->wr.send_flags |= RVT_SEND_COMPLETION_ONLY;
2023                 wqe->ssn = 0;
2024                 wqe->psn = 0;
2025                 wqe->lpsn = 0;
2026         } else {
2027                 wqe->ssn = qp->s_ssn++;
2028                 wqe->psn = qp->s_next_psn;
2029                 wqe->lpsn = wqe->psn +
2030                                 (wqe->length ?
2031                                         ((wqe->length - 1) >> log_pmtu) :
2032                                         0);
2033         }
2034
2035         /* general part of wqe valid - allow for driver checks */
2036         if (rdi->driver_f.setup_wqe) {
2037                 ret = rdi->driver_f.setup_wqe(qp, wqe, call_send);
2038                 if (ret < 0)
2039                         goto bail_inval_free_ref;
2040         }
2041
2042         if (!(rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL))
2043                 qp->s_next_psn = wqe->lpsn + 1;
2044
2045         if (unlikely(reserved_op)) {
2046                 wqe->wr.send_flags |= RVT_SEND_RESERVE_USED;
2047                 rvt_qp_wqe_reserve(qp, wqe);
2048         } else {
2049                 wqe->wr.send_flags &= ~RVT_SEND_RESERVE_USED;
2050                 qp->s_avail--;
2051         }
2052         trace_rvt_post_one_wr(qp, wqe, wr->num_sge);
2053         smp_wmb(); /* see request builders */
2054         qp->s_head = next;
2055
2056         return 0;
2057
2058 bail_inval_free_ref:
2059         if (qp->ibqp.qp_type != IB_QPT_UC &&
2060             qp->ibqp.qp_type != IB_QPT_RC)
2061                 atomic_dec(&ibah_to_rvtah(ud_wr(wr)->ah)->refcount);
2062 bail_inval_free:
2063         /* release mr holds */
2064         while (j) {
2065                 struct rvt_sge *sge = &wqe->sg_list[--j];
2066
2067                 rvt_put_mr(sge->mr);
2068         }
2069         return ret;
2070 }
2071
2072 /**
2073  * rvt_post_send - post a send on a QP
2074  * @ibqp: the QP to post the send on
2075  * @wr: the list of work requests to post
2076  * @bad_wr: the first bad WR is put here
2077  *
2078  * This may be called from interrupt context.
2079  *
2080  * Return: 0 on success else errno
2081  */
2082 int rvt_post_send(struct ib_qp *ibqp, const struct ib_send_wr *wr,
2083                   const struct ib_send_wr **bad_wr)
2084 {
2085         struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
2086         struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
2087         unsigned long flags = 0;
2088         bool call_send;
2089         unsigned nreq = 0;
2090         int err = 0;
2091
2092         spin_lock_irqsave(&qp->s_hlock, flags);
2093
2094         /*
2095          * Ensure QP state is such that we can send. If not bail out early,
2096          * there is no need to do this every time we post a send.
2097          */
2098         if (unlikely(!(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))) {
2099                 spin_unlock_irqrestore(&qp->s_hlock, flags);
2100                 return -EINVAL;
2101         }
2102
2103         /*
2104          * If the send queue is empty, and we only have a single WR then just go
2105          * ahead and kick the send engine into gear. Otherwise we will always
2106          * just schedule the send to happen later.
2107          */
2108         call_send = qp->s_head == READ_ONCE(qp->s_last) && !wr->next;
2109
2110         for (; wr; wr = wr->next) {
2111                 err = rvt_post_one_wr(qp, wr, &call_send);
2112                 if (unlikely(err)) {
2113                         *bad_wr = wr;
2114                         goto bail;
2115                 }
2116                 nreq++;
2117         }
2118 bail:
2119         spin_unlock_irqrestore(&qp->s_hlock, flags);
2120         if (nreq) {
2121                 /*
2122                  * Only call do_send if there is exactly one packet, and the
2123                  * driver said it was ok.
2124                  */
2125                 if (nreq == 1 && call_send)
2126                         rdi->driver_f.do_send(qp);
2127                 else
2128                         rdi->driver_f.schedule_send_no_lock(qp);
2129         }
2130         return err;
2131 }
2132
2133 /**
2134  * rvt_post_srq_receive - post a receive on a shared receive queue
2135  * @ibsrq: the SRQ to post the receive on
2136  * @wr: the list of work requests to post
2137  * @bad_wr: A pointer to the first WR to cause a problem is put here
2138  *
2139  * This may be called from interrupt context.
