Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/klassert/ipsec...
[linux-2.6-microblaze.git] / drivers / infiniband / hw / mlx5 / odp.c
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32
33 #include <rdma/ib_umem.h>
34 #include <rdma/ib_umem_odp.h>
35 #include <linux/kernel.h>
36
37 #include "mlx5_ib.h"
38 #include "cmd.h"
39
40 #include <linux/mlx5/eq.h>
41
42 /* Contains the details of a pagefault. */
43 struct mlx5_pagefault {
44         u32                     bytes_committed;
45         u32                     token;
46         u8                      event_subtype;
47         u8                      type;
48         union {
49                 /* Initiator or send message responder pagefault details. */
50                 struct {
51                         /* Received packet size, only valid for responders. */
52                         u32     packet_size;
53                         /*
54                          * Number of resource holding WQE, depends on type.
55                          */
56                         u32     wq_num;
57                         /*
58                          * WQE index. Refers to either the send queue or
59                          * receive queue, according to event_subtype.
60                          */
61                         u16     wqe_index;
62                 } wqe;
63                 /* RDMA responder pagefault details */
64                 struct {
65                         u32     r_key;
66                         /*
67                          * Received packet size, minimal size page fault
68                          * resolution required for forward progress.
69                          */
70                         u32     packet_size;
71                         u32     rdma_op_len;
72                         u64     rdma_va;
73                 } rdma;
74         };
75
76         struct mlx5_ib_pf_eq    *eq;
77         struct work_struct      work;
78 };
79
80 #define MAX_PREFETCH_LEN (4*1024*1024U)
81
82 /* Timeout in ms to wait for an active mmu notifier to complete when handling
83  * a pagefault. */
84 #define MMU_NOTIFIER_TIMEOUT 1000
85
86 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
87 #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
88 #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
89 #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
90 #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
91
92 #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
93
94 static u64 mlx5_imr_ksm_entries;
95
96 static int check_parent(struct ib_umem_odp *odp,
97                                struct mlx5_ib_mr *parent)
98 {
99         struct mlx5_ib_mr *mr = odp->private;
100
101         return mr && mr->parent == parent && !odp->dying;
102 }
103
104 struct ib_ucontext_per_mm *mr_to_per_mm(struct mlx5_ib_mr *mr)
105 {
106         if (WARN_ON(!mr || !mr->umem || !mr->umem->is_odp))
107                 return NULL;
108
109         return to_ib_umem_odp(mr->umem)->per_mm;
110 }
111
112 static struct ib_umem_odp *odp_next(struct ib_umem_odp *odp)
113 {
114         struct mlx5_ib_mr *mr = odp->private, *parent = mr->parent;
115         struct ib_ucontext_per_mm *per_mm = odp->per_mm;
116         struct rb_node *rb;
117
118         down_read(&per_mm->umem_rwsem);
119         while (1) {
120                 rb = rb_next(&odp->interval_tree.rb);
121                 if (!rb)
122                         goto not_found;
123                 odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb);
124                 if (check_parent(odp, parent))
125                         goto end;
126         }
127 not_found:
128         odp = NULL;
129 end:
130         up_read(&per_mm->umem_rwsem);
131         return odp;
132 }
133
134 static struct ib_umem_odp *odp_lookup(u64 start, u64 length,
135                                       struct mlx5_ib_mr *parent)
136 {
137         struct ib_ucontext_per_mm *per_mm = mr_to_per_mm(parent);
138         struct ib_umem_odp *odp;
139         struct rb_node *rb;
140
141         down_read(&per_mm->umem_rwsem);
142         odp = rbt_ib_umem_lookup(&per_mm->umem_tree, start, length);
143         if (!odp)
144                 goto end;
145
146         while (1) {
147                 if (check_parent(odp, parent))
148                         goto end;
149                 rb = rb_next(&odp->interval_tree.rb);
150                 if (!rb)
151                         goto not_found;
152                 odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb);
153                 if (ib_umem_start(&odp->umem) > start + length)
154                         goto not_found;
155         }
156 not_found:
157         odp = NULL;
158 end:
159         up_read(&per_mm->umem_rwsem);
160         return odp;
161 }
162
163 void mlx5_odp_populate_klm(struct mlx5_klm *pklm, size_t offset,
164                            size_t nentries, struct mlx5_ib_mr *mr, int flags)
165 {
166         struct ib_pd *pd = mr->ibmr.pd;
167         struct mlx5_ib_dev *dev = to_mdev(pd->device);
168         struct ib_umem_odp *odp;
169         unsigned long va;
170         int i;
171
172         if (flags & MLX5_IB_UPD_XLT_ZAP) {
173                 for (i = 0; i < nentries; i++, pklm++) {
174                         pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
175                         pklm->key = cpu_to_be32(dev->null_mkey);
176                         pklm->va = 0;
177                 }
178                 return;
179         }
180
181         odp = odp_lookup(offset * MLX5_IMR_MTT_SIZE,
182                          nentries * MLX5_IMR_MTT_SIZE, mr);
183
184         for (i = 0; i < nentries; i++, pklm++) {
185                 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
186                 va = (offset + i) * MLX5_IMR_MTT_SIZE;
187                 if (odp && odp->umem.address == va) {
188                         struct mlx5_ib_mr *mtt = odp->private;
189
190                         pklm->key = cpu_to_be32(mtt->ibmr.lkey);
191                         odp = odp_next(odp);
192                 } else {
193                         pklm->key = cpu_to_be32(dev->null_mkey);
194                 }
195                 mlx5_ib_dbg(dev, "[%d] va %lx key %x\n",
196                             i, va, be32_to_cpu(pklm->key));
197         }
198 }
199
200 static void mr_leaf_free_action(struct work_struct *work)
201 {
202         struct ib_umem_odp *odp = container_of(work, struct ib_umem_odp, work);
203         int idx = ib_umem_start(&odp->umem) >> MLX5_IMR_MTT_SHIFT;
204         struct mlx5_ib_mr *mr = odp->private, *imr = mr->parent;
205
206         mr->parent = NULL;
207         synchronize_srcu(&mr->dev->mr_srcu);
208
209         ib_umem_release(&odp->umem);
210         if (imr->live)
211                 mlx5_ib_update_xlt(imr, idx, 1, 0,
212                                    MLX5_IB_UPD_XLT_INDIRECT |
213                                    MLX5_IB_UPD_XLT_ATOMIC);
214         mlx5_mr_cache_free(mr->dev, mr);
215
216         if (atomic_dec_and_test(&imr->num_leaf_free))
217                 wake_up(&imr->q_leaf_free);
218 }
219
220 void mlx5_ib_invalidate_range(struct ib_umem_odp *umem_odp, unsigned long start,
221                               unsigned long end)
222 {
223         struct mlx5_ib_mr *mr;
224         const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT /
225                                     sizeof(struct mlx5_mtt)) - 1;
226         u64 idx = 0, blk_start_idx = 0;
227         struct ib_umem *umem;
228         int in_block = 0;
229         u64 addr;
230
231         if (!umem_odp) {
232                 pr_err("invalidation called on NULL umem or non-ODP umem\n");
233                 return;
234         }
235         umem = &umem_odp->umem;
236
237         mr = umem_odp->private;
238
239         if (!mr || !mr->ibmr.pd)
240                 return;
241
242         start = max_t(u64, ib_umem_start(umem), start);
243         end = min_t(u64, ib_umem_end(umem), end);
244
245         /*
246          * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
247          * while we are doing the invalidation, no page fault will attempt to
248          * overwrite the same MTTs.  Concurent invalidations might race us,
249          * but they will write 0s as well, so no difference in the end result.
