Merge git://git.kernel.org/pub/scm/linux/kernel/git/pablo/nf-next
[linux-2.6-microblaze.git] / drivers / infiniband / hw / mlx5 / odp.c
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32
33 #include <rdma/ib_umem.h>
34 #include <rdma/ib_umem_odp.h>
35 #include <linux/kernel.h>
36
37 #include "mlx5_ib.h"
38 #include "cmd.h"
39
40 #include <linux/mlx5/eq.h>
41
42 /* Contains the details of a pagefault. */
43 struct mlx5_pagefault {
44         u32                     bytes_committed;
45         u32                     token;
46         u8                      event_subtype;
47         u8                      type;
48         union {
49                 /* Initiator or send message responder pagefault details. */
50                 struct {
51                         /* Received packet size, only valid for responders. */
52                         u32     packet_size;
53                         /*
54                          * Number of resource holding WQE, depends on type.
55                          */
56                         u32     wq_num;
57                         /*
58                          * WQE index. Refers to either the send queue or
59                          * receive queue, according to event_subtype.
60                          */
61                         u16     wqe_index;
62                 } wqe;
63                 /* RDMA responder pagefault details */
64                 struct {
65                         u32     r_key;
66                         /*
67                          * Received packet size, minimal size page fault
68                          * resolution required for forward progress.
69                          */
70                         u32     packet_size;
71                         u32     rdma_op_len;
72                         u64     rdma_va;
73                 } rdma;
74         };
75
76         struct mlx5_ib_pf_eq    *eq;
77         struct work_struct      work;
78 };
79
80 #define MAX_PREFETCH_LEN (4*1024*1024U)
81
82 /* Timeout in ms to wait for an active mmu notifier to complete when handling
83  * a pagefault. */
84 #define MMU_NOTIFIER_TIMEOUT 1000
85
86 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
87 #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
88 #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
89 #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
90 #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
91
92 #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
93
94 static u64 mlx5_imr_ksm_entries;
95
96 static int check_parent(struct ib_umem_odp *odp,
97                                struct mlx5_ib_mr *parent)
98 {
99         struct mlx5_ib_mr *mr = odp->private;
100
101         return mr && mr->parent == parent && !odp->dying;
102 }
103
104 struct ib_ucontext_per_mm *mr_to_per_mm(struct mlx5_ib_mr *mr)
105 {
106         if (WARN_ON(!mr || !mr->umem || !mr->umem->is_odp))
107                 return NULL;
108
109         return to_ib_umem_odp(mr->umem)->per_mm;
110 }
111
112 static struct ib_umem_odp *odp_next(struct ib_umem_odp *odp)
113 {
114         struct mlx5_ib_mr *mr = odp->private, *parent = mr->parent;
115         struct ib_ucontext_per_mm *per_mm = odp->per_mm;
116         struct rb_node *rb;
117
118         down_read(&per_mm->umem_rwsem);
119         while (1) {
120                 rb = rb_next(&odp->interval_tree.rb);
121                 if (!rb)
122                         goto not_found;
123                 odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb);
124                 if (check_parent(odp, parent))
125                         goto end;
126         }
127 not_found:
128         odp = NULL;
129 end:
130         up_read(&per_mm->umem_rwsem);
131         return odp;
132 }
133
134 static struct ib_umem_odp *odp_lookup(u64 start, u64 length,
135                                       struct mlx5_ib_mr *parent)
136 {
137         struct ib_ucontext_per_mm *per_mm = mr_to_per_mm(parent);
138         struct ib_umem_odp *odp;
139         struct rb_node *rb;
140
141         down_read(&per_mm->umem_rwsem);
142         odp = rbt_ib_umem_lookup(&per_mm->umem_tree, start, length);
143         if (!odp)
144                 goto end;
145
146         while (1) {
147                 if (check_parent(odp, parent))
148                         goto end;
149                 rb = rb_next(&odp->interval_tree.rb);
150                 if (!rb)
151                         goto not_found;
152                 odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb);
153                 if (ib_umem_start(&odp->umem) > start + length)
154                         goto not_found;
155         }
156 not_found:
157         odp = NULL;
158 end:
159         up_read(&per_mm->umem_rwsem);
160         return odp;
161 }
162
163 void mlx5_odp_populate_klm(struct mlx5_klm *pklm, size_t offset,
164                            size_t nentries, struct mlx5_ib_mr *mr, int flags)
165 {
166         struct ib_pd *pd = mr->ibmr.pd;
167         struct mlx5_ib_dev *dev = to_mdev(pd->device);
168         struct ib_umem_odp *odp;
169         unsigned long va;
170         int i;
171
172         if (flags & MLX5_IB_UPD_XLT_ZAP) {
173                 for (i = 0; i < nentries; i++, pklm++) {
174                         pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
175                         pklm->key = cpu_to_be32(dev->null_mkey);
176                         pklm->va = 0;
177                 }
178                 return;
179         }
180
181         odp = odp_lookup(offset * MLX5_IMR_MTT_SIZE,
182                          nentries * MLX5_IMR_MTT_SIZE, mr);
183
184         for (i = 0; i < nentries; i++, pklm++) {
185                 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
186                 va = (offset + i) * MLX5_IMR_MTT_SIZE;
187                 if (odp && odp->umem.address == va) {
188                         struct mlx5_ib_mr *mtt = odp->private;
189
190                         pklm->key = cpu_to_be32(mtt->ibmr.lkey);
191                         odp = odp_next(odp);
192                 } else {
193                         pklm->key = cpu_to_be32(dev->null_mkey);
194                 }
195                 mlx5_ib_dbg(dev, "[%d] va %lx key %x\n",
196                             i, va, be32_to_cpu(pklm->key));
197         }
198 }
199
200 static void mr_leaf_free_action(struct work_struct *work)
201 {
202         struct ib_umem_odp *odp = container_of(work, struct ib_umem_odp, work);
203         int idx = ib_umem_start(&odp->umem) >> MLX5_IMR_MTT_SHIFT;
204         struct mlx5_ib_mr *mr = odp->private, *imr = mr->parent;
205
206         mr->parent = NULL;
207         synchronize_srcu(&mr->dev->mr_srcu);
208
209         ib_umem_release(&odp->umem);
210         if (imr->live)
211                 mlx5_ib_update_xlt(imr, idx, 1, 0,
212                                    MLX5_IB_UPD_XLT_INDIRECT |
213                                    MLX5_IB_UPD_XLT_ATOMIC);
214         mlx5_mr_cache_free(mr->dev, mr);
215
216         if (atomic_dec_and_test(&imr->num_leaf_free))
217                 wake_up(&imr->q_leaf_free);
218 }
219
220 void mlx5_ib_invalidate_range(struct ib_umem_odp *umem_odp, unsigned long start,
221                               unsigned long end)
222 {
223         struct mlx5_ib_mr *mr;
224         const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT /
225                                     sizeof(struct mlx5_mtt)) - 1;
226         u64 idx = 0, blk_start_idx = 0;
227         struct ib_umem *umem;
228         int in_block = 0;
229         u64 addr;
230
231         if (!umem_odp) {
232                 pr_err("invalidation called on NULL umem or non-ODP umem\n");
233                 return;
234         }
235         umem = &umem_odp->umem;
236
237         mr = umem_odp->private;
238
239         if (!mr || !mr->ibmr.pd)
240                 return;
241
242         start = max_t(u64, ib_umem_start(umem), start);
243         end = min_t(u64, ib_umem_end(umem), end);
244
245         /*
246          * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
247          * while we are doing the invalidation, no page fault will attempt to
248          * overwrite the same MTTs.  Concurent invalidations might race us,
249          * but they will write 0s as well, so no difference in the end result.
