arm64: zynqmp: Make zynqmp_firmware driver optional
[linux-2.6-microblaze.git] / drivers / infiniband / hw / hfi1 / user_exp_rcv.c
1 /*
2  * Copyright(c) 2015-2018 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 #include <asm/page.h>
48 #include <linux/string.h>
49
50 #include "mmu_rb.h"
51 #include "user_exp_rcv.h"
52 #include "trace.h"
53
54 static void unlock_exp_tids(struct hfi1_ctxtdata *uctxt,
55                             struct exp_tid_set *set,
56                             struct hfi1_filedata *fd);
57 static u32 find_phys_blocks(struct tid_user_buf *tidbuf, unsigned int npages);
58 static int set_rcvarray_entry(struct hfi1_filedata *fd,
59                               struct tid_user_buf *tbuf,
60                               u32 rcventry, struct tid_group *grp,
61                               u16 pageidx, unsigned int npages);
62 static void cacheless_tid_rb_remove(struct hfi1_filedata *fdata,
63                                     struct tid_rb_node *tnode);
64 static bool tid_rb_invalidate(struct mmu_interval_notifier *mni,
65                               const struct mmu_notifier_range *range,
66                               unsigned long cur_seq);
67 static int program_rcvarray(struct hfi1_filedata *fd, struct tid_user_buf *,
68                             struct tid_group *grp,
69                             unsigned int start, u16 count,
70                             u32 *tidlist, unsigned int *tididx,
71                             unsigned int *pmapped);
72 static int unprogram_rcvarray(struct hfi1_filedata *fd, u32 tidinfo,
73                               struct tid_group **grp);
74 static void clear_tid_node(struct hfi1_filedata *fd, struct tid_rb_node *node);
75
76 static const struct mmu_interval_notifier_ops tid_mn_ops = {
77         .invalidate = tid_rb_invalidate,
78 };
79
80 /*
81  * Initialize context and file private data needed for Expected
82  * receive caching. This needs to be done after the context has
83  * been configured with the eager/expected RcvEntry counts.
84  */
85 int hfi1_user_exp_rcv_init(struct hfi1_filedata *fd,
86                            struct hfi1_ctxtdata *uctxt)
87 {
88         int ret = 0;
89
90         spin_lock_init(&fd->tid_lock);
91         spin_lock_init(&fd->invalid_lock);
92
93         fd->entry_to_rb = kcalloc(uctxt->expected_count,
94                                   sizeof(struct rb_node *),
95                                   GFP_KERNEL);
96         if (!fd->entry_to_rb)
97                 return -ENOMEM;
98
99         if (!HFI1_CAP_UGET_MASK(uctxt->flags, TID_UNMAP)) {
100                 fd->invalid_tid_idx = 0;
101                 fd->invalid_tids = kcalloc(uctxt->expected_count,
102                                            sizeof(*fd->invalid_tids),
103                                            GFP_KERNEL);
104                 if (!fd->invalid_tids) {
105                         kfree(fd->entry_to_rb);
106                         fd->entry_to_rb = NULL;
107                         return -ENOMEM;
108                 }
109                 fd->use_mn = true;
110         }
111
112         /*
113          * PSM does not have a good way to separate, count, and
114          * effectively enforce a limit on RcvArray entries used by
115          * subctxts (when context sharing is used) when TID caching
116          * is enabled. To help with that, we calculate a per-process
117          * RcvArray entry share and enforce that.
118          * If TID caching is not in use, PSM deals with usage on its
119          * own. In that case, we allow any subctxt to take all of the
120          * entries.
121          *
122          * Make sure that we set the tid counts only after successful
123          * init.
