Merge branch 'cpufreq/arm/linux-next' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / drivers / infiniband / hw / mlx5 / odp.c
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32
33 #include <rdma/ib_umem.h>
34 #include <rdma/ib_umem_odp.h>
35 #include <linux/kernel.h>
36 #include <linux/dma-buf.h>
37 #include <linux/dma-resv.h>
38
39 #include "mlx5_ib.h"
40 #include "cmd.h"
41 #include "qp.h"
42
43 #include <linux/mlx5/eq.h>
44
45 /* Contains the details of a pagefault. */
46 struct mlx5_pagefault {
47         u32                     bytes_committed;
48         u32                     token;
49         u8                      event_subtype;
50         u8                      type;
51         union {
52                 /* Initiator or send message responder pagefault details. */
53                 struct {
54                         /* Received packet size, only valid for responders. */
55                         u32     packet_size;
56                         /*
57                          * Number of resource holding WQE, depends on type.
58                          */
59                         u32     wq_num;
60                         /*
61                          * WQE index. Refers to either the send queue or
62                          * receive queue, according to event_subtype.
63                          */
64                         u16     wqe_index;
65                 } wqe;
66                 /* RDMA responder pagefault details */
67                 struct {
68                         u32     r_key;
69                         /*
70                          * Received packet size, minimal size page fault
71                          * resolution required for forward progress.
72                          */
73                         u32     packet_size;
74                         u32     rdma_op_len;
75                         u64     rdma_va;
76                 } rdma;
77         };
78
79         struct mlx5_ib_pf_eq    *eq;
80         struct work_struct      work;
81 };
82
83 #define MAX_PREFETCH_LEN (4*1024*1024U)
84
85 /* Timeout in ms to wait for an active mmu notifier to complete when handling
86  * a pagefault. */
87 #define MMU_NOTIFIER_TIMEOUT 1000
88
89 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
90 #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
91 #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
92 #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
93 #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
94
95 #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
96
97 static u64 mlx5_imr_ksm_entries;
98
99 static void populate_klm(struct mlx5_klm *pklm, size_t idx, size_t nentries,
100                         struct mlx5_ib_mr *imr, int flags)
101 {
102         struct mlx5_klm *end = pklm + nentries;
103
104         if (flags & MLX5_IB_UPD_XLT_ZAP) {
105                 for (; pklm != end; pklm++, idx++) {
106                         pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
107                         pklm->key = cpu_to_be32(mr_to_mdev(imr)->null_mkey);
108                         pklm->va = 0;
109                 }
110                 return;
111         }
112
113         /*
114          * The locking here is pretty subtle. Ideally the implicit_children
115          * xarray would be protected by the umem_mutex, however that is not
116          * possible. Instead this uses a weaker update-then-lock pattern:
117          *
118          *    xa_store()
119          *    mutex_lock(umem_mutex)
120          *     mlx5_ib_update_xlt()
121          *    mutex_unlock(umem_mutex)
122          *    destroy lkey
123          *
124          * ie any change the xarray must be followed by the locked update_xlt
125          * before destroying.
126          *
127          * The umem_mutex provides the acquire/release semantic needed to make
128          * the xa_store() visible to a racing thread.
129          */
130         lockdep_assert_held(&to_ib_umem_odp(imr->umem)->umem_mutex);
131
132         for (; pklm != end; pklm++, idx++) {
133                 struct mlx5_ib_mr *mtt = xa_load(&imr->implicit_children, idx);
134
135                 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
136                 if (mtt) {
137                         pklm->key = cpu_to_be32(mtt->ibmr.lkey);
138                         pklm->va = cpu_to_be64(idx * MLX5_IMR_MTT_SIZE);
139                 } else {
140                         pklm->key = cpu_to_be32(mr_to_mdev(imr)->null_mkey);
141                         pklm->va = 0;
142                 }
143         }
144 }
145
146 static u64 umem_dma_to_mtt(dma_addr_t umem_dma)
147 {
148         u64 mtt_entry = umem_dma & ODP_DMA_ADDR_MASK;
149
150         if (umem_dma & ODP_READ_ALLOWED_BIT)
151                 mtt_entry |= MLX5_IB_MTT_READ;
152         if (umem_dma & ODP_WRITE_ALLOWED_BIT)
153                 mtt_entry |= MLX5_IB_MTT_WRITE;
154
155         return mtt_entry;
156 }
157
158 static void populate_mtt(__be64 *pas, size_t idx, size_t nentries,
159                          struct mlx5_ib_mr *mr, int flags)
160 {
161         struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
162         dma_addr_t pa;
163         size_t i;
164
165         if (flags & MLX5_IB_UPD_XLT_ZAP)
166                 return;
167
168         for (i = 0; i < nentries; i++) {
169                 pa = odp->dma_list[idx + i];
170                 pas[i] = cpu_to_be64(umem_dma_to_mtt(pa));
171         }
172 }
173
174 void mlx5_odp_populate_xlt(void *xlt, size_t idx, size_t nentries,
175                            struct mlx5_ib_mr *mr, int flags)
176 {
177         if (flags & MLX5_IB_UPD_XLT_INDIRECT) {
178                 populate_klm(xlt, idx, nentries, mr, flags);
179         } else {
180                 populate_mtt(xlt, idx, nentries, mr, flags);
181         }
182 }
183
184 /*
185  * This must be called after the mr has been removed from implicit_children.
186  * NOTE: The MR does not necessarily have to be
187  * empty here, parallel page faults could have raced with the free process and
188  * added pages to it.
189  */
190 static void free_implicit_child_mr_work(struct work_struct *work)
191 {
192         struct mlx5_ib_mr *mr =
193                 container_of(work, struct mlx5_ib_mr, odp_destroy.work);
194         struct mlx5_ib_mr *imr = mr->parent;
195         struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem);
196         struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
197
198         mlx5r_deref_wait_odp_mkey(&mr->mmkey);
199
200         mutex_lock(&odp_imr->umem_mutex);
201         mlx5_ib_update_xlt(mr->parent, ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT,
202                            1, 0,
203                            MLX5_IB_UPD_XLT_INDIRECT | MLX5_IB_UPD_XLT_ATOMIC);
204         mutex_unlock(&odp_imr->umem_mutex);
205         mlx5_ib_dereg_mr(&mr->ibmr, NULL);
206
207         mlx5r_deref_odp_mkey(&imr->mmkey);
208 }
209
210 static void destroy_unused_implicit_child_mr(struct mlx5_ib_mr *mr)
211 {
212         struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
213         unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT;
214         struct mlx5_ib_mr *imr = mr->parent;
215
216         if (!refcount_inc_not_zero(&imr->mmkey.usecount))
217                 return;
218
219         xa_erase(&imr->implicit_children, idx);
220
221         /* Freeing a MR is a sleeping operation, so bounce to a work queue */
222         INIT_WORK(&mr->odp_destroy.work, free_implicit_child_mr_work);
223         queue_work(system_unbound_wq, &mr->odp_destroy.work);
224 }
225
226 static bool mlx5_ib_invalidate_range(struct mmu_interval_notifier *mni,
227                                      const struct mmu_notifier_range *range,
228                                      unsigned long cur_seq)
229 {
230         struct ib_umem_odp *umem_odp =
231                 container_of(mni, struct ib_umem_odp, notifier);
232         struct mlx5_ib_mr *mr;
233         const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT /
234                                     sizeof(struct mlx5_mtt)) - 1;
235         u64 idx = 0, blk_start_idx = 0;
236         u64 invalidations = 0;
237         unsigned long start;
238         unsigned long end;
239         int in_block = 0;
240         u64 addr;
241
242         if (!mmu_notifier_range_blockable(range))
243                 return false;
244
245         mutex_lock(&umem_odp->umem_mutex);
246         mmu_interval_set_seq(mni, cur_seq);
247         /*
248          * If npages is zero then umem_odp->private may not be setup yet. This
249          * does not complete until after the first page is mapped for DMA.