2140  *
2141  * Return: 0 on success else errno
2142  */
2143 int rvt_post_srq_recv(struct ib_srq *ibsrq, const struct ib_recv_wr *wr,
2144                       const struct ib_recv_wr **bad_wr)
2145 {
2146         struct rvt_srq *srq = ibsrq_to_rvtsrq(ibsrq);
2147         struct rvt_rwq *wq;
2148         unsigned long flags;
2149
2150         for (; wr; wr = wr->next) {
2151                 struct rvt_rwqe *wqe;
2152                 u32 next;
2153                 int i;
2154
2155                 if ((unsigned)wr->num_sge > srq->rq.max_sge) {
2156                         *bad_wr = wr;
2157                         return -EINVAL;
2158                 }
2159
2160                 spin_lock_irqsave(&srq->rq.lock, flags);
2161                 wq = srq->rq.wq;
2162                 next = wq->head + 1;
2163                 if (next >= srq->rq.size)
2164                         next = 0;
2165                 if (next == wq->tail) {
2166                         spin_unlock_irqrestore(&srq->rq.lock, flags);
2167                         *bad_wr = wr;
2168                         return -ENOMEM;
2169                 }
2170
2171                 wqe = rvt_get_rwqe_ptr(&srq->rq, wq->head);
2172                 wqe->wr_id = wr->wr_id;
2173                 wqe->num_sge = wr->num_sge;
2174                 for (i = 0; i < wr->num_sge; i++)
2175                         wqe->sg_list[i] = wr->sg_list[i];
2176                 /* Make sure queue entry is written before the head index. */
2177                 smp_wmb();
2178                 wq->head = next;
2179                 spin_unlock_irqrestore(&srq->rq.lock, flags);
2180         }
2181         return 0;
2182 }
2183
2184 /*
2185  * Validate a RWQE and fill in the SGE state.
2186  * Return 1 if OK.
2187  */
2188 static int init_sge(struct rvt_qp *qp, struct rvt_rwqe *wqe)
2189 {
2190         int i, j, ret;
2191         struct ib_wc wc;
2192         struct rvt_lkey_table *rkt;
2193         struct rvt_pd *pd;
2194         struct rvt_sge_state *ss;
2195         struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2196
2197         rkt = &rdi->lkey_table;
2198         pd = ibpd_to_rvtpd(qp->ibqp.srq ? qp->ibqp.srq->pd : qp->ibqp.pd);
2199         ss = &qp->r_sge;
2200         ss->sg_list = qp->r_sg_list;
2201         qp->r_len = 0;
2202         for (i = j = 0; i < wqe->num_sge; i++) {
2203                 if (wqe->sg_list[i].length == 0)
2204                         continue;
2205                 /* Check LKEY */
2206                 ret = rvt_lkey_ok(rkt, pd, j ? &ss->sg_list[j - 1] : &ss->sge,
2207                                   NULL, &wqe->sg_list[i],
2208                                   IB_ACCESS_LOCAL_WRITE);
2209                 if (unlikely(ret <= 0))
2210                         goto bad_lkey;
2211                 qp->r_len += wqe->sg_list[i].length;
2212                 j++;
2213         }
2214         ss->num_sge = j;
2215         ss->total_len = qp->r_len;
2216         return 1;
2217
2218 bad_lkey:
2219         while (j) {
2220                 struct rvt_sge *sge = --j ? &ss->sg_list[j - 1] : &ss->sge;
2221
2222                 rvt_put_mr(sge->mr);
2223         }
2224         ss->num_sge = 0;
2225         memset(&wc, 0, sizeof(wc));
2226         wc.wr_id = wqe->wr_id;
2227         wc.status = IB_WC_LOC_PROT_ERR;
2228         wc.opcode = IB_WC_RECV;
2229         wc.qp = &qp->ibqp;
2230         /* Signal solicited completion event. */
2231         rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
2232         return 0;
2233 }
2234
2235 /**
2236  * rvt_get_rwqe - copy the next RWQE into the QP's RWQE
2237  * @qp: the QP
2238  * @wr_id_only: update qp->r_wr_id only, not qp->r_sge
2239  *
2240  * Return -1 if there is a local error, 0 if no RWQE is available,
2241  * otherwise return 1.
2242  *
2243  * Can be called from interrupt level.
2244  */
2245 int rvt_get_rwqe(struct rvt_qp *qp, bool wr_id_only)
2246 {
2247         unsigned long flags;
2248         struct rvt_rq *rq;
2249         struct rvt_rwq *wq;
2250         struct rvt_srq *srq;
2251         struct rvt_rwqe *wqe;
2252         void (*handler)(struct ib_event *, void *);
2253         u32 tail;
2254         int ret;
2255
2256         if (qp->ibqp.srq) {
2257                 srq = ibsrq_to_rvtsrq(qp->ibqp.srq);
2258                 handler = srq->ibsrq.event_handler;
2259                 rq = &srq->rq;
2260         } else {
2261                 srq = NULL;
2262                 handler = NULL;
2263                 rq = &qp->r_rq;
2264         }
2265
2266         spin_lock_irqsave(&rq->lock, flags);
2267         if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) {
2268                 ret = 0;
2269                 goto unlock;
2270         }
2271
2272         wq = rq->wq;
2273         tail = wq->tail;
2274         /* Validate tail before using it since it is user writable. */
2275         if (tail >= rq->size)
2276                 tail = 0;
2277         if (unlikely(tail == wq->head)) {
2278                 ret = 0;
2279                 goto unlock;
2280         }
2281         /* Make sure entry is read after head index is read. */
2282         smp_rmb();
2283         wqe = rvt_get_rwqe_ptr(rq, tail);
2284         /*
2285          * Even though we update the tail index in memory, the verbs
2286          * consumer is not supposed to post more entries until a
2287          * completion is generated.
2288          */
2289         if (++tail >= rq->size)
2290                 tail = 0;
2291         wq->tail = tail;
2292         if (!wr_id_only && !init_sge(qp, wqe)) {
2293                 ret = -1;
2294                 goto unlock;
2295         }
2296         qp->r_wr_id = wqe->wr_id;
2297
2298         ret = 1;
2299         set_bit(RVT_R_WRID_VALID, &qp->r_aflags);
2300         if (handler) {
2301                 u32 n;
2302
2303                 /*
2304                  * Validate head pointer value and compute
2305                  * the number of remaining WQEs.
