374698186662d55d01a0007631cf7be2f8aabd87
[linux-2.6-microblaze.git] / drivers / infiniband / hw / mlx5 / odp.c
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32
33 #include <rdma/ib_umem.h>
34 #include <rdma/ib_umem_odp.h>
35 #include <linux/kernel.h>
36 #include <linux/dma-buf.h>
37 #include <linux/dma-resv.h>
38
39 #include "mlx5_ib.h"
40 #include "cmd.h"
41 #include "qp.h"
42
43 #include <linux/mlx5/eq.h>
44
45 /* Contains the details of a pagefault. */
46 struct mlx5_pagefault {
47         u32                     bytes_committed;
48         u32                     token;
49         u8                      event_subtype;
50         u8                      type;
51         union {
52                 /* Initiator or send message responder pagefault details. */
53                 struct {
54                         /* Received packet size, only valid for responders. */
55                         u32     packet_size;
56                         /*
57                          * Number of resource holding WQE, depends on type.
58                          */
59                         u32     wq_num;
60                         /*
61                          * WQE index. Refers to either the send queue or
62                          * receive queue, according to event_subtype.
63                          */
64                         u16     wqe_index;
65                 } wqe;
66                 /* RDMA responder pagefault details */
67                 struct {
68                         u32     r_key;
69                         /*
70                          * Received packet size, minimal size page fault
71                          * resolution required for forward progress.
72                          */
73                         u32     packet_size;
74                         u32     rdma_op_len;
75                         u64     rdma_va;
76                 } rdma;
77         };
78
79         struct mlx5_ib_pf_eq    *eq;
80         struct work_struct      work;
81 };
82
83 #define MAX_PREFETCH_LEN (4*1024*1024U)
84
85 /* Timeout in ms to wait for an active mmu notifier to complete when handling
86  * a pagefault. */
87 #define MMU_NOTIFIER_TIMEOUT 1000
88
89 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
90 #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
91 #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
92 #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
93 #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
94
95 #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
96
97 static u64 mlx5_imr_ksm_entries;
98
99 static void populate_klm(struct mlx5_klm *pklm, size_t idx, size_t nentries,
100                         struct mlx5_ib_mr *imr, int flags)
101 {
102         struct mlx5_klm *end = pklm + nentries;
103
104         if (flags & MLX5_IB_UPD_XLT_ZAP) {
105                 for (; pklm != end; pklm++, idx++) {
106                         pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
107                         pklm->key = cpu_to_be32(mr_to_mdev(imr)->null_mkey);
108                         pklm->va = 0;
109                 }
110                 return;
111         }
112
113         /*
114          * The locking here is pretty subtle. Ideally the implicit_children
115          * xarray would be protected by the umem_mutex, however that is not
116          * possible. Instead this uses a weaker update-then-lock pattern:
117          *
118          *    xa_store()
119          *    mutex_lock(umem_mutex)
120          *     mlx5_ib_update_xlt()
121          *    mutex_unlock(umem_mutex)
122          *    destroy lkey
123          *
124          * ie any change the xarray must be followed by the locked update_xlt
125          * before destroying.
126          *
127          * The umem_mutex provides the acquire/release semantic needed to make
128          * the xa_store() visible to a racing thread.
129          */
130         lockdep_assert_held(&to_ib_umem_odp(imr->umem)->umem_mutex);
131
132         for (; pklm != end; pklm++, idx++) {
133                 struct mlx5_ib_mr *mtt = xa_load(&imr->implicit_children, idx);
134
135                 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
136                 if (mtt) {
137                         pklm->key = cpu_to_be32(mtt->ibmr.lkey);
138                         pklm->va = cpu_to_be64(idx * MLX5_IMR_MTT_SIZE);
139                 } else {
140                         pklm->key = cpu_to_be32(mr_to_mdev(imr)->null_mkey);
141                         pklm->va = 0;
142                 }
143         }
144 }
145
146 static u64 umem_dma_to_mtt(dma_addr_t umem_dma)
147 {
148         u64 mtt_entry = umem_dma & ODP_DMA_ADDR_MASK;
149
150         if (umem_dma & ODP_READ_ALLOWED_BIT)
151                 mtt_entry |= MLX5_IB_MTT_READ;
152         if (umem_dma & ODP_WRITE_ALLOWED_BIT)
153                 mtt_entry |= MLX5_IB_MTT_WRITE;
154
155         return mtt_entry;
156 }
157
158 static void populate_mtt(__be64 *pas, size_t idx, size_t nentries,
159                          struct mlx5_ib_mr *mr, int flags)
160 {
161         struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
162         dma_addr_t pa;
163         size_t i;
164
165         if (flags & MLX5_IB_UPD_XLT_ZAP)
166                 return;
167
168         for (i = 0; i < nentries; i++) {
169                 pa = odp->dma_list[idx + i];
170                 pas[i] = cpu_to_be64(umem_dma_to_mtt(pa));
171         }
172 }
173
174 void mlx5_odp_populate_xlt(void *xlt, size_t idx, size_t nentries,
175                            struct mlx5_ib_mr *mr, int flags)
176 {
177         if (flags & MLX5_IB_UPD_XLT_INDIRECT) {
178                 populate_klm(xlt, idx, nentries, mr, flags);
179         } else {
180                 populate_mtt(xlt, idx, nentries, mr, flags);
181         }
182 }
183
184 static void dma_fence_odp_mr(struct mlx5_ib_mr *mr)
185 {
186         struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
187
188         /* Ensure mlx5_ib_invalidate_range() will not touch the MR any more */
189         mutex_lock(&odp->umem_mutex);
190         if (odp->npages) {
191                 mlx5_mr_cache_invalidate(mr);
192                 ib_umem_odp_unmap_dma_pages(odp, ib_umem_start(odp),
193                                             ib_umem_end(odp));
194                 WARN_ON(odp->npages);
195         }
196         odp->private = NULL;
197         mutex_unlock(&odp->umem_mutex);
198
199         if (!mr->cache_ent) {
200                 mlx5_core_destroy_mkey(mr_to_mdev(mr)->mdev, &mr->mmkey);
201                 WARN_ON(mr->descs);
202         }
203 }
204
205 /*
206  * This must be called after the mr has been removed from implicit_children.
207  * NOTE: The MR does not necessarily have to be
208  * empty here, parallel page faults could have raced with the free process and
209  * added pages to it.
210  */
211 static void free_implicit_child_mr(struct mlx5_ib_mr *mr, bool need_imr_xlt)
212 {
213         struct mlx5_ib_mr *imr = mr->parent;
214         struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem);
215         struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
216         unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT;
217
218         mlx5r_deref_wait_odp_mkey(&mr->mmkey);
219
220         if (need_imr_xlt) {
221                 mutex_lock(&odp_imr->umem_mutex);
222                 mlx5_ib_update_xlt(mr->parent, idx, 1, 0,
223                                    MLX5_IB_UPD_XLT_INDIRECT |
224                                    MLX5_IB_UPD_XLT_ATOMIC);
225                 mutex_unlock(&odp_imr->umem_mutex);
226         }
227
228         dma_fence_odp_mr(mr);
229
230         mr->parent = NULL;
231         mlx5_mr_cache_free(mr_to_mdev(mr), mr);
232         ib_umem_odp_release(odp);
233 }
234
235 static void free_implicit_child_mr_work(struct work_struct *work)
236 {
237         struct mlx5_ib_mr *mr =
238                 container_of(work, struct mlx5_ib_mr, odp_destroy.work);
239         struct mlx5_ib_mr *imr = mr->parent;
240
241         free_implicit_child_mr(mr, true);
242         mlx5r_deref_odp_mkey(&imr->mmkey);
243 }
244
245 static void destroy_unused_implicit_child_mr(struct mlx5_ib_mr *mr)
246 {
247         struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
248         unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT;
249         struct mlx5_ib_mr *imr = mr->parent;
250
251         if (!refcount_inc_not_zero(&imr->mmkey.usecount))
252                 return;
253
254         xa_erase(&imr->implicit_children, idx);
255
256         /* Freeing a MR is a sleeping operation, so bounce to a work queue */
257         INIT_WORK(&mr->odp_destroy.work, free_implicit_child_mr_work);
258         queue_work(system_unbound_wq, &mr->odp_destroy.work);
259 }
260
261 static bool mlx5_ib_invalidate_range(struct mmu_interval_notifier *mni,
262                                      const struct mmu_notifier_range *range,
263                                      unsigned long cur_seq)
264 {
265         struct ib_umem_odp *umem_odp =
266                 container_of(mni, struct ib_umem_odp, notifier);
267         struct mlx5_ib_mr *mr;
268         const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT /
269                                     sizeof(struct mlx5_mtt)) - 1;
270         u64 idx = 0, blk_start_idx = 0;
271         u64 invalidations = 0;
272         unsigned long start;
273         unsigned long end;
274         int in_block = 0;
275         u64 addr;
276
277         if (!mmu_notifier_range_blockable(range))
278                 return false;
279
280         mutex_lock(&umem_odp->umem_mutex);
281         mmu_interval_set_seq(mni, cur_seq);
282         /*
283          * If npages is zero then umem_odp->private may not be setup yet. This
284          * does not complete until after the first page is mapped for DMA.
