RDMA/mlx5: Rework implicit ODP destroy
[linux-2.6-microblaze.git] / drivers / infiniband / hw / mlx5 / odp.c
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32
33 #include <rdma/ib_umem.h>
34 #include <rdma/ib_umem_odp.h>
35 #include <linux/kernel.h>
36
37 #include "mlx5_ib.h"
38 #include "cmd.h"
39
40 #include <linux/mlx5/eq.h>
41
42 /* Contains the details of a pagefault. */
43 struct mlx5_pagefault {
44         u32                     bytes_committed;
45         u32                     token;
46         u8                      event_subtype;
47         u8                      type;
48         union {
49                 /* Initiator or send message responder pagefault details. */
50                 struct {
51                         /* Received packet size, only valid for responders. */
52                         u32     packet_size;
53                         /*
54                          * Number of resource holding WQE, depends on type.
55                          */
56                         u32     wq_num;
57                         /*
58                          * WQE index. Refers to either the send queue or
59                          * receive queue, according to event_subtype.
60                          */
61                         u16     wqe_index;
62                 } wqe;
63                 /* RDMA responder pagefault details */
64                 struct {
65                         u32     r_key;
66                         /*
67                          * Received packet size, minimal size page fault
68                          * resolution required for forward progress.
69                          */
70                         u32     packet_size;
71                         u32     rdma_op_len;
72                         u64     rdma_va;
73                 } rdma;
74         };
75
76         struct mlx5_ib_pf_eq    *eq;
77         struct work_struct      work;
78 };
79
80 #define MAX_PREFETCH_LEN (4*1024*1024U)
81
82 /* Timeout in ms to wait for an active mmu notifier to complete when handling
83  * a pagefault. */
84 #define MMU_NOTIFIER_TIMEOUT 1000
85
86 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
87 #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
88 #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
89 #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
90 #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
91
92 #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
93
94 static u64 mlx5_imr_ksm_entries;
95
96 void mlx5_odp_populate_klm(struct mlx5_klm *pklm, size_t idx, size_t nentries,
97                            struct mlx5_ib_mr *imr, int flags)
98 {
99         struct mlx5_klm *end = pklm + nentries;
100
101         if (flags & MLX5_IB_UPD_XLT_ZAP) {
102                 for (; pklm != end; pklm++, idx++) {
103                         pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
104                         pklm->key = cpu_to_be32(imr->dev->null_mkey);
105                         pklm->va = 0;
106                 }
107                 return;
108         }
109
110         /*
111          * The locking here is pretty subtle. Ideally the implicit_children
112          * xarray would be protected by the umem_mutex, however that is not
113          * possible. Instead this uses a weaker update-then-lock pattern:
114          *
115          *  srcu_read_lock()
116          *    xa_store()
117          *    mutex_lock(umem_mutex)
118          *     mlx5_ib_update_xlt()
119          *    mutex_unlock(umem_mutex)
120          *    destroy lkey
121          *
122          * ie any change the xarray must be followed by the locked update_xlt
123          * before destroying.
124          *
125          * The umem_mutex provides the acquire/release semantic needed to make
126          * the xa_store() visible to a racing thread. While SRCU is not
127          * technically required, using it gives consistent use of the SRCU
128          * locking around the xarray.
129          */
130         lockdep_assert_held(&to_ib_umem_odp(imr->umem)->umem_mutex);
131         lockdep_assert_held(&imr->dev->odp_srcu);
132
133         for (; pklm != end; pklm++, idx++) {
134                 struct mlx5_ib_mr *mtt = xa_load(&imr->implicit_children, idx);
135
136                 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
137                 if (mtt) {
138                         pklm->key = cpu_to_be32(mtt->ibmr.lkey);
139                         pklm->va = cpu_to_be64(idx * MLX5_IMR_MTT_SIZE);
140                 } else {
141                         pklm->key = cpu_to_be32(imr->dev->null_mkey);
142                         pklm->va = 0;
143                 }
144         }
145 }
146
147 /*
148  * This must be called after the mr has been removed from implicit_children
149  * and odp_mkeys and the SRCU synchronized.  NOTE: The MR does not necessarily
150  * have to be empty here, parallel page faults could have raced with the free
151  * process and added pages to it.
152  */
153 static void free_implicit_child_mr(struct mlx5_ib_mr *mr, bool need_imr_xlt)
154 {
155         struct mlx5_ib_mr *imr = mr->parent;
156         struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem);
157         struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
158         unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT;
159         int srcu_key;
160
161         /* implicit_child_mr's are not allowed to have deferred work */
162         WARN_ON(atomic_read(&mr->num_deferred_work));
163
164         if (need_imr_xlt) {
165                 srcu_key = srcu_read_lock(&mr->dev->odp_srcu);
166                 mutex_lock(&odp_imr->umem_mutex);
167                 mlx5_ib_update_xlt(mr->parent, idx, 1, 0,
168                                    MLX5_IB_UPD_XLT_INDIRECT |
169                                    MLX5_IB_UPD_XLT_ATOMIC);
170                 mutex_unlock(&odp_imr->umem_mutex);
171                 srcu_read_unlock(&mr->dev->odp_srcu, srcu_key);
172         }
173
174         mr->parent = NULL;
175         mlx5_mr_cache_free(mr->dev, mr);
176         ib_umem_odp_release(odp);
177         atomic_dec(&imr->num_deferred_work);
178 }
179
180 static void free_implicit_child_mr_work(struct work_struct *work)
181 {
182         struct mlx5_ib_mr *mr =
183                 container_of(work, struct mlx5_ib_mr, odp_destroy.work);
184
185         free_implicit_child_mr(mr, true);
186 }
187
188 static void free_implicit_child_mr_rcu(struct rcu_head *head)
189 {
190         struct mlx5_ib_mr *mr =
191                 container_of(head, struct mlx5_ib_mr, odp_destroy.rcu);
192
193         /* Freeing a MR is a sleeping operation, so bounce to a work queue */
194         INIT_WORK(&mr->odp_destroy.work, free_implicit_child_mr_work);
195         queue_work(system_unbound_wq, &mr->odp_destroy.work);
196 }
197
198 static void destroy_unused_implicit_child_mr(struct mlx5_ib_mr *mr)
199 {
200         struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
201         unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT;
202         struct mlx5_ib_mr *imr = mr->parent;
203
204         xa_lock(&imr->implicit_children);
205         /*
206          * This can race with mlx5_ib_free_implicit_mr(), the first one to
207          * reach the xa lock wins the race and destroys the MR.
208          */
209         if (__xa_cmpxchg(&imr->implicit_children, idx, mr, NULL, GFP_ATOMIC) !=
210             mr)
211                 goto out_unlock;
212
213         __xa_erase(&mr->dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key));
214         atomic_inc(&imr->num_deferred_work);
215         call_srcu(&mr->dev->odp_srcu, &mr->odp_destroy.rcu,
216                   free_implicit_child_mr_rcu);
217
218 out_unlock:
219         xa_unlock(&imr->implicit_children);
220 }
221
222 void mlx5_ib_invalidate_range(struct ib_umem_odp *umem_odp, unsigned long start,
223                               unsigned long end)
224 {
225         struct mlx5_ib_mr *mr;
226         const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT /
227                                     sizeof(struct mlx5_mtt)) - 1;
228         u64 idx = 0, blk_start_idx = 0;
229         int in_block = 0;
230         u64 addr;
231
232         if (!umem_odp) {
233                 pr_err("invalidation called on NULL umem or non-ODP umem\n");
234                 return;
235         }
236
237         mr = umem_odp->private;
238
239         if (!mr || !mr->ibmr.pd)
240                 return;
241
242         start = max_t(u64, ib_umem_start(umem_odp), start);
243         end = min_t(u64, ib_umem_end(umem_odp), end);
244
245         /*
246          * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
247          * while we are doing the invalidation, no page fault will attempt to
248          * overwrite the same MTTs.  Concurent invalidations might race us,
249          * but they will write 0s as well, so no difference in the end result.
