Merge tag 'ext4_for_linus_stable' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / infiniband / hw / mlx5 / odp.c
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32
33 #include <rdma/ib_umem.h>
34 #include <rdma/ib_umem_odp.h>
35 #include <linux/kernel.h>
36
37 #include "mlx5_ib.h"
38 #include "cmd.h"
39
40 #include <linux/mlx5/eq.h>
41
42 /* Contains the details of a pagefault. */
43 struct mlx5_pagefault {
44         u32                     bytes_committed;
45         u32                     token;
46         u8                      event_subtype;
47         u8                      type;
48         union {
49                 /* Initiator or send message responder pagefault details. */
50                 struct {
51                         /* Received packet size, only valid for responders. */
52                         u32     packet_size;
53                         /*
54                          * Number of resource holding WQE, depends on type.
55                          */
56                         u32     wq_num;
57                         /*
58                          * WQE index. Refers to either the send queue or
59                          * receive queue, according to event_subtype.
60                          */
61                         u16     wqe_index;
62                 } wqe;
63                 /* RDMA responder pagefault details */
64                 struct {
65                         u32     r_key;
66                         /*
67                          * Received packet size, minimal size page fault
68                          * resolution required for forward progress.
69                          */
70                         u32     packet_size;
71                         u32     rdma_op_len;
72                         u64     rdma_va;
73                 } rdma;
74         };
75
76         struct mlx5_ib_pf_eq    *eq;
77         struct work_struct      work;
78 };
79
80 #define MAX_PREFETCH_LEN (4*1024*1024U)
81
82 /* Timeout in ms to wait for an active mmu notifier to complete when handling
83  * a pagefault. */
84 #define MMU_NOTIFIER_TIMEOUT 1000
85
86 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
87 #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
88 #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
89 #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
90 #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
91
92 #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
93
94 static u64 mlx5_imr_ksm_entries;
95
96 static int check_parent(struct ib_umem_odp *odp,
97                                struct mlx5_ib_mr *parent)
98 {
99         struct mlx5_ib_mr *mr = odp->private;
100
101         return mr && mr->parent == parent && !odp->dying;
102 }
103
104 static struct ib_ucontext_per_mm *mr_to_per_mm(struct mlx5_ib_mr *mr)
105 {
106         if (WARN_ON(!mr || !is_odp_mr(mr)))
107                 return NULL;
108
109         return to_ib_umem_odp(mr->umem)->per_mm;
110 }
111
112 static struct ib_umem_odp *odp_next(struct ib_umem_odp *odp)
113 {
114         struct mlx5_ib_mr *mr = odp->private, *parent = mr->parent;
115         struct ib_ucontext_per_mm *per_mm = odp->per_mm;
116         struct rb_node *rb;
117
118         down_read(&per_mm->umem_rwsem);
119         while (1) {
120                 rb = rb_next(&odp->interval_tree.rb);
121                 if (!rb)
122                         goto not_found;
123                 odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb);
124                 if (check_parent(odp, parent))
125                         goto end;
126         }
127 not_found:
128         odp = NULL;
129 end:
130         up_read(&per_mm->umem_rwsem);
131         return odp;
132 }
133
134 static struct ib_umem_odp *odp_lookup(u64 start, u64 length,
135                                       struct mlx5_ib_mr *parent)
136 {
137         struct ib_ucontext_per_mm *per_mm = mr_to_per_mm(parent);
138         struct ib_umem_odp *odp;
139         struct rb_node *rb;
140
141         down_read(&per_mm->umem_rwsem);
142         odp = rbt_ib_umem_lookup(&per_mm->umem_tree, start, length);
143         if (!odp)
144                 goto end;
145
146         while (1) {
147                 if (check_parent(odp, parent))
148                         goto end;
149                 rb = rb_next(&odp->interval_tree.rb);
150                 if (!rb)
151                         goto not_found;
152                 odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb);
153                 if (ib_umem_start(&odp->umem) > start + length)
154                         goto not_found;
155         }
156 not_found:
157         odp = NULL;
158 end:
159         up_read(&per_mm->umem_rwsem);
160         return odp;
161 }
162
163 void mlx5_odp_populate_klm(struct mlx5_klm *pklm, size_t offset,
164                            size_t nentries, struct mlx5_ib_mr *mr, int flags)
165 {
166         struct ib_pd *pd = mr->ibmr.pd;
167         struct mlx5_ib_dev *dev = to_mdev(pd->device);
168         struct ib_umem_odp *odp;
169         unsigned long va;
170         int i;
171
172         if (flags & MLX5_IB_UPD_XLT_ZAP) {
173                 for (i = 0; i < nentries; i++, pklm++) {
174                         pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
175                         pklm->key = cpu_to_be32(dev->null_mkey);
176                         pklm->va = 0;
177                 }
178                 return;
179         }
180
181         odp = odp_lookup(offset * MLX5_IMR_MTT_SIZE,
182                          nentries * MLX5_IMR_MTT_SIZE, mr);
183
184         for (i = 0; i < nentries; i++, pklm++) {
185                 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
186                 va = (offset + i) * MLX5_IMR_MTT_SIZE;
187                 if (odp && odp->umem.address == va) {
188                         struct mlx5_ib_mr *mtt = odp->private;
189
190                         pklm->key = cpu_to_be32(mtt->ibmr.lkey);
191                         odp = odp_next(odp);
192                 } else {
193                         pklm->key = cpu_to_be32(dev->null_mkey);
194                 }
195                 mlx5_ib_dbg(dev, "[%d] va %lx key %x\n",
196                             i, va, be32_to_cpu(pklm->key));
197         }
198 }
199
200 static void mr_leaf_free_action(struct work_struct *work)
201 {
202         struct ib_umem_odp *odp = container_of(work, struct ib_umem_odp, work);
203         int idx = ib_umem_start(&odp->umem) >> MLX5_IMR_MTT_SHIFT;
204         struct mlx5_ib_mr *mr = odp->private, *imr = mr->parent;
205
206         mr->parent = NULL;
207         synchronize_srcu(&mr->dev->mr_srcu);
208
209         ib_umem_release(&odp->umem);
210         if (imr->live)
211                 mlx5_ib_update_xlt(imr, idx, 1, 0,
212                                    MLX5_IB_UPD_XLT_INDIRECT |
213                                    MLX5_IB_UPD_XLT_ATOMIC);
214         mlx5_mr_cache_free(mr->dev, mr);
215
216         if (atomic_dec_and_test(&imr->num_leaf_free))
217                 wake_up(&imr->q_leaf_free);
218 }
219
220 void mlx5_ib_invalidate_range(struct ib_umem_odp *umem_odp, unsigned long start,
221                               unsigned long end)
222 {
223         struct mlx5_ib_mr *mr;
224         const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT /
225                                     sizeof(struct mlx5_mtt)) - 1;
226         u64 idx = 0, blk_start_idx = 0;
227         struct ib_umem *umem;
228         int in_block = 0;
229         u64 addr;
230
231         if (!umem_odp) {
232                 pr_err("invalidation called on NULL umem or non-ODP umem\n");
233                 return;
234         }
235         umem = &umem_odp->umem;
236
237         mr = umem_odp->private;
238
239         if (!mr || !mr->ibmr.pd)
240                 return;
241
242         start = max_t(u64, ib_umem_start(umem), start);
243         end = min_t(u64, ib_umem_end(umem), end);
244
245         /*
246          * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
247          * while we are doing the invalidation, no page fault will attempt to
248          * overwrite the same MTTs.  Concurent invalidations might race us,
249          * but they will write 0s as well, so no difference in the end result.
250          */
251
252         for (addr = start; addr < end; addr += BIT(umem->page_shift)) {
253                 idx = (addr - ib_umem_start(umem)) >> umem->page_shift;
254                 /*
255                  * Strive to write the MTTs in chunks, but avoid overwriting
256                  * non-existing MTTs. The huristic here can be improved to
257                  * estimate the cost of another UMR vs. the cost of bigger
258                  * UMR.