250          */
251         if (!umem_odp->npages)
252                 goto out;
253         mr = umem_odp->private;
254
255         start = max_t(u64, ib_umem_start(umem_odp), range->start);
256         end = min_t(u64, ib_umem_end(umem_odp), range->end);
257
258         /*
259          * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
260          * while we are doing the invalidation, no page fault will attempt to
261          * overwrite the same MTTs.  Concurent invalidations might race us,
262          * but they will write 0s as well, so no difference in the end result.
263          */
264         for (addr = start; addr < end; addr += BIT(umem_odp->page_shift)) {
265                 idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift;
266                 /*
267                  * Strive to write the MTTs in chunks, but avoid overwriting
268                  * non-existing MTTs. The huristic here can be improved to
269                  * estimate the cost of another UMR vs. the cost of bigger
270                  * UMR.
271                  */
272                 if (umem_odp->dma_list[idx] &
273                     (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
274                         if (!in_block) {
275                                 blk_start_idx = idx;
276                                 in_block = 1;
277                         }
278
279                         /* Count page invalidations */
280                         invalidations += idx - blk_start_idx + 1;
281                 } else {
282                         u64 umr_offset = idx & umr_block_mask;
283
284                         if (in_block && umr_offset == 0) {
285                                 mlx5_ib_update_xlt(mr, blk_start_idx,
286                                                    idx - blk_start_idx, 0,
287                                                    MLX5_IB_UPD_XLT_ZAP |
288                                                    MLX5_IB_UPD_XLT_ATOMIC);
289                                 in_block = 0;
290                         }
291                 }
292         }
293         if (in_block)
294                 mlx5_ib_update_xlt(mr, blk_start_idx,
295                                    idx - blk_start_idx + 1, 0,
296                                    MLX5_IB_UPD_XLT_ZAP |
297                                    MLX5_IB_UPD_XLT_ATOMIC);
298
299         mlx5_update_odp_stats(mr, invalidations, invalidations);
300
301         /*
302          * We are now sure that the device will not access the
303          * memory. We can safely unmap it, and mark it as dirty if
304          * needed.
305          */
306
307         ib_umem_odp_unmap_dma_pages(umem_odp, start, end);
308
309         if (unlikely(!umem_odp->npages && mr->parent))
310                 destroy_unused_implicit_child_mr(mr);
311 out:
312         mutex_unlock(&umem_odp->umem_mutex);
313         return true;
314 }
315
316 const struct mmu_interval_notifier_ops mlx5_mn_ops = {
317         .invalidate = mlx5_ib_invalidate_range,
318 };
319
320 static void internal_fill_odp_caps(struct mlx5_ib_dev *dev)
321 {
322         struct ib_odp_caps *caps = &dev->odp_caps;
323
324         memset(caps, 0, sizeof(*caps));
325
326         if (!MLX5_CAP_GEN(dev->mdev, pg) ||
327             !mlx5_ib_can_load_pas_with_umr(dev, 0))
328                 return;
329
330         caps->general_caps = IB_ODP_SUPPORT;
331
332         if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
333                 dev->odp_max_size = U64_MAX;
334         else
335                 dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
336
337         if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send))
338                 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
339
340         if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.srq_receive))
341                 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
342
343         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send))
344                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
345
346         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive))
347                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
348
349         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write))
350                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
351
352         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read))
353                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
354
355         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic))
356                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
357
358         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.srq_receive))
359                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
360
361         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.send))
362                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SEND;
363
364         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.receive))
365                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_RECV;
366
367         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.write))
368                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_WRITE;
369
370         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.read))
371                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_READ;
372
373         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.atomic))
374                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
375
376         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.srq_receive))
377                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
378
379         if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
380             MLX5_CAP_GEN(dev->mdev, null_mkey) &&
381             MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset) &&
382             !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled))
383                 caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
384 }
385
386 static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
387                                       struct mlx5_pagefault *pfault,
388                                       int error)
389 {
390         int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
391                      pfault->wqe.wq_num : pfault->token;
392         u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)] = {};
393         int err;
394
395         MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME);
396         MLX5_SET(page_fault_resume_in, in, page_fault_type, pfault->type);
397         MLX5_SET(page_fault_resume_in, in, token, pfault->token);
398         MLX5_SET(page_fault_resume_in, in, wq_number, wq_num);
399         MLX5_SET(page_fault_resume_in, in, error, !!error);
400
401         err = mlx5_cmd_exec_in(dev->mdev, page_fault_resume, in);
402         if (err)
403                 mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n",
404                             wq_num, err);
405 }
406
407 static struct mlx5_ib_mr *implicit_get_child_mr(struct mlx5_ib_mr *imr,
408                                                 unsigned long idx)
409 {
410         struct ib_umem_odp *odp;
411         struct mlx5_ib_mr *mr;
412         struct mlx5_ib_mr *ret;
413         int err;
414
415         odp = ib_umem_odp_alloc_child(to_ib_umem_odp(imr->umem),
416                                       idx * MLX5_IMR_MTT_SIZE,
417                                       MLX5_IMR_MTT_SIZE, &mlx5_mn_ops);
418         if (IS_ERR(odp))
419                 return ERR_CAST(odp);
420
421         mr = mlx5_mr_cache_alloc(
422                 mr_to_mdev(imr), MLX5_IMR_MTT_CACHE_ENTRY, imr->access_flags);
423         if (IS_ERR(mr)) {
424                 ib_umem_odp_release(odp);
425                 return mr;
426         }
427
428         mr->ibmr.pd = imr->ibmr.pd;
429         mr->ibmr.device = &mr_to_mdev(imr)->ib_dev;
430         mr->umem = &odp->umem;
431         mr->ibmr.lkey = mr->mmkey.key;
432         mr->ibmr.rkey = mr->mmkey.key;
433         mr->mmkey.iova = idx * MLX5_IMR_MTT_SIZE;
434         mr->parent = imr;
435         odp->private = mr;
436
437         /*
438          * First refcount is owned by the xarray and second refconut
439          * is returned to the caller.
440          */
441         refcount_set(&mr->mmkey.usecount, 2);
442
443         err = mlx5_ib_update_xlt(mr, 0,
444                                  MLX5_IMR_MTT_ENTRIES,
445                                  PAGE_SHIFT,
446                                  MLX5_IB_UPD_XLT_ZAP |
447                                  MLX5_IB_UPD_XLT_ENABLE);
448         if (err) {
449                 ret = ERR_PTR(err);
450                 goto out_mr;
451         }
452
453         xa_lock(&imr->implicit_children);
454         ret = __xa_cmpxchg(&imr->implicit_children, idx, NULL, mr,
455                            GFP_KERNEL);
456         if (unlikely(ret)) {
457                 if (xa_is_err(ret)) {
458                         ret = ERR_PTR(xa_err(ret));
459                         goto out_lock;
460                 }
461                 /*
462                  * Another thread beat us to creating the child mr, use
463                  * theirs.
