Merge branch 'vmwgfx-next-5.9' of git://people.freedesktop.org/~sroland/linux into...
[linux-2.6-microblaze.git] / drivers / infiniband / hw / mlx5 / odp.c
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32
33 #include <rdma/ib_umem.h>
34 #include <rdma/ib_umem_odp.h>
35 #include <linux/kernel.h>
36
37 #include "mlx5_ib.h"
38 #include "cmd.h"
39 #include "qp.h"
40
41 #include <linux/mlx5/eq.h>
42
43 /* Contains the details of a pagefault. */
44 struct mlx5_pagefault {
45         u32                     bytes_committed;
46         u32                     token;
47         u8                      event_subtype;
48         u8                      type;
49         union {
50                 /* Initiator or send message responder pagefault details. */
51                 struct {
52                         /* Received packet size, only valid for responders. */
53                         u32     packet_size;
54                         /*
55                          * Number of resource holding WQE, depends on type.
56                          */
57                         u32     wq_num;
58                         /*
59                          * WQE index. Refers to either the send queue or
60                          * receive queue, according to event_subtype.
61                          */
62                         u16     wqe_index;
63                 } wqe;
64                 /* RDMA responder pagefault details */
65                 struct {
66                         u32     r_key;
67                         /*
68                          * Received packet size, minimal size page fault
69                          * resolution required for forward progress.
70                          */
71                         u32     packet_size;
72                         u32     rdma_op_len;
73                         u64     rdma_va;
74                 } rdma;
75         };
76
77         struct mlx5_ib_pf_eq    *eq;
78         struct work_struct      work;
79 };
80
81 #define MAX_PREFETCH_LEN (4*1024*1024U)
82
83 /* Timeout in ms to wait for an active mmu notifier to complete when handling
84  * a pagefault. */
85 #define MMU_NOTIFIER_TIMEOUT 1000
86
87 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
88 #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
89 #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
90 #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
91 #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
92
93 #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
94
95 static u64 mlx5_imr_ksm_entries;
96
97 static void populate_klm(struct mlx5_klm *pklm, size_t idx, size_t nentries,
98                         struct mlx5_ib_mr *imr, int flags)
99 {
100         struct mlx5_klm *end = pklm + nentries;
101
102         if (flags & MLX5_IB_UPD_XLT_ZAP) {
103                 for (; pklm != end; pklm++, idx++) {
104                         pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
105                         pklm->key = cpu_to_be32(imr->dev->null_mkey);
106                         pklm->va = 0;
107                 }
108                 return;
109         }
110
111         /*
112          * The locking here is pretty subtle. Ideally the implicit_children
113          * xarray would be protected by the umem_mutex, however that is not
114          * possible. Instead this uses a weaker update-then-lock pattern:
115          *
116          *  srcu_read_lock()
117          *    xa_store()
118          *    mutex_lock(umem_mutex)
119          *     mlx5_ib_update_xlt()
120          *    mutex_unlock(umem_mutex)
121          *    destroy lkey
122          *
123          * ie any change the xarray must be followed by the locked update_xlt
124          * before destroying.
125          *
126          * The umem_mutex provides the acquire/release semantic needed to make
127          * the xa_store() visible to a racing thread. While SRCU is not
128          * technically required, using it gives consistent use of the SRCU
129          * locking around the xarray.
130          */
131         lockdep_assert_held(&to_ib_umem_odp(imr->umem)->umem_mutex);
132         lockdep_assert_held(&imr->dev->odp_srcu);
133
134         for (; pklm != end; pklm++, idx++) {
135                 struct mlx5_ib_mr *mtt = xa_load(&imr->implicit_children, idx);
136
137                 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
138                 if (mtt) {
139                         pklm->key = cpu_to_be32(mtt->ibmr.lkey);
140                         pklm->va = cpu_to_be64(idx * MLX5_IMR_MTT_SIZE);
141                 } else {
142                         pklm->key = cpu_to_be32(imr->dev->null_mkey);
143                         pklm->va = 0;
144                 }
145         }
146 }
147
148 static u64 umem_dma_to_mtt(dma_addr_t umem_dma)
149 {
150         u64 mtt_entry = umem_dma & ODP_DMA_ADDR_MASK;
151
152         if (umem_dma & ODP_READ_ALLOWED_BIT)
153                 mtt_entry |= MLX5_IB_MTT_READ;
154         if (umem_dma & ODP_WRITE_ALLOWED_BIT)
155                 mtt_entry |= MLX5_IB_MTT_WRITE;
156
157         return mtt_entry;
158 }
159
160 static void populate_mtt(__be64 *pas, size_t idx, size_t nentries,
161                          struct mlx5_ib_mr *mr, int flags)
162 {
163         struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
164         dma_addr_t pa;
165         size_t i;
166
167         if (flags & MLX5_IB_UPD_XLT_ZAP)
168                 return;
169
170         for (i = 0; i < nentries; i++) {
171                 pa = odp->dma_list[idx + i];
172                 pas[i] = cpu_to_be64(umem_dma_to_mtt(pa));
173         }
174 }
175
176 void mlx5_odp_populate_xlt(void *xlt, size_t idx, size_t nentries,
177                            struct mlx5_ib_mr *mr, int flags)
178 {
179         if (flags & MLX5_IB_UPD_XLT_INDIRECT) {
180                 populate_klm(xlt, idx, nentries, mr, flags);
181         } else {
182                 populate_mtt(xlt, idx, nentries, mr, flags);
183         }
184 }
185
186 static void dma_fence_odp_mr(struct mlx5_ib_mr *mr)
187 {
188         struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
189
190         /* Ensure mlx5_ib_invalidate_range() will not touch the MR any more */
191         mutex_lock(&odp->umem_mutex);
192         if (odp->npages) {
193                 mlx5_mr_cache_invalidate(mr);
194                 ib_umem_odp_unmap_dma_pages(odp, ib_umem_start(odp),
195                                             ib_umem_end(odp));
196                 WARN_ON(odp->npages);
197         }
198         odp->private = NULL;
199         mutex_unlock(&odp->umem_mutex);
200
201         if (!mr->cache_ent) {
202                 mlx5_core_destroy_mkey(mr->dev->mdev, &mr->mmkey);
203                 WARN_ON(mr->descs);
204         }
205 }
206
207 /*
208  * This must be called after the mr has been removed from implicit_children
209  * and the SRCU synchronized.  NOTE: The MR does not necessarily have to be
210  * empty here, parallel page faults could have raced with the free process and
211  * added pages to it.
212  */
213 static void free_implicit_child_mr(struct mlx5_ib_mr *mr, bool need_imr_xlt)
214 {
215         struct mlx5_ib_mr *imr = mr->parent;
216         struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem);
217         struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
218         unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT;
219         int srcu_key;
220
221         /* implicit_child_mr's are not allowed to have deferred work */
222         WARN_ON(atomic_read(&mr->num_deferred_work));
223
224         if (need_imr_xlt) {
225                 srcu_key = srcu_read_lock(&mr->dev->odp_srcu);
226                 mutex_lock(&odp_imr->umem_mutex);
227                 mlx5_ib_update_xlt(mr->parent, idx, 1, 0,
228                                    MLX5_IB_UPD_XLT_INDIRECT |
229                                    MLX5_IB_UPD_XLT_ATOMIC);
230                 mutex_unlock(&odp_imr->umem_mutex);
231                 srcu_read_unlock(&mr->dev->odp_srcu, srcu_key);
232         }
233
234         dma_fence_odp_mr(mr);
235
236         mr->parent = NULL;
237         mlx5_mr_cache_free(mr->dev, mr);
238         ib_umem_odp_release(odp);
239         if (atomic_dec_and_test(&imr->num_deferred_work))
240                 wake_up(&imr->q_deferred_work);
241 }
242
243 static void free_implicit_child_mr_work(struct work_struct *work)
244 {
245         struct mlx5_ib_mr *mr =
246                 container_of(work, struct mlx5_ib_mr, odp_destroy.work);
247
248         free_implicit_child_mr(mr, true);
249 }
250
251 static void free_implicit_child_mr_rcu(struct rcu_head *head)
252 {
253         struct mlx5_ib_mr *mr =
254                 container_of(head, struct mlx5_ib_mr, odp_destroy.rcu);
255
256         /* Freeing a MR is a sleeping operation, so bounce to a work queue */
257         INIT_WORK(&mr->odp_destroy.work, free_implicit_child_mr_work);
258         queue_work(system_unbound_wq, &mr->odp_destroy.work);
259 }
260
261 static void destroy_unused_implicit_child_mr(struct mlx5_ib_mr *mr)
262 {
263         struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
264         unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT;
265         struct mlx5_ib_mr *imr = mr->parent;
266
267         xa_lock(&imr->implicit_children);
268         /*
269          * This can race with mlx5_ib_free_implicit_mr(), the first one to
270          * reach the xa lock wins the race and destroys the MR.