250          */
251
252         for (addr = start; addr < end; addr += BIT(umem->page_shift)) {
253                 idx = (addr - ib_umem_start(umem)) >> umem->page_shift;
254                 /*
255                  * Strive to write the MTTs in chunks, but avoid overwriting
256                  * non-existing MTTs. The huristic here can be improved to
257                  * estimate the cost of another UMR vs. the cost of bigger
258                  * UMR.
259                  */
260                 if (umem_odp->dma_list[idx] &
261                     (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
262                         if (!in_block) {
263                                 blk_start_idx = idx;
264                                 in_block = 1;
265                         }
266                 } else {
267                         u64 umr_offset = idx & umr_block_mask;
268
269                         if (in_block && umr_offset == 0) {
270                                 mlx5_ib_update_xlt(mr, blk_start_idx,
271                                                    idx - blk_start_idx, 0,
272                                                    MLX5_IB_UPD_XLT_ZAP |
273                                                    MLX5_IB_UPD_XLT_ATOMIC);
274                                 in_block = 0;
275                         }
276                 }
277         }
278         if (in_block)
279                 mlx5_ib_update_xlt(mr, blk_start_idx,
280                                    idx - blk_start_idx + 1, 0,
281                                    MLX5_IB_UPD_XLT_ZAP |
282                                    MLX5_IB_UPD_XLT_ATOMIC);
283         /*
284          * We are now sure that the device will not access the
285          * memory. We can safely unmap it, and mark it as dirty if
286          * needed.
287          */
288
289         ib_umem_odp_unmap_dma_pages(umem_odp, start, end);
290
291         if (unlikely(!umem->npages && mr->parent &&
292                      !umem_odp->dying)) {
293                 WRITE_ONCE(umem_odp->dying, 1);
294                 atomic_inc(&mr->parent->num_leaf_free);
295                 schedule_work(&umem_odp->work);
296         }
297 }
298
299 void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev)
300 {
301         struct ib_odp_caps *caps = &dev->odp_caps;
302
303         memset(caps, 0, sizeof(*caps));
304
305         if (!MLX5_CAP_GEN(dev->mdev, pg))
306                 return;
307
308         caps->general_caps = IB_ODP_SUPPORT;
309
310         if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
311                 dev->odp_max_size = U64_MAX;
312         else
313                 dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
314
315         if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send))
316                 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
317
318         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send))
319                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
320
321         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive))
322                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
323
324         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write))
325                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
326
327         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read))
328                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
329
330         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic))
331                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
332
333         if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
334             MLX5_CAP_GEN(dev->mdev, null_mkey) &&
335             MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
336                 caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
337
338         return;
339 }
340
341 static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
342                                       struct mlx5_pagefault *pfault,
343                                       int error)
344 {
345         int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
346                      pfault->wqe.wq_num : pfault->token;
347         u32 out[MLX5_ST_SZ_DW(page_fault_resume_out)] = { };
348         u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)]   = { };
349         int err;
350
351         MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME);
352         MLX5_SET(page_fault_resume_in, in, page_fault_type, pfault->type);
353         MLX5_SET(page_fault_resume_in, in, token, pfault->token);
354         MLX5_SET(page_fault_resume_in, in, wq_number, wq_num);
355         MLX5_SET(page_fault_resume_in, in, error, !!error);
356
357         err = mlx5_cmd_exec(dev->mdev, in, sizeof(in), out, sizeof(out));
358         if (err)
359                 mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n",
360                             wq_num, err);
361 }
362
363 static struct mlx5_ib_mr *implicit_mr_alloc(struct ib_pd *pd,
364                                             struct ib_umem *umem,
365                                             bool ksm, int access_flags)
366 {
367         struct mlx5_ib_dev *dev = to_mdev(pd->device);
368         struct mlx5_ib_mr *mr;
369         int err;
370
371         mr = mlx5_mr_cache_alloc(dev, ksm ? MLX5_IMR_KSM_CACHE_ENTRY :
372                                             MLX5_IMR_MTT_CACHE_ENTRY);
373
374         if (IS_ERR(mr))
375                 return mr;
376
377         mr->ibmr.pd = pd;
378
379         mr->dev = dev;
380         mr->access_flags = access_flags;
381         mr->mmkey.iova = 0;
382         mr->umem = umem;
383
384         if (ksm) {
385                 err = mlx5_ib_update_xlt(mr, 0,
386                                          mlx5_imr_ksm_entries,
387                                          MLX5_KSM_PAGE_SHIFT,
388                                          MLX5_IB_UPD_XLT_INDIRECT |
389                                          MLX5_IB_UPD_XLT_ZAP |
390                                          MLX5_IB_UPD_XLT_ENABLE);
391
392         } else {
393                 err = mlx5_ib_update_xlt(mr, 0,
394                                          MLX5_IMR_MTT_ENTRIES,
395                                          PAGE_SHIFT,
396                                          MLX5_IB_UPD_XLT_ZAP |
397                                          MLX5_IB_UPD_XLT_ENABLE |
398                                          MLX5_IB_UPD_XLT_ATOMIC);
399         }
400
401         if (err)
402                 goto fail;
403
404         mr->ibmr.lkey = mr->mmkey.key;
405         mr->ibmr.rkey = mr->mmkey.key;
406
407         mr->live = 1;
408
409         mlx5_ib_dbg(dev, "key %x dev %p mr %p\n",
410                     mr->mmkey.key, dev->mdev, mr);
411
412         return mr;
413
414 fail:
415         mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