285          */
286         if (!umem_odp->npages)
287                 goto out;
288         mr = umem_odp->private;
289
290         start = max_t(u64, ib_umem_start(umem_odp), range->start);
291         end = min_t(u64, ib_umem_end(umem_odp), range->end);
292
293         /*
294          * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
295          * while we are doing the invalidation, no page fault will attempt to
296          * overwrite the same MTTs.  Concurent invalidations might race us,
297          * but they will write 0s as well, so no difference in the end result.
298          */
299         for (addr = start; addr < end; addr += BIT(umem_odp->page_shift)) {
300                 idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift;
301                 /*
302                  * Strive to write the MTTs in chunks, but avoid overwriting
303                  * non-existing MTTs. The huristic here can be improved to
304                  * estimate the cost of another UMR vs. the cost of bigger
305                  * UMR.
306                  */
307                 if (umem_odp->dma_list[idx] &
308                     (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
309                         if (!in_block) {
310                                 blk_start_idx = idx;
311                                 in_block = 1;
312                         }
313
314                         /* Count page invalidations */
315                         invalidations += idx - blk_start_idx + 1;
316                 } else {
317                         u64 umr_offset = idx & umr_block_mask;
318
319                         if (in_block && umr_offset == 0) {
320                                 mlx5_ib_update_xlt(mr, blk_start_idx,
321                                                    idx - blk_start_idx, 0,
322                                                    MLX5_IB_UPD_XLT_ZAP |
323                                                    MLX5_IB_UPD_XLT_ATOMIC);
324                                 in_block = 0;
325                         }
326                 }
327         }
328         if (in_block)
329                 mlx5_ib_update_xlt(mr, blk_start_idx,
330                                    idx - blk_start_idx + 1, 0,
331                                    MLX5_IB_UPD_XLT_ZAP |
332                                    MLX5_IB_UPD_XLT_ATOMIC);
333
334         mlx5_update_odp_stats(mr, invalidations, invalidations);
335
336         /*
337          * We are now sure that the device will not access the
338          * memory. We can safely unmap it, and mark it as dirty if
339          * needed.
340          */
341
342         ib_umem_odp_unmap_dma_pages(umem_odp, start, end);
343
344         if (unlikely(!umem_odp->npages && mr->parent))
345                 destroy_unused_implicit_child_mr(mr);
346 out:
347         mutex_unlock(&umem_odp->umem_mutex);
348         return true;
349 }
350
351 const struct mmu_interval_notifier_ops mlx5_mn_ops = {
352         .invalidate = mlx5_ib_invalidate_range,
353 };
354
355 void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev)
356 {
357         struct ib_odp_caps *caps = &dev->odp_caps;
358
359         memset(caps, 0, sizeof(*caps));
360
361         if (!MLX5_CAP_GEN(dev->mdev, pg) ||
362             !mlx5_ib_can_load_pas_with_umr(dev, 0))
363                 return;
364
365         caps->general_caps = IB_ODP_SUPPORT;
366
367         if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
368                 dev->odp_max_size = U64_MAX;
369         else
370                 dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
371
372         if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send))
373                 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
374
375         if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.srq_receive))
376                 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
377
378         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send))
379                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
380
381         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive))
382                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
383
384         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write))
385                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
386
387         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read))
388                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
389
390         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic))
391                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
392
393         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.srq_receive))
394                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
395
396         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.send))
397                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SEND;
398
399         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.receive))
400                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_RECV;
401
402         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.write))
403                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_WRITE;
404
405         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.read))
406                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_READ;
407
408         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.atomic))
409                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
410
411         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.srq_receive))
412                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
413
414         if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
415             MLX5_CAP_GEN(dev->mdev, null_mkey) &&
416             MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset) &&
417             !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled))
418                 caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
419 }
420
421 static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
422                                       struct mlx5_pagefault *pfault,
423                                       int error)
424 {
425         int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
426                      pfault->wqe.wq_num : pfault->token;
427         u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)] = {};
428         int err;
429
430         MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME);
431         MLX5_SET(page_fault_resume_in, in, page_fault_type, pfault->type);
432         MLX5_SET(page_fault_resume_in, in, token, pfault->token);
433         MLX5_SET(page_fault_resume_in, in, wq_number, wq_num);
434         MLX5_SET(page_fault_resume_in, in, error, !!error);
435
436         err = mlx5_cmd_exec_in(dev->mdev, page_fault_resume, in);
437         if (err)
438                 mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n",
439                             wq_num, err);
440 }
441
442 static struct mlx5_ib_mr *implicit_get_child_mr(struct mlx5_ib_mr *imr,
443                                                 unsigned long idx)
444 {
445         struct ib_umem_odp *odp;
446         struct mlx5_ib_mr *mr;
447         struct mlx5_ib_mr *ret;
448         int err;
449
450         odp = ib_umem_odp_alloc_child(to_ib_umem_odp(imr->umem),
451                                       idx * MLX5_IMR_MTT_SIZE,
452                                       MLX5_IMR_MTT_SIZE, &mlx5_mn_ops);
453         if (IS_ERR(odp))
454                 return ERR_CAST(odp);
455
456         ret = mr = mlx5_mr_cache_alloc(
457                 mr_to_mdev(imr), MLX5_IMR_MTT_CACHE_ENTRY, imr->access_flags);
458         if (IS_ERR(mr))
459                 goto out_umem;
460
461         mr->ibmr.pd = imr->ibmr.pd;
462         mr->ibmr.device = &mr_to_mdev(imr)->ib_dev;
463         mr->umem = &odp->umem;
464         mr->ibmr.lkey = mr->mmkey.key;
465         mr->ibmr.rkey = mr->mmkey.key;
466         mr->mmkey.iova = idx * MLX5_IMR_MTT_SIZE;
467         mr->parent = imr;
468         odp->private = mr;
469
470         /*
471          * First refcount is owned by the xarray and second refconut
472          * is returned to the caller.
473          */
474         refcount_set(&mr->mmkey.usecount, 2);
475
476         err = mlx5_ib_update_xlt(mr, 0,
477                                  MLX5_IMR_MTT_ENTRIES,
478                                  PAGE_SHIFT,
479                                  MLX5_IB_UPD_XLT_ZAP |
480                                  MLX5_IB_UPD_XLT_ENABLE);
481         if (err) {
482                 ret = ERR_PTR(err);
483                 goto out_mr;
484         }
485
486         xa_lock(&imr->implicit_children);
487         ret = __xa_cmpxchg(&imr->implicit_children, idx, NULL, mr,
488                            GFP_KERNEL);
489         if (unlikely(ret)) {
490                 if (xa_is_err(ret)) {
491                         ret = ERR_PTR(xa_err(ret));
492                         goto out_lock;
493                 }
494                 /*
495                  * Another thread beat us to creating the child mr, use
496                  * theirs.
