Merge tag 'nfs-for-5.9-1' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
[linux-2.6-microblaze.git] / drivers / infiniband / hw / mlx5 / odp.c
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32
33 #include <rdma/ib_umem.h>
34 #include <rdma/ib_umem_odp.h>
35 #include <linux/kernel.h>
36
37 #include "mlx5_ib.h"
38 #include "cmd.h"
39 #include "qp.h"
40
41 #include <linux/mlx5/eq.h>
42
43 /* Contains the details of a pagefault. */
44 struct mlx5_pagefault {
45         u32                     bytes_committed;
46         u32                     token;
47         u8                      event_subtype;
48         u8                      type;
49         union {
50                 /* Initiator or send message responder pagefault details. */
51                 struct {
52                         /* Received packet size, only valid for responders. */
53                         u32     packet_size;
54                         /*
55                          * Number of resource holding WQE, depends on type.
56                          */
57                         u32     wq_num;
58                         /*
59                          * WQE index. Refers to either the send queue or
60                          * receive queue, according to event_subtype.
61                          */
62                         u16     wqe_index;
63                 } wqe;
64                 /* RDMA responder pagefault details */
65                 struct {
66                         u32     r_key;
67                         /*
68                          * Received packet size, minimal size page fault
69                          * resolution required for forward progress.
70                          */
71                         u32     packet_size;
72                         u32     rdma_op_len;
73                         u64     rdma_va;
74                 } rdma;
75         };
76
77         struct mlx5_ib_pf_eq    *eq;
78         struct work_struct      work;
79 };
80
81 #define MAX_PREFETCH_LEN (4*1024*1024U)
82
83 /* Timeout in ms to wait for an active mmu notifier to complete when handling
84  * a pagefault. */
85 #define MMU_NOTIFIER_TIMEOUT 1000
86
87 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
88 #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
89 #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
90 #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
91 #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
92
93 #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
94
95 static u64 mlx5_imr_ksm_entries;
96
97 static void populate_klm(struct mlx5_klm *pklm, size_t idx, size_t nentries,
98                         struct mlx5_ib_mr *imr, int flags)
99 {
100         struct mlx5_klm *end = pklm + nentries;
101
102         if (flags & MLX5_IB_UPD_XLT_ZAP) {
103                 for (; pklm != end; pklm++, idx++) {
104                         pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
105                         pklm->key = cpu_to_be32(imr->dev->null_mkey);
106                         pklm->va = 0;
107                 }
108                 return;
109         }
110
111         /*
112          * The locking here is pretty subtle. Ideally the implicit_children
113          * xarray would be protected by the umem_mutex, however that is not
114          * possible. Instead this uses a weaker update-then-lock pattern:
115          *
116          *  srcu_read_lock()
117          *    xa_store()
118          *    mutex_lock(umem_mutex)
119          *     mlx5_ib_update_xlt()
120          *    mutex_unlock(umem_mutex)
121          *    destroy lkey
122          *
123          * ie any change the xarray must be followed by the locked update_xlt
124          * before destroying.
125          *
126          * The umem_mutex provides the acquire/release semantic needed to make
127          * the xa_store() visible to a racing thread. While SRCU is not
128          * technically required, using it gives consistent use of the SRCU
129          * locking around the xarray.
130          */
131         lockdep_assert_held(&to_ib_umem_odp(imr->umem)->umem_mutex);
132         lockdep_assert_held(&imr->dev->odp_srcu);
133
134         for (; pklm != end; pklm++, idx++) {
135                 struct mlx5_ib_mr *mtt = xa_load(&imr->implicit_children, idx);
136
137                 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
138                 if (mtt) {
139                         pklm->key = cpu_to_be32(mtt->ibmr.lkey);
140                         pklm->va = cpu_to_be64(idx * MLX5_IMR_MTT_SIZE);
141                 } else {
142                         pklm->key = cpu_to_be32(imr->dev->null_mkey);
143                         pklm->va = 0;
144                 }
145         }
146 }
147
148 static u64 umem_dma_to_mtt(dma_addr_t umem_dma)
149 {
150         u64 mtt_entry = umem_dma & ODP_DMA_ADDR_MASK;
151
152         if (umem_dma & ODP_READ_ALLOWED_BIT)
153                 mtt_entry |= MLX5_IB_MTT_READ;
154         if (umem_dma & ODP_WRITE_ALLOWED_BIT)
155                 mtt_entry |= MLX5_IB_MTT_WRITE;
156
157         return mtt_entry;
158 }
159
160 static void populate_mtt(__be64 *pas, size_t idx, size_t nentries,
161                          struct mlx5_ib_mr *mr, int flags)
162 {
163         struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
164         dma_addr_t pa;
165         size_t i;
166
167         if (flags & MLX5_IB_UPD_XLT_ZAP)
168                 return;
169
170         for (i = 0; i < nentries; i++) {
171                 pa = odp->dma_list[idx + i];
172                 pas[i] = cpu_to_be64(umem_dma_to_mtt(pa));
173         }
174 }
175
176 void mlx5_odp_populate_xlt(void *xlt, size_t idx, size_t nentries,
177                            struct mlx5_ib_mr *mr, int flags)
178 {
179         if (flags & MLX5_IB_UPD_XLT_INDIRECT) {
180                 populate_klm(xlt, idx, nentries, mr, flags);
181         } else {
182                 populate_mtt(xlt, idx, nentries, mr, flags);
183         }
184 }
185
186 static void dma_fence_odp_mr(struct mlx5_ib_mr *mr)
187 {
188         struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
189
190         /* Ensure mlx5_ib_invalidate_range() will not touch the MR any more */
191         mutex_lock(&odp->umem_mutex);
192         if (odp->npages) {
193                 mlx5_mr_cache_invalidate(mr);
194                 ib_umem_odp_unmap_dma_pages(odp, ib_umem_start(odp),
195                                             ib_umem_end(odp));
196                 WARN_ON(odp->npages);
197         }
198         odp->private = NULL;
199         mutex_unlock(&odp->umem_mutex);
200
201         if (!mr->cache_ent) {
202                 mlx5_core_destroy_mkey(mr->dev->mdev, &mr->mmkey);
203                 WARN_ON(mr->descs);
204         }
205 }
206
207 /*
208  * This must be called after the mr has been removed from implicit_children
209  * and the SRCU synchronized.  NOTE: The MR does not necessarily have to be
210  * empty here, parallel page faults could have raced with the free process and
211  * added pages to it.
212  */
213 static void free_implicit_child_mr(struct mlx5_ib_mr *mr, bool need_imr_xlt)
214 {
215         struct mlx5_ib_mr *imr = mr->parent;
216         struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem);
217         struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
218         unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT;
219         int srcu_key;
220
221         /* implicit_child_mr's are not allowed to have deferred work */
222         WARN_ON(atomic_read(&mr->num_deferred_work));
223
224         if (need_imr_xlt) {
225                 srcu_key = srcu_read_lock(&mr->dev->odp_srcu);
226                 mutex_lock(&odp_imr->umem_mutex);
227                 mlx5_ib_update_xlt(mr->parent, idx, 1, 0,
228                                    MLX5_IB_UPD_XLT_INDIRECT |
229                                    MLX5_IB_UPD_XLT_ATOMIC);
230                 mutex_unlock(&odp_imr->umem_mutex);
231                 srcu_read_unlock(&mr->dev->odp_srcu, srcu_key);
232         }
233
234         dma_fence_odp_mr(mr);
235
236         mr->parent = NULL;
237         mlx5_mr_cache_free(mr->dev, mr);
238         ib_umem_odp_release(odp);
239         if (atomic_dec_and_test(&imr->num_deferred_work))
240                 wake_up(&imr->q_deferred_work);
241 }
242
243 static void free_implicit_child_mr_work(struct work_struct *work)
244 {
245         struct mlx5_ib_mr *mr =
246                 container_of(work, struct mlx5_ib_mr, odp_destroy.work);
247
248         free_implicit_child_mr(mr, true);
249 }
250
251 static void free_implicit_child_mr_rcu(struct rcu_head *head)
252 {
253         struct mlx5_ib_mr *mr =
254                 container_of(head, struct mlx5_ib_mr, odp_destroy.rcu);
255
256         /* Freeing a MR is a sleeping operation, so bounce to a work queue */
257         INIT_WORK(&mr->odp_destroy.work, free_implicit_child_mr_work);
258         queue_work(system_unbound_wq, &mr->odp_destroy.work);
259 }
260
261 static void destroy_unused_implicit_child_mr(struct mlx5_ib_mr *mr)
262 {
263         struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
264         unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT;
265         struct mlx5_ib_mr *imr = mr->parent;
266
267         xa_lock(&imr->implicit_children);
268         /*
269          * This can race with mlx5_ib_free_implicit_mr(), the first one to
270          * reach the xa lock wins the race and destroys the MR.