2306                  */
2307                 n = wq->head;
2308                 if (n >= rq->size)
2309                         n = 0;
2310                 if (n < tail)
2311                         n += rq->size - tail;
2312                 else
2313                         n -= tail;
2314                 if (n < srq->limit) {
2315                         struct ib_event ev;
2316
2317                         srq->limit = 0;
2318                         spin_unlock_irqrestore(&rq->lock, flags);
2319                         ev.device = qp->ibqp.device;
2320                         ev.element.srq = qp->ibqp.srq;
2321                         ev.event = IB_EVENT_SRQ_LIMIT_REACHED;
2322                         handler(&ev, srq->ibsrq.srq_context);
2323                         goto bail;
2324                 }
2325         }
2326 unlock:
2327         spin_unlock_irqrestore(&rq->lock, flags);
2328 bail:
2329         return ret;
2330 }
2331 EXPORT_SYMBOL(rvt_get_rwqe);
2332
2333 /**
2334  * qp_comm_est - handle trap with QP established
2335  * @qp: the QP
2336  */
2337 void rvt_comm_est(struct rvt_qp *qp)
2338 {
2339         qp->r_flags |= RVT_R_COMM_EST;
2340         if (qp->ibqp.event_handler) {
2341                 struct ib_event ev;
2342
2343                 ev.device = qp->ibqp.device;
2344                 ev.element.qp = &qp->ibqp;
2345                 ev.event = IB_EVENT_COMM_EST;
2346                 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2347         }
2348 }
2349 EXPORT_SYMBOL(rvt_comm_est);
2350
2351 void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err)
2352 {
2353         unsigned long flags;
2354         int lastwqe;
2355
2356         spin_lock_irqsave(&qp->s_lock, flags);
2357         lastwqe = rvt_error_qp(qp, err);
2358         spin_unlock_irqrestore(&qp->s_lock, flags);
2359
2360         if (lastwqe) {
2361                 struct ib_event ev;
2362
2363                 ev.device = qp->ibqp.device;
2364                 ev.element.qp = &qp->ibqp;
2365                 ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
2366                 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2367         }
2368 }
2369 EXPORT_SYMBOL(rvt_rc_error);
2370
2371 /*
2372  *  rvt_rnr_tbl_to_usec - return index into ib_rvt_rnr_table
2373  *  @index - the index
2374  *  return usec from an index into ib_rvt_rnr_table
2375  */
2376 unsigned long rvt_rnr_tbl_to_usec(u32 index)
2377 {
2378         return ib_rvt_rnr_table[(index & IB_AETH_CREDIT_MASK)];
2379 }
2380 EXPORT_SYMBOL(rvt_rnr_tbl_to_usec);
2381
2382 static inline unsigned long rvt_aeth_to_usec(u32 aeth)
2383 {
2384         return ib_rvt_rnr_table[(aeth >> IB_AETH_CREDIT_SHIFT) &
2385                                   IB_AETH_CREDIT_MASK];
2386 }
2387
2388 /*
2389  *  rvt_add_retry_timer - add/start a retry timer
2390  *  @qp - the QP
2391  *  add a retry timer on the QP
2392  */
2393 void rvt_add_retry_timer(struct rvt_qp *qp)
2394 {
2395         struct ib_qp *ibqp = &qp->ibqp;
2396         struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
2397
2398         lockdep_assert_held(&qp->s_lock);
2399         qp->s_flags |= RVT_S_TIMER;
2400        /* 4.096 usec. * (1 << qp->timeout) */
2401         qp->s_timer.expires = jiffies + qp->timeout_jiffies +
2402                              rdi->busy_jiffies;
2403         add_timer(&qp->s_timer);
2404 }
2405 EXPORT_SYMBOL(rvt_add_retry_timer);
2406
2407 /**
2408  * rvt_add_rnr_timer - add/start an rnr timer
2409  * @qp - the QP
2410  * @aeth - aeth of RNR timeout, simulated aeth for loopback
2411  * add an rnr timer on the QP
2412  */
2413 void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth)
2414 {
2415         u32 to;
2416
2417         lockdep_assert_held(&qp->s_lock);
2418         qp->s_flags |= RVT_S_WAIT_RNR;
2419         to = rvt_aeth_to_usec(aeth);
2420         trace_rvt_rnrnak_add(qp, to);
2421         hrtimer_start(&qp->s_rnr_timer,
2422                       ns_to_ktime(1000 * to), HRTIMER_MODE_REL_PINNED);
2423 }
2424 EXPORT_SYMBOL(rvt_add_rnr_timer);
2425
2426 /**
2427  * rvt_stop_rc_timers - stop all timers
2428  * @qp - the QP
2429  * stop any pending timers
2430  */
2431 void rvt_stop_rc_timers(struct rvt_qp *qp)
2432 {
2433         lockdep_assert_held(&qp->s_lock);
2434         /* Remove QP from all timers */
2435         if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
2436                 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
2437                 del_timer(&qp->s_timer);
2438                 hrtimer_try_to_cancel(&qp->s_rnr_timer);
2439         }
2440 }
2441 EXPORT_SYMBOL(rvt_stop_rc_timers);
2442
2443 /**
2444  * rvt_stop_rnr_timer - stop an rnr timer
2445  * @qp - the QP
2446  *
2447  * stop an rnr timer and return if the timer
2448  * had been pending.