250          */
251
252         for (addr = start; addr < end; addr += BIT(umem->page_shift)) {
253                 idx = (addr - ib_umem_start(umem)) >> umem->page_shift;
254                 /*
255                  * Strive to write the MTTs in chunks, but avoid overwriting
256                  * non-existing MTTs. The huristic here can be improved to
257                  * estimate the cost of another UMR vs. the cost of bigger
258                  * UMR.
259                  */
260                 if (umem_odp->dma_list[idx] &
261                     (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
262                         if (!in_block) {
263                                 blk_start_idx = idx;
264                                 in_block = 1;
265                         }
266                 } else {
267                         u64 umr_offset = idx & umr_block_mask;
268
269                         if (in_block && umr_offset == 0) {
270                                 mlx5_ib_update_xlt(mr, blk_start_idx,
271                                                    idx - blk_start_idx, 0,
272                                                    MLX5_IB_UPD_XLT_ZAP |
273                                                    MLX5_IB_UPD_XLT_ATOMIC);
274                                 in_block = 0;
275                         }
276                 }
277         }
278         if (in_block)
279                 mlx5_ib_update_xlt(mr, blk_start_idx,
280                                    idx - blk_start_idx + 1, 0,
281                                    MLX5_IB_UPD_XLT_ZAP |
282                                    MLX5_IB_UPD_XLT_ATOMIC);
283         /*
284          * We are now sure that the device will not access the
285          * memory. We can safely unmap it, and mark it as dirty if
286          * needed.
287          */
288
289         ib_umem_odp_unmap_dma_pages(umem_odp, start, end);
290
291         if (unlikely(!umem->npages && mr->parent &&
292                      !umem_odp->dying)) {
293                 WRITE_ONCE(umem_odp->dying, 1);
294                 atomic_inc(&mr->parent->num_leaf_free);
295                 schedule_work(&umem_odp->work);
296         }
297 }
298
299 void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev)
300 {
301         struct ib_odp_caps *caps = &dev->odp_caps;
302
303         memset(caps, 0, sizeof(*caps));
304
305         if (!MLX5_CAP_GEN(dev->mdev, pg))
306                 return;
307
308         caps->general_caps = IB_ODP_SUPPORT;
309
310         if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
311                 dev->odp_max_size = U64_MAX;
312         else
313                 dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
314
315         if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send))
316                 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
317
318         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send))
319                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
320
321         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive))
322                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
323
324         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write))
325                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
326
327         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read))
328                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
329
330         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic))
331                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
332
333         if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
334             MLX5_CAP_GEN(dev->mdev, null_mkey) &&
335             MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
336                 caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
337
338         return;
339 }
340
341 static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
342                                       struct mlx5_pagefault *pfault,
343                                       int error)
344 {
345         int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
346                      pfault->wqe.wq_num : pfault->token;
347         u32 out[MLX5_ST_SZ_DW(page_fault_resume_out)] = { };
348         u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)]   = { };
349         int err;
350
351         MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME);
352         MLX5_SET(page_fault_resume_in, in, page_fault_type, pfault->type);
353         MLX5_SET(page_fault_resume_in, in, token, pfault->token);
354         MLX5_SET(page_fault_resume_in, in, wq_number, wq_num);
355         MLX5_SET(page_fault_resume_in, in, error, !!error);
356
357         err = mlx5_cmd_exec(dev->mdev, in, sizeof(in), out, sizeof(out));
358         if (err)
359                 mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n",
360                             wq_num, err);
361 }
362
363 static struct mlx5_ib_mr *implicit_mr_alloc(struct ib_pd *pd,
364                                             struct ib_umem *umem,
365                                             bool ksm, int access_flags)
366 {
367         struct mlx5_ib_dev *dev = to_mdev(pd->device);
368         struct mlx5_ib_mr *mr;
369         int err;
370
371         mr = mlx5_mr_cache_alloc(dev, ksm ? MLX5_IMR_KSM_CACHE_ENTRY :
372                                             MLX5_IMR_MTT_CACHE_ENTRY);
373
374         if (IS_ERR(mr))
375                 return mr;
376
377         mr->ibmr.pd = pd;
378
379         mr->dev = dev;
380         mr->access_flags = access_flags;
381         mr->mmkey.iova = 0;
382         mr->umem = umem;
383
384         if (ksm) {
385                 err = mlx5_ib_update_xlt(mr, 0,
386                                          mlx5_imr_ksm_entries,
387                                          MLX5_KSM_PAGE_SHIFT,
388                                          MLX5_IB_UPD_XLT_INDIRECT |
389                                          MLX5_IB_UPD_XLT_ZAP |
390                                          MLX5_IB_UPD_XLT_ENABLE);
391
392         } else {
393                 err = mlx5_ib_update_xlt(mr, 0,
394                                          MLX5_IMR_MTT_ENTRIES,
395                                          PAGE_SHIFT,
396                                          MLX5_IB_UPD_XLT_ZAP |
397                                          MLX5_IB_UPD_XLT_ENABLE |
398                                          MLX5_IB_UPD_XLT_ATOMIC);
399         }
400
401         if (err)
402                 goto fail;
403
404         mr->ibmr.lkey = mr->mmkey.key;
405         mr->ibmr.rkey = mr->mmkey.key;
406
407         mr->live = 1;
408
409         mlx5_ib_dbg(dev, "key %x dev %p mr %p\n",
410                     mr->mmkey.key, dev->mdev, mr);
411
412         return mr;
413
414 fail:
415         mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
416         mlx5_mr_cache_free(dev, mr);
417
418         return ERR_PTR(err);
419 }
420
421 static struct ib_umem_odp *implicit_mr_get_data(struct mlx5_ib_mr *mr,
422                                                 u64 io_virt, size_t bcnt)
423 {
424         struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.pd->device);
425         struct ib_umem_odp *odp, *result = NULL;
426         struct ib_umem_odp *odp_mr = to_ib_umem_odp(mr->umem);
427         u64 addr = io_virt & MLX5_IMR_MTT_MASK;
428         int nentries = 0, start_idx = 0, ret;
429         struct mlx5_ib_mr *mtt;
430
431         mutex_lock(&odp_mr->umem_mutex);
432         odp = odp_lookup(addr, 1, mr);
433
434         mlx5_ib_dbg(dev, "io_virt:%llx bcnt:%zx addr:%llx odp:%p\n",
435                     io_virt, bcnt, addr, odp);
436
437 next_mr:
438         if (likely(odp)) {
439                 if (nentries)
440                         nentries++;
441         } else {
442                 odp = ib_alloc_odp_umem(odp_mr->per_mm, addr,
443                                         MLX5_IMR_MTT_SIZE);
444                 if (IS_ERR(odp)) {
445                         mutex_unlock(&odp_mr->umem_mutex);
446                         return ERR_CAST(odp);
447                 }
448
449                 mtt = implicit_mr_alloc(mr->ibmr.pd, &odp->umem, 0,
450                                         mr->access_flags);
451                 if (IS_ERR(mtt)) {
452                         mutex_unlock(&odp_mr->umem_mutex);
453                         ib_umem_release(&odp->umem);
454                         return ERR_CAST(mtt);
455                 }
456
457                 odp->private = mtt;
458                 mtt->umem = &odp->umem;
459                 mtt->mmkey.iova = addr;
460                 mtt->parent = mr;
461                 INIT_WORK(&odp->work, mr_leaf_free_action);
462
463                 if (!nentries)
464                         start_idx = addr >> MLX5_IMR_MTT_SHIFT;
465                 nentries++;
466         }
467
468         /* Return first odp if region not covered by single one */
469         if (likely(!result))
470                 result = odp;
471
472         addr += MLX5_IMR_MTT_SIZE;
473         if (unlikely(addr < io_virt + bcnt)) {
474                 odp = odp_next(odp);
475                 if (odp && odp->umem.address != addr)
476                         odp = NULL;
477                 goto next_mr;
478         }
479
480         if (unlikely(nentries)) {
481                 ret = mlx5_ib_update_xlt(mr, start_idx, nentries, 0,
482                                          MLX5_IB_UPD_XLT_INDIRECT |
483                                          MLX5_IB_UPD_XLT_ATOMIC);
484                 if (ret) {
485                         mlx5_ib_err(dev, "Failed to update PAS\n");
486                         result = ERR_PTR(ret);
487                 }
488         }
489
490         mutex_unlock(&odp_mr->umem_mutex);
491         return result;
492 }
493
494 struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
495                                              int access_flags)
496 {
497         struct ib_ucontext *ctx = pd->ibpd.uobject->context;
498         struct mlx5_ib_mr *imr;
499         struct ib_umem *umem;
500
501         umem = ib_umem_get(ctx, 0, 0, IB_ACCESS_ON_DEMAND, 0);
502         if (IS_ERR(umem))
503                 return ERR_CAST(umem);
504
505         imr = implicit_mr_alloc(&pd->ibpd, umem, 1, access_flags);
506         if (IS_ERR(imr)) {
507                 ib_umem_release(umem);
508                 return ERR_CAST(imr);
509         }
510
511         imr->umem = umem;
512         init_waitqueue_head(&imr->q_leaf_free);
513         atomic_set(&imr->num_leaf_free, 0);
514
515         return imr;
516 }
517
518 static int mr_leaf_free(struct ib_umem_odp *umem_odp, u64 start, u64 end,
519                         void *cookie)
520 {
521         struct mlx5_ib_mr *mr = umem_odp->private, *imr = cookie;
522         struct ib_umem *umem = &umem_odp->umem;
523
524         if (mr->parent != imr)
525                 return 0;
526
527         ib_umem_odp_unmap_dma_pages(umem_odp, ib_umem_start(umem),
528                                     ib_umem_end(umem));
529
530         if (umem_odp->dying)
531                 return 0;
532
533         WRITE_ONCE(umem_odp->dying, 1);
534         atomic_inc(&imr->num_leaf_free);
535         schedule_work(&umem_odp->work);
536
537         return 0;
538 }
539
540 void mlx5_ib_free_implicit_mr(struct mlx5_ib_mr *imr)
541 {
542         struct ib_ucontext_per_mm *per_mm = mr_to_per_mm(imr);
543
544         down_read(&per_mm->umem_rwsem);
545         rbt_ib_umem_for_each_in_range(&per_mm->umem_tree, 0, ULLONG_MAX,
546                                       mr_leaf_free, true, imr);
547         up_read(&per_mm->umem_rwsem);
548
549         wait_event(imr->q_leaf_free, !atomic_read(&imr->num_leaf_free));
550 }
551
552 static int pagefault_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
553                         u64 io_virt, size_t bcnt, u32 *bytes_mapped)
554 {
555         struct ib_umem_odp *odp_mr = to_ib_umem_odp(mr->umem);
556         u64 access_mask = ODP_READ_ALLOWED_BIT;
557         int npages = 0, page_shift, np;
558         u64 start_idx, page_mask;
559         struct ib_umem_odp *odp;
560         int current_seq;
561         size_t size;
562         int ret;
563
564         if (!odp_mr->page_list) {
565                 odp = implicit_mr_get_data(mr, io_virt, bcnt);
566
567                 if (IS_ERR(odp))
568                         return PTR_ERR(odp);
569                 mr = odp->private;
570
571         } else {
572                 odp = odp_mr;
573         }
574
575 next_mr:
576         size = min_t(size_t, bcnt, ib_umem_end(&odp->umem) - io_virt);
577
578         page_shift = mr->umem->page_shift;
579         page_mask = ~(BIT(page_shift) - 1);
580         start_idx = (io_virt - (mr->mmkey.iova & page_mask)) >> page_shift;
581
582         if (mr->umem->writable)
583                 access_mask |= ODP_WRITE_ALLOWED_BIT;
584
585         current_seq = READ_ONCE(odp->notifiers_seq);
586         /*
587          * Ensure the sequence number is valid for some time before we call
588          * gup.
589          */
590         smp_rmb();
591
592         ret = ib_umem_odp_map_dma_pages(to_ib_umem_odp(mr->umem), io_virt, size,
593                                         access_mask, current_seq);
594
595         if (ret < 0)
596                 goto out;
597
598         np = ret;
599
600         mutex_lock(&odp->umem_mutex);
601         if (!ib_umem_mmu_notifier_retry(to_ib_umem_odp(mr->umem),
602                                         current_seq)) {
603                 /*
604                  * No need to check whether the MTTs really belong to
605                  * this MR, since ib_umem_odp_map_dma_pages already
606                  * checks this.