271          */
272         if (__xa_cmpxchg(&imr->implicit_children, idx, mr, NULL, GFP_ATOMIC) !=
273             mr)
274                 goto out_unlock;
275
276         atomic_inc(&imr->num_deferred_work);
277         call_srcu(&mr->dev->odp_srcu, &mr->odp_destroy.rcu,
278                   free_implicit_child_mr_rcu);
279
280 out_unlock:
281         xa_unlock(&imr->implicit_children);
282 }
283
284 static bool mlx5_ib_invalidate_range(struct mmu_interval_notifier *mni,
285                                      const struct mmu_notifier_range *range,
286                                      unsigned long cur_seq)
287 {
288         struct ib_umem_odp *umem_odp =
289                 container_of(mni, struct ib_umem_odp, notifier);
290         struct mlx5_ib_mr *mr;
291         const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT /
292                                     sizeof(struct mlx5_mtt)) - 1;
293         u64 idx = 0, blk_start_idx = 0;
294         u64 invalidations = 0;
295         unsigned long start;
296         unsigned long end;
297         int in_block = 0;
298         u64 addr;
299
300         if (!mmu_notifier_range_blockable(range))
301                 return false;
302
303         mutex_lock(&umem_odp->umem_mutex);
304         mmu_interval_set_seq(mni, cur_seq);
305         /*
306          * If npages is zero then umem_odp->private may not be setup yet. This
307          * does not complete until after the first page is mapped for DMA.
308          */
309         if (!umem_odp->npages)
310                 goto out;
311         mr = umem_odp->private;
312
313         start = max_t(u64, ib_umem_start(umem_odp), range->start);
314         end = min_t(u64, ib_umem_end(umem_odp), range->end);
315
316         /*
317          * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
318          * while we are doing the invalidation, no page fault will attempt to
319          * overwrite the same MTTs.  Concurent invalidations might race us,
320          * but they will write 0s as well, so no difference in the end result.
321          */
322         for (addr = start; addr < end; addr += BIT(umem_odp->page_shift)) {
323                 idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift;
324                 /*
325                  * Strive to write the MTTs in chunks, but avoid overwriting
326                  * non-existing MTTs. The huristic here can be improved to
327                  * estimate the cost of another UMR vs. the cost of bigger
328                  * UMR.
329                  */
330                 if (umem_odp->dma_list[idx] &
331                     (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
332                         if (!in_block) {
333                                 blk_start_idx = idx;
334                                 in_block = 1;
335                         }
336
337                         /* Count page invalidations */
338                         invalidations += idx - blk_start_idx + 1;
339                 } else {
340                         u64 umr_offset = idx & umr_block_mask;
341
342                         if (in_block && umr_offset == 0) {
343                                 mlx5_ib_update_xlt(mr, blk_start_idx,
344                                                    idx - blk_start_idx, 0,
345                                                    MLX5_IB_UPD_XLT_ZAP |
346                                                    MLX5_IB_UPD_XLT_ATOMIC);
347                                 in_block = 0;
348                         }
349                 }
350         }
351         if (in_block)
352                 mlx5_ib_update_xlt(mr, blk_start_idx,
353                                    idx - blk_start_idx + 1, 0,
354                                    MLX5_IB_UPD_XLT_ZAP |
355                                    MLX5_IB_UPD_XLT_ATOMIC);
356
357         mlx5_update_odp_stats(mr, invalidations, invalidations);
358
359         /*
360          * We are now sure that the device will not access the
361          * memory. We can safely unmap it, and mark it as dirty if
362          * needed.
363          */
364
365         ib_umem_odp_unmap_dma_pages(umem_odp, start, end);
366
367         if (unlikely(!umem_odp->npages && mr->parent))
368                 destroy_unused_implicit_child_mr(mr);
369 out:
370         mutex_unlock(&umem_odp->umem_mutex);
371         return true;
372 }
373
374 const struct mmu_interval_notifier_ops mlx5_mn_ops = {
375         .invalidate = mlx5_ib_invalidate_range,
376 };
377
378 void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev)
379 {
380         struct ib_odp_caps *caps = &dev->odp_caps;
381
382         memset(caps, 0, sizeof(*caps));
383
384         if (!MLX5_CAP_GEN(dev->mdev, pg) ||
385             !mlx5_ib_can_use_umr(dev, true, 0))
386                 return;
387
388         caps->general_caps = IB_ODP_SUPPORT;
389
390         if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
391                 dev->odp_max_size = U64_MAX;
392         else
393                 dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
394
395         if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send))
396                 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
397
398         if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.srq_receive))
399                 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
400
401         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send))
402                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
403
404         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive))
405                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
406
407         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write))
408                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
409
410         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read))
411                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
412
413         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic))
414                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
415
416         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.srq_receive))
417                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
418
419         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.send))
420                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SEND;
421
422         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.receive))
423                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_RECV;
424
425         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.write))
426                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_WRITE;
427
428         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.read))
429                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_READ;
430
431         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.atomic))
432                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
433
434         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.srq_receive))
435                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
436
437         if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
438             MLX5_CAP_GEN(dev->mdev, null_mkey) &&
439             MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset) &&
440             !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled))
441                 caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
442 }
443
444 static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
445                                       struct mlx5_pagefault *pfault,
446                                       int error)
447 {
448         int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
449                      pfault->wqe.wq_num : pfault->token;
450         u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)] = {};
451         int err;
452
453         MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME);
454         MLX5_SET(page_fault_resume_in, in, page_fault_type, pfault->type);
455         MLX5_SET(page_fault_resume_in, in, token, pfault->token);
456         MLX5_SET(page_fault_resume_in, in, wq_number, wq_num);
457         MLX5_SET(page_fault_resume_in, in, error, !!error);
458
459         err = mlx5_cmd_exec_in(dev->mdev, page_fault_resume, in);
460         if (err)
461                 mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n",
462                             wq_num, err);
463 }
464
465 static struct mlx5_ib_mr *implicit_get_child_mr(struct mlx5_ib_mr *imr,
466                                                 unsigned long idx)
467 {
468         struct ib_umem_odp *odp;
469         struct mlx5_ib_mr *mr;
470         struct mlx5_ib_mr *ret;
471         int err;
472
473         odp = ib_umem_odp_alloc_child(to_ib_umem_odp(imr->umem),
474                                       idx * MLX5_IMR_MTT_SIZE,
475                                       MLX5_IMR_MTT_SIZE, &mlx5_mn_ops);
476         if (IS_ERR(odp))
477                 return ERR_CAST(odp);
478
479         ret = mr = mlx5_mr_cache_alloc(imr->dev, MLX5_IMR_MTT_CACHE_ENTRY);
480         if (IS_ERR(mr))
481                 goto out_umem;
482
483         mr->ibmr.pd = imr->ibmr.pd;
484         mr->access_flags = imr->access_flags;
485         mr->umem = &odp->umem;
486         mr->ibmr.lkey = mr->mmkey.key;
487         mr->ibmr.rkey = mr->mmkey.key;
488         mr->mmkey.iova = idx * MLX5_IMR_MTT_SIZE;
489         mr->parent = imr;
490         odp->private = mr;
491
492         err = mlx5_ib_update_xlt(mr, 0,
493                                  MLX5_IMR_MTT_ENTRIES,
494                                  PAGE_SHIFT,
495                                  MLX5_IB_UPD_XLT_ZAP |
496                                  MLX5_IB_UPD_XLT_ENABLE);
497         if (err) {
498                 ret = ERR_PTR(err);
499                 goto out_mr;
500         }
501
502         /*
503          * Once the store to either xarray completes any error unwind has to
504          * use synchronize_srcu(). Avoid this with xa_reserve()
505          */
506         ret = xa_cmpxchg(&imr->implicit_children, idx, NULL, mr,
507                          GFP_KERNEL);
508         if (unlikely(ret)) {
509                 if (xa_is_err(ret)) {
510                         ret = ERR_PTR(xa_err(ret));
511                         goto out_mr;
512                 }
513                 /*
514                  * Another thread beat us to creating the child mr, use
515                  * theirs.