2449  */
2450 static void rvt_stop_rnr_timer(struct rvt_qp *qp)
2451 {
2452         lockdep_assert_held(&qp->s_lock);
2453         /* Remove QP from rnr timer */
2454         if (qp->s_flags & RVT_S_WAIT_RNR) {
2455                 qp->s_flags &= ~RVT_S_WAIT_RNR;
2456                 trace_rvt_rnrnak_stop(qp, 0);
2457         }
2458 }
2459
2460 /**
2461  * rvt_del_timers_sync - wait for any timeout routines to exit
2462  * @qp - the QP
2463  */
2464 void rvt_del_timers_sync(struct rvt_qp *qp)
2465 {
2466         del_timer_sync(&qp->s_timer);
2467         hrtimer_cancel(&qp->s_rnr_timer);
2468 }
2469 EXPORT_SYMBOL(rvt_del_timers_sync);
2470
2471 /**
2472  * This is called from s_timer for missing responses.
2473  */
2474 static void rvt_rc_timeout(struct timer_list *t)
2475 {
2476         struct rvt_qp *qp = from_timer(qp, t, s_timer);
2477         struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2478         unsigned long flags;
2479
2480         spin_lock_irqsave(&qp->r_lock, flags);
2481         spin_lock(&qp->s_lock);
2482         if (qp->s_flags & RVT_S_TIMER) {
2483                 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
2484
2485                 qp->s_flags &= ~RVT_S_TIMER;
2486                 rvp->n_rc_timeouts++;
2487                 del_timer(&qp->s_timer);
2488                 trace_rvt_rc_timeout(qp, qp->s_last_psn + 1);
2489                 if (rdi->driver_f.notify_restart_rc)
2490                         rdi->driver_f.notify_restart_rc(qp,
2491                                                         qp->s_last_psn + 1,
2492                                                         1);
2493                 rdi->driver_f.schedule_send(qp);
2494         }
2495         spin_unlock(&qp->s_lock);
2496         spin_unlock_irqrestore(&qp->r_lock, flags);
2497 }
2498
2499 /*
2500  * This is called from s_timer for RNR timeouts.
2501  */
2502 enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t)
2503 {
2504         struct rvt_qp *qp = container_of(t, struct rvt_qp, s_rnr_timer);
2505         struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2506         unsigned long flags;
2507
2508         spin_lock_irqsave(&qp->s_lock, flags);
2509         rvt_stop_rnr_timer(qp);
2510         trace_rvt_rnrnak_timeout(qp, 0);
2511         rdi->driver_f.schedule_send(qp);
2512         spin_unlock_irqrestore(&qp->s_lock, flags);
2513         return HRTIMER_NORESTART;
2514 }
2515 EXPORT_SYMBOL(rvt_rc_rnr_retry);
2516
2517 /**
2518  * rvt_qp_iter_init - initial for QP iteration
2519  * @rdi: rvt devinfo
2520  * @v: u64 value
2521  *
2522  * This returns an iterator suitable for iterating QPs
2523  * in the system.
2524  *
2525  * The @cb is a user defined callback and @v is a 64
2526  * bit value passed to and relevant for processing in the
2527  * @cb.  An example use case would be to alter QP processing
2528  * based on criteria not part of the rvt_qp.
2529  *
2530  * Use cases that require memory allocation to succeed
2531  * must preallocate appropriately.
2532  *
2533  * Return: a pointer to an rvt_qp_iter or NULL
2534  */
2535 struct rvt_qp_iter *rvt_qp_iter_init(struct rvt_dev_info *rdi,
2536                                      u64 v,
2537                                      void (*cb)(struct rvt_qp *qp, u64 v))
2538 {
2539         struct rvt_qp_iter *i;
2540
2541         i = kzalloc(sizeof(*i), GFP_KERNEL);
2542         if (!i)
2543                 return NULL;
2544
2545         i->rdi = rdi;
2546         /* number of special QPs (SMI/GSI) for device */
2547         i->specials = rdi->ibdev.phys_port_cnt * 2;
2548         i->v = v;
2549         i->cb = cb;
2550
2551         return i;
2552 }
2553 EXPORT_SYMBOL(rvt_qp_iter_init);
2554
2555 /**
2556  * rvt_qp_iter_next - return the next QP in iter
2557  * @iter - the iterator
2558  *
2559  * Fine grained QP iterator suitable for use
2560  * with debugfs seq_file mechanisms.
2561  *
2562  * Updates iter->qp with the current QP when the return
2563  * value is 0.
2564  *
2565  * Return: 0 - iter->qp is valid 1 - no more QPs
2566  */
2567 int rvt_qp_iter_next(struct rvt_qp_iter *iter)
2568         __must_hold(RCU)
2569 {
2570         int n = iter->n;
2571         int ret = 1;
2572         struct rvt_qp *pqp = iter->qp;
2573         struct rvt_qp *qp;
2574         struct rvt_dev_info *rdi = iter->rdi;
2575
2576         /*
2577          * The approach is to consider the special qps
2578          * as additional table entries before the
2579          * real hash table.  Since the qp code sets
2580          * the qp->next hash link to NULL, this works just fine.