259                  */
260                 if (umem_odp->dma_list[idx] &
261                     (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
262                         if (!in_block) {
263                                 blk_start_idx = idx;
264                                 in_block = 1;
265                         }
266                 } else {
267                         u64 umr_offset = idx & umr_block_mask;
268
269                         if (in_block && umr_offset == 0) {
270                                 mlx5_ib_update_xlt(mr, blk_start_idx,
271                                                    idx - blk_start_idx, 0,
272                                                    MLX5_IB_UPD_XLT_ZAP |
273                                                    MLX5_IB_UPD_XLT_ATOMIC);
274                                 in_block = 0;
275                         }
276                 }
277         }
278         if (in_block)
279                 mlx5_ib_update_xlt(mr, blk_start_idx,
280                                    idx - blk_start_idx + 1, 0,
281                                    MLX5_IB_UPD_XLT_ZAP |
282                                    MLX5_IB_UPD_XLT_ATOMIC);
283         /*
284          * We are now sure that the device will not access the
285          * memory. We can safely unmap it, and mark it as dirty if
286          * needed.
287          */
288
289         ib_umem_odp_unmap_dma_pages(umem_odp, start, end);
290
291         if (unlikely(!umem_odp->npages && mr->parent &&
292                      !umem_odp->dying)) {
293                 WRITE_ONCE(umem_odp->dying, 1);
294                 atomic_inc(&mr->parent->num_leaf_free);
295                 schedule_work(&umem_odp->work);
296         }
297 }
298
299 void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev)
300 {
301         struct ib_odp_caps *caps = &dev->odp_caps;
302
303         memset(caps, 0, sizeof(*caps));
304
305         if (!MLX5_CAP_GEN(dev->mdev, pg))
306                 return;
307
308         caps->general_caps = IB_ODP_SUPPORT;
309
310         if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
311                 dev->odp_max_size = U64_MAX;
312         else
313                 dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
314
315         if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send))
316                 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
317
318         if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.srq_receive))
319                 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
320
321         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send))
322                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
323
324         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive))
325                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
326
327         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write))
328                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
329
330         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read))
331                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
332
333         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic))
334                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
335
336         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.srq_receive))
337                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
338
339         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.send))
340                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SEND;
341
342         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.receive))
343                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_RECV;
344
345         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.write))
346                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_WRITE;
347
348         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.read))
349                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_READ;
350
351         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.atomic))
352                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
353
354         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.srq_receive))
355                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
356
357         if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
358             MLX5_CAP_GEN(dev->mdev, null_mkey) &&
359             MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
360                 caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
361
362         return;
363 }
364
365 static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
366                                       struct mlx5_pagefault *pfault,
367                                       int error)
368 {
369         int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
370                      pfault->wqe.wq_num : pfault->token;
371         u32 out[MLX5_ST_SZ_DW(page_fault_resume_out)] = { };
372         u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)]   = { };
373         int err;
374
375         MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME);
376         MLX5_SET(page_fault_resume_in, in, page_fault_type, pfault->type);
377         MLX5_SET(page_fault_resume_in, in, token, pfault->token);
378         MLX5_SET(page_fault_resume_in, in, wq_number, wq_num);
379         MLX5_SET(page_fault_resume_in, in, error, !!error);
380
381         err = mlx5_cmd_exec(dev->mdev, in, sizeof(in), out, sizeof(out));
382         if (err)
383                 mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n",
384                             wq_num, err);
385 }
386
387 static struct mlx5_ib_mr *implicit_mr_alloc(struct ib_pd *pd,
388                                             struct ib_umem *umem,
389                                             bool ksm, int access_flags)
390 {
391         struct mlx5_ib_dev *dev = to_mdev(pd->device);
392         struct mlx5_ib_mr *mr;
393         int err;
394
395         mr = mlx5_mr_cache_alloc(dev, ksm ? MLX5_IMR_KSM_CACHE_ENTRY :
396                                             MLX5_IMR_MTT_CACHE_ENTRY);
397
398         if (IS_ERR(mr))
399                 return mr;
400
401         mr->ibmr.pd = pd;
402
403         mr->dev = dev;
404         mr->access_flags = access_flags;
405         mr->mmkey.iova = 0;
406         mr->umem = umem;
407
408         if (ksm) {
409                 err = mlx5_ib_update_xlt(mr, 0,
410                                          mlx5_imr_ksm_entries,
411                                          MLX5_KSM_PAGE_SHIFT,
412                                          MLX5_IB_UPD_XLT_INDIRECT |
413                                          MLX5_IB_UPD_XLT_ZAP |
414                                          MLX5_IB_UPD_XLT_ENABLE);
415
416         } else {
417                 err = mlx5_ib_update_xlt(mr, 0,
418                                          MLX5_IMR_MTT_ENTRIES,
419                                          PAGE_SHIFT,
420                                          MLX5_IB_UPD_XLT_ZAP |
421                                          MLX5_IB_UPD_XLT_ENABLE |
422                                          MLX5_IB_UPD_XLT_ATOMIC);
423         }
424
425         if (err)
426                 goto fail;
427
428         mr->ibmr.lkey = mr->mmkey.key;
429         mr->ibmr.rkey = mr->mmkey.key;
430
431         mr->live = 1;
432
433         mlx5_ib_dbg(dev, "key %x dev %p mr %p\n",
434                     mr->mmkey.key, dev->mdev, mr);
435
436         return mr;
437
438 fail:
439         mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
440         mlx5_mr_cache_free(dev, mr);
441
442         return ERR_PTR(err);
443 }
444
445 static struct ib_umem_odp *implicit_mr_get_data(struct mlx5_ib_mr *mr,
446                                                 u64 io_virt, size_t bcnt)
447 {
448         struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.pd->device);
449         struct ib_umem_odp *odp, *result = NULL;
450         struct ib_umem_odp *odp_mr = to_ib_umem_odp(mr->umem);
451         u64 addr = io_virt & MLX5_IMR_MTT_MASK;
452         int nentries = 0, start_idx = 0, ret;
453         struct mlx5_ib_mr *mtt;
454
455         mutex_lock(&odp_mr->umem_mutex);
456         odp = odp_lookup(addr, 1, mr);
457
458         mlx5_ib_dbg(dev, "io_virt:%llx bcnt:%zx addr:%llx odp:%p\n",
459                     io_virt, bcnt, addr, odp);
460
461 next_mr:
462         if (likely(odp)) {
463                 if (nentries)
464                         nentries++;
465         } else {
466                 odp = ib_alloc_odp_umem(odp_mr, addr,
467                                         MLX5_IMR_MTT_SIZE);
468                 if (IS_ERR(odp)) {
469                         mutex_unlock(&odp_mr->umem_mutex);
470                         return ERR_CAST(odp);
471                 }
472
473                 mtt = implicit_mr_alloc(mr->ibmr.pd, &odp->umem, 0,
474                                         mr->access_flags);
475                 if (IS_ERR(mtt)) {
476                         mutex_unlock(&odp_mr->umem_mutex);
477                         ib_umem_release(&odp->umem);
478                         return ERR_CAST(mtt);