464                  */
465                 refcount_inc(&ret->mmkey.usecount);
466                 goto out_lock;
467         }
468         xa_unlock(&imr->implicit_children);
469
470         mlx5_ib_dbg(mr_to_mdev(imr), "key %x mr %p\n", mr->mmkey.key, mr);
471         return mr;
472
473 out_lock:
474         xa_unlock(&imr->implicit_children);
475 out_mr:
476         mlx5_ib_dereg_mr(&mr->ibmr, NULL);
477         return ret;
478 }
479
480 struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
481                                              int access_flags)
482 {
483         struct mlx5_ib_dev *dev = to_mdev(pd->ibpd.device);
484         struct ib_umem_odp *umem_odp;
485         struct mlx5_ib_mr *imr;
486         int err;
487
488         if (!mlx5_ib_can_load_pas_with_umr(dev,
489                                            MLX5_IMR_MTT_ENTRIES * PAGE_SIZE))
490                 return ERR_PTR(-EOPNOTSUPP);
491
492         umem_odp = ib_umem_odp_alloc_implicit(&dev->ib_dev, access_flags);
493         if (IS_ERR(umem_odp))
494                 return ERR_CAST(umem_odp);
495
496         imr = mlx5_mr_cache_alloc(dev, MLX5_IMR_KSM_CACHE_ENTRY, access_flags);
497         if (IS_ERR(imr)) {
498                 ib_umem_odp_release(umem_odp);
499                 return imr;
500         }
501
502         imr->ibmr.pd = &pd->ibpd;
503         imr->mmkey.iova = 0;
504         imr->umem = &umem_odp->umem;
505         imr->ibmr.lkey = imr->mmkey.key;
506         imr->ibmr.rkey = imr->mmkey.key;
507         imr->ibmr.device = &dev->ib_dev;
508         imr->umem = &umem_odp->umem;
509         imr->is_odp_implicit = true;
510         xa_init(&imr->implicit_children);
511
512         err = mlx5_ib_update_xlt(imr, 0,
513                                  mlx5_imr_ksm_entries,
514                                  MLX5_KSM_PAGE_SHIFT,
515                                  MLX5_IB_UPD_XLT_INDIRECT |
516                                  MLX5_IB_UPD_XLT_ZAP |
517                                  MLX5_IB_UPD_XLT_ENABLE);
518         if (err)
519                 goto out_mr;
520
521         err = mlx5r_store_odp_mkey(dev, &imr->mmkey);
522         if (err)
523                 goto out_mr;
524
525         mlx5_ib_dbg(dev, "key %x mr %p\n", imr->mmkey.key, imr);
526         return imr;
527 out_mr:
528         mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
529         mlx5_ib_dereg_mr(&imr->ibmr, NULL);
530         return ERR_PTR(err);
531 }
532
533 void mlx5_ib_free_odp_mr(struct mlx5_ib_mr *mr)
534 {
535         struct mlx5_ib_mr *mtt;
536         unsigned long idx;
537
538         /*
539          * If this is an implicit MR it is already invalidated so we can just
540          * delete the children mkeys.
541          */
542         xa_for_each(&mr->implicit_children, idx, mtt) {
543                 xa_erase(&mr->implicit_children, idx);
544                 mlx5_ib_dereg_mr(&mtt->ibmr, NULL);
545         }
546 }
547
548 #define MLX5_PF_FLAGS_DOWNGRADE BIT(1)
549 #define MLX5_PF_FLAGS_SNAPSHOT BIT(2)
550 #define MLX5_PF_FLAGS_ENABLE BIT(3)
551 static int pagefault_real_mr(struct mlx5_ib_mr *mr, struct ib_umem_odp *odp,
552                              u64 user_va, size_t bcnt, u32 *bytes_mapped,
553                              u32 flags)
554 {
555         int page_shift, ret, np;
556         bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE;
557         u64 access_mask;
558         u64 start_idx;
559         bool fault = !(flags & MLX5_PF_FLAGS_SNAPSHOT);
560         u32 xlt_flags = MLX5_IB_UPD_XLT_ATOMIC;
561
562         if (flags & MLX5_PF_FLAGS_ENABLE)
563                 xlt_flags |= MLX5_IB_UPD_XLT_ENABLE;
564
565         page_shift = odp->page_shift;
566         start_idx = (user_va - ib_umem_start(odp)) >> page_shift;
567         access_mask = ODP_READ_ALLOWED_BIT;
568
569         if (odp->umem.writable && !downgrade)
570                 access_mask |= ODP_WRITE_ALLOWED_BIT;
571
572         np = ib_umem_odp_map_dma_and_lock(odp, user_va, bcnt, access_mask, fault);
573         if (np < 0)
574                 return np;
575
576         /*
577          * No need to check whether the MTTs really belong to this MR, since
578          * ib_umem_odp_map_dma_and_lock already checks this.
579          */
580         ret = mlx5_ib_update_xlt(mr, start_idx, np, page_shift, xlt_flags);
581         mutex_unlock(&odp->umem_mutex);
582
583         if (ret < 0) {
584                 if (ret != -EAGAIN)
585                         mlx5_ib_err(mr_to_mdev(mr),
586                                     "Failed to update mkey page tables\n");
587                 goto out;
588         }
589
590         if (bytes_mapped) {
591                 u32 new_mappings = (np << page_shift) -
592                         (user_va - round_down(user_va, 1 << page_shift));
593
594                 *bytes_mapped += min_t(u32, new_mappings, bcnt);
595         }
596
597         return np << (page_shift - PAGE_SHIFT);
598
599 out:
600         return ret;
601 }
602
603 static int pagefault_implicit_mr(struct mlx5_ib_mr *imr,
604                                  struct ib_umem_odp *odp_imr, u64 user_va,
605                                  size_t bcnt, u32 *bytes_mapped, u32 flags)
606 {
607         unsigned long end_idx = (user_va + bcnt - 1) >> MLX5_IMR_MTT_SHIFT;
608         unsigned long upd_start_idx = end_idx + 1;
609         unsigned long upd_len = 0;
610         unsigned long npages = 0;
611         int err;
612         int ret;
613
614         if (unlikely(user_va >= mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE ||
615                      mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE - user_va < bcnt))
616                 return -EFAULT;
617
618         /* Fault each child mr that intersects with our interval. */
619         while (bcnt) {
620                 unsigned long idx = user_va >> MLX5_IMR_MTT_SHIFT;
621                 struct ib_umem_odp *umem_odp;
622                 struct mlx5_ib_mr *mtt;
623                 u64 len;
624
625                 xa_lock(&imr->implicit_children);
626                 mtt = xa_load(&imr->implicit_children, idx);
627                 if (unlikely(!mtt)) {
628                         xa_unlock(&imr->implicit_children);
629                         mtt = implicit_get_child_mr(imr, idx);
630                         if (IS_ERR(mtt)) {
631                                 ret = PTR_ERR(mtt);
632                                 goto out;
633                         }
634                         upd_start_idx = min(upd_start_idx, idx);
635                         upd_len = idx - upd_start_idx + 1;
636                 } else {
637                         refcount_inc(&mtt->mmkey.usecount);
638                         xa_unlock(&imr->implicit_children);
639                 }
640
641                 umem_odp = to_ib_umem_odp(mtt->umem);
642                 len = min_t(u64, user_va + bcnt, ib_umem_end(umem_odp)) -
643                       user_va;
644
645                 ret = pagefault_real_mr(mtt, umem_odp, user_va, len,
646                                         bytes_mapped, flags);
647
648                 mlx5r_deref_odp_mkey(&mtt->mmkey);
649
650                 if (ret < 0)
651                         goto out;
652                 user_va += len;
653                 bcnt -= len;
654                 npages += ret;
655         }
656
657         ret = npages;
658
659         /*
660          * Any time the implicit_children are changed we must perform an
661          * update of the xlt before exiting to ensure the HW and the
662          * implicit_children remains synchronized.
663          */
664 out:
665         if (likely(!upd_len))
666                 return ret;
667
668         /*
669          * Notice this is not strictly ordered right, the KSM is updated after
670          * the implicit_children is updated, so a parallel page fault could
671          * see a MR that is not yet visible in the KSM.  This is similar to a
672          * parallel page fault seeing a MR that is being concurrently removed
673          * from the KSM. Both of these improbable situations are resolved
674          * safely by resuming the HW and then taking another page fault. The
675          * next pagefault handler will see the new information.
676          */
677         mutex_lock(&odp_imr->umem_mutex);
678         err = mlx5_ib_update_xlt(imr, upd_start_idx, upd_len, 0,
679                                  MLX5_IB_UPD_XLT_INDIRECT |
680                                          MLX5_IB_UPD_XLT_ATOMIC);
681         mutex_unlock(&odp_imr->umem_mutex);
682         if (err) {
683                 mlx5_ib_err(mr_to_mdev(imr), "Failed to update PAS\n");
684                 return err;
685         }
686         return ret;
687 }
688
689 static int pagefault_dmabuf_mr(struct mlx5_ib_mr *mr, size_t bcnt,
690                                u32 *bytes_mapped, u32 flags)
691 {
692         struct ib_umem_dmabuf *umem_dmabuf = to_ib_umem_dmabuf(mr->umem);
693         u32 xlt_flags = 0;
694         int err;
695         unsigned int page_size;
696
697         if (flags & MLX5_PF_FLAGS_ENABLE)
698                 xlt_flags |= MLX5_IB_UPD_XLT_ENABLE;
699
700         dma_resv_lock(umem_dmabuf->attach->dmabuf->resv, NULL);
701         err = ib_umem_dmabuf_map_pages(umem_dmabuf);
702         if (err) {
703                 dma_resv_unlock(umem_dmabuf->attach->dmabuf->resv);
704                 return err;
705         }
706
707         page_size = mlx5_umem_find_best_pgsz(&umem_dmabuf->umem, mkc,
708                                              log_page_size, 0,
709                                              umem_dmabuf->umem.iova);
710         if (unlikely(page_size < PAGE_SIZE)) {
711                 ib_umem_dmabuf_unmap_pages(umem_dmabuf);
712                 err = -EINVAL;
713         } else {
714                 err = mlx5_ib_update_mr_pas(mr, xlt_flags);
715         }
716         dma_resv_unlock(umem_dmabuf->attach->dmabuf->resv);
717
718         if (err)
719                 return err;
720
721         if (bytes_mapped)
722                 *bytes_mapped += bcnt;
723
724         return ib_umem_num_pages(mr->umem);
725 }
726
727 /*
728  * Returns:
729  *  -EFAULT: The io_virt->bcnt is not within the MR, it covers pages that are
730  *           not accessible, or the MR is no longer valid.