124          */
125         spin_lock(&fd->tid_lock);
126         if (uctxt->subctxt_cnt && fd->use_mn) {
127                 u16 remainder;
128
129                 fd->tid_limit = uctxt->expected_count / uctxt->subctxt_cnt;
130                 remainder = uctxt->expected_count % uctxt->subctxt_cnt;
131                 if (remainder && fd->subctxt < remainder)
132                         fd->tid_limit++;
133         } else {
134                 fd->tid_limit = uctxt->expected_count;
135         }
136         spin_unlock(&fd->tid_lock);
137
138         return ret;
139 }
140
141 void hfi1_user_exp_rcv_free(struct hfi1_filedata *fd)
142 {
143         struct hfi1_ctxtdata *uctxt = fd->uctxt;
144
145         if (!EXP_TID_SET_EMPTY(uctxt->tid_full_list))
146                 unlock_exp_tids(uctxt, &uctxt->tid_full_list, fd);
147         if (!EXP_TID_SET_EMPTY(uctxt->tid_used_list))
148                 unlock_exp_tids(uctxt, &uctxt->tid_used_list, fd);
149
150         kfree(fd->invalid_tids);
151         fd->invalid_tids = NULL;
152
153         kfree(fd->entry_to_rb);
154         fd->entry_to_rb = NULL;
155 }
156
157 /**
158  * Release pinned receive buffer pages.
159  *
160  * @mapped - true if the pages have been DMA mapped. false otherwise.
161  * @idx - Index of the first page to unpin.
162  * @npages - No of pages to unpin.
163  *
164  * If the pages have been DMA mapped (indicated by mapped parameter), their
165  * info will be passed via a struct tid_rb_node. If they haven't been mapped,
166  * their info will be passed via a struct tid_user_buf.
167  */
168 static void unpin_rcv_pages(struct hfi1_filedata *fd,
169                             struct tid_user_buf *tidbuf,
170                             struct tid_rb_node *node,
171                             unsigned int idx,
172                             unsigned int npages,
173                             bool mapped)
174 {
175         struct page **pages;
176         struct hfi1_devdata *dd = fd->uctxt->dd;
177
178         if (mapped) {
179                 pci_unmap_single(dd->pcidev, node->dma_addr,
180                                  node->npages * PAGE_SIZE, PCI_DMA_FROMDEVICE);
181                 pages = &node->pages[idx];
182         } else {
183                 pages = &tidbuf->pages[idx];
184         }
185         hfi1_release_user_pages(fd->mm, pages, npages, mapped);
186         fd->tid_n_pinned -= npages;
187 }
188
189 /**
190  * Pin receive buffer pages.
191  */
192 static int pin_rcv_pages(struct hfi1_filedata *fd, struct tid_user_buf *tidbuf)
193 {
194         int pinned;
195         unsigned int npages;
196         unsigned long vaddr = tidbuf->vaddr;
197         struct page **pages = NULL;
198         struct hfi1_devdata *dd = fd->uctxt->dd;
199
200         /* Get the number of pages the user buffer spans */
201         npages = num_user_pages(vaddr, tidbuf->length);
202         if (!npages)
203                 return -EINVAL;
204
205         if (npages > fd->uctxt->expected_count) {
206                 dd_dev_err(dd, "Expected buffer too big\n");
207                 return -EINVAL;
208         }
209
210         /* Verify that access is OK for the user buffer */
211         if (!access_ok((void __user *)vaddr,
212                        npages * PAGE_SIZE)) {
213                 dd_dev_err(dd, "Fail vaddr %p, %u pages, !access_ok\n",
214                            (void *)vaddr, npages);
215                 return -EFAULT;
216         }
217         /* Allocate the array of struct page pointers needed for pinning */
218         pages = kcalloc(npages, sizeof(*pages), GFP_KERNEL);
219         if (!pages)
220                 return -ENOMEM;
221
222         /*
223          * Pin all the pages of the user buffer. If we can't pin all the
224          * pages, accept the amount pinned so far and program only that.
225          * User space knows how to deal with partially programmed buffers.