416         mlx5_mr_cache_free(dev, mr);
417
418         return ERR_PTR(err);
419 }
420
421 static struct ib_umem_odp *implicit_mr_get_data(struct mlx5_ib_mr *mr,
422                                                 u64 io_virt, size_t bcnt)
423 {
424         struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.pd->device);
425         struct ib_umem_odp *odp, *result = NULL;
426         struct ib_umem_odp *odp_mr = to_ib_umem_odp(mr->umem);
427         u64 addr = io_virt & MLX5_IMR_MTT_MASK;
428         int nentries = 0, start_idx = 0, ret;
429         struct mlx5_ib_mr *mtt;
430
431         mutex_lock(&odp_mr->umem_mutex);
432         odp = odp_lookup(addr, 1, mr);
433
434         mlx5_ib_dbg(dev, "io_virt:%llx bcnt:%zx addr:%llx odp:%p\n",
435                     io_virt, bcnt, addr, odp);
436
437 next_mr:
438         if (likely(odp)) {
439                 if (nentries)
440                         nentries++;
441         } else {
442                 odp = ib_alloc_odp_umem(odp_mr->per_mm, addr,
443                                         MLX5_IMR_MTT_SIZE);
444                 if (IS_ERR(odp)) {
445                         mutex_unlock(&odp_mr->umem_mutex);
446                         return ERR_CAST(odp);
447                 }
448
449                 mtt = implicit_mr_alloc(mr->ibmr.pd, &odp->umem, 0,
450                                         mr->access_flags);
451                 if (IS_ERR(mtt)) {
452                         mutex_unlock(&odp_mr->umem_mutex);
453                         ib_umem_release(&odp->umem);
454                         return ERR_CAST(mtt);
455                 }
456
457                 odp->private = mtt;
458                 mtt->umem = &odp->umem;
459                 mtt->mmkey.iova = addr;
460                 mtt->parent = mr;
461                 INIT_WORK(&odp->work, mr_leaf_free_action);
462
463                 if (!nentries)
464                         start_idx = addr >> MLX5_IMR_MTT_SHIFT;
465                 nentries++;
466         }
467
468         /* Return first odp if region not covered by single one */
469         if (likely(!result))
470                 result = odp;
471
472         addr += MLX5_IMR_MTT_SIZE;
473         if (unlikely(addr < io_virt + bcnt)) {
474                 odp = odp_next(odp);
475                 if (odp && odp->umem.address != addr)
476                         odp = NULL;
477                 goto next_mr;
478         }
479
480         if (unlikely(nentries)) {
481                 ret = mlx5_ib_update_xlt(mr, start_idx, nentries, 0,
482                                          MLX5_IB_UPD_XLT_INDIRECT |
483                                          MLX5_IB_UPD_XLT_ATOMIC);
484                 if (ret) {
485                         mlx5_ib_err(dev, "Failed to update PAS\n");
486                         result = ERR_PTR(ret);
487                 }
488         }
489
490         mutex_unlock(&odp_mr->umem_mutex);
491         return result;
492 }
493
494 struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
495                                              int access_flags)
496 {
497         struct ib_ucontext *ctx = pd->ibpd.uobject->context;
498         struct mlx5_ib_mr *imr;
499         struct ib_umem *umem;
500
501         umem = ib_umem_get(ctx, 0, 0, IB_ACCESS_ON_DEMAND, 0);
502         if (IS_ERR(umem))
503                 return ERR_CAST(umem);
504
505         imr = implicit_mr_alloc(&pd->ibpd, umem, 1, access_flags);
506         if (IS_ERR(imr)) {
507                 ib_umem_release(umem);
508                 return ERR_CAST(imr);
509         }
510
511         imr->umem = umem;
512         init_waitqueue_head(&imr->q_leaf_free);
513         atomic_set(&imr->num_leaf_free, 0);
514
515         return imr;
516 }
517
518 static int mr_leaf_free(struct ib_umem_odp *umem_odp, u64 start, u64 end,
519                         void *cookie)
520 {
521         struct mlx5_ib_mr *mr = umem_odp->private, *imr = cookie;
522         struct ib_umem *umem = &umem_odp->umem;
523
524         if (mr->parent != imr)
525                 return 0;
526
527         ib_umem_odp_unmap_dma_pages(umem_odp, ib_umem_start(umem),
528                                     ib_umem_end(umem));
529
530         if (umem_odp->dying)
531                 return 0;
532
533         WRITE_ONCE(umem_odp->dying, 1);
534         atomic_inc(&imr->num_leaf_free);
535         schedule_work(&umem_odp->work);
536
537         return 0;
538 }
539
540 void mlx5_ib_free_implicit_mr(struct mlx5_ib_mr *imr)
541 {
542         struct ib_ucontext_per_mm *per_mm = mr_to_per_mm(imr);
543
544         down_read(&per_mm->umem_rwsem);
545         rbt_ib_umem_for_each_in_range(&per_mm->umem_tree, 0, ULLONG_MAX,
546                                       mr_leaf_free, true, imr);
547         up_read(&per_mm->umem_rwsem);
548
549         wait_event(imr->q_leaf_free, !atomic_read(&imr->num_leaf_free));
550 }
551
552 static int pagefault_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
553                         u64 io_virt, size_t bcnt, u32 *bytes_mapped)
554 {
555         int npages = 0, current_seq, page_shift, ret, np;
556         bool implicit = false;
557         struct ib_umem_odp *odp_mr = to_ib_umem_odp(mr->umem);
558         u64 access_mask = ODP_READ_ALLOWED_BIT;
559         u64 start_idx, page_mask;
560         struct ib_umem_odp *odp;
561         size_t size;
562
563         if (!odp_mr->page_list) {
564                 odp = implicit_mr_get_data(mr, io_virt, bcnt);
565
566                 if (IS_ERR(odp))
567                         return PTR_ERR(odp);
568                 mr = odp->private;
569                 implicit = true;
570         } else {
571                 odp = odp_mr;
572         }
573
574 next_mr:
575         size = min_t(size_t, bcnt, ib_umem_end(&odp->umem) - io_virt);
576
577         page_shift = mr->umem->page_shift;
578         page_mask = ~(BIT(page_shift) - 1);
579         start_idx = (io_virt - (mr->mmkey.iova & page_mask)) >> page_shift;
580
581         if (mr->umem->writable)
582                 access_mask |= ODP_WRITE_ALLOWED_BIT;
583
584         current_seq = READ_ONCE(odp->notifiers_seq);
585         /*
586          * Ensure the sequence number is valid for some time before we call
587          * gup.
588          */
589         smp_rmb();
590
591         ret = ib_umem_odp_map_dma_pages(to_ib_umem_odp(mr->umem), io_virt, size,
592                                         access_mask, current_seq);
593
594         if (ret < 0)
595                 goto out;
596
597         np = ret;
598
599         mutex_lock(&odp->umem_mutex);
600         if (!ib_umem_mmu_notifier_retry(to_ib_umem_odp(mr->umem),
601                                         current_seq)) {
602                 /*
603                  * No need to check whether the MTTs really belong to
604                  * this MR, since ib_umem_odp_map_dma_pages already
605                  * checks this.