479                 }
480
481                 odp->private = mtt;
482                 mtt->umem = &odp->umem;
483                 mtt->mmkey.iova = addr;
484                 mtt->parent = mr;
485                 INIT_WORK(&odp->work, mr_leaf_free_action);
486
487                 if (!nentries)
488                         start_idx = addr >> MLX5_IMR_MTT_SHIFT;
489                 nentries++;
490         }
491
492         /* Return first odp if region not covered by single one */
493         if (likely(!result))
494                 result = odp;
495
496         addr += MLX5_IMR_MTT_SIZE;
497         if (unlikely(addr < io_virt + bcnt)) {
498                 odp = odp_next(odp);
499                 if (odp && odp->umem.address != addr)
500                         odp = NULL;
501                 goto next_mr;
502         }
503
504         if (unlikely(nentries)) {
505                 ret = mlx5_ib_update_xlt(mr, start_idx, nentries, 0,
506                                          MLX5_IB_UPD_XLT_INDIRECT |
507                                          MLX5_IB_UPD_XLT_ATOMIC);
508                 if (ret) {
509                         mlx5_ib_err(dev, "Failed to update PAS\n");
510                         result = ERR_PTR(ret);
511                 }
512         }
513
514         mutex_unlock(&odp_mr->umem_mutex);
515         return result;
516 }
517
518 struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
519                                              struct ib_udata *udata,
520                                              int access_flags)
521 {
522         struct mlx5_ib_mr *imr;
523         struct ib_umem *umem;
524
525         umem = ib_umem_get(udata, 0, 0, access_flags, 0);
526         if (IS_ERR(umem))
527                 return ERR_CAST(umem);
528
529         imr = implicit_mr_alloc(&pd->ibpd, umem, 1, access_flags);
530         if (IS_ERR(imr)) {
531                 ib_umem_release(umem);
532                 return ERR_CAST(imr);
533         }
534
535         imr->umem = umem;
536         init_waitqueue_head(&imr->q_leaf_free);
537         atomic_set(&imr->num_leaf_free, 0);
538         atomic_set(&imr->num_pending_prefetch, 0);
539
540         return imr;
541 }
542
543 static int mr_leaf_free(struct ib_umem_odp *umem_odp, u64 start, u64 end,
544                         void *cookie)
545 {
546         struct mlx5_ib_mr *mr = umem_odp->private, *imr = cookie;
547         struct ib_umem *umem = &umem_odp->umem;
548
549         if (mr->parent != imr)
550                 return 0;
551
552         ib_umem_odp_unmap_dma_pages(umem_odp, ib_umem_start(umem),
553                                     ib_umem_end(umem));
554
555         if (umem_odp->dying)
556                 return 0;
557
558         WRITE_ONCE(umem_odp->dying, 1);
559         atomic_inc(&imr->num_leaf_free);
560         schedule_work(&umem_odp->work);
561
562         return 0;
563 }
564
565 void mlx5_ib_free_implicit_mr(struct mlx5_ib_mr *imr)
566 {
567         struct ib_ucontext_per_mm *per_mm = mr_to_per_mm(imr);
568
569         down_read(&per_mm->umem_rwsem);
570         rbt_ib_umem_for_each_in_range(&per_mm->umem_tree, 0, ULLONG_MAX,
571                                       mr_leaf_free, true, imr);
572         up_read(&per_mm->umem_rwsem);
573
574         wait_event(imr->q_leaf_free, !atomic_read(&imr->num_leaf_free));
575 }
576
577 #define MLX5_PF_FLAGS_PREFETCH  BIT(0)
578 #define MLX5_PF_FLAGS_DOWNGRADE BIT(1)
579 static int pagefault_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
580                         u64 io_virt, size_t bcnt, u32 *bytes_mapped,
581                         u32 flags)
582 {
583         int npages = 0, current_seq, page_shift, ret, np;
584         bool implicit = false;
585         struct ib_umem_odp *odp_mr = to_ib_umem_odp(mr->umem);
586         bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE;
587         bool prefetch = flags & MLX5_PF_FLAGS_PREFETCH;
588         u64 access_mask;
589         u64 start_idx, page_mask;
590         struct ib_umem_odp *odp;
591         size_t size;
592
593         if (!odp_mr->page_list) {
594                 odp = implicit_mr_get_data(mr, io_virt, bcnt);
595
596                 if (IS_ERR(odp))
597                         return PTR_ERR(odp);
598                 mr = odp->private;
599                 implicit = true;
600         } else {
601                 odp = odp_mr;
602         }
603
604 next_mr:
605         size = min_t(size_t, bcnt, ib_umem_end(&odp->umem) - io_virt);
606
607         page_shift = mr->umem->page_shift;
608         page_mask = ~(BIT(page_shift) - 1);
609         start_idx = (io_virt - (mr->mmkey.iova & page_mask)) >> page_shift;
610         access_mask = ODP_READ_ALLOWED_BIT;
611
612         if (prefetch && !downgrade && !mr->umem->writable) {
613                 /* prefetch with write-access must
614                  * be supported by the MR
615                  */
616                 ret = -EINVAL;
617                 goto out;
618         }
619
620         if (mr->umem->writable && !downgrade)
621                 access_mask |= ODP_WRITE_ALLOWED_BIT;
622
623         current_seq = READ_ONCE(odp->notifiers_seq);
624         /*
625          * Ensure the sequence number is valid for some time before we call
626          * gup.
627          */
628         smp_rmb();
629
630         ret = ib_umem_odp_map_dma_pages(to_ib_umem_odp(mr->umem), io_virt, size,
631                                         access_mask, current_seq);
632
633         if (ret < 0)
634                 goto out;
635
636         np = ret;
637
638         mutex_lock(&odp->umem_mutex);
639         if (!ib_umem_mmu_notifier_retry(to_ib_umem_odp(mr->umem),
640                                         current_seq)) {
641                 /*
642                  * No need to check whether the MTTs really belong to
643                  * this MR, since ib_umem_odp_map_dma_pages already
644                  * checks this.
645                  */
646                 ret = mlx5_ib_update_xlt(mr, start_idx, np,
647                                          page_shift, MLX5_IB_UPD_XLT_ATOMIC);
648         } else {
649                 ret = -EAGAIN;
650         }
651         mutex_unlock(&odp->umem_mutex);
652
653         if (ret < 0) {
654                 if (ret != -EAGAIN)
655                         mlx5_ib_err(dev, "Failed to update mkey page tables\n");
656                 goto out;
657         }
658
659         if (bytes_mapped) {
660                 u32 new_mappings = (np << page_shift) -
661                         (io_virt - round_down(io_virt, 1 << page_shift));
662                 *bytes_mapped += min_t(u32, new_mappings, size);
663         }
664
665         npages += np << (page_shift - PAGE_SHIFT);
666         bcnt -= size;
667
668         if (unlikely(bcnt)) {
669                 struct ib_umem_odp *next;
670
671                 io_virt += size;
672                 next = odp_next(odp);
673                 if (unlikely(!next || next->umem.address != io_virt)) {
674                         mlx5_ib_dbg(dev, "next implicit leaf removed at 0x%llx. got %p\n",
675                                     io_virt, next);
676                         return -EAGAIN;
677                 }
678                 odp = next;
679                 mr = odp->private;
680                 goto next_mr;
681         }
682
683         return npages;
684
685 out:
686         if (ret == -EAGAIN) {
687                 if (implicit || !odp->dying) {
688                         unsigned long timeout =
689                                 msecs_to_jiffies(MMU_NOTIFIER_TIMEOUT);
690
691                         if (!wait_for_completion_timeout(
692                                         &odp->notifier_completion,
693                                         timeout)) {
694                                 mlx5_ib_warn(dev, "timeout waiting for mmu notifier. seq %d against %d. notifiers_count=%d\n",
695                                              current_seq, odp->notifiers_seq, odp->notifiers_count);
696                         }
697                 } else {
698                         /* The MR is being killed, kill the QP as well. */
699                         ret = -EFAULT;
700                 }
701         }
702
703         return ret;
704 }
705
706 struct pf_frame {
707         struct pf_frame *next;
708         u32 key;
709         u64 io_virt;
710         size_t bcnt;
711         int depth;
712 };
713
714 static bool mkey_is_eq(struct mlx5_core_mkey *mmkey, u32 key)
715 {
716         if (!mmkey)
717                 return false;
718         if (mmkey->type == MLX5_MKEY_MW)
719                 return mlx5_base_mkey(mmkey->key) == mlx5_base_mkey(key);
720         return mmkey->key == key;
721 }
722
723 static int get_indirect_num_descs(struct mlx5_core_mkey *mmkey)
724 {
725         struct mlx5_ib_mw *mw;
726         struct mlx5_ib_devx_mr *devx_mr;
727
728         if (mmkey->type == MLX5_MKEY_MW) {
729                 mw = container_of(mmkey, struct mlx5_ib_mw, mmkey);
730                 return mw->ndescs;
731         }
732
733         devx_mr = container_of(mmkey, struct mlx5_ib_devx_mr,
734                                mmkey);
735         return devx_mr->ndescs;
736 }
737
738 /*
739  * Handle a single data segment in a page-fault WQE or RDMA region.