731  *  -EAGAIN/-ENOMEM: The operation should be retried
732  *
733  *  -EINVAL/others: General internal malfunction
734  *  >0: Number of pages mapped
735  */
736 static int pagefault_mr(struct mlx5_ib_mr *mr, u64 io_virt, size_t bcnt,
737                         u32 *bytes_mapped, u32 flags)
738 {
739         struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
740
741         if (unlikely(io_virt < mr->mmkey.iova))
742                 return -EFAULT;
743
744         if (mr->umem->is_dmabuf)
745                 return pagefault_dmabuf_mr(mr, bcnt, bytes_mapped, flags);
746
747         if (!odp->is_implicit_odp) {
748                 u64 user_va;
749
750                 if (check_add_overflow(io_virt - mr->mmkey.iova,
751                                        (u64)odp->umem.address, &user_va))
752                         return -EFAULT;
753                 if (unlikely(user_va >= ib_umem_end(odp) ||
754                              ib_umem_end(odp) - user_va < bcnt))
755                         return -EFAULT;
756                 return pagefault_real_mr(mr, odp, user_va, bcnt, bytes_mapped,
757                                          flags);
758         }
759         return pagefault_implicit_mr(mr, odp, io_virt, bcnt, bytes_mapped,
760                                      flags);
761 }
762
763 int mlx5_ib_init_odp_mr(struct mlx5_ib_mr *mr)
764 {
765         int ret;
766
767         ret = pagefault_real_mr(mr, to_ib_umem_odp(mr->umem), mr->umem->address,
768                                 mr->umem->length, NULL,
769                                 MLX5_PF_FLAGS_SNAPSHOT | MLX5_PF_FLAGS_ENABLE);
770         return ret >= 0 ? 0 : ret;
771 }
772
773 int mlx5_ib_init_dmabuf_mr(struct mlx5_ib_mr *mr)
774 {
775         int ret;
776
777         ret = pagefault_dmabuf_mr(mr, mr->umem->length, NULL,
778                                   MLX5_PF_FLAGS_ENABLE);
779
780         return ret >= 0 ? 0 : ret;
781 }
782
783 struct pf_frame {
784         struct pf_frame *next;
785         u32 key;
786         u64 io_virt;
787         size_t bcnt;
788         int depth;
789 };
790
791 static bool mkey_is_eq(struct mlx5_core_mkey *mmkey, u32 key)
792 {
793         if (!mmkey)
794                 return false;
795         if (mmkey->type == MLX5_MKEY_MW)
796                 return mlx5_base_mkey(mmkey->key) == mlx5_base_mkey(key);
797         return mmkey->key == key;
798 }
799
800 static int get_indirect_num_descs(struct mlx5_core_mkey *mmkey)
801 {
802         struct mlx5_ib_mw *mw;
803         struct mlx5_ib_devx_mr *devx_mr;
804
805         if (mmkey->type == MLX5_MKEY_MW) {
806                 mw = container_of(mmkey, struct mlx5_ib_mw, mmkey);
807                 return mw->ndescs;
808         }
809
810         devx_mr = container_of(mmkey, struct mlx5_ib_devx_mr,
811                                mmkey);
812         return devx_mr->ndescs;
813 }
814
815 /*
816  * Handle a single data segment in a page-fault WQE or RDMA region.
817  *
818  * Returns number of OS pages retrieved on success. The caller may continue to
819  * the next data segment.
820  * Can return the following error codes:
821  * -EAGAIN to designate a temporary error. The caller will abort handling the
822  *  page fault and resolve it.
823  * -EFAULT when there's an error mapping the requested pages. The caller will
824  *  abort the page fault handling.
825  */
826 static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
827                                          struct ib_pd *pd, u32 key,
828                                          u64 io_virt, size_t bcnt,
829                                          u32 *bytes_committed,
830                                          u32 *bytes_mapped)
831 {
832         int npages = 0, ret, i, outlen, cur_outlen = 0, depth = 0;
833         struct pf_frame *head = NULL, *frame;
834         struct mlx5_core_mkey *mmkey;
835         struct mlx5_ib_mr *mr;
836         struct mlx5_klm *pklm;
837         u32 *out = NULL;
838         size_t offset;
839         int ndescs;
840
841         io_virt += *bytes_committed;
842         bcnt -= *bytes_committed;
843
844 next_mr:
845         xa_lock(&dev->odp_mkeys);
846         mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(key));
847         if (!mmkey) {
848                 xa_unlock(&dev->odp_mkeys);
849                 mlx5_ib_dbg(
850                         dev,
851                         "skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
852                         key);
853                 if (bytes_mapped)
854                         *bytes_mapped += bcnt;
855                 /*
856                  * The user could specify a SGL with multiple lkeys and only
857                  * some of them are ODP. Treat the non-ODP ones as fully
858                  * faulted.
859                  */
860                 ret = 0;
861                 goto end;
862         }
863         refcount_inc(&mmkey->usecount);
864         xa_unlock(&dev->odp_mkeys);
865
866         if (!mkey_is_eq(mmkey, key)) {
867                 mlx5_ib_dbg(dev, "failed to find mkey %x\n", key);
868                 ret = -EFAULT;
869                 goto end;
870         }
871
872         switch (mmkey->type) {
873         case MLX5_MKEY_MR:
874                 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
875
876                 ret = pagefault_mr(mr, io_virt, bcnt, bytes_mapped, 0);
877                 if (ret < 0)
878                         goto end;
879
880                 mlx5_update_odp_stats(mr, faults, ret);
881
882                 npages += ret;
883                 ret = 0;
884                 break;
885
886         case MLX5_MKEY_MW:
887         case MLX5_MKEY_INDIRECT_DEVX:
888                 ndescs = get_indirect_num_descs(mmkey);
889
890                 if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) {
891                         mlx5_ib_dbg(dev, "indirection level exceeded\n");
892                         ret = -EFAULT;
893                         goto end;
894                 }
895
896                 outlen = MLX5_ST_SZ_BYTES(query_mkey_out) +
897                         sizeof(*pklm) * (ndescs - 2);
898
899                 if (outlen > cur_outlen) {
900                         kfree(out);
901                         out = kzalloc(outlen, GFP_KERNEL);
902                         if (!out) {
903                                 ret = -ENOMEM;
904                                 goto end;
905                         }
906                         cur_outlen = outlen;
907                 }
908
909                 pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out,
910                                                        bsf0_klm0_pas_mtt0_1);
911
912                 ret = mlx5_core_query_mkey(dev->mdev, mmkey, out, outlen);
913                 if (ret)
914                         goto end;
915
916                 offset = io_virt - MLX5_GET64(query_mkey_out, out,
917                                               memory_key_mkey_entry.start_addr);
918
919                 for (i = 0; bcnt && i < ndescs; i++, pklm++) {
920                         if (offset >= be32_to_cpu(pklm->bcount)) {
921                                 offset -= be32_to_cpu(pklm->bcount);
922                                 continue;
923                         }
924
925                         frame = kzalloc(sizeof(*frame), GFP_KERNEL);
926                         if (!frame) {
927                                 ret = -ENOMEM;
928                                 goto end;
929                         }
930
931                         frame->key = be32_to_cpu(pklm->key);
932                         frame->io_virt = be64_to_cpu(pklm->va) + offset;
933                         frame->bcnt = min_t(size_t, bcnt,
934                                             be32_to_cpu(pklm->bcount) - offset);
935                         frame->depth = depth + 1;
936                         frame->next = head;
937                         head = frame;
938
939                         bcnt -= frame->bcnt;
940                         offset = 0;
941                 }
942                 break;
943
944         default:
945                 mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type);
946                 ret = -EFAULT;
947                 goto end;
948         }
949
950         if (head) {
951                 frame = head;
952                 head = frame->next;
953
954                 key = frame->key;
955                 io_virt = frame->io_virt;
956                 bcnt = frame->bcnt;
957                 depth = frame->depth;
958                 kfree(frame);
959
960                 mlx5r_deref_odp_mkey(mmkey);
961                 goto next_mr;
962         }
963
964 end:
965         if (mmkey)
966                 mlx5r_deref_odp_mkey(mmkey);
967         while (head) {
968                 frame = head;
969                 head = frame->next;
970                 kfree(frame);
971         }
972         kfree(out);
973
974         *bytes_committed = 0;
975         return ret ? ret : npages;
976 }
977
978 /*
979  * Parse a series of data segments for page fault handling.