271          */
272         if (__xa_cmpxchg(&imr->implicit_children, idx, mr, NULL, GFP_ATOMIC) !=
273             mr)
274                 goto out_unlock;
275
276         atomic_inc(&imr->num_deferred_work);
277         call_srcu(&mr->dev->odp_srcu, &mr->odp_destroy.rcu,
278                   free_implicit_child_mr_rcu);
279
280 out_unlock:
281         xa_unlock(&imr->implicit_children);
282 }
283
284 static bool mlx5_ib_invalidate_range(struct mmu_interval_notifier *mni,
285                                      const struct mmu_notifier_range *range,
286                                      unsigned long cur_seq)
287 {
288         struct ib_umem_odp *umem_odp =
289                 container_of(mni, struct ib_umem_odp, notifier);
290         struct mlx5_ib_mr *mr;
291         const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT /
292                                     sizeof(struct mlx5_mtt)) - 1;
293         u64 idx = 0, blk_start_idx = 0;
294         u64 invalidations = 0;
295         unsigned long start;
296         unsigned long end;
297         int in_block = 0;
298         u64 addr;
299
300         if (!mmu_notifier_range_blockable(range))
301                 return false;
302
303         mutex_lock(&umem_odp->umem_mutex);
304         mmu_interval_set_seq(mni, cur_seq);
305         /*
306          * If npages is zero then umem_odp->private may not be setup yet. This
307          * does not complete until after the first page is mapped for DMA.
308          */
309         if (!umem_odp->npages)
310                 goto out;
311         mr = umem_odp->private;
312
313         start = max_t(u64, ib_umem_start(umem_odp), range->start);
314         end = min_t(u64, ib_umem_end(umem_odp), range->end);
315
316         /*
317          * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
318          * while we are doing the invalidation, no page fault will attempt to
319          * overwrite the same MTTs.  Concurent invalidations might race us,
320          * but they will write 0s as well, so no difference in the end result.
321          */
322         for (addr = start; addr < end; addr += BIT(umem_odp->page_shift)) {
323                 idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift;
324                 /*
325                  * Strive to write the MTTs in chunks, but avoid overwriting
326                  * non-existing MTTs. The huristic here can be improved to
327                  * estimate the cost of another UMR vs. the cost of bigger
328                  * UMR.
329                  */
330                 if (umem_odp->dma_list[idx] &
331                     (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
332                         if (!in_block) {
333                                 blk_start_idx = idx;
334                                 in_block = 1;
335                         }
336
337                         /* Count page invalidations */
338                         invalidations += idx - blk_start_idx + 1;
339                 } else {
340                         u64 umr_offset = idx & umr_block_mask;
341
342                         if (in_block && umr_offset == 0) {
343                                 mlx5_ib_update_xlt(mr, blk_start_idx,
344                                                    idx - blk_start_idx, 0,
345                                                    MLX5_IB_UPD_XLT_ZAP |
346                                                    MLX5_IB_UPD_XLT_ATOMIC);
347                                 in_block = 0;
348                         }
349                 }
350         }
351         if (in_block)
352                 mlx5_ib_update_xlt(mr, blk_start_idx,
353                                    idx - blk_start_idx + 1, 0,
354                                    MLX5_IB_UPD_XLT_ZAP |
355                                    MLX5_IB_UPD_XLT_ATOMIC);
356
357         mlx5_update_odp_stats(mr, invalidations, invalidations);
358
359         /*
360          * We are now sure that the device will not access the
361          * memory. We can safely unmap it, and mark it as dirty if
362          * needed.
363          */
364
365         ib_umem_odp_unmap_dma_pages(umem_odp, start, end);
366
367         if (unlikely(!umem_odp->npages && mr->parent))
368                 destroy_unused_implicit_child_mr(mr);
369 out:
370         mutex_unlock(&umem_odp->umem_mutex);
371         return true;
372 }
373
374 const struct mmu_interval_notifier_ops mlx5_mn_ops = {
375         .invalidate = mlx5_ib_invalidate_range,
376 };
377
378 void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev)
379 {
380         struct ib_odp_caps *caps = &dev->odp_caps;
381
382         memset(caps, 0, sizeof(*caps));
383
384         if (!MLX5_CAP_GEN(dev->mdev, pg) ||
385             !mlx5_ib_can_use_umr(dev, true, 0))
386                 return;
387
388         caps->general_caps = IB_ODP_SUPPORT;
389
390         if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
391                 dev->odp_max_size = U64_MAX;
392         else
393                 dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
394
395         if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send))
396                 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
397
398         if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.srq_receive))
399                 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
400
401         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send))
402                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
403
404         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive))
405                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
406
407         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write))
408                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
409
410         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read))
411                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
412
413         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic))
414                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
415
416         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.srq_receive))
417                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
418
419         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.send))
420                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SEND;
421
422         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.receive))
423                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_RECV;
424
425         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.write))
426                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_WRITE;
427
428         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.read))
429                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_READ;
430
431         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.atomic))
432                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
433
434         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.srq_receive))
435                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
436
437         if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
438             MLX5_CAP_GEN(dev->mdev, null_mkey) &&
439             MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset) &&
440             !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled))
441                 caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
442 }
443
444 static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
445                                       struct mlx5_pagefault *pfault,
446                                       int error)
447 {
448         int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
449                      pfault->wqe.wq_num : pfault->token;
450         u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)] = {};
451         int err;
452
453         MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME);
454         MLX5_SET(page_fault_resume_in, in, page_fault_type, pfault->type);
455         MLX5_SET(page_fault_resume_in, in, token, pfault->token);
456         MLX5_SET(page_fault_resume_in, in, wq_number, wq_num);
457         MLX5_SET(page_fault_resume_in, in, error, !!error);
458
459         err = mlx5_cmd_exec_in(dev->mdev, page_fault_resume, in);
460         if (err)
461                 mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n",
462                             wq_num, err);
463 }
464
465 static struct mlx5_ib_mr *implicit_get_child_mr(struct mlx5_ib_mr *imr,
466                                                 unsigned long idx)
467 {
468         struct ib_umem_odp *odp;
469         struct mlx5_ib_mr *mr;
470         struct mlx5_ib_mr *ret;
471         int err;
472
473         odp = ib_umem_odp_alloc_child(to_ib_umem_odp(imr->umem),
474                                       idx * MLX5_IMR_MTT_SIZE,
475                                       MLX5_IMR_MTT_SIZE, &mlx5_mn_ops);
476         if (IS_ERR(odp))
477                 return ERR_CAST(odp);
478
479         ret = mr = mlx5_mr_cache_alloc(imr->dev, MLX5_IMR_MTT_CACHE_ENTRY);
480         if (IS_ERR(mr))
481                 goto out_umem;
482
483         mr->ibmr.pd = imr->ibmr.pd;
484         mr->access_flags = imr->access_flags;
485         mr->umem = &odp->umem;
486         mr->ibmr.lkey = mr->mmkey.key;
487         mr->ibmr.rkey = mr->mmkey.key;
488         mr->mmkey.iova = idx * MLX5_IMR_MTT_SIZE;
489         mr->parent = imr;
490         odp->private = mr;
491
492         err = mlx5_ib_update_xlt(mr, 0,
493                                  MLX5_IMR_MTT_ENTRIES,
494                                  PAGE_SHIFT,
495                                  MLX5_IB_UPD_XLT_ZAP |
496                                  MLX5_IB_UPD_XLT_ENABLE);
497         if (err) {
498                 ret = ERR_PTR(err);
499                 goto out_mr;
500         }
501
502         /*
503          * Once the store to either xarray completes any error unwind has to
504          * use synchronize_srcu(). Avoid this with xa_reserve()
505          */
506         ret = xa_cmpxchg(&imr->implicit_children, idx, NULL, mr,
507                          GFP_KERNEL);
508         if (unlikely(ret)) {
509                 if (xa_is_err(ret)) {
510                         ret = ERR_PTR(xa_err(ret));
511                         goto out_mr;
512                 }
513                 /*
514                  * Another thread beat us to creating the child mr, use
515                  * theirs.