250          */
251         mutex_lock(&umem_odp->umem_mutex);
252         for (addr = start; addr < end; addr += BIT(umem_odp->page_shift)) {
253                 idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift;
254                 /*
255                  * Strive to write the MTTs in chunks, but avoid overwriting
256                  * non-existing MTTs. The huristic here can be improved to
257                  * estimate the cost of another UMR vs. the cost of bigger
258                  * UMR.
259                  */
260                 if (umem_odp->dma_list[idx] &
261                     (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
262                         if (!in_block) {
263                                 blk_start_idx = idx;
264                                 in_block = 1;
265                         }
266                 } else {
267                         u64 umr_offset = idx & umr_block_mask;
268
269                         if (in_block && umr_offset == 0) {
270                                 mlx5_ib_update_xlt(mr, blk_start_idx,
271                                                    idx - blk_start_idx, 0,
272                                                    MLX5_IB_UPD_XLT_ZAP |
273                                                    MLX5_IB_UPD_XLT_ATOMIC);
274                                 in_block = 0;
275                         }
276                 }
277         }
278         if (in_block)
279                 mlx5_ib_update_xlt(mr, blk_start_idx,
280                                    idx - blk_start_idx + 1, 0,
281                                    MLX5_IB_UPD_XLT_ZAP |
282                                    MLX5_IB_UPD_XLT_ATOMIC);
283         /*
284          * We are now sure that the device will not access the
285          * memory. We can safely unmap it, and mark it as dirty if
286          * needed.
287          */
288
289         ib_umem_odp_unmap_dma_pages(umem_odp, start, end);
290
291         if (unlikely(!umem_odp->npages && mr->parent))
292                 destroy_unused_implicit_child_mr(mr);
293         mutex_unlock(&umem_odp->umem_mutex);
294 }
295
296 void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev)
297 {
298         struct ib_odp_caps *caps = &dev->odp_caps;
299
300         memset(caps, 0, sizeof(*caps));
301
302         if (!MLX5_CAP_GEN(dev->mdev, pg) ||
303             !mlx5_ib_can_use_umr(dev, true))
304                 return;
305
306         caps->general_caps = IB_ODP_SUPPORT;
307
308         if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
309                 dev->odp_max_size = U64_MAX;
310         else
311                 dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
312
313         if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send))
314                 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
315
316         if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.srq_receive))
317                 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
318
319         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send))
320                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
321
322         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive))
323                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
324
325         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write))
326                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
327
328         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read))
329                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
330
331         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic))
332                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
333
334         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.srq_receive))
335                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
336
337         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.send))
338                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SEND;
339
340         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.receive))
341                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_RECV;
342
343         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.write))
344                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_WRITE;
345
346         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.read))
347                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_READ;
348
349         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.atomic))
350                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
351
352         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.srq_receive))
353                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
354
355         if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
356             MLX5_CAP_GEN(dev->mdev, null_mkey) &&
357             MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset) &&
358             !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled))
359                 caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
360
361         return;
362 }
363
364 static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
365                                       struct mlx5_pagefault *pfault,
366                                       int error)
367 {
368         int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
369                      pfault->wqe.wq_num : pfault->token;
370         u32 out[MLX5_ST_SZ_DW(page_fault_resume_out)] = { };
371         u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)]   = { };
372         int err;
373
374         MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME);
375         MLX5_SET(page_fault_resume_in, in, page_fault_type, pfault->type);
376         MLX5_SET(page_fault_resume_in, in, token, pfault->token);
377         MLX5_SET(page_fault_resume_in, in, wq_number, wq_num);
378         MLX5_SET(page_fault_resume_in, in, error, !!error);
379
380         err = mlx5_cmd_exec(dev->mdev, in, sizeof(in), out, sizeof(out));
381         if (err)
382                 mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n",
383                             wq_num, err);
384 }
385
386 static struct mlx5_ib_mr *implicit_get_child_mr(struct mlx5_ib_mr *imr,
387                                                 unsigned long idx)
388 {
389         struct ib_umem_odp *odp;
390         struct mlx5_ib_mr *mr;
391         struct mlx5_ib_mr *ret;
392         int err;
393
394         odp = ib_umem_odp_alloc_child(to_ib_umem_odp(imr->umem),
395                                       idx * MLX5_IMR_MTT_SIZE,
396                                       MLX5_IMR_MTT_SIZE);
397         if (IS_ERR(odp))
398                 return ERR_CAST(odp);
399
400         ret = mr = mlx5_mr_cache_alloc(imr->dev, MLX5_IMR_MTT_CACHE_ENTRY);
401         if (IS_ERR(mr))
402                 goto out_umem;
403
404         err = xa_reserve(&imr->dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key),
405                          GFP_KERNEL);
406         if (err) {
407                 ret = ERR_PTR(err);
408                 goto out_mr;
409         }
410
411         mr->ibmr.pd = imr->ibmr.pd;
412         mr->access_flags = imr->access_flags;
413         mr->umem = &odp->umem;
414         mr->ibmr.lkey = mr->mmkey.key;
415         mr->ibmr.rkey = mr->mmkey.key;
416         mr->mmkey.iova = idx * MLX5_IMR_MTT_SIZE;
417         mr->parent = imr;
418         odp->private = mr;
419
420         err = mlx5_ib_update_xlt(mr, 0,
421                                  MLX5_IMR_MTT_ENTRIES,
422                                  PAGE_SHIFT,
423                                  MLX5_IB_UPD_XLT_ZAP |
424                                  MLX5_IB_UPD_XLT_ENABLE);
425         if (err) {
426                 ret = ERR_PTR(err);
427                 goto out_release;
428         }
429
430         /*
431          * Once the store to either xarray completes any error unwind has to
432          * use synchronize_srcu(). Avoid this with xa_reserve()
433          */
434         ret = xa_cmpxchg(&imr->implicit_children, idx, NULL, mr,
435                          GFP_KERNEL);
436         if (likely(!ret))
437                 xa_store(&imr->dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key),
438                          &mr->mmkey, GFP_ATOMIC);
439         if (unlikely(ret)) {
440                 if (xa_is_err(ret)) {
441                         ret = ERR_PTR(xa_err(ret));
442                         goto out_release;
443                 }
444                 /*
445                  * Another thread beat us to creating the child mr, use
446                  * theirs.