606                  */
607                 ret = mlx5_ib_update_xlt(mr, start_idx, np,
608                                          page_shift, MLX5_IB_UPD_XLT_ATOMIC);
609         } else {
610                 ret = -EAGAIN;
611         }
612         mutex_unlock(&odp->umem_mutex);
613
614         if (ret < 0) {
615                 if (ret != -EAGAIN)
616                         mlx5_ib_err(dev, "Failed to update mkey page tables\n");
617                 goto out;
618         }
619
620         if (bytes_mapped) {
621                 u32 new_mappings = (np << page_shift) -
622                         (io_virt - round_down(io_virt, 1 << page_shift));
623                 *bytes_mapped += min_t(u32, new_mappings, size);
624         }
625
626         npages += np << (page_shift - PAGE_SHIFT);
627         bcnt -= size;
628
629         if (unlikely(bcnt)) {
630                 struct ib_umem_odp *next;
631
632                 io_virt += size;
633                 next = odp_next(odp);
634                 if (unlikely(!next || next->umem.address != io_virt)) {
635                         mlx5_ib_dbg(dev, "next implicit leaf removed at 0x%llx. got %p\n",
636                                     io_virt, next);
637                         return -EAGAIN;
638                 }
639                 odp = next;
640                 mr = odp->private;
641                 goto next_mr;
642         }
643
644         return npages;
645
646 out:
647         if (ret == -EAGAIN) {
648                 if (implicit || !odp->dying) {
649                         unsigned long timeout =
650                                 msecs_to_jiffies(MMU_NOTIFIER_TIMEOUT);
651
652                         if (!wait_for_completion_timeout(
653                                         &odp->notifier_completion,
654                                         timeout)) {
655                                 mlx5_ib_warn(dev, "timeout waiting for mmu notifier. seq %d against %d. notifiers_count=%d\n",
656                                              current_seq, odp->notifiers_seq, odp->notifiers_count);
657                         }
658                 } else {
659                         /* The MR is being killed, kill the QP as well. */
660                         ret = -EFAULT;
661                 }
662         }
663
664         return ret;
665 }
666
667 struct pf_frame {
668         struct pf_frame *next;
669         u32 key;
670         u64 io_virt;
671         size_t bcnt;
672         int depth;
673 };
674
675 /*
676  * Handle a single data segment in a page-fault WQE or RDMA region.
677  *
678  * Returns number of OS pages retrieved on success. The caller may continue to
679  * the next data segment.
680  * Can return the following error codes:
681  * -EAGAIN to designate a temporary error. The caller will abort handling the
682  *  page fault and resolve it.
683  * -EFAULT when there's an error mapping the requested pages. The caller will
684  *  abort the page fault handling.
685  */
686 static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
687                                          u32 key, u64 io_virt, size_t bcnt,
688                                          u32 *bytes_committed,
689                                          u32 *bytes_mapped)
690 {
691         int npages = 0, srcu_key, ret, i, outlen, cur_outlen = 0, depth = 0;
692         struct pf_frame *head = NULL, *frame;
693         struct mlx5_core_mkey *mmkey;
694         struct mlx5_ib_mw *mw;
695         struct mlx5_ib_mr *mr;
696         struct mlx5_klm *pklm;
697         u32 *out = NULL;
698         size_t offset;
699
700         srcu_key = srcu_read_lock(&dev->mr_srcu);
701
702         io_virt += *bytes_committed;
703         bcnt -= *bytes_committed;
704
705 next_mr:
706         mmkey = __mlx5_mr_lookup(dev->mdev, mlx5_base_mkey(key));
707         if (!mmkey || mmkey->key != key) {
708                 mlx5_ib_dbg(dev, "failed to find mkey %x\n", key);
709                 ret = -EFAULT;
710                 goto srcu_unlock;
711         }
712
713         switch (mmkey->type) {
714         case MLX5_MKEY_MR:
715                 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
716                 if (!mr->live || !mr->ibmr.pd) {
717                         mlx5_ib_dbg(dev, "got dead MR\n");
718                         ret = -EFAULT;
719                         goto srcu_unlock;
720                 }
721
722                 if (!mr->umem->is_odp) {
723                         mlx5_ib_dbg(dev, "skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
724                                     key);
725                         if (bytes_mapped)
726                                 *bytes_mapped += bcnt;
727                         ret = 0;
728                         goto srcu_unlock;
729                 }
730
731                 ret = pagefault_mr(dev, mr, io_virt, bcnt, bytes_mapped);
732                 if (ret < 0)
733                         goto srcu_unlock;
734
735                 npages += ret;
736                 ret = 0;
737                 break;
738
739         case MLX5_MKEY_MW:
740                 mw = container_of(mmkey, struct mlx5_ib_mw, mmkey);
741
742                 if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) {
743                         mlx5_ib_dbg(dev, "indirection level exceeded\n");
744                         ret = -EFAULT;
745                         goto srcu_unlock;
746                 }
747
748                 outlen = MLX5_ST_SZ_BYTES(query_mkey_out) +
749                         sizeof(*pklm) * (mw->ndescs - 2);
750
751                 if (outlen > cur_outlen) {
752                         kfree(out);
753                         out = kzalloc(outlen, GFP_KERNEL);
754                         if (!out) {
755                                 ret = -ENOMEM;
756                                 goto srcu_unlock;
757                         }
758                         cur_outlen = outlen;
759                 }
760
761                 pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out,
762                                                        bsf0_klm0_pas_mtt0_1);
763
764                 ret = mlx5_core_query_mkey(dev->mdev, &mw->mmkey, out, outlen);
765                 if (ret)
766                         goto srcu_unlock;
767
768                 offset = io_virt - MLX5_GET64(query_mkey_out, out,
769                                               memory_key_mkey_entry.start_addr);
770
771                 for (i = 0; bcnt && i < mw->ndescs; i++, pklm++) {
772                         if (offset >= be32_to_cpu(pklm->bcount)) {
773                                 offset -= be32_to_cpu(pklm->bcount);
774                                 continue;
775                         }
776
777                         frame = kzalloc(sizeof(*frame), GFP_KERNEL);
778                         if (!frame) {
779                                 ret = -ENOMEM;
780                                 goto srcu_unlock;
781                         }
782
783                         frame->key = be32_to_cpu(pklm->key);
784                         frame->io_virt = be64_to_cpu(pklm->va) + offset;
785                         frame->bcnt = min_t(size_t, bcnt,
786                                             be32_to_cpu(pklm->bcount) - offset);
787                         frame->depth = depth + 1;
788                         frame->next = head;
789                         head = frame;
790
791                         bcnt -= frame->bcnt;
792                         offset = 0;
793                 }
794                 break;
795
796         default:
797                 mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type);
798                 ret = -EFAULT;
799                 goto srcu_unlock;
800         }
801
802         if (head) {
803                 frame = head;
804                 head = frame->next;
805
806                 key = frame->key;
807                 io_virt = frame->io_virt;
808                 bcnt = frame->bcnt;
809                 depth = frame->depth;
810                 kfree(frame);
811
812                 goto next_mr;
813         }
814
815 srcu_unlock:
816         while (head) {
817                 frame = head;
818                 head = frame->next;
819                 kfree(frame);
820         }
821         kfree(out);
822
823         srcu_read_unlock(&dev->mr_srcu, srcu_key);
824         *bytes_committed = 0;
825         return ret ? ret : npages;
826 }
827
828 /**
829  * Parse a series of data segments for page fault handling.