980  *
981  * @dev:  Pointer to mlx5 IB device
982  * @pfault: contains page fault information.
983  * @wqe: points at the first data segment in the WQE.
984  * @wqe_end: points after the end of the WQE.
985  * @bytes_mapped: receives the number of bytes that the function was able to
986  *                map. This allows the caller to decide intelligently whether
987  *                enough memory was mapped to resolve the page fault
988  *                successfully (e.g. enough for the next MTU, or the entire
989  *                WQE).
990  * @total_wqe_bytes: receives the total data size of this WQE in bytes (minus
991  *                   the committed bytes).
992  * @receive_queue: receive WQE end of sg list
993  *
994  * Returns the number of pages loaded if positive, zero for an empty WQE, or a
995  * negative error code.
996  */
997 static int pagefault_data_segments(struct mlx5_ib_dev *dev,
998                                    struct mlx5_pagefault *pfault,
999                                    void *wqe,
1000                                    void *wqe_end, u32 *bytes_mapped,
1001                                    u32 *total_wqe_bytes, bool receive_queue)
1002 {
1003         int ret = 0, npages = 0;
1004         u64 io_virt;
1005         u32 key;
1006         u32 byte_count;
1007         size_t bcnt;
1008         int inline_segment;
1009
1010         if (bytes_mapped)
1011                 *bytes_mapped = 0;
1012         if (total_wqe_bytes)
1013                 *total_wqe_bytes = 0;
1014
1015         while (wqe < wqe_end) {
1016                 struct mlx5_wqe_data_seg *dseg = wqe;
1017
1018                 io_virt = be64_to_cpu(dseg->addr);
1019                 key = be32_to_cpu(dseg->lkey);
1020                 byte_count = be32_to_cpu(dseg->byte_count);
1021                 inline_segment = !!(byte_count &  MLX5_INLINE_SEG);
1022                 bcnt           = byte_count & ~MLX5_INLINE_SEG;
1023
1024                 if (inline_segment) {
1025                         bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
1026                         wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
1027                                      16);
1028                 } else {
1029                         wqe += sizeof(*dseg);
1030                 }
1031
1032                 /* receive WQE end of sg list. */
1033                 if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY &&
1034                     io_virt == 0)
1035                         break;
1036
1037                 if (!inline_segment && total_wqe_bytes) {
1038                         *total_wqe_bytes += bcnt - min_t(size_t, bcnt,
1039                                         pfault->bytes_committed);
1040                 }
1041
1042                 /* A zero length data segment designates a length of 2GB. */
1043                 if (bcnt == 0)
1044                         bcnt = 1U << 31;
1045
1046                 if (inline_segment || bcnt <= pfault->bytes_committed) {
1047                         pfault->bytes_committed -=
1048                                 min_t(size_t, bcnt,
1049                                       pfault->bytes_committed);
1050                         continue;
1051                 }
1052
1053                 ret = pagefault_single_data_segment(dev, NULL, key,
1054                                                     io_virt, bcnt,
1055                                                     &pfault->bytes_committed,
1056                                                     bytes_mapped);
1057                 if (ret < 0)
1058                         break;
1059                 npages += ret;
1060         }
1061
1062         return ret < 0 ? ret : npages;
1063 }
1064
1065 /*
1066  * Parse initiator WQE. Advances the wqe pointer to point at the
1067  * scatter-gather list, and set wqe_end to the end of the WQE.
1068  */
1069 static int mlx5_ib_mr_initiator_pfault_handler(
1070         struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
1071         struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
1072 {
1073         struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
1074         u16 wqe_index = pfault->wqe.wqe_index;
1075         struct mlx5_base_av *av;
1076         unsigned ds, opcode;
1077         u32 qpn = qp->trans_qp.base.mqp.qpn;
1078
1079         ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
1080         if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
1081                 mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
1082                             ds, wqe_length);
1083                 return -EFAULT;
1084         }
1085
1086         if (ds == 0) {
1087                 mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
1088                             wqe_index, qpn);
1089                 return -EFAULT;
1090         }
1091
1092         *wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
1093         *wqe += sizeof(*ctrl);
1094
1095         opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
1096                  MLX5_WQE_CTRL_OPCODE_MASK;
1097
1098         if (qp->type == IB_QPT_XRC_INI)
1099                 *wqe += sizeof(struct mlx5_wqe_xrc_seg);
1100
1101         if (qp->type == IB_QPT_UD || qp->type == MLX5_IB_QPT_DCI) {
1102                 av = *wqe;
1103                 if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV))
1104                         *wqe += sizeof(struct mlx5_av);
1105                 else
1106                         *wqe += sizeof(struct mlx5_base_av);
1107         }
1108
1109         switch (opcode) {
1110         case MLX5_OPCODE_RDMA_WRITE:
1111         case MLX5_OPCODE_RDMA_WRITE_IMM:
1112         case MLX5_OPCODE_RDMA_READ:
1113                 *wqe += sizeof(struct mlx5_wqe_raddr_seg);
1114                 break;
1115         case MLX5_OPCODE_ATOMIC_CS:
1116         case MLX5_OPCODE_ATOMIC_FA:
1117                 *wqe += sizeof(struct mlx5_wqe_raddr_seg);
1118                 *wqe += sizeof(struct mlx5_wqe_atomic_seg);
1119                 break;
1120         }
1121
1122         return 0;
1123 }
1124
1125 /*
1126  * Parse responder WQE and set wqe_end to the end of the WQE.