447                  */
448                 goto out_release;
449         }
450
451         mlx5_ib_dbg(imr->dev, "key %x mr %p\n", mr->mmkey.key, mr);
452         return mr;
453
454 out_release:
455         xa_release(&imr->dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key));
456 out_mr:
457         mlx5_mr_cache_free(imr->dev, mr);
458 out_umem:
459         ib_umem_odp_release(odp);
460         return ret;
461 }
462
463 struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
464                                              struct ib_udata *udata,
465                                              int access_flags)
466 {
467         struct mlx5_ib_dev *dev = to_mdev(pd->ibpd.device);
468         struct ib_umem_odp *umem_odp;
469         struct mlx5_ib_mr *imr;
470         int err;
471
472         umem_odp = ib_umem_odp_alloc_implicit(udata, access_flags);
473         if (IS_ERR(umem_odp))
474                 return ERR_CAST(umem_odp);
475
476         imr = mlx5_mr_cache_alloc(dev, MLX5_IMR_KSM_CACHE_ENTRY);
477         if (IS_ERR(imr)) {
478                 err = PTR_ERR(imr);
479                 goto out_umem;
480         }
481
482         imr->ibmr.pd = &pd->ibpd;
483         imr->access_flags = access_flags;
484         imr->mmkey.iova = 0;
485         imr->umem = &umem_odp->umem;
486         imr->ibmr.lkey = imr->mmkey.key;
487         imr->ibmr.rkey = imr->mmkey.key;
488         imr->umem = &umem_odp->umem;
489         atomic_set(&imr->num_deferred_work, 0);
490         xa_init(&imr->implicit_children);
491
492         err = mlx5_ib_update_xlt(imr, 0,
493                                  mlx5_imr_ksm_entries,
494                                  MLX5_KSM_PAGE_SHIFT,
495                                  MLX5_IB_UPD_XLT_INDIRECT |
496                                  MLX5_IB_UPD_XLT_ZAP |
497                                  MLX5_IB_UPD_XLT_ENABLE);
498         if (err)
499                 goto out_mr;
500
501         err = xa_err(xa_store(&dev->odp_mkeys, mlx5_base_mkey(imr->mmkey.key),
502                               &imr->mmkey, GFP_KERNEL));
503         if (err)
504                 goto out_mr;
505
506         mlx5_ib_dbg(dev, "key %x mr %p\n", imr->mmkey.key, imr);
507         return imr;
508 out_mr:
509         mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
510         mlx5_mr_cache_free(dev, imr);
511 out_umem:
512         ib_umem_odp_release(umem_odp);
513         return ERR_PTR(err);
514 }
515
516 void mlx5_ib_free_implicit_mr(struct mlx5_ib_mr *imr)
517 {
518         struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem);
519         struct mlx5_ib_dev *dev = imr->dev;
520         struct list_head destroy_list;
521         struct mlx5_ib_mr *mtt;
522         struct mlx5_ib_mr *tmp;
523         unsigned long idx;
524
525         INIT_LIST_HEAD(&destroy_list);
526
527         xa_erase(&dev->odp_mkeys, mlx5_base_mkey(imr->mmkey.key));
528         /*
529          * This stops the SRCU protected page fault path from touching either
530          * the imr or any children. The page fault path can only reach the
531          * children xarray via the imr.
532          */
533         synchronize_srcu(&dev->odp_srcu);
534
535         xa_lock(&imr->implicit_children);
536         xa_for_each (&imr->implicit_children, idx, mtt) {
537                 __xa_erase(&imr->implicit_children, idx);
538                 __xa_erase(&dev->odp_mkeys, mlx5_base_mkey(mtt->mmkey.key));
539                 list_add(&mtt->odp_destroy.elm, &destroy_list);
540         }
541         xa_unlock(&imr->implicit_children);
542
543         /* Fence access to the child pointers via the pagefault thread */
544         synchronize_srcu(&dev->odp_srcu);
545
546         /*
547          * num_deferred_work can only be incremented inside the odp_srcu, or
548          * under xa_lock while the child is in the xarray. Thus at this point
549          * it is only decreasing, and all work holding it is now on the wq.
550          */
551         if (atomic_read(&imr->num_deferred_work)) {
552                 flush_workqueue(system_unbound_wq);
553                 WARN_ON(atomic_read(&imr->num_deferred_work));
554         }
555
556         list_for_each_entry_safe (mtt, tmp, &destroy_list, odp_destroy.elm)
557                 free_implicit_child_mr(mtt, false);
558
559         mlx5_mr_cache_free(dev, imr);
560         ib_umem_odp_release(odp_imr);
561 }
562
563 #define MLX5_PF_FLAGS_DOWNGRADE BIT(1)
564 static int pagefault_real_mr(struct mlx5_ib_mr *mr, struct ib_umem_odp *odp,
565                              u64 user_va, size_t bcnt, u32 *bytes_mapped,
566                              u32 flags)
567 {
568         int current_seq, page_shift, ret, np;
569         bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE;
570         u64 access_mask;
571         u64 start_idx, page_mask;
572
573         page_shift = odp->page_shift;
574         page_mask = ~(BIT(page_shift) - 1);
575         start_idx = (user_va - (mr->mmkey.iova & page_mask)) >> page_shift;
576         access_mask = ODP_READ_ALLOWED_BIT;
577
578         if (odp->umem.writable && !downgrade)
579                 access_mask |= ODP_WRITE_ALLOWED_BIT;
580
581         current_seq = READ_ONCE(odp->notifiers_seq);
582         /*
583          * Ensure the sequence number is valid for some time before we call
584          * gup.
585          */
586         smp_rmb();
587
588         np = ib_umem_odp_map_dma_pages(odp, user_va, bcnt, access_mask,
589                                        current_seq);
590         if (np < 0)
591                 return np;
592
593         mutex_lock(&odp->umem_mutex);
594         if (!ib_umem_mmu_notifier_retry(odp, current_seq)) {
595                 /*
596                  * No need to check whether the MTTs really belong to
597                  * this MR, since ib_umem_odp_map_dma_pages already
598                  * checks this.
599                  */
600                 ret = mlx5_ib_update_xlt(mr, start_idx, np,
601                                          page_shift, MLX5_IB_UPD_XLT_ATOMIC);
602         } else {
603                 ret = -EAGAIN;
604         }
605         mutex_unlock(&odp->umem_mutex);
606
607         if (ret < 0) {
608                 if (ret != -EAGAIN)
609                         mlx5_ib_err(mr->dev,
610                                     "Failed to update mkey page tables\n");
611                 goto out;
612         }
613
614         if (bytes_mapped) {
615                 u32 new_mappings = (np << page_shift) -
616                         (user_va - round_down(user_va, 1 << page_shift));
617
618                 *bytes_mapped += min_t(u32, new_mappings, bcnt);
619         }
620
621         return np << (page_shift - PAGE_SHIFT);
622
623 out:
624         if (ret == -EAGAIN) {
625                 unsigned long timeout = msecs_to_jiffies(MMU_NOTIFIER_TIMEOUT);
626
627                 if (!wait_for_completion_timeout(&odp->notifier_completion,
628                                                  timeout)) {
629                         mlx5_ib_warn(
630                                 mr->dev,
631                                 "timeout waiting for mmu notifier. seq %d against %d. notifiers_count=%d\n",
632                                 current_seq, odp->notifiers_seq,
633                                 odp->notifiers_count);
634                 }
635         }
636
637         return ret;
638 }
639
640 static int pagefault_implicit_mr(struct mlx5_ib_mr *imr,
641                                  struct ib_umem_odp *odp_imr, u64 user_va,
642                                  size_t bcnt, u32 *bytes_mapped, u32 flags)
643 {
644         unsigned long end_idx = (user_va + bcnt - 1) >> MLX5_IMR_MTT_SHIFT;
645         unsigned long upd_start_idx = end_idx + 1;
646         unsigned long upd_len = 0;
647         unsigned long npages = 0;
648         int err;
649         int ret;
650
651         if (unlikely(user_va >= mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE ||
652                      mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE - user_va < bcnt))
653                 return -EFAULT;
654
655         /* Fault each child mr that intersects with our interval. */
656         while (bcnt) {
657                 unsigned long idx = user_va >> MLX5_IMR_MTT_SHIFT;
658                 struct ib_umem_odp *umem_odp;
659                 struct mlx5_ib_mr *mtt;
660                 u64 len;
661
662                 mtt = xa_load(&imr->implicit_children, idx);
663                 if (unlikely(!mtt)) {
664                         mtt = implicit_get_child_mr(imr, idx);
665                         if (IS_ERR(mtt)) {
666                                 ret = PTR_ERR(mtt);
667                                 goto out;
668                         }
669                         upd_start_idx = min(upd_start_idx, idx);
670                         upd_len = idx - upd_start_idx + 1;
671                 }
672
673                 umem_odp = to_ib_umem_odp(mtt->umem);
674                 len = min_t(u64, user_va + bcnt, ib_umem_end(umem_odp)) -
675                       user_va;
676
677                 ret = pagefault_real_mr(mtt, umem_odp, user_va, len,
678                                         bytes_mapped, flags);
679                 if (ret < 0)
680                         goto out;
681                 user_va += len;
682                 bcnt -= len;
683                 npages += ret;
684         }
685
686         ret = npages;
687
688         /*
689          * Any time the implicit_children are changed we must perform an
690          * update of the xlt before exiting to ensure the HW and the
691          * implicit_children remains synchronized.