516                  */
517                 goto out_mr;
518         }
519
520         mlx5_ib_dbg(imr->dev, "key %x mr %p\n", mr->mmkey.key, mr);
521         return mr;
522
523 out_mr:
524         mlx5_mr_cache_free(imr->dev, mr);
525 out_umem:
526         ib_umem_odp_release(odp);
527         return ret;
528 }
529
530 struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
531                                              struct ib_udata *udata,
532                                              int access_flags)
533 {
534         struct mlx5_ib_dev *dev = to_mdev(pd->ibpd.device);
535         struct ib_umem_odp *umem_odp;
536         struct mlx5_ib_mr *imr;
537         int err;
538
539         umem_odp = ib_umem_odp_alloc_implicit(&dev->ib_dev, access_flags);
540         if (IS_ERR(umem_odp))
541                 return ERR_CAST(umem_odp);
542
543         imr = mlx5_mr_cache_alloc(dev, MLX5_IMR_KSM_CACHE_ENTRY);
544         if (IS_ERR(imr)) {
545                 err = PTR_ERR(imr);
546                 goto out_umem;
547         }
548
549         imr->ibmr.pd = &pd->ibpd;
550         imr->access_flags = access_flags;
551         imr->mmkey.iova = 0;
552         imr->umem = &umem_odp->umem;
553         imr->ibmr.lkey = imr->mmkey.key;
554         imr->ibmr.rkey = imr->mmkey.key;
555         imr->umem = &umem_odp->umem;
556         imr->is_odp_implicit = true;
557         atomic_set(&imr->num_deferred_work, 0);
558         init_waitqueue_head(&imr->q_deferred_work);
559         xa_init(&imr->implicit_children);
560
561         err = mlx5_ib_update_xlt(imr, 0,
562                                  mlx5_imr_ksm_entries,
563                                  MLX5_KSM_PAGE_SHIFT,
564                                  MLX5_IB_UPD_XLT_INDIRECT |
565                                  MLX5_IB_UPD_XLT_ZAP |
566                                  MLX5_IB_UPD_XLT_ENABLE);
567         if (err)
568                 goto out_mr;
569
570         err = xa_err(xa_store(&dev->odp_mkeys, mlx5_base_mkey(imr->mmkey.key),
571                               &imr->mmkey, GFP_KERNEL));
572         if (err)
573                 goto out_mr;
574
575         mlx5_ib_dbg(dev, "key %x mr %p\n", imr->mmkey.key, imr);
576         return imr;
577 out_mr:
578         mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
579         mlx5_mr_cache_free(dev, imr);
580 out_umem:
581         ib_umem_odp_release(umem_odp);
582         return ERR_PTR(err);
583 }
584
585 void mlx5_ib_free_implicit_mr(struct mlx5_ib_mr *imr)
586 {
587         struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem);
588         struct mlx5_ib_dev *dev = imr->dev;
589         struct list_head destroy_list;
590         struct mlx5_ib_mr *mtt;
591         struct mlx5_ib_mr *tmp;
592         unsigned long idx;
593
594         INIT_LIST_HEAD(&destroy_list);
595
596         xa_erase(&dev->odp_mkeys, mlx5_base_mkey(imr->mmkey.key));
597         /*
598          * This stops the SRCU protected page fault path from touching either
599          * the imr or any children. The page fault path can only reach the
600          * children xarray via the imr.
601          */
602         synchronize_srcu(&dev->odp_srcu);
603
604         /*
605          * All work on the prefetch list must be completed, xa_erase() prevented
606          * new work from being created.
607          */
608         wait_event(imr->q_deferred_work, !atomic_read(&imr->num_deferred_work));
609
610         /*
611          * At this point it is forbidden for any other thread to enter
612          * pagefault_mr() on this imr. It is already forbidden to call
613          * pagefault_mr() on an implicit child. Due to this additions to
614          * implicit_children are prevented.
615          */
616
617         /*
618          * Block destroy_unused_implicit_child_mr() from incrementing
619          * num_deferred_work.
620          */
621         xa_lock(&imr->implicit_children);
622         xa_for_each (&imr->implicit_children, idx, mtt) {
623                 __xa_erase(&imr->implicit_children, idx);
624                 list_add(&mtt->odp_destroy.elm, &destroy_list);
625         }
626         xa_unlock(&imr->implicit_children);
627
628         /*
629          * Wait for any concurrent destroy_unused_implicit_child_mr() to
630          * complete.
631          */
632         wait_event(imr->q_deferred_work, !atomic_read(&imr->num_deferred_work));
633
634         /*
635          * Fence the imr before we destroy the children. This allows us to
636          * skip updating the XLT of the imr during destroy of the child mkey
637          * the imr points to.
638          */
639         mlx5_mr_cache_invalidate(imr);
640
641         list_for_each_entry_safe (mtt, tmp, &destroy_list, odp_destroy.elm)
642                 free_implicit_child_mr(mtt, false);
643
644         mlx5_mr_cache_free(dev, imr);
645         ib_umem_odp_release(odp_imr);
646 }
647
648 /**
649  * mlx5_ib_fence_odp_mr - Stop all access to the ODP MR
650  * @mr: to fence
651  *
652  * On return no parallel threads will be touching this MR and no DMA will be
653  * active.
654  */
655 void mlx5_ib_fence_odp_mr(struct mlx5_ib_mr *mr)
656 {
657         /* Prevent new page faults and prefetch requests from succeeding */
658         xa_erase(&mr->dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key));
659
660         /* Wait for all running page-fault handlers to finish. */
661         synchronize_srcu(&mr->dev->odp_srcu);
662
663         wait_event(mr->q_deferred_work, !atomic_read(&mr->num_deferred_work));
664
665         dma_fence_odp_mr(mr);
666 }
667
668 #define MLX5_PF_FLAGS_DOWNGRADE BIT(1)
669 static int pagefault_real_mr(struct mlx5_ib_mr *mr, struct ib_umem_odp *odp,
670                              u64 user_va, size_t bcnt, u32 *bytes_mapped,
671                              u32 flags)
672 {
673         int page_shift, ret, np;
674         bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE;
675         unsigned long current_seq;
676         u64 access_mask;
677         u64 start_idx;
678
679         page_shift = odp->page_shift;
680         start_idx = (user_va - ib_umem_start(odp)) >> page_shift;
681         access_mask = ODP_READ_ALLOWED_BIT;
682
683         if (odp->umem.writable && !downgrade)
684                 access_mask |= ODP_WRITE_ALLOWED_BIT;
685
686         current_seq = mmu_interval_read_begin(&odp->notifier);
687
688         np = ib_umem_odp_map_dma_pages(odp, user_va, bcnt, access_mask,
689                                        current_seq);
690         if (np < 0)
691                 return np;
692
693         mutex_lock(&odp->umem_mutex);
694         if (!mmu_interval_read_retry(&odp->notifier, current_seq)) {
695                 /*
696                  * No need to check whether the MTTs really belong to
697                  * this MR, since ib_umem_odp_map_dma_pages already
698                  * checks this.