2581          *
2582          * iter->specials is 2 * # ports
2583          *
2584          * n = 0..iter->specials is the special qp indices
2585          *
2586          * n = iter->specials..rdi->qp_dev->qp_table_size+iter->specials are
2587          * the potential hash bucket entries
2588          *
2589          */
2590         for (; n <  rdi->qp_dev->qp_table_size + iter->specials; n++) {
2591                 if (pqp) {
2592                         qp = rcu_dereference(pqp->next);
2593                 } else {
2594                         if (n < iter->specials) {
2595                                 struct rvt_ibport *rvp;
2596                                 int pidx;
2597
2598                                 pidx = n % rdi->ibdev.phys_port_cnt;
2599                                 rvp = rdi->ports[pidx];
2600                                 qp = rcu_dereference(rvp->qp[n & 1]);
2601                         } else {
2602                                 qp = rcu_dereference(
2603                                         rdi->qp_dev->qp_table[
2604                                                 (n - iter->specials)]);
2605                         }
2606                 }
2607                 pqp = qp;
2608                 if (qp) {
2609                         iter->qp = qp;
2610                         iter->n = n;
2611                         return 0;
2612                 }
2613         }
2614         return ret;
2615 }
2616 EXPORT_SYMBOL(rvt_qp_iter_next);
2617
2618 /**
2619  * rvt_qp_iter - iterate all QPs
2620  * @rdi - rvt devinfo
2621  * @v - a 64 bit value
2622  * @cb - a callback
2623  *
2624  * This provides a way for iterating all QPs.
2625  *
2626  * The @cb is a user defined callback and @v is a 64
2627  * bit value passed to and relevant for processing in the
2628  * cb.  An example use case would be to alter QP processing
2629  * based on criteria not part of the rvt_qp.
2630  *
2631  * The code has an internal iterator to simplify
2632  * non seq_file use cases.
2633  */
2634 void rvt_qp_iter(struct rvt_dev_info *rdi,
2635                  u64 v,
2636                  void (*cb)(struct rvt_qp *qp, u64 v))
2637 {
2638         int ret;
2639         struct rvt_qp_iter i = {
2640                 .rdi = rdi,
2641                 .specials = rdi->ibdev.phys_port_cnt * 2,
2642                 .v = v,
2643                 .cb = cb
2644         };
2645
2646         rcu_read_lock();
2647         do {
2648                 ret = rvt_qp_iter_next(&i);
2649                 if (!ret) {
2650                         rvt_get_qp(i.qp);
2651                         rcu_read_unlock();
2652                         i.cb(i.qp, i.v);
2653                         rcu_read_lock();
2654                         rvt_put_qp(i.qp);
2655                 }
2656         } while (!ret);
2657         rcu_read_unlock();
2658 }
2659 EXPORT_SYMBOL(rvt_qp_iter);
2660
2661 /*
2662  * This should be called with s_lock held.
2663  */
2664 void rvt_send_complete(struct rvt_qp *qp, struct rvt_swqe *wqe,
2665                        enum ib_wc_status status)
2666 {
2667         u32 old_last, last;
2668         struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2669
2670         if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_OR_FLUSH_SEND))
2671                 return;
2672
2673         last = qp->s_last;
2674         old_last = last;
2675         trace_rvt_qp_send_completion(qp, wqe, last);
2676         if (++last >= qp->s_size)
2677                 last = 0;
2678         trace_rvt_qp_send_completion(qp, wqe, last);
2679         qp->s_last = last;
2680         /* See post_send() */
2681         barrier();
2682         rvt_put_swqe(wqe);
2683         if (qp->ibqp.qp_type == IB_QPT_UD ||
2684             qp->ibqp.qp_type == IB_QPT_SMI ||
2685             qp->ibqp.qp_type == IB_QPT_GSI)
2686                 atomic_dec(&ibah_to_rvtah(wqe->ud_wr.ah)->refcount);
2687
2688         rvt_qp_swqe_complete(qp,
2689                              wqe,
2690                              rdi->wc_opcode[wqe->wr.opcode],
2691                              status);
2692
2693         if (qp->s_acked == old_last)
2694                 qp->s_acked = last;
2695         if (qp->s_cur == old_last)
2696                 qp->s_cur = last;
2697         if (qp->s_tail == old_last)
2698                 qp->s_tail = last;
2699         if (qp->state == IB_QPS_SQD && last == qp->s_cur)
2700                 qp->s_draining = 0;
2701 }
2702 EXPORT_SYMBOL(rvt_send_complete);
2703
2704 /**
2705  * rvt_copy_sge - copy data to SGE memory
2706  * @qp: associated QP
2707  * @ss: the SGE state
2708  * @data: the data to copy
2709  * @length: the length of the data
2710  * @release: boolean to release MR
2711  * @copy_last: do a separate copy of the last 8 bytes
2712  */
2713 void rvt_copy_sge(struct rvt_qp *qp, struct rvt_sge_state *ss,
2714                   void *data, u32 length,
2715                   bool release, bool copy_last)
2716 {
2717         struct rvt_sge *sge = &ss->sge;
2718         int i;
2719         bool in_last = false;
2720         bool cacheless_copy = false;
2721         struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2722         struct rvt_wss *wss = rdi->wss;
2723         unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode;
2724
2725         if (sge_copy_mode == RVT_SGE_COPY_CACHELESS) {
2726                 cacheless_copy = length >= PAGE_SIZE;
2727         } else if (sge_copy_mode == RVT_SGE_COPY_ADAPTIVE) {
2728                 if (length >= PAGE_SIZE) {
2729                         /*
2730                          * NOTE: this *assumes*:
2731                          * o The first vaddr is the dest.