692          */
693 out:
694         if (likely(!upd_len))
695                 return ret;
696
697         /*
698          * Notice this is not strictly ordered right, the KSM is updated after
699          * the implicit_children is updated, so a parallel page fault could
700          * see a MR that is not yet visible in the KSM.  This is similar to a
701          * parallel page fault seeing a MR that is being concurrently removed
702          * from the KSM. Both of these improbable situations are resolved
703          * safely by resuming the HW and then taking another page fault. The
704          * next pagefault handler will see the new information.
705          */
706         mutex_lock(&odp_imr->umem_mutex);
707         err = mlx5_ib_update_xlt(imr, upd_start_idx, upd_len, 0,
708                                  MLX5_IB_UPD_XLT_INDIRECT |
709                                          MLX5_IB_UPD_XLT_ATOMIC);
710         mutex_unlock(&odp_imr->umem_mutex);
711         if (err) {
712                 mlx5_ib_err(imr->dev, "Failed to update PAS\n");
713                 return err;
714         }
715         return ret;
716 }
717
718 /*
719  * Returns:
720  *  -EFAULT: The io_virt->bcnt is not within the MR, it covers pages that are
721  *           not accessible, or the MR is no longer valid.
722  *  -EAGAIN/-ENOMEM: The operation should be retried
723  *
724  *  -EINVAL/others: General internal malfunction
725  *  >0: Number of pages mapped
726  */
727 static int pagefault_mr(struct mlx5_ib_mr *mr, u64 io_virt, size_t bcnt,
728                         u32 *bytes_mapped, u32 flags)
729 {
730         struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
731
732         if (!odp->is_implicit_odp) {
733                 if (unlikely(io_virt < ib_umem_start(odp) ||
734                              ib_umem_end(odp) - io_virt < bcnt))
735                         return -EFAULT;
736                 return pagefault_real_mr(mr, odp, io_virt, bcnt, bytes_mapped,
737                                          flags);
738         }
739         return pagefault_implicit_mr(mr, odp, io_virt, bcnt, bytes_mapped,
740                                      flags);
741 }
742
743 struct pf_frame {
744         struct pf_frame *next;
745         u32 key;
746         u64 io_virt;
747         size_t bcnt;
748         int depth;
749 };
750
751 static bool mkey_is_eq(struct mlx5_core_mkey *mmkey, u32 key)
752 {
753         if (!mmkey)
754                 return false;
755         if (mmkey->type == MLX5_MKEY_MW)
756                 return mlx5_base_mkey(mmkey->key) == mlx5_base_mkey(key);
757         return mmkey->key == key;
758 }
759
760 static int get_indirect_num_descs(struct mlx5_core_mkey *mmkey)
761 {
762         struct mlx5_ib_mw *mw;
763         struct mlx5_ib_devx_mr *devx_mr;
764
765         if (mmkey->type == MLX5_MKEY_MW) {
766                 mw = container_of(mmkey, struct mlx5_ib_mw, mmkey);
767                 return mw->ndescs;
768         }
769
770         devx_mr = container_of(mmkey, struct mlx5_ib_devx_mr,
771                                mmkey);
772         return devx_mr->ndescs;
773 }
774
775 /*
776  * Handle a single data segment in a page-fault WQE or RDMA region.
777  *
778  * Returns number of OS pages retrieved on success. The caller may continue to
779  * the next data segment.
780  * Can return the following error codes:
781  * -EAGAIN to designate a temporary error. The caller will abort handling the
782  *  page fault and resolve it.
783  * -EFAULT when there's an error mapping the requested pages. The caller will
784  *  abort the page fault handling.
785  */
786 static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
787                                          struct ib_pd *pd, u32 key,
788                                          u64 io_virt, size_t bcnt,
789                                          u32 *bytes_committed,
790                                          u32 *bytes_mapped)
791 {
792         int npages = 0, srcu_key, ret, i, outlen, cur_outlen = 0, depth = 0;
793         struct pf_frame *head = NULL, *frame;
794         struct mlx5_core_mkey *mmkey;
795         struct mlx5_ib_mr *mr;
796         struct mlx5_klm *pklm;
797         u32 *out = NULL;
798         size_t offset;
799         int ndescs;
800
801         srcu_key = srcu_read_lock(&dev->odp_srcu);
802
803         io_virt += *bytes_committed;
804         bcnt -= *bytes_committed;
805
806 next_mr:
807         mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(key));
808         if (!mmkey) {
809                 mlx5_ib_dbg(
810                         dev,
811                         "skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
812                         key);
813                 if (bytes_mapped)
814                         *bytes_mapped += bcnt;
815                 /*
816                  * The user could specify a SGL with multiple lkeys and only
817                  * some of them are ODP. Treat the non-ODP ones as fully
818                  * faulted.
819                  */
820                 ret = 0;
821                 goto srcu_unlock;
822         }
823         if (!mkey_is_eq(mmkey, key)) {
824                 mlx5_ib_dbg(dev, "failed to find mkey %x\n", key);
825                 ret = -EFAULT;
826                 goto srcu_unlock;
827         }
828
829         switch (mmkey->type) {
830         case MLX5_MKEY_MR:
831                 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
832
833                 ret = pagefault_mr(mr, io_virt, bcnt, bytes_mapped, 0);
834                 if (ret < 0)
835                         goto srcu_unlock;
836
837                 npages += ret;
838                 ret = 0;
839                 break;
840
841         case MLX5_MKEY_MW:
842         case MLX5_MKEY_INDIRECT_DEVX:
843                 ndescs = get_indirect_num_descs(mmkey);
844
845                 if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) {
846                         mlx5_ib_dbg(dev, "indirection level exceeded\n");
847                         ret = -EFAULT;
848                         goto srcu_unlock;
849                 }
850
851                 outlen = MLX5_ST_SZ_BYTES(query_mkey_out) +
852                         sizeof(*pklm) * (ndescs - 2);
853
854                 if (outlen > cur_outlen) {
855                         kfree(out);
856                         out = kzalloc(outlen, GFP_KERNEL);
857                         if (!out) {
858                                 ret = -ENOMEM;
859                                 goto srcu_unlock;
860                         }
861                         cur_outlen = outlen;
862                 }
863
864                 pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out,
865                                                        bsf0_klm0_pas_mtt0_1);
866
867                 ret = mlx5_core_query_mkey(dev->mdev, mmkey, out, outlen);
868                 if (ret)
869                         goto srcu_unlock;
870
871                 offset = io_virt - MLX5_GET64(query_mkey_out, out,
872                                               memory_key_mkey_entry.start_addr);
873
874                 for (i = 0; bcnt && i < ndescs; i++, pklm++) {
875                         if (offset >= be32_to_cpu(pklm->bcount)) {
876                                 offset -= be32_to_cpu(pklm->bcount);
877                                 continue;
878                         }
879
880                         frame = kzalloc(sizeof(*frame), GFP_KERNEL);
881                         if (!frame) {
882                                 ret = -ENOMEM;
883                                 goto srcu_unlock;
884                         }
885
886                         frame->key = be32_to_cpu(pklm->key);
887                         frame->io_virt = be64_to_cpu(pklm->va) + offset;
888                         frame->bcnt = min_t(size_t, bcnt,
889                                             be32_to_cpu(pklm->bcount) - offset);
890                         frame->depth = depth + 1;
891                         frame->next = head;
892                         head = frame;
893
894                         bcnt -= frame->bcnt;
895                         offset = 0;
896                 }
897                 break;
898
899         default:
900                 mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type);
901                 ret = -EFAULT;
902                 goto srcu_unlock;
903         }
904
905         if (head) {
906                 frame = head;
907                 head = frame->next;
908
909                 key = frame->key;
910                 io_virt = frame->io_virt;
911                 bcnt = frame->bcnt;
912                 depth = frame->depth;
913                 kfree(frame);
914
915                 goto next_mr;
916         }
917
918 srcu_unlock:
919         while (head) {
920                 frame = head;
921                 head = frame->next;
922                 kfree(frame);
923         }
924         kfree(out);
925
926         srcu_read_unlock(&dev->odp_srcu, srcu_key);
927         *bytes_committed = 0;
928         return ret ? ret : npages;
929 }
930
931 /**
932  * Parse a series of data segments for page fault handling.