226          */
227         if (!hfi1_can_pin_pages(dd, fd->mm, fd->tid_n_pinned, npages)) {
228                 kfree(pages);
229                 return -ENOMEM;
230         }
231
232         pinned = hfi1_acquire_user_pages(fd->mm, vaddr, npages, true, pages);
233         if (pinned <= 0) {
234                 kfree(pages);
235                 return pinned;
236         }
237         tidbuf->pages = pages;
238         tidbuf->npages = npages;
239         fd->tid_n_pinned += pinned;
240         return pinned;
241 }
242
243 /*
244  * RcvArray entry allocation for Expected Receives is done by the
245  * following algorithm:
246  *
247  * The context keeps 3 lists of groups of RcvArray entries:
248  *   1. List of empty groups - tid_group_list
249  *      This list is created during user context creation and
250  *      contains elements which describe sets (of 8) of empty
251  *      RcvArray entries.
252  *   2. List of partially used groups - tid_used_list
253  *      This list contains sets of RcvArray entries which are
254  *      not completely used up. Another mapping request could
255  *      use some of all of the remaining entries.
256  *   3. List of full groups - tid_full_list
257  *      This is the list where sets that are completely used
258  *      up go.
259  *
260  * An attempt to optimize the usage of RcvArray entries is
261  * made by finding all sets of physically contiguous pages in a
262  * user's buffer.
263  * These physically contiguous sets are further split into
264  * sizes supported by the receive engine of the HFI. The
265  * resulting sets of pages are stored in struct tid_pageset,
266  * which describes the sets as:
267  *    * .count - number of pages in this set
268  *    * .idx - starting index into struct page ** array
269  *                    of this set
270  *
271  * From this point on, the algorithm deals with the page sets
272  * described above. The number of pagesets is divided by the
273  * RcvArray group size to produce the number of full groups
274  * needed.
275  *
276  * Groups from the 3 lists are manipulated using the following
277  * rules:
278  *   1. For each set of 8 pagesets, a complete group from
279  *      tid_group_list is taken, programmed, and moved to
280  *      the tid_full_list list.
281  *   2. For all remaining pagesets:
282  *      2.1 If the tid_used_list is empty and the tid_group_list
283  *          is empty, stop processing pageset and return only
284  *          what has been programmed up to this point.
285  *      2.2 If the tid_used_list is empty and the tid_group_list
286  *          is not empty, move a group from tid_group_list to
287  *          tid_used_list.
288  *      2.3 For each group is tid_used_group, program as much as
289  *          can fit into the group. If the group becomes fully
290  *          used, move it to tid_full_list.
291  */
292 int hfi1_user_exp_rcv_setup(struct hfi1_filedata *fd,
293                             struct hfi1_tid_info *tinfo)
294 {
295         int ret = 0, need_group = 0, pinned;
296         struct hfi1_ctxtdata *uctxt = fd->uctxt;
297         struct hfi1_devdata *dd = uctxt->dd;
298         unsigned int ngroups, pageidx = 0, pageset_count,
299                 tididx = 0, mapped, mapped_pages = 0;
300         u32 *tidlist = NULL;
301         struct tid_user_buf *tidbuf;
302
303         if (!PAGE_ALIGNED(tinfo->vaddr))
304                 return -EINVAL;
305
306         tidbuf = kzalloc(sizeof(*tidbuf), GFP_KERNEL);
307         if (!tidbuf)
308                 return -ENOMEM;
309
310         tidbuf->vaddr = tinfo->vaddr;
311         tidbuf->length = tinfo->length;
312         tidbuf->psets = kcalloc(uctxt->expected_count, sizeof(*tidbuf->psets),
313                                 GFP_KERNEL);
314         if (!tidbuf->psets) {
315                 kfree(tidbuf);
316                 return -ENOMEM;
317         }
318
319         pinned = pin_rcv_pages(fd, tidbuf);
320         if (pinned <= 0) {
321                 kfree(tidbuf->psets);
322                 kfree(tidbuf);
323                 return pinned;
324         }
325
326         /* Find sets of physically contiguous pages */
327         tidbuf->n_psets = find_phys_blocks(tidbuf, pinned);
328
329         /*
330          * We don't need to access this under a lock since tid_used is per
331          * process and the same process cannot be in hfi1_user_exp_rcv_clear()
332          * and hfi1_user_exp_rcv_setup() at the same time.