740  *
741  * Returns number of OS pages retrieved on success. The caller may continue to
742  * the next data segment.
743  * Can return the following error codes:
744  * -EAGAIN to designate a temporary error. The caller will abort handling the
745  *  page fault and resolve it.
746  * -EFAULT when there's an error mapping the requested pages. The caller will
747  *  abort the page fault handling.
748  */
749 static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
750                                          struct ib_pd *pd, u32 key,
751                                          u64 io_virt, size_t bcnt,
752                                          u32 *bytes_committed,
753                                          u32 *bytes_mapped, u32 flags)
754 {
755         int npages = 0, srcu_key, ret, i, outlen, cur_outlen = 0, depth = 0;
756         bool prefetch = flags & MLX5_PF_FLAGS_PREFETCH;
757         struct pf_frame *head = NULL, *frame;
758         struct mlx5_core_mkey *mmkey;
759         struct mlx5_ib_mr *mr;
760         struct mlx5_klm *pklm;
761         u32 *out = NULL;
762         size_t offset;
763         int ndescs;
764
765         srcu_key = srcu_read_lock(&dev->mr_srcu);
766
767         io_virt += *bytes_committed;
768         bcnt -= *bytes_committed;
769
770 next_mr:
771         mmkey = __mlx5_mr_lookup(dev->mdev, mlx5_base_mkey(key));
772         if (!mkey_is_eq(mmkey, key)) {
773                 mlx5_ib_dbg(dev, "failed to find mkey %x\n", key);
774                 ret = -EFAULT;
775                 goto srcu_unlock;
776         }
777
778         if (prefetch && mmkey->type != MLX5_MKEY_MR) {
779                 mlx5_ib_dbg(dev, "prefetch is allowed only for MR\n");
780                 ret = -EINVAL;
781                 goto srcu_unlock;
782         }
783
784         switch (mmkey->type) {
785         case MLX5_MKEY_MR:
786                 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
787                 if (!mr->live || !mr->ibmr.pd) {
788                         mlx5_ib_dbg(dev, "got dead MR\n");
789                         ret = -EFAULT;
790                         goto srcu_unlock;
791                 }
792
793                 if (prefetch) {
794                         if (!is_odp_mr(mr) ||
795                             mr->ibmr.pd != pd) {
796                                 mlx5_ib_dbg(dev, "Invalid prefetch request: %s\n",
797                                             is_odp_mr(mr) ?  "MR is not ODP" :
798                                             "PD is not of the MR");
799                                 ret = -EINVAL;
800                                 goto srcu_unlock;
801                         }
802                 }
803
804                 if (!is_odp_mr(mr)) {
805                         mlx5_ib_dbg(dev, "skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
806                                     key);
807                         if (bytes_mapped)
808                                 *bytes_mapped += bcnt;
809                         ret = 0;
810                         goto srcu_unlock;
811                 }
812
813                 ret = pagefault_mr(dev, mr, io_virt, bcnt, bytes_mapped, flags);
814                 if (ret < 0)
815                         goto srcu_unlock;
816
817                 npages += ret;
818                 ret = 0;
819                 break;
820
821         case MLX5_MKEY_MW:
822         case MLX5_MKEY_INDIRECT_DEVX:
823                 ndescs = get_indirect_num_descs(mmkey);
824
825                 if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) {
826                         mlx5_ib_dbg(dev, "indirection level exceeded\n");
827                         ret = -EFAULT;
828                         goto srcu_unlock;
829                 }
830
831                 outlen = MLX5_ST_SZ_BYTES(query_mkey_out) +
832                         sizeof(*pklm) * (ndescs - 2);
833
834                 if (outlen > cur_outlen) {
835                         kfree(out);
836                         out = kzalloc(outlen, GFP_KERNEL);
837                         if (!out) {
838                                 ret = -ENOMEM;
839                                 goto srcu_unlock;
840                         }
841                         cur_outlen = outlen;
842                 }
843
844                 pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out,
845                                                        bsf0_klm0_pas_mtt0_1);
846
847                 ret = mlx5_core_query_mkey(dev->mdev, mmkey, out, outlen);
848                 if (ret)
849                         goto srcu_unlock;
850
851                 offset = io_virt - MLX5_GET64(query_mkey_out, out,
852                                               memory_key_mkey_entry.start_addr);
853
854                 for (i = 0; bcnt && i < ndescs; i++, pklm++) {
855                         if (offset >= be32_to_cpu(pklm->bcount)) {
856                                 offset -= be32_to_cpu(pklm->bcount);
857                                 continue;
858                         }
859
860                         frame = kzalloc(sizeof(*frame), GFP_KERNEL);
861                         if (!frame) {
862                                 ret = -ENOMEM;
863                                 goto srcu_unlock;
864                         }
865
866                         frame->key = be32_to_cpu(pklm->key);
867                         frame->io_virt = be64_to_cpu(pklm->va) + offset;
868                         frame->bcnt = min_t(size_t, bcnt,
869                                             be32_to_cpu(pklm->bcount) - offset);
870                         frame->depth = depth + 1;
871                         frame->next = head;
872                         head = frame;
873
874                         bcnt -= frame->bcnt;
875                         offset = 0;
876                 }
877                 break;
878
879         default:
880                 mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type);
881                 ret = -EFAULT;
882                 goto srcu_unlock;
883         }
884
885         if (head) {
886                 frame = head;
887                 head = frame->next;
888
889                 key = frame->key;
890                 io_virt = frame->io_virt;
891                 bcnt = frame->bcnt;
892                 depth = frame->depth;
893                 kfree(frame);
894
895                 goto next_mr;
896         }
897
898 srcu_unlock:
899         while (head) {
900                 frame = head;
901                 head = frame->next;
902                 kfree(frame);
903         }
904         kfree(out);
905
906         srcu_read_unlock(&dev->mr_srcu, srcu_key);
907         *bytes_committed = 0;
908         return ret ? ret : npages;
909 }
910
911 /**
912  * Parse a series of data segments for page fault handling.
913  *
914  * @pfault contains page fault information.
915  * @wqe points at the first data segment in the WQE.
916  * @wqe_end points after the end of the WQE.
917  * @bytes_mapped receives the number of bytes that the function was able to
918  *               map. This allows the caller to decide intelligently whether
919  *               enough memory was mapped to resolve the page fault
920  *               successfully (e.g. enough for the next MTU, or the entire
921  *               WQE).
922  * @total_wqe_bytes receives the total data size of this WQE in bytes (minus
923  *                  the committed bytes).
924  *
925  * Returns the number of pages loaded if positive, zero for an empty WQE, or a
926  * negative error code.