497                  */
498                 refcount_inc(&ret->mmkey.usecount);
499                 goto out_lock;
500         }
501         xa_unlock(&imr->implicit_children);
502
503         mlx5_ib_dbg(mr_to_mdev(imr), "key %x mr %p\n", mr->mmkey.key, mr);
504         return mr;
505
506 out_lock:
507         xa_unlock(&imr->implicit_children);
508 out_mr:
509         mlx5_mr_cache_free(mr_to_mdev(imr), mr);
510 out_umem:
511         ib_umem_odp_release(odp);
512         return ret;
513 }
514
515 struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
516                                              struct ib_udata *udata,
517                                              int access_flags)
518 {
519         struct mlx5_ib_dev *dev = to_mdev(pd->ibpd.device);
520         struct ib_umem_odp *umem_odp;
521         struct mlx5_ib_mr *imr;
522         int err;
523
524         if (!mlx5_ib_can_load_pas_with_umr(dev,
525                                            MLX5_IMR_MTT_ENTRIES * PAGE_SIZE))
526                 return ERR_PTR(-EOPNOTSUPP);
527
528         umem_odp = ib_umem_odp_alloc_implicit(&dev->ib_dev, access_flags);
529         if (IS_ERR(umem_odp))
530                 return ERR_CAST(umem_odp);
531
532         imr = mlx5_mr_cache_alloc(dev, MLX5_IMR_KSM_CACHE_ENTRY, access_flags);
533         if (IS_ERR(imr)) {
534                 err = PTR_ERR(imr);
535                 goto out_umem;
536         }
537
538         imr->ibmr.pd = &pd->ibpd;
539         imr->mmkey.iova = 0;
540         imr->umem = &umem_odp->umem;
541         imr->ibmr.lkey = imr->mmkey.key;
542         imr->ibmr.rkey = imr->mmkey.key;
543         imr->ibmr.device = &dev->ib_dev;
544         imr->umem = &umem_odp->umem;
545         imr->is_odp_implicit = true;
546         xa_init(&imr->implicit_children);
547
548         err = mlx5_ib_update_xlt(imr, 0,
549                                  mlx5_imr_ksm_entries,
550                                  MLX5_KSM_PAGE_SHIFT,
551                                  MLX5_IB_UPD_XLT_INDIRECT |
552                                  MLX5_IB_UPD_XLT_ZAP |
553                                  MLX5_IB_UPD_XLT_ENABLE);
554         if (err)
555                 goto out_mr;
556
557         err = mlx5r_store_odp_mkey(dev, &imr->mmkey);
558         if (err)
559                 goto out_mr;
560
561         mlx5_ib_dbg(dev, "key %x mr %p\n", imr->mmkey.key, imr);
562         return imr;
563 out_mr:
564         mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
565         mlx5_mr_cache_free(dev, imr);
566 out_umem:
567         ib_umem_odp_release(umem_odp);
568         return ERR_PTR(err);
569 }
570
571 void mlx5_ib_free_implicit_mr(struct mlx5_ib_mr *imr)
572 {
573         struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem);
574         struct mlx5_ib_dev *dev = mr_to_mdev(imr);
575         struct mlx5_ib_mr *mtt;
576         unsigned long idx;
577
578         xa_erase(&dev->odp_mkeys, mlx5_base_mkey(imr->mmkey.key));
579         /*
580          * All work on the prefetch list must be completed, xa_erase() prevented
581          * new work from being created.
582          */
583         mlx5r_deref_wait_odp_mkey(&imr->mmkey);
584         /*
585          * At this point it is forbidden for any other thread to enter
586          * pagefault_mr() on this imr. It is already forbidden to call
587          * pagefault_mr() on an implicit child. Due to this additions to
588          * implicit_children are prevented.
589          * In addition, any new call to destroy_unused_implicit_child_mr()
590          * may return immediately.
591          */
592
593         /*
594          * Fence the imr before we destroy the children. This allows us to
595          * skip updating the XLT of the imr during destroy of the child mkey
596          * the imr points to.
597          */
598         mlx5_mr_cache_invalidate(imr);
599
600         xa_for_each(&imr->implicit_children, idx, mtt) {
601                 xa_erase(&imr->implicit_children, idx);
602                 free_implicit_child_mr(mtt, false);
603         }
604
605         mlx5_mr_cache_free(dev, imr);
606         ib_umem_odp_release(odp_imr);
607 }
608
609 /**
610  * mlx5_ib_fence_odp_mr - Stop all access to the ODP MR
611  * @mr: to fence
612  *
613  * On return no parallel threads will be touching this MR and no DMA will be
614  * active.
615  */
616 void mlx5_ib_fence_odp_mr(struct mlx5_ib_mr *mr)
617 {
618         /* Prevent new page faults and prefetch requests from succeeding */
619         xa_erase(&mr_to_mdev(mr)->odp_mkeys, mlx5_base_mkey(mr->mmkey.key));
620
621         /* Wait for all running page-fault handlers to finish. */
622         mlx5r_deref_wait_odp_mkey(&mr->mmkey);
623
624         dma_fence_odp_mr(mr);
625 }
626
627 /**
628  * mlx5_ib_fence_dmabuf_mr - Stop all access to the dmabuf MR
629  * @mr: to fence
630  *
631  * On return no parallel threads will be touching this MR and no DMA will be
632  * active.
633  */
634 void mlx5_ib_fence_dmabuf_mr(struct mlx5_ib_mr *mr)
635 {
636         struct ib_umem_dmabuf *umem_dmabuf = to_ib_umem_dmabuf(mr->umem);
637
638         /* Prevent new page faults and prefetch requests from succeeding */
639         xa_erase(&mr_to_mdev(mr)->odp_mkeys, mlx5_base_mkey(mr->mmkey.key));
640
641         mlx5r_deref_wait_odp_mkey(&mr->mmkey);
642
643         dma_resv_lock(umem_dmabuf->attach->dmabuf->resv, NULL);
644         mlx5_mr_cache_invalidate(mr);
645         umem_dmabuf->private = NULL;
646         ib_umem_dmabuf_unmap_pages(umem_dmabuf);
647         dma_resv_unlock(umem_dmabuf->attach->dmabuf->resv);
648
649         if (!mr->cache_ent) {
650                 mlx5_core_destroy_mkey(mr_to_mdev(mr)->mdev, &mr->mmkey);
651                 WARN_ON(mr->descs);
652         }
653 }
654
655 #define MLX5_PF_FLAGS_DOWNGRADE BIT(1)
656 #define MLX5_PF_FLAGS_SNAPSHOT BIT(2)
657 #define MLX5_PF_FLAGS_ENABLE BIT(3)
658 static int pagefault_real_mr(struct mlx5_ib_mr *mr, struct ib_umem_odp *odp,
659                              u64 user_va, size_t bcnt, u32 *bytes_mapped,
660                              u32 flags)
661 {
662         int page_shift, ret, np;
663         bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE;
664         u64 access_mask;
665         u64 start_idx;
666         bool fault = !(flags & MLX5_PF_FLAGS_SNAPSHOT);
667         u32 xlt_flags = MLX5_IB_UPD_XLT_ATOMIC;
668
669         if (flags & MLX5_PF_FLAGS_ENABLE)
670                 xlt_flags |= MLX5_IB_UPD_XLT_ENABLE;
671
672         page_shift = odp->page_shift;
673         start_idx = (user_va - ib_umem_start(odp)) >> page_shift;
674         access_mask = ODP_READ_ALLOWED_BIT;
675
676         if (odp->umem.writable && !downgrade)
677                 access_mask |= ODP_WRITE_ALLOWED_BIT;
678
679         np = ib_umem_odp_map_dma_and_lock(odp, user_va, bcnt, access_mask, fault);
680         if (np < 0)
681                 return np;
682
683         /*
684          * No need to check whether the MTTs really belong to this MR, since
685          * ib_umem_odp_map_dma_and_lock already checks this.
686          */
687         ret = mlx5_ib_update_xlt(mr, start_idx, np, page_shift, xlt_flags);
688         mutex_unlock(&odp->umem_mutex);
689
690         if (ret < 0) {
691                 if (ret != -EAGAIN)
692                         mlx5_ib_err(mr_to_mdev(mr),
693                                     "Failed to update mkey page tables\n");
694                 goto out;
695         }
696
697         if (bytes_mapped) {
698                 u32 new_mappings = (np << page_shift) -
699                         (user_va - round_down(user_va, 1 << page_shift));
700
701                 *bytes_mapped += min_t(u32, new_mappings, bcnt);
702         }
703
704         return np << (page_shift - PAGE_SHIFT);
705
706 out:
707         return ret;
708 }
709
710 static int pagefault_implicit_mr(struct mlx5_ib_mr *imr,
711                                  struct ib_umem_odp *odp_imr, u64 user_va,
712                                  size_t bcnt, u32 *bytes_mapped, u32 flags)
713 {
714         unsigned long end_idx = (user_va + bcnt - 1) >> MLX5_IMR_MTT_SHIFT;
715         unsigned long upd_start_idx = end_idx + 1;
716         unsigned long upd_len = 0;
717         unsigned long npages = 0;
718         int err;
719         int ret;
720
721         if (unlikely(user_va >= mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE ||
722                      mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE - user_va < bcnt))
723                 return -EFAULT;
724
725         /* Fault each child mr that intersects with our interval. */
726         while (bcnt) {
727                 unsigned long idx = user_va >> MLX5_IMR_MTT_SHIFT;
728                 struct ib_umem_odp *umem_odp;
729                 struct mlx5_ib_mr *mtt;
730                 u64 len;
731
732                 xa_lock(&imr->implicit_children);
733                 mtt = xa_load(&imr->implicit_children, idx);
734                 if (unlikely(!mtt)) {
735                         xa_unlock(&imr->implicit_children);
736                         mtt = implicit_get_child_mr(imr, idx);
737                         if (IS_ERR(mtt)) {
738                                 ret = PTR_ERR(mtt);
739                                 goto out;
740                         }
741                         upd_start_idx = min(upd_start_idx, idx);
742                         upd_len = idx - upd_start_idx + 1;
743                 } else {
744                         refcount_inc(&mtt->mmkey.usecount);
745                         xa_unlock(&imr->implicit_children);
746                 }
747
748                 umem_odp = to_ib_umem_odp(mtt->umem);
749                 len = min_t(u64, user_va + bcnt, ib_umem_end(umem_odp)) -
750                       user_va;
751
752                 ret = pagefault_real_mr(mtt, umem_odp, user_va, len,
753                                         bytes_mapped, flags);
754
755                 mlx5r_deref_odp_mkey(&mtt->mmkey);
756
757                 if (ret < 0)
758                         goto out;
759                 user_va += len;
760                 bcnt -= len;
761                 npages += ret;
762         }
763
764         ret = npages;
765
766         /*
767          * Any time the implicit_children are changed we must perform an
768          * update of the xlt before exiting to ensure the HW and the
769          * implicit_children remains synchronized.