933  *
934  * @pfault contains page fault information.
935  * @wqe points at the first data segment in the WQE.
936  * @wqe_end points after the end of the WQE.
937  * @bytes_mapped receives the number of bytes that the function was able to
938  *               map. This allows the caller to decide intelligently whether
939  *               enough memory was mapped to resolve the page fault
940  *               successfully (e.g. enough for the next MTU, or the entire
941  *               WQE).
942  * @total_wqe_bytes receives the total data size of this WQE in bytes (minus
943  *                  the committed bytes).
944  *
945  * Returns the number of pages loaded if positive, zero for an empty WQE, or a
946  * negative error code.
947  */
948 static int pagefault_data_segments(struct mlx5_ib_dev *dev,
949                                    struct mlx5_pagefault *pfault,
950                                    void *wqe,
951                                    void *wqe_end, u32 *bytes_mapped,
952                                    u32 *total_wqe_bytes, bool receive_queue)
953 {
954         int ret = 0, npages = 0;
955         u64 io_virt;
956         u32 key;
957         u32 byte_count;
958         size_t bcnt;
959         int inline_segment;
960
961         if (bytes_mapped)
962                 *bytes_mapped = 0;
963         if (total_wqe_bytes)
964                 *total_wqe_bytes = 0;
965
966         while (wqe < wqe_end) {
967                 struct mlx5_wqe_data_seg *dseg = wqe;
968
969                 io_virt = be64_to_cpu(dseg->addr);
970                 key = be32_to_cpu(dseg->lkey);
971                 byte_count = be32_to_cpu(dseg->byte_count);
972                 inline_segment = !!(byte_count &  MLX5_INLINE_SEG);
973                 bcnt           = byte_count & ~MLX5_INLINE_SEG;
974
975                 if (inline_segment) {
976                         bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
977                         wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
978                                      16);
979                 } else {
980                         wqe += sizeof(*dseg);
981                 }
982
983                 /* receive WQE end of sg list. */
984                 if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY &&
985                     io_virt == 0)
986                         break;
987
988                 if (!inline_segment && total_wqe_bytes) {
989                         *total_wqe_bytes += bcnt - min_t(size_t, bcnt,
990                                         pfault->bytes_committed);
991                 }
992
993                 /* A zero length data segment designates a length of 2GB. */
994                 if (bcnt == 0)
995                         bcnt = 1U << 31;
996
997                 if (inline_segment || bcnt <= pfault->bytes_committed) {
998                         pfault->bytes_committed -=
999                                 min_t(size_t, bcnt,
1000                                       pfault->bytes_committed);
1001                         continue;
1002                 }
1003
1004                 ret = pagefault_single_data_segment(dev, NULL, key,
1005                                                     io_virt, bcnt,
1006                                                     &pfault->bytes_committed,
1007                                                     bytes_mapped);
1008                 if (ret < 0)
1009                         break;
1010                 npages += ret;
1011         }
1012
1013         return ret < 0 ? ret : npages;
1014 }
1015
1016 /*
1017  * Parse initiator WQE. Advances the wqe pointer to point at the
1018  * scatter-gather list, and set wqe_end to the end of the WQE.
1019  */
1020 static int mlx5_ib_mr_initiator_pfault_handler(
1021         struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
1022         struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
1023 {
1024         struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
1025         u16 wqe_index = pfault->wqe.wqe_index;
1026         struct mlx5_base_av *av;
1027         unsigned ds, opcode;
1028         u32 qpn = qp->trans_qp.base.mqp.qpn;
1029
1030         ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
1031         if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
1032                 mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
1033                             ds, wqe_length);
1034                 return -EFAULT;
1035         }
1036
1037         if (ds == 0) {
1038                 mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
1039                             wqe_index, qpn);
1040                 return -EFAULT;
1041         }
1042
1043         *wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
1044         *wqe += sizeof(*ctrl);
1045
1046         opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
1047                  MLX5_WQE_CTRL_OPCODE_MASK;
1048
1049         if (qp->ibqp.qp_type == IB_QPT_XRC_INI)
1050                 *wqe += sizeof(struct mlx5_wqe_xrc_seg);
1051
1052         if (qp->ibqp.qp_type == IB_QPT_UD ||
1053             qp->qp_sub_type == MLX5_IB_QPT_DCI) {
1054                 av = *wqe;
1055                 if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV))
1056                         *wqe += sizeof(struct mlx5_av);
1057                 else
1058                         *wqe += sizeof(struct mlx5_base_av);
1059         }
1060
1061         switch (opcode) {
1062         case MLX5_OPCODE_RDMA_WRITE:
1063         case MLX5_OPCODE_RDMA_WRITE_IMM:
1064         case MLX5_OPCODE_RDMA_READ:
1065                 *wqe += sizeof(struct mlx5_wqe_raddr_seg);
1066                 break;
1067         case MLX5_OPCODE_ATOMIC_CS:
1068         case MLX5_OPCODE_ATOMIC_FA:
1069                 *wqe += sizeof(struct mlx5_wqe_raddr_seg);
1070                 *wqe += sizeof(struct mlx5_wqe_atomic_seg);
1071                 break;
1072         }
1073
1074         return 0;
1075 }
1076
1077 /*
1078  * Parse responder WQE and set wqe_end to the end of the WQE.