927  */
928 static int pagefault_data_segments(struct mlx5_ib_dev *dev,
929                                    struct mlx5_pagefault *pfault,
930                                    void *wqe,
931                                    void *wqe_end, u32 *bytes_mapped,
932                                    u32 *total_wqe_bytes, bool receive_queue)
933 {
934         int ret = 0, npages = 0;
935         u64 io_virt;
936         u32 key;
937         u32 byte_count;
938         size_t bcnt;
939         int inline_segment;
940
941         if (bytes_mapped)
942                 *bytes_mapped = 0;
943         if (total_wqe_bytes)
944                 *total_wqe_bytes = 0;
945
946         while (wqe < wqe_end) {
947                 struct mlx5_wqe_data_seg *dseg = wqe;
948
949                 io_virt = be64_to_cpu(dseg->addr);
950                 key = be32_to_cpu(dseg->lkey);
951                 byte_count = be32_to_cpu(dseg->byte_count);
952                 inline_segment = !!(byte_count &  MLX5_INLINE_SEG);
953                 bcnt           = byte_count & ~MLX5_INLINE_SEG;
954
955                 if (inline_segment) {
956                         bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
957                         wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
958                                      16);
959                 } else {
960                         wqe += sizeof(*dseg);
961                 }
962
963                 /* receive WQE end of sg list. */
964                 if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY &&
965                     io_virt == 0)
966                         break;
967
968                 if (!inline_segment && total_wqe_bytes) {
969                         *total_wqe_bytes += bcnt - min_t(size_t, bcnt,
970                                         pfault->bytes_committed);
971                 }
972
973                 /* A zero length data segment designates a length of 2GB. */
974                 if (bcnt == 0)
975                         bcnt = 1U << 31;
976
977                 if (inline_segment || bcnt <= pfault->bytes_committed) {
978                         pfault->bytes_committed -=
979                                 min_t(size_t, bcnt,
980                                       pfault->bytes_committed);
981                         continue;
982                 }
983
984                 ret = pagefault_single_data_segment(dev, NULL, key,
985                                                     io_virt, bcnt,
986                                                     &pfault->bytes_committed,
987                                                     bytes_mapped, 0);
988                 if (ret < 0)
989                         break;
990                 npages += ret;
991         }
992
993         return ret < 0 ? ret : npages;
994 }
995
996 static const u32 mlx5_ib_odp_opcode_cap[] = {
997         [MLX5_OPCODE_SEND]             = IB_ODP_SUPPORT_SEND,
998         [MLX5_OPCODE_SEND_IMM]         = IB_ODP_SUPPORT_SEND,
999         [MLX5_OPCODE_SEND_INVAL]       = IB_ODP_SUPPORT_SEND,
1000         [MLX5_OPCODE_RDMA_WRITE]       = IB_ODP_SUPPORT_WRITE,
1001         [MLX5_OPCODE_RDMA_WRITE_IMM]   = IB_ODP_SUPPORT_WRITE,
1002         [MLX5_OPCODE_RDMA_READ]        = IB_ODP_SUPPORT_READ,
1003         [MLX5_OPCODE_ATOMIC_CS]        = IB_ODP_SUPPORT_ATOMIC,
1004         [MLX5_OPCODE_ATOMIC_FA]        = IB_ODP_SUPPORT_ATOMIC,
1005 };
1006
1007 /*
1008  * Parse initiator WQE. Advances the wqe pointer to point at the
1009  * scatter-gather list, and set wqe_end to the end of the WQE.
1010  */
1011 static int mlx5_ib_mr_initiator_pfault_handler(
1012         struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
1013         struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
1014 {
1015         struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
1016         u16 wqe_index = pfault->wqe.wqe_index;
1017         u32 transport_caps;
1018         struct mlx5_base_av *av;
1019         unsigned ds, opcode;
1020 #if defined(DEBUG)
1021         u32 ctrl_wqe_index, ctrl_qpn;
1022 #endif
1023         u32 qpn = qp->trans_qp.base.mqp.qpn;
1024
1025         ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
1026         if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
1027                 mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
1028                             ds, wqe_length);
1029                 return -EFAULT;
1030         }
1031
1032         if (ds == 0) {
1033                 mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
1034                             wqe_index, qpn);
1035                 return -EFAULT;
1036         }
1037
1038 #if defined(DEBUG)
1039         ctrl_wqe_index = (be32_to_cpu(ctrl->opmod_idx_opcode) &
1040                         MLX5_WQE_CTRL_WQE_INDEX_MASK) >>
1041                         MLX5_WQE_CTRL_WQE_INDEX_SHIFT;
1042         if (wqe_index != ctrl_wqe_index) {
1043                 mlx5_ib_err(dev, "Got WQE with invalid wqe_index. wqe_index=0x%x, qpn=0x%x ctrl->wqe_index=0x%x\n",
1044                             wqe_index, qpn,
1045                             ctrl_wqe_index);
1046                 return -EFAULT;
1047         }
1048
1049         ctrl_qpn = (be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_QPN_MASK) >>
1050                 MLX5_WQE_CTRL_QPN_SHIFT;
1051         if (qpn != ctrl_qpn) {
1052                 mlx5_ib_err(dev, "Got WQE with incorrect QP number. wqe_index=0x%x, qpn=0x%x ctrl->qpn=0x%x\n",
1053                             wqe_index, qpn,
1054                             ctrl_qpn);
1055                 return -EFAULT;
1056         }
1057 #endif /* DEBUG */
1058
1059         *wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
1060         *wqe += sizeof(*ctrl);
1061
1062         opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
1063                  MLX5_WQE_CTRL_OPCODE_MASK;
1064
1065         switch (qp->ibqp.qp_type) {
1066         case IB_QPT_XRC_INI:
1067                 *wqe += sizeof(struct mlx5_wqe_xrc_seg);
1068                 transport_caps = dev->odp_caps.per_transport_caps.xrc_odp_caps;
1069                 break;
1070         case IB_QPT_RC:
1071                 transport_caps = dev->odp_caps.per_transport_caps.rc_odp_caps;
1072                 break;
1073         case IB_QPT_UD:
1074                 transport_caps = dev->odp_caps.per_transport_caps.ud_odp_caps;
1075                 break;
1076         default:
1077                 mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport 0x%x\n",
1078                             qp->ibqp.qp_type);
1079                 return -EFAULT;
1080         }
1081
1082         if (unlikely(opcode >= ARRAY_SIZE(mlx5_ib_odp_opcode_cap) ||
1083                      !(transport_caps & mlx5_ib_odp_opcode_cap[opcode]))) {
1084                 mlx5_ib_err(dev, "ODP fault on QP of an unsupported opcode 0x%x\n",
1085                             opcode);
1086                 return -EFAULT;
1087         }
1088
1089         if (qp->ibqp.qp_type == IB_QPT_UD) {
1090                 av = *wqe;
1091                 if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV))
1092                         *wqe += sizeof(struct mlx5_av);
1093                 else
1094                         *wqe += sizeof(struct mlx5_base_av);
1095         }
1096
1097         switch (opcode) {
1098         case MLX5_OPCODE_RDMA_WRITE:
1099         case MLX5_OPCODE_RDMA_WRITE_IMM:
1100         case MLX5_OPCODE_RDMA_READ:
1101                 *wqe += sizeof(struct mlx5_wqe_raddr_seg);
1102                 break;
1103         case MLX5_OPCODE_ATOMIC_CS:
1104         case MLX5_OPCODE_ATOMIC_FA:
1105                 *wqe += sizeof(struct mlx5_wqe_raddr_seg);
1106                 *wqe += sizeof(struct mlx5_wqe_atomic_seg);
1107                 break;
1108         }
1109
1110         return 0;
1111 }
1112
1113 /*
1114  * Parse responder WQE and set wqe_end to the end of the WQE.