607                  */
608                 ret = mlx5_ib_update_xlt(mr, start_idx, np,
609                                          page_shift, MLX5_IB_UPD_XLT_ATOMIC);
610         } else {
611                 ret = -EAGAIN;
612         }
613         mutex_unlock(&odp->umem_mutex);
614
615         if (ret < 0) {
616                 if (ret != -EAGAIN)
617                         mlx5_ib_err(dev, "Failed to update mkey page tables\n");
618                 goto out;
619         }
620
621         if (bytes_mapped) {
622                 u32 new_mappings = (np << page_shift) -
623                         (io_virt - round_down(io_virt, 1 << page_shift));
624                 *bytes_mapped += min_t(u32, new_mappings, size);
625         }
626
627         npages += np << (page_shift - PAGE_SHIFT);
628         bcnt -= size;
629
630         if (unlikely(bcnt)) {
631                 struct ib_umem_odp *next;
632
633                 io_virt += size;
634                 next = odp_next(odp);
635                 if (unlikely(!next || next->umem.address != io_virt)) {
636                         mlx5_ib_dbg(dev, "next implicit leaf removed at 0x%llx. got %p\n",
637                                     io_virt, next);
638                         return -EAGAIN;
639                 }
640                 odp = next;
641                 mr = odp->private;
642                 goto next_mr;
643         }
644
645         return npages;
646
647 out:
648         if (ret == -EAGAIN) {
649                 if (mr->parent || !odp->dying) {
650                         unsigned long timeout =
651                                 msecs_to_jiffies(MMU_NOTIFIER_TIMEOUT);
652
653                         if (!wait_for_completion_timeout(
654                                         &odp->notifier_completion,
655                                         timeout)) {
656                                 mlx5_ib_warn(dev, "timeout waiting for mmu notifier. seq %d against %d. notifiers_count=%d\n",
657                                              current_seq, odp->notifiers_seq, odp->notifiers_count);
658                         }
659                 } else {
660                         /* The MR is being killed, kill the QP as well. */
661                         ret = -EFAULT;
662                 }
663         }
664
665         return ret;
666 }
667
668 struct pf_frame {
669         struct pf_frame *next;
670         u32 key;
671         u64 io_virt;
672         size_t bcnt;
673         int depth;
674 };
675
676 /*
677  * Handle a single data segment in a page-fault WQE or RDMA region.
678  *
679  * Returns number of OS pages retrieved on success. The caller may continue to
680  * the next data segment.
681  * Can return the following error codes:
682  * -EAGAIN to designate a temporary error. The caller will abort handling the
683  *  page fault and resolve it.
684  * -EFAULT when there's an error mapping the requested pages. The caller will
685  *  abort the page fault handling.
686  */
687 static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
688                                          u32 key, u64 io_virt, size_t bcnt,
689                                          u32 *bytes_committed,
690                                          u32 *bytes_mapped)
691 {
692         int npages = 0, srcu_key, ret, i, outlen, cur_outlen = 0, depth = 0;
693         struct pf_frame *head = NULL, *frame;
694         struct mlx5_core_mkey *mmkey;
695         struct mlx5_ib_mw *mw;
696         struct mlx5_ib_mr *mr;
697         struct mlx5_klm *pklm;
698         u32 *out = NULL;
699         size_t offset;
700
701         srcu_key = srcu_read_lock(&dev->mr_srcu);
702
703         io_virt += *bytes_committed;
704         bcnt -= *bytes_committed;
705
706 next_mr:
707         mmkey = __mlx5_mr_lookup(dev->mdev, mlx5_base_mkey(key));
708         if (!mmkey || mmkey->key != key) {
709                 mlx5_ib_dbg(dev, "failed to find mkey %x\n", key);
710                 ret = -EFAULT;
711                 goto srcu_unlock;
712         }
713
714         switch (mmkey->type) {
715         case MLX5_MKEY_MR:
716                 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
717                 if (!mr->live || !mr->ibmr.pd) {
718                         mlx5_ib_dbg(dev, "got dead MR\n");
719                         ret = -EFAULT;
720                         goto srcu_unlock;
721                 }
722
723                 if (!mr->umem->is_odp) {
724                         mlx5_ib_dbg(dev, "skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
725                                     key);
726                         if (bytes_mapped)
727                                 *bytes_mapped += bcnt;
728                         ret = 0;
729                         goto srcu_unlock;
730                 }
731
732                 ret = pagefault_mr(dev, mr, io_virt, bcnt, bytes_mapped);
733                 if (ret < 0)
734                         goto srcu_unlock;
735
736                 npages += ret;
737                 ret = 0;
738                 break;
739
740         case MLX5_MKEY_MW:
741                 mw = container_of(mmkey, struct mlx5_ib_mw, mmkey);
742
743                 if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) {
744                         mlx5_ib_dbg(dev, "indirection level exceeded\n");
745                         ret = -EFAULT;
746                         goto srcu_unlock;
747                 }
748
749                 outlen = MLX5_ST_SZ_BYTES(query_mkey_out) +
750                         sizeof(*pklm) * (mw->ndescs - 2);
751
752                 if (outlen > cur_outlen) {
753                         kfree(out);
754                         out = kzalloc(outlen, GFP_KERNEL);
755                         if (!out) {
756                                 ret = -ENOMEM;
757                                 goto srcu_unlock;
758                         }
759                         cur_outlen = outlen;
760                 }
761
762                 pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out,
763                                                        bsf0_klm0_pas_mtt0_1);
764
765                 ret = mlx5_core_query_mkey(dev->mdev, &mw->mmkey, out, outlen);
766                 if (ret)
767                         goto srcu_unlock;
768
769                 offset = io_virt - MLX5_GET64(query_mkey_out, out,
770                                               memory_key_mkey_entry.start_addr);
771
772                 for (i = 0; bcnt && i < mw->ndescs; i++, pklm++) {
773                         if (offset >= be32_to_cpu(pklm->bcount)) {
774                                 offset -= be32_to_cpu(pklm->bcount);
775                                 continue;
776                         }
777
778                         frame = kzalloc(sizeof(*frame), GFP_KERNEL);
779                         if (!frame) {
780                                 ret = -ENOMEM;
781                                 goto srcu_unlock;
782                         }
783
784                         frame->key = be32_to_cpu(pklm->key);
785                         frame->io_virt = be64_to_cpu(pklm->va) + offset;
786                         frame->bcnt = min_t(size_t, bcnt,
787                                             be32_to_cpu(pklm->bcount) - offset);
788                         frame->depth = depth + 1;
789                         frame->next = head;
790                         head = frame;
791
792                         bcnt -= frame->bcnt;
793                         offset = 0;
794                 }
795                 break;
796
797         default:
798                 mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type);
799                 ret = -EFAULT;
800                 goto srcu_unlock;
801         }
802
803         if (head) {
804                 frame = head;
805                 head = frame->next;
806
807                 key = frame->key;
808                 io_virt = frame->io_virt;
809                 bcnt = frame->bcnt;
810                 depth = frame->depth;
811                 kfree(frame);
812
813                 goto next_mr;
814         }
815
816 srcu_unlock:
817         while (head) {
818                 frame = head;
819                 head = frame->next;
820                 kfree(frame);
821         }
822         kfree(out);
823
824         srcu_read_unlock(&dev->mr_srcu, srcu_key);
825         *bytes_committed = 0;
826         return ret ? ret : npages;
827 }
828
829 /**
830  * Parse a series of data segments for page fault handling.