1079  */
1080 static int mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev *dev,
1081                                                    struct mlx5_ib_srq *srq,
1082                                                    void **wqe, void **wqe_end,
1083                                                    int wqe_length)
1084 {
1085         int wqe_size = 1 << srq->msrq.wqe_shift;
1086
1087         if (wqe_size > wqe_length) {
1088                 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1089                 return -EFAULT;
1090         }
1091
1092         *wqe_end = *wqe + wqe_size;
1093         *wqe += sizeof(struct mlx5_wqe_srq_next_seg);
1094
1095         return 0;
1096 }
1097
1098 static int mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev *dev,
1099                                                   struct mlx5_ib_qp *qp,
1100                                                   void *wqe, void **wqe_end,
1101                                                   int wqe_length)
1102 {
1103         struct mlx5_ib_wq *wq = &qp->rq;
1104         int wqe_size = 1 << wq->wqe_shift;
1105
1106         if (qp->wq_sig) {
1107                 mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
1108                 return -EFAULT;
1109         }
1110
1111         if (wqe_size > wqe_length) {
1112                 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1113                 return -EFAULT;
1114         }
1115
1116         *wqe_end = wqe + wqe_size;
1117
1118         return 0;
1119 }
1120
1121 static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev,
1122                                                        u32 wq_num, int pf_type)
1123 {
1124         struct mlx5_core_rsc_common *common = NULL;
1125         struct mlx5_core_srq *srq;
1126
1127         switch (pf_type) {
1128         case MLX5_WQE_PF_TYPE_RMP:
1129                 srq = mlx5_cmd_get_srq(dev, wq_num);
1130                 if (srq)
1131                         common = &srq->common;
1132                 break;
1133         case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE:
1134         case MLX5_WQE_PF_TYPE_RESP:
1135         case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC:
1136                 common = mlx5_core_res_hold(dev->mdev, wq_num, MLX5_RES_QP);
1137                 break;
1138         default:
1139                 break;
1140         }
1141
1142         return common;
1143 }
1144
1145 static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res)
1146 {
1147         struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res;
1148
1149         return to_mibqp(mqp);
1150 }
1151
1152 static inline struct mlx5_ib_srq *res_to_srq(struct mlx5_core_rsc_common *res)
1153 {
1154         struct mlx5_core_srq *msrq =
1155                 container_of(res, struct mlx5_core_srq, common);
1156
1157         return to_mibsrq(msrq);
1158 }
1159
1160 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
1161                                           struct mlx5_pagefault *pfault)
1162 {
1163         bool sq = pfault->type & MLX5_PFAULT_REQUESTOR;
1164         u16 wqe_index = pfault->wqe.wqe_index;
1165         void *wqe, *wqe_start = NULL, *wqe_end = NULL;
1166         u32 bytes_mapped, total_wqe_bytes;
1167         struct mlx5_core_rsc_common *res;
1168         int resume_with_error = 1;
1169         struct mlx5_ib_qp *qp;
1170         size_t bytes_copied;
1171         int ret = 0;
1172
1173         res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type);
1174         if (!res) {
1175                 mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num);
1176                 return;
1177         }
1178
1179         if (res->res != MLX5_RES_QP && res->res != MLX5_RES_SRQ &&
1180             res->res != MLX5_RES_XSRQ) {
1181                 mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n",
1182                             pfault->type);
1183                 goto resolve_page_fault;
1184         }
1185
1186         wqe_start = (void *)__get_free_page(GFP_KERNEL);
1187         if (!wqe_start) {
1188                 mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
1189                 goto resolve_page_fault;
1190         }
1191
1192         wqe = wqe_start;
1193         qp = (res->res == MLX5_RES_QP) ? res_to_qp(res) : NULL;
1194         if (qp && sq) {
1195                 ret = mlx5_ib_read_user_wqe_sq(qp, wqe_index, wqe, PAGE_SIZE,
1196                                                &bytes_copied);
1197                 if (ret)
1198                         goto read_user;
1199                 ret = mlx5_ib_mr_initiator_pfault_handler(
1200                         dev, pfault, qp, &wqe, &wqe_end, bytes_copied);
1201         } else if (qp && !sq) {
1202                 ret = mlx5_ib_read_user_wqe_rq(qp, wqe_index, wqe, PAGE_SIZE,
1203                                                &bytes_copied);
1204                 if (ret)
1205                         goto read_user;
1206                 ret = mlx5_ib_mr_responder_pfault_handler_rq(
1207                         dev, qp, wqe, &wqe_end, bytes_copied);
1208         } else if (!qp) {
1209                 struct mlx5_ib_srq *srq = res_to_srq(res);
1210
1211                 ret = mlx5_ib_read_user_wqe_srq(srq, wqe_index, wqe, PAGE_SIZE,
1212                                                 &bytes_copied);
1213                 if (ret)
1214                         goto read_user;
1215                 ret = mlx5_ib_mr_responder_pfault_handler_srq(
1216                         dev, srq, &wqe, &wqe_end, bytes_copied);
1217         }
1218
1219         if (ret < 0 || wqe >= wqe_end)
1220                 goto resolve_page_fault;
1221
1222         ret = pagefault_data_segments(dev, pfault, wqe, wqe_end, &bytes_mapped,
1223                                       &total_wqe_bytes, !sq);
1224         if (ret == -EAGAIN)
1225                 goto out;
1226
1227         if (ret < 0 || total_wqe_bytes > bytes_mapped)
1228                 goto resolve_page_fault;
1229
1230 out:
1231         ret = 0;
1232         resume_with_error = 0;
1233
1234 read_user:
1235         if (ret)
1236                 mlx5_ib_err(
1237                         dev,
1238                         "Failed reading a WQE following page fault, error %d, wqe_index %x, qpn %x\n",
1239                         ret, wqe_index, pfault->token);
1240
1241 resolve_page_fault:
1242         mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
1243         mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
1244                     pfault->wqe.wq_num, resume_with_error,
1245                     pfault->type);
1246         mlx5_core_res_put(res);
1247         free_page((unsigned long)wqe_start);
1248 }
1249
1250 static int pages_in_range(u64 address, u32 length)
1251 {
1252         return (ALIGN(address + length, PAGE_SIZE) -
1253                 (address & PAGE_MASK)) >> PAGE_SHIFT;
1254 }
1255
1256 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
1257                                            struct mlx5_pagefault *pfault)
1258 {
1259         u64 address;
1260         u32 length;
1261         u32 prefetch_len = pfault->bytes_committed;
1262         int prefetch_activated = 0;
1263         u32 rkey = pfault->rdma.r_key;
1264         int ret;
1265
1266         /* The RDMA responder handler handles the page fault in two parts.
1267          * First it brings the necessary pages for the current packet
1268          * (and uses the pfault context), and then (after resuming the QP)
1269          * prefetches more pages. The second operation cannot use the pfault
1270          * context and therefore uses the dummy_pfault context allocated on
1271          * the stack */
1272         pfault->rdma.rdma_va += pfault->bytes_committed;
1273         pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
1274                                          pfault->rdma.rdma_op_len);
1275         pfault->bytes_committed = 0;
1276
1277         address = pfault->rdma.rdma_va;
1278         length  = pfault->rdma.rdma_op_len;
1279
1280         /* For some operations, the hardware cannot tell the exact message
1281          * length, and in those cases it reports zero. Use prefetch
1282          * logic. */
1283         if (length == 0) {
1284                 prefetch_activated = 1;
1285                 length = pfault->rdma.packet_size;
1286                 prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
1287         }
1288
1289         ret = pagefault_single_data_segment(dev, NULL, rkey, address, length,
1290                                             &pfault->bytes_committed, NULL);
1291         if (ret == -EAGAIN) {
1292                 /* We're racing with an invalidation, don't prefetch */
1293                 prefetch_activated = 0;
1294         } else if (ret < 0 || pages_in_range(address, length) > ret) {
1295                 mlx5_ib_page_fault_resume(dev, pfault, 1);
1296                 if (ret != -ENOENT)
1297                         mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n",
1298                                     ret, pfault->token, pfault->type);
1299                 return;
1300         }
1301
1302         mlx5_ib_page_fault_resume(dev, pfault, 0);
1303         mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n",