1115  */
1116 static int mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev *dev,
1117                                                    struct mlx5_ib_srq *srq,
1118                                                    void **wqe, void **wqe_end,
1119                                                    int wqe_length)
1120 {
1121         int wqe_size = 1 << srq->msrq.wqe_shift;
1122
1123         if (wqe_size > wqe_length) {
1124                 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1125                 return -EFAULT;
1126         }
1127
1128         *wqe_end = *wqe + wqe_size;
1129         *wqe += sizeof(struct mlx5_wqe_srq_next_seg);
1130
1131         return 0;
1132 }
1133
1134 static int mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev *dev,
1135                                                   struct mlx5_ib_qp *qp,
1136                                                   void *wqe, void **wqe_end,
1137                                                   int wqe_length)
1138 {
1139         struct mlx5_ib_wq *wq = &qp->rq;
1140         int wqe_size = 1 << wq->wqe_shift;
1141
1142         if (qp->wq_sig) {
1143                 mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
1144                 return -EFAULT;
1145         }
1146
1147         if (wqe_size > wqe_length) {
1148                 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1149                 return -EFAULT;
1150         }
1151
1152         switch (qp->ibqp.qp_type) {
1153         case IB_QPT_RC:
1154                 if (!(dev->odp_caps.per_transport_caps.rc_odp_caps &
1155                       IB_ODP_SUPPORT_RECV))
1156                         goto invalid_transport_or_opcode;
1157                 break;
1158         default:
1159 invalid_transport_or_opcode:
1160                 mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport. transport: 0x%x\n",
1161                             qp->ibqp.qp_type);
1162                 return -EFAULT;
1163         }
1164
1165         *wqe_end = wqe + wqe_size;
1166
1167         return 0;
1168 }
1169
1170 static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev,
1171                                                        u32 wq_num, int pf_type)
1172 {
1173         struct mlx5_core_rsc_common *common = NULL;
1174         struct mlx5_core_srq *srq;
1175
1176         switch (pf_type) {
1177         case MLX5_WQE_PF_TYPE_RMP:
1178                 srq = mlx5_cmd_get_srq(dev, wq_num);
1179                 if (srq)
1180                         common = &srq->common;
1181                 break;
1182         case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE:
1183         case MLX5_WQE_PF_TYPE_RESP:
1184         case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC:
1185                 common = mlx5_core_res_hold(dev->mdev, wq_num, MLX5_RES_QP);
1186                 break;
1187         default:
1188                 break;
1189         }
1190
1191         return common;
1192 }
1193
1194 static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res)
1195 {
1196         struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res;
1197
1198         return to_mibqp(mqp);
1199 }
1200
1201 static inline struct mlx5_ib_srq *res_to_srq(struct mlx5_core_rsc_common *res)
1202 {
1203         struct mlx5_core_srq *msrq =
1204                 container_of(res, struct mlx5_core_srq, common);
1205
1206         return to_mibsrq(msrq);
1207 }
1208
1209 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
1210                                           struct mlx5_pagefault *pfault)
1211 {
1212         bool sq = pfault->type & MLX5_PFAULT_REQUESTOR;
1213         u16 wqe_index = pfault->wqe.wqe_index;
1214         void *wqe = NULL, *wqe_end = NULL;
1215         u32 bytes_mapped, total_wqe_bytes;
1216         struct mlx5_core_rsc_common *res;
1217         int resume_with_error = 1;
1218         struct mlx5_ib_qp *qp;
1219         size_t bytes_copied;
1220         int ret = 0;
1221
1222         res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type);
1223         if (!res) {
1224                 mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num);
1225                 return;
1226         }
1227
1228         if (res->res != MLX5_RES_QP && res->res != MLX5_RES_SRQ &&
1229             res->res != MLX5_RES_XSRQ) {
1230                 mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n",
1231                             pfault->type);
1232                 goto resolve_page_fault;
1233         }
1234
1235         wqe = (void *)__get_free_page(GFP_KERNEL);
1236         if (!wqe) {
1237                 mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
1238                 goto resolve_page_fault;
1239         }
1240
1241         qp = (res->res == MLX5_RES_QP) ? res_to_qp(res) : NULL;
1242         if (qp && sq) {
1243                 ret = mlx5_ib_read_user_wqe_sq(qp, wqe_index, wqe, PAGE_SIZE,
1244                                                &bytes_copied);
1245                 if (ret)
1246                         goto read_user;
1247                 ret = mlx5_ib_mr_initiator_pfault_handler(
1248                         dev, pfault, qp, &wqe, &wqe_end, bytes_copied);
1249         } else if (qp && !sq) {
1250                 ret = mlx5_ib_read_user_wqe_rq(qp, wqe_index, wqe, PAGE_SIZE,
1251                                                &bytes_copied);
1252                 if (ret)
1253                         goto read_user;
1254                 ret = mlx5_ib_mr_responder_pfault_handler_rq(
1255                         dev, qp, wqe, &wqe_end, bytes_copied);
1256         } else if (!qp) {
1257                 struct mlx5_ib_srq *srq = res_to_srq(res);
1258
1259                 ret = mlx5_ib_read_user_wqe_srq(srq, wqe_index, wqe, PAGE_SIZE,
1260                                                 &bytes_copied);
1261                 if (ret)
1262                         goto read_user;
1263                 ret = mlx5_ib_mr_responder_pfault_handler_srq(
1264                         dev, srq, &wqe, &wqe_end, bytes_copied);
1265         }
1266
1267         if (ret < 0 || wqe >= wqe_end)
1268                 goto resolve_page_fault;
1269
1270         ret = pagefault_data_segments(dev, pfault, wqe, wqe_end, &bytes_mapped,
1271                                       &total_wqe_bytes, !sq);
1272         if (ret == -EAGAIN)
1273                 goto out;
1274
1275         if (ret < 0 || total_wqe_bytes > bytes_mapped)
1276                 goto resolve_page_fault;
1277
1278 out:
1279         ret = 0;
1280         resume_with_error = 0;
1281
1282 read_user:
1283         if (ret)
1284                 mlx5_ib_err(
1285                         dev,
1286                         "Failed reading a WQE following page fault, error %d, wqe_index %x, qpn %x\n",
1287                         ret, wqe_index, pfault->token);
1288
1289 resolve_page_fault:
1290         mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
1291         mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
1292                     pfault->wqe.wq_num, resume_with_error,
1293                     pfault->type);
1294         mlx5_core_res_put(res);
1295         free_page((unsigned long)wqe);
1296 }
1297
1298 static int pages_in_range(u64 address, u32 length)
1299 {
1300         return (ALIGN(address + length, PAGE_SIZE) -
1301                 (address & PAGE_MASK)) >> PAGE_SHIFT;
1302 }
1303
1304 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
1305                                            struct mlx5_pagefault *pfault)
1306 {
1307         u64 address;
1308         u32 length;
1309         u32 prefetch_len = pfault->bytes_committed;
1310         int prefetch_activated = 0;
1311         u32 rkey = pfault->rdma.r_key;
1312         int ret;
1313
1314         /* The RDMA responder handler handles the page fault in two parts.
1315          * First it brings the necessary pages for the current packet
1316          * (and uses the pfault context), and then (after resuming the QP)
1317          * prefetches more pages. The second operation cannot use the pfault
1318          * context and therefore uses the dummy_pfault context allocated on
1319          * the stack */
1320         pfault->rdma.rdma_va += pfault->bytes_committed;
1321         pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
1322                                          pfault->rdma.rdma_op_len);
1323         pfault->bytes_committed = 0;
1324
1325         address = pfault->rdma.rdma_va;
1326         length  = pfault->rdma.rdma_op_len;
1327
1328         /* For some operations, the hardware cannot tell the exact message
1329          * length, and in those cases it reports zero. Use prefetch
1330          * logic. */
1331         if (length == 0) {
1332                 prefetch_activated = 1;
1333                 length = pfault->rdma.packet_size;
1334                 prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
1335         }
1336
1337         ret = pagefault_single_data_segment(dev, NULL, rkey, address, length,
1338                                             &pfault->bytes_committed, NULL,
1339                                             0);
1340         if (ret == -EAGAIN) {
1341                 /* We're racing with an invalidation, don't prefetch */
1342                 prefetch_activated = 0;