516                  */
517                 goto out_mr;
518         }
519
520         mlx5_ib_dbg(imr->dev, "key %x mr %p\n", mr->mmkey.key, mr);
521         return mr;
522
523 out_mr:
524         mlx5_mr_cache_free(imr->dev, mr);
525 out_umem:
526         ib_umem_odp_release(odp);
527         return ret;
528 }
529
530 struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
531                                              struct ib_udata *udata,
532                                              int access_flags)
533 {
534         struct mlx5_ib_dev *dev = to_mdev(pd->ibpd.device);
535         struct ib_umem_odp *umem_odp;
536         struct mlx5_ib_mr *imr;
537         int err;
538
539         umem_odp = ib_umem_odp_alloc_implicit(&dev->ib_dev, access_flags);
540         if (IS_ERR(umem_odp))
541                 return ERR_CAST(umem_odp);
542
543         imr = mlx5_mr_cache_alloc(dev, MLX5_IMR_KSM_CACHE_ENTRY);
544         if (IS_ERR(imr)) {
545                 err = PTR_ERR(imr);
546                 goto out_umem;
547         }
548
549         imr->ibmr.pd = &pd->ibpd;
550         imr->access_flags = access_flags;
551         imr->mmkey.iova = 0;
552         imr->umem = &umem_odp->umem;
553         imr->ibmr.lkey = imr->mmkey.key;
554         imr->ibmr.rkey = imr->mmkey.key;
555         imr->umem = &umem_odp->umem;
556         imr->is_odp_implicit = true;
557         atomic_set(&imr->num_deferred_work, 0);
558         init_waitqueue_head(&imr->q_deferred_work);
559         xa_init(&imr->implicit_children);
560
561         err = mlx5_ib_update_xlt(imr, 0,
562                                  mlx5_imr_ksm_entries,
563                                  MLX5_KSM_PAGE_SHIFT,
564                                  MLX5_IB_UPD_XLT_INDIRECT |
565                                  MLX5_IB_UPD_XLT_ZAP |
566                                  MLX5_IB_UPD_XLT_ENABLE);
567         if (err)
568                 goto out_mr;
569
570         err = xa_err(xa_store(&dev->odp_mkeys, mlx5_base_mkey(imr->mmkey.key),
571                               &imr->mmkey, GFP_KERNEL));
572         if (err)
573                 goto out_mr;
574
575         mlx5_ib_dbg(dev, "key %x mr %p\n", imr->mmkey.key, imr);
576         return imr;
577 out_mr:
578         mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
579         mlx5_mr_cache_free(dev, imr);
580 out_umem:
581         ib_umem_odp_release(umem_odp);
582         return ERR_PTR(err);
583 }
584
585 void mlx5_ib_free_implicit_mr(struct mlx5_ib_mr *imr)
586 {
587         struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem);
588         struct mlx5_ib_dev *dev = imr->dev;
589         struct list_head destroy_list;
590         struct mlx5_ib_mr *mtt;
591         struct mlx5_ib_mr *tmp;
592         unsigned long idx;
593
594         INIT_LIST_HEAD(&destroy_list);
595
596         xa_erase(&dev->odp_mkeys, mlx5_base_mkey(imr->mmkey.key));
597         /*
598          * This stops the SRCU protected page fault path from touching either
599          * the imr or any children. The page fault path can only reach the
600          * children xarray via the imr.
601          */
602         synchronize_srcu(&dev->odp_srcu);
603
604         /*
605          * All work on the prefetch list must be completed, xa_erase() prevented
606          * new work from being created.
607          */
608         wait_event(imr->q_deferred_work, !atomic_read(&imr->num_deferred_work));
609
610         /*
611          * At this point it is forbidden for any other thread to enter
612          * pagefault_mr() on this imr. It is already forbidden to call
613          * pagefault_mr() on an implicit child. Due to this additions to
614          * implicit_children are prevented.
615          */
616
617         /*
618          * Block destroy_unused_implicit_child_mr() from incrementing
619          * num_deferred_work.
620          */
621         xa_lock(&imr->implicit_children);
622         xa_for_each (&imr->implicit_children, idx, mtt) {
623                 __xa_erase(&imr->implicit_children, idx);
624                 list_add(&mtt->odp_destroy.elm, &destroy_list);
625         }
626         xa_unlock(&imr->implicit_children);
627
628         /*
629          * Wait for any concurrent destroy_unused_implicit_child_mr() to
630          * complete.
631          */
632         wait_event(imr->q_deferred_work, !atomic_read(&imr->num_deferred_work));
633
634         /*
635          * Fence the imr before we destroy the children. This allows us to
636          * skip updating the XLT of the imr during destroy of the child mkey
637          * the imr points to.
638          */
639         mlx5_mr_cache_invalidate(imr);
640
641         list_for_each_entry_safe (mtt, tmp, &destroy_list, odp_destroy.elm)
642                 free_implicit_child_mr(mtt, false);
643
644         mlx5_mr_cache_free(dev, imr);
645         ib_umem_odp_release(odp_imr);
646 }
647
648 /**
649  * mlx5_ib_fence_odp_mr - Stop all access to the ODP MR
650  * @mr: to fence
651  *
652  * On return no parallel threads will be touching this MR and no DMA will be
653  * active.
654  */
655 void mlx5_ib_fence_odp_mr(struct mlx5_ib_mr *mr)
656 {
657         /* Prevent new page faults and prefetch requests from succeeding */
658         xa_erase(&mr->dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key));
659
660         /* Wait for all running page-fault handlers to finish. */
661         synchronize_srcu(&mr->dev->odp_srcu);
662
663         wait_event(mr->q_deferred_work, !atomic_read(&mr->num_deferred_work));
664
665         dma_fence_odp_mr(mr);
666 }
667
668 #define MLX5_PF_FLAGS_DOWNGRADE BIT(1)
669 static int pagefault_real_mr(struct mlx5_ib_mr *mr, struct ib_umem_odp *odp,
670                              u64 user_va, size_t bcnt, u32 *bytes_mapped,
671                              u32 flags)
672 {
673         int page_shift, ret, np;
674         bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE;
675         unsigned long current_seq;
676         u64 access_mask;
677         u64 start_idx;
678
679         page_shift = odp->page_shift;
680         start_idx = (user_va - ib_umem_start(odp)) >> page_shift;
681         access_mask = ODP_READ_ALLOWED_BIT;
682
683         if (odp->umem.writable && !downgrade)
684                 access_mask |= ODP_WRITE_ALLOWED_BIT;
685
686         current_seq = mmu_interval_read_begin(&odp->notifier);
687
688         np = ib_umem_odp_map_dma_pages(odp, user_va, bcnt, access_mask,
689                                        current_seq);
690         if (np < 0)
691                 return np;
692
693         mutex_lock(&odp->umem_mutex);
694         if (!mmu_interval_read_retry(&odp->notifier, current_seq)) {
695                 /*
696                  * No need to check whether the MTTs really belong to
697                  * this MR, since ib_umem_odp_map_dma_pages already
698                  * checks this.