2732                          * o If multiple pages, then vaddr is sequential.
2733                          */
2734                         wss_insert(wss, sge->vaddr);
2735                         if (length >= (2 * PAGE_SIZE))
2736                                 wss_insert(wss, (sge->vaddr + PAGE_SIZE));
2737
2738                         cacheless_copy = wss_exceeds_threshold(wss);
2739                 } else {
2740                         wss_advance_clean_counter(wss);
2741                 }
2742         }
2743
2744         if (copy_last) {
2745                 if (length > 8) {
2746                         length -= 8;
2747                 } else {
2748                         copy_last = false;
2749                         in_last = true;
2750                 }
2751         }
2752
2753 again:
2754         while (length) {
2755                 u32 len = rvt_get_sge_length(sge, length);
2756
2757                 WARN_ON_ONCE(len == 0);
2758                 if (unlikely(in_last)) {
2759                         /* enforce byte transfer ordering */
2760                         for (i = 0; i < len; i++)
2761                                 ((u8 *)sge->vaddr)[i] = ((u8 *)data)[i];
2762                 } else if (cacheless_copy) {
2763                         cacheless_memcpy(sge->vaddr, data, len);
2764                 } else {
2765                         memcpy(sge->vaddr, data, len);
2766                 }
2767                 rvt_update_sge(ss, len, release);
2768                 data += len;
2769                 length -= len;
2770         }
2771
2772         if (copy_last) {
2773                 copy_last = false;
2774                 in_last = true;
2775                 length = 8;
2776                 goto again;
2777         }
2778 }
2779 EXPORT_SYMBOL(rvt_copy_sge);
2780
2781 /**
2782  * ruc_loopback - handle UC and RC loopback requests
2783  * @sqp: the sending QP
2784  *
2785  * This is called from rvt_do_send() to forward a WQE addressed to the same HFI
2786  * Note that although we are single threaded due to the send engine, we still
2787  * have to protect against post_send().  We don't have to worry about
2788  * receive interrupts since this is a connected protocol and all packets
2789  * will pass through here.
2790  */
2791 void rvt_ruc_loopback(struct rvt_qp *sqp)
2792 {
2793         struct rvt_ibport *rvp =  NULL;
2794         struct rvt_dev_info *rdi = ib_to_rvt(sqp->ibqp.device);
2795         struct rvt_qp *qp;
2796         struct rvt_swqe *wqe;
2797         struct rvt_sge *sge;
2798         unsigned long flags;
2799         struct ib_wc wc;
2800         u64 sdata;
2801         atomic64_t *maddr;
2802         enum ib_wc_status send_status;
2803         bool release;
2804         int ret;
2805         bool copy_last = false;
2806         int local_ops = 0;
2807
2808         rcu_read_lock();
2809         rvp = rdi->ports[sqp->port_num - 1];
2810
2811         /*
2812          * Note that we check the responder QP state after
2813          * checking the requester's state.
2814          */
2815
2816         qp = rvt_lookup_qpn(ib_to_rvt(sqp->ibqp.device), rvp,
2817                             sqp->remote_qpn);
2818
2819         spin_lock_irqsave(&sqp->s_lock, flags);
2820
2821         /* Return if we are already busy processing a work request. */
2822         if ((sqp->s_flags & (RVT_S_BUSY | RVT_S_ANY_WAIT)) ||
2823             !(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_OR_FLUSH_SEND))
2824                 goto unlock;
2825
2826         sqp->s_flags |= RVT_S_BUSY;
2827
2828 again:
2829         if (sqp->s_last == READ_ONCE(sqp->s_head))
2830                 goto clr_busy;
2831         wqe = rvt_get_swqe_ptr(sqp, sqp->s_last);
2832
2833         /* Return if it is not OK to start a new work request. */
2834         if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_NEXT_SEND_OK)) {
2835                 if (!(ib_rvt_state_ops[sqp->state] & RVT_FLUSH_SEND))
2836                         goto clr_busy;
2837                 /* We are in the error state, flush the work request. */
2838                 send_status = IB_WC_WR_FLUSH_ERR;
2839                 goto flush_send;
2840         }
2841
2842         /*
2843          * We can rely on the entry not changing without the s_lock
2844          * being held until we update s_last.
2845          * We increment s_cur to indicate s_last is in progress.
2846          */
2847         if (sqp->s_last == sqp->s_cur) {
2848                 if (++sqp->s_cur >= sqp->s_size)
2849                         sqp->s_cur = 0;
2850         }
2851         spin_unlock_irqrestore(&sqp->s_lock, flags);
2852
2853         if (!qp || !(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) ||
2854             qp->ibqp.qp_type != sqp->ibqp.qp_type) {
2855                 rvp->n_pkt_drops++;
2856                 /*
2857                  * For RC, the requester would timeout and retry so
2858                  * shortcut the timeouts and just signal too many retries.