770          */
771 out:
772         if (likely(!upd_len))
773                 return ret;
774
775         /*
776          * Notice this is not strictly ordered right, the KSM is updated after
777          * the implicit_children is updated, so a parallel page fault could
778          * see a MR that is not yet visible in the KSM.  This is similar to a
779          * parallel page fault seeing a MR that is being concurrently removed
780          * from the KSM. Both of these improbable situations are resolved
781          * safely by resuming the HW and then taking another page fault. The
782          * next pagefault handler will see the new information.
783          */
784         mutex_lock(&odp_imr->umem_mutex);
785         err = mlx5_ib_update_xlt(imr, upd_start_idx, upd_len, 0,
786                                  MLX5_IB_UPD_XLT_INDIRECT |
787                                          MLX5_IB_UPD_XLT_ATOMIC);
788         mutex_unlock(&odp_imr->umem_mutex);
789         if (err) {
790                 mlx5_ib_err(mr_to_mdev(imr), "Failed to update PAS\n");
791                 return err;
792         }
793         return ret;
794 }
795
796 static int pagefault_dmabuf_mr(struct mlx5_ib_mr *mr, size_t bcnt,
797                                u32 *bytes_mapped, u32 flags)
798 {
799         struct ib_umem_dmabuf *umem_dmabuf = to_ib_umem_dmabuf(mr->umem);
800         u32 xlt_flags = 0;
801         int err;
802         unsigned int page_size;
803
804         if (flags & MLX5_PF_FLAGS_ENABLE)
805                 xlt_flags |= MLX5_IB_UPD_XLT_ENABLE;
806
807         dma_resv_lock(umem_dmabuf->attach->dmabuf->resv, NULL);
808         err = ib_umem_dmabuf_map_pages(umem_dmabuf);
809         if (err) {
810                 dma_resv_unlock(umem_dmabuf->attach->dmabuf->resv);
811                 return err;
812         }
813
814         page_size = mlx5_umem_find_best_pgsz(&umem_dmabuf->umem, mkc,
815                                              log_page_size, 0,
816                                              umem_dmabuf->umem.iova);
817         if (unlikely(page_size < PAGE_SIZE)) {
818                 ib_umem_dmabuf_unmap_pages(umem_dmabuf);
819                 err = -EINVAL;
820         } else {
821                 err = mlx5_ib_update_mr_pas(mr, xlt_flags);
822         }
823         dma_resv_unlock(umem_dmabuf->attach->dmabuf->resv);
824
825         if (err)
826                 return err;
827
828         if (bytes_mapped)
829                 *bytes_mapped += bcnt;
830
831         return ib_umem_num_pages(mr->umem);
832 }
833
834 /*
835  * Returns:
836  *  -EFAULT: The io_virt->bcnt is not within the MR, it covers pages that are
837  *           not accessible, or the MR is no longer valid.
838  *  -EAGAIN/-ENOMEM: The operation should be retried
839  *
840  *  -EINVAL/others: General internal malfunction
841  *  >0: Number of pages mapped
842  */
843 static int pagefault_mr(struct mlx5_ib_mr *mr, u64 io_virt, size_t bcnt,
844                         u32 *bytes_mapped, u32 flags)
845 {
846         struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
847
848         if (unlikely(io_virt < mr->mmkey.iova))
849                 return -EFAULT;
850
851         if (mr->umem->is_dmabuf)
852                 return pagefault_dmabuf_mr(mr, bcnt, bytes_mapped, flags);
853
854         if (!odp->is_implicit_odp) {
855                 u64 user_va;
856
857                 if (check_add_overflow(io_virt - mr->mmkey.iova,
858                                        (u64)odp->umem.address, &user_va))
859                         return -EFAULT;
860                 if (unlikely(user_va >= ib_umem_end(odp) ||
861                              ib_umem_end(odp) - user_va < bcnt))
862                         return -EFAULT;
863                 return pagefault_real_mr(mr, odp, user_va, bcnt, bytes_mapped,
864                                          flags);
865         }
866         return pagefault_implicit_mr(mr, odp, io_virt, bcnt, bytes_mapped,
867                                      flags);
868 }
869
870 int mlx5_ib_init_odp_mr(struct mlx5_ib_mr *mr)
871 {
872         int ret;
873
874         ret = pagefault_real_mr(mr, to_ib_umem_odp(mr->umem), mr->umem->address,
875                                 mr->umem->length, NULL,
876                                 MLX5_PF_FLAGS_SNAPSHOT | MLX5_PF_FLAGS_ENABLE);
877         return ret >= 0 ? 0 : ret;
878 }
879
880 int mlx5_ib_init_dmabuf_mr(struct mlx5_ib_mr *mr)
881 {
882         int ret;
883
884         ret = pagefault_dmabuf_mr(mr, mr->umem->length, NULL,
885                                   MLX5_PF_FLAGS_ENABLE);
886
887         return ret >= 0 ? 0 : ret;
888 }
889
890 struct pf_frame {
891         struct pf_frame *next;
892         u32 key;
893         u64 io_virt;
894         size_t bcnt;
895         int depth;
896 };
897
898 static bool mkey_is_eq(struct mlx5_core_mkey *mmkey, u32 key)
899 {
900         if (!mmkey)
901                 return false;
902         if (mmkey->type == MLX5_MKEY_MW)
903                 return mlx5_base_mkey(mmkey->key) == mlx5_base_mkey(key);
904         return mmkey->key == key;
905 }
906
907 static int get_indirect_num_descs(struct mlx5_core_mkey *mmkey)
908 {
909         struct mlx5_ib_mw *mw;
910         struct mlx5_ib_devx_mr *devx_mr;
911
912         if (mmkey->type == MLX5_MKEY_MW) {
913                 mw = container_of(mmkey, struct mlx5_ib_mw, mmkey);
914                 return mw->ndescs;
915         }
916
917         devx_mr = container_of(mmkey, struct mlx5_ib_devx_mr,
918                                mmkey);
919         return devx_mr->ndescs;
920 }
921
922 /*
923  * Handle a single data segment in a page-fault WQE or RDMA region.
924  *
925  * Returns number of OS pages retrieved on success. The caller may continue to
926  * the next data segment.
927  * Can return the following error codes:
928  * -EAGAIN to designate a temporary error. The caller will abort handling the
929  *  page fault and resolve it.
930  * -EFAULT when there's an error mapping the requested pages. The caller will
931  *  abort the page fault handling.
932  */
933 static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
934                                          struct ib_pd *pd, u32 key,
935                                          u64 io_virt, size_t bcnt,
936                                          u32 *bytes_committed,
937                                          u32 *bytes_mapped)
938 {
939         int npages = 0, ret, i, outlen, cur_outlen = 0, depth = 0;
940         struct pf_frame *head = NULL, *frame;
941         struct mlx5_core_mkey *mmkey;
942         struct mlx5_ib_mr *mr;
943         struct mlx5_klm *pklm;
944         u32 *out = NULL;
945         size_t offset;
946         int ndescs;
947
948         io_virt += *bytes_committed;
949         bcnt -= *bytes_committed;
950
951 next_mr:
952         xa_lock(&dev->odp_mkeys);
953         mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(key));
954         if (!mmkey) {
955                 xa_unlock(&dev->odp_mkeys);
956                 mlx5_ib_dbg(
957                         dev,
958                         "skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
959                         key);
960                 if (bytes_mapped)
961                         *bytes_mapped += bcnt;
962                 /*
963                  * The user could specify a SGL with multiple lkeys and only
964                  * some of them are ODP. Treat the non-ODP ones as fully
965                  * faulted.