1304                     pfault->token, pfault->type,
1305                     prefetch_activated);
1306
1307         /* At this point, there might be a new pagefault already arriving in
1308          * the eq, switch to the dummy pagefault for the rest of the
1309          * processing. We're still OK with the objects being alive as the
1310          * work-queue is being fenced. */
1311
1312         if (prefetch_activated) {
1313                 u32 bytes_committed = 0;
1314
1315                 ret = pagefault_single_data_segment(dev, NULL, rkey, address,
1316                                                     prefetch_len,
1317                                                     &bytes_committed, NULL);
1318                 if (ret < 0 && ret != -EAGAIN) {
1319                         mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n",
1320                                     ret, pfault->token, address, prefetch_len);
1321                 }
1322         }
1323 }
1324
1325 static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault)
1326 {
1327         u8 event_subtype = pfault->event_subtype;
1328
1329         switch (event_subtype) {
1330         case MLX5_PFAULT_SUBTYPE_WQE:
1331                 mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
1332                 break;
1333         case MLX5_PFAULT_SUBTYPE_RDMA:
1334                 mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
1335                 break;
1336         default:
1337                 mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
1338                             event_subtype);
1339                 mlx5_ib_page_fault_resume(dev, pfault, 1);
1340         }
1341 }
1342
1343 static void mlx5_ib_eqe_pf_action(struct work_struct *work)
1344 {
1345         struct mlx5_pagefault *pfault = container_of(work,
1346                                                      struct mlx5_pagefault,
1347                                                      work);
1348         struct mlx5_ib_pf_eq *eq = pfault->eq;
1349
1350         mlx5_ib_pfault(eq->dev, pfault);
1351         mempool_free(pfault, eq->pool);
1352 }
1353
1354 static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq)
1355 {
1356         struct mlx5_eqe_page_fault *pf_eqe;
1357         struct mlx5_pagefault *pfault;
1358         struct mlx5_eqe *eqe;
1359         int cc = 0;
1360
1361         while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) {
1362                 pfault = mempool_alloc(eq->pool, GFP_ATOMIC);
1363                 if (!pfault) {
1364                         schedule_work(&eq->work);
1365                         break;
1366                 }
1367
1368                 pf_eqe = &eqe->data.page_fault;
1369                 pfault->event_subtype = eqe->sub_type;
1370                 pfault->bytes_committed = be32_to_cpu(pf_eqe->bytes_committed);
1371
1372                 mlx5_ib_dbg(eq->dev,
1373                             "PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x\n",
1374                             eqe->sub_type, pfault->bytes_committed);
1375
1376                 switch (eqe->sub_type) {
1377                 case MLX5_PFAULT_SUBTYPE_RDMA:
1378                         /* RDMA based event */
1379                         pfault->type =
1380                                 be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24;
1381                         pfault->token =
1382                                 be32_to_cpu(pf_eqe->rdma.pftype_token) &
1383                                 MLX5_24BIT_MASK;
1384                         pfault->rdma.r_key =
1385                                 be32_to_cpu(pf_eqe->rdma.r_key);
1386                         pfault->rdma.packet_size =
1387                                 be16_to_cpu(pf_eqe->rdma.packet_length);
1388                         pfault->rdma.rdma_op_len =
1389                                 be32_to_cpu(pf_eqe->rdma.rdma_op_len);
1390                         pfault->rdma.rdma_va =
1391                                 be64_to_cpu(pf_eqe->rdma.rdma_va);
1392                         mlx5_ib_dbg(eq->dev,
1393                                     "PAGE_FAULT: type:0x%x, token: 0x%06x, r_key: 0x%08x\n",
1394                                     pfault->type, pfault->token,
1395                                     pfault->rdma.r_key);
1396                         mlx5_ib_dbg(eq->dev,
1397                                     "PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n",
1398                                     pfault->rdma.rdma_op_len,
1399                                     pfault->rdma.rdma_va);
1400                         break;
1401
1402                 case MLX5_PFAULT_SUBTYPE_WQE:
1403                         /* WQE based event */
1404                         pfault->type =
1405                                 (be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7;
1406                         pfault->token =
1407                                 be32_to_cpu(pf_eqe->wqe.token);
1408                         pfault->wqe.wq_num =
1409                                 be32_to_cpu(pf_eqe->wqe.pftype_wq) &
1410                                 MLX5_24BIT_MASK;
1411                         pfault->wqe.wqe_index =
1412                                 be16_to_cpu(pf_eqe->wqe.wqe_index);
1413                         pfault->wqe.packet_size =
1414                                 be16_to_cpu(pf_eqe->wqe.packet_length);
1415                         mlx5_ib_dbg(eq->dev,
1416                                     "PAGE_FAULT: type:0x%x, token: 0x%06x, wq_num: 0x%06x, wqe_index: 0x%04x\n",
1417                                     pfault->type, pfault->token,
1418                                     pfault->wqe.wq_num,
1419                                     pfault->wqe.wqe_index);
1420                         break;
1421
1422                 default:
1423                         mlx5_ib_warn(eq->dev,
1424                                      "Unsupported page fault event sub-type: 0x%02hhx\n",
1425                                      eqe->sub_type);
1426                         /* Unsupported page faults should still be
1427                          * resolved by the page fault handler
1428                          */
1429                 }
1430
1431                 pfault->eq = eq;
1432                 INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action);
1433                 queue_work(eq->wq, &pfault->work);
1434
1435                 cc = mlx5_eq_update_cc(eq->core, ++cc);
1436         }
1437
1438         mlx5_eq_update_ci(eq->core, cc, 1);
1439 }
1440
1441 static int mlx5_ib_eq_pf_int(struct notifier_block *nb, unsigned long type,
1442                              void *data)
1443 {
1444         struct mlx5_ib_pf_eq *eq =
1445                 container_of(nb, struct mlx5_ib_pf_eq, irq_nb);
1446         unsigned long flags;
1447
1448         if (spin_trylock_irqsave(&eq->lock, flags)) {
1449                 mlx5_ib_eq_pf_process(eq);
1450                 spin_unlock_irqrestore(&eq->lock, flags);
1451         } else {
1452                 schedule_work(&eq->work);
1453         }
1454
1455         return IRQ_HANDLED;
1456 }
1457
1458 /* mempool_refill() was proposed but unfortunately wasn't accepted
1459  * http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html
1460  * Cheap workaround.
1461  */
1462 static void mempool_refill(mempool_t *pool)
1463 {
1464         while (pool->curr_nr < pool->min_nr)
1465                 mempool_free(mempool_alloc(pool, GFP_KERNEL), pool);
1466 }
1467
1468 static void mlx5_ib_eq_pf_action(struct work_struct *work)
1469 {
1470         struct mlx5_ib_pf_eq *eq =
1471                 container_of(work, struct mlx5_ib_pf_eq, work);
1472
1473         mempool_refill(eq->pool);
1474
1475         spin_lock_irq(&eq->lock);
1476         mlx5_ib_eq_pf_process(eq);
1477         spin_unlock_irq(&eq->lock);
1478 }
1479
1480 enum {
1481         MLX5_IB_NUM_PF_EQE      = 0x1000,
1482         MLX5_IB_NUM_PF_DRAIN    = 64,
1483 };
1484
1485 static int
1486 mlx5_ib_create_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1487 {
1488         struct mlx5_eq_param param = {};
1489         int err;
1490
1491         INIT_WORK(&eq->work, mlx5_ib_eq_pf_action);
1492         spin_lock_init(&eq->lock);
1493         eq->dev = dev;
1494
1495         eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN,
1496                                                sizeof(struct mlx5_pagefault));
1497         if (!eq->pool)
1498                 return -ENOMEM;
1499
1500         eq->wq = alloc_workqueue("mlx5_ib_page_fault",
1501                                  WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM,
1502                                  MLX5_NUM_CMD_EQE);
1503         if (!eq->wq) {
1504                 err = -ENOMEM;
1505                 goto err_mempool;
1506         }
1507
1508         eq->irq_nb.notifier_call = mlx5_ib_eq_pf_int;
1509         param = (struct mlx5_eq_param) {
1510                 .irq_index = 0,
1511                 .nent = MLX5_IB_NUM_PF_EQE,
1512         };
1513         param.mask[0] = 1ull << MLX5_EVENT_TYPE_PAGE_FAULT;
1514         eq->core = mlx5_eq_create_generic(dev->mdev, &param);
1515         if (IS_ERR(eq->core)) {
1516                 err = PTR_ERR(eq->core);
1517                 goto err_wq;
1518         }