699                  */
700                 ret = mlx5_ib_update_xlt(mr, start_idx, np,
701                                          page_shift, MLX5_IB_UPD_XLT_ATOMIC);
702         } else {
703                 ret = -EAGAIN;
704         }
705         mutex_unlock(&odp->umem_mutex);
706
707         if (ret < 0) {
708                 if (ret != -EAGAIN)
709                         mlx5_ib_err(mr->dev,
710                                     "Failed to update mkey page tables\n");
711                 goto out;
712         }
713
714         if (bytes_mapped) {
715                 u32 new_mappings = (np << page_shift) -
716                         (user_va - round_down(user_va, 1 << page_shift));
717
718                 *bytes_mapped += min_t(u32, new_mappings, bcnt);
719         }
720
721         return np << (page_shift - PAGE_SHIFT);
722
723 out:
724         return ret;
725 }
726
727 static int pagefault_implicit_mr(struct mlx5_ib_mr *imr,
728                                  struct ib_umem_odp *odp_imr, u64 user_va,
729                                  size_t bcnt, u32 *bytes_mapped, u32 flags)
730 {
731         unsigned long end_idx = (user_va + bcnt - 1) >> MLX5_IMR_MTT_SHIFT;
732         unsigned long upd_start_idx = end_idx + 1;
733         unsigned long upd_len = 0;
734         unsigned long npages = 0;
735         int err;
736         int ret;
737
738         if (unlikely(user_va >= mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE ||
739                      mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE - user_va < bcnt))
740                 return -EFAULT;
741
742         /* Fault each child mr that intersects with our interval. */
743         while (bcnt) {
744                 unsigned long idx = user_va >> MLX5_IMR_MTT_SHIFT;
745                 struct ib_umem_odp *umem_odp;
746                 struct mlx5_ib_mr *mtt;
747                 u64 len;
748
749                 mtt = xa_load(&imr->implicit_children, idx);
750                 if (unlikely(!mtt)) {
751                         mtt = implicit_get_child_mr(imr, idx);
752                         if (IS_ERR(mtt)) {
753                                 ret = PTR_ERR(mtt);
754                                 goto out;
755                         }
756                         upd_start_idx = min(upd_start_idx, idx);
757                         upd_len = idx - upd_start_idx + 1;
758                 }
759
760                 umem_odp = to_ib_umem_odp(mtt->umem);
761                 len = min_t(u64, user_va + bcnt, ib_umem_end(umem_odp)) -
762                       user_va;
763
764                 ret = pagefault_real_mr(mtt, umem_odp, user_va, len,
765                                         bytes_mapped, flags);
766                 if (ret < 0)
767                         goto out;
768                 user_va += len;
769                 bcnt -= len;
770                 npages += ret;
771         }
772
773         ret = npages;
774
775         /*
776          * Any time the implicit_children are changed we must perform an
777          * update of the xlt before exiting to ensure the HW and the
778          * implicit_children remains synchronized.
779          */
780 out:
781         if (likely(!upd_len))
782                 return ret;
783
784         /*
785          * Notice this is not strictly ordered right, the KSM is updated after
786          * the implicit_children is updated, so a parallel page fault could
787          * see a MR that is not yet visible in the KSM.  This is similar to a
788          * parallel page fault seeing a MR that is being concurrently removed
789          * from the KSM. Both of these improbable situations are resolved
790          * safely by resuming the HW and then taking another page fault. The
791          * next pagefault handler will see the new information.
792          */
793         mutex_lock(&odp_imr->umem_mutex);
794         err = mlx5_ib_update_xlt(imr, upd_start_idx, upd_len, 0,
795                                  MLX5_IB_UPD_XLT_INDIRECT |
796                                          MLX5_IB_UPD_XLT_ATOMIC);
797         mutex_unlock(&odp_imr->umem_mutex);
798         if (err) {
799                 mlx5_ib_err(imr->dev, "Failed to update PAS\n");
800                 return err;
801         }
802         return ret;
803 }
804
805 /*
806  * Returns:
807  *  -EFAULT: The io_virt->bcnt is not within the MR, it covers pages that are
808  *           not accessible, or the MR is no longer valid.
809  *  -EAGAIN/-ENOMEM: The operation should be retried
810  *
811  *  -EINVAL/others: General internal malfunction
812  *  >0: Number of pages mapped
813  */
814 static int pagefault_mr(struct mlx5_ib_mr *mr, u64 io_virt, size_t bcnt,
815                         u32 *bytes_mapped, u32 flags)
816 {
817         struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
818
819         if (unlikely(io_virt < mr->mmkey.iova))
820                 return -EFAULT;
821
822         if (!odp->is_implicit_odp) {
823                 u64 user_va;
824
825                 if (check_add_overflow(io_virt - mr->mmkey.iova,
826                                        (u64)odp->umem.address, &user_va))
827                         return -EFAULT;
828                 if (unlikely(user_va >= ib_umem_end(odp) ||
829                              ib_umem_end(odp) - user_va < bcnt))
830                         return -EFAULT;
831                 return pagefault_real_mr(mr, odp, user_va, bcnt, bytes_mapped,
832                                          flags);
833         }
834         return pagefault_implicit_mr(mr, odp, io_virt, bcnt, bytes_mapped,
835                                      flags);
836 }
837
838 struct pf_frame {
839         struct pf_frame *next;
840         u32 key;
841         u64 io_virt;
842         size_t bcnt;
843         int depth;
844 };
845
846 static bool mkey_is_eq(struct mlx5_core_mkey *mmkey, u32 key)
847 {
848         if (!mmkey)
849                 return false;
850         if (mmkey->type == MLX5_MKEY_MW)
851                 return mlx5_base_mkey(mmkey->key) == mlx5_base_mkey(key);
852         return mmkey->key == key;
853 }
854
855 static int get_indirect_num_descs(struct mlx5_core_mkey *mmkey)
856 {
857         struct mlx5_ib_mw *mw;
858         struct mlx5_ib_devx_mr *devx_mr;
859
860         if (mmkey->type == MLX5_MKEY_MW) {
861                 mw = container_of(mmkey, struct mlx5_ib_mw, mmkey);
862                 return mw->ndescs;
863         }
864
865         devx_mr = container_of(mmkey, struct mlx5_ib_devx_mr,
866                                mmkey);
867         return devx_mr->ndescs;
868 }
869
870 /*
871  * Handle a single data segment in a page-fault WQE or RDMA region.
872  *
873  * Returns number of OS pages retrieved on success. The caller may continue to
874  * the next data segment.
875  * Can return the following error codes:
876  * -EAGAIN to designate a temporary error. The caller will abort handling the
877  *  page fault and resolve it.
878  * -EFAULT when there's an error mapping the requested pages. The caller will
879  *  abort the page fault handling.
880  */
881 static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
882                                          struct ib_pd *pd, u32 key,
883                                          u64 io_virt, size_t bcnt,
884                                          u32 *bytes_committed,
885                                          u32 *bytes_mapped)
886 {
887         int npages = 0, srcu_key, ret, i, outlen, cur_outlen = 0, depth = 0;
888         struct pf_frame *head = NULL, *frame;
889         struct mlx5_core_mkey *mmkey;
890         struct mlx5_ib_mr *mr;
891         struct mlx5_klm *pklm;
892         u32 *out = NULL;
893         size_t offset;
894         int ndescs;
895
896         srcu_key = srcu_read_lock(&dev->odp_srcu);
897
898         io_virt += *bytes_committed;
899         bcnt -= *bytes_committed;
900
901 next_mr:
902         mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(key));
903         if (!mmkey) {
904                 mlx5_ib_dbg(
905                         dev,
906                         "skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
907                         key);
908                 if (bytes_mapped)
909                         *bytes_mapped += bcnt;
910                 /*
911                  * The user could specify a SGL with multiple lkeys and only
912                  * some of them are ODP. Treat the non-ODP ones as fully
913                  * faulted.
914                  */
915                 ret = 0;
916                 goto srcu_unlock;
917         }
918         if (!mkey_is_eq(mmkey, key)) {
919                 mlx5_ib_dbg(dev, "failed to find mkey %x\n", key);
920                 ret = -EFAULT;
921                 goto srcu_unlock;
922         }
923
924         switch (mmkey->type) {
925         case MLX5_MKEY_MR:
926                 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
927
928                 ret = pagefault_mr(mr, io_virt, bcnt, bytes_mapped, 0);
929                 if (ret < 0)
930                         goto srcu_unlock;
931
932                 /*
933                  * When prefetching a page, page fault is generated
934                  * in order to bring the page to the main memory.
935                  * In the current flow, page faults are being counted.