830  *
831  * @qp the QP on which the fault occurred.
832  * @pfault contains page fault information.
833  * @wqe points at the first data segment in the WQE.
834  * @wqe_end points after the end of the WQE.
835  * @bytes_mapped receives the number of bytes that the function was able to
836  *               map. This allows the caller to decide intelligently whether
837  *               enough memory was mapped to resolve the page fault
838  *               successfully (e.g. enough for the next MTU, or the entire
839  *               WQE).
840  * @total_wqe_bytes receives the total data size of this WQE in bytes (minus
841  *                  the committed bytes).
842  *
843  * Returns the number of pages loaded if positive, zero for an empty WQE, or a
844  * negative error code.
845  */
846 static int pagefault_data_segments(struct mlx5_ib_dev *dev,
847                                    struct mlx5_pagefault *pfault,
848                                    struct mlx5_ib_qp *qp, void *wqe,
849                                    void *wqe_end, u32 *bytes_mapped,
850                                    u32 *total_wqe_bytes, int receive_queue)
851 {
852         int ret = 0, npages = 0;
853         u64 io_virt;
854         u32 key;
855         u32 byte_count;
856         size_t bcnt;
857         int inline_segment;
858
859         /* Skip SRQ next-WQE segment. */
860         if (receive_queue && qp->ibqp.srq)
861                 wqe += sizeof(struct mlx5_wqe_srq_next_seg);
862
863         if (bytes_mapped)
864                 *bytes_mapped = 0;
865         if (total_wqe_bytes)
866                 *total_wqe_bytes = 0;
867
868         while (wqe < wqe_end) {
869                 struct mlx5_wqe_data_seg *dseg = wqe;
870
871                 io_virt = be64_to_cpu(dseg->addr);
872                 key = be32_to_cpu(dseg->lkey);
873                 byte_count = be32_to_cpu(dseg->byte_count);
874                 inline_segment = !!(byte_count &  MLX5_INLINE_SEG);
875                 bcnt           = byte_count & ~MLX5_INLINE_SEG;
876
877                 if (inline_segment) {
878                         bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
879                         wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
880                                      16);
881                 } else {
882                         wqe += sizeof(*dseg);
883                 }
884
885                 /* receive WQE end of sg list. */
886                 if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY &&
887                     io_virt == 0)
888                         break;
889
890                 if (!inline_segment && total_wqe_bytes) {
891                         *total_wqe_bytes += bcnt - min_t(size_t, bcnt,
892                                         pfault->bytes_committed);
893                 }
894
895                 /* A zero length data segment designates a length of 2GB. */
896                 if (bcnt == 0)
897                         bcnt = 1U << 31;
898
899                 if (inline_segment || bcnt <= pfault->bytes_committed) {
900                         pfault->bytes_committed -=
901                                 min_t(size_t, bcnt,
902                                       pfault->bytes_committed);
903                         continue;
904                 }
905
906                 ret = pagefault_single_data_segment(dev, key, io_virt, bcnt,
907                                                     &pfault->bytes_committed,
908                                                     bytes_mapped);
909                 if (ret < 0)
910                         break;
911                 npages += ret;
912         }
913
914         return ret < 0 ? ret : npages;
915 }
916
917 static const u32 mlx5_ib_odp_opcode_cap[] = {
918         [MLX5_OPCODE_SEND]             = IB_ODP_SUPPORT_SEND,
919         [MLX5_OPCODE_SEND_IMM]         = IB_ODP_SUPPORT_SEND,
920         [MLX5_OPCODE_SEND_INVAL]       = IB_ODP_SUPPORT_SEND,
921         [MLX5_OPCODE_RDMA_WRITE]       = IB_ODP_SUPPORT_WRITE,
922         [MLX5_OPCODE_RDMA_WRITE_IMM]   = IB_ODP_SUPPORT_WRITE,
923         [MLX5_OPCODE_RDMA_READ]        = IB_ODP_SUPPORT_READ,
924         [MLX5_OPCODE_ATOMIC_CS]        = IB_ODP_SUPPORT_ATOMIC,
925         [MLX5_OPCODE_ATOMIC_FA]        = IB_ODP_SUPPORT_ATOMIC,
926 };
927
928 /*
929  * Parse initiator WQE. Advances the wqe pointer to point at the
930  * scatter-gather list, and set wqe_end to the end of the WQE.