1343         } else if (ret < 0 || pages_in_range(address, length) > ret) {
1344                 mlx5_ib_page_fault_resume(dev, pfault, 1);
1345                 if (ret != -ENOENT)
1346                         mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n",
1347                                     ret, pfault->token, pfault->type);
1348                 return;
1349         }
1350
1351         mlx5_ib_page_fault_resume(dev, pfault, 0);
1352         mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n",
1353                     pfault->token, pfault->type,
1354                     prefetch_activated);
1355
1356         /* At this point, there might be a new pagefault already arriving in
1357          * the eq, switch to the dummy pagefault for the rest of the
1358          * processing. We're still OK with the objects being alive as the
1359          * work-queue is being fenced. */
1360
1361         if (prefetch_activated) {
1362                 u32 bytes_committed = 0;
1363
1364                 ret = pagefault_single_data_segment(dev, NULL, rkey, address,
1365                                                     prefetch_len,
1366                                                     &bytes_committed, NULL,
1367                                                     0);
1368                 if (ret < 0 && ret != -EAGAIN) {
1369                         mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n",
1370                                     ret, pfault->token, address, prefetch_len);
1371                 }
1372         }
1373 }
1374
1375 static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault)
1376 {
1377         u8 event_subtype = pfault->event_subtype;
1378
1379         switch (event_subtype) {
1380         case MLX5_PFAULT_SUBTYPE_WQE:
1381                 mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
1382                 break;
1383         case MLX5_PFAULT_SUBTYPE_RDMA:
1384                 mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
1385                 break;
1386         default:
1387                 mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
1388                             event_subtype);
1389                 mlx5_ib_page_fault_resume(dev, pfault, 1);
1390         }
1391 }
1392
1393 static void mlx5_ib_eqe_pf_action(struct work_struct *work)
1394 {
1395         struct mlx5_pagefault *pfault = container_of(work,
1396                                                      struct mlx5_pagefault,
1397                                                      work);
1398         struct mlx5_ib_pf_eq *eq = pfault->eq;
1399
1400         mlx5_ib_pfault(eq->dev, pfault);
1401         mempool_free(pfault, eq->pool);
1402 }
1403
1404 static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq)
1405 {
1406         struct mlx5_eqe_page_fault *pf_eqe;
1407         struct mlx5_pagefault *pfault;
1408         struct mlx5_eqe *eqe;
1409         int cc = 0;
1410
1411         while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) {
1412                 pfault = mempool_alloc(eq->pool, GFP_ATOMIC);
1413                 if (!pfault) {
1414                         schedule_work(&eq->work);
1415                         break;
1416                 }
1417
1418                 pf_eqe = &eqe->data.page_fault;
1419                 pfault->event_subtype = eqe->sub_type;
1420                 pfault->bytes_committed = be32_to_cpu(pf_eqe->bytes_committed);
1421
1422                 mlx5_ib_dbg(eq->dev,
1423                             "PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x\n",
1424                             eqe->sub_type, pfault->bytes_committed);
1425
1426                 switch (eqe->sub_type) {
1427                 case MLX5_PFAULT_SUBTYPE_RDMA:
1428                         /* RDMA based event */
1429                         pfault->type =
1430                                 be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24;
1431                         pfault->token =
1432                                 be32_to_cpu(pf_eqe->rdma.pftype_token) &
1433                                 MLX5_24BIT_MASK;
1434                         pfault->rdma.r_key =
1435                                 be32_to_cpu(pf_eqe->rdma.r_key);
1436                         pfault->rdma.packet_size =
1437                                 be16_to_cpu(pf_eqe->rdma.packet_length);
1438                         pfault->rdma.rdma_op_len =
1439                                 be32_to_cpu(pf_eqe->rdma.rdma_op_len);
1440                         pfault->rdma.rdma_va =
1441                                 be64_to_cpu(pf_eqe->rdma.rdma_va);
1442                         mlx5_ib_dbg(eq->dev,
1443                                     "PAGE_FAULT: type:0x%x, token: 0x%06x, r_key: 0x%08x\n",
1444                                     pfault->type, pfault->token,
1445                                     pfault->rdma.r_key);
1446                         mlx5_ib_dbg(eq->dev,
1447                                     "PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n",
1448                                     pfault->rdma.rdma_op_len,
1449                                     pfault->rdma.rdma_va);
1450                         break;
1451
1452                 case MLX5_PFAULT_SUBTYPE_WQE:
1453                         /* WQE based event */
1454                         pfault->type =
1455                                 (be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7;
1456                         pfault->token =
1457                                 be32_to_cpu(pf_eqe->wqe.token);
1458                         pfault->wqe.wq_num =
1459                                 be32_to_cpu(pf_eqe->wqe.pftype_wq) &
1460                                 MLX5_24BIT_MASK;
1461                         pfault->wqe.wqe_index =
1462                                 be16_to_cpu(pf_eqe->wqe.wqe_index);
1463                         pfault->wqe.packet_size =
1464                                 be16_to_cpu(pf_eqe->wqe.packet_length);
1465                         mlx5_ib_dbg(eq->dev,
1466                                     "PAGE_FAULT: type:0x%x, token: 0x%06x, wq_num: 0x%06x, wqe_index: 0x%04x\n",
1467                                     pfault->type, pfault->token,
1468                                     pfault->wqe.wq_num,
1469                                     pfault->wqe.wqe_index);
1470                         break;
1471
1472                 default:
1473                         mlx5_ib_warn(eq->dev,
1474                                      "Unsupported page fault event sub-type: 0x%02hhx\n",
1475                                      eqe->sub_type);
1476                         /* Unsupported page faults should still be
1477                          * resolved by the page fault handler
1478                          */
1479                 }
1480
1481                 pfault->eq = eq;
1482                 INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action);
1483                 queue_work(eq->wq, &pfault->work);
1484
1485                 cc = mlx5_eq_update_cc(eq->core, ++cc);
1486         }
1487
1488         mlx5_eq_update_ci(eq->core, cc, 1);
1489 }
1490
1491 static irqreturn_t mlx5_ib_eq_pf_int(int irq, void *eq_ptr)
1492 {
1493         struct mlx5_ib_pf_eq *eq = eq_ptr;
1494         unsigned long flags;
1495
1496         if (spin_trylock_irqsave(&eq->lock, flags)) {
1497                 mlx5_ib_eq_pf_process(eq);
1498                 spin_unlock_irqrestore(&eq->lock, flags);
1499         } else {
1500                 schedule_work(&eq->work);
1501         }
1502
1503         return IRQ_HANDLED;
1504 }
1505
1506 /* mempool_refill() was proposed but unfortunately wasn't accepted
1507  * http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html
1508  * Cheap workaround.
1509  */
1510 static void mempool_refill(mempool_t *pool)
1511 {
1512         while (pool->curr_nr < pool->min_nr)
1513                 mempool_free(mempool_alloc(pool, GFP_KERNEL), pool);
1514 }
1515
1516 static void mlx5_ib_eq_pf_action(struct work_struct *work)
1517 {
1518         struct mlx5_ib_pf_eq *eq =
1519                 container_of(work, struct mlx5_ib_pf_eq, work);
1520
1521         mempool_refill(eq->pool);
1522
1523         spin_lock_irq(&eq->lock);
1524         mlx5_ib_eq_pf_process(eq);
1525         spin_unlock_irq(&eq->lock);
1526 }
1527
1528 enum {
1529         MLX5_IB_NUM_PF_EQE      = 0x1000,
1530         MLX5_IB_NUM_PF_DRAIN    = 64,
1531 };
1532
1533 static int
1534 mlx5_ib_create_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1535 {
1536         struct mlx5_eq_param param = {};
1537         int err;
1538
1539         INIT_WORK(&eq->work, mlx5_ib_eq_pf_action);
1540         spin_lock_init(&eq->lock);
1541         eq->dev = dev;
1542
1543         eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN,
1544                                                sizeof(struct mlx5_pagefault));
1545         if (!eq->pool)
1546                 return -ENOMEM;
1547
1548         eq->wq = alloc_workqueue("mlx5_ib_page_fault",
1549                                  WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM,
1550                                  MLX5_NUM_CMD_EQE);
1551         if (!eq->wq) {
1552                 err = -ENOMEM;