2859                  */
2860                 if (sqp->ibqp.qp_type == IB_QPT_RC)
2861                         send_status = IB_WC_RETRY_EXC_ERR;
2862                 else
2863                         send_status = IB_WC_SUCCESS;
2864                 goto serr;
2865         }
2866
2867         memset(&wc, 0, sizeof(wc));
2868         send_status = IB_WC_SUCCESS;
2869
2870         release = true;
2871         sqp->s_sge.sge = wqe->sg_list[0];
2872         sqp->s_sge.sg_list = wqe->sg_list + 1;
2873         sqp->s_sge.num_sge = wqe->wr.num_sge;
2874         sqp->s_len = wqe->length;
2875         switch (wqe->wr.opcode) {
2876         case IB_WR_REG_MR:
2877                 goto send_comp;
2878
2879         case IB_WR_LOCAL_INV:
2880                 if (!(wqe->wr.send_flags & RVT_SEND_COMPLETION_ONLY)) {
2881                         if (rvt_invalidate_rkey(sqp,
2882                                                 wqe->wr.ex.invalidate_rkey))
2883                                 send_status = IB_WC_LOC_PROT_ERR;
2884                         local_ops = 1;
2885                 }
2886                 goto send_comp;
2887
2888         case IB_WR_SEND_WITH_INV:
2889                 if (!rvt_invalidate_rkey(qp, wqe->wr.ex.invalidate_rkey)) {
2890                         wc.wc_flags = IB_WC_WITH_INVALIDATE;
2891                         wc.ex.invalidate_rkey = wqe->wr.ex.invalidate_rkey;
2892                 }
2893                 goto send;
2894
2895         case IB_WR_SEND_WITH_IMM:
2896                 wc.wc_flags = IB_WC_WITH_IMM;
2897                 wc.ex.imm_data = wqe->wr.ex.imm_data;
2898                 /* FALLTHROUGH */
2899         case IB_WR_SEND:
2900 send:
2901                 ret = rvt_get_rwqe(qp, false);
2902                 if (ret < 0)
2903                         goto op_err;
2904                 if (!ret)
2905                         goto rnr_nak;
2906                 break;
2907
2908         case IB_WR_RDMA_WRITE_WITH_IMM:
2909                 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
2910                         goto inv_err;
2911                 wc.wc_flags = IB_WC_WITH_IMM;
2912                 wc.ex.imm_data = wqe->wr.ex.imm_data;
2913                 ret = rvt_get_rwqe(qp, true);
2914                 if (ret < 0)
2915                         goto op_err;
2916                 if (!ret)
2917                         goto rnr_nak;
2918                 /* skip copy_last set and qp_access_flags recheck */
2919                 goto do_write;
2920         case IB_WR_RDMA_WRITE:
2921                 copy_last = rvt_is_user_qp(qp);
2922                 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
2923                         goto inv_err;
2924 do_write:
2925                 if (wqe->length == 0)
2926                         break;
2927                 if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, wqe->length,
2928                                           wqe->rdma_wr.remote_addr,
2929                                           wqe->rdma_wr.rkey,
2930                                           IB_ACCESS_REMOTE_WRITE)))
2931                         goto acc_err;
2932                 qp->r_sge.sg_list = NULL;
2933                 qp->r_sge.num_sge = 1;
2934                 qp->r_sge.total_len = wqe->length;
2935                 break;
2936
2937         case IB_WR_RDMA_READ:
2938                 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ)))
2939                         goto inv_err;
2940                 if (unlikely(!rvt_rkey_ok(qp, &sqp->s_sge.sge, wqe->length,
2941                                           wqe->rdma_wr.remote_addr,
2942                                           wqe->rdma_wr.rkey,
2943                                           IB_ACCESS_REMOTE_READ)))
2944                         goto acc_err;
2945                 release = false;
2946                 sqp->s_sge.sg_list = NULL;
2947                 sqp->s_sge.num_sge = 1;
2948                 qp->r_sge.sge = wqe->sg_list[0];
2949                 qp->r_sge.sg_list = wqe->sg_list + 1;
2950                 qp->r_sge.num_sge = wqe->wr.num_sge;
2951                 qp->r_sge.total_len = wqe->length;
2952                 break;
2953
2954         case IB_WR_ATOMIC_CMP_AND_SWP:
2955         case IB_WR_ATOMIC_FETCH_AND_ADD:
2956                 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_ATOMIC)))
2957                         goto inv_err;
2958                 if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, sizeof(u64),
2959                                           wqe->atomic_wr.remote_addr,
2960                                           wqe->atomic_wr.rkey,
2961                                           IB_ACCESS_REMOTE_ATOMIC)))
2962                         goto acc_err;
2963                 /* Perform atomic OP and save result. */
2964                 maddr = (atomic64_t *)qp->r_sge.sge.vaddr;
2965                 sdata = wqe->atomic_wr.compare_add;
2966                 *(u64 *)sqp->s_sge.sge.vaddr =
2967                         (wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) ?