936                  */
937                 mlx5_update_odp_stats(mr, faults, ret);
938
939                 npages += ret;
940                 ret = 0;
941                 break;
942
943         case MLX5_MKEY_MW:
944         case MLX5_MKEY_INDIRECT_DEVX:
945                 ndescs = get_indirect_num_descs(mmkey);
946
947                 if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) {
948                         mlx5_ib_dbg(dev, "indirection level exceeded\n");
949                         ret = -EFAULT;
950                         goto srcu_unlock;
951                 }
952
953                 outlen = MLX5_ST_SZ_BYTES(query_mkey_out) +
954                         sizeof(*pklm) * (ndescs - 2);
955
956                 if (outlen > cur_outlen) {
957                         kfree(out);
958                         out = kzalloc(outlen, GFP_KERNEL);
959                         if (!out) {
960                                 ret = -ENOMEM;
961                                 goto srcu_unlock;
962                         }
963                         cur_outlen = outlen;
964                 }
965
966                 pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out,
967                                                        bsf0_klm0_pas_mtt0_1);
968
969                 ret = mlx5_core_query_mkey(dev->mdev, mmkey, out, outlen);
970                 if (ret)
971                         goto srcu_unlock;
972
973                 offset = io_virt - MLX5_GET64(query_mkey_out, out,
974                                               memory_key_mkey_entry.start_addr);
975
976                 for (i = 0; bcnt && i < ndescs; i++, pklm++) {
977                         if (offset >= be32_to_cpu(pklm->bcount)) {
978                                 offset -= be32_to_cpu(pklm->bcount);
979                                 continue;
980                         }
981
982                         frame = kzalloc(sizeof(*frame), GFP_KERNEL);
983                         if (!frame) {
984                                 ret = -ENOMEM;
985                                 goto srcu_unlock;
986                         }
987
988                         frame->key = be32_to_cpu(pklm->key);
989                         frame->io_virt = be64_to_cpu(pklm->va) + offset;
990                         frame->bcnt = min_t(size_t, bcnt,
991                                             be32_to_cpu(pklm->bcount) - offset);
992                         frame->depth = depth + 1;
993                         frame->next = head;
994                         head = frame;
995
996                         bcnt -= frame->bcnt;
997                         offset = 0;
998                 }
999                 break;
1000
1001         default:
1002                 mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type);
1003                 ret = -EFAULT;
1004                 goto srcu_unlock;
1005         }
1006
1007         if (head) {
1008                 frame = head;
1009                 head = frame->next;
1010
1011                 key = frame->key;
1012                 io_virt = frame->io_virt;
1013                 bcnt = frame->bcnt;
1014                 depth = frame->depth;
1015                 kfree(frame);
1016
1017                 goto next_mr;
1018         }
1019
1020 srcu_unlock:
1021         while (head) {
1022                 frame = head;
1023                 head = frame->next;
1024                 kfree(frame);
1025         }
1026         kfree(out);
1027
1028         srcu_read_unlock(&dev->odp_srcu, srcu_key);
1029         *bytes_committed = 0;
1030         return ret ? ret : npages;
1031 }
1032
1033 /**
1034  * Parse a series of data segments for page fault handling.
1035  *
1036  * @pfault contains page fault information.
1037  * @wqe points at the first data segment in the WQE.
1038  * @wqe_end points after the end of the WQE.
1039  * @bytes_mapped receives the number of bytes that the function was able to
1040  *               map. This allows the caller to decide intelligently whether
1041  *               enough memory was mapped to resolve the page fault
1042  *               successfully (e.g. enough for the next MTU, or the entire
1043  *               WQE).
1044  * @total_wqe_bytes receives the total data size of this WQE in bytes (minus
1045  *                  the committed bytes).
1046  *
1047  * Returns the number of pages loaded if positive, zero for an empty WQE, or a
1048  * negative error code.
1049  */
1050 static int pagefault_data_segments(struct mlx5_ib_dev *dev,
1051                                    struct mlx5_pagefault *pfault,
1052                                    void *wqe,
1053                                    void *wqe_end, u32 *bytes_mapped,
1054                                    u32 *total_wqe_bytes, bool receive_queue)
1055 {
1056         int ret = 0, npages = 0;
1057         u64 io_virt;
1058         u32 key;
1059         u32 byte_count;
1060         size_t bcnt;
1061         int inline_segment;
1062
1063         if (bytes_mapped)
1064                 *bytes_mapped = 0;
1065         if (total_wqe_bytes)
1066                 *total_wqe_bytes = 0;
1067
1068         while (wqe < wqe_end) {
1069                 struct mlx5_wqe_data_seg *dseg = wqe;
1070
1071                 io_virt = be64_to_cpu(dseg->addr);
1072                 key = be32_to_cpu(dseg->lkey);
1073                 byte_count = be32_to_cpu(dseg->byte_count);
1074                 inline_segment = !!(byte_count &  MLX5_INLINE_SEG);
1075                 bcnt           = byte_count & ~MLX5_INLINE_SEG;
1076
1077                 if (inline_segment) {
1078                         bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
1079                         wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
1080                                      16);
1081                 } else {
1082                         wqe += sizeof(*dseg);
1083                 }
1084
1085                 /* receive WQE end of sg list. */
1086                 if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY &&
1087                     io_virt == 0)
1088                         break;
1089
1090                 if (!inline_segment && total_wqe_bytes) {
1091                         *total_wqe_bytes += bcnt - min_t(size_t, bcnt,
1092                                         pfault->bytes_committed);
1093                 }
1094
1095                 /* A zero length data segment designates a length of 2GB. */
1096                 if (bcnt == 0)
1097                         bcnt = 1U << 31;
1098
1099                 if (inline_segment || bcnt <= pfault->bytes_committed) {
1100                         pfault->bytes_committed -=
1101                                 min_t(size_t, bcnt,
1102                                       pfault->bytes_committed);
1103                         continue;
1104                 }
1105
1106                 ret = pagefault_single_data_segment(dev, NULL, key,
1107                                                     io_virt, bcnt,
1108                                                     &pfault->bytes_committed,
1109                                                     bytes_mapped);
1110                 if (ret < 0)
1111                         break;
1112                 npages += ret;
1113         }
1114
1115         return ret < 0 ? ret : npages;
1116 }
1117
1118 /*
1119  * Parse initiator WQE. Advances the wqe pointer to point at the
1120  * scatter-gather list, and set wqe_end to the end of the WQE.
1121  */
1122 static int mlx5_ib_mr_initiator_pfault_handler(
1123         struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
1124         struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
1125 {
1126         struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
1127         u16 wqe_index = pfault->wqe.wqe_index;
1128         struct mlx5_base_av *av;
1129         unsigned ds, opcode;
1130         u32 qpn = qp->trans_qp.base.mqp.qpn;
1131
1132         ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
1133         if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
1134                 mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
1135                             ds, wqe_length);
1136                 return -EFAULT;
1137         }
1138
1139         if (ds == 0) {
1140                 mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
1141                             wqe_index, qpn);
1142                 return -EFAULT;
1143         }
1144
1145         *wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
1146         *wqe += sizeof(*ctrl);
1147
1148         opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
1149                  MLX5_WQE_CTRL_OPCODE_MASK;
1150
1151         if (qp->ibqp.qp_type == IB_QPT_XRC_INI)
1152                 *wqe += sizeof(struct mlx5_wqe_xrc_seg);
1153
1154         if (qp->type == IB_QPT_UD || qp->type == MLX5_IB_QPT_DCI) {
1155                 av = *wqe;
1156                 if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV))
1157                         *wqe += sizeof(struct mlx5_av);
1158                 else
1159                         *wqe += sizeof(struct mlx5_base_av);
1160         }
1161
1162         switch (opcode) {
1163         case MLX5_OPCODE_RDMA_WRITE:
1164         case MLX5_OPCODE_RDMA_WRITE_IMM:
1165         case MLX5_OPCODE_RDMA_READ:
1166                 *wqe += sizeof(struct mlx5_wqe_raddr_seg);
1167                 break;
1168         case MLX5_OPCODE_ATOMIC_CS:
1169         case MLX5_OPCODE_ATOMIC_FA:
1170                 *wqe += sizeof(struct mlx5_wqe_raddr_seg);
1171                 *wqe += sizeof(struct mlx5_wqe_atomic_seg);
1172                 break;
1173         }
1174
1175         return 0;
1176 }
1177
1178 /*
1179  * Parse responder WQE and set wqe_end to the end of the WQE.