966                  */
967                 ret = 0;
968                 goto end;
969         }
970         refcount_inc(&mmkey->usecount);
971         xa_unlock(&dev->odp_mkeys);
972
973         if (!mkey_is_eq(mmkey, key)) {
974                 mlx5_ib_dbg(dev, "failed to find mkey %x\n", key);
975                 ret = -EFAULT;
976                 goto end;
977         }
978
979         switch (mmkey->type) {
980         case MLX5_MKEY_MR:
981                 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
982
983                 ret = pagefault_mr(mr, io_virt, bcnt, bytes_mapped, 0);
984                 if (ret < 0)
985                         goto end;
986
987                 mlx5_update_odp_stats(mr, faults, ret);
988
989                 npages += ret;
990                 ret = 0;
991                 break;
992
993         case MLX5_MKEY_MW:
994         case MLX5_MKEY_INDIRECT_DEVX:
995                 ndescs = get_indirect_num_descs(mmkey);
996
997                 if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) {
998                         mlx5_ib_dbg(dev, "indirection level exceeded\n");
999                         ret = -EFAULT;
1000                         goto end;
1001                 }
1002
1003                 outlen = MLX5_ST_SZ_BYTES(query_mkey_out) +
1004                         sizeof(*pklm) * (ndescs - 2);
1005
1006                 if (outlen > cur_outlen) {
1007                         kfree(out);
1008                         out = kzalloc(outlen, GFP_KERNEL);
1009                         if (!out) {
1010                                 ret = -ENOMEM;
1011                                 goto end;
1012                         }
1013                         cur_outlen = outlen;
1014                 }
1015
1016                 pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out,
1017                                                        bsf0_klm0_pas_mtt0_1);
1018
1019                 ret = mlx5_core_query_mkey(dev->mdev, mmkey, out, outlen);
1020                 if (ret)
1021                         goto end;
1022
1023                 offset = io_virt - MLX5_GET64(query_mkey_out, out,
1024                                               memory_key_mkey_entry.start_addr);
1025
1026                 for (i = 0; bcnt && i < ndescs; i++, pklm++) {
1027                         if (offset >= be32_to_cpu(pklm->bcount)) {
1028                                 offset -= be32_to_cpu(pklm->bcount);
1029                                 continue;
1030                         }
1031
1032                         frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1033                         if (!frame) {
1034                                 ret = -ENOMEM;
1035                                 goto end;
1036                         }
1037
1038                         frame->key = be32_to_cpu(pklm->key);
1039                         frame->io_virt = be64_to_cpu(pklm->va) + offset;
1040                         frame->bcnt = min_t(size_t, bcnt,
1041                                             be32_to_cpu(pklm->bcount) - offset);
1042                         frame->depth = depth + 1;
1043                         frame->next = head;
1044                         head = frame;
1045
1046                         bcnt -= frame->bcnt;
1047                         offset = 0;
1048                 }
1049                 break;
1050
1051         default:
1052                 mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type);
1053                 ret = -EFAULT;
1054                 goto end;
1055         }
1056
1057         if (head) {
1058                 frame = head;
1059                 head = frame->next;
1060
1061                 key = frame->key;
1062                 io_virt = frame->io_virt;
1063                 bcnt = frame->bcnt;
1064                 depth = frame->depth;
1065                 kfree(frame);
1066
1067                 mlx5r_deref_odp_mkey(mmkey);
1068                 goto next_mr;
1069         }
1070
1071 end:
1072         if (mmkey)
1073                 mlx5r_deref_odp_mkey(mmkey);
1074         while (head) {
1075                 frame = head;
1076                 head = frame->next;
1077                 kfree(frame);
1078         }
1079         kfree(out);
1080
1081         *bytes_committed = 0;
1082         return ret ? ret : npages;
1083 }
1084
1085 /**
1086  * Parse a series of data segments for page fault handling.
1087  *
1088  * @dev:  Pointer to mlx5 IB device
1089  * @pfault: contains page fault information.
1090  * @wqe: points at the first data segment in the WQE.
1091  * @wqe_end: points after the end of the WQE.
1092  * @bytes_mapped: receives the number of bytes that the function was able to
1093  *                map. This allows the caller to decide intelligently whether
1094  *                enough memory was mapped to resolve the page fault
1095  *                successfully (e.g. enough for the next MTU, or the entire
1096  *                WQE).
1097  * @total_wqe_bytes: receives the total data size of this WQE in bytes (minus
1098  *                   the committed bytes).
1099  * @receive_queue: receive WQE end of sg list
1100  *
1101  * Returns the number of pages loaded if positive, zero for an empty WQE, or a
1102  * negative error code.
1103  */
1104 static int pagefault_data_segments(struct mlx5_ib_dev *dev,
1105                                    struct mlx5_pagefault *pfault,
1106                                    void *wqe,
1107                                    void *wqe_end, u32 *bytes_mapped,
1108                                    u32 *total_wqe_bytes, bool receive_queue)
1109 {
1110         int ret = 0, npages = 0;
1111         u64 io_virt;
1112         u32 key;
1113         u32 byte_count;
1114         size_t bcnt;
1115         int inline_segment;
1116
1117         if (bytes_mapped)
1118                 *bytes_mapped = 0;
1119         if (total_wqe_bytes)
1120                 *total_wqe_bytes = 0;
1121
1122         while (wqe < wqe_end) {
1123                 struct mlx5_wqe_data_seg *dseg = wqe;
1124
1125                 io_virt = be64_to_cpu(dseg->addr);
1126                 key = be32_to_cpu(dseg->lkey);
1127                 byte_count = be32_to_cpu(dseg->byte_count);
1128                 inline_segment = !!(byte_count &  MLX5_INLINE_SEG);
1129                 bcnt           = byte_count & ~MLX5_INLINE_SEG;
1130
1131                 if (inline_segment) {
1132                         bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
1133                         wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
1134                                      16);
1135                 } else {
1136                         wqe += sizeof(*dseg);
1137                 }
1138
1139                 /* receive WQE end of sg list. */
1140                 if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY &&
1141                     io_virt == 0)
1142                         break;
1143
1144                 if (!inline_segment && total_wqe_bytes) {
1145                         *total_wqe_bytes += bcnt - min_t(size_t, bcnt,
1146                                         pfault->bytes_committed);
1147                 }
1148
1149                 /* A zero length data segment designates a length of 2GB. */
1150                 if (bcnt == 0)
1151                         bcnt = 1U << 31;
1152
1153                 if (inline_segment || bcnt <= pfault->bytes_committed) {
1154                         pfault->bytes_committed -=
1155                                 min_t(size_t, bcnt,
1156                                       pfault->bytes_committed);
1157                         continue;
1158                 }
1159
1160                 ret = pagefault_single_data_segment(dev, NULL, key,
1161                                                     io_virt, bcnt,
1162                                                     &pfault->bytes_committed,
1163                                                     bytes_mapped);
1164                 if (ret < 0)
1165                         break;
1166                 npages += ret;
1167         }
1168
1169         return ret < 0 ? ret : npages;
1170 }
1171
1172 /*
1173  * Parse initiator WQE. Advances the wqe pointer to point at the
1174  * scatter-gather list, and set wqe_end to the end of the WQE.
1175  */
1176 static int mlx5_ib_mr_initiator_pfault_handler(
1177         struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
1178         struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
1179 {
1180         struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
1181         u16 wqe_index = pfault->wqe.wqe_index;
1182         struct mlx5_base_av *av;
1183         unsigned ds, opcode;
1184         u32 qpn = qp->trans_qp.base.mqp.qpn;
1185
1186         ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
1187         if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
1188                 mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
1189                             ds, wqe_length);
1190                 return -EFAULT;
1191         }
1192
1193         if (ds == 0) {
1194                 mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
1195                             wqe_index, qpn);
1196                 return -EFAULT;
1197         }
1198
1199         *wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
1200         *wqe += sizeof(*ctrl);
1201
1202         opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
1203                  MLX5_WQE_CTRL_OPCODE_MASK;
1204
1205         if (qp->ibqp.qp_type == IB_QPT_XRC_INI)
1206                 *wqe += sizeof(struct mlx5_wqe_xrc_seg);
1207
1208         if (qp->type == IB_QPT_UD || qp->type == MLX5_IB_QPT_DCI) {
1209                 av = *wqe;
1210                 if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV))
1211                         *wqe += sizeof(struct mlx5_av);
1212                 else
1213                         *wqe += sizeof(struct mlx5_base_av);
1214         }
1215
1216         switch (opcode) {
1217         case MLX5_OPCODE_RDMA_WRITE:
1218         case MLX5_OPCODE_RDMA_WRITE_IMM:
1219         case MLX5_OPCODE_RDMA_READ:
1220                 *wqe += sizeof(struct mlx5_wqe_raddr_seg);
1221                 break;
1222         case MLX5_OPCODE_ATOMIC_CS:
1223         case MLX5_OPCODE_ATOMIC_FA:
1224                 *wqe += sizeof(struct mlx5_wqe_raddr_seg);
1225                 *wqe += sizeof(struct mlx5_wqe_atomic_seg);
1226                 break;
1227         }
1228
1229         return 0;
1230 }
1231
1232 /*
1233  * Parse responder WQE and set wqe_end to the end of the WQE.