931  */
932 static int mlx5_ib_mr_initiator_pfault_handler(
933         struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
934         struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
935 {
936         struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
937         u16 wqe_index = pfault->wqe.wqe_index;
938         u32 transport_caps;
939         struct mlx5_base_av *av;
940         unsigned ds, opcode;
941 #if defined(DEBUG)
942         u32 ctrl_wqe_index, ctrl_qpn;
943 #endif
944         u32 qpn = qp->trans_qp.base.mqp.qpn;
945
946         ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
947         if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
948                 mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
949                             ds, wqe_length);
950                 return -EFAULT;
951         }
952
953         if (ds == 0) {
954                 mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
955                             wqe_index, qpn);
956                 return -EFAULT;
957         }
958
959 #if defined(DEBUG)
960         ctrl_wqe_index = (be32_to_cpu(ctrl->opmod_idx_opcode) &
961                         MLX5_WQE_CTRL_WQE_INDEX_MASK) >>
962                         MLX5_WQE_CTRL_WQE_INDEX_SHIFT;
963         if (wqe_index != ctrl_wqe_index) {
964                 mlx5_ib_err(dev, "Got WQE with invalid wqe_index. wqe_index=0x%x, qpn=0x%x ctrl->wqe_index=0x%x\n",
965                             wqe_index, qpn,
966                             ctrl_wqe_index);
967                 return -EFAULT;
968         }
969
970         ctrl_qpn = (be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_QPN_MASK) >>
971                 MLX5_WQE_CTRL_QPN_SHIFT;
972         if (qpn != ctrl_qpn) {
973                 mlx5_ib_err(dev, "Got WQE with incorrect QP number. wqe_index=0x%x, qpn=0x%x ctrl->qpn=0x%x\n",
974                             wqe_index, qpn,
975                             ctrl_qpn);
976                 return -EFAULT;
977         }
978 #endif /* DEBUG */
979
980         *wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
981         *wqe += sizeof(*ctrl);
982
983         opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
984                  MLX5_WQE_CTRL_OPCODE_MASK;
985
986         switch (qp->ibqp.qp_type) {
987         case IB_QPT_RC:
988                 transport_caps = dev->odp_caps.per_transport_caps.rc_odp_caps;
989                 break;
990         case IB_QPT_UD:
991                 transport_caps = dev->odp_caps.per_transport_caps.ud_odp_caps;
992                 break;
993         default:
994                 mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport 0x%x\n",
995                             qp->ibqp.qp_type);
996                 return -EFAULT;
997         }
998
999         if (unlikely(opcode >= ARRAY_SIZE(mlx5_ib_odp_opcode_cap) ||
1000                      !(transport_caps & mlx5_ib_odp_opcode_cap[opcode]))) {
1001                 mlx5_ib_err(dev, "ODP fault on QP of an unsupported opcode 0x%x\n",
1002                             opcode);
1003                 return -EFAULT;
1004         }
1005
1006         if (qp->ibqp.qp_type != IB_QPT_RC) {
1007                 av = *wqe;
1008                 if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV))
1009                         *wqe += sizeof(struct mlx5_av);
1010                 else
1011                         *wqe += sizeof(struct mlx5_base_av);
1012         }
1013
1014         switch (opcode) {
1015         case MLX5_OPCODE_RDMA_WRITE:
1016         case MLX5_OPCODE_RDMA_WRITE_IMM:
1017         case MLX5_OPCODE_RDMA_READ:
1018                 *wqe += sizeof(struct mlx5_wqe_raddr_seg);
1019                 break;
1020         case MLX5_OPCODE_ATOMIC_CS:
1021         case MLX5_OPCODE_ATOMIC_FA:
1022                 *wqe += sizeof(struct mlx5_wqe_raddr_seg);
1023                 *wqe += sizeof(struct mlx5_wqe_atomic_seg);
1024                 break;
1025         }
1026
1027         return 0;
1028 }
1029
1030 /*
1031  * Parse responder WQE. Advances the wqe pointer to point at the
1032  * scatter-gather list, and set wqe_end to the end of the WQE.
1033  */
1034 static int mlx5_ib_mr_responder_pfault_handler(
1035         struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
1036         struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
1037 {
1038         struct mlx5_ib_wq *wq = &qp->rq;
1039         int wqe_size = 1 << wq->wqe_shift;
1040
1041         if (qp->ibqp.srq) {
1042                 mlx5_ib_err(dev, "ODP fault on SRQ is not supported\n");
1043                 return -EFAULT;
1044         }
1045
1046         if (qp->wq_sig) {
1047                 mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
1048                 return -EFAULT;
1049         }
1050
1051         if (wqe_size > wqe_length) {
1052                 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1053                 return -EFAULT;
1054         }
1055
1056         switch (qp->ibqp.qp_type) {
1057         case IB_QPT_RC:
1058                 if (!(dev->odp_caps.per_transport_caps.rc_odp_caps &
1059                       IB_ODP_SUPPORT_RECV))
1060                         goto invalid_transport_or_opcode;
1061                 break;
1062         default:
1063 invalid_transport_or_opcode:
1064                 mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport. transport: 0x%x\n",
1065                             qp->ibqp.qp_type);
1066                 return -EFAULT;
1067         }
1068
1069         *wqe_end = *wqe + wqe_size;
1070
1071         return 0;
1072 }
1073
1074 static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev,
1075                                                        u32 wq_num, int pf_type)
1076 {
1077         enum mlx5_res_type res_type;
1078
1079         switch (pf_type) {
1080         case MLX5_WQE_PF_TYPE_RMP:
1081                 res_type = MLX5_RES_SRQ;
1082                 break;
1083         case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE:
1084         case MLX5_WQE_PF_TYPE_RESP:
1085         case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC:
1086                 res_type = MLX5_RES_QP;
1087                 break;
1088         default:
1089                 return NULL;
1090         }
1091
1092         return mlx5_core_res_hold(dev->mdev, wq_num, res_type);
1093 }
1094
1095 static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res)
1096 {
1097         struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res;
1098
1099         return to_mibqp(mqp);
1100 }
1101
1102 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
1103                                           struct mlx5_pagefault *pfault)
1104 {
1105         int ret;
1106         void *wqe, *wqe_end;
1107         u32 bytes_mapped, total_wqe_bytes;
1108         char *buffer = NULL;
1109         int resume_with_error = 1;
1110         u16 wqe_index = pfault->wqe.wqe_index;
1111         int requestor = pfault->type & MLX5_PFAULT_REQUESTOR;
1112         struct mlx5_core_rsc_common *res;
1113         struct mlx5_ib_qp *qp;
1114
1115         res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type);
1116         if (!res) {
1117                 mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num);
1118                 return;
1119         }
1120
1121         switch (res->res) {
1122         case MLX5_RES_QP:
1123                 qp = res_to_qp(res);
1124                 break;
1125         default:
1126                 mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n", pfault->type);
1127                 goto resolve_page_fault;
1128         }
1129
1130         buffer = (char *)__get_free_page(GFP_KERNEL);
1131         if (!buffer) {
1132                 mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
1133                 goto resolve_page_fault;
1134         }
1135
1136         ret = mlx5_ib_read_user_wqe(qp, requestor, wqe_index, buffer,
1137                                     PAGE_SIZE, &qp->trans_qp.base);
1138         if (ret < 0) {
1139                 mlx5_ib_err(dev, "Failed reading a WQE following page fault, error=%d, wqe_index=%x, qpn=%x\n",
1140                             ret, wqe_index, pfault->token);
1141                 goto resolve_page_fault;
1142         }
1143
1144         wqe = buffer;
1145         if (requestor)
1146                 ret = mlx5_ib_mr_initiator_pfault_handler(dev, pfault, qp, &wqe,
1147                                                           &wqe_end, ret);
1148         else
1149                 ret = mlx5_ib_mr_responder_pfault_handler(dev, pfault, qp, &wqe,
1150                                                           &wqe_end, ret);
1151         if (ret < 0)
1152                 goto resolve_page_fault;
1153
1154         if (wqe >= wqe_end) {
1155                 mlx5_ib_err(dev, "ODP fault on invalid WQE.\n");
1156                 goto resolve_page_fault;
1157         }
1158
1159         ret = pagefault_data_segments(dev, pfault, qp, wqe, wqe_end,
1160                                       &bytes_mapped, &total_wqe_bytes,
1161                                       !requestor);
1162         if (ret == -EAGAIN) {
1163                 resume_with_error = 0;
1164                 goto resolve_page_fault;
1165         } else if (ret < 0 || total_wqe_bytes > bytes_mapped) {
1166                 goto resolve_page_fault;
1167         }
1168
1169         resume_with_error = 0;
1170 resolve_page_fault:
1171         mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
1172         mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
1173                     pfault->wqe.wq_num, resume_with_error,
1174                     pfault->type);
1175         mlx5_core_res_put(res);
1176         free_page((unsigned long)buffer);
1177 }
1178
1179 static int pages_in_range(u64 address, u32 length)
1180 {
1181         return (ALIGN(address + length, PAGE_SIZE) -
1182                 (address & PAGE_MASK)) >> PAGE_SHIFT;
1183 }
1184
1185 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
1186                                            struct mlx5_pagefault *pfault)
1187 {
1188         u64 address;
1189         u32 length;
1190         u32 prefetch_len = pfault->bytes_committed;
1191         int prefetch_activated = 0;
1192         u32 rkey = pfault->rdma.r_key;
1193         int ret;
1194
1195         /* The RDMA responder handler handles the page fault in two parts.