1180  */
1181 static int mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev *dev,
1182                                                    struct mlx5_ib_srq *srq,
1183                                                    void **wqe, void **wqe_end,
1184                                                    int wqe_length)
1185 {
1186         int wqe_size = 1 << srq->msrq.wqe_shift;
1187
1188         if (wqe_size > wqe_length) {
1189                 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1190                 return -EFAULT;
1191         }
1192
1193         *wqe_end = *wqe + wqe_size;
1194         *wqe += sizeof(struct mlx5_wqe_srq_next_seg);
1195
1196         return 0;
1197 }
1198
1199 static int mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev *dev,
1200                                                   struct mlx5_ib_qp *qp,
1201                                                   void *wqe, void **wqe_end,
1202                                                   int wqe_length)
1203 {
1204         struct mlx5_ib_wq *wq = &qp->rq;
1205         int wqe_size = 1 << wq->wqe_shift;
1206
1207         if (qp->flags_en & MLX5_QP_FLAG_SIGNATURE) {
1208                 mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
1209                 return -EFAULT;
1210         }
1211
1212         if (wqe_size > wqe_length) {
1213                 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1214                 return -EFAULT;
1215         }
1216
1217         *wqe_end = wqe + wqe_size;
1218
1219         return 0;
1220 }
1221
1222 static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev,
1223                                                        u32 wq_num, int pf_type)
1224 {
1225         struct mlx5_core_rsc_common *common = NULL;
1226         struct mlx5_core_srq *srq;
1227
1228         switch (pf_type) {
1229         case MLX5_WQE_PF_TYPE_RMP:
1230                 srq = mlx5_cmd_get_srq(dev, wq_num);
1231                 if (srq)
1232                         common = &srq->common;
1233                 break;
1234         case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE:
1235         case MLX5_WQE_PF_TYPE_RESP:
1236         case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC:
1237                 common = mlx5_core_res_hold(dev, wq_num, MLX5_RES_QP);
1238                 break;
1239         default:
1240                 break;
1241         }
1242
1243         return common;
1244 }
1245
1246 static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res)
1247 {
1248         struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res;
1249
1250         return to_mibqp(mqp);
1251 }
1252
1253 static inline struct mlx5_ib_srq *res_to_srq(struct mlx5_core_rsc_common *res)
1254 {
1255         struct mlx5_core_srq *msrq =
1256                 container_of(res, struct mlx5_core_srq, common);
1257
1258         return to_mibsrq(msrq);
1259 }
1260
1261 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
1262                                           struct mlx5_pagefault *pfault)
1263 {
1264         bool sq = pfault->type & MLX5_PFAULT_REQUESTOR;
1265         u16 wqe_index = pfault->wqe.wqe_index;
1266         void *wqe, *wqe_start = NULL, *wqe_end = NULL;
1267         u32 bytes_mapped, total_wqe_bytes;
1268         struct mlx5_core_rsc_common *res;
1269         int resume_with_error = 1;
1270         struct mlx5_ib_qp *qp;
1271         size_t bytes_copied;
1272         int ret = 0;
1273
1274         res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type);
1275         if (!res) {
1276                 mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num);
1277                 return;
1278         }
1279
1280         if (res->res != MLX5_RES_QP && res->res != MLX5_RES_SRQ &&
1281             res->res != MLX5_RES_XSRQ) {
1282                 mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n",
1283                             pfault->type);
1284                 goto resolve_page_fault;
1285         }
1286
1287         wqe_start = (void *)__get_free_page(GFP_KERNEL);
1288         if (!wqe_start) {
1289                 mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
1290                 goto resolve_page_fault;
1291         }
1292
1293         wqe = wqe_start;
1294         qp = (res->res == MLX5_RES_QP) ? res_to_qp(res) : NULL;
1295         if (qp && sq) {
1296                 ret = mlx5_ib_read_wqe_sq(qp, wqe_index, wqe, PAGE_SIZE,
1297                                           &bytes_copied);
1298                 if (ret)
1299                         goto read_user;
1300                 ret = mlx5_ib_mr_initiator_pfault_handler(
1301                         dev, pfault, qp, &wqe, &wqe_end, bytes_copied);
1302         } else if (qp && !sq) {
1303                 ret = mlx5_ib_read_wqe_rq(qp, wqe_index, wqe, PAGE_SIZE,
1304                                           &bytes_copied);
1305                 if (ret)
1306                         goto read_user;
1307                 ret = mlx5_ib_mr_responder_pfault_handler_rq(
1308                         dev, qp, wqe, &wqe_end, bytes_copied);
1309         } else if (!qp) {
1310                 struct mlx5_ib_srq *srq = res_to_srq(res);
1311
1312                 ret = mlx5_ib_read_wqe_srq(srq, wqe_index, wqe, PAGE_SIZE,
1313                                            &bytes_copied);
1314                 if (ret)
1315                         goto read_user;
1316                 ret = mlx5_ib_mr_responder_pfault_handler_srq(
1317                         dev, srq, &wqe, &wqe_end, bytes_copied);
1318         }
1319
1320         if (ret < 0 || wqe >= wqe_end)
1321                 goto resolve_page_fault;
1322
1323         ret = pagefault_data_segments(dev, pfault, wqe, wqe_end, &bytes_mapped,
1324                                       &total_wqe_bytes, !sq);
1325         if (ret == -EAGAIN)
1326                 goto out;
1327
1328         if (ret < 0 || total_wqe_bytes > bytes_mapped)
1329                 goto resolve_page_fault;
1330
1331 out:
1332         ret = 0;
1333         resume_with_error = 0;
1334
1335 read_user:
1336         if (ret)
1337                 mlx5_ib_err(
1338                         dev,
1339                         "Failed reading a WQE following page fault, error %d, wqe_index %x, qpn %x\n",
1340                         ret, wqe_index, pfault->token);
1341
1342 resolve_page_fault:
1343         mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
1344         mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
1345                     pfault->wqe.wq_num, resume_with_error,
1346                     pfault->type);
1347         mlx5_core_res_put(res);
1348         free_page((unsigned long)wqe_start);
1349 }
1350
1351 static int pages_in_range(u64 address, u32 length)
1352 {
1353         return (ALIGN(address + length, PAGE_SIZE) -
1354                 (address & PAGE_MASK)) >> PAGE_SHIFT;
1355 }
1356
1357 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
1358                                            struct mlx5_pagefault *pfault)
1359 {
1360         u64 address;
1361         u32 length;
1362         u32 prefetch_len = pfault->bytes_committed;
1363         int prefetch_activated = 0;
1364         u32 rkey = pfault->rdma.r_key;
1365         int ret;
1366
1367         /* The RDMA responder handler handles the page fault in two parts.