333          */
334         spin_lock(&fd->tid_lock);
335         if (fd->tid_used + tidbuf->n_psets > fd->tid_limit)
336                 pageset_count = fd->tid_limit - fd->tid_used;
337         else
338                 pageset_count = tidbuf->n_psets;
339         spin_unlock(&fd->tid_lock);
340
341         if (!pageset_count)
342                 goto bail;
343
344         ngroups = pageset_count / dd->rcv_entries.group_size;
345         tidlist = kcalloc(pageset_count, sizeof(*tidlist), GFP_KERNEL);
346         if (!tidlist) {
347                 ret = -ENOMEM;
348                 goto nomem;
349         }
350
351         tididx = 0;
352
353         /*
354          * From this point on, we are going to be using shared (between master
355          * and subcontexts) context resources. We need to take the lock.
356          */
357         mutex_lock(&uctxt->exp_mutex);
358         /*
359          * The first step is to program the RcvArray entries which are complete
360          * groups.
361          */
362         while (ngroups && uctxt->tid_group_list.count) {
363                 struct tid_group *grp =
364                         tid_group_pop(&uctxt->tid_group_list);
365
366                 ret = program_rcvarray(fd, tidbuf, grp,
367                                        pageidx, dd->rcv_entries.group_size,
368                                        tidlist, &tididx, &mapped);
369                 /*
370                  * If there was a failure to program the RcvArray
371                  * entries for the entire group, reset the grp fields
372                  * and add the grp back to the free group list.
373                  */
374                 if (ret <= 0) {
375                         tid_group_add_tail(grp, &uctxt->tid_group_list);
376                         hfi1_cdbg(TID,
377                                   "Failed to program RcvArray group %d", ret);
378                         goto unlock;
379                 }
380
381                 tid_group_add_tail(grp, &uctxt->tid_full_list);
382                 ngroups--;
383                 pageidx += ret;
384                 mapped_pages += mapped;
385         }
386
387         while (pageidx < pageset_count) {
388                 struct tid_group *grp, *ptr;
389                 /*
390                  * If we don't have any partially used tid groups, check
391                  * if we have empty groups. If so, take one from there and
392                  * put in the partially used list.
393                  */
394                 if (!uctxt->tid_used_list.count || need_group) {
395                         if (!uctxt->tid_group_list.count)
396                                 goto unlock;
397
398                         grp = tid_group_pop(&uctxt->tid_group_list);
399                         tid_group_add_tail(grp, &uctxt->tid_used_list);
400                         need_group = 0;
401                 }
402                 /*
403                  * There is an optimization opportunity here - instead of
404                  * fitting as many page sets as we can, check for a group
405                  * later on in the list that could fit all of them.
406                  */
407                 list_for_each_entry_safe(grp, ptr, &uctxt->tid_used_list.list,
408                                          list) {
409                         unsigned use = min_t(unsigned, pageset_count - pageidx,
410                                              grp->size - grp->used);
411
412                         ret = program_rcvarray(fd, tidbuf, grp,
413                                                pageidx, use, tidlist,
414                                                &tididx, &mapped);
415                         if (ret < 0) {
416                                 hfi1_cdbg(TID,
417                                           "Failed to program RcvArray entries %d",
418                                           ret);
419                                 goto unlock;
420                         } else if (ret > 0) {
421                                 if (grp->used == grp->size)
422                                         tid_group_move(grp,
423                                                        &uctxt->tid_used_list,
424                                                        &uctxt->tid_full_list);
425                                 pageidx += ret;
426                                 mapped_pages += mapped;
427                                 need_group = 0;
428                                 /* Check if we are done so we break out early */
429                                 if (pageidx >= pageset_count)
430                                         break;
431                         } else if (WARN_ON(ret == 0)) {
432                                 /*
433                                  * If ret is 0, we did not program any entries
434                                  * into this group, which can only happen if
435                                  * we've screwed up the accounting somewhere.