1196          * First it brings the necessary pages for the current packet
1197          * (and uses the pfault context), and then (after resuming the QP)
1198          * prefetches more pages. The second operation cannot use the pfault
1199          * context and therefore uses the dummy_pfault context allocated on
1200          * the stack */
1201         pfault->rdma.rdma_va += pfault->bytes_committed;
1202         pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
1203                                          pfault->rdma.rdma_op_len);
1204         pfault->bytes_committed = 0;
1205
1206         address = pfault->rdma.rdma_va;
1207         length  = pfault->rdma.rdma_op_len;
1208
1209         /* For some operations, the hardware cannot tell the exact message
1210          * length, and in those cases it reports zero. Use prefetch
1211          * logic. */
1212         if (length == 0) {
1213                 prefetch_activated = 1;
1214                 length = pfault->rdma.packet_size;
1215                 prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
1216         }
1217
1218         ret = pagefault_single_data_segment(dev, rkey, address, length,
1219                                             &pfault->bytes_committed, NULL);
1220         if (ret == -EAGAIN) {
1221                 /* We're racing with an invalidation, don't prefetch */
1222                 prefetch_activated = 0;
1223         } else if (ret < 0 || pages_in_range(address, length) > ret) {
1224                 mlx5_ib_page_fault_resume(dev, pfault, 1);
1225                 if (ret != -ENOENT)
1226                         mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n",
1227                                     ret, pfault->token, pfault->type);
1228                 return;
1229         }
1230
1231         mlx5_ib_page_fault_resume(dev, pfault, 0);
1232         mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n",
1233                     pfault->token, pfault->type,
1234                     prefetch_activated);
1235
1236         /* At this point, there might be a new pagefault already arriving in
1237          * the eq, switch to the dummy pagefault for the rest of the
1238          * processing. We're still OK with the objects being alive as the
1239          * work-queue is being fenced. */
1240
1241         if (prefetch_activated) {
1242                 u32 bytes_committed = 0;
1243
1244                 ret = pagefault_single_data_segment(dev, rkey, address,
1245                                                     prefetch_len,
1246                                                     &bytes_committed, NULL);
1247                 if (ret < 0 && ret != -EAGAIN) {
1248                         mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n",
1249                                     ret, pfault->token, address, prefetch_len);
1250                 }
1251         }
1252 }
1253
1254 static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault)
1255 {
1256         u8 event_subtype = pfault->event_subtype;
1257
1258         switch (event_subtype) {
1259         case MLX5_PFAULT_SUBTYPE_WQE:
1260                 mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
1261                 break;
1262         case MLX5_PFAULT_SUBTYPE_RDMA:
1263                 mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
1264                 break;
1265         default:
1266                 mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
1267                             event_subtype);
1268                 mlx5_ib_page_fault_resume(dev, pfault, 1);
1269         }
1270 }
1271
1272 static void mlx5_ib_eqe_pf_action(struct work_struct *work)
1273 {
1274         struct mlx5_pagefault *pfault = container_of(work,
1275                                                      struct mlx5_pagefault,
1276                                                      work);
1277         struct mlx5_ib_pf_eq *eq = pfault->eq;
1278
1279         mlx5_ib_pfault(eq->dev, pfault);
1280         mempool_free(pfault, eq->pool);
1281 }
1282
1283 static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq)
1284 {
1285         struct mlx5_eqe_page_fault *pf_eqe;
1286         struct mlx5_pagefault *pfault;
1287         struct mlx5_eqe *eqe;
1288         int cc = 0;
1289
1290         while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) {
1291                 pfault = mempool_alloc(eq->pool, GFP_ATOMIC);
1292                 if (!pfault) {
1293                         schedule_work(&eq->work);
1294                         break;
1295                 }
1296
1297                 pf_eqe = &eqe->data.page_fault;
1298                 pfault->event_subtype = eqe->sub_type;
1299                 pfault->bytes_committed = be32_to_cpu(pf_eqe->bytes_committed);
1300
1301                 mlx5_ib_dbg(eq->dev,
1302                             "PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x\n",
1303                             eqe->sub_type, pfault->bytes_committed);
1304
1305                 switch (eqe->sub_type) {
1306                 case MLX5_PFAULT_SUBTYPE_RDMA:
1307                         /* RDMA based event */
1308                         pfault->type =
1309                                 be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24;
1310                         pfault->token =
1311                                 be32_to_cpu(pf_eqe->rdma.pftype_token) &
1312                                 MLX5_24BIT_MASK;
1313                         pfault->rdma.r_key =
1314                                 be32_to_cpu(pf_eqe->rdma.r_key);
1315                         pfault->rdma.packet_size =
1316                                 be16_to_cpu(pf_eqe->rdma.packet_length);
1317                         pfault->rdma.rdma_op_len =
1318                                 be32_to_cpu(pf_eqe->rdma.rdma_op_len);
1319                         pfault->rdma.rdma_va =
1320                                 be64_to_cpu(pf_eqe->rdma.rdma_va);
1321                         mlx5_ib_dbg(eq->dev,
1322                                     "PAGE_FAULT: type:0x%x, token: 0x%06x, r_key: 0x%08x\n",
1323                                     pfault->type, pfault->token,
1324                                     pfault->rdma.r_key);
1325                         mlx5_ib_dbg(eq->dev,
1326                                     "PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n",
1327                                     pfault->rdma.rdma_op_len,
1328                                     pfault->rdma.rdma_va);
1329                         break;
1330
1331                 case MLX5_PFAULT_SUBTYPE_WQE:
1332                         /* WQE based event */
1333                         pfault->type =
1334                                 (be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7;
1335                         pfault->token =
1336                                 be32_to_cpu(pf_eqe->wqe.token);