831  *
832  * @qp the QP on which the fault occurred.
833  * @pfault contains page fault information.
834  * @wqe points at the first data segment in the WQE.
835  * @wqe_end points after the end of the WQE.
836  * @bytes_mapped receives the number of bytes that the function was able to
837  *               map. This allows the caller to decide intelligently whether
838  *               enough memory was mapped to resolve the page fault
839  *               successfully (e.g. enough for the next MTU, or the entire
840  *               WQE).
841  * @total_wqe_bytes receives the total data size of this WQE in bytes (minus
842  *                  the committed bytes).
843  *
844  * Returns the number of pages loaded if positive, zero for an empty WQE, or a
845  * negative error code.
846  */
847 static int pagefault_data_segments(struct mlx5_ib_dev *dev,
848                                    struct mlx5_pagefault *pfault,
849                                    struct mlx5_ib_qp *qp, void *wqe,
850                                    void *wqe_end, u32 *bytes_mapped,
851                                    u32 *total_wqe_bytes, int receive_queue)
852 {
853         int ret = 0, npages = 0;
854         u64 io_virt;
855         u32 key;
856         u32 byte_count;
857         size_t bcnt;
858         int inline_segment;
859
860         /* Skip SRQ next-WQE segment. */
861         if (receive_queue && qp->ibqp.srq)
862                 wqe += sizeof(struct mlx5_wqe_srq_next_seg);
863
864         if (bytes_mapped)
865                 *bytes_mapped = 0;
866         if (total_wqe_bytes)
867                 *total_wqe_bytes = 0;
868
869         while (wqe < wqe_end) {
870                 struct mlx5_wqe_data_seg *dseg = wqe;
871
872                 io_virt = be64_to_cpu(dseg->addr);
873                 key = be32_to_cpu(dseg->lkey);
874                 byte_count = be32_to_cpu(dseg->byte_count);
875                 inline_segment = !!(byte_count &  MLX5_INLINE_SEG);
876                 bcnt           = byte_count & ~MLX5_INLINE_SEG;
877
878                 if (inline_segment) {
879                         bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
880                         wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
881                                      16);
882                 } else {
883                         wqe += sizeof(*dseg);
884                 }
885
886                 /* receive WQE end of sg list. */
887                 if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY &&
888                     io_virt == 0)
889                         break;
890
891                 if (!inline_segment && total_wqe_bytes) {
892                         *total_wqe_bytes += bcnt - min_t(size_t, bcnt,
893                                         pfault->bytes_committed);
894                 }
895
896                 /* A zero length data segment designates a length of 2GB. */
897                 if (bcnt == 0)
898                         bcnt = 1U << 31;
899
900                 if (inline_segment || bcnt <= pfault->bytes_committed) {
901                         pfault->bytes_committed -=
902                                 min_t(size_t, bcnt,
903                                       pfault->bytes_committed);
904                         continue;
905                 }
906
907                 ret = pagefault_single_data_segment(dev, key, io_virt, bcnt,
908                                                     &pfault->bytes_committed,
909                                                     bytes_mapped);
910                 if (ret < 0)
911                         break;
912                 npages += ret;
913         }
914
915         return ret < 0 ? ret : npages;
916 }
917
918 static const u32 mlx5_ib_odp_opcode_cap[] = {
919         [MLX5_OPCODE_SEND]             = IB_ODP_SUPPORT_SEND,
920         [MLX5_OPCODE_SEND_IMM]         = IB_ODP_SUPPORT_SEND,
921         [MLX5_OPCODE_SEND_INVAL]       = IB_ODP_SUPPORT_SEND,
922         [MLX5_OPCODE_RDMA_WRITE]       = IB_ODP_SUPPORT_WRITE,
923         [MLX5_OPCODE_RDMA_WRITE_IMM]   = IB_ODP_SUPPORT_WRITE,
924         [MLX5_OPCODE_RDMA_READ]        = IB_ODP_SUPPORT_READ,
925         [MLX5_OPCODE_ATOMIC_CS]        = IB_ODP_SUPPORT_ATOMIC,
926         [MLX5_OPCODE_ATOMIC_FA]        = IB_ODP_SUPPORT_ATOMIC,
927 };
928
929 /*
930  * Parse initiator WQE. Advances the wqe pointer to point at the
931  * scatter-gather list, and set wqe_end to the end of the WQE.
