Merge tag 'renesas-dt-for-v4.18' of https://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / infiniband / hw / mlx4 / mr.c
1 /*
2  * Copyright (c) 2007 Cisco Systems, Inc. All rights reserved.
3  * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33
34 #include <linux/slab.h>
35 #include <rdma/ib_user_verbs.h>
36
37 #include "mlx4_ib.h"
38
39 static u32 convert_access(int acc)
40 {
41         return (acc & IB_ACCESS_REMOTE_ATOMIC ? MLX4_PERM_ATOMIC       : 0) |
42                (acc & IB_ACCESS_REMOTE_WRITE  ? MLX4_PERM_REMOTE_WRITE : 0) |
43                (acc & IB_ACCESS_REMOTE_READ   ? MLX4_PERM_REMOTE_READ  : 0) |
44                (acc & IB_ACCESS_LOCAL_WRITE   ? MLX4_PERM_LOCAL_WRITE  : 0) |
45                (acc & IB_ACCESS_MW_BIND       ? MLX4_PERM_BIND_MW      : 0) |
46                MLX4_PERM_LOCAL_READ;
47 }
48
49 static enum mlx4_mw_type to_mlx4_type(enum ib_mw_type type)
50 {
51         switch (type) {
52         case IB_MW_TYPE_1:      return MLX4_MW_TYPE_1;
53         case IB_MW_TYPE_2:      return MLX4_MW_TYPE_2;
54         default:                return -1;
55         }
56 }
57
58 struct ib_mr *mlx4_ib_get_dma_mr(struct ib_pd *pd, int acc)
59 {
60         struct mlx4_ib_mr *mr;
61         int err;
62
63         mr = kzalloc(sizeof(*mr), GFP_KERNEL);
64         if (!mr)
65                 return ERR_PTR(-ENOMEM);
66
67         err = mlx4_mr_alloc(to_mdev(pd->device)->dev, to_mpd(pd)->pdn, 0,
68                             ~0ull, convert_access(acc), 0, 0, &mr->mmr);
69         if (err)
70                 goto err_free;
71
72         err = mlx4_mr_enable(to_mdev(pd->device)->dev, &mr->mmr);
73         if (err)
74                 goto err_mr;
75
76         mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key;
77         mr->umem = NULL;
78
79         return &mr->ibmr;
80
81 err_mr:
82         (void) mlx4_mr_free(to_mdev(pd->device)->dev, &mr->mmr);
83
84 err_free:
85         kfree(mr);
86
87         return ERR_PTR(err);
88 }
89
90 enum {
91         MLX4_MAX_MTT_SHIFT = 31
92 };
93
94 static int mlx4_ib_umem_write_mtt_block(struct mlx4_ib_dev *dev,
95                                         struct mlx4_mtt *mtt,
96                                         u64 mtt_size, u64 mtt_shift, u64 len,
97                                         u64 cur_start_addr, u64 *pages,
98                                         int *start_index, int *npages)
99 {
100         u64 cur_end_addr = cur_start_addr + len;
101         u64 cur_end_addr_aligned = 0;
102         u64 mtt_entries;
103         int err = 0;
104         int k;
105
106         len += (cur_start_addr & (mtt_size - 1ULL));
107         cur_end_addr_aligned = round_up(cur_end_addr, mtt_size);
108         len += (cur_end_addr_aligned - cur_end_addr);
109         if (len & (mtt_size - 1ULL)) {
110                 pr_warn("write_block: len %llx is not aligned to mtt_size %llx\n",
111                         len, mtt_size);
112                 return -EINVAL;
113         }
114
115         mtt_entries = (len >> mtt_shift);
116
117         /*
118          * Align the MTT start address to the mtt_size.
119          * Required to handle cases when the MR starts in the middle of an MTT
120          * record. Was not required in old code since the physical addresses
121          * provided by the dma subsystem were page aligned, which was also the
122          * MTT size.
123          */
124         cur_start_addr = round_down(cur_start_addr, mtt_size);
125         /* A new block is started ... */
126         for (k = 0; k < mtt_entries; ++k) {
127                 pages[*npages] = cur_start_addr + (mtt_size * k);
128                 (*npages)++;
129                 /*
130                  * Be friendly to mlx4_write_mtt() and pass it chunks of
131                  * appropriate size.
132                  */
133                 if (*npages == PAGE_SIZE / sizeof(u64)) {
134                         err = mlx4_write_mtt(dev->dev, mtt, *start_index,
135                                              *npages, pages);
136                         if (err)
137                                 return err;
138
139                         (*start_index) += *npages;
140                         *npages = 0;
141                 }
142         }
143
144         return 0;
145 }
146
147 static inline u64 alignment_of(u64 ptr)
148 {
149         return ilog2(ptr & (~(ptr - 1)));
150 }
151
152 static int mlx4_ib_umem_calc_block_mtt(u64 next_block_start,
153                                        u64 current_block_end,
154                                        u64 block_shift)
155 {
156         /* Check whether the alignment of the new block is aligned as well as
157          * the previous block.
158          * Block address must start with zeros till size of entity_size.
159          */
160         if ((next_block_start & ((1ULL << block_shift) - 1ULL)) != 0)
161                 /*
162                  * It is not as well aligned as the previous block-reduce the
163                  * mtt size accordingly. Here we take the last right bit which
164                  * is 1.
165                  */
166                 block_shift = alignment_of(next_block_start);
167
168         /*
169          * Check whether the alignment of the end of previous block - is it
170          * aligned as well as the start of the block
171          */
172         if (((current_block_end) & ((1ULL << block_shift) - 1ULL)) != 0)
173                 /*
174                  * It is not as well aligned as the start of the block -
175                  * reduce the mtt size accordingly.
176                  */
177                 block_shift = alignment_of(current_block_end);
178
179         return block_shift;
180 }
181
182 int mlx4_ib_umem_write_mtt(struct mlx4_ib_dev *dev, struct mlx4_mtt *mtt,
183                            struct ib_umem *umem)
184 {
185         u64 *pages;
186         u64 len = 0;
187         int err = 0;
188         u64 mtt_size;
189         u64 cur_start_addr = 0;
190         u64 mtt_shift;
191         int start_index = 0;
192         int npages = 0;
193         struct scatterlist *sg;
194         int i;
195
196         pages = (u64 *) __get_free_page(GFP_KERNEL);
197         if (!pages)
198                 return -ENOMEM;
199
200         mtt_shift = mtt->page_shift;
201         mtt_size = 1ULL << mtt_shift;
202
203         for_each_sg(umem->sg_head.sgl, sg, umem->nmap, i) {
204                 if (cur_start_addr + len == sg_dma_address(sg)) {
205                         /* still the same block */
206                         len += sg_dma_len(sg);
207                         continue;
208                 }
209                 /*
210                  * A new block is started ...
211                  * If len is malaligned, write an extra mtt entry to cover the
212                  * misaligned area (round up the division)
213                  */
214                 err = mlx4_ib_umem_write_mtt_block(dev, mtt, mtt_size,
215                                                    mtt_shift, len,
216                                                    cur_start_addr,
217                                                    pages, &start_index,
218                                                    &npages);
219                 if (err)
220                         goto out;
221
222                 cur_start_addr = sg_dma_address(sg);
223                 len = sg_dma_len(sg);
224         }
225
226         /* Handle the last block */
227         if (len > 0) {
228                 /*
229                  * If len is malaligned, write an extra mtt entry to cover
230                  * the misaligned area (round up the division)
231                  */
232                 err = mlx4_ib_umem_write_mtt_block(dev, mtt, mtt_size,
233                                                    mtt_shift, len,
234                                                    cur_start_addr, pages,
235                                                    &start_index, &npages);
236                 if (err)
237                         goto out;
238         }
239
240         if (npages)
241                 err = mlx4_write_mtt(dev->dev, mtt, start_index, npages, pages);
242
243 out:
244         free_page((unsigned long) pages);
245         return err;
246 }
247
248 /*
249  * Calculate optimal mtt size based on contiguous pages.
250  * Function will return also the number of pages that are not aligned to the
251  * calculated mtt_size to be added to total number of pages. For that we should
252  * check the first chunk length & last chunk length and if not aligned to
253  * mtt_size we should increment the non_aligned_pages number. All chunks in the
254  * middle already handled as part of mtt shift calculation for both their start
255  * & end addresses.
256  */
257 int mlx4_ib_umem_calc_optimal_mtt_size(struct ib_umem *umem, u64 start_va,
258                                        int *num_of_mtts)
259 {
260         u64 block_shift = MLX4_MAX_MTT_SHIFT;
261         u64 min_shift = umem->page_shift;
262         u64 last_block_aligned_end = 0;
263         u64 current_block_start = 0;
264         u64 first_block_start = 0;
265         u64 current_block_len = 0;
266         u64 last_block_end = 0;
267         struct scatterlist *sg;
268         u64 current_block_end;
269         u64 misalignment_bits;
270         u64 next_block_start;
271         u64 total_len = 0;
272         int i;
273
274         for_each_sg(umem->sg_head.sgl, sg, umem->nmap, i) {
275                 /*
276                  * Initialization - save the first chunk start as the
277                  * current_block_start - block means contiguous pages.
278                  */
279                 if (current_block_len == 0 && current_block_start == 0) {
280                         current_block_start = sg_dma_address(sg);
281                         first_block_start = current_block_start;
282                         /*
283                          * Find the bits that are different between the physical
284                          * address and the virtual address for the start of the
285                          * MR.
286                          * umem_get aligned the start_va to a page boundary.
287                          * Therefore, we need to align the start va to the same
288                          * boundary.
289                          * misalignment_bits is needed to handle the  case of a
290                          * single memory region. In this case, the rest of the
291                          * logic will not reduce the block size.  If we use a
292                          * block size which is bigger than the alignment of the
293                          * misalignment bits, we might use the virtual page
294                          * number instead of the physical page number, resulting
295                          * in access to the wrong data.
296                          */
297                         misalignment_bits =
298                         (start_va & (~(((u64)(BIT(umem->page_shift))) - 1ULL)))
299                         ^ current_block_start;
300                         block_shift = min(alignment_of(misalignment_bits),
301                                           block_shift);
302                 }
303
304                 /*
305                  * Go over the scatter entries and check if they continue the
306                  * previous scatter entry.
307                  */
308                 next_block_start = sg_dma_address(sg);
309                 current_block_end = current_block_start + current_block_len;
310                 /* If we have a split (non-contig.) between two blocks */
311                 if (current_block_end != next_block_start) {
312                         block_shift = mlx4_ib_umem_calc_block_mtt
313                                         (next_block_start,
314                                          current_block_end,
315                                          block_shift);
316
317                         /*
318                          * If we reached the minimum shift for 4k page we stop
319                          * the loop.
320                          */
321                         if (block_shift <= min_shift)
322                                 goto end;
323
324                         /*
325                          * If not saved yet we are in first block - we save the
326                          * length of first block to calculate the
327                          * non_aligned_pages number at the end.
328                          */
329                         total_len += current_block_len;
330
331                         /* Start a new block */
332                         current_block_start = next_block_start;
333                         current_block_len = sg_dma_len(sg);
334                         continue;
335                 }
336                 /* The scatter entry is another part of the current block,
337                  * increase the block size.
338                  * An entry in the scatter can be larger than 4k (page) as of
339                  * dma mapping which merge some blocks together.
340                  */
341                 current_block_len += sg_dma_len(sg);
342         }
343
344         /* Account for the last block in the total len */
345         total_len += current_block_len;
346         /* Add to the first block the misalignment that it suffers from. */
347         total_len += (first_block_start & ((1ULL << block_shift) - 1ULL));
348         last_block_end = current_block_start + current_block_len;
349         last_block_aligned_end = round_up(last_block_end, 1ULL << block_shift);
350         total_len += (last_block_aligned_end - last_block_end);
351
352         if (total_len & ((1ULL << block_shift) - 1ULL))
353                 pr_warn("misaligned total length detected (%llu, %llu)!",
354                         total_len, block_shift);
355
356         *num_of_mtts = total_len >> block_shift;
357 end:
358         if (block_shift < min_shift) {
359                 /*
360                  * If shift is less than the min we set a warning and return the
361                  * min shift.
362                  */
363                 pr_warn("umem_calc_optimal_mtt_size - unexpected shift %lld\n", block_shift);
364
365                 block_shift = min_shift;
366         }
367         return block_shift;
368 }
369
370 struct ib_mr *mlx4_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
371                                   u64 virt_addr, int access_flags,
372                                   struct ib_udata *udata)
373 {
374         struct mlx4_ib_dev *dev = to_mdev(pd->device);
375         struct mlx4_ib_mr *mr;
376         int shift;
377         int err;
378         int n;
379
380         mr = kzalloc(sizeof(*mr), GFP_KERNEL);
381         if (!mr)
382                 return ERR_PTR(-ENOMEM);
383
384         /* Force registering the memory as writable. */
385         /* Used for memory re-registeration. HCA protects the access */
386         mr->umem = ib_umem_get(pd->uobject->context, start, length,
387                                access_flags | IB_ACCESS_LOCAL_WRITE, 0);
388         if (IS_ERR(mr->umem)) {
389                 err = PTR_ERR(mr->umem);
390                 goto err_free;
391         }
392
393         n = ib_umem_page_count(mr->umem);
394         shift = mlx4_ib_umem_calc_optimal_mtt_size(mr->umem, start, &n);
395
396         err = mlx4_mr_alloc(dev->dev, to_mpd(pd)->pdn, virt_addr, length,
397                             convert_access(access_flags), n, shift, &mr->mmr);
398         if (err)
399                 goto err_umem;
400
401         err = mlx4_ib_umem_write_mtt(dev, &mr->mmr.mtt, mr->umem);
402         if (err)
403                 goto err_mr;
404
405         err = mlx4_mr_enable(dev->dev, &mr->mmr);
406         if (err)
407                 goto err_mr;
408
409         mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key;
410         mr->ibmr.length = length;
411         mr->ibmr.iova = virt_addr;
412         mr->ibmr.page_size = 1U << shift;
413
414         return &mr->ibmr;
415
416 err_mr:
417         (void) mlx4_mr_free(to_mdev(pd->device)->dev, &mr->mmr);
418
419 err_umem:
420         ib_umem_release(mr->umem);
421
422 err_free:
423         kfree(mr);
424
425         return ERR_PTR(err);
426 }
427
428 int mlx4_ib_rereg_user_mr(struct ib_mr *mr, int flags,
429                           u64 start, u64 length, u64 virt_addr,
430                           int mr_access_flags, struct ib_pd *pd,
431                           struct ib_udata *udata)
432 {
433         struct mlx4_ib_dev *dev = to_mdev(mr->device);
434         struct mlx4_ib_mr *mmr = to_mmr(mr);
435         struct mlx4_mpt_entry *mpt_entry;
436         struct mlx4_mpt_entry **pmpt_entry = &mpt_entry;
437         int err;
438
439         /* Since we synchronize this call and mlx4_ib_dereg_mr via uverbs,
440          * we assume that the calls can't run concurrently. Otherwise, a
441          * race exists.
442          */
443         err =  mlx4_mr_hw_get_mpt(dev->dev, &mmr->mmr, &pmpt_entry);
444
445         if (err)
446                 return err;
447
448         if (flags & IB_MR_REREG_PD) {
449                 err = mlx4_mr_hw_change_pd(dev->dev, *pmpt_entry,
450                                            to_mpd(pd)->pdn);
451
452                 if (err)
453                         goto release_mpt_entry;
454         }
455
456         if (flags & IB_MR_REREG_ACCESS) {
457                 err = mlx4_mr_hw_change_access(dev->dev, *pmpt_entry,
458                                                convert_access(mr_access_flags));
459
460                 if (err)
461                         goto release_mpt_entry;
462         }
463
464         if (flags & IB_MR_REREG_TRANS) {
465                 int shift;
466                 int n;
467
468                 mlx4_mr_rereg_mem_cleanup(dev->dev, &mmr->mmr);
469                 ib_umem_release(mmr->umem);
470                 mmr->umem = ib_umem_get(mr->uobject->context, start, length,
471                                         mr_access_flags |
472                                         IB_ACCESS_LOCAL_WRITE,
473                                         0);
474                 if (IS_ERR(mmr->umem)) {
475                         err = PTR_ERR(mmr->umem);
476                         /* Prevent mlx4_ib_dereg_mr from free'ing invalid pointer */
477                         mmr->umem = NULL;
478                         goto release_mpt_entry;
479                 }
480                 n = ib_umem_page_count(mmr->umem);
481                 shift = mmr->umem->page_shift;
482
483                 err = mlx4_mr_rereg_mem_write(dev->dev, &mmr->mmr,
484                                               virt_addr, length, n, shift,
485                                               *pmpt_entry);
486                 if (err) {
487                         ib_umem_release(mmr->umem);
488                         goto release_mpt_entry;
489                 }
490                 mmr->mmr.iova       = virt_addr;
491                 mmr->mmr.size       = length;
492
493                 err = mlx4_ib_umem_write_mtt(dev, &mmr->mmr.mtt, mmr->umem);
494                 if (err) {
495                         mlx4_mr_rereg_mem_cleanup(dev->dev, &mmr->mmr);
496                         ib_umem_release(mmr->umem);
497                         goto release_mpt_entry;
498                 }
499         }
500
501         /* If we couldn't transfer the MR to the HCA, just remember to
502          * return a failure. But dereg_mr will free the resources.
503          */
504         err = mlx4_mr_hw_write_mpt(dev->dev, &mmr->mmr, pmpt_entry);
505         if (!err && flags & IB_MR_REREG_ACCESS)
506                 mmr->mmr.access = mr_access_flags;
507
508 release_mpt_entry:
509         mlx4_mr_hw_put_mpt(dev->dev, pmpt_entry);
510
511         return err;
512 }
513
514 static int
515 mlx4_alloc_priv_pages(struct ib_device *device,
516                       struct mlx4_ib_mr *mr,
517                       int max_pages)
518 {
519         int ret;
520
521         /* Ensure that size is aligned to DMA cacheline
522          * requirements.
523          * max_pages is limited to MLX4_MAX_FAST_REG_PAGES
524          * so page_map_size will never cross PAGE_SIZE.
525          */
526         mr->page_map_size = roundup(max_pages * sizeof(u64),
527                                     MLX4_MR_PAGES_ALIGN);
528
529         /* Prevent cross page boundary allocation. */
530         mr->pages = (__be64 *)get_zeroed_page(GFP_KERNEL);
531         if (!mr->pages)
532                 return -ENOMEM;
533
534         mr->page_map = dma_map_single(device->dev.parent, mr->pages,
535                                       mr->page_map_size, DMA_TO_DEVICE);
536
537         if (dma_mapping_error(device->dev.parent, mr->page_map)) {
538                 ret = -ENOMEM;
539                 goto err;
540         }
541
542         return 0;
543
544 err:
545         free_page((unsigned long)mr->pages);
546         return ret;
547 }
548
549 static void
550 mlx4_free_priv_pages(struct mlx4_ib_mr *mr)
551 {
552         if (mr->pages) {
553                 struct ib_device *device = mr->ibmr.device;
554
555                 dma_unmap_single(device->dev.parent, mr->page_map,
556                                  mr->page_map_size, DMA_TO_DEVICE);
557                 free_page((unsigned long)mr->pages);
558                 mr->pages = NULL;
559         }
560 }
561
562 int mlx4_ib_dereg_mr(struct ib_mr *ibmr)
563 {
564         struct mlx4_ib_mr *mr = to_mmr(ibmr);
565         int ret;
566
567         mlx4_free_priv_pages(mr);
568
569         ret = mlx4_mr_free(to_mdev(ibmr->device)->dev, &mr->mmr);
570         if (ret)
571                 return ret;
572         if (mr->umem)
573                 ib_umem_release(mr->umem);
574         kfree(mr);
575
576         return 0;
577 }
578
579 struct ib_mw *mlx4_ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type,
580                                struct ib_udata *udata)
581 {
582         struct mlx4_ib_dev *dev = to_mdev(pd->device);
583         struct mlx4_ib_mw *mw;
584         int err;
585
586         mw = kmalloc(sizeof(*mw), GFP_KERNEL);
587         if (!mw)
588                 return ERR_PTR(-ENOMEM);
589
590         err = mlx4_mw_alloc(dev->dev, to_mpd(pd)->pdn,
591                             to_mlx4_type(type), &mw->mmw);
592         if (err)
593                 goto err_free;
594
595         err = mlx4_mw_enable(dev->dev, &mw->mmw);
596         if (err)
597                 goto err_mw;
598
599         mw->ibmw.rkey = mw->mmw.key;
600
601         return &mw->ibmw;
602
603 err_mw:
604         mlx4_mw_free(dev->dev, &mw->mmw);
605
606 err_free:
607         kfree(mw);
608
609         return ERR_PTR(err);
610 }
611
612 int mlx4_ib_dealloc_mw(struct ib_mw *ibmw)
613 {
614         struct mlx4_ib_mw *mw = to_mmw(ibmw);
615
616         mlx4_mw_free(to_mdev(ibmw->device)->dev, &mw->mmw);
617         kfree(mw);
618
619         return 0;
620 }
621
622 struct ib_mr *mlx4_ib_alloc_mr(struct ib_pd *pd,
623                                enum ib_mr_type mr_type,
624                                u32 max_num_sg)
625 {
626         struct mlx4_ib_dev *dev = to_mdev(pd->device);
627         struct mlx4_ib_mr *mr;
628         int err;
629
630         if (mr_type != IB_MR_TYPE_MEM_REG ||
631             max_num_sg > MLX4_MAX_FAST_REG_PAGES)
632                 return ERR_PTR(-EINVAL);
633
634         mr = kzalloc(sizeof(*mr), GFP_KERNEL);
635         if (!mr)
636                 return ERR_PTR(-ENOMEM);
637
638         err = mlx4_mr_alloc(dev->dev, to_mpd(pd)->pdn, 0, 0, 0,
639                             max_num_sg, 0, &mr->mmr);
640         if (err)
641                 goto err_free;
642
643         err = mlx4_alloc_priv_pages(pd->device, mr, max_num_sg);
644         if (err)
645                 goto err_free_mr;
646
647         mr->max_pages = max_num_sg;
648         err = mlx4_mr_enable(dev->dev, &mr->mmr);
649         if (err)
650                 goto err_free_pl;
651
652         mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key;
653         mr->umem = NULL;
654
655         return &mr->ibmr;
656
657 err_free_pl:
658         mr->ibmr.device = pd->device;
659         mlx4_free_priv_pages(mr);
660 err_free_mr:
661         (void) mlx4_mr_free(dev->dev, &mr->mmr);
662 err_free:
663         kfree(mr);
664         return ERR_PTR(err);
665 }
666
667 struct ib_fmr *mlx4_ib_fmr_alloc(struct ib_pd *pd, int acc,
668                                  struct ib_fmr_attr *fmr_attr)