1368          * First it brings the necessary pages for the current packet
1369          * (and uses the pfault context), and then (after resuming the QP)
1370          * prefetches more pages. The second operation cannot use the pfault
1371          * context and therefore uses the dummy_pfault context allocated on
1372          * the stack */
1373         pfault->rdma.rdma_va += pfault->bytes_committed;
1374         pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
1375                                          pfault->rdma.rdma_op_len);
1376         pfault->bytes_committed = 0;
1377
1378         address = pfault->rdma.rdma_va;
1379         length  = pfault->rdma.rdma_op_len;
1380
1381         /* For some operations, the hardware cannot tell the exact message
1382          * length, and in those cases it reports zero. Use prefetch
1383          * logic. */
1384         if (length == 0) {
1385                 prefetch_activated = 1;
1386                 length = pfault->rdma.packet_size;
1387                 prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
1388         }
1389
1390         ret = pagefault_single_data_segment(dev, NULL, rkey, address, length,
1391                                             &pfault->bytes_committed, NULL);
1392         if (ret == -EAGAIN) {
1393                 /* We're racing with an invalidation, don't prefetch */
1394                 prefetch_activated = 0;
1395         } else if (ret < 0 || pages_in_range(address, length) > ret) {
1396                 mlx5_ib_page_fault_resume(dev, pfault, 1);
1397                 if (ret != -ENOENT)
1398                         mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n",
1399                                     ret, pfault->token, pfault->type);
1400                 return;
1401         }
1402
1403         mlx5_ib_page_fault_resume(dev, pfault, 0);
1404         mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n",
1405                     pfault->token, pfault->type,
1406                     prefetch_activated);
1407
1408         /* At this point, there might be a new pagefault already arriving in
1409          * the eq, switch to the dummy pagefault for the rest of the
1410          * processing. We're still OK with the objects being alive as the
1411          * work-queue is being fenced. */
1412
1413         if (prefetch_activated) {
1414                 u32 bytes_committed = 0;
1415
1416                 ret = pagefault_single_data_segment(dev, NULL, rkey, address,
1417                                                     prefetch_len,
1418                                                     &bytes_committed, NULL);
1419                 if (ret < 0 && ret != -EAGAIN) {
1420                         mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n",
1421                                     ret, pfault->token, address, prefetch_len);
1422                 }
1423         }
1424 }
1425
1426 static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault)
1427 {
1428         u8 event_subtype = pfault->event_subtype;
1429
1430         switch (event_subtype) {
1431         case MLX5_PFAULT_SUBTYPE_WQE:
1432                 mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
1433                 break;
1434         case MLX5_PFAULT_SUBTYPE_RDMA:
1435                 mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
1436                 break;
1437         default:
1438                 mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
1439                             event_subtype);
1440                 mlx5_ib_page_fault_resume(dev, pfault, 1);
1441         }
1442 }
1443
1444 static void mlx5_ib_eqe_pf_action(struct work_struct *work)
1445 {
1446         struct mlx5_pagefault *pfault = container_of(work,
1447                                                      struct mlx5_pagefault,
1448                                                      work);
1449         struct mlx5_ib_pf_eq *eq = pfault->eq;
1450
1451         mlx5_ib_pfault(eq->dev, pfault);
1452         mempool_free(pfault, eq->pool);
1453 }
1454
1455 static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq)
1456 {
1457         struct mlx5_eqe_page_fault *pf_eqe;
1458         struct mlx5_pagefault *pfault;
1459         struct mlx5_eqe *eqe;
1460         int cc = 0;
1461
1462         while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) {
1463                 pfault = mempool_alloc(eq->pool, GFP_ATOMIC);
1464                 if (!pfault) {
1465                         schedule_work(&eq->work);
1466                         break;
1467                 }
1468
1469                 pf_eqe = &eqe->data.page_fault;
1470                 pfault->event_subtype = eqe->sub_type;
1471                 pfault->bytes_committed = be32_to_cpu(pf_eqe->bytes_committed);
1472
1473                 mlx5_ib_dbg(eq->dev,
1474                             "PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x\n",
1475                             eqe->sub_type, pfault->bytes_committed);
1476
1477                 switch (eqe->sub_type) {
1478                 case MLX5_PFAULT_SUBTYPE_RDMA:
1479                         /* RDMA based event */
1480                         pfault->type =
1481                                 be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24;
1482                         pfault->token =
1483                                 be32_to_cpu(pf_eqe->rdma.pftype_token) &
1484                                 MLX5_24BIT_MASK;
1485                         pfault->rdma.r_key =
1486                                 be32_to_cpu(pf_eqe->rdma.r_key);
1487                         pfault->rdma.packet_size =
1488                                 be16_to_cpu(pf_eqe->rdma.packet_length);
1489                         pfault->rdma.rdma_op_len =
1490                                 be32_to_cpu(pf_eqe->rdma.rdma_op_len);
1491                         pfault->rdma.rdma_va =
1492                                 be64_to_cpu(pf_eqe->rdma.rdma_va);
1493                         mlx5_ib_dbg(eq->dev,
1494                                     "PAGE_FAULT: type:0x%x, token: 0x%06x, r_key: 0x%08x\n",
1495                                     pfault->type, pfault->token,
1496                                     pfault->rdma.r_key);
1497                         mlx5_ib_dbg(eq->dev,
1498                                     "PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n",
1499                                     pfault->rdma.rdma_op_len,
1500                                     pfault->rdma.rdma_va);
1501                         break;
1502
1503                 case MLX5_PFAULT_SUBTYPE_WQE:
1504                         /* WQE based event */
1505                         pfault->type =
1506                                 (be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7;
1507                         pfault->token =
1508                                 be32_to_cpu(pf_eqe->wqe.token);
1509                         pfault->wqe.wq_num =
1510                                 be32_to_cpu(pf_eqe->wqe.pftype_wq) &
1511                                 MLX5_24BIT_MASK;
1512                         pfault->wqe.wqe_index =
1513                                 be16_to_cpu(pf_eqe->wqe.wqe_index);
1514                         pfault->wqe.packet_size =
1515                                 be16_to_cpu(pf_eqe->wqe.packet_length);
1516                         mlx5_ib_dbg(eq->dev,
1517                                     "PAGE_FAULT: type:0x%x, token: 0x%06x, wq_num: 0x%06x, wqe_index: 0x%04x\n",
1518                                     pfault->type, pfault->token,
1519                                     pfault->wqe.wq_num,
1520                                     pfault->wqe.wqe_index);
1521                         break;
1522
1523                 default:
1524                         mlx5_ib_warn(eq->dev,
1525                                      "Unsupported page fault event sub-type: 0x%02hhx\n",
1526                                      eqe->sub_type);
1527                         /* Unsupported page faults should still be
1528                          * resolved by the page fault handler
1529                          */
1530                 }
1531
1532                 pfault->eq = eq;
1533                 INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action);
1534                 queue_work(eq->wq, &pfault->work);
1535
1536                 cc = mlx5_eq_update_cc(eq->core, ++cc);
1537         }
1538
1539         mlx5_eq_update_ci(eq->core, cc, 1);
1540 }
1541
1542 static int mlx5_ib_eq_pf_int(struct notifier_block *nb, unsigned long type,
1543                              void *data)
1544 {
1545         struct mlx5_ib_pf_eq *eq =
1546                 container_of(nb, struct mlx5_ib_pf_eq, irq_nb);
1547         unsigned long flags;
1548
1549         if (spin_trylock_irqsave(&eq->lock, flags)) {
1550                 mlx5_ib_eq_pf_process(eq);
1551                 spin_unlock_irqrestore(&eq->lock, flags);
1552         } else {
1553                 schedule_work(&eq->work);
1554         }
1555
1556         return IRQ_HANDLED;
1557 }
1558
1559 /* mempool_refill() was proposed but unfortunately wasn't accepted
1560  * http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html
1561  * Cheap workaround.
1562  */
1563 static void mempool_refill(mempool_t *pool)
1564 {
1565         while (pool->curr_nr < pool->min_nr)
1566                 mempool_free(mempool_alloc(pool, GFP_KERNEL), pool);
1567 }
1568
1569 static void mlx5_ib_eq_pf_action(struct work_struct *work)
1570 {
1571         struct mlx5_ib_pf_eq *eq =
1572                 container_of(work, struct mlx5_ib_pf_eq, work);
1573
1574         mempool_refill(eq->pool);
1575
1576         spin_lock_irq(&eq->lock);
1577         mlx5_ib_eq_pf_process(eq);
1578         spin_unlock_irq(&eq->lock);
1579 }
1580
1581 enum {
1582         MLX5_IB_NUM_PF_EQE      = 0x1000,
1583         MLX5_IB_NUM_PF_DRAIN    = 64,
1584 };
1585
1586 static int
1587 mlx5_ib_create_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1588 {
1589         struct mlx5_eq_param param = {};
1590         int err;
1591
1592         INIT_WORK(&eq->work, mlx5_ib_eq_pf_action);