932  */
933 static int mlx5_ib_mr_initiator_pfault_handler(
934         struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
935         struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
936 {
937         struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
938         u16 wqe_index = pfault->wqe.wqe_index;
939         u32 transport_caps;
940         struct mlx5_base_av *av;
941         unsigned ds, opcode;
942 #if defined(DEBUG)
943         u32 ctrl_wqe_index, ctrl_qpn;
944 #endif
945         u32 qpn = qp->trans_qp.base.mqp.qpn;
946
947         ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
948         if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
949                 mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
950                             ds, wqe_length);
951                 return -EFAULT;
952         }
953
954         if (ds == 0) {
955                 mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
956                             wqe_index, qpn);
957                 return -EFAULT;
958         }
959
960 #if defined(DEBUG)
961         ctrl_wqe_index = (be32_to_cpu(ctrl->opmod_idx_opcode) &
962                         MLX5_WQE_CTRL_WQE_INDEX_MASK) >>
963                         MLX5_WQE_CTRL_WQE_INDEX_SHIFT;
964         if (wqe_index != ctrl_wqe_index) {
965                 mlx5_ib_err(dev, "Got WQE with invalid wqe_index. wqe_index=0x%x, qpn=0x%x ctrl->wqe_index=0x%x\n",
966                             wqe_index, qpn,
967                             ctrl_wqe_index);
968                 return -EFAULT;
969         }
970
971         ctrl_qpn = (be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_QPN_MASK) >>
972                 MLX5_WQE_CTRL_QPN_SHIFT;
973         if (qpn != ctrl_qpn) {
974                 mlx5_ib_err(dev, "Got WQE with incorrect QP number. wqe_index=0x%x, qpn=0x%x ctrl->qpn=0x%x\n",
975                             wqe_index, qpn,
976                             ctrl_qpn);
977                 return -EFAULT;
978         }
979 #endif /* DEBUG */
980
981         *wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
982         *wqe += sizeof(*ctrl);
983
984         opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
985                  MLX5_WQE_CTRL_OPCODE_MASK;
986
987         switch (qp->ibqp.qp_type) {
988         case IB_QPT_RC:
989                 transport_caps = dev->odp_caps.per_transport_caps.rc_odp_caps;
990                 break;
991         case IB_QPT_UD:
992                 transport_caps = dev->odp_caps.per_transport_caps.ud_odp_caps;
993                 break;
994         default:
995                 mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport 0x%x\n",
996                             qp->ibqp.qp_type);
997                 return -EFAULT;
998         }
999
1000         if (unlikely(opcode >= ARRAY_SIZE(mlx5_ib_odp_opcode_cap) ||
1001                      !(transport_caps & mlx5_ib_odp_opcode_cap[opcode]))) {
1002                 mlx5_ib_err(dev, "ODP fault on QP of an unsupported opcode 0x%x\n",
1003                             opcode);
1004                 return -EFAULT;
1005         }
1006
1007         if (qp->ibqp.qp_type != IB_QPT_RC) {
1008                 av = *wqe;
1009                 if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV))
1010                         *wqe += sizeof(struct mlx5_av);
1011                 else
1012                         *wqe += sizeof(struct mlx5_base_av);
1013         }
1014
1015         switch (opcode) {
1016         case MLX5_OPCODE_RDMA_WRITE:
1017         case MLX5_OPCODE_RDMA_WRITE_IMM:
1018         case MLX5_OPCODE_RDMA_READ:
1019                 *wqe += sizeof(struct mlx5_wqe_raddr_seg);
1020                 break;
1021         case MLX5_OPCODE_ATOMIC_CS:
1022         case MLX5_OPCODE_ATOMIC_FA:
1023                 *wqe += sizeof(struct mlx5_wqe_raddr_seg);
1024                 *wqe += sizeof(struct mlx5_wqe_atomic_seg);
1025                 break;
1026         }
1027
1028         return 0;
1029 }
1030
1031 /*
1032  * Parse responder WQE. Advances the wqe pointer to point at the
1033  * scatter-gather list, and set wqe_end to the end of the WQE.
1034  */
1035 static int mlx5_ib_mr_responder_pfault_handler(
1036         struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
1037         struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
1038 {
1039         struct mlx5_ib_wq *wq = &qp->rq;
1040         int wqe_size = 1 << wq->wqe_shift;
1041
1042         if (qp->ibqp.srq) {
1043                 mlx5_ib_err(dev, "ODP fault on SRQ is not supported\n");
1044                 return -EFAULT;
1045         }
1046
1047         if (qp->wq_sig) {
1048                 mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
1049                 return -EFAULT;
1050         }
1051
1052         if (wqe_size > wqe_length) {
1053                 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1054                 return -EFAULT;
1055         }
1056
1057         switch (qp->ibqp.qp_type) {
1058         case IB_QPT_RC:
1059                 if (!(dev->odp_caps.per_transport_caps.rc_odp_caps &
1060                       IB_ODP_SUPPORT_RECV))
1061                         goto invalid_transport_or_opcode;
1062                 break;
1063         default:
1064 invalid_transport_or_opcode:
1065                 mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport. transport: 0x%x\n",
1066                             qp->ibqp.qp_type);
1067                 return -EFAULT;
1068         }
1069
1070         *wqe_end = *wqe + wqe_size;
1071
1072         return 0;
1073 }
1074
1075 static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev,
1076                                                        u32 wq_num, int pf_type)
1077 {
1078         enum mlx5_res_type res_type;
1079
1080         switch (pf_type) {
1081         case MLX5_WQE_PF_TYPE_RMP:
1082                 res_type = MLX5_RES_SRQ;
1083                 break;
1084         case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE:
1085         case MLX5_WQE_PF_TYPE_RESP:
1086         case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC:
1087                 res_type = MLX5_RES_QP;
1088                 break;
1089         default:
1090                 return NULL;
1091         }
1092
1093         return mlx5_core_res_hold(dev->mdev, wq_num, res_type);
1094 }
1095
1096 static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res)
1097 {
1098         struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res;
1099
1100         return to_mibqp(mqp);
1101 }
1102
1103 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
1104                                           struct mlx5_pagefault *pfault)
1105 {
1106         int ret;
1107         void *wqe, *wqe_end;
1108         u32 bytes_mapped, total_wqe_bytes;
1109         char *buffer = NULL;
1110         int resume_with_error = 1;
1111         u16 wqe_index = pfault->wqe.wqe_index;
1112         int requestor = pfault->type & MLX5_PFAULT_REQUESTOR;
1113         struct mlx5_core_rsc_common *res;
1114         struct mlx5_ib_qp *qp;
1115
1116         res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type);
1117         if (!res) {
1118                 mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num);
1119                 return;
1120         }
1121
1122         switch (res->res) {
1123         case MLX5_RES_QP:
1124                 qp = res_to_qp(res);
1125                 break;
1126         default:
1127                 mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n", pfault->type);
1128                 goto resolve_page_fault;
1129         }
1130
1131         buffer = (char *)__get_free_page(GFP_KERNEL);
1132         if (!buffer) {
1133                 mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
1134                 goto resolve_page_fault;
1135         }
1136
1137         ret = mlx5_ib_read_user_wqe(qp, requestor, wqe_index, buffer,
1138                                     PAGE_SIZE, &qp->trans_qp.base);
1139         if (ret < 0) {
1140                 mlx5_ib_err(dev, "Failed reading a WQE following page fault, error=%d, wqe_index=%x, qpn=%x\n",
1141                             ret, wqe_index, pfault->token);
1142                 goto resolve_page_fault;
1143         }
1144
1145         wqe = buffer;
1146         if (requestor)
1147                 ret = mlx5_ib_mr_initiator_pfault_handler(dev, pfault, qp, &wqe,
1148                                                           &wqe_end, ret);
1149         else
1150                 ret = mlx5_ib_mr_responder_pfault_handler(dev, pfault, qp, &wqe,
1151                                                           &wqe_end, ret);
1152         if (ret < 0)
1153                 goto resolve_page_fault;
1154
1155         if (wqe >= wqe_end) {
1156                 mlx5_ib_err(dev, "ODP fault on invalid WQE.\n");
1157                 goto resolve_page_fault;
1158         }
1159
1160         ret = pagefault_data_segments(dev, pfault, qp, wqe, wqe_end,
1161                                       &bytes_mapped, &total_wqe_bytes,
1162                                       !requestor);
1163         if (ret == -EAGAIN) {
1164                 resume_with_error = 0;
1165                 goto resolve_page_fault;
1166         } else if (ret < 0 || total_wqe_bytes > bytes_mapped) {
1167                 goto resolve_page_fault;
1168         }
1169
1170         resume_with_error = 0;
1171 resolve_page_fault:
1172         mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
1173         mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
1174                     pfault->wqe.wq_num, resume_with_error,
1175                     pfault->type);
1176         mlx5_core_res_put(res);
1177         free_page((unsigned long)buffer);
1178 }
1179
1180 static int pages_in_range(u64 address, u32 length)
1181 {
1182         return (ALIGN(address + length, PAGE_SIZE) -
1183                 (address & PAGE_MASK)) >> PAGE_SHIFT;
1184 }
1185
1186 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
1187                                            struct mlx5_pagefault *pfault)
1188 {
1189         u64 address;
1190         u32 length;
1191         u32 prefetch_len = pfault->bytes_committed;
1192         int prefetch_activated = 0;
1193         u32 rkey = pfault->rdma.r_key;
1194         int ret;
1195
1196         /* The RDMA responder handler handles the page fault in two parts.