1553                 goto err_mempool;
1554         }
1555
1556         param = (struct mlx5_eq_param) {
1557                 .index = MLX5_EQ_PFAULT_IDX,
1558                 .mask = 1 << MLX5_EVENT_TYPE_PAGE_FAULT,
1559                 .nent = MLX5_IB_NUM_PF_EQE,
1560                 .context = eq,
1561                 .handler = mlx5_ib_eq_pf_int
1562         };
1563         eq->core = mlx5_eq_create_generic(dev->mdev, "mlx5_ib_page_fault_eq", &param);
1564         if (IS_ERR(eq->core)) {
1565                 err = PTR_ERR(eq->core);
1566                 goto err_wq;
1567         }
1568
1569         return 0;
1570 err_wq:
1571         destroy_workqueue(eq->wq);
1572 err_mempool:
1573         mempool_destroy(eq->pool);
1574         return err;
1575 }
1576
1577 static int
1578 mlx5_ib_destroy_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1579 {
1580         int err;
1581
1582         err = mlx5_eq_destroy_generic(dev->mdev, eq->core);
1583         cancel_work_sync(&eq->work);
1584         destroy_workqueue(eq->wq);
1585         mempool_destroy(eq->pool);
1586
1587         return err;
1588 }
1589
1590 void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent)
1591 {
1592         if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1593                 return;
1594
1595         switch (ent->order - 2) {
1596         case MLX5_IMR_MTT_CACHE_ENTRY:
1597                 ent->page = PAGE_SHIFT;
1598                 ent->xlt = MLX5_IMR_MTT_ENTRIES *
1599                            sizeof(struct mlx5_mtt) /
1600                            MLX5_IB_UMR_OCTOWORD;
1601                 ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
1602                 ent->limit = 0;
1603                 break;
1604
1605         case MLX5_IMR_KSM_CACHE_ENTRY:
1606                 ent->page = MLX5_KSM_PAGE_SHIFT;
1607                 ent->xlt = mlx5_imr_ksm_entries *
1608                            sizeof(struct mlx5_klm) /
1609                            MLX5_IB_UMR_OCTOWORD;
1610                 ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM;
1611                 ent->limit = 0;
1612                 break;
1613         }
1614 }
1615
1616 static const struct ib_device_ops mlx5_ib_dev_odp_ops = {
1617         .advise_mr = mlx5_ib_advise_mr,
1618 };
1619
1620 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
1621 {
1622         int ret = 0;
1623
1624         if (dev->odp_caps.general_caps & IB_ODP_SUPPORT)
1625                 ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops);
1626
1627         if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) {
1628                 ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey);
1629                 if (ret) {
1630                         mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret);
1631                         return ret;
1632                 }
1633         }
1634
1635         if (!MLX5_CAP_GEN(dev->mdev, pg))
1636                 return ret;
1637
1638         ret = mlx5_ib_create_pf_eq(dev, &dev->odp_pf_eq);
1639
1640         return ret;
1641 }
1642
1643 void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev)
1644 {
1645         if (!MLX5_CAP_GEN(dev->mdev, pg))
1646                 return;
1647
1648         mlx5_ib_destroy_pf_eq(dev, &dev->odp_pf_eq);
1649 }
1650
1651 int mlx5_ib_odp_init(void)
1652 {
1653         mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
1654                                        MLX5_IMR_MTT_BITS);
1655
1656         return 0;
1657 }
1658
1659 struct prefetch_mr_work {
1660         struct work_struct work;
1661         struct ib_pd *pd;
1662         u32 pf_flags;
1663         u32 num_sge;
1664         struct ib_sge sg_list[0];
1665 };
1666
1667 static void num_pending_prefetch_dec(struct mlx5_ib_dev *dev,
1668                                      struct ib_sge *sg_list, u32 num_sge,
1669                                      u32 from)
1670 {
1671         u32 i;
1672         int srcu_key;
1673
1674         srcu_key = srcu_read_lock(&dev->mr_srcu);
1675
1676         for (i = from; i < num_sge; ++i) {
1677                 struct mlx5_core_mkey *mmkey;
1678                 struct mlx5_ib_mr *mr;
1679
1680                 mmkey = __mlx5_mr_lookup(dev->mdev,
1681                                          mlx5_base_mkey(sg_list[i].lkey));
1682                 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1683                 atomic_dec(&mr->num_pending_prefetch);
1684         }
1685
1686         srcu_read_unlock(&dev->mr_srcu, srcu_key);
1687 }
1688
1689 static bool num_pending_prefetch_inc(struct ib_pd *pd,
1690                                      struct ib_sge *sg_list, u32 num_sge)
1691 {
1692         struct mlx5_ib_dev *dev = to_mdev(pd->device);
1693         bool ret = true;
1694         u32 i;
1695
1696         for (i = 0; i < num_sge; ++i) {
1697                 struct mlx5_core_mkey *mmkey;
1698                 struct mlx5_ib_mr *mr;
1699
1700                 mmkey = __mlx5_mr_lookup(dev->mdev,
1701                                          mlx5_base_mkey(sg_list[i].lkey));
1702                 if (!mmkey || mmkey->key != sg_list[i].lkey) {
1703                         ret = false;
1704                         break;
1705                 }
1706
1707                 if (mmkey->type != MLX5_MKEY_MR) {
1708                         ret = false;
1709                         break;
1710                 }
1711
1712                 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1713
1714                 if (mr->ibmr.pd != pd) {
1715                         ret = false;
1716                         break;
1717                 }
1718
1719                 if (!mr->live) {
1720                         ret = false;
1721                         break;
1722                 }
1723
1724                 atomic_inc(&mr->num_pending_prefetch);
1725         }
1726
1727         if (!ret)
1728                 num_pending_prefetch_dec(dev, sg_list, i, 0);
1729
1730         return ret;
1731 }
1732
1733 static int mlx5_ib_prefetch_sg_list(struct ib_pd *pd, u32 pf_flags,
1734                                     struct ib_sge *sg_list, u32 num_sge)
1735 {
1736         u32 i;
1737         int ret = 0;
1738         struct mlx5_ib_dev *dev = to_mdev(pd->device);
1739
1740         for (i = 0; i < num_sge; ++i) {
1741                 struct ib_sge *sg = &sg_list[i];
1742                 int bytes_committed = 0;
1743
1744                 ret = pagefault_single_data_segment(dev, pd, sg->lkey, sg->addr,
1745                                                     sg->length,
1746                                                     &bytes_committed, NULL,
1747                                                     pf_flags);
1748                 if (ret < 0)
1749                         break;
1750         }
1751
1752         return ret < 0 ? ret : 0;
1753 }
1754
1755 static void mlx5_ib_prefetch_mr_work(struct work_struct *work)
1756 {
1757         struct prefetch_mr_work *w =
1758                 container_of(work, struct prefetch_mr_work, work);
1759
1760         if (ib_device_try_get(w->pd->device)) {
1761                 mlx5_ib_prefetch_sg_list(w->pd, w->pf_flags, w->sg_list,
1762                                          w->num_sge);
1763                 ib_device_put(w->pd->device);
1764         }
1765
1766         num_pending_prefetch_dec(to_mdev(w->pd->device), w->sg_list,
1767                                  w->num_sge, 0);
1768         kfree(w);
1769 }
1770
1771 int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd,
1772                                enum ib_uverbs_advise_mr_advice advice,
1773                                u32 flags, struct ib_sge *sg_list, u32 num_sge)
1774 {
1775         struct mlx5_ib_dev *dev = to_mdev(pd->device);
1776         u32 pf_flags = MLX5_PF_FLAGS_PREFETCH;
1777         struct prefetch_mr_work *work;
1778         bool valid_req;
1779         int srcu_key;
1780
1781         if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH)
1782                 pf_flags |= MLX5_PF_FLAGS_DOWNGRADE;
1783
1784         if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH)
1785                 return mlx5_ib_prefetch_sg_list(pd, pf_flags, sg_list,
1786                                                 num_sge);
1787
1788         work = kvzalloc(struct_size(work, sg_list, num_sge), GFP_KERNEL);
1789         if (!work)
1790                 return -ENOMEM;
1791
1792         memcpy(work->sg_list, sg_list, num_sge * sizeof(struct ib_sge));
1793
1794         /* It is guaranteed that the pd when work is executed is the pd when
1795          * work was queued since pd can't be destroyed while it holds MRs and
1796          * destroying a MR leads to flushing the workquque
1797          */
1798         work->pd = pd;
1799         work->pf_flags = pf_flags;
1800         work->num_sge = num_sge;
1801
1802         INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work);
1803
1804         srcu_key = srcu_read_lock(&dev->mr_srcu);
1805
1806         valid_req = num_pending_prefetch_inc(pd, sg_list, num_sge);
1807         if (valid_req)
1808                 queue_work(system_unbound_wq, &work->work);
1809         else
1810                 kfree(work);
1811
1812         srcu_read_unlock(&dev->mr_srcu, srcu_key);
1813
1814         return valid_req ? 0 : -EINVAL;
1815 }