1234  */
1235 static int mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev *dev,
1236                                                    struct mlx5_ib_srq *srq,
1237                                                    void **wqe, void **wqe_end,
1238                                                    int wqe_length)
1239 {
1240         int wqe_size = 1 << srq->msrq.wqe_shift;
1241
1242         if (wqe_size > wqe_length) {
1243                 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1244                 return -EFAULT;
1245         }
1246
1247         *wqe_end = *wqe + wqe_size;
1248         *wqe += sizeof(struct mlx5_wqe_srq_next_seg);
1249
1250         return 0;
1251 }
1252
1253 static int mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev *dev,
1254                                                   struct mlx5_ib_qp *qp,
1255                                                   void *wqe, void **wqe_end,
1256                                                   int wqe_length)
1257 {
1258         struct mlx5_ib_wq *wq = &qp->rq;
1259         int wqe_size = 1 << wq->wqe_shift;
1260
1261         if (qp->flags_en & MLX5_QP_FLAG_SIGNATURE) {
1262                 mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
1263                 return -EFAULT;
1264         }
1265
1266         if (wqe_size > wqe_length) {
1267                 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1268                 return -EFAULT;
1269         }
1270
1271         *wqe_end = wqe + wqe_size;
1272
1273         return 0;
1274 }
1275
1276 static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev,
1277                                                        u32 wq_num, int pf_type)
1278 {
1279         struct mlx5_core_rsc_common *common = NULL;
1280         struct mlx5_core_srq *srq;
1281
1282         switch (pf_type) {
1283         case MLX5_WQE_PF_TYPE_RMP:
1284                 srq = mlx5_cmd_get_srq(dev, wq_num);
1285                 if (srq)
1286                         common = &srq->common;
1287                 break;
1288         case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE:
1289         case MLX5_WQE_PF_TYPE_RESP:
1290         case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC:
1291                 common = mlx5_core_res_hold(dev, wq_num, MLX5_RES_QP);
1292                 break;
1293         default:
1294                 break;
1295         }
1296
1297         return common;
1298 }
1299
1300 static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res)
1301 {
1302         struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res;
1303
1304         return to_mibqp(mqp);
1305 }
1306
1307 static inline struct mlx5_ib_srq *res_to_srq(struct mlx5_core_rsc_common *res)
1308 {
1309         struct mlx5_core_srq *msrq =
1310                 container_of(res, struct mlx5_core_srq, common);
1311
1312         return to_mibsrq(msrq);
1313 }
1314
1315 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
1316                                           struct mlx5_pagefault *pfault)
1317 {
1318         bool sq = pfault->type & MLX5_PFAULT_REQUESTOR;
1319         u16 wqe_index = pfault->wqe.wqe_index;
1320         void *wqe, *wqe_start = NULL, *wqe_end = NULL;
1321         u32 bytes_mapped, total_wqe_bytes;
1322         struct mlx5_core_rsc_common *res;
1323         int resume_with_error = 1;
1324         struct mlx5_ib_qp *qp;
1325         size_t bytes_copied;
1326         int ret = 0;
1327
1328         res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type);
1329         if (!res) {
1330                 mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num);
1331                 return;
1332         }
1333
1334         if (res->res != MLX5_RES_QP && res->res != MLX5_RES_SRQ &&
1335             res->res != MLX5_RES_XSRQ) {
1336                 mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n",
1337                             pfault->type);
1338                 goto resolve_page_fault;
1339         }
1340
1341         wqe_start = (void *)__get_free_page(GFP_KERNEL);
1342         if (!wqe_start) {
1343                 mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
1344                 goto resolve_page_fault;
1345         }
1346
1347         wqe = wqe_start;
1348         qp = (res->res == MLX5_RES_QP) ? res_to_qp(res) : NULL;
1349         if (qp && sq) {
1350                 ret = mlx5_ib_read_wqe_sq(qp, wqe_index, wqe, PAGE_SIZE,
1351                                           &bytes_copied);
1352                 if (ret)
1353                         goto read_user;
1354                 ret = mlx5_ib_mr_initiator_pfault_handler(
1355                         dev, pfault, qp, &wqe, &wqe_end, bytes_copied);
1356         } else if (qp && !sq) {
1357                 ret = mlx5_ib_read_wqe_rq(qp, wqe_index, wqe, PAGE_SIZE,
1358                                           &bytes_copied);
1359                 if (ret)
1360                         goto read_user;
1361                 ret = mlx5_ib_mr_responder_pfault_handler_rq(
1362                         dev, qp, wqe, &wqe_end, bytes_copied);
1363         } else if (!qp) {
1364                 struct mlx5_ib_srq *srq = res_to_srq(res);
1365
1366                 ret = mlx5_ib_read_wqe_srq(srq, wqe_index, wqe, PAGE_SIZE,
1367                                            &bytes_copied);
1368                 if (ret)
1369                         goto read_user;
1370                 ret = mlx5_ib_mr_responder_pfault_handler_srq(
1371                         dev, srq, &wqe, &wqe_end, bytes_copied);
1372         }
1373
1374         if (ret < 0 || wqe >= wqe_end)
1375                 goto resolve_page_fault;
1376
1377         ret = pagefault_data_segments(dev, pfault, wqe, wqe_end, &bytes_mapped,
1378                                       &total_wqe_bytes, !sq);
1379         if (ret == -EAGAIN)
1380                 goto out;
1381
1382         if (ret < 0 || total_wqe_bytes > bytes_mapped)
1383                 goto resolve_page_fault;
1384
1385 out:
1386         ret = 0;
1387         resume_with_error = 0;
1388
1389 read_user:
1390         if (ret)
1391                 mlx5_ib_err(
1392                         dev,
1393                         "Failed reading a WQE following page fault, error %d, wqe_index %x, qpn %x\n",
1394                         ret, wqe_index, pfault->token);
1395
1396 resolve_page_fault:
1397         mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
1398         mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
1399                     pfault->wqe.wq_num, resume_with_error,
1400                     pfault->type);
1401         mlx5_core_res_put(res);
1402         free_page((unsigned long)wqe_start);
1403 }
1404
1405 static int pages_in_range(u64 address, u32 length)
1406 {
1407         return (ALIGN(address + length, PAGE_SIZE) -
1408                 (address & PAGE_MASK)) >> PAGE_SHIFT;
1409 }
1410
1411 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
1412                                            struct mlx5_pagefault *pfault)
1413 {
1414         u64 address;
1415         u32 length;
1416         u32 prefetch_len = pfault->bytes_committed;
1417         int prefetch_activated = 0;
1418         u32 rkey = pfault->rdma.r_key;
1419         int ret;
1420
1421         /* The RDMA responder handler handles the page fault in two parts.