1127  */
1128 static int mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev *dev,
1129                                                    struct mlx5_ib_srq *srq,
1130                                                    void **wqe, void **wqe_end,
1131                                                    int wqe_length)
1132 {
1133         int wqe_size = 1 << srq->msrq.wqe_shift;
1134
1135         if (wqe_size > wqe_length) {
1136                 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1137                 return -EFAULT;
1138         }
1139
1140         *wqe_end = *wqe + wqe_size;
1141         *wqe += sizeof(struct mlx5_wqe_srq_next_seg);
1142
1143         return 0;
1144 }
1145
1146 static int mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev *dev,
1147                                                   struct mlx5_ib_qp *qp,
1148                                                   void *wqe, void **wqe_end,
1149                                                   int wqe_length)
1150 {
1151         struct mlx5_ib_wq *wq = &qp->rq;
1152         int wqe_size = 1 << wq->wqe_shift;
1153
1154         if (qp->flags_en & MLX5_QP_FLAG_SIGNATURE) {
1155                 mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
1156                 return -EFAULT;
1157         }
1158
1159         if (wqe_size > wqe_length) {
1160                 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1161                 return -EFAULT;
1162         }
1163
1164         *wqe_end = wqe + wqe_size;
1165
1166         return 0;
1167 }
1168
1169 static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev,
1170                                                        u32 wq_num, int pf_type)
1171 {
1172         struct mlx5_core_rsc_common *common = NULL;
1173         struct mlx5_core_srq *srq;
1174
1175         switch (pf_type) {
1176         case MLX5_WQE_PF_TYPE_RMP:
1177                 srq = mlx5_cmd_get_srq(dev, wq_num);
1178                 if (srq)
1179                         common = &srq->common;
1180                 break;
1181         case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE:
1182         case MLX5_WQE_PF_TYPE_RESP:
1183         case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC:
1184                 common = mlx5_core_res_hold(dev, wq_num, MLX5_RES_QP);
1185                 break;
1186         default:
1187                 break;
1188         }
1189
1190         return common;
1191 }
1192
1193 static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res)
1194 {
1195         struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res;
1196
1197         return to_mibqp(mqp);
1198 }
1199
1200 static inline struct mlx5_ib_srq *res_to_srq(struct mlx5_core_rsc_common *res)
1201 {
1202         struct mlx5_core_srq *msrq =
1203                 container_of(res, struct mlx5_core_srq, common);
1204
1205         return to_mibsrq(msrq);
1206 }
1207
1208 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
1209                                           struct mlx5_pagefault *pfault)
1210 {
1211         bool sq = pfault->type & MLX5_PFAULT_REQUESTOR;
1212         u16 wqe_index = pfault->wqe.wqe_index;
1213         void *wqe, *wqe_start = NULL, *wqe_end = NULL;
1214         u32 bytes_mapped, total_wqe_bytes;
1215         struct mlx5_core_rsc_common *res;
1216         int resume_with_error = 1;
1217         struct mlx5_ib_qp *qp;
1218         size_t bytes_copied;
1219         int ret = 0;
1220
1221         res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type);
1222         if (!res) {
1223                 mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num);
1224                 return;
1225         }
1226
1227         if (res->res != MLX5_RES_QP && res->res != MLX5_RES_SRQ &&
1228             res->res != MLX5_RES_XSRQ) {
1229                 mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n",
1230                             pfault->type);
1231                 goto resolve_page_fault;
1232         }
1233
1234         wqe_start = (void *)__get_free_page(GFP_KERNEL);
1235         if (!wqe_start) {
1236                 mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
1237                 goto resolve_page_fault;
1238         }
1239
1240         wqe = wqe_start;
1241         qp = (res->res == MLX5_RES_QP) ? res_to_qp(res) : NULL;
1242         if (qp && sq) {
1243                 ret = mlx5_ib_read_wqe_sq(qp, wqe_index, wqe, PAGE_SIZE,
1244                                           &bytes_copied);
1245                 if (ret)
1246                         goto read_user;
1247                 ret = mlx5_ib_mr_initiator_pfault_handler(
1248                         dev, pfault, qp, &wqe, &wqe_end, bytes_copied);
1249         } else if (qp && !sq) {
1250                 ret = mlx5_ib_read_wqe_rq(qp, wqe_index, wqe, PAGE_SIZE,
1251                                           &bytes_copied);
1252                 if (ret)
1253                         goto read_user;
1254                 ret = mlx5_ib_mr_responder_pfault_handler_rq(
1255                         dev, qp, wqe, &wqe_end, bytes_copied);
1256         } else if (!qp) {
1257                 struct mlx5_ib_srq *srq = res_to_srq(res);
1258
1259                 ret = mlx5_ib_read_wqe_srq(srq, wqe_index, wqe, PAGE_SIZE,
1260                                            &bytes_copied);
1261                 if (ret)
1262                         goto read_user;
1263                 ret = mlx5_ib_mr_responder_pfault_handler_srq(
1264                         dev, srq, &wqe, &wqe_end, bytes_copied);
1265         }
1266
1267         if (ret < 0 || wqe >= wqe_end)
1268                 goto resolve_page_fault;
1269
1270         ret = pagefault_data_segments(dev, pfault, wqe, wqe_end, &bytes_mapped,
1271                                       &total_wqe_bytes, !sq);
1272         if (ret == -EAGAIN)
1273                 goto out;
1274
1275         if (ret < 0 || total_wqe_bytes > bytes_mapped)
1276                 goto resolve_page_fault;
1277
1278 out:
1279         ret = 0;
1280         resume_with_error = 0;
1281
1282 read_user:
1283         if (ret)
1284                 mlx5_ib_err(
1285                         dev,
1286                         "Failed reading a WQE following page fault, error %d, wqe_index %x, qpn %x\n",
1287                         ret, wqe_index, pfault->token);
1288
1289 resolve_page_fault:
1290         mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
1291         mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
1292                     pfault->wqe.wq_num, resume_with_error,
1293                     pfault->type);
1294         mlx5_core_res_put(res);
1295         free_page((unsigned long)wqe_start);
1296 }
1297
1298 static int pages_in_range(u64 address, u32 length)
1299 {
1300         return (ALIGN(address + length, PAGE_SIZE) -
1301                 (address & PAGE_MASK)) >> PAGE_SHIFT;
1302 }
1303
1304 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
1305                                            struct mlx5_pagefault *pfault)
1306 {
1307         u64 address;
1308         u32 length;
1309         u32 prefetch_len = pfault->bytes_committed;
1310         int prefetch_activated = 0;
1311         u32 rkey = pfault->rdma.r_key;
1312         int ret;
1313
1314         /* The RDMA responder handler handles the page fault in two parts.
1315          * First it brings the necessary pages for the current packet
1316          * (and uses the pfault context), and then (after resuming the QP)
1317          * prefetches more pages. The second operation cannot use the pfault
1318          * context and therefore uses the dummy_pfault context allocated on
1319          * the stack */
1320         pfault->rdma.rdma_va += pfault->bytes_committed;
1321         pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
1322                                          pfault->rdma.rdma_op_len);
1323         pfault->bytes_committed = 0;
1324
1325         address = pfault->rdma.rdma_va;
1326         length  = pfault->rdma.rdma_op_len;
1327
1328         /* For some operations, the hardware cannot tell the exact message
1329          * length, and in those cases it reports zero. Use prefetch
1330          * logic. */
1331         if (length == 0) {
1332                 prefetch_activated = 1;
1333                 length = pfault->rdma.packet_size;
1334                 prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
1335         }
1336
1337         ret = pagefault_single_data_segment(dev, NULL, rkey, address, length,
1338                                             &pfault->bytes_committed, NULL);
1339         if (ret == -EAGAIN) {
1340                 /* We're racing with an invalidation, don't prefetch */
1341                 prefetch_activated = 0;
1342         } else if (ret < 0 || pages_in_range(address, length) > ret) {
1343                 mlx5_ib_page_fault_resume(dev, pfault, 1);
1344                 if (ret != -ENOENT)
1345                         mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n",
1346                                     ret, pfault->token, pfault->type);
1347                 return;
1348         }
1349
1350         mlx5_ib_page_fault_resume(dev, pfault, 0);
1351         mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n",
1352                     pfault->token, pfault->type,
1353                     prefetch_activated);
1354