699                  */
700                 ret = mlx5_ib_update_xlt(mr, start_idx, np,
701                                          page_shift, MLX5_IB_UPD_XLT_ATOMIC);
702         } else {
703                 ret = -EAGAIN;
704         }
705         mutex_unlock(&odp->umem_mutex);
706
707         if (ret < 0) {
708                 if (ret != -EAGAIN)
709                         mlx5_ib_err(mr->dev,
710                                     "Failed to update mkey page tables\n");
711                 goto out;
712         }
713
714         if (bytes_mapped) {
715                 u32 new_mappings = (np << page_shift) -
716                         (user_va - round_down(user_va, 1 << page_shift));
717
718                 *bytes_mapped += min_t(u32, new_mappings, bcnt);
719         }
720
721         return np << (page_shift - PAGE_SHIFT);
722
723 out:
724         return ret;
725 }
726
727 static int pagefault_implicit_mr(struct mlx5_ib_mr *imr,
728                                  struct ib_umem_odp *odp_imr, u64 user_va,
729                                  size_t bcnt, u32 *bytes_mapped, u32 flags)
730 {
731         unsigned long end_idx = (user_va + bcnt - 1) >> MLX5_IMR_MTT_SHIFT;
732         unsigned long upd_start_idx = end_idx + 1;
733         unsigned long upd_len = 0;
734         unsigned long npages = 0;
735         int err;
736         int ret;
737
738         if (unlikely(user_va >= mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE ||
739                      mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE - user_va < bcnt))
740                 return -EFAULT;
741
742         /* Fault each child mr that intersects with our interval. */
743         while (bcnt) {
744                 unsigned long idx = user_va >> MLX5_IMR_MTT_SHIFT;
745                 struct ib_umem_odp *umem_odp;
746                 struct mlx5_ib_mr *mtt;
747                 u64 len;
748
749                 mtt = xa_load(&imr->implicit_children, idx);
750                 if (unlikely(!mtt)) {
751                         mtt = implicit_get_child_mr(imr, idx);
752                         if (IS_ERR(mtt)) {
753                                 ret = PTR_ERR(mtt);
754                                 goto out;
755                         }
756                         upd_start_idx = min(upd_start_idx, idx);
757                         upd_len = idx - upd_start_idx + 1;
758                 }
759
760                 umem_odp = to_ib_umem_odp(mtt->umem);
761                 len = min_t(u64, user_va + bcnt, ib_umem_end(umem_odp)) -
762                       user_va;
763
764                 ret = pagefault_real_mr(mtt, umem_odp, user_va, len,
765                                         bytes_mapped, flags);
766                 if (ret < 0)
767                         goto out;
768                 user_va += len;
769                 bcnt -= len;
770                 npages += ret;
771         }
772
773         ret = npages;
774
775         /*
776          * Any time the implicit_children are changed we must perform an
777          * update of the xlt before exiting to ensure the HW and the
778          * implicit_children remains synchronized.
779          */
780 out:
781         if (likely(!upd_len))
782                 return ret;
783
784         /*
785          * Notice this is not strictly ordered right, the KSM is updated after
786          * the implicit_children is updated, so a parallel page fault could
787          * see a MR that is not yet visible in the KSM.  This is similar to a
788          * parallel page fault seeing a MR that is being concurrently removed
789          * from the KSM. Both of these improbable situations are resolved
790          * safely by resuming the HW and then taking another page fault. The
791          * next pagefault handler will see the new information.
792          */
793         mutex_lock(&odp_imr->umem_mutex);
794         err = mlx5_ib_update_xlt(imr, upd_start_idx, upd_len, 0,
795                                  MLX5_IB_UPD_XLT_INDIRECT |
796                                          MLX5_IB_UPD_XLT_ATOMIC);
797         mutex_unlock(&odp_imr->umem_mutex);
798         if (err) {
799                 mlx5_ib_err(imr->dev, "Failed to update PAS\n");
800                 return err;
801         }
802         return ret;
803 }
804
805 /*
806  * Returns:
807  *  -EFAULT: The io_virt->bcnt is not within the MR, it covers pages that are
808  *           not accessible, or the MR is no longer valid.
809  *  -EAGAIN/-ENOMEM: The operation should be retried
810  *
811  *  -EINVAL/others: General internal malfunction
812  *  >0: Number of pages mapped
813  */
814 static int pagefault_mr(struct mlx5_ib_mr *mr, u64 io_virt, size_t bcnt,
815                         u32 *bytes_mapped, u32 flags)
816 {
817         struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
818
819         lockdep_assert_held(&mr->dev->odp_srcu);
820         if (unlikely(io_virt < mr->mmkey.iova))
821                 return -EFAULT;
822
823         if (!odp->is_implicit_odp) {
824                 u64 user_va;
825
826                 if (check_add_overflow(io_virt - mr->mmkey.iova,
827                                        (u64)odp->umem.address, &user_va))
828                         return -EFAULT;
829                 if (unlikely(user_va >= ib_umem_end(odp) ||
830                              ib_umem_end(odp) - user_va < bcnt))
831                         return -EFAULT;
832                 return pagefault_real_mr(mr, odp, user_va, bcnt, bytes_mapped,
833                                          flags);
834         }
835         return pagefault_implicit_mr(mr, odp, io_virt, bcnt, bytes_mapped,
836                                      flags);
837 }
838
839 struct pf_frame {
840         struct pf_frame *next;
841         u32 key;
842         u64 io_virt;
843         size_t bcnt;
844         int depth;
845 };
846
847 static bool mkey_is_eq(struct mlx5_core_mkey *mmkey, u32 key)
848 {
849         if (!mmkey)
850                 return false;
851         if (mmkey->type == MLX5_MKEY_MW)
852                 return mlx5_base_mkey(mmkey->key) == mlx5_base_mkey(key);
853         return mmkey->key == key;
854 }
855
856 static int get_indirect_num_descs(struct mlx5_core_mkey *mmkey)
857 {
858         struct mlx5_ib_mw *mw;
859         struct mlx5_ib_devx_mr *devx_mr;
860
861         if (mmkey->type == MLX5_MKEY_MW) {
862                 mw = container_of(mmkey, struct mlx5_ib_mw, mmkey);
863                 return mw->ndescs;
864         }
865
866         devx_mr = container_of(mmkey, struct mlx5_ib_devx_mr,
867                                mmkey);
868         return devx_mr->ndescs;
869 }
870
871 /*
872  * Handle a single data segment in a page-fault WQE or RDMA region.
873  *
874  * Returns number of OS pages retrieved on success. The caller may continue to
875  * the next data segment.
876  * Can return the following error codes:
877  * -EAGAIN to designate a temporary error. The caller will abort handling the
878  *  page fault and resolve it.
879  * -EFAULT when there's an error mapping the requested pages. The caller will
880  *  abort the page fault handling.
881  */
882 static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
883                                          struct ib_pd *pd, u32 key,
884                                          u64 io_virt, size_t bcnt,
885                                          u32 *bytes_committed,
886                                          u32 *bytes_mapped)
887 {
888         int npages = 0, srcu_key, ret, i, outlen, cur_outlen = 0, depth = 0;
889         struct pf_frame *head = NULL, *frame;
890         struct mlx5_core_mkey *mmkey;
891         struct mlx5_ib_mr *mr;
892         struct mlx5_klm *pklm;
893         u32 *out = NULL;
894         size_t offset;
895         int ndescs;
896
897         srcu_key = srcu_read_lock(&dev->odp_srcu);
898
899         io_virt += *bytes_committed;
900         bcnt -= *bytes_committed;
901
902 next_mr:
903         mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(key));
904         if (!mmkey) {
905                 mlx5_ib_dbg(
906                         dev,
907                         "skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
908                         key);
909                 if (bytes_mapped)
910                         *bytes_mapped += bcnt;
911                 /*
912                  * The user could specify a SGL with multiple lkeys and only
913                  * some of them are ODP. Treat the non-ODP ones as fully
914                  * faulted.