1422          * First it brings the necessary pages for the current packet
1423          * (and uses the pfault context), and then (after resuming the QP)
1424          * prefetches more pages. The second operation cannot use the pfault
1425          * context and therefore uses the dummy_pfault context allocated on
1426          * the stack */
1427         pfault->rdma.rdma_va += pfault->bytes_committed;
1428         pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
1429                                          pfault->rdma.rdma_op_len);
1430         pfault->bytes_committed = 0;
1431
1432         address = pfault->rdma.rdma_va;
1433         length  = pfault->rdma.rdma_op_len;
1434
1435         /* For some operations, the hardware cannot tell the exact message
1436          * length, and in those cases it reports zero. Use prefetch
1437          * logic. */
1438         if (length == 0) {
1439                 prefetch_activated = 1;
1440                 length = pfault->rdma.packet_size;
1441                 prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
1442         }
1443
1444         ret = pagefault_single_data_segment(dev, NULL, rkey, address, length,
1445                                             &pfault->bytes_committed, NULL);
1446         if (ret == -EAGAIN) {
1447                 /* We're racing with an invalidation, don't prefetch */
1448                 prefetch_activated = 0;
1449         } else if (ret < 0 || pages_in_range(address, length) > ret) {
1450                 mlx5_ib_page_fault_resume(dev, pfault, 1);
1451                 if (ret != -ENOENT)
1452                         mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n",
1453                                     ret, pfault->token, pfault->type);
1454                 return;
1455         }
1456
1457         mlx5_ib_page_fault_resume(dev, pfault, 0);
1458         mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n",
1459                     pfault->token, pfault->type,
1460                     prefetch_activated);
1461
1462         /* At this point, there might be a new pagefault already arriving in
1463          * the eq, switch to the dummy pagefault for the rest of the
1464          * processing. We're still OK with the objects being alive as the
1465          * work-queue is being fenced. */
1466
1467         if (prefetch_activated) {
1468                 u32 bytes_committed = 0;
1469
1470                 ret = pagefault_single_data_segment(dev, NULL, rkey, address,
1471                                                     prefetch_len,
1472                                                     &bytes_committed, NULL);
1473                 if (ret < 0 && ret != -EAGAIN) {
1474                         mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n",
1475                                     ret, pfault->token, address, prefetch_len);
1476                 }
1477         }
1478 }
1479
1480 static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault)
1481 {
1482         u8 event_subtype = pfault->event_subtype;
1483
1484         switch (event_subtype) {
1485         case MLX5_PFAULT_SUBTYPE_WQE:
1486                 mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
1487                 break;
1488         case MLX5_PFAULT_SUBTYPE_RDMA:
1489                 mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
1490                 break;
1491         default:
1492                 mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
1493                             event_subtype);
1494                 mlx5_ib_page_fault_resume(dev, pfault, 1);
1495         }
1496 }
1497
1498 static void mlx5_ib_eqe_pf_action(struct work_struct *work)
1499 {
1500         struct mlx5_pagefault *pfault = container_of(work,
1501                                                      struct mlx5_pagefault,
1502                                                      work);
1503         struct mlx5_ib_pf_eq *eq = pfault->eq;
1504
1505         mlx5_ib_pfault(eq->dev, pfault);
1506         mempool_free(pfault, eq->pool);
1507 }
1508
1509 static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq)
1510 {
1511         struct mlx5_eqe_page_fault *pf_eqe;
1512         struct mlx5_pagefault *pfault;
1513         struct mlx5_eqe *eqe;
1514         int cc = 0;
1515
1516         while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) {
1517                 pfault = mempool_alloc(eq->pool, GFP_ATOMIC);
1518                 if (!pfault) {
1519                         schedule_work(&eq->work);
1520                         break;
1521                 }
1522
1523                 pf_eqe = &eqe->data.page_fault;
1524                 pfault->event_subtype = eqe->sub_type;
1525                 pfault->bytes_committed = be32_to_cpu(pf_eqe->bytes_committed);
1526
1527                 mlx5_ib_dbg(eq->dev,
1528                             "PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x\n",
1529                             eqe->sub_type, pfault->bytes_committed);
1530
1531                 switch (eqe->sub_type) {
1532                 case MLX5_PFAULT_SUBTYPE_RDMA:
1533                         /* RDMA based event */
1534                         pfault->type =
1535                                 be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24;
1536                         pfault->token =
1537                                 be32_to_cpu(pf_eqe->rdma.pftype_token) &
1538                                 MLX5_24BIT_MASK;
1539                         pfault->rdma.r_key =
1540                                 be32_to_cpu(pf_eqe->rdma.r_key);
1541                         pfault->rdma.packet_size =
1542                                 be16_to_cpu(pf_eqe->rdma.packet_length);
1543                         pfault->rdma.rdma_op_len =
1544                                 be32_to_cpu(pf_eqe->rdma.rdma_op_len);
1545                         pfault->rdma.rdma_va =
1546                                 be64_to_cpu(pf_eqe->rdma.rdma_va);
1547                         mlx5_ib_dbg(eq->dev,
1548                                     "PAGE_FAULT: type:0x%x, token: 0x%06x, r_key: 0x%08x\n",
1549                                     pfault->type, pfault->token,
1550                                     pfault->rdma.r_key);
1551                         mlx5_ib_dbg(eq->dev,
1552                                     "PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n",
1553                                     pfault->rdma.rdma_op_len,
1554                                     pfault->rdma.rdma_va);
1555                         break;
1556
1557                 case MLX5_PFAULT_SUBTYPE_WQE:
1558                         /* WQE based event */
1559                         pfault->type =
1560                                 (be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7;
1561                         pfault->token =
1562                                 be32_to_cpu(pf_eqe->wqe.token);
1563                         pfault->wqe.wq_num =
1564                                 be32_to_cpu(pf_eqe->wqe.pftype_wq) &
1565                                 MLX5_24BIT_MASK;
1566                         pfault->wqe.wqe_index =
1567                                 be16_to_cpu(pf_eqe->wqe.wqe_index);
1568                         pfault->wqe.packet_size =
1569                                 be16_to_cpu(pf_eqe->wqe.packet_length);
1570                         mlx5_ib_dbg(eq->dev,
1571                                     "PAGE_FAULT: type:0x%x, token: 0x%06x, wq_num: 0x%06x, wqe_index: 0x%04x\n",
1572                                     pfault->type, pfault->token,
1573                                     pfault->wqe.wq_num,
1574                                     pfault->wqe.wqe_index);
1575                         break;
1576
1577                 default:
1578                         mlx5_ib_warn(eq->dev,
1579                                      "Unsupported page fault event sub-type: 0x%02hhx\n",
1580                                      eqe->sub_type);
1581                         /* Unsupported page faults should still be
1582                          * resolved by the page fault handler
1583                          */
1584                 }
1585
1586                 pfault->eq = eq;
1587                 INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action);
1588                 queue_work(eq->wq, &pfault->work);
1589
1590                 cc = mlx5_eq_update_cc(eq->core, ++cc);
1591         }
1592
1593         mlx5_eq_update_ci(eq->core, cc, 1);
1594 }
1595
1596 static int mlx5_ib_eq_pf_int(struct notifier_block *nb, unsigned long type,
1597                              void *data)
1598 {
1599         struct mlx5_ib_pf_eq *eq =
1600                 container_of(nb, struct mlx5_ib_pf_eq, irq_nb);
1601         unsigned long flags;
1602
1603         if (spin_trylock_irqsave(&eq->lock, flags)) {
1604                 mlx5_ib_eq_pf_process(eq);
1605                 spin_unlock_irqrestore(&eq->lock, flags);
1606         } else {
1607                 schedule_work(&eq->work);
1608         }
1609
1610         return IRQ_HANDLED;
1611 }
1612
1613 /* mempool_refill() was proposed but unfortunately wasn't accepted
1614  * http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html
1615  * Cheap workaround.