1355         /* At this point, there might be a new pagefault already arriving in
1356          * the eq, switch to the dummy pagefault for the rest of the
1357          * processing. We're still OK with the objects being alive as the
1358          * work-queue is being fenced. */
1359
1360         if (prefetch_activated) {
1361                 u32 bytes_committed = 0;
1362
1363                 ret = pagefault_single_data_segment(dev, NULL, rkey, address,
1364                                                     prefetch_len,
1365                                                     &bytes_committed, NULL);
1366                 if (ret < 0 && ret != -EAGAIN) {
1367                         mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n",
1368                                     ret, pfault->token, address, prefetch_len);
1369                 }
1370         }
1371 }
1372
1373 static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault)
1374 {
1375         u8 event_subtype = pfault->event_subtype;
1376
1377         switch (event_subtype) {
1378         case MLX5_PFAULT_SUBTYPE_WQE:
1379                 mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
1380                 break;
1381         case MLX5_PFAULT_SUBTYPE_RDMA:
1382                 mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
1383                 break;
1384         default:
1385                 mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
1386                             event_subtype);
1387                 mlx5_ib_page_fault_resume(dev, pfault, 1);
1388         }
1389 }
1390
1391 static void mlx5_ib_eqe_pf_action(struct work_struct *work)
1392 {
1393         struct mlx5_pagefault *pfault = container_of(work,
1394                                                      struct mlx5_pagefault,
1395                                                      work);
1396         struct mlx5_ib_pf_eq *eq = pfault->eq;
1397
1398         mlx5_ib_pfault(eq->dev, pfault);
1399         mempool_free(pfault, eq->pool);
1400 }
1401
1402 static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq)
1403 {
1404         struct mlx5_eqe_page_fault *pf_eqe;
1405         struct mlx5_pagefault *pfault;
1406         struct mlx5_eqe *eqe;
1407         int cc = 0;
1408
1409         while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) {
1410                 pfault = mempool_alloc(eq->pool, GFP_ATOMIC);
1411                 if (!pfault) {
1412                         schedule_work(&eq->work);
1413                         break;
1414                 }
1415
1416                 pf_eqe = &eqe->data.page_fault;
1417                 pfault->event_subtype = eqe->sub_type;
1418                 pfault->bytes_committed = be32_to_cpu(pf_eqe->bytes_committed);
1419
1420                 mlx5_ib_dbg(eq->dev,
1421                             "PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x\n",
1422                             eqe->sub_type, pfault->bytes_committed);
1423
1424                 switch (eqe->sub_type) {
1425                 case MLX5_PFAULT_SUBTYPE_RDMA:
1426                         /* RDMA based event */
1427                         pfault->type =
1428                                 be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24;
1429                         pfault->token =
1430                                 be32_to_cpu(pf_eqe->rdma.pftype_token) &
1431                                 MLX5_24BIT_MASK;
1432                         pfault->rdma.r_key =
1433                                 be32_to_cpu(pf_eqe->rdma.r_key);
1434                         pfault->rdma.packet_size =
1435                                 be16_to_cpu(pf_eqe->rdma.packet_length);
1436                         pfault->rdma.rdma_op_len =
1437                                 be32_to_cpu(pf_eqe->rdma.rdma_op_len);
1438                         pfault->rdma.rdma_va =
1439                                 be64_to_cpu(pf_eqe->rdma.rdma_va);
1440                         mlx5_ib_dbg(eq->dev,
1441                                     "PAGE_FAULT: type:0x%x, token: 0x%06x, r_key: 0x%08x\n",
1442                                     pfault->type, pfault->token,
1443                                     pfault->rdma.r_key);
1444                         mlx5_ib_dbg(eq->dev,
1445                                     "PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n",
1446                                     pfault->rdma.rdma_op_len,
1447                                     pfault->rdma.rdma_va);
1448                         break;
1449
1450                 case MLX5_PFAULT_SUBTYPE_WQE:
1451                         /* WQE based event */
1452                         pfault->type =
1453                                 (be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7;
1454                         pfault->token =
1455                                 be32_to_cpu(pf_eqe->wqe.token);
1456                         pfault->wqe.wq_num =
1457                                 be32_to_cpu(pf_eqe->wqe.pftype_wq) &
1458                                 MLX5_24BIT_MASK;
1459                         pfault->wqe.wqe_index =
1460                                 be16_to_cpu(pf_eqe->wqe.wqe_index);
1461                         pfault->wqe.packet_size =
1462                                 be16_to_cpu(pf_eqe->wqe.packet_length);
1463                         mlx5_ib_dbg(eq->dev,
1464                                     "PAGE_FAULT: type:0x%x, token: 0x%06x, wq_num: 0x%06x, wqe_index: 0x%04x\n",
1465                                     pfault->type, pfault->token,
1466                                     pfault->wqe.wq_num,
1467                                     pfault->wqe.wqe_index);
1468                         break;
1469
1470                 default:
1471                         mlx5_ib_warn(eq->dev,
1472                                      "Unsupported page fault event sub-type: 0x%02hhx\n",
1473                                      eqe->sub_type);
1474                         /* Unsupported page faults should still be
1475                          * resolved by the page fault handler
1476                          */
1477                 }
1478
1479                 pfault->eq = eq;
1480                 INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action);
1481                 queue_work(eq->wq, &pfault->work);
1482
1483                 cc = mlx5_eq_update_cc(eq->core, ++cc);
1484         }
1485
1486         mlx5_eq_update_ci(eq->core, cc, 1);
1487 }
1488
1489 static int mlx5_ib_eq_pf_int(struct notifier_block *nb, unsigned long type,
1490                              void *data)
1491 {
1492         struct mlx5_ib_pf_eq *eq =
1493                 container_of(nb, struct mlx5_ib_pf_eq, irq_nb);
1494         unsigned long flags;
1495
1496         if (spin_trylock_irqsave(&eq->lock, flags)) {
1497                 mlx5_ib_eq_pf_process(eq);
1498                 spin_unlock_irqrestore(&eq->lock, flags);
1499         } else {
1500                 schedule_work(&eq->work);
1501         }
1502
1503         return IRQ_HANDLED;
1504 }
1505
1506 /* mempool_refill() was proposed but unfortunately wasn't accepted
1507  * http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html
1508  * Cheap workaround.
1509  */
1510 static void mempool_refill(mempool_t *pool)
1511 {
1512         while (pool->curr_nr < pool->min_nr)
1513                 mempool_free(mempool_alloc(pool, GFP_KERNEL), pool);
1514 }
1515
1516 static void mlx5_ib_eq_pf_action(struct work_struct *work)
1517 {
1518         struct mlx5_ib_pf_eq *eq =
1519                 container_of(work, struct mlx5_ib_pf_eq, work);
1520
1521         mempool_refill(eq->pool);
1522
1523         spin_lock_irq(&eq->lock);
1524         mlx5_ib_eq_pf_process(eq);
1525         spin_unlock_irq(&eq->lock);
1526 }
1527
1528 enum {
1529         MLX5_IB_NUM_PF_EQE      = 0x1000,
1530         MLX5_IB_NUM_PF_DRAIN    = 64,
1531 };
1532
1533 int mlx5r_odp_create_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1534 {
1535         struct mlx5_eq_param param = {};
1536         int err = 0;
1537
1538         mutex_lock(&dev->odp_eq_mutex);
1539         if (eq->core)
1540                 goto unlock;
1541         INIT_WORK(&eq->work, mlx5_ib_eq_pf_action);
1542         spin_lock_init(&eq->lock);
1543         eq->dev = dev;
1544
1545         eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN,
1546                                                sizeof(struct mlx5_pagefault));
1547         if (!eq->pool) {
1548                 err = -ENOMEM;
1549                 goto unlock;
1550         }
1551
1552         eq->wq = alloc_workqueue("mlx5_ib_page_fault",
1553                                  WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM,
1554                                  MLX5_NUM_CMD_EQE);
1555         if (!eq->wq) {
1556                 err = -ENOMEM;
1557                 goto err_mempool;
1558         }
1559
1560         eq->irq_nb.notifier_call = mlx5_ib_eq_pf_int;
1561         param = (struct mlx5_eq_param) {
1562                 .nent = MLX5_IB_NUM_PF_EQE,
1563         };
1564         param.mask[0] = 1ull << MLX5_EVENT_TYPE_PAGE_FAULT;
1565         if (!zalloc_cpumask_var(&param.affinity, GFP_KERNEL)) {
1566                 err = -ENOMEM;
1567                 goto err_wq;
1568         }
1569         eq->core = mlx5_eq_create_generic(dev->mdev, &param);
1570         free_cpumask_var(param.affinity);