1197          * First it brings the necessary pages for the current packet
1198          * (and uses the pfault context), and then (after resuming the QP)
1199          * prefetches more pages. The second operation cannot use the pfault
1200          * context and therefore uses the dummy_pfault context allocated on
1201          * the stack */
1202         pfault->rdma.rdma_va += pfault->bytes_committed;
1203         pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
1204                                          pfault->rdma.rdma_op_len);
1205         pfault->bytes_committed = 0;
1206
1207         address = pfault->rdma.rdma_va;
1208         length  = pfault->rdma.rdma_op_len;
1209
1210         /* For some operations, the hardware cannot tell the exact message
1211          * length, and in those cases it reports zero. Use prefetch
1212          * logic. */
1213         if (length == 0) {
1214                 prefetch_activated = 1;
1215                 length = pfault->rdma.packet_size;
1216                 prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
1217         }
1218
1219         ret = pagefault_single_data_segment(dev, rkey, address, length,
1220                                             &pfault->bytes_committed, NULL);
1221         if (ret == -EAGAIN) {
1222                 /* We're racing with an invalidation, don't prefetch */
1223                 prefetch_activated = 0;
1224         } else if (ret < 0 || pages_in_range(address, length) > ret) {
1225                 mlx5_ib_page_fault_resume(dev, pfault, 1);
1226                 if (ret != -ENOENT)
1227                         mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n",
1228                                     ret, pfault->token, pfault->type);
1229                 return;
1230         }
1231
1232         mlx5_ib_page_fault_resume(dev, pfault, 0);
1233         mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n",
1234                     pfault->token, pfault->type,
1235                     prefetch_activated);
1236
1237         /* At this point, there might be a new pagefault already arriving in
1238          * the eq, switch to the dummy pagefault for the rest of the
1239          * processing. We're still OK with the objects being alive as the
1240          * work-queue is being fenced. */
1241
1242         if (prefetch_activated) {
1243                 u32 bytes_committed = 0;
1244
1245                 ret = pagefault_single_data_segment(dev, rkey, address,
1246                                                     prefetch_len,
1247                                                     &bytes_committed, NULL);
1248                 if (ret < 0 && ret != -EAGAIN) {
1249                         mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n",
1250                                     ret, pfault->token, address, prefetch_len);
1251                 }
1252         }
1253 }
1254
1255 static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault)
1256 {
1257         u8 event_subtype = pfault->event_subtype;
1258
1259         switch (event_subtype) {
1260         case MLX5_PFAULT_SUBTYPE_WQE:
1261                 mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
1262                 break;
1263         case MLX5_PFAULT_SUBTYPE_RDMA:
1264                 mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
1265                 break;
1266         default:
1267                 mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
1268                             event_subtype);
1269                 mlx5_ib_page_fault_resume(dev, pfault, 1);
1270         }
1271 }
1272
1273 static void mlx5_ib_eqe_pf_action(struct work_struct *work)
1274 {
1275         struct mlx5_pagefault *pfault = container_of(work,
1276                                                      struct mlx5_pagefault,
1277                                                      work);
1278         struct mlx5_ib_pf_eq *eq = pfault->eq;
1279
1280         mlx5_ib_pfault(eq->dev, pfault);
1281         mempool_free(pfault, eq->pool);
1282 }
1283
1284 static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq)
1285 {
1286         struct mlx5_eqe_page_fault *pf_eqe;
1287         struct mlx5_pagefault *pfault;
1288         struct mlx5_eqe *eqe;
1289         int cc = 0;
1290
1291         while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) {
1292                 pfault = mempool_alloc(eq->pool, GFP_ATOMIC);
1293                 if (!pfault) {
1294                         schedule_work(&eq->work);
1295                         break;
1296                 }
1297
1298                 pf_eqe = &eqe->data.page_fault;
1299                 pfault->event_subtype = eqe->sub_type;
1300                 pfault->bytes_committed = be32_to_cpu(pf_eqe->bytes_committed);
1301
1302                 mlx5_ib_dbg(eq->dev,
1303                             "PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x\n",
1304                             eqe->sub_type, pfault->bytes_committed);
1305
1306                 switch (eqe->sub_type) {
1307                 case MLX5_PFAULT_SUBTYPE_RDMA:
1308                         /* RDMA based event */
1309                         pfault->type =
1310                                 be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24;
1311                         pfault->token =
1312                                 be32_to_cpu(pf_eqe->rdma.pftype_token) &
1313                                 MLX5_24BIT_MASK;
1314                         pfault->rdma.r_key =
1315                                 be32_to_cpu(pf_eqe->rdma.r_key);
1316                         pfault->rdma.packet_size =
1317                                 be16_to_cpu(pf_eqe->rdma.packet_length);
1318                         pfault->rdma.rdma_op_len =
1319                                 be32_to_cpu(pf_eqe->rdma.rdma_op_len);
1320                         pfault->rdma.rdma_va =
1321                                 be64_to_cpu(pf_eqe->rdma.rdma_va);
1322                         mlx5_ib_dbg(eq->dev,
1323                                     "PAGE_FAULT: type:0x%x, token: 0x%06x, r_key: 0x%08x\n",
1324                                     pfault->type, pfault->token,
1325                                     pfault->rdma.r_key);
1326                         mlx5_ib_dbg(eq->dev,
1327                                     "PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n",
1328                                     pfault->rdma.rdma_op_len,
1329                                     pfault->rdma.rdma_va);
1330                         break;
1331
1332                 case MLX5_PFAULT_SUBTYPE_WQE:
1333                         /* WQE based event */
1334                         pfault->type =
1335                                 (be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7;
1336                         pfault->token =
1337                                 be32_to_cpu(pf_eqe->wqe.token);