436                                  * Warn and try to continue.
437                                  */
438                                 need_group = 1;
439                         }
440                 }
441         }
442 unlock:
443         mutex_unlock(&uctxt->exp_mutex);
444 nomem:
445         hfi1_cdbg(TID, "total mapped: tidpairs:%u pages:%u (%d)", tididx,
446                   mapped_pages, ret);
447         if (tididx) {
448                 spin_lock(&fd->tid_lock);
449                 fd->tid_used += tididx;
450                 spin_unlock(&fd->tid_lock);
451                 tinfo->tidcnt = tididx;
452                 tinfo->length = mapped_pages * PAGE_SIZE;
453
454                 if (copy_to_user(u64_to_user_ptr(tinfo->tidlist),
455                                  tidlist, sizeof(tidlist[0]) * tididx)) {
456                         /*
457                          * On failure to copy to the user level, we need to undo
458                          * everything done so far so we don't leak resources.
459                          */
460                         tinfo->tidlist = (unsigned long)&tidlist;
461                         hfi1_user_exp_rcv_clear(fd, tinfo);
462                         tinfo->tidlist = 0;
463                         ret = -EFAULT;
464                         goto bail;
465                 }
466         }
467
468         /*
469          * If not everything was mapped (due to insufficient RcvArray entries,
470          * for example), unpin all unmapped pages so we can pin them nex time.
471          */
472         if (mapped_pages != pinned)
473                 unpin_rcv_pages(fd, tidbuf, NULL, mapped_pages,
474                                 (pinned - mapped_pages), false);
475 bail:
476         kfree(tidbuf->psets);
477         kfree(tidlist);
478         kfree(tidbuf->pages);
479         kfree(tidbuf);
480         return ret > 0 ? 0 : ret;
481 }
482
483 int hfi1_user_exp_rcv_clear(struct hfi1_filedata *fd,
484                             struct hfi1_tid_info *tinfo)
485 {
486         int ret = 0;
487         struct hfi1_ctxtdata *uctxt = fd->uctxt;
488         u32 *tidinfo;
489         unsigned tididx;
490
491         if (unlikely(tinfo->tidcnt > fd->tid_used))
492                 return -EINVAL;
493
494         tidinfo = memdup_user(u64_to_user_ptr(tinfo->tidlist),
495                               sizeof(tidinfo[0]) * tinfo->tidcnt);
496         if (IS_ERR(tidinfo))
497                 return PTR_ERR(tidinfo);
498
499         mutex_lock(&uctxt->exp_mutex);
500         for (tididx = 0; tididx < tinfo->tidcnt; tididx++) {
501                 ret = unprogram_rcvarray(fd, tidinfo[tididx], NULL);
502                 if (ret) {
503                         hfi1_cdbg(TID, "Failed to unprogram rcv array %d",
504                                   ret);
505                         break;
506                 }
507         }
508         spin_lock(&fd->tid_lock);
509         fd->tid_used -= tididx;
510         spin_unlock(&fd->tid_lock);
511         tinfo->tidcnt = tididx;
512         mutex_unlock(&uctxt->exp_mutex);
513
514         kfree(tidinfo);
515         return ret;
516 }
517
518 int hfi1_user_exp_rcv_invalid(struct hfi1_filedata *fd,
519                               struct hfi1_tid_info *tinfo)
520 {
521         struct hfi1_ctxtdata *uctxt = fd->uctxt;
522         unsigned long *ev = uctxt->dd->events +
523                 (uctxt_offset(uctxt) + fd->subctxt);
524         u32 *array;
525         int ret = 0;
526
527         /*
528          * copy_to_user() can sleep, which will leave the invalid_lock
529          * locked and cause the MMU notifier to be blