scsi: core: Avoid that system resume triggers a kernel warning
[linux-2.6-microblaze.git] / drivers / infiniband / hw / mlx5 / odp.c
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32
33 #include <rdma/ib_umem.h>
34 #include <rdma/ib_umem_odp.h>
35 #include <linux/kernel.h>
36
37 #include "mlx5_ib.h"
38 #include "cmd.h"
39
40 #include <linux/mlx5/eq.h>
41
42 /* Contains the details of a pagefault. */
43 struct mlx5_pagefault {
44         u32                     bytes_committed;
45         u32                     token;
46         u8                      event_subtype;
47         u8                      type;
48         union {
49                 /* Initiator or send message responder pagefault details. */
50                 struct {
51                         /* Received packet size, only valid for responders. */
52                         u32     packet_size;
53                         /*
54                          * Number of resource holding WQE, depends on type.
55                          */
56                         u32     wq_num;
57                         /*
58                          * WQE index. Refers to either the send queue or
59                          * receive queue, according to event_subtype.
60                          */
61                         u16     wqe_index;
62                 } wqe;
63                 /* RDMA responder pagefault details */
64                 struct {
65                         u32     r_key;
66                         /*
67                          * Received packet size, minimal size page fault
68                          * resolution required for forward progress.
69                          */
70                         u32     packet_size;
71                         u32     rdma_op_len;
72                         u64     rdma_va;
73                 } rdma;
74         };
75
76         struct mlx5_ib_pf_eq    *eq;
77         struct work_struct      work;
78 };
79
80 #define MAX_PREFETCH_LEN (4*1024*1024U)
81
82 /* Timeout in ms to wait for an active mmu notifier to complete when handling
83  * a pagefault. */
84 #define MMU_NOTIFIER_TIMEOUT 1000
85
86 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
87 #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
88 #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
89 #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
90 #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
91
92 #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
93
94 static u64 mlx5_imr_ksm_entries;
95
96 static int check_parent(struct ib_umem_odp *odp,
97                                struct mlx5_ib_mr *parent)
98 {
99         struct mlx5_ib_mr *mr = odp->private;
100
101         return mr && mr->parent == parent && !odp->dying;
102 }
103
104 struct ib_ucontext_per_mm *mr_to_per_mm(struct mlx5_ib_mr *mr)
105 {
106         if (WARN_ON(!mr || !mr->umem || !mr->umem->is_odp))
107                 return NULL;
108
109         return to_ib_umem_odp(mr->umem)->per_mm;
110 }
111
112 static struct ib_umem_odp *odp_next(struct ib_umem_odp *odp)
113 {
114         struct mlx5_ib_mr *mr = odp->private, *parent = mr->parent;
115         struct ib_ucontext_per_mm *per_mm = odp->per_mm;
116         struct rb_node *rb;
117
118         down_read(&per_mm->umem_rwsem);
119         while (1) {
120                 rb = rb_next(&odp->interval_tree.rb);
121                 if (!rb)
122                         goto not_found;
123                 odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb);
124                 if (check_parent(odp, parent))
125                         goto end;
126         }
127 not_found:
128         odp = NULL;
129 end:
130         up_read(&per_mm->umem_rwsem);
131         return odp;
132 }
133
134 static struct ib_umem_odp *odp_lookup(u64 start, u64 length,
135                                       struct mlx5_ib_mr *parent)
136 {
137         struct ib_ucontext_per_mm *per_mm = mr_to_per_mm(parent);
138         struct ib_umem_odp *odp;
139         struct rb_node *rb;
140
141         down_read(&per_mm->umem_rwsem);
142         odp = rbt_ib_umem_lookup(&per_mm->umem_tree, start, length);
143         if (!odp)
144                 goto end;
145
146         while (1) {
147                 if (check_parent(odp, parent))
148                         goto end;
149                 rb = rb_next(&odp->interval_tree.rb);
150                 if (!rb)
151                         goto not_found;
152                 odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb);
153                 if (ib_umem_start(&odp->umem) > start + length)
154                         goto not_found;
155         }
156 not_found:
157         odp = NULL;
158 end:
159         up_read(&per_mm->umem_rwsem);
160         return odp;
161 }
162
163 void mlx5_odp_populate_klm(struct mlx5_klm *pklm, size_t offset,
164                            size_t nentries, struct mlx5_ib_mr *mr, int flags)
165 {
166         struct ib_pd *pd = mr->ibmr.pd;
167         struct mlx5_ib_dev *dev = to_mdev(pd->device);
168         struct ib_umem_odp *odp;
169         unsigned long va;
170         int i;
171
172         if (flags & MLX5_IB_UPD_XLT_ZAP) {
173                 for (i = 0; i < nentries; i++, pklm++) {
174                         pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
175                         pklm->key = cpu_to_be32(dev->null_mkey);
176                         pklm->va = 0;
177                 }
178                 return;
179         }
180
181         odp = odp_lookup(offset * MLX5_IMR_MTT_SIZE,
182                          nentries * MLX5_IMR_MTT_SIZE, mr);
183
184         for (i = 0; i < nentries; i++, pklm++) {
185                 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
186                 va = (offset + i) * MLX5_IMR_MTT_SIZE;
187                 if (odp && odp->umem.address == va) {
188                         struct mlx5_ib_mr *mtt = odp->private;
189
190                         pklm->key = cpu_to_be32(mtt->ibmr.lkey);
191                         odp = odp_next(odp);
192                 } else {
193                         pklm->key = cpu_to_be32(dev->null_mkey);
194                 }
195                 mlx5_ib_dbg(dev, "[%d] va %lx key %x\n",
196                             i, va, be32_to_cpu(pklm->key));
197         }
198 }
199
200 static void mr_leaf_free_action(struct work_struct *work)
201 {
202         struct ib_umem_odp *odp = container_of(work, struct ib_umem_odp, work);
203         int idx = ib_umem_start(&odp->umem) >> MLX5_IMR_MTT_SHIFT;
204         struct mlx5_ib_mr *mr = odp->private, *imr = mr->parent;
205
206         mr->parent = NULL;
207         synchronize_srcu(&mr->dev->mr_srcu);
208
209         ib_umem_release(&odp->umem);
210         if (imr->live)
211                 mlx5_ib_update_xlt(imr, idx, 1, 0,
212                                    MLX5_IB_UPD_XLT_INDIRECT |
213                                    MLX5_IB_UPD_XLT_ATOMIC);
214         mlx5_mr_cache_free(mr->dev, mr);
215
216         if (atomic_dec_and_test(&imr->num_leaf_free))
217                 wake_up(&imr->q_leaf_free);
218 }
219
220 void mlx5_ib_invalidate_range(struct ib_umem_odp *umem_odp, unsigned long start,
221                               unsigned long end)
222 {
223         struct mlx5_ib_mr *mr;
224         const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT /
225                                     sizeof(struct mlx5_mtt)) - 1;
226         u64 idx = 0, blk_start_idx = 0;
227         struct ib_umem *umem;
228         int in_block = 0;
229         u64 addr;
230
231         if (!umem_odp) {
232                 pr_err("invalidation called on NULL umem or non-ODP umem\n");
233                 return;
234         }
235         umem = &umem_odp->umem;
236
237         mr = umem_odp->private;
238
239         if (!mr || !mr->ibmr.pd)
240                 return;
241
242         start = max_t(u64, ib_umem_start(umem), start);
243         end = min_t(u64, ib_umem_end(umem), end);
244
245         /*
246          * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
247          * while we are doing the invalidation, no page fault will attempt to
248          * overwrite the same MTTs.  Concurent invalidations might race us,
249          * but they will write 0s as well, so no difference in the end result.
250          */
251
252         for (addr = start; addr < end; addr += BIT(umem->page_shift)) {
253                 idx = (addr - ib_umem_start(umem)) >> umem->page_shift;
254                 /*
255                  * Strive to write the MTTs in chunks, but avoid overwriting
256                  * non-existing MTTs. The huristic here can be improved to
257                  * estimate the cost of another UMR vs. the cost of bigger
258                  * UMR.
259                  */
260                 if (umem_odp->dma_list[idx] &
261                     (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
262                         if (!in_block) {
263                                 blk_start_idx = idx;
264                                 in_block = 1;
265                         }
266                 } else {
267                         u64 umr_offset = idx & umr_block_mask;
268
269                         if (in_block && umr_offset == 0) {
270                                 mlx5_ib_update_xlt(mr, blk_start_idx,
271                                                    idx - blk_start_idx, 0,
272                                                    MLX5_IB_UPD_XLT_ZAP |
273                                                    MLX5_IB_UPD_XLT_ATOMIC);
274                                 in_block = 0;
275                         }
276                 }
277         }
278         if (in_block)
279                 mlx5_ib_update_xlt(mr, blk_start_idx,
280                                    idx - blk_start_idx + 1, 0,
281                                    MLX5_IB_UPD_XLT_ZAP |
282                                    MLX5_IB_UPD_XLT_ATOMIC);
283         /*
284          * We are now sure that the device will not access the
285          * memory. We can safely unmap it, and mark it as dirty if
286          * needed.
287          */
288
289         ib_umem_odp_unmap_dma_pages(umem_odp, start, end);
290
291         if (unlikely(!umem->npages && mr->parent &&
292                      !umem_odp->dying)) {
293                 WRITE_ONCE(umem_odp->dying, 1);
294                 atomic_inc(&mr->parent->num_leaf_free);
295                 schedule_work(&umem_odp->work);
296         }
297 }
298
299 void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev)
300 {
301         struct ib_odp_caps *caps = &dev->odp_caps;
302
303         memset(caps, 0, sizeof(*caps));
304
305         if (!MLX5_CAP_GEN(dev->mdev, pg))
306                 return;
307
308         caps->general_caps = IB_ODP_SUPPORT;
309
310         if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
311                 dev->odp_max_size = U64_MAX;
312         else
313                 dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
314
315         if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send))
316                 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
317
318         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send))
319                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
320
321         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive))
322                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
323
324         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write))
325                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
326
327         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read))
328                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
329
330         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic))
331                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
332
333         if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
334             MLX5_CAP_GEN(dev->mdev, null_mkey) &&
335             MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
336                 caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
337
338         return;
339 }
340
341 static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
342                                       struct mlx5_pagefault *pfault,
343                                       int error)
344 {
345         int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
346                      pfault->wqe.wq_num : pfault->token;
347         u32 out[MLX5_ST_SZ_DW(page_fault_resume_out)] = { };
348         u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)]   = { };
349         int err;
350
351         MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME);
352         MLX5_SET(page_fault_resume_in, in, page_fault_type, pfault->type);
353         MLX5_SET(page_fault_resume_in, in, token, pfault->token);
354         MLX5_SET(page_fault_resume_in, in, wq_number, wq_num);
355         MLX5_SET(page_fault_resume_in, in, error, !!error);
356
357         err = mlx5_cmd_exec(dev->mdev, in, sizeof(in), out, sizeof(out));
358         if (err)
359                 mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n",
360                             wq_num, err);
361 }
362
363 static struct mlx5_ib_mr *implicit_mr_alloc(struct ib_pd *pd,
364                                             struct ib_umem *umem,
365                                             bool ksm, int access_flags)
366 {
367         struct mlx5_ib_dev *dev = to_mdev(pd->device);
368         struct mlx5_ib_mr *mr;
369         int err;
370
371         mr = mlx5_mr_cache_alloc(dev, ksm ? MLX5_IMR_KSM_CACHE_ENTRY :
372                                             MLX5_IMR_MTT_CACHE_ENTRY);
373
374         if (IS_ERR(mr))
375                 return mr;
376
377         mr->ibmr.pd = pd;
378
379         mr->dev = dev;
380         mr->access_flags = access_flags;
381         mr->mmkey.iova = 0;
382         mr->umem = umem;
383
384         if (ksm) {
385                 err = mlx5_ib_update_xlt(mr, 0,
386                                          mlx5_imr_ksm_entries,
387                                          MLX5_KSM_PAGE_SHIFT,
388                                          MLX5_IB_UPD_XLT_INDIRECT |
389                                          MLX5_IB_UPD_XLT_ZAP |
390                                          MLX5_IB_UPD_XLT_ENABLE);
391
392         } else {
393                 err = mlx5_ib_update_xlt(mr, 0,
394                                          MLX5_IMR_MTT_ENTRIES,
395                                          PAGE_SHIFT,
396                                          MLX5_IB_UPD_XLT_ZAP |
397                                          MLX5_IB_UPD_XLT_ENABLE |
398                                          MLX5_IB_UPD_XLT_ATOMIC);
399         }
400
401         if (err)
402                 goto fail;
403
404         mr->ibmr.lkey = mr->mmkey.key;
405         mr->ibmr.rkey = mr->mmkey.key;
406
407         mr->live = 1;
408
409         mlx5_ib_dbg(dev, "key %x dev %p mr %p\n",
410                     mr->mmkey.key, dev->mdev, mr);
411
412         return mr;
413
414 fail:
415         mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
416         mlx5_mr_cache_free(dev, mr);
417
418         return ERR_PTR(err);
419 }
420
421 static struct ib_umem_odp *implicit_mr_get_data(struct mlx5_ib_mr *mr,
422                                                 u64 io_virt, size_t bcnt)
423 {
424         struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.pd->device);
425         struct ib_umem_odp *odp, *result = NULL;
426         struct ib_umem_odp *odp_mr = to_ib_umem_odp(mr->umem);
427         u64 addr = io_virt & MLX5_IMR_MTT_MASK;
428         int nentries = 0, start_idx = 0, ret;
429         struct mlx5_ib_mr *mtt;
430
431         mutex_lock(&odp_mr->umem_mutex);
432         odp = odp_lookup(addr, 1, mr);
433
434         mlx5_ib_dbg(dev, "io_virt:%llx bcnt:%zx addr:%llx odp:%p\n",
435                     io_virt, bcnt, addr, odp);
436
437 next_mr:
438         if (likely(odp)) {
439                 if (nentries)
440                         nentries++;
441         } else {
442                 odp = ib_alloc_odp_umem(odp_mr->per_mm, addr,
443                                         MLX5_IMR_MTT_SIZE);
444                 if (IS_ERR(odp)) {
445                         mutex_unlock(&odp_mr->umem_mutex);
446                         return ERR_CAST(odp);
447                 }
448
449                 mtt = implicit_mr_alloc(mr->ibmr.pd, &odp->umem, 0,
450                                         mr->access_flags);
451                 if (IS_ERR(mtt)) {
452                         mutex_unlock(&odp_mr->umem_mutex);
453                         ib_umem_release(&odp->umem);
454                         return ERR_CAST(mtt);
455                 }
456
457                 odp->private = mtt;
458                 mtt->umem = &odp->umem;
459                 mtt->mmkey.iova = addr;
460                 mtt->parent = mr;
461                 INIT_WORK(&odp->work, mr_leaf_free_action);
462
463                 if (!nentries)
464                         start_idx = addr >> MLX5_IMR_MTT_SHIFT;
465                 nentries++;
466         }
467
468         /* Return first odp if region not covered by single one */
469         if (likely(!result))
470                 result = odp;
471
472         addr += MLX5_IMR_MTT_SIZE;
473         if (unlikely(addr < io_virt + bcnt)) {
474                 odp = odp_next(odp);
475                 if (odp && odp->umem.address != addr)
476                         odp = NULL;
477                 goto next_mr;
478         }
479
480         if (unlikely(nentries)) {
481                 ret = mlx5_ib_update_xlt(mr, start_idx, nentries, 0,
482                                          MLX5_IB_UPD_XLT_INDIRECT |
483                                          MLX5_IB_UPD_XLT_ATOMIC);
484                 if (ret) {
485                         mlx5_ib_err(dev, "Failed to update PAS\n");
486                         result = ERR_PTR(ret);
487                 }
488         }
489
490         mutex_unlock(&odp_mr->umem_mutex);
491         return result;
492 }
493
494 struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
495                                              int access_flags)
496 {
497         struct ib_ucontext *ctx = pd->ibpd.uobject->context;
498         struct mlx5_ib_mr *imr;
499         struct ib_umem *umem;
500
501         umem = ib_umem_get(ctx, 0, 0, IB_ACCESS_ON_DEMAND, 0);
502         if (IS_ERR(umem))
503                 return ERR_CAST(umem);
504
505         imr = implicit_mr_alloc(&pd->ibpd, umem, 1, access_flags);
506         if (IS_ERR(imr)) {
507                 ib_umem_release(umem);
508                 return ERR_CAST(imr);
509         }
510
511         imr->umem = umem;
512         init_waitqueue_head(&imr->q_leaf_free);
513         atomic_set(&imr->num_leaf_free, 0);
514
515         return imr;
516 }
517
518 static int mr_leaf_free(struct ib_umem_odp *umem_odp, u64 start, u64 end,
519                         void *cookie)
520 {
521         struct mlx5_ib_mr *mr = umem_odp->private, *imr = cookie;
522         struct ib_umem *umem = &umem_odp->umem;
523
524         if (mr->parent != imr)
525                 return 0;
526
527         ib_umem_odp_unmap_dma_pages(umem_odp, ib_umem_start(umem),
528                                     ib_umem_end(umem));
529
530         if (umem_odp->dying)
531                 return 0;
532
533         WRITE_ONCE(umem_odp->dying, 1);
534         atomic_inc(&imr->num_leaf_free);
535         schedule_work(&umem_odp->work);
536
537         return 0;
538 }
539
540 void mlx5_ib_free_implicit_mr(struct mlx5_ib_mr *imr)
541 {
542         struct ib_ucontext_per_mm *per_mm = mr_to_per_mm(imr);
543
544         down_read(&per_mm->umem_rwsem);
545         rbt_ib_umem_for_each_in_range(&per_mm->umem_tree, 0, ULLONG_MAX,
546                                       mr_leaf_free, true, imr);
547         up_read(&per_mm->umem_rwsem);
548
549         wait_event(imr->q_leaf_free, !atomic_read(&imr->num_leaf_free));
550 }
551
552 #define MLX5_PF_FLAGS_PREFETCH  BIT(0)
553 #define MLX5_PF_FLAGS_DOWNGRADE BIT(1)
554 static int pagefault_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
555                         u64 io_virt, size_t bcnt, u32 *bytes_mapped,
556                         u32 flags)
557 {
558         int npages = 0, current_seq, page_shift, ret, np;
559         bool implicit = false;
560         struct ib_umem_odp *odp_mr = to_ib_umem_odp(mr->umem);
561         bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE;
562         bool prefetch = flags & MLX5_PF_FLAGS_PREFETCH;
563         u64 access_mask = ODP_READ_ALLOWED_BIT;
564         u64 start_idx, page_mask;
565         struct ib_umem_odp *odp;
566         size_t size;
567
568         if (!odp_mr->page_list) {
569                 odp = implicit_mr_get_data(mr, io_virt, bcnt);
570
571                 if (IS_ERR(odp))
572                         return PTR_ERR(odp);
573                 mr = odp->private;
574                 implicit = true;
575         } else {
576                 odp = odp_mr;
577         }
578
579 next_mr:
580         size = min_t(size_t, bcnt, ib_umem_end(&odp->umem) - io_virt);
581
582         page_shift = mr->umem->page_shift;
583         page_mask = ~(BIT(page_shift) - 1);
584         start_idx = (io_virt - (mr->mmkey.iova & page_mask)) >> page_shift;
585
586         if (prefetch && !downgrade && !mr->umem->writable) {
587                 /* prefetch with write-access must
588                  * be supported by the MR
589                  */
590                 ret = -EINVAL;
591                 goto out;
592         }
593
594         if (mr->umem->writable && !downgrade)
595                 access_mask |= ODP_WRITE_ALLOWED_BIT;
596
597         current_seq = READ_ONCE(odp->notifiers_seq);
598         /*
599          * Ensure the sequence number is valid for some time before we call
600          * gup.
601          */
602         smp_rmb();
603
604         ret = ib_umem_odp_map_dma_pages(to_ib_umem_odp(mr->umem), io_virt, size,
605                                         access_mask, current_seq);
606
607         if (ret < 0)
608                 goto out;
609
610         np = ret;
611
612         mutex_lock(&odp->umem_mutex);
613         if (!ib_umem_mmu_notifier_retry(to_ib_umem_odp(mr->umem),
614                                         current_seq)) {
615                 /*
616                  * No need to check whether the MTTs really belong to
617                  * this MR, since ib_umem_odp_map_dma_pages already
618                  * checks this.
619                  */
620                 ret = mlx5_ib_update_xlt(mr, start_idx, np,
621                                          page_shift, MLX5_IB_UPD_XLT_ATOMIC);
622         } else {
623                 ret = -EAGAIN;
624         }
625         mutex_unlock(&odp->umem_mutex);
626
627         if (ret < 0) {
628                 if (ret != -EAGAIN)
629                         mlx5_ib_err(dev, "Failed to update mkey page tables\n");
630                 goto out;
631         }
632
633         if (bytes_mapped) {
634                 u32 new_mappings = (np << page_shift) -
635                         (io_virt - round_down(io_virt, 1 << page_shift));
636                 *bytes_mapped += min_t(u32, new_mappings, size);
637         }
638
639         npages += np << (page_shift - PAGE_SHIFT);
640         bcnt -= size;
641
642         if (unlikely(bcnt)) {
643                 struct ib_umem_odp *next;
644
645                 io_virt += size;
646                 next = odp_next(odp);
647                 if (unlikely(!next || next->umem.address != io_virt)) {
648                         mlx5_ib_dbg(dev, "next implicit leaf removed at 0x%llx. got %p\n",
649                                     io_virt, next);
650                         return -EAGAIN;
651                 }
652                 odp = next;
653                 mr = odp->private;
654                 goto next_mr;
655         }
656
657         return npages;
658
659 out:
660         if (ret == -EAGAIN) {
661                 if (implicit || !odp->dying) {
662                         unsigned long timeout =
663                                 msecs_to_jiffies(MMU_NOTIFIER_TIMEOUT);
664
665                         if (!wait_for_completion_timeout(
666                                         &odp->notifier_completion,
667                                         timeout)) {
668                                 mlx5_ib_warn(dev, "timeout waiting for mmu notifier. seq %d against %d. notifiers_count=%d\n",
669                                              current_seq, odp->notifiers_seq, odp->notifiers_count);
670                         }
671                 } else {
672                         /* The MR is being killed, kill the QP as well. */
673                         ret = -EFAULT;
674                 }
675         }
676
677         return ret;
678 }
679
680 struct pf_frame {
681         struct pf_frame *next;
682         u32 key;
683         u64 io_virt;
684         size_t bcnt;
685         int depth;
686 };
687
688 /*
689  * Handle a single data segment in a page-fault WQE or RDMA region.
690  *
691  * Returns number of OS pages retrieved on success. The caller may continue to
692  * the next data segment.
693  * Can return the following error codes:
694  * -EAGAIN to designate a temporary error. The caller will abort handling the
695  *  page fault and resolve it.
696  * -EFAULT when there's an error mapping the requested pages. The caller will
697  *  abort the page fault handling.
698  */
699 static int pagefault_single_data_segment(struct mlx5_ib_dev *dev, u32 key,
700                                          u64 io_virt, size_t bcnt,
701                                          u32 *bytes_committed,
702                                          u32 *bytes_mapped, u32 flags)
703 {
704         int npages = 0, srcu_key, ret, i, outlen, cur_outlen = 0, depth = 0;
705         bool prefetch = flags & MLX5_PF_FLAGS_PREFETCH;
706         struct pf_frame *head = NULL, *frame;
707         struct mlx5_core_mkey *mmkey;
708         struct mlx5_ib_mw *mw;
709         struct mlx5_ib_mr *mr;
710         struct mlx5_klm *pklm;
711         u32 *out = NULL;
712         size_t offset;
713
714         srcu_key = srcu_read_lock(&dev->mr_srcu);
715
716         io_virt += *bytes_committed;
717         bcnt -= *bytes_committed;
718
719 next_mr:
720         mmkey = __mlx5_mr_lookup(dev->mdev, mlx5_base_mkey(key));
721         if (!mmkey || mmkey->key != key) {
722                 mlx5_ib_dbg(dev, "failed to find mkey %x\n", key);
723                 ret = -EFAULT;
724                 goto srcu_unlock;
725         }
726
727         if (prefetch && mmkey->type != MLX5_MKEY_MR) {
728                 mlx5_ib_dbg(dev, "prefetch is allowed only for MR\n");
729                 ret = -EINVAL;
730                 goto srcu_unlock;
731         }
732
733         switch (mmkey->type) {
734         case MLX5_MKEY_MR:
735                 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
736                 if (!mr->live || !mr->ibmr.pd) {
737                         mlx5_ib_dbg(dev, "got dead MR\n");
738                         ret = -EFAULT;
739                         goto srcu_unlock;
740                 }
741
742                 if (prefetch && !mr->umem->is_odp) {
743                         ret = -EINVAL;
744                         goto srcu_unlock;
745                 }
746
747                 if (!mr->umem->is_odp) {
748                         mlx5_ib_dbg(dev, "skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
749                                     key);
750                         if (bytes_mapped)
751                                 *bytes_mapped += bcnt;
752                         ret = 0;
753                         goto srcu_unlock;
754                 }
755
756                 ret = pagefault_mr(dev, mr, io_virt, bcnt, bytes_mapped, flags);
757                 if (ret < 0)
758                         goto srcu_unlock;
759
760                 npages += ret;
761                 ret = 0;
762                 break;
763
764         case MLX5_MKEY_MW:
765                 mw = container_of(mmkey, struct mlx5_ib_mw, mmkey);
766
767                 if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) {
768                         mlx5_ib_dbg(dev, "indirection level exceeded\n");
769                         ret = -EFAULT;
770                         goto srcu_unlock;
771                 }
772
773                 outlen = MLX5_ST_SZ_BYTES(query_mkey_out) +
774                         sizeof(*pklm) * (mw->ndescs - 2);
775
776                 if (outlen > cur_outlen) {
777                         kfree(out);
778                         out = kzalloc(outlen, GFP_KERNEL);
779                         if (!out) {
780                                 ret = -ENOMEM;
781                                 goto srcu_unlock;
782                         }
783                         cur_outlen = outlen;
784                 }
785
786                 pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out,
787                                                        bsf0_klm0_pas_mtt0_1);
788
789                 ret = mlx5_core_query_mkey(dev->mdev, &mw->mmkey, out, outlen);
790                 if (ret)
791                         goto srcu_unlock;
792
793                 offset = io_virt - MLX5_GET64(query_mkey_out, out,
794                                               memory_key_mkey_entry.start_addr);
795
796                 for (i = 0; bcnt && i < mw->ndescs; i++, pklm++) {
797                         if (offset >= be32_to_cpu(pklm->bcount)) {
798                                 offset -= be32_to_cpu(pklm->bcount);
799                                 continue;
800                         }
801
802                         frame = kzalloc(sizeof(*frame), GFP_KERNEL);
803                         if (!frame) {
804                                 ret = -ENOMEM;
805                                 goto srcu_unlock;
806                         }
807
808                         frame->key = be32_to_cpu(pklm->key);
809                         frame->io_virt = be64_to_cpu(pklm->va) + offset;
810                         frame->bcnt = min_t(size_t, bcnt,
811                                             be32_to_cpu(pklm->bcount) - offset);
812                         frame->depth = depth + 1;
813                         frame->next = head;
814                         head = frame;
815
816                         bcnt -= frame->bcnt;
817                         offset = 0;
818                 }
819                 break;
820
821         default:
822                 mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type);
823                 ret = -EFAULT;
824                 goto srcu_unlock;
825         }
826
827         if (head) {
828                 frame = head;
829                 head = frame->next;
830
831                 key = frame->key;
832                 io_virt = frame->io_virt;
833                 bcnt = frame->bcnt;
834                 depth = frame->depth;
835                 kfree(frame);
836
837                 goto next_mr;
838         }
839
840 srcu_unlock:
841         while (head) {
842                 frame = head;
843                 head = frame->next;
844                 kfree(frame);
845         }
846         kfree(out);
847
848         srcu_read_unlock(&dev->mr_srcu, srcu_key);
849         *bytes_committed = 0;
850         return ret ? ret : npages;
851 }
852
853 /**
854  * Parse a series of data segments for page fault handling.
855  *
856  * @qp the QP on which the fault occurred.
857  * @pfault contains page fault information.
858  * @wqe points at the first data segment in the WQE.
859  * @wqe_end points after the end of the WQE.
860  * @bytes_mapped receives the number of bytes that the function was able to
861  *               map. This allows the caller to decide intelligently whether
862  *               enough memory was mapped to resolve the page fault
863  *               successfully (e.g. enough for the next MTU, or the entire
864  *               WQE).
865  * @total_wqe_bytes receives the total data size of this WQE in bytes (minus
866  *                  the committed bytes).
867  *
868  * Returns the number of pages loaded if positive, zero for an empty WQE, or a
869  * negative error code.
870  */
871 static int pagefault_data_segments(struct mlx5_ib_dev *dev,
872                                    struct mlx5_pagefault *pfault,
873                                    struct mlx5_ib_qp *qp, void *wqe,
874                                    void *wqe_end, u32 *bytes_mapped,
875                                    u32 *total_wqe_bytes, int receive_queue)
876 {
877         int ret = 0, npages = 0;
878         u64 io_virt;
879         u32 key;
880         u32 byte_count;
881         size_t bcnt;
882         int inline_segment;
883
884         /* Skip SRQ next-WQE segment. */
885         if (receive_queue && qp->ibqp.srq)
886                 wqe += sizeof(struct mlx5_wqe_srq_next_seg);
887
888         if (bytes_mapped)
889                 *bytes_mapped = 0;
890         if (total_wqe_bytes)
891                 *total_wqe_bytes = 0;
892
893         while (wqe < wqe_end) {
894                 struct mlx5_wqe_data_seg *dseg = wqe;
895
896                 io_virt = be64_to_cpu(dseg->addr);
897                 key = be32_to_cpu(dseg->lkey);
898                 byte_count = be32_to_cpu(dseg->byte_count);
899                 inline_segment = !!(byte_count &  MLX5_INLINE_SEG);
900                 bcnt           = byte_count & ~MLX5_INLINE_SEG;
901
902                 if (inline_segment) {
903                         bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
904                         wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
905                                      16);
906                 } else {
907                         wqe += sizeof(*dseg);
908                 }
909
910                 /* receive WQE end of sg list. */
911                 if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY &&
912                     io_virt == 0)
913                         break;
914
915                 if (!inline_segment && total_wqe_bytes) {
916                         *total_wqe_bytes += bcnt - min_t(size_t, bcnt,
917                                         pfault->bytes_committed);
918                 }
919
920                 /* A zero length data segment designates a length of 2GB. */
921                 if (bcnt == 0)
922                         bcnt = 1U << 31;
923
924                 if (inline_segment || bcnt <= pfault->bytes_committed) {
925                         pfault->bytes_committed -=
926                                 min_t(size_t, bcnt,
927                                       pfault->bytes_committed);
928                         continue;
929                 }
930
931                 ret = pagefault_single_data_segment(dev, key, io_virt, bcnt,
932                                                     &pfault->bytes_committed,
933                                                     bytes_mapped, 0);
934                 if (ret < 0)
935                         break;
936                 npages += ret;
937         }
938
939         return ret < 0 ? ret : npages;
940 }
941
942 static const u32 mlx5_ib_odp_opcode_cap[] = {
943         [MLX5_OPCODE_SEND]             = IB_ODP_SUPPORT_SEND,
944         [MLX5_OPCODE_SEND_IMM]         = IB_ODP_SUPPORT_SEND,
945         [MLX5_OPCODE_SEND_INVAL]       = IB_ODP_SUPPORT_SEND,
946         [MLX5_OPCODE_RDMA_WRITE]       = IB_ODP_SUPPORT_WRITE,
947         [MLX5_OPCODE_RDMA_WRITE_IMM]   = IB_ODP_SUPPORT_WRITE,
948         [MLX5_OPCODE_RDMA_READ]        = IB_ODP_SUPPORT_READ,
949         [MLX5_OPCODE_ATOMIC_CS]        = IB_ODP_SUPPORT_ATOMIC,
950         [MLX5_OPCODE_ATOMIC_FA]        = IB_ODP_SUPPORT_ATOMIC,
951 };
952
953 /*
954  * Parse initiator WQE. Advances the wqe pointer to point at the
955  * scatter-gather list, and set wqe_end to the end of the WQE.
956  */
957 static int mlx5_ib_mr_initiator_pfault_handler(
958         struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
959         struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
960 {
961         struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
962         u16 wqe_index = pfault->wqe.wqe_index;
963         u32 transport_caps;
964         struct mlx5_base_av *av;
965         unsigned ds, opcode;
966 #if defined(DEBUG)
967         u32 ctrl_wqe_index, ctrl_qpn;
968 #endif
969         u32 qpn = qp->trans_qp.base.mqp.qpn;
970
971         ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
972         if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
973                 mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
974                             ds, wqe_length);
975                 return -EFAULT;
976         }
977
978         if (ds == 0) {
979                 mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
980                             wqe_index, qpn);
981                 return -EFAULT;
982         }
983
984 #if defined(DEBUG)
985         ctrl_wqe_index = (be32_to_cpu(ctrl->opmod_idx_opcode) &
986                         MLX5_WQE_CTRL_WQE_INDEX_MASK) >>
987                         MLX5_WQE_CTRL_WQE_INDEX_SHIFT;
988         if (wqe_index != ctrl_wqe_index) {
989                 mlx5_ib_err(dev, "Got WQE with invalid wqe_index. wqe_index=0x%x, qpn=0x%x ctrl->wqe_index=0x%x\n",
990                             wqe_index, qpn,
991                             ctrl_wqe_index);
992                 return -EFAULT;
993         }
994
995         ctrl_qpn = (be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_QPN_MASK) >>
996                 MLX5_WQE_CTRL_QPN_SHIFT;
997         if (qpn != ctrl_qpn) {
998                 mlx5_ib_err(dev, "Got WQE with incorrect QP number. wqe_index=0x%x, qpn=0x%x ctrl->qpn=0x%x\n",
999                             wqe_index, qpn,
1000                             ctrl_qpn);
1001                 return -EFAULT;
1002         }
1003 #endif /* DEBUG */
1004
1005         *wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
1006         *wqe += sizeof(*ctrl);
1007
1008         opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
1009                  MLX5_WQE_CTRL_OPCODE_MASK;
1010
1011         switch (qp->ibqp.qp_type) {
1012         case IB_QPT_RC:
1013                 transport_caps = dev->odp_caps.per_transport_caps.rc_odp_caps;
1014                 break;
1015         case IB_QPT_UD:
1016                 transport_caps = dev->odp_caps.per_transport_caps.ud_odp_caps;
1017                 break;
1018         default:
1019                 mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport 0x%x\n",
1020                             qp->ibqp.qp_type);
1021                 return -EFAULT;
1022         }
1023
1024         if (unlikely(opcode >= ARRAY_SIZE(mlx5_ib_odp_opcode_cap) ||
1025                      !(transport_caps & mlx5_ib_odp_opcode_cap[opcode]))) {
1026                 mlx5_ib_err(dev, "ODP fault on QP of an unsupported opcode 0x%x\n",
1027                             opcode);
1028                 return -EFAULT;
1029         }
1030
1031         if (qp->ibqp.qp_type != IB_QPT_RC) {
1032                 av = *wqe;
1033                 if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV))
1034                         *wqe += sizeof(struct mlx5_av);
1035                 else
1036                         *wqe += sizeof(struct mlx5_base_av);
1037         }
1038
1039         switch (opcode) {
1040         case MLX5_OPCODE_RDMA_WRITE:
1041         case MLX5_OPCODE_RDMA_WRITE_IMM:
1042         case MLX5_OPCODE_RDMA_READ:
1043                 *wqe += sizeof(struct mlx5_wqe_raddr_seg);
1044                 break;
1045         case MLX5_OPCODE_ATOMIC_CS:
1046         case MLX5_OPCODE_ATOMIC_FA:
1047                 *wqe += sizeof(struct mlx5_wqe_raddr_seg);
1048                 *wqe += sizeof(struct mlx5_wqe_atomic_seg);
1049                 break;
1050         }
1051
1052         return 0;
1053 }
1054
1055 /*
1056  * Parse responder WQE. Advances the wqe pointer to point at the
1057  * scatter-gather list, and set wqe_end to the end of the WQE.
1058  */
1059 static int mlx5_ib_mr_responder_pfault_handler(
1060         struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
1061         struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
1062 {
1063         struct mlx5_ib_wq *wq = &qp->rq;
1064         int wqe_size = 1 << wq->wqe_shift;
1065
1066         if (qp->ibqp.srq) {
1067                 mlx5_ib_err(dev, "ODP fault on SRQ is not supported\n");
1068                 return -EFAULT;
1069         }
1070
1071         if (qp->wq_sig) {
1072                 mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
1073                 return -EFAULT;
1074         }
1075
1076         if (wqe_size > wqe_length) {
1077                 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1078                 return -EFAULT;
1079         }
1080
1081         switch (qp->ibqp.qp_type) {
1082         case IB_QPT_RC:
1083                 if (!(dev->odp_caps.per_transport_caps.rc_odp_caps &
1084                       IB_ODP_SUPPORT_RECV))
1085                         goto invalid_transport_or_opcode;
1086                 break;
1087         default:
1088 invalid_transport_or_opcode:
1089                 mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport. transport: 0x%x\n",
1090                             qp->ibqp.qp_type);
1091                 return -EFAULT;
1092         }
1093
1094         *wqe_end = *wqe + wqe_size;
1095
1096         return 0;
1097 }
1098
1099 static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev,
1100                                                        u32 wq_num, int pf_type)
1101 {
1102         enum mlx5_res_type res_type;
1103
1104         switch (pf_type) {
1105         case MLX5_WQE_PF_TYPE_RMP:
1106                 res_type = MLX5_RES_SRQ;
1107                 break;
1108         case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE:
1109         case MLX5_WQE_PF_TYPE_RESP:
1110         case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC:
1111                 res_type = MLX5_RES_QP;
1112                 break;
1113         default:
1114                 return NULL;
1115         }
1116
1117         return mlx5_core_res_hold(dev->mdev, wq_num, res_type);
1118 }
1119
1120 static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res)
1121 {
1122         struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res;
1123
1124         return to_mibqp(mqp);
1125 }
1126
1127 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
1128                                           struct mlx5_pagefault *pfault)
1129 {
1130         int ret;
1131         void *wqe, *wqe_end;
1132         u32 bytes_mapped, total_wqe_bytes;
1133         char *buffer = NULL;
1134         int resume_with_error = 1;
1135         u16 wqe_index = pfault->wqe.wqe_index;
1136         int requestor = pfault->type & MLX5_PFAULT_REQUESTOR;
1137         struct mlx5_core_rsc_common *res;
1138         struct mlx5_ib_qp *qp;
1139
1140         res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type);
1141         if (!res) {
1142                 mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num);
1143                 return;
1144         }
1145
1146         switch (res->res) {
1147         case MLX5_RES_QP:
1148                 qp = res_to_qp(res);
1149                 break;
1150         default:
1151                 mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n", pfault->type);
1152                 goto resolve_page_fault;
1153         }
1154
1155         buffer = (char *)__get_free_page(GFP_KERNEL);
1156         if (!buffer) {
1157                 mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
1158                 goto resolve_page_fault;
1159         }
1160
1161         ret = mlx5_ib_read_user_wqe(qp, requestor, wqe_index, buffer,
1162                                     PAGE_SIZE, &qp->trans_qp.base);
1163         if (ret < 0) {
1164                 mlx5_ib_err(dev, "Failed reading a WQE following page fault, error=%d, wqe_index=%x, qpn=%x\n",
1165                             ret, wqe_index, pfault->token);
1166                 goto resolve_page_fault;
1167         }
1168
1169         wqe = buffer;
1170         if (requestor)
1171                 ret = mlx5_ib_mr_initiator_pfault_handler(dev, pfault, qp, &wqe,
1172                                                           &wqe_end, ret);
1173         else
1174                 ret = mlx5_ib_mr_responder_pfault_handler(dev, pfault, qp, &wqe,
1175                                                           &wqe_end, ret);
1176         if (ret < 0)
1177                 goto resolve_page_fault;
1178
1179         if (wqe >= wqe_end) {
1180                 mlx5_ib_err(dev, "ODP fault on invalid WQE.\n");
1181                 goto resolve_page_fault;
1182         }
1183
1184         ret = pagefault_data_segments(dev, pfault, qp, wqe, wqe_end,
1185                                       &bytes_mapped, &total_wqe_bytes,
1186                                       !requestor);
1187         if (ret == -EAGAIN) {
1188                 resume_with_error = 0;
1189                 goto resolve_page_fault;
1190         } else if (ret < 0 || total_wqe_bytes > bytes_mapped) {
1191                 goto resolve_page_fault;
1192         }
1193
1194         resume_with_error = 0;
1195 resolve_page_fault:
1196         mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
1197         mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
1198                     pfault->wqe.wq_num, resume_with_error,
1199                     pfault->type);
1200         mlx5_core_res_put(res);
1201         free_page((unsigned long)buffer);
1202 }
1203
1204 static int pages_in_range(u64 address, u32 length)
1205 {
1206         return (ALIGN(address + length, PAGE_SIZE) -
1207                 (address & PAGE_MASK)) >> PAGE_SHIFT;
1208 }
1209
1210 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
1211                                            struct mlx5_pagefault *pfault)
1212 {
1213         u64 address;
1214         u32 length;
1215         u32 prefetch_len = pfault->bytes_committed;
1216         int prefetch_activated = 0;
1217         u32 rkey = pfault->rdma.r_key;
1218         int ret;
1219
1220         /* The RDMA responder handler handles the page fault in two parts.
1221          * First it brings the necessary pages for the current packet
1222          * (and uses the pfault context), and then (after resuming the QP)
1223          * prefetches more pages. The second operation cannot use the pfault
1224          * context and therefore uses the dummy_pfault context allocated on
1225          * the stack */
1226         pfault->rdma.rdma_va += pfault->bytes_committed;
1227         pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
1228                                          pfault->rdma.rdma_op_len);
1229         pfault->bytes_committed = 0;
1230
1231         address = pfault->rdma.rdma_va;
1232         length  = pfault->rdma.rdma_op_len;
1233
1234         /* For some operations, the hardware cannot tell the exact message
1235          * length, and in those cases it reports zero. Use prefetch
1236          * logic. */
1237         if (length == 0) {
1238                 prefetch_activated = 1;
1239                 length = pfault->rdma.packet_size;
1240                 prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
1241         }
1242
1243         ret = pagefault_single_data_segment(dev, rkey, address, length,
1244                                             &pfault->bytes_committed, NULL,
1245                                             0);
1246         if (ret == -EAGAIN) {
1247                 /* We're racing with an invalidation, don't prefetch */
1248                 prefetch_activated = 0;
1249         } else if (ret < 0 || pages_in_range(address, length) > ret) {
1250                 mlx5_ib_page_fault_resume(dev, pfault, 1);
1251                 if (ret != -ENOENT)
1252                         mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n",
1253                                     ret, pfault->token, pfault->type);
1254                 return;
1255         }
1256
1257         mlx5_ib_page_fault_resume(dev, pfault, 0);
1258         mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n",
1259                     pfault->token, pfault->type,
1260                     prefetch_activated);
1261
1262         /* At this point, there might be a new pagefault already arriving in
1263          * the eq, switch to the dummy pagefault for the rest of the
1264          * processing. We're still OK with the objects being alive as the
1265          * work-queue is being fenced. */
1266
1267         if (prefetch_activated) {
1268                 u32 bytes_committed = 0;
1269
1270                 ret = pagefault_single_data_segment(dev, rkey, address,
1271                                                     prefetch_len,
1272                                                     &bytes_committed, NULL,
1273                                                     0);
1274                 if (ret < 0 && ret != -EAGAIN) {
1275                         mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n",
1276                                     ret, pfault->token, address, prefetch_len);
1277                 }
1278         }
1279 }
1280
1281 static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault)
1282 {
1283         u8 event_subtype = pfault->event_subtype;
1284
1285         switch (event_subtype) {
1286         case MLX5_PFAULT_SUBTYPE_WQE:
1287                 mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
1288                 break;
1289         case MLX5_PFAULT_SUBTYPE_RDMA:
1290                 mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
1291                 break;
1292         default:
1293                 mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
1294                             event_subtype);
1295                 mlx5_ib_page_fault_resume(dev, pfault, 1);
1296         }
1297 }
1298
1299 static void mlx5_ib_eqe_pf_action(struct work_struct *work)
1300 {
1301         struct mlx5_pagefault *pfault = container_of(work,
1302                                                      struct mlx5_pagefault,
1303                                                      work);
1304         struct mlx5_ib_pf_eq *eq = pfault->eq;
1305
1306         mlx5_ib_pfault(eq->dev, pfault);
1307         mempool_free(pfault, eq->pool);
1308 }
1309
1310 static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq)
1311 {
1312         struct mlx5_eqe_page_fault *pf_eqe;
1313         struct mlx5_pagefault *pfault;
1314         struct mlx5_eqe *eqe;
1315         int cc = 0;
1316
1317         while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) {
1318                 pfault = mempool_alloc(eq->pool, GFP_ATOMIC);
1319                 if (!pfault) {
1320                         schedule_work(&eq->work);
1321                         break;
1322                 }
1323
1324                 pf_eqe = &eqe->data.page_fault;
1325                 pfault->event_subtype = eqe->sub_type;
1326                 pfault->bytes_committed = be32_to_cpu(pf_eqe->bytes_committed);
1327
1328                 mlx5_ib_dbg(eq->dev,
1329                             "PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x\n",
1330                             eqe->sub_type, pfault->bytes_committed);
1331
1332                 switch (eqe->sub_type) {
1333                 case MLX5_PFAULT_SUBTYPE_RDMA:
1334                         /* RDMA based event */
1335                         pfault->type =
1336                                 be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24;
1337                         pfault->token =
1338                                 be32_to_cpu(pf_eqe->rdma.pftype_token) &
1339                                 MLX5_24BIT_MASK;
1340                         pfault->rdma.r_key =
1341                                 be32_to_cpu(pf_eqe->rdma.r_key);
1342                         pfault->rdma.packet_size =
1343                                 be16_to_cpu(pf_eqe->rdma.packet_length);
1344                         pfault->rdma.rdma_op_len =
1345                                 be32_to_cpu(pf_eqe->rdma.rdma_op_len);
1346                         pfault->rdma.rdma_va =
1347                                 be64_to_cpu(pf_eqe->rdma.rdma_va);
1348                         mlx5_ib_dbg(eq->dev,
1349                                     "PAGE_FAULT: type:0x%x, token: 0x%06x, r_key: 0x%08x\n",
1350                                     pfault->type, pfault->token,
1351                                     pfault->rdma.r_key);
1352                         mlx5_ib_dbg(eq->dev,
1353                                     "PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n",
1354                                     pfault->rdma.rdma_op_len,
1355                                     pfault->rdma.rdma_va);
1356                         break;
1357
1358                 case MLX5_PFAULT_SUBTYPE_WQE:
1359                         /* WQE based event */
1360                         pfault->type =
1361                                 (be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7;
1362                         pfault->token =
1363                                 be32_to_cpu(pf_eqe->wqe.token);
1364                         pfault->wqe.wq_num =
1365                                 be32_to_cpu(pf_eqe->wqe.pftype_wq) &
1366                                 MLX5_24BIT_MASK;
1367                         pfault->wqe.wqe_index =
1368                                 be16_to_cpu(pf_eqe->wqe.wqe_index);
1369                         pfault->wqe.packet_size =
1370                                 be16_to_cpu(pf_eqe->wqe.packet_length);
1371                         mlx5_ib_dbg(eq->dev,
1372                                     "PAGE_FAULT: type:0x%x, token: 0x%06x, wq_num: 0x%06x, wqe_index: 0x%04x\n",
1373                                     pfault->type, pfault->token,
1374                                     pfault->wqe.wq_num,
1375                                     pfault->wqe.wqe_index);
1376                         break;
1377
1378                 default:
1379                         mlx5_ib_warn(eq->dev,
1380                                      "Unsupported page fault event sub-type: 0x%02hhx\n",
1381                                      eqe->sub_type);
1382                         /* Unsupported page faults should still be
1383                          * resolved by the page fault handler
1384                          */
1385                 }
1386
1387                 pfault->eq = eq;
1388                 INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action);
1389                 queue_work(eq->wq, &pfault->work);
1390
1391                 cc = mlx5_eq_update_cc(eq->core, ++cc);
1392         }
1393
1394         mlx5_eq_update_ci(eq->core, cc, 1);
1395 }
1396
1397 static irqreturn_t mlx5_ib_eq_pf_int(int irq, void *eq_ptr)
1398 {
1399         struct mlx5_ib_pf_eq *eq = eq_ptr;
1400         unsigned long flags;
1401
1402         if (spin_trylock_irqsave(&eq->lock, flags)) {
1403                 mlx5_ib_eq_pf_process(eq);
1404                 spin_unlock_irqrestore(&eq->lock, flags);
1405         } else {
1406                 schedule_work(&eq->work);
1407         }
1408
1409         return IRQ_HANDLED;
1410 }
1411
1412 /* mempool_refill() was proposed but unfortunately wasn't accepted
1413  * http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html
1414  * Cheap workaround.
1415  */
1416 static void mempool_refill(mempool_t *pool)
1417 {
1418         while (pool->curr_nr < pool->min_nr)
1419                 mempool_free(mempool_alloc(pool, GFP_KERNEL), pool);
1420 }
1421
1422 static void mlx5_ib_eq_pf_action(struct work_struct *work)
1423 {
1424         struct mlx5_ib_pf_eq *eq =
1425                 container_of(work, struct mlx5_ib_pf_eq, work);
1426
1427         mempool_refill(eq->pool);
1428
1429         spin_lock_irq(&eq->lock);
1430         mlx5_ib_eq_pf_process(eq);
1431         spin_unlock_irq(&eq->lock);
1432 }
1433
1434 enum {
1435         MLX5_IB_NUM_PF_EQE      = 0x1000,
1436         MLX5_IB_NUM_PF_DRAIN    = 64,
1437 };
1438
1439 static int
1440 mlx5_ib_create_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1441 {
1442         struct mlx5_eq_param param = {};
1443         int err;
1444
1445         INIT_WORK(&eq->work, mlx5_ib_eq_pf_action);
1446         spin_lock_init(&eq->lock);
1447         eq->dev = dev;
1448
1449         eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN,
1450                                                sizeof(struct mlx5_pagefault));
1451         if (!eq->pool)
1452                 return -ENOMEM;
1453
1454         eq->wq = alloc_workqueue("mlx5_ib_page_fault",
1455                                  WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM,
1456                                  MLX5_NUM_CMD_EQE);
1457         if (!eq->wq) {
1458                 err = -ENOMEM;
1459                 goto err_mempool;
1460         }
1461
1462         param = (struct mlx5_eq_param) {
1463                 .index = MLX5_EQ_PFAULT_IDX,
1464                 .mask = 1 << MLX5_EVENT_TYPE_PAGE_FAULT,
1465                 .nent = MLX5_IB_NUM_PF_EQE,
1466                 .context = eq,
1467                 .handler = mlx5_ib_eq_pf_int
1468         };
1469         eq->core = mlx5_eq_create_generic(dev->mdev, "mlx5_ib_page_fault_eq", &param);
1470         if (IS_ERR(eq->core)) {
1471                 err = PTR_ERR(eq->core);
1472                 goto err_wq;
1473         }
1474
1475         return 0;
1476 err_wq:
1477         destroy_workqueue(eq->wq);
1478 err_mempool:
1479         mempool_destroy(eq->pool);
1480         return err;
1481 }
1482
1483 static int
1484 mlx5_ib_destroy_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1485 {
1486         int err;
1487
1488         err = mlx5_eq_destroy_generic(dev->mdev, eq->core);
1489         cancel_work_sync(&eq->work);
1490         destroy_workqueue(eq->wq);
1491         mempool_destroy(eq->pool);
1492
1493         return err;
1494 }
1495
1496 void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent)
1497 {
1498         if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1499                 return;
1500
1501         switch (ent->order - 2) {
1502         case MLX5_IMR_MTT_CACHE_ENTRY:
1503                 ent->page = PAGE_SHIFT;
1504                 ent->xlt = MLX5_IMR_MTT_ENTRIES *
1505                            sizeof(struct mlx5_mtt) /
1506                            MLX5_IB_UMR_OCTOWORD;
1507                 ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
1508                 ent->limit = 0;
1509                 break;
1510
1511         case MLX5_IMR_KSM_CACHE_ENTRY:
1512                 ent->page = MLX5_KSM_PAGE_SHIFT;
1513                 ent->xlt = mlx5_imr_ksm_entries *
1514                            sizeof(struct mlx5_klm) /
1515                            MLX5_IB_UMR_OCTOWORD;
1516                 ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM;
1517                 ent->limit = 0;
1518                 break;
1519         }
1520 }
1521
1522 static const struct ib_device_ops mlx5_ib_dev_odp_ops = {
1523         .advise_mr = mlx5_ib_advise_mr,
1524 };
1525
1526 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
1527 {
1528         int ret = 0;
1529
1530         if (dev->odp_caps.general_caps & IB_ODP_SUPPORT)
1531                 ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops);
1532
1533         if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) {
1534                 ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey);
1535                 if (ret) {
1536                         mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret);
1537                         return ret;
1538                 }
1539         }
1540
1541         if (!MLX5_CAP_GEN(dev->mdev, pg))
1542                 return ret;
1543
1544         ret = mlx5_ib_create_pf_eq(dev, &dev->odp_pf_eq);
1545
1546         return ret;
1547 }
1548
1549 void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev)
1550 {
1551         if (!MLX5_CAP_GEN(dev->mdev, pg))
1552                 return;
1553
1554         mlx5_ib_destroy_pf_eq(dev, &dev->odp_pf_eq);
1555 }
1556
1557 int mlx5_ib_odp_init(void)
1558 {
1559         mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
1560                                        MLX5_IMR_MTT_BITS);
1561
1562         return 0;
1563 }
1564
1565 struct prefetch_mr_work {
1566         struct work_struct work;
1567         struct mlx5_ib_dev *dev;
1568         u32 pf_flags;
1569         u32 num_sge;
1570         struct ib_sge sg_list[0];
1571 };
1572
1573 static int mlx5_ib_prefetch_sg_list(struct mlx5_ib_dev *dev, u32 pf_flags,
1574                                     struct ib_sge *sg_list, u32 num_sge)
1575 {
1576         int i;
1577
1578         for (i = 0; i < num_sge; ++i) {
1579                 struct ib_sge *sg = &sg_list[i];
1580                 int bytes_committed = 0;
1581                 int ret;
1582
1583                 ret = pagefault_single_data_segment(dev, sg->lkey, sg->addr,
1584                                                     sg->length,
1585                                                     &bytes_committed, NULL,
1586                                                     pf_flags);
1587                 if (ret < 0)
1588                         return ret;
1589         }
1590         return 0;
1591 }
1592
1593 static void mlx5_ib_prefetch_mr_work(struct work_struct *work)
1594 {
1595         struct prefetch_mr_work *w =
1596                 container_of(work, struct prefetch_mr_work, work);
1597
1598         if (w->dev->ib_dev.reg_state == IB_DEV_REGISTERED)
1599                 mlx5_ib_prefetch_sg_list(w->dev, w->pf_flags, w->sg_list,
1600                                          w->num_sge);
1601
1602         kfree(w);
1603 }
1604
1605 int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd,
1606                                enum ib_uverbs_advise_mr_advice advice,
1607                                u32 flags, struct ib_sge *sg_list, u32 num_sge)
1608 {
1609         struct mlx5_ib_dev *dev = to_mdev(pd->device);
1610         u32 pf_flags = MLX5_PF_FLAGS_PREFETCH;
1611         struct prefetch_mr_work *work;
1612
1613         if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH)
1614                 pf_flags |= MLX5_PF_FLAGS_DOWNGRADE;
1615
1616         if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH)
1617                 return mlx5_ib_prefetch_sg_list(dev, pf_flags, sg_list,
1618                                                 num_sge);
1619
1620         if (dev->ib_dev.reg_state != IB_DEV_REGISTERED)
1621                 return -ENODEV;
1622
1623         work = kvzalloc(struct_size(work, sg_list, num_sge), GFP_KERNEL);
1624         if (!work)
1625                 return -ENOMEM;
1626
1627         memcpy(work->sg_list, sg_list, num_sge * sizeof(struct ib_sge));
1628
1629         work->dev = dev;
1630         work->pf_flags = pf_flags;
1631         work->num_sge = num_sge;
1632
1633         INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work);
1634         schedule_work(&work->work);
1635         return 0;
1636 }