2968                         (u64)atomic64_add_return(sdata, maddr) - sdata :
2969                         (u64)cmpxchg((u64 *)qp->r_sge.sge.vaddr,
2970                                       sdata, wqe->atomic_wr.swap);
2971                 rvt_put_mr(qp->r_sge.sge.mr);
2972                 qp->r_sge.num_sge = 0;
2973                 goto send_comp;
2974
2975         default:
2976                 send_status = IB_WC_LOC_QP_OP_ERR;
2977                 goto serr;
2978         }
2979
2980         sge = &sqp->s_sge.sge;
2981         while (sqp->s_len) {
2982                 u32 len = sqp->s_len;
2983
2984                 if (len > sge->length)
2985                         len = sge->length;
2986                 if (len > sge->sge_length)
2987                         len = sge->sge_length;
2988                 WARN_ON_ONCE(len == 0);
2989                 rvt_copy_sge(qp, &qp->r_sge, sge->vaddr,
2990                              len, release, copy_last);
2991                 sge->vaddr += len;
2992                 sge->length -= len;
2993                 sge->sge_length -= len;
2994                 if (sge->sge_length == 0) {
2995                         if (!release)
2996                                 rvt_put_mr(sge->mr);
2997                         if (--sqp->s_sge.num_sge)
2998                                 *sge = *sqp->s_sge.sg_list++;
2999                 } else if (sge->length == 0 && sge->mr->lkey) {
3000                         if (++sge->n >= RVT_SEGSZ) {
3001                                 if (++sge->m >= sge->mr->mapsz)
3002                                         break;
3003                                 sge->n = 0;
3004                         }
3005                         sge->vaddr =
3006                                 sge->mr->map[sge->m]->segs[sge->n].vaddr;
3007                         sge->length =
3008                                 sge->mr->map[sge->m]->segs[sge->n].length;
3009                 }
3010                 sqp->s_len -= len;
3011         }
3012         if (release)
3013                 rvt_put_ss(&qp->r_sge);
3014
3015         if (!test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags))
3016                 goto send_comp;
3017
3018         if (wqe->wr.opcode == IB_WR_RDMA_WRITE_WITH_IMM)
3019                 wc.opcode = IB_WC_RECV_RDMA_WITH_IMM;
3020         else
3021                 wc.opcode = IB_WC_RECV;
3022         wc.wr_id = qp->r_wr_id;
3023         wc.status = IB_WC_SUCCESS;
3024         wc.byte_len = wqe->length;
3025         wc.qp = &qp->ibqp;
3026         wc.src_qp = qp->remote_qpn;
3027         wc.slid = rdma_ah_get_dlid(&qp->remote_ah_attr) & U16_MAX;
3028         wc.sl = rdma_ah_get_sl(&qp->remote_ah_attr);
3029         wc.port_num = 1;
3030         /* Signal completion event if the solicited bit is set. */
3031         rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc,
3032                      wqe->wr.send_flags & IB_SEND_SOLICITED);
3033
3034 send_comp:
3035         spin_lock_irqsave(&sqp->s_lock, flags);
3036         rvp->n_loop_pkts++;
3037 flush_send:
3038         sqp->s_rnr_retry = sqp->s_rnr_retry_cnt;
3039         rvt_send_complete(sqp, wqe, send_status);
3040         if (local_ops) {
3041                 atomic_dec(&sqp->local_ops_pending);
3042                 local_ops = 0;
3043         }
3044         goto again;
3045
3046 rnr_nak:
3047         /* Handle RNR NAK */
3048         if (qp->ibqp.qp_type == IB_QPT_UC)
3049                 goto send_comp;
3050         rvp->n_rnr_naks++;
3051         /*
3052          * Note: we don't need the s_lock held since the BUSY flag
3053          * makes this single threaded.
3054          */
3055         if (sqp->s_rnr_retry == 0) {
3056                 send_status = IB_WC_RNR_RETRY_EXC_ERR;
3057                 goto serr;
3058         }
3059         if (sqp->s_rnr_retry_cnt < 7)
3060                 sqp->s_rnr_retry--;
3061         spin_lock_irqsave(&sqp->s_lock, flags);
3062         if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_RECV_OK))
3063                 goto clr_busy;
3064         rvt_add_rnr_timer(sqp, qp->r_min_rnr_timer <<
3065                                 IB_AETH_CREDIT_SHIFT);
3066         goto clr_busy;
3067
3068 op_err:
3069         send_status = IB_WC_REM_OP_ERR;
3070         wc.status = IB_WC_LOC_QP_OP_ERR;
3071         goto err;
3072
3073 inv_err:
3074         send_status = IB_WC_REM_INV_REQ_ERR;
3075         wc.status = IB_WC_LOC_QP_OP_ERR;
3076         goto err;
3077
3078 acc_err:
3079         send_status = IB_WC_REM_ACCESS_ERR;
3080         wc.status = IB_WC_LOC_PROT_ERR;
3081 err:
3082         /* responder goes to error state */
3083         rvt_rc_error(qp, wc.status);
3084
3085 serr:
3086         spin_lock_irqsave(&sqp->s_lock, flags);
3087         rvt_send_complete(sqp, wqe, send_status);
3088         if (sqp->ibqp.qp_type == IB_QPT_RC) {
3089                 int lastwqe = rvt_error_qp(sqp, IB_WC_WR_FLUSH_ERR);
3090
3091                 sqp->s_flags &= ~RVT_S_BUSY;
3092                 spin_unlock_irqrestore(&sqp->s_lock, flags);
3093                 if (lastwqe) {
3094                         struct ib_event ev;
3095
3096                         ev.device = sqp->ibqp.device;
3097                         ev.element.qp = &sqp->ibqp;
3098                         ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
3099                         sqp->ibqp.event_handler(&ev, sqp->ibqp.qp_context);
3100                 }
3101                 goto done;
3102         }
3103 clr_busy:
3104         sqp->s_flags &= ~RVT_S_BUSY;
3105 unlock:
3106         spin_unlock_irqrestore(&sqp->s_lock, flags);
3107 done:
3108         rcu_read_unlock();
3109 }
3110 EXPORT_SYMBOL(rvt_ruc_loopback);