1571         if (IS_ERR(eq->core)) {
1572                 err = PTR_ERR(eq->core);
1573                 goto err_wq;
1574         }
1575         err = mlx5_eq_enable(dev->mdev, eq->core, &eq->irq_nb);
1576         if (err) {
1577                 mlx5_ib_err(dev, "failed to enable odp EQ %d\n", err);
1578                 goto err_eq;
1579         }
1580
1581         mutex_unlock(&dev->odp_eq_mutex);
1582         return 0;
1583 err_eq:
1584         mlx5_eq_destroy_generic(dev->mdev, eq->core);
1585 err_wq:
1586         eq->core = NULL;
1587         destroy_workqueue(eq->wq);
1588 err_mempool:
1589         mempool_destroy(eq->pool);
1590 unlock:
1591         mutex_unlock(&dev->odp_eq_mutex);
1592         return err;
1593 }
1594
1595 static int
1596 mlx5_ib_odp_destroy_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1597 {
1598         int err;
1599
1600         if (!eq->core)
1601                 return 0;
1602         mlx5_eq_disable(dev->mdev, eq->core, &eq->irq_nb);
1603         err = mlx5_eq_destroy_generic(dev->mdev, eq->core);
1604         cancel_work_sync(&eq->work);
1605         destroy_workqueue(eq->wq);
1606         mempool_destroy(eq->pool);
1607
1608         return err;
1609 }
1610
1611 void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent)
1612 {
1613         if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1614                 return;
1615
1616         switch (ent->order - 2) {
1617         case MLX5_IMR_MTT_CACHE_ENTRY:
1618                 ent->page = PAGE_SHIFT;
1619                 ent->xlt = MLX5_IMR_MTT_ENTRIES *
1620                            sizeof(struct mlx5_mtt) /
1621                            MLX5_IB_UMR_OCTOWORD;
1622                 ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
1623                 ent->limit = 0;
1624                 break;
1625
1626         case MLX5_IMR_KSM_CACHE_ENTRY:
1627                 ent->page = MLX5_KSM_PAGE_SHIFT;
1628                 ent->xlt = mlx5_imr_ksm_entries *
1629                            sizeof(struct mlx5_klm) /
1630                            MLX5_IB_UMR_OCTOWORD;
1631                 ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM;
1632                 ent->limit = 0;
1633                 break;
1634         }
1635 }
1636
1637 static const struct ib_device_ops mlx5_ib_dev_odp_ops = {
1638         .advise_mr = mlx5_ib_advise_mr,
1639 };
1640
1641 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
1642 {
1643         int ret = 0;
1644
1645         internal_fill_odp_caps(dev);
1646
1647         if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1648                 return ret;
1649
1650         ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops);
1651
1652         if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) {
1653                 ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey);
1654                 if (ret) {
1655                         mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret);
1656                         return ret;
1657                 }
1658         }
1659
1660         mutex_init(&dev->odp_eq_mutex);
1661         return ret;
1662 }
1663
1664 void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev)
1665 {
1666         if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1667                 return;
1668
1669         mlx5_ib_odp_destroy_eq(dev, &dev->odp_pf_eq);
1670 }
1671
1672 int mlx5_ib_odp_init(void)
1673 {
1674         mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
1675                                        MLX5_IMR_MTT_BITS);
1676
1677         return 0;
1678 }
1679
1680 struct prefetch_mr_work {
1681         struct work_struct work;
1682         u32 pf_flags;
1683         u32 num_sge;
1684         struct {
1685                 u64 io_virt;
1686                 struct mlx5_ib_mr *mr;
1687                 size_t length;
1688         } frags[];
1689 };
1690
1691 static void destroy_prefetch_work(struct prefetch_mr_work *work)
1692 {
1693         u32 i;
1694
1695         for (i = 0; i < work->num_sge; ++i)
1696                 mlx5r_deref_odp_mkey(&work->frags[i].mr->mmkey);
1697
1698         kvfree(work);
1699 }
1700
1701 static struct mlx5_ib_mr *
1702 get_prefetchable_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
1703                     u32 lkey)
1704 {
1705         struct mlx5_ib_dev *dev = to_mdev(pd->device);
1706         struct mlx5_core_mkey *mmkey;
1707         struct mlx5_ib_mr *mr = NULL;
1708
1709         xa_lock(&dev->odp_mkeys);
1710         mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(lkey));
1711         if (!mmkey || mmkey->key != lkey || mmkey->type != MLX5_MKEY_MR)
1712                 goto end;
1713
1714         mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1715
1716         if (mr->ibmr.pd != pd) {
1717                 mr = NULL;
1718                 goto end;
1719         }
1720
1721         /* prefetch with write-access must be supported by the MR */
1722         if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1723             !mr->umem->writable) {
1724                 mr = NULL;
1725                 goto end;
1726         }
1727
1728         refcount_inc(&mmkey->usecount);
1729 end:
1730         xa_unlock(&dev->odp_mkeys);
1731         return mr;
1732 }
1733
1734 static void mlx5_ib_prefetch_mr_work(struct work_struct *w)
1735 {
1736         struct prefetch_mr_work *work =
1737                 container_of(w, struct prefetch_mr_work, work);
1738         u32 bytes_mapped = 0;
1739         int ret;
1740         u32 i;
1741
1742         /* We rely on IB/core that work is executed if we have num_sge != 0 only. */
1743         WARN_ON(!work->num_sge);
1744         for (i = 0; i < work->num_sge; ++i) {
1745                 ret = pagefault_mr(work->frags[i].mr, work->frags[i].io_virt,
1746                                    work->frags[i].length, &bytes_mapped,
1747                                    work->pf_flags);
1748                 if (ret <= 0)
1749                         continue;
1750                 mlx5_update_odp_stats(work->frags[i].mr, prefetch, ret);
1751         }
1752
1753         destroy_prefetch_work(work);
1754 }
1755
1756 static bool init_prefetch_work(struct ib_pd *pd,
1757                                enum ib_uverbs_advise_mr_advice advice,
1758                                u32 pf_flags, struct prefetch_mr_work *work,
1759                                struct ib_sge *sg_list, u32 num_sge)
1760 {
1761         u32 i;
1762
1763         INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work);
1764         work->pf_flags = pf_flags;
1765
1766         for (i = 0; i < num_sge; ++i) {
1767                 work->frags[i].io_virt = sg_list[i].addr;
1768                 work->frags[i].length = sg_list[i].length;
1769                 work->frags[i].mr =
1770                         get_prefetchable_mr(pd, advice, sg_list[i].lkey);
1771                 if (!work->frags[i].mr) {
1772                         work->num_sge = i;
1773                         return false;
1774                 }
1775         }
1776         work->num_sge = num_sge;
1777         return true;
1778 }
1779
1780 static int mlx5_ib_prefetch_sg_list(struct ib_pd *pd,
1781                                     enum ib_uverbs_advise_mr_advice advice,
1782                                     u32 pf_flags, struct ib_sge *sg_list,
1783                                     u32 num_sge)
1784 {
1785         u32 bytes_mapped = 0;
1786         int ret = 0;
1787         u32 i;
1788
1789         for (i = 0; i < num_sge; ++i) {
1790                 struct mlx5_ib_mr *mr;
1791
1792                 mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey);
1793                 if (!mr)
1794                         return -ENOENT;
1795                 ret = pagefault_mr(mr, sg_list[i].addr, sg_list[i].length,
1796                                    &bytes_mapped, pf_flags);
1797                 if (ret < 0) {
1798                         mlx5r_deref_odp_mkey(&mr->mmkey);
1799                         return ret;
1800                 }
1801                 mlx5_update_odp_stats(mr, prefetch, ret);
1802                 mlx5r_deref_odp_mkey(&mr->mmkey);
1803         }
1804
1805         return 0;
1806 }
1807
1808 int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd,
1809                                enum ib_uverbs_advise_mr_advice advice,
1810                                u32 flags, struct ib_sge *sg_list, u32 num_sge)
1811 {
1812         u32 pf_flags = 0;
1813         struct prefetch_mr_work *work;
1814
1815         if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH)
1816                 pf_flags |= MLX5_PF_FLAGS_DOWNGRADE;
1817
1818         if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT)
1819                 pf_flags |= MLX5_PF_FLAGS_SNAPSHOT;
1820
1821         if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH)
1822                 return mlx5_ib_prefetch_sg_list(pd, advice, pf_flags, sg_list,
1823                                                 num_sge);
1824
1825         work = kvzalloc(struct_size(work, frags, num_sge), GFP_KERNEL);
1826         if (!work)
1827                 return -ENOMEM;
1828
1829         if (!init_prefetch_work(pd, advice, pf_flags, work, sg_list, num_sge)) {
1830                 destroy_prefetch_work(work);
1831                 return -EINVAL;
1832         }
1833         queue_work(system_unbound_wq, &work->work);
1834         return 0;
1835 }