1519         err = mlx5_eq_enable(dev->mdev, eq->core, &eq->irq_nb);
1520         if (err) {
1521                 mlx5_ib_err(dev, "failed to enable odp EQ %d\n", err);
1522                 goto err_eq;
1523         }
1524
1525         return 0;
1526 err_eq:
1527         mlx5_eq_destroy_generic(dev->mdev, eq->core);
1528 err_wq:
1529         destroy_workqueue(eq->wq);
1530 err_mempool:
1531         mempool_destroy(eq->pool);
1532         return err;
1533 }
1534
1535 static int
1536 mlx5_ib_destroy_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1537 {
1538         int err;
1539
1540         mlx5_eq_disable(dev->mdev, eq->core, &eq->irq_nb);
1541         err = mlx5_eq_destroy_generic(dev->mdev, eq->core);
1542         cancel_work_sync(&eq->work);
1543         destroy_workqueue(eq->wq);
1544         mempool_destroy(eq->pool);
1545
1546         return err;
1547 }
1548
1549 void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent)
1550 {
1551         if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1552                 return;
1553
1554         switch (ent->order - 2) {
1555         case MLX5_IMR_MTT_CACHE_ENTRY:
1556                 ent->page = PAGE_SHIFT;
1557                 ent->xlt = MLX5_IMR_MTT_ENTRIES *
1558                            sizeof(struct mlx5_mtt) /
1559                            MLX5_IB_UMR_OCTOWORD;
1560                 ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
1561                 ent->limit = 0;
1562                 break;
1563
1564         case MLX5_IMR_KSM_CACHE_ENTRY:
1565                 ent->page = MLX5_KSM_PAGE_SHIFT;
1566                 ent->xlt = mlx5_imr_ksm_entries *
1567                            sizeof(struct mlx5_klm) /
1568                            MLX5_IB_UMR_OCTOWORD;
1569                 ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM;
1570                 ent->limit = 0;
1571                 break;
1572         }
1573 }
1574
1575 static const struct ib_device_ops mlx5_ib_dev_odp_ops = {
1576         .advise_mr = mlx5_ib_advise_mr,
1577         .invalidate_range = mlx5_ib_invalidate_range,
1578 };
1579
1580 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
1581 {
1582         int ret = 0;
1583
1584         if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1585                 return ret;
1586
1587         ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops);
1588
1589         if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) {
1590                 ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey);
1591                 if (ret) {
1592                         mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret);
1593                         return ret;
1594                 }
1595         }
1596
1597         ret = mlx5_ib_create_pf_eq(dev, &dev->odp_pf_eq);
1598
1599         return ret;
1600 }
1601
1602 void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev)
1603 {
1604         if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1605                 return;
1606
1607         mlx5_ib_destroy_pf_eq(dev, &dev->odp_pf_eq);
1608 }
1609
1610 int mlx5_ib_odp_init(void)
1611 {
1612         mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
1613                                        MLX5_IMR_MTT_BITS);
1614
1615         return 0;
1616 }
1617
1618 struct prefetch_mr_work {
1619         struct work_struct work;
1620         u32 pf_flags;
1621         u32 num_sge;
1622         struct {
1623                 u64 io_virt;
1624                 struct mlx5_ib_mr *mr;
1625                 size_t length;
1626         } frags[];
1627 };
1628
1629 static void destroy_prefetch_work(struct prefetch_mr_work *work)
1630 {
1631         u32 i;
1632
1633         for (i = 0; i < work->num_sge; ++i)
1634                 atomic_dec(&work->frags[i].mr->num_deferred_work);
1635         kvfree(work);
1636 }
1637
1638 static struct mlx5_ib_mr *
1639 get_prefetchable_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
1640                     u32 lkey)
1641 {
1642         struct mlx5_ib_dev *dev = to_mdev(pd->device);
1643         struct mlx5_core_mkey *mmkey;
1644         struct ib_umem_odp *odp;
1645         struct mlx5_ib_mr *mr;
1646
1647         lockdep_assert_held(&dev->odp_srcu);
1648
1649         mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(lkey));
1650         if (!mmkey || mmkey->key != lkey || mmkey->type != MLX5_MKEY_MR)
1651                 return NULL;
1652
1653         mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1654
1655         if (mr->ibmr.pd != pd)
1656                 return NULL;
1657
1658         /*
1659          * Implicit child MRs are internal and userspace should not refer to
1660          * them.
1661          */
1662         if (mr->parent)
1663                 return NULL;
1664
1665         odp = to_ib_umem_odp(mr->umem);
1666
1667         /* prefetch with write-access must be supported by the MR */
1668         if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1669             !odp->umem.writable)
1670                 return NULL;
1671
1672         return mr;
1673 }
1674
1675 static void mlx5_ib_prefetch_mr_work(struct work_struct *w)
1676 {
1677         struct prefetch_mr_work *work =
1678                 container_of(w, struct prefetch_mr_work, work);
1679         u32 bytes_mapped = 0;
1680         u32 i;
1681
1682         for (i = 0; i < work->num_sge; ++i)
1683                 pagefault_mr(work->frags[i].mr, work->frags[i].io_virt,
1684                              work->frags[i].length, &bytes_mapped,
1685                              work->pf_flags);
1686
1687         destroy_prefetch_work(work);
1688 }
1689
1690 static bool init_prefetch_work(struct ib_pd *pd,
1691                                enum ib_uverbs_advise_mr_advice advice,
1692                                u32 pf_flags, struct prefetch_mr_work *work,
1693                                struct ib_sge *sg_list, u32 num_sge)
1694 {
1695         u32 i;
1696
1697         INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work);
1698         work->pf_flags = pf_flags;
1699
1700         for (i = 0; i < num_sge; ++i) {
1701                 work->frags[i].io_virt = sg_list[i].addr;
1702                 work->frags[i].length = sg_list[i].length;
1703                 work->frags[i].mr =
1704                         get_prefetchable_mr(pd, advice, sg_list[i].lkey);
1705                 if (!work->frags[i].mr) {
1706                         work->num_sge = i - 1;
1707                         if (i)
1708                                 destroy_prefetch_work(work);
1709                         return false;
1710                 }
1711
1712                 /* Keep the MR pointer will valid outside the SRCU */
1713                 atomic_inc(&work->frags[i].mr->num_deferred_work);
1714         }
1715         work->num_sge = num_sge;
1716         return true;
1717 }
1718
1719 static int mlx5_ib_prefetch_sg_list(struct ib_pd *pd,
1720                                     enum ib_uverbs_advise_mr_advice advice,
1721                                     u32 pf_flags, struct ib_sge *sg_list,
1722                                     u32 num_sge)
1723 {
1724         struct mlx5_ib_dev *dev = to_mdev(pd->device);
1725         u32 bytes_mapped = 0;
1726         int srcu_key;
1727         int ret = 0;
1728         u32 i;
1729
1730         srcu_key = srcu_read_lock(&dev->odp_srcu);
1731         for (i = 0; i < num_sge; ++i) {
1732                 struct mlx5_ib_mr *mr;
1733
1734                 mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey);
1735                 if (!mr) {
1736                         ret = -ENOENT;
1737                         goto out;
1738                 }
1739                 ret = pagefault_mr(mr, sg_list[i].addr, sg_list[i].length,
1740                                    &bytes_mapped, pf_flags);
1741                 if (ret < 0)
1742                         goto out;
1743         }
1744         ret = 0;
1745
1746 out:
1747         srcu_read_unlock(&dev->odp_srcu, srcu_key);
1748         return ret;
1749 }
1750
1751 int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd,
1752                                enum ib_uverbs_advise_mr_advice advice,
1753                                u32 flags, struct ib_sge *sg_list, u32 num_sge)
1754 {
1755         struct mlx5_ib_dev *dev = to_mdev(pd->device);
1756         u32 pf_flags = 0;
1757         struct prefetch_mr_work *work;
1758         int srcu_key;
1759
1760         if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH)
1761                 pf_flags |= MLX5_PF_FLAGS_DOWNGRADE;
1762
1763         if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH)
1764                 return mlx5_ib_prefetch_sg_list(pd, advice, pf_flags, sg_list,
1765                                                 num_sge);
1766
1767         work = kvzalloc(struct_size(work, frags, num_sge), GFP_KERNEL);
1768         if (!work)
1769                 return -ENOMEM;
1770
1771         srcu_key = srcu_read_lock(&dev->odp_srcu);
1772         if (!init_prefetch_work(pd, advice, pf_flags, work, sg_list, num_sge)) {
1773                 srcu_read_unlock(&dev->odp_srcu, srcu_key);
1774                 return -EINVAL;
1775         }
1776         queue_work(system_unbound_wq, &work->work);
1777         srcu_read_unlock(&dev->odp_srcu, srcu_key);
1778         return 0;
1779 }