915                  */
916                 ret = 0;
917                 goto srcu_unlock;
918         }
919         if (!mkey_is_eq(mmkey, key)) {
920                 mlx5_ib_dbg(dev, "failed to find mkey %x\n", key);
921                 ret = -EFAULT;
922                 goto srcu_unlock;
923         }
924
925         switch (mmkey->type) {
926         case MLX5_MKEY_MR:
927                 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
928
929                 ret = pagefault_mr(mr, io_virt, bcnt, bytes_mapped, 0);
930                 if (ret < 0)
931                         goto srcu_unlock;
932
933                 mlx5_update_odp_stats(mr, faults, ret);
934
935                 npages += ret;
936                 ret = 0;
937                 break;
938
939         case MLX5_MKEY_MW:
940         case MLX5_MKEY_INDIRECT_DEVX:
941                 ndescs = get_indirect_num_descs(mmkey);
942
943                 if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) {
944                         mlx5_ib_dbg(dev, "indirection level exceeded\n");
945                         ret = -EFAULT;
946                         goto srcu_unlock;
947                 }
948
949                 outlen = MLX5_ST_SZ_BYTES(query_mkey_out) +
950                         sizeof(*pklm) * (ndescs - 2);
951
952                 if (outlen > cur_outlen) {
953                         kfree(out);
954                         out = kzalloc(outlen, GFP_KERNEL);
955                         if (!out) {
956                                 ret = -ENOMEM;
957                                 goto srcu_unlock;
958                         }
959                         cur_outlen = outlen;
960                 }
961
962                 pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out,
963                                                        bsf0_klm0_pas_mtt0_1);
964
965                 ret = mlx5_core_query_mkey(dev->mdev, mmkey, out, outlen);
966                 if (ret)
967                         goto srcu_unlock;
968
969                 offset = io_virt - MLX5_GET64(query_mkey_out, out,
970                                               memory_key_mkey_entry.start_addr);
971
972                 for (i = 0; bcnt && i < ndescs; i++, pklm++) {
973                         if (offset >= be32_to_cpu(pklm->bcount)) {
974                                 offset -= be32_to_cpu(pklm->bcount);
975                                 continue;
976                         }
977
978                         frame = kzalloc(sizeof(*frame), GFP_KERNEL);
979                         if (!frame) {
980                                 ret = -ENOMEM;
981                                 goto srcu_unlock;
982                         }
983
984                         frame->key = be32_to_cpu(pklm->key);
985                         frame->io_virt = be64_to_cpu(pklm->va) + offset;
986                         frame->bcnt = min_t(size_t, bcnt,
987                                             be32_to_cpu(pklm->bcount) - offset);
988                         frame->depth = depth + 1;
989                         frame->next = head;
990                         head = frame;
991
992                         bcnt -= frame->bcnt;
993                         offset = 0;
994                 }
995                 break;
996
997         default:
998                 mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type);
999                 ret = -EFAULT;
1000                 goto srcu_unlock;
1001         }
1002
1003         if (head) {
1004                 frame = head;
1005                 head = frame->next;
1006
1007                 key = frame->key;
1008                 io_virt = frame->io_virt;
1009                 bcnt = frame->bcnt;
1010                 depth = frame->depth;
1011                 kfree(frame);
1012
1013                 goto next_mr;
1014         }
1015
1016 srcu_unlock:
1017         while (head) {
1018                 frame = head;
1019                 head = frame->next;
1020                 kfree(frame);
1021         }
1022         kfree(out);
1023
1024         srcu_read_unlock(&dev->odp_srcu, srcu_key);
1025         *bytes_committed = 0;
1026         return ret ? ret : npages;
1027 }
1028
1029 /**
1030  * Parse a series of data segments for page fault handling.
1031  *
1032  * @pfault contains page fault information.
1033  * @wqe points at the first data segment in the WQE.
1034  * @wqe_end points after the end of the WQE.
1035  * @bytes_mapped receives the number of bytes that the function was able to
1036  *               map. This allows the caller to decide intelligently whether
1037  *               enough memory was mapped to resolve the page fault
1038  *               successfully (e.g. enough for the next MTU, or the entire
1039  *               WQE).
1040  * @total_wqe_bytes receives the total data size of this WQE in bytes (minus
1041  *                  the committed bytes).
1042  *
1043  * Returns the number of pages loaded if positive, zero for an empty WQE, or a
1044  * negative error code.
1045  */
1046 static int pagefault_data_segments(struct mlx5_ib_dev *dev,
1047                                    struct mlx5_pagefault *pfault,
1048                                    void *wqe,
1049                                    void *wqe_end, u32 *bytes_mapped,
1050                                    u32 *total_wqe_bytes, bool receive_queue)
1051 {
1052         int ret = 0, npages = 0;
1053         u64 io_virt;
1054         u32 key;
1055         u32 byte_count;
1056         size_t bcnt;
1057         int inline_segment;
1058
1059         if (bytes_mapped)
1060                 *bytes_mapped = 0;
1061         if (total_wqe_bytes)
1062                 *total_wqe_bytes = 0;
1063
1064         while (wqe < wqe_end) {
1065                 struct mlx5_wqe_data_seg *dseg = wqe;
1066
1067                 io_virt = be64_to_cpu(dseg->addr);
1068                 key = be32_to_cpu(dseg->lkey);
1069                 byte_count = be32_to_cpu(dseg->byte_count);
1070                 inline_segment = !!(byte_count &  MLX5_INLINE_SEG);
1071                 bcnt           = byte_count & ~MLX5_INLINE_SEG;
1072
1073                 if (inline_segment) {
1074                         bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
1075                         wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
1076                                      16);
1077                 } else {
1078                         wqe += sizeof(*dseg);
1079                 }
1080
1081                 /* receive WQE end of sg list. */
1082                 if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY &&
1083                     io_virt == 0)
1084                         break;
1085
1086                 if (!inline_segment && total_wqe_bytes) {
1087                         *total_wqe_bytes += bcnt - min_t(size_t, bcnt,
1088                                         pfault->bytes_committed);
1089                 }
1090
1091                 /* A zero length data segment designates a length of 2GB. */
1092                 if (bcnt == 0)
1093                         bcnt = 1U << 31;
1094
1095                 if (inline_segment || bcnt <= pfault->bytes_committed) {
1096                         pfault->bytes_committed -=
1097                                 min_t(size_t, bcnt,
1098                                       pfault->bytes_committed);
1099                         continue;
1100                 }
1101
1102                 ret = pagefault_single_data_segment(dev, NULL, key,
1103                                                     io_virt, bcnt,
1104                                                     &pfault->bytes_committed,
1105                                                     bytes_mapped);
1106                 if (ret < 0)
1107                         break;
1108                 npages += ret;
1109         }
1110
1111         return ret < 0 ? ret : npages;
1112 }
1113
1114 /*
1115  * Parse initiator WQE. Advances the wqe pointer to point at the
1116  * scatter-gather list, and set wqe_end to the end of the WQE.
1117  */
1118 static int mlx5_ib_mr_initiator_pfault_handler(
1119         struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
1120         struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
1121 {
1122         struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
1123         u16 wqe_index = pfault->wqe.wqe_index;
1124         struct mlx5_base_av *av;
1125         unsigned ds, opcode;
1126         u32 qpn = qp->trans_qp.base.mqp.qpn;
1127
1128         ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
1129         if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
1130                 mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
1131                             ds, wqe_length);
1132                 return -EFAULT;
1133         }
1134
1135         if (ds == 0) {
1136                 mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
1137                             wqe_index, qpn);
1138                 return -EFAULT;
1139         }
1140
1141         *wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
1142         *wqe += sizeof(*ctrl);
1143
1144         opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
1145                  MLX5_WQE_CTRL_OPCODE_MASK;
1146
1147         if (qp->ibqp.qp_type == IB_QPT_XRC_INI)
1148                 *wqe += sizeof(struct mlx5_wqe_xrc_seg);
1149
1150         if (qp->type == IB_QPT_UD || qp->type == MLX5_IB_QPT_DCI) {
1151                 av = *wqe;
1152                 if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV))
1153                         *wqe += sizeof(struct mlx5_av);
1154                 else
1155                         *wqe += sizeof(struct mlx5_base_av);
1156         }
1157
1158         switch (opcode) {
1159         case MLX5_OPCODE_RDMA_WRITE:
1160         case MLX5_OPCODE_RDMA_WRITE_IMM:
1161         case MLX5_OPCODE_RDMA_READ:
1162                 *wqe += sizeof(struct mlx5_wqe_raddr_seg);
1163                 break;
1164         case MLX5_OPCODE_ATOMIC_CS:
1165         case MLX5_OPCODE_ATOMIC_FA:
1166                 *wqe += sizeof(struct mlx5_wqe_raddr_seg);
1167                 *wqe += sizeof(struct mlx5_wqe_atomic_seg);
1168                 break;
1169         }
1170
1171         return 0;
1172 }
1173
1174 /*
1175  * Parse responder WQE and set wqe_end to the end of the WQE.