669 {
670         struct mlx4_ib_dev *dev = to_mdev(pd->device);
671         struct mlx4_ib_fmr *fmr;
672         int err = -ENOMEM;
673
674         fmr = kmalloc(sizeof *fmr, GFP_KERNEL);
675         if (!fmr)
676                 return ERR_PTR(-ENOMEM);
677
678         err = mlx4_fmr_alloc(dev->dev, to_mpd(pd)->pdn, convert_access(acc),
679                              fmr_attr->max_pages, fmr_attr->max_maps,
680                              fmr_attr->page_shift, &fmr->mfmr);
681         if (err)
682                 goto err_free;
683
684         err = mlx4_fmr_enable(to_mdev(pd->device)->dev, &fmr->mfmr);
685         if (err)
686                 goto err_mr;
687
688         fmr->ibfmr.rkey = fmr->ibfmr.lkey = fmr->mfmr.mr.key;
689
690         return &fmr->ibfmr;
691
692 err_mr:
693         (void) mlx4_mr_free(to_mdev(pd->device)->dev, &fmr->mfmr.mr);
694
695 err_free:
696         kfree(fmr);
697
698         return ERR_PTR(err);
699 }
700
701 int mlx4_ib_map_phys_fmr(struct ib_fmr *ibfmr, u64 *page_list,
702                       int npages, u64 iova)
703 {
704         struct mlx4_ib_fmr *ifmr = to_mfmr(ibfmr);
705         struct mlx4_ib_dev *dev = to_mdev(ifmr->ibfmr.device);
706
707         return mlx4_map_phys_fmr(dev->dev, &ifmr->mfmr, page_list, npages, iova,
708                                  &ifmr->ibfmr.lkey, &ifmr->ibfmr.rkey);
709 }
710
711 int mlx4_ib_unmap_fmr(struct list_head *fmr_list)
712 {
713         struct ib_fmr *ibfmr;
714         int err;
715         struct mlx4_dev *mdev = NULL;
716
717         list_for_each_entry(ibfmr, fmr_list, list) {
718                 if (mdev && to_mdev(ibfmr->device)->dev != mdev)
719                         return -EINVAL;
720                 mdev = to_mdev(ibfmr->device)->dev;
721         }
722
723         if (!mdev)
724                 return 0;
725
726         list_for_each_entry(ibfmr, fmr_list, list) {
727                 struct mlx4_ib_fmr *ifmr = to_mfmr(ibfmr);
728
729                 mlx4_fmr_unmap(mdev, &ifmr->mfmr, &ifmr->ibfmr.lkey, &ifmr->ibfmr.rkey);
730         }
731
732         /*
733          * Make sure all MPT status updates are visible before issuing
734          * SYNC_TPT firmware command.
735          */
736         wmb();
737
738         err = mlx4_SYNC_TPT(mdev);
739         if (err)
740                 pr_warn("SYNC_TPT error %d when "
741                        "unmapping FMRs\n", err);
742
743         return 0;
744 }
745
746 int mlx4_ib_fmr_dealloc(struct ib_fmr *ibfmr)
747 {
748         struct mlx4_ib_fmr *ifmr = to_mfmr(ibfmr);
749         struct mlx4_ib_dev *dev = to_mdev(ibfmr->device);
750         int err;
751
752         err = mlx4_fmr_free(dev->dev, &ifmr->mfmr);
753
754         if (!err)
755                 kfree(ifmr);
756
757         return err;
758 }
759
760 static int mlx4_set_page(struct ib_mr *ibmr, u64 addr)
761 {
762         struct mlx4_ib_mr *mr = to_mmr(ibmr);
763
764         if (unlikely(mr->npages == mr->max_pages))
765                 return -ENOMEM;
766
767         mr->pages[mr->npages++] = cpu_to_be64(addr | MLX4_MTT_FLAG_PRESENT);
768
769         return 0;
770 }
771
772 int mlx4_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
773                       unsigned int *sg_offset)
774 {
775         struct mlx4_ib_mr *mr = to_mmr(ibmr);
776         int rc;
777
778         mr->npages = 0;
779
780         ib_dma_sync_single_for_cpu(ibmr->device, mr->page_map,
781                                    mr->page_map_size, DMA_TO_DEVICE);
782
783         rc = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, mlx4_set_page);
784
785         ib_dma_sync_single_for_device(ibmr->device, mr->page_map,
786                                       mr->page_map_size, DMA_TO_DEVICE);
787
788         return rc;
789 }