1338                         pfault->wqe.wq_num =
1339                                 be32_to_cpu(pf_eqe->wqe.pftype_wq) &
1340                                 MLX5_24BIT_MASK;
1341                         pfault->wqe.wqe_index =
1342                                 be16_to_cpu(pf_eqe->wqe.wqe_index);
1343                         pfault->wqe.packet_size =
1344                                 be16_to_cpu(pf_eqe->wqe.packet_length);
1345                         mlx5_ib_dbg(eq->dev,
1346                                     "PAGE_FAULT: type:0x%x, token: 0x%06x, wq_num: 0x%06x, wqe_index: 0x%04x\n",
1347                                     pfault->type, pfault->token,
1348                                     pfault->wqe.wq_num,
1349                                     pfault->wqe.wqe_index);
1350                         break;
1351
1352                 default:
1353                         mlx5_ib_warn(eq->dev,
1354                                      "Unsupported page fault event sub-type: 0x%02hhx\n",
1355                                      eqe->sub_type);
1356                         /* Unsupported page faults should still be
1357                          * resolved by the page fault handler
1358                          */
1359                 }
1360
1361                 pfault->eq = eq;
1362                 INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action);
1363                 queue_work(eq->wq, &pfault->work);
1364
1365                 cc = mlx5_eq_update_cc(eq->core, ++cc);
1366         }
1367
1368         mlx5_eq_update_ci(eq->core, cc, 1);
1369 }
1370
1371 static irqreturn_t mlx5_ib_eq_pf_int(int irq, void *eq_ptr)
1372 {
1373         struct mlx5_ib_pf_eq *eq = eq_ptr;
1374         unsigned long flags;
1375
1376         if (spin_trylock_irqsave(&eq->lock, flags)) {
1377                 mlx5_ib_eq_pf_process(eq);
1378                 spin_unlock_irqrestore(&eq->lock, flags);
1379         } else {
1380                 schedule_work(&eq->work);
1381         }
1382
1383         return IRQ_HANDLED;
1384 }
1385
1386 /* mempool_refill() was proposed but unfortunately wasn't accepted
1387  * http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html
1388  * Cheap workaround.
1389  */
1390 static void mempool_refill(mempool_t *pool)
1391 {
1392         while (pool->curr_nr < pool->min_nr)
1393                 mempool_free(mempool_alloc(pool, GFP_KERNEL), pool);
1394 }
1395
1396 static void mlx5_ib_eq_pf_action(struct work_struct *work)
1397 {
1398         struct mlx5_ib_pf_eq *eq =
1399                 container_of(work, struct mlx5_ib_pf_eq, work);
1400
1401         mempool_refill(eq->pool);
1402
1403         spin_lock_irq(&eq->lock);
1404         mlx5_ib_eq_pf_process(eq);
1405         spin_unlock_irq(&eq->lock);
1406 }
1407
1408 enum {
1409         MLX5_IB_NUM_PF_EQE      = 0x1000,
1410         MLX5_IB_NUM_PF_DRAIN    = 64,
1411 };
1412
1413 static int
1414 mlx5_ib_create_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1415 {
1416         struct mlx5_eq_param param = {};
1417         int err;
1418
1419         INIT_WORK(&eq->work, mlx5_ib_eq_pf_action);
1420         spin_lock_init(&eq->lock);
1421         eq->dev = dev;
1422
1423         eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN,
1424                                                sizeof(struct mlx5_pagefault));
1425         if (!eq->pool)
1426                 return -ENOMEM;
1427
1428         eq->wq = alloc_workqueue("mlx5_ib_page_fault",
1429                                  WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM,
1430                                  MLX5_NUM_CMD_EQE);
1431         if (!eq->wq) {
1432                 err = -ENOMEM;
1433                 goto err_mempool;
1434         }
1435
1436         param = (struct mlx5_eq_param) {
1437                 .index = MLX5_EQ_PFAULT_IDX,
1438                 .mask = 1 << MLX5_EVENT_TYPE_PAGE_FAULT,
1439                 .nent = MLX5_IB_NUM_PF_EQE,
1440                 .context = eq,
1441                 .handler = mlx5_ib_eq_pf_int
1442         };
1443         eq->core = mlx5_eq_create_generic(dev->mdev, "mlx5_ib_page_fault_eq", &param);
1444         if (IS_ERR(eq->core)) {
1445                 err = PTR_ERR(eq->core);
1446                 goto err_wq;
1447         }
1448
1449         return 0;
1450 err_wq:
1451         destroy_workqueue(eq->wq);
1452 err_mempool:
1453         mempool_destroy(eq->pool);
1454         return err;
1455 }
1456
1457 static int
1458 mlx5_ib_destroy_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1459 {
1460         int err;
1461
1462         err = mlx5_eq_destroy_generic(dev->mdev, eq->core);
1463         cancel_work_sync(&eq->work);
1464         destroy_workqueue(eq->wq);
1465         mempool_destroy(eq->pool);
1466
1467         return err;
1468 }
1469
1470 void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent)
1471 {
1472         if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1473                 return;
1474
1475         switch (ent->order - 2) {
1476         case MLX5_IMR_MTT_CACHE_ENTRY:
1477                 ent->page = PAGE_SHIFT;
1478                 ent->xlt = MLX5_IMR_MTT_ENTRIES *
1479                            sizeof(struct mlx5_mtt) /
1480                            MLX5_IB_UMR_OCTOWORD;
1481                 ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
1482                 ent->limit = 0;
1483                 break;
1484
1485         case MLX5_IMR_KSM_CACHE_ENTRY:
1486                 ent->page = MLX5_KSM_PAGE_SHIFT;
1487                 ent->xlt = mlx5_imr_ksm_entries *
1488                            sizeof(struct mlx5_klm) /
1489                            MLX5_IB_UMR_OCTOWORD;
1490                 ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM;
1491                 ent->limit = 0;
1492                 break;
1493         }
1494 }
1495
1496 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
1497 {
1498         int ret = 0;
1499
1500         if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) {
1501                 ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey);
1502                 if (ret) {
1503                         mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret);
1504                         return ret;
1505                 }
1506         }
1507
1508         if (!MLX5_CAP_GEN(dev->mdev, pg))
1509                 return ret;
1510
1511         ret = mlx5_ib_create_pf_eq(dev, &dev->odp_pf_eq);
1512
1513         return ret;
1514 }
1515
1516 void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev)
1517 {
1518         if (!MLX5_CAP_GEN(dev->mdev, pg))
1519                 return;
1520
1521         mlx5_ib_destroy_pf_eq(dev, &dev->odp_pf_eq);
1522 }
1523
1524 int mlx5_ib_odp_init(void)
1525 {
1526         mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
1527                                        MLX5_IMR_MTT_BITS);
1528
1529         return 0;
1530 }