1176  */
1177 static int mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev *dev,
1178                                                    struct mlx5_ib_srq *srq,
1179                                                    void **wqe, void **wqe_end,
1180                                                    int wqe_length)
1181 {
1182         int wqe_size = 1 << srq->msrq.wqe_shift;
1183
1184         if (wqe_size > wqe_length) {
1185                 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1186                 return -EFAULT;
1187         }
1188
1189         *wqe_end = *wqe + wqe_size;
1190         *wqe += sizeof(struct mlx5_wqe_srq_next_seg);
1191
1192         return 0;
1193 }
1194
1195 static int mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev *dev,
1196                                                   struct mlx5_ib_qp *qp,
1197                                                   void *wqe, void **wqe_end,
1198                                                   int wqe_length)
1199 {
1200         struct mlx5_ib_wq *wq = &qp->rq;
1201         int wqe_size = 1 << wq->wqe_shift;
1202
1203         if (qp->flags_en & MLX5_QP_FLAG_SIGNATURE) {
1204                 mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
1205                 return -EFAULT;
1206         }
1207
1208         if (wqe_size > wqe_length) {
1209                 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1210                 return -EFAULT;
1211         }
1212
1213         *wqe_end = wqe + wqe_size;
1214
1215         return 0;
1216 }
1217
1218 static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev,
1219                                                        u32 wq_num, int pf_type)
1220 {
1221         struct mlx5_core_rsc_common *common = NULL;
1222         struct mlx5_core_srq *srq;
1223
1224         switch (pf_type) {
1225         case MLX5_WQE_PF_TYPE_RMP:
1226                 srq = mlx5_cmd_get_srq(dev, wq_num);
1227                 if (srq)
1228                         common = &srq->common;
1229                 break;
1230         case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE:
1231         case MLX5_WQE_PF_TYPE_RESP:
1232         case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC:
1233                 common = mlx5_core_res_hold(dev, wq_num, MLX5_RES_QP);
1234                 break;
1235         default:
1236                 break;
1237         }
1238
1239         return common;
1240 }
1241
1242 static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res)
1243 {
1244         struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res;
1245
1246         return to_mibqp(mqp);
1247 }
1248
1249 static inline struct mlx5_ib_srq *res_to_srq(struct mlx5_core_rsc_common *res)
1250 {
1251         struct mlx5_core_srq *msrq =
1252                 container_of(res, struct mlx5_core_srq, common);
1253
1254         return to_mibsrq(msrq);
1255 }
1256
1257 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
1258                                           struct mlx5_pagefault *pfault)
1259 {
1260         bool sq = pfault->type & MLX5_PFAULT_REQUESTOR;
1261         u16 wqe_index = pfault->wqe.wqe_index;
1262         void *wqe, *wqe_start = NULL, *wqe_end = NULL;
1263         u32 bytes_mapped, total_wqe_bytes;
1264         struct mlx5_core_rsc_common *res;
1265         int resume_with_error = 1;
1266         struct mlx5_ib_qp *qp;
1267         size_t bytes_copied;
1268         int ret = 0;
1269
1270         res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type);
1271         if (!res) {
1272                 mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num);
1273                 return;
1274         }
1275
1276         if (res->res != MLX5_RES_QP && res->res != MLX5_RES_SRQ &&
1277             res->res != MLX5_RES_XSRQ) {
1278                 mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n",
1279                             pfault->type);
1280                 goto resolve_page_fault;
1281         }
1282
1283         wqe_start = (void *)__get_free_page(GFP_KERNEL);
1284         if (!wqe_start) {
1285                 mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
1286                 goto resolve_page_fault;
1287         }
1288
1289         wqe = wqe_start;
1290         qp = (res->res == MLX5_RES_QP) ? res_to_qp(res) : NULL;
1291         if (qp && sq) {
1292                 ret = mlx5_ib_read_wqe_sq(qp, wqe_index, wqe, PAGE_SIZE,
1293                                           &bytes_copied);
1294                 if (ret)
1295                         goto read_user;
1296                 ret = mlx5_ib_mr_initiator_pfault_handler(
1297                         dev, pfault, qp, &wqe, &wqe_end, bytes_copied);
1298         } else if (qp && !sq) {
1299                 ret = mlx5_ib_read_wqe_rq(qp, wqe_index, wqe, PAGE_SIZE,
1300                                           &bytes_copied);
1301                 if (ret)
1302                         goto read_user;
1303                 ret = mlx5_ib_mr_responder_pfault_handler_rq(
1304                         dev, qp, wqe, &wqe_end, bytes_copied);
1305         } else if (!qp) {
1306                 struct mlx5_ib_srq *srq = res_to_srq(res);
1307
1308                 ret = mlx5_ib_read_wqe_srq(srq, wqe_index, wqe, PAGE_SIZE,
1309                                            &bytes_copied);
1310                 if (ret)
1311                         goto read_user;
1312                 ret = mlx5_ib_mr_responder_pfault_handler_srq(
1313                         dev, srq, &wqe, &wqe_end, bytes_copied);
1314         }
1315
1316         if (ret < 0 || wqe >= wqe_end)
1317                 goto resolve_page_fault;
1318
1319         ret = pagefault_data_segments(dev, pfault, wqe, wqe_end, &bytes_mapped,
1320                                       &total_wqe_bytes, !sq);
1321         if (ret == -EAGAIN)
1322                 goto out;
1323
1324         if (ret < 0 || total_wqe_bytes > bytes_mapped)
1325                 goto resolve_page_fault;
1326
1327 out:
1328         ret = 0;
1329         resume_with_error = 0;
1330
1331 read_user:
1332         if (ret)
1333                 mlx5_ib_err(
1334                         dev,
1335                         "Failed reading a WQE following page fault, error %d, wqe_index %x, qpn %x\n",
1336                         ret, wqe_index, pfault->token);
1337
1338 resolve_page_fault:
1339         mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
1340         mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
1341                     pfault->wqe.wq_num, resume_with_error,
1342                     pfault->type);
1343         mlx5_core_res_put(res);
1344         free_page((unsigned long)wqe_start);
1345 }
1346
1347 static int pages_in_range(u64 address, u32 length)
1348 {
1349         return (ALIGN(address + length, PAGE_SIZE) -
1350                 (address & PAGE_MASK)) >> PAGE_SHIFT;
1351 }
1352
1353 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
1354                                            struct mlx5_pagefault *pfault)
1355 {
1356         u64 address;
1357         u32 length;
1358         u32 prefetch_len = pfault->bytes_committed;
1359         int prefetch_activated = 0;
1360         u32 rkey = pfault->rdma.r_key;
1361         int ret;
1362
1363         /* The RDMA responder handler handles the page fault in two parts.
1364          * First it brings the necessary pages for the current packet
1365          * (and uses the pfault context), and then (after resuming the QP)
1366          * prefetches more pages. The second operation cannot use the pfault
1367          * context and therefore uses the dummy_pfault context allocated on
1368          * the stack */
1369         pfault->rdma.rdma_va += pfault->bytes_committed;
1370         pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
1371                                          pfault->rdma.rdma_op_len);
1372         pfault->bytes_committed = 0;
1373
1374         address = pfault->rdma.rdma_va;
1375         length  = pfault->rdma.rdma_op_len;
1376
1377         /* For some operations, the hardware cannot tell the exact message
1378          * length, and in those cases it reports zero. Use prefetch
1379          * logic. */
1380         if (length == 0) {
1381                 prefetch_activated = 1;
1382                 length = pfault->rdma.packet_size;
1383                 prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
1384         }
1385
1386         ret = pagefault_single_data_segment(dev, NULL, rkey, address, length,
1387                                             &pfault->bytes_committed, NULL);
1388         if (ret == -EAGAIN) {
1389                 /* We're racing with an invalidation, don't prefetch */
1390                 prefetch_activated = 0;
1391         } else if (ret < 0 || pages_in_range(address, length) > ret) {
1392                 mlx5_ib_page_fault_resume(dev, pfault, 1);
1393                 if (ret != -ENOENT)
1394                         mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n",
1395                                     ret, pfault->token, pfault->type);
1396                 return;
1397         }
1398
1399         mlx5_ib_page_fault_resume(dev, pfault, 0);
1400         mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n",
1401                     pfault->token, pfault->type,
1402                     prefetch_activated);
1403
1404         /* At this point, there might be a new pagefault already arriving in