1337                         pfault->wqe.wq_num =
1338                                 be32_to_cpu(pf_eqe->wqe.pftype_wq) &
1339                                 MLX5_24BIT_MASK;
1340                         pfault->wqe.wqe_index =
1341                                 be16_to_cpu(pf_eqe->wqe.wqe_index);
1342                         pfault->wqe.packet_size =
1343                                 be16_to_cpu(pf_eqe->wqe.packet_length);
1344                         mlx5_ib_dbg(eq->dev,
1345                                     "PAGE_FAULT: type:0x%x, token: 0x%06x, wq_num: 0x%06x, wqe_index: 0x%04x\n",
1346                                     pfault->type, pfault->token,
1347                                     pfault->wqe.wq_num,
1348                                     pfault->wqe.wqe_index);
1349                         break;
1350
1351                 default:
1352                         mlx5_ib_warn(eq->dev,
1353                                      "Unsupported page fault event sub-type: 0x%02hhx\n",
1354                                      eqe->sub_type);
1355                         /* Unsupported page faults should still be
1356                          * resolved by the page fault handler
1357                          */
1358                 }
1359
1360                 pfault->eq = eq;
1361                 INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action);
1362                 queue_work(eq->wq, &pfault->work);
1363
1364                 cc = mlx5_eq_update_cc(eq->core, ++cc);
1365         }
1366
1367         mlx5_eq_update_ci(eq->core, cc, 1);
1368 }
1369
1370 static irqreturn_t mlx5_ib_eq_pf_int(int irq, void *eq_ptr)
1371 {
1372         struct mlx5_ib_pf_eq *eq = eq_ptr;
1373         unsigned long flags;
1374
1375         if (spin_trylock_irqsave(&eq->lock, flags)) {
1376                 mlx5_ib_eq_pf_process(eq);
1377                 spin_unlock_irqrestore(&eq->lock, flags);
1378         } else {
1379                 schedule_work(&eq->work);
1380         }
1381
1382         return IRQ_HANDLED;
1383 }
1384
1385 /* mempool_refill() was proposed but unfortunately wasn't accepted
1386  * http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html
1387  * Cheap workaround.
1388  */
1389 static void mempool_refill(mempool_t *pool)
1390 {
1391         while (pool->curr_nr < pool->min_nr)
1392                 mempool_free(mempool_alloc(pool, GFP_KERNEL), pool);
1393 }
1394
1395 static void mlx5_ib_eq_pf_action(struct work_struct *work)
1396 {
1397         struct mlx5_ib_pf_eq *eq =
1398                 container_of(work, struct mlx5_ib_pf_eq, work);
1399
1400         mempool_refill(eq->pool);
1401
1402         spin_lock_irq(&eq->lock);
1403         mlx5_ib_eq_pf_process(eq);
1404         spin_unlock_irq(&eq->lock);
1405 }
1406
1407 enum {
1408         MLX5_IB_NUM_PF_EQE      = 0x1000,
1409         MLX5_IB_NUM_PF_DRAIN    = 64,
1410 };
1411
1412 static int
1413 mlx5_ib_create_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1414 {
1415         struct mlx5_eq_param param = {};
1416         int err;
1417
1418         INIT_WORK(&eq->work, mlx5_ib_eq_pf_action);
1419         spin_lock_init(&eq->lock);
1420         eq->dev = dev;
1421
1422         eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN,
1423                                                sizeof(struct mlx5_pagefault));
1424         if (!eq->pool)
1425                 return -ENOMEM;
1426
1427         eq->wq = alloc_workqueue("mlx5_ib_page_fault",
1428                                  WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM,
1429                                  MLX5_NUM_CMD_EQE);
1430         if (!eq->wq) {
1431                 err = -ENOMEM;
1432                 goto err_mempool;
1433         }
1434
1435         param = (struct mlx5_eq_param) {
1436                 .index = MLX5_EQ_PFAULT_IDX,
1437                 .mask = 1 << MLX5_EVENT_TYPE_PAGE_FAULT,
1438                 .nent = MLX5_IB_NUM_PF_EQE,
1439                 .context = eq,
1440                 .handler = mlx5_ib_eq_pf_int
1441         };
1442         eq->core = mlx5_eq_create_generic(dev->mdev, "mlx5_ib_page_fault_eq", &param);
1443         if (IS_ERR(eq->core)) {
1444                 err = PTR_ERR(eq->core);
1445                 goto err_wq;
1446         }
1447
1448         return 0;
1449 err_wq:
1450         destroy_workqueue(eq->wq);
1451 err_mempool:
1452         mempool_destroy(eq->pool);
1453         return err;
1454 }
1455
1456 static int
1457 mlx5_ib_destroy_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1458 {
1459         int err;
1460
1461         err = mlx5_eq_destroy_generic(dev->mdev, eq->core);
1462         cancel_work_sync(&eq->work);
1463         destroy_workqueue(eq->wq);
1464         mempool_destroy(eq->pool);
1465
1466         return err;
1467 }
1468
1469 void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent)
1470 {
1471         if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1472                 return;
1473
1474         switch (ent->order - 2) {
1475         case MLX5_IMR_MTT_CACHE_ENTRY:
1476                 ent->page = PAGE_SHIFT;
1477                 ent->xlt = MLX5_IMR_MTT_ENTRIES *
1478                            sizeof(struct mlx5_mtt) /
1479                            MLX5_IB_UMR_OCTOWORD;
1480                 ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
1481                 ent->limit = 0;
1482                 break;
1483
1484         case MLX5_IMR_KSM_CACHE_ENTRY:
1485                 ent->page = MLX5_KSM_PAGE_SHIFT;
1486                 ent->xlt = mlx5_imr_ksm_entries *
1487                            sizeof(struct mlx5_klm) /
1488                            MLX5_IB_UMR_OCTOWORD;
1489                 ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM;
1490                 ent->limit = 0;
1491                 break;
1492         }
1493 }
1494
1495 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
1496 {
1497         int ret = 0;
1498
1499         if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) {
1500                 ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey);
1501                 if (ret) {
1502                         mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret);
1503                         return ret;
1504                 }
1505         }
1506
1507         if (!MLX5_CAP_GEN(dev->mdev, pg))
1508                 return ret;
1509
1510         ret = mlx5_ib_create_pf_eq(dev, &dev->odp_pf_eq);
1511
1512         return ret;
1513 }
1514
1515 void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev)
1516 {
1517         if (!MLX5_CAP_GEN(dev->mdev, pg))
1518                 return;
1519
1520         mlx5_ib_destroy_pf_eq(dev, &dev->odp_pf_eq);
1521 }
1522
1523 int mlx5_ib_odp_init(void)
1524 {
1525         mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
1526                                        MLX5_IMR_MTT_BITS);
1527
1528         return 0;
1529 }