1616  */
1617 static void mempool_refill(mempool_t *pool)
1618 {
1619         while (pool->curr_nr < pool->min_nr)
1620                 mempool_free(mempool_alloc(pool, GFP_KERNEL), pool);
1621 }
1622
1623 static void mlx5_ib_eq_pf_action(struct work_struct *work)
1624 {
1625         struct mlx5_ib_pf_eq *eq =
1626                 container_of(work, struct mlx5_ib_pf_eq, work);
1627
1628         mempool_refill(eq->pool);
1629
1630         spin_lock_irq(&eq->lock);
1631         mlx5_ib_eq_pf_process(eq);
1632         spin_unlock_irq(&eq->lock);
1633 }
1634
1635 enum {
1636         MLX5_IB_NUM_PF_EQE      = 0x1000,
1637         MLX5_IB_NUM_PF_DRAIN    = 64,
1638 };
1639
1640 static int
1641 mlx5_ib_create_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1642 {
1643         struct mlx5_eq_param param = {};
1644         int err;
1645
1646         INIT_WORK(&eq->work, mlx5_ib_eq_pf_action);
1647         spin_lock_init(&eq->lock);
1648         eq->dev = dev;
1649
1650         eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN,
1651                                                sizeof(struct mlx5_pagefault));
1652         if (!eq->pool)
1653                 return -ENOMEM;
1654
1655         eq->wq = alloc_workqueue("mlx5_ib_page_fault",
1656                                  WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM,
1657                                  MLX5_NUM_CMD_EQE);
1658         if (!eq->wq) {
1659                 err = -ENOMEM;
1660                 goto err_mempool;
1661         }
1662
1663         eq->irq_nb.notifier_call = mlx5_ib_eq_pf_int;
1664         param = (struct mlx5_eq_param) {
1665                 .irq_index = 0,
1666                 .nent = MLX5_IB_NUM_PF_EQE,
1667         };
1668         param.mask[0] = 1ull << MLX5_EVENT_TYPE_PAGE_FAULT;
1669         eq->core = mlx5_eq_create_generic(dev->mdev, &param);
1670         if (IS_ERR(eq->core)) {
1671                 err = PTR_ERR(eq->core);
1672                 goto err_wq;
1673         }
1674         err = mlx5_eq_enable(dev->mdev, eq->core, &eq->irq_nb);
1675         if (err) {
1676                 mlx5_ib_err(dev, "failed to enable odp EQ %d\n", err);
1677                 goto err_eq;
1678         }
1679
1680         return 0;
1681 err_eq:
1682         mlx5_eq_destroy_generic(dev->mdev, eq->core);
1683 err_wq:
1684         destroy_workqueue(eq->wq);
1685 err_mempool:
1686         mempool_destroy(eq->pool);
1687         return err;
1688 }
1689
1690 static int
1691 mlx5_ib_destroy_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1692 {
1693         int err;
1694
1695         mlx5_eq_disable(dev->mdev, eq->core, &eq->irq_nb);
1696         err = mlx5_eq_destroy_generic(dev->mdev, eq->core);
1697         cancel_work_sync(&eq->work);
1698         destroy_workqueue(eq->wq);
1699         mempool_destroy(eq->pool);
1700
1701         return err;
1702 }
1703
1704 void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent)
1705 {
1706         if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1707                 return;
1708
1709         switch (ent->order - 2) {
1710         case MLX5_IMR_MTT_CACHE_ENTRY:
1711                 ent->page = PAGE_SHIFT;
1712                 ent->xlt = MLX5_IMR_MTT_ENTRIES *
1713                            sizeof(struct mlx5_mtt) /
1714                            MLX5_IB_UMR_OCTOWORD;
1715                 ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
1716                 ent->limit = 0;
1717                 break;
1718
1719         case MLX5_IMR_KSM_CACHE_ENTRY:
1720                 ent->page = MLX5_KSM_PAGE_SHIFT;
1721                 ent->xlt = mlx5_imr_ksm_entries *
1722                            sizeof(struct mlx5_klm) /
1723                            MLX5_IB_UMR_OCTOWORD;
1724                 ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM;
1725                 ent->limit = 0;
1726                 break;
1727         }
1728 }
1729
1730 static const struct ib_device_ops mlx5_ib_dev_odp_ops = {
1731         .advise_mr = mlx5_ib_advise_mr,
1732 };
1733
1734 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
1735 {
1736         int ret = 0;
1737
1738         if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1739                 return ret;
1740
1741         ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops);
1742
1743         if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) {
1744                 ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey);
1745                 if (ret) {
1746                         mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret);
1747                         return ret;
1748                 }
1749         }
1750
1751         ret = mlx5_ib_create_pf_eq(dev, &dev->odp_pf_eq);
1752
1753         return ret;
1754 }
1755
1756 void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev)
1757 {
1758         if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1759                 return;
1760
1761         mlx5_ib_destroy_pf_eq(dev, &dev->odp_pf_eq);
1762 }
1763
1764 int mlx5_ib_odp_init(void)
1765 {
1766         mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
1767                                        MLX5_IMR_MTT_BITS);
1768
1769         return 0;
1770 }
1771
1772 struct prefetch_mr_work {
1773         struct work_struct work;
1774         u32 pf_flags;
1775         u32 num_sge;
1776         struct {
1777                 u64 io_virt;
1778                 struct mlx5_ib_mr *mr;
1779                 size_t length;
1780         } frags[];
1781 };
1782
1783 static void destroy_prefetch_work(struct prefetch_mr_work *work)
1784 {
1785         u32 i;
1786
1787         for (i = 0; i < work->num_sge; ++i)
1788                 mlx5r_deref_odp_mkey(&work->frags[i].mr->mmkey);
1789
1790         kvfree(work);
1791 }
1792
1793 static struct mlx5_ib_mr *
1794 get_prefetchable_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
1795                     u32 lkey)
1796 {
1797         struct mlx5_ib_dev *dev = to_mdev(pd->device);
1798         struct mlx5_core_mkey *mmkey;
1799         struct mlx5_ib_mr *mr = NULL;
1800
1801         xa_lock(&dev->odp_mkeys);
1802         mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(lkey));
1803         if (!mmkey || mmkey->key != lkey || mmkey->type != MLX5_MKEY_MR)
1804                 goto end;
1805
1806         mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1807
1808         if (mr->ibmr.pd != pd) {
1809                 mr = NULL;
1810                 goto end;
1811         }
1812
1813         /* prefetch with write-access must be supported by the MR */
1814         if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1815             !mr->umem->writable) {
1816                 mr = NULL;
1817                 goto end;
1818         }
1819
1820         refcount_inc(&mmkey->usecount);
1821 end:
1822         xa_unlock(&dev->odp_mkeys);
1823         return mr;
1824 }
1825
1826 static void mlx5_ib_prefetch_mr_work(struct work_struct *w)
1827 {
1828         struct prefetch_mr_work *work =
1829                 container_of(w, struct prefetch_mr_work, work);
1830         u32 bytes_mapped = 0;
1831         int ret;
1832         u32 i;
1833
1834         /* We rely on IB/core that work is executed if we have num_sge != 0 only. */
1835         WARN_ON(!work->num_sge);
1836         for (i = 0; i < work->num_sge; ++i) {
1837                 ret = pagefault_mr(work->frags[i].mr, work->frags[i].io_virt,
1838                                    work->frags[i].length, &bytes_mapped,
1839                                    work->pf_flags);
1840                 if (ret <= 0)
1841                         continue;
1842                 mlx5_update_odp_stats(work->frags[i].mr, prefetch, ret);
1843         }
1844
1845         destroy_prefetch_work(work);
1846 }
1847
1848 static bool init_prefetch_work(struct ib_pd *pd,
1849                                enum ib_uverbs_advise_mr_advice advice,
1850                                u32 pf_flags, struct prefetch_mr_work *work,
1851                                struct ib_sge *sg_list, u32 num_sge)
1852 {
1853         u32 i;
1854
1855         INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work);
1856         work->pf_flags = pf_flags;
1857
1858         for (i = 0; i < num_sge; ++i) {
1859                 work->frags[i].io_virt = sg_list[i].addr;
1860                 work->frags[i].length = sg_list[i].length;
1861                 work->frags[i].mr =
1862                         get_prefetchable_mr(pd, advice, sg_list[i].lkey);
1863                 if (!work->frags[i].mr) {
1864                         work->num_sge = i;
1865                         return false;
1866                 }
1867         }
1868         work->num_sge = num_sge;
1869         return true;
1870 }
1871
1872 static int mlx5_ib_prefetch_sg_list(struct ib_pd *pd,
1873                                     enum ib_uverbs_advise_mr_advice advice,
1874                                     u32 pf_flags, struct ib_sge *sg_list,
1875                                     u32 num_sge)
1876 {
1877         u32 bytes_mapped = 0;
1878         int ret = 0;
1879         u32 i;
1880
1881         for (i = 0; i < num_sge; ++i) {
1882                 struct mlx5_ib_mr *mr;
1883
1884                 mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey);
1885                 if (!mr)
1886                         return -ENOENT;
1887                 ret = pagefault_mr(mr, sg_list[i].addr, sg_list[i].length,
1888                                    &bytes_mapped, pf_flags);
1889                 if (ret < 0) {
1890                         mlx5r_deref_odp_mkey(&mr->mmkey);
1891                         return ret;
1892                 }
1893                 mlx5_update_odp_stats(mr, prefetch, ret);
1894                 mlx5r_deref_odp_mkey(&mr->mmkey);
1895         }
1896
1897         return 0;
1898 }
1899
1900 int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd,
1901                                enum ib_uverbs_advise_mr_advice advice,
1902                                u32 flags, struct ib_sge *sg_list, u32 num_sge)
1903 {
1904         u32 pf_flags = 0;
1905         struct prefetch_mr_work *work;
1906
1907         if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH)
1908                 pf_flags |= MLX5_PF_FLAGS_DOWNGRADE;
1909
1910         if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT)
1911                 pf_flags |= MLX5_PF_FLAGS_SNAPSHOT;
1912
1913         if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH)
1914                 return mlx5_ib_prefetch_sg_list(pd, advice, pf_flags, sg_list,
1915                                                 num_sge);
1916
1917         work = kvzalloc(struct_size(work, frags, num_sge), GFP_KERNEL);
1918         if (!work)
1919                 return -ENOMEM;
1920
1921         if (!init_prefetch_work(pd, advice, pf_flags, work, sg_list, num_sge)) {
1922                 destroy_prefetch_work(work);
1923                 return -EINVAL;
1924         }
1925         queue_work(system_unbound_wq, &work->work);
1926         return 0;
1927 }