1405          * the eq, switch to the dummy pagefault for the rest of the
1406          * processing. We're still OK with the objects being alive as the
1407          * work-queue is being fenced. */
1408
1409         if (prefetch_activated) {
1410                 u32 bytes_committed = 0;
1411
1412                 ret = pagefault_single_data_segment(dev, NULL, rkey, address,
1413                                                     prefetch_len,
1414                                                     &bytes_committed, NULL);
1415                 if (ret < 0 && ret != -EAGAIN) {
1416                         mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n",
1417                                     ret, pfault->token, address, prefetch_len);
1418                 }
1419         }
1420 }
1421
1422 static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault)
1423 {
1424         u8 event_subtype = pfault->event_subtype;
1425
1426         switch (event_subtype) {
1427         case MLX5_PFAULT_SUBTYPE_WQE:
1428                 mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
1429                 break;
1430         case MLX5_PFAULT_SUBTYPE_RDMA:
1431                 mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
1432                 break;
1433         default:
1434                 mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
1435                             event_subtype);
1436                 mlx5_ib_page_fault_resume(dev, pfault, 1);
1437         }
1438 }
1439
1440 static void mlx5_ib_eqe_pf_action(struct work_struct *work)
1441 {
1442         struct mlx5_pagefault *pfault = container_of(work,
1443                                                      struct mlx5_pagefault,
1444                                                      work);
1445         struct mlx5_ib_pf_eq *eq = pfault->eq;
1446
1447         mlx5_ib_pfault(eq->dev, pfault);
1448         mempool_free(pfault, eq->pool);
1449 }
1450
1451 static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq)
1452 {
1453         struct mlx5_eqe_page_fault *pf_eqe;
1454         struct mlx5_pagefault *pfault;
1455         struct mlx5_eqe *eqe;
1456         int cc = 0;
1457
1458         while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) {
1459                 pfault = mempool_alloc(eq->pool, GFP_ATOMIC);
1460                 if (!pfault) {
1461                         schedule_work(&eq->work);
1462                         break;
1463                 }
1464
1465                 pf_eqe = &eqe->data.page_fault;
1466                 pfault->event_subtype = eqe->sub_type;
1467                 pfault->bytes_committed = be32_to_cpu(pf_eqe->bytes_committed);
1468
1469                 mlx5_ib_dbg(eq->dev,
1470                             "PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x\n",
1471                             eqe->sub_type, pfault->bytes_committed);
1472
1473                 switch (eqe->sub_type) {
1474                 case MLX5_PFAULT_SUBTYPE_RDMA:
1475                         /* RDMA based event */
1476                         pfault->type =
1477                                 be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24;
1478                         pfault->token =
1479                                 be32_to_cpu(pf_eqe->rdma.pftype_token) &
1480                                 MLX5_24BIT_MASK;
1481                         pfault->rdma.r_key =
1482                                 be32_to_cpu(pf_eqe->rdma.r_key);
1483                         pfault->rdma.packet_size =
1484                                 be16_to_cpu(pf_eqe->rdma.packet_length);
1485                         pfault->rdma.rdma_op_len =
1486                                 be32_to_cpu(pf_eqe->rdma.rdma_op_len);
1487                         pfault->rdma.rdma_va =
1488                                 be64_to_cpu(pf_eqe->rdma.rdma_va);
1489                         mlx5_ib_dbg(eq->dev,
1490                                     "PAGE_FAULT: type:0x%x, token: 0x%06x, r_key: 0x%08x\n",
1491                                     pfault->type, pfault->token,
1492                                     pfault->rdma.r_key);
1493                         mlx5_ib_dbg(eq->dev,
1494                                     "PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n",
1495                                     pfault->rdma.rdma_op_len,
1496                                     pfault->rdma.rdma_va);
1497                         break;
1498
1499                 case MLX5_PFAULT_SUBTYPE_WQE:
1500                         /* WQE based event */
1501                         pfault->type =
1502                                 (be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7;
1503                         pfault->token =
1504                                 be32_to_cpu(pf_eqe->wqe.token);
1505                         pfault->wqe.wq_num =
1506                                 be32_to_cpu(pf_eqe->wqe.pftype_wq) &
1507                                 MLX5_24BIT_MASK;
1508                         pfault->wqe.wqe_index =
1509                                 be16_to_cpu(pf_eqe->wqe.wqe_index);
1510                         pfault->wqe.packet_size =
1511                                 be16_to_cpu(pf_eqe->wqe.packet_length);
1512                         mlx5_ib_dbg(eq->dev,
1513                                     "PAGE_FAULT: type:0x%x, token: 0x%06x, wq_num: 0x%06x, wqe_index: 0x%04x\n",
1514                                     pfault->type, pfault->token,
1515                                     pfault->wqe.wq_num,
1516                                     pfault->wqe.wqe_index);
1517                         break;
1518
1519                 default:
1520                         mlx5_ib_warn(eq->dev,
1521                                      "Unsupported page fault event sub-type: 0x%02hhx\n",
1522                                      eqe->sub_type);
1523                         /* Unsupported page faults should still be
1524                          * resolved by the page fault handler
1525                          */
1526                 }
1527
1528                 pfault->eq = eq;
1529                 INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action);
1530                 queue_work(eq->wq, &pfault->work);
1531
1532                 cc = mlx5_eq_update_cc(eq->core, ++cc);
1533         }
1534
1535         mlx5_eq_update_ci(eq->core, cc, 1);
1536 }
1537
1538 static int mlx5_ib_eq_pf_int(struct notifier_block *nb, unsigned long type,
1539                              void *data)
1540 {
1541         struct mlx5_ib_pf_eq *eq =
1542                 container_of(nb, struct mlx5_ib_pf_eq, irq_nb);
1543         unsigned long flags;
1544
1545         if (spin_trylock_irqsave(&eq->lock, flags)) {
1546                 mlx5_ib_eq_pf_process(eq);
1547                 spin_unlock_irqrestore(&eq->lock, flags);
1548         } else {
1549                 schedule_work(&eq->work);
1550         }
1551
1552         return IRQ_HANDLED;
1553 }
1554
1555 /* mempool_refill() was proposed but unfortunately wasn't accepted
1556  * http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html
1557  * Cheap workaround.
1558  */
1559 static void mempool_refill(mempool_t *pool)
1560 {
1561         while (pool->curr_nr < pool->min_nr)
1562                 mempool_free(mempool_alloc(pool, GFP_KERNEL), pool);
1563 }
1564
1565 static void mlx5_ib_eq_pf_action(struct work_struct *work)
1566 {
1567         struct mlx5_ib_pf_eq *eq =
1568                 container_of(work, struct mlx5_ib_pf_eq, work);
1569
1570         mempool_refill(eq->pool);
1571
1572         spin_lock_irq(&eq->lock);
1573         mlx5_ib_eq_pf_process(eq);
1574         spin_unlock_irq(&eq->lock);
1575 }
1576
1577 enum {
1578         MLX5_IB_NUM_PF_EQE      = 0x1000,
1579         MLX5_IB_NUM_PF_DRAIN    = 64,
1580 };
1581
1582 static int
1583 mlx5_ib_create_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1584 {
1585         struct mlx5_eq_param param = {};
1586         int err;
1587
1588         INIT_WORK(&eq->work, mlx5_ib_eq_pf_action);
1589         spin_lock_init(&eq->lock);
1590         eq->dev = dev;
1591
1592         eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN,
1593                                                sizeof(struct mlx5_pagefault));
1594         if (!eq->pool)
1595                 return -ENOMEM;
1596
1597         eq->wq = alloc_workqueue("mlx5_ib_page_fault",
1598                                  WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM,
1599                                  MLX5_NUM_CMD_EQE);
1600         if (!eq->wq) {
1601                 err = -ENOMEM;
1602                 goto err_mempool;
1603         }
1604
1605         eq->irq_nb.notifier_call = mlx5_ib_eq_pf_int;
1606         param = (struct mlx5_eq_param) {
1607                 .irq_index = 0,
1608                 .nent = MLX5_IB_NUM_PF_EQE,
1609         };
1610         param.mask[0] = 1ull << MLX5_EVENT_TYPE_PAGE_FAULT;
1611         eq->core = mlx5_eq_create_generic(dev->mdev, &param);
1612         if (IS_ERR(eq->core)) {
1613                 err = PTR_ERR(eq->core);
1614                 goto err_wq;
1615         }
1616         err = mlx5_eq_enable(dev->mdev, eq->core, &eq->irq_nb);
1617         if (err) {
1618                 mlx5_ib_err(dev, "failed to enable odp EQ %d\n", err);
1619                 goto err_eq;
1620         }
1621
1622         return 0;
1623 err_eq:
1624         mlx5_eq_destroy_generic(dev->mdev, eq->core);
1625 err_wq:
1626         destroy_workqueue(eq->wq);
1627 err_mempool:
1628         mempool_destroy(eq->pool);
1629         return err;
1630 }
1631
1632 static int
1633 mlx5_ib_destroy_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1634 {
1635         int err;
1636
1637         mlx5_eq_disable(dev->mdev, eq->core, &eq->irq_nb);
1638         err = mlx5_eq_destroy_generic(dev->mdev, eq->core);
1639         cancel_work_sync(&eq->work);
1640         destroy_workqueue(eq->wq);
1641         mempool_destroy(eq->pool);
1642
1643         return err;
1644 }
1645
1646 void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent)
1647 {
1648         if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1649                 return;
1650
1651         switch (ent->order - 2) {
1652         case MLX5_IMR_MTT_CACHE_ENTRY:
1653                 ent->page = PAGE_SHIFT;
1654                 ent->xlt = MLX5_IMR_MTT_ENTRIES *
1655                            sizeof(struct mlx5_mtt) /
1656                            MLX5_IB_UMR_OCTOWORD;
1657                 ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
1658                 ent->limit = 0;
1659                 break;
1660
1661         case MLX5_IMR_KSM_CACHE_ENTRY:
1662                 ent->page = MLX5_KSM_PAGE_SHIFT;
1663                 ent->xlt = mlx5_imr_ksm_entries *
1664                            sizeof(struct mlx5_klm) /
1665                            MLX5_IB_UMR_OCTOWORD;
1666                 ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM;
1667                 ent->limit = 0;
1668                 break;
1669         }
1670 }
1671
1672 static const struct ib_device_ops mlx5_ib_dev_odp_ops = {
1673         .advise_mr = mlx5_ib_advise_mr,
1674 };
1675
1676 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
1677 {
1678         int ret = 0;
1679
1680         if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1681                 return ret;
1682
1683         ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops);
1684
1685         if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) {
1686                 ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey);
1687                 if (ret) {
1688                         mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret);
1689                         return ret;
1690                 }
1691         }
1692
1693         ret = mlx5_ib_create_pf_eq(dev, &dev->odp_pf_eq);
1694
1695         return ret;
1696 }
1697
1698 void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev)
1699 {
1700         if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1701                 return;
1702
1703         mlx5_ib_destroy_pf_eq(dev, &dev->odp_pf_eq);
1704 }
1705
1706 int mlx5_ib_odp_init(void)
1707 {
1708         mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
1709                                        MLX5_IMR_MTT_BITS);
1710
1711         return 0;
1712 }
1713
1714 struct prefetch_mr_work {
1715         struct work_struct work;
1716         u32 pf_flags;
1717         u32 num_sge;
1718         struct {
1719                 u64 io_virt;
1720                 struct mlx5_ib_mr *mr;
1721                 size_t length;
1722         } frags[];
1723 };
1724
1725 static void destroy_prefetch_work(struct prefetch_mr_work *work)
1726 {
1727         u32 i;
1728
1729         for (i = 0; i < work->num_sge; ++i)
1730                 if (atomic_dec_and_test(&work->frags[i].mr->num_deferred_work))
1731                         wake_up(&work->frags[i].mr->q_deferred_work);
1732         kvfree(work);
1733 }
1734
1735 static struct mlx5_ib_mr *
1736 get_prefetchable_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
1737                     u32 lkey)
1738 {
1739         struct mlx5_ib_dev *dev = to_mdev(pd->device);
1740         struct mlx5_core_mkey *mmkey;
1741         struct ib_umem_odp *odp;
1742         struct mlx5_ib_mr *mr;
1743
1744         lockdep_assert_held(&dev->odp_srcu);
1745
1746         mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(lkey));
1747         if (!mmkey || mmkey->key != lkey || mmkey->type != MLX5_MKEY_MR)
1748                 return NULL;
1749
1750         mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1751
1752         if (mr->ibmr.pd != pd)
1753                 return NULL;
1754
1755         odp = to_ib_umem_odp(mr->umem);
1756
1757         /* prefetch with write-access must be supported by the MR */
1758         if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1759             !odp->umem.writable)
1760                 return NULL;
1761
1762         return mr;
1763 }
1764
1765 static void mlx5_ib_prefetch_mr_work(struct work_struct *w)
1766 {
1767         struct prefetch_mr_work *work =
1768                 container_of(w, struct prefetch_mr_work, work);
1769         struct mlx5_ib_dev *dev;
1770         u32 bytes_mapped = 0;
1771         int srcu_key;
1772         int ret;
1773         u32 i;
1774
1775         /* We rely on IB/core that work is executed if we have num_sge != 0 only. */
1776         WARN_ON(!work->num_sge);
1777         dev = work->frags[0].mr->dev;
1778         /* SRCU should be held when calling to mlx5_odp_populate_xlt() */
1779         srcu_key = srcu_read_lock(&dev->odp_srcu);
1780         for (i = 0; i < work->num_sge; ++i) {
1781                 ret = pagefault_mr(work->frags[i].mr, work->frags[i].io_virt,
1782                                    work->frags[i].length, &bytes_mapped,
1783                                    work->pf_flags);
1784                 if (ret <= 0)
1785                         continue;
1786                 mlx5_update_odp_stats(work->frags[i].mr, prefetch, ret);
1787         }
1788         srcu_read_unlock(&dev->odp_srcu, srcu_key);
1789
1790         destroy_prefetch_work(work);
1791 }
1792
1793 static bool init_prefetch_work(struct ib_pd *pd,
1794                                enum ib_uverbs_advise_mr_advice advice,
1795                                u32 pf_flags, struct prefetch_mr_work *work,
1796                                struct ib_sge *sg_list, u32 num_sge)
1797 {
1798         u32 i;
1799
1800         INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work);
1801         work->pf_flags = pf_flags;
1802
1803         for (i = 0; i < num_sge; ++i) {
1804                 work->frags[i].io_virt = sg_list[i].addr;
1805                 work->frags[i].length = sg_list[i].length;
1806                 work->frags[i].mr =
1807                         get_prefetchable_mr(pd, advice, sg_list[i].lkey);
1808                 if (!work->frags[i].mr) {
1809                         work->num_sge = i;
1810                         return false;
1811                 }
1812
1813                 /* Keep the MR pointer will valid outside the SRCU */
1814                 atomic_inc(&work->frags[i].mr->num_deferred_work);
1815         }
1816         work->num_sge = num_sge;
1817         return true;
1818 }
1819
1820 static int mlx5_ib_prefetch_sg_list(struct ib_pd *pd,
1821                                     enum ib_uverbs_advise_mr_advice advice,
1822                                     u32 pf_flags, struct ib_sge *sg_list,
1823                                     u32 num_sge)
1824 {
1825         struct mlx5_ib_dev *dev = to_mdev(pd->device);
1826         u32 bytes_mapped = 0;
1827         int srcu_key;
1828         int ret = 0;
1829         u32 i;
1830
1831         srcu_key = srcu_read_lock(&dev->odp_srcu);
1832         for (i = 0; i < num_sge; ++i) {
1833                 struct mlx5_ib_mr *mr;
1834
1835                 mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey);
1836                 if (!mr) {
1837                         ret = -ENOENT;
1838                         goto out;
1839                 }
1840                 ret = pagefault_mr(mr, sg_list[i].addr, sg_list[i].length,
1841                                    &bytes_mapped, pf_flags);
1842                 if (ret < 0)
1843                         goto out;
1844                 mlx5_update_odp_stats(mr, prefetch, ret);
1845         }
1846         ret = 0;
1847
1848 out:
1849         srcu_read_unlock(&dev->odp_srcu, srcu_key);
1850         return ret;
1851 }
1852
1853 int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd,
1854                                enum ib_uverbs_advise_mr_advice advice,
1855                                u32 flags, struct ib_sge *sg_list, u32 num_sge)
1856 {
1857         struct mlx5_ib_dev *dev = to_mdev(pd->device);
1858         u32 pf_flags = 0;
1859         struct prefetch_mr_work *work;
1860         int srcu_key;
1861
1862         if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH)
1863                 pf_flags |= MLX5_PF_FLAGS_DOWNGRADE;
1864
1865         if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH)
1866                 return mlx5_ib_prefetch_sg_list(pd, advice, pf_flags, sg_list,
1867                                                 num_sge);
1868
1869         work = kvzalloc(struct_size(work, frags, num_sge), GFP_KERNEL);
1870         if (!work)
1871                 return -ENOMEM;
1872
1873         srcu_key = srcu_read_lock(&dev->odp_srcu);
1874         if (!init_prefetch_work(pd, advice, pf_flags, work, sg_list, num_sge)) {
1875                 srcu_read_unlock(&dev->odp_srcu, srcu_key);
1876                 destroy_prefetch_work(work);
1877                 return -EINVAL;
1878         }
1879         queue_work(system_unbound_wq, &work->work);
1880         srcu_read_unlock(&dev->odp_srcu, srcu_key);
1881         return 0;
1882 }