1593         spin_lock_init(&eq->lock);
1594         eq->dev = dev;
1595
1596         eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN,
1597                                                sizeof(struct mlx5_pagefault));
1598         if (!eq->pool)
1599                 return -ENOMEM;
1600
1601         eq->wq = alloc_workqueue("mlx5_ib_page_fault",
1602                                  WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM,
1603                                  MLX5_NUM_CMD_EQE);
1604         if (!eq->wq) {
1605                 err = -ENOMEM;
1606                 goto err_mempool;
1607         }
1608
1609         eq->irq_nb.notifier_call = mlx5_ib_eq_pf_int;
1610         param = (struct mlx5_eq_param) {
1611                 .irq_index = 0,
1612                 .nent = MLX5_IB_NUM_PF_EQE,
1613         };
1614         param.mask[0] = 1ull << MLX5_EVENT_TYPE_PAGE_FAULT;
1615         eq->core = mlx5_eq_create_generic(dev->mdev, &param);
1616         if (IS_ERR(eq->core)) {
1617                 err = PTR_ERR(eq->core);
1618                 goto err_wq;
1619         }
1620         err = mlx5_eq_enable(dev->mdev, eq->core, &eq->irq_nb);
1621         if (err) {
1622                 mlx5_ib_err(dev, "failed to enable odp EQ %d\n", err);
1623                 goto err_eq;
1624         }
1625
1626         return 0;
1627 err_eq:
1628         mlx5_eq_destroy_generic(dev->mdev, eq->core);
1629 err_wq:
1630         destroy_workqueue(eq->wq);
1631 err_mempool:
1632         mempool_destroy(eq->pool);
1633         return err;
1634 }
1635
1636 static int
1637 mlx5_ib_destroy_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1638 {
1639         int err;
1640
1641         mlx5_eq_disable(dev->mdev, eq->core, &eq->irq_nb);
1642         err = mlx5_eq_destroy_generic(dev->mdev, eq->core);
1643         cancel_work_sync(&eq->work);
1644         destroy_workqueue(eq->wq);
1645         mempool_destroy(eq->pool);
1646
1647         return err;
1648 }
1649
1650 void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent)
1651 {
1652         if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1653                 return;
1654
1655         switch (ent->order - 2) {
1656         case MLX5_IMR_MTT_CACHE_ENTRY:
1657                 ent->page = PAGE_SHIFT;
1658                 ent->xlt = MLX5_IMR_MTT_ENTRIES *
1659                            sizeof(struct mlx5_mtt) /
1660                            MLX5_IB_UMR_OCTOWORD;
1661                 ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
1662                 ent->limit = 0;
1663                 break;
1664
1665         case MLX5_IMR_KSM_CACHE_ENTRY:
1666                 ent->page = MLX5_KSM_PAGE_SHIFT;
1667                 ent->xlt = mlx5_imr_ksm_entries *
1668                            sizeof(struct mlx5_klm) /
1669                            MLX5_IB_UMR_OCTOWORD;
1670                 ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM;
1671                 ent->limit = 0;
1672                 break;
1673         }
1674 }
1675
1676 static const struct ib_device_ops mlx5_ib_dev_odp_ops = {
1677         .advise_mr = mlx5_ib_advise_mr,
1678 };
1679
1680 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
1681 {
1682         int ret = 0;
1683
1684         if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1685                 return ret;
1686
1687         ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops);
1688
1689         if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) {
1690                 ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey);
1691                 if (ret) {
1692                         mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret);
1693                         return ret;
1694                 }
1695         }
1696
1697         ret = mlx5_ib_create_pf_eq(dev, &dev->odp_pf_eq);
1698
1699         return ret;
1700 }
1701
1702 void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev)
1703 {
1704         if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1705                 return;
1706
1707         mlx5_ib_destroy_pf_eq(dev, &dev->odp_pf_eq);
1708 }
1709
1710 int mlx5_ib_odp_init(void)
1711 {
1712         mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
1713                                        MLX5_IMR_MTT_BITS);
1714
1715         return 0;
1716 }
1717
1718 struct prefetch_mr_work {
1719         struct work_struct work;
1720         u32 pf_flags;
1721         u32 num_sge;
1722         struct {
1723                 u64 io_virt;
1724                 struct mlx5_ib_mr *mr;
1725                 size_t length;
1726         } frags[];
1727 };
1728
1729 static void destroy_prefetch_work(struct prefetch_mr_work *work)
1730 {
1731         u32 i;
1732
1733         for (i = 0; i < work->num_sge; ++i)
1734                 if (atomic_dec_and_test(&work->frags[i].mr->num_deferred_work))
1735                         wake_up(&work->frags[i].mr->q_deferred_work);
1736         kvfree(work);
1737 }
1738
1739 static struct mlx5_ib_mr *
1740 get_prefetchable_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
1741                     u32 lkey)
1742 {
1743         struct mlx5_ib_dev *dev = to_mdev(pd->device);
1744         struct mlx5_core_mkey *mmkey;
1745         struct ib_umem_odp *odp;
1746         struct mlx5_ib_mr *mr;
1747
1748         lockdep_assert_held(&dev->odp_srcu);
1749
1750         mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(lkey));
1751         if (!mmkey || mmkey->key != lkey || mmkey->type != MLX5_MKEY_MR)
1752                 return NULL;
1753
1754         mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1755
1756         if (mr->ibmr.pd != pd)
1757                 return NULL;
1758
1759         odp = to_ib_umem_odp(mr->umem);
1760
1761         /* prefetch with write-access must be supported by the MR */
1762         if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1763             !odp->umem.writable)
1764                 return NULL;
1765
1766         return mr;
1767 }
1768
1769 static void mlx5_ib_prefetch_mr_work(struct work_struct *w)
1770 {
1771         struct prefetch_mr_work *work =
1772                 container_of(w, struct prefetch_mr_work, work);
1773         u32 bytes_mapped = 0;
1774         u32 i;
1775
1776         for (i = 0; i < work->num_sge; ++i)
1777                 pagefault_mr(work->frags[i].mr, work->frags[i].io_virt,
1778                              work->frags[i].length, &bytes_mapped,
1779                              work->pf_flags);
1780
1781         destroy_prefetch_work(work);
1782 }
1783
1784 static bool init_prefetch_work(struct ib_pd *pd,
1785                                enum ib_uverbs_advise_mr_advice advice,
1786                                u32 pf_flags, struct prefetch_mr_work *work,
1787                                struct ib_sge *sg_list, u32 num_sge)
1788 {
1789         u32 i;
1790
1791         INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work);
1792         work->pf_flags = pf_flags;
1793
1794         for (i = 0; i < num_sge; ++i) {
1795                 work->frags[i].io_virt = sg_list[i].addr;
1796                 work->frags[i].length = sg_list[i].length;
1797                 work->frags[i].mr =
1798                         get_prefetchable_mr(pd, advice, sg_list[i].lkey);
1799                 if (!work->frags[i].mr) {
1800                         work->num_sge = i;
1801                         return false;
1802                 }
1803
1804                 /* Keep the MR pointer will valid outside the SRCU */
1805                 atomic_inc(&work->frags[i].mr->num_deferred_work);
1806         }
1807         work->num_sge = num_sge;
1808         return true;
1809 }
1810
1811 static int mlx5_ib_prefetch_sg_list(struct ib_pd *pd,
1812                                     enum ib_uverbs_advise_mr_advice advice,
1813                                     u32 pf_flags, struct ib_sge *sg_list,
1814                                     u32 num_sge)
1815 {
1816         struct mlx5_ib_dev *dev = to_mdev(pd->device);
1817         u32 bytes_mapped = 0;
1818         int srcu_key;
1819         int ret = 0;
1820         u32 i;
1821
1822         srcu_key = srcu_read_lock(&dev->odp_srcu);
1823         for (i = 0; i < num_sge; ++i) {
1824                 struct mlx5_ib_mr *mr;
1825
1826                 mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey);
1827                 if (!mr) {
1828                         ret = -ENOENT;
1829                         goto out;
1830                 }
1831                 ret = pagefault_mr(mr, sg_list[i].addr, sg_list[i].length,
1832                                    &bytes_mapped, pf_flags);
1833                 if (ret < 0)
1834                         goto out;
1835         }
1836         ret = 0;
1837
1838 out:
1839         srcu_read_unlock(&dev->odp_srcu, srcu_key);
1840         return ret;
1841 }
1842
1843 int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd,
1844                                enum ib_uverbs_advise_mr_advice advice,
1845                                u32 flags, struct ib_sge *sg_list, u32 num_sge)
1846 {
1847         struct mlx5_ib_dev *dev = to_mdev(pd->device);
1848         u32 pf_flags = 0;
1849         struct prefetch_mr_work *work;
1850         int srcu_key;
1851
1852         if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH)
1853                 pf_flags |= MLX5_PF_FLAGS_DOWNGRADE;
1854
1855         if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH)
1856                 return mlx5_ib_prefetch_sg_list(pd, advice, pf_flags, sg_list,
1857                                                 num_sge);
1858
1859         work = kvzalloc(struct_size(work, frags, num_sge), GFP_KERNEL);
1860         if (!work)
1861                 return -ENOMEM;
1862
1863         srcu_key = srcu_read_lock(&dev->odp_srcu);
1864         if (!init_prefetch_work(pd, advice, pf_flags, work, sg_list, num_sge)) {
1865                 srcu_read_unlock(&dev->odp_srcu, srcu_key);
1866                 destroy_prefetch_work(work);
1867                 return -EINVAL;
1868         }
1869         queue_work(system_unbound_wq, &work->work);
1870         srcu_read_unlock(&dev->odp_srcu, srcu_key);
1871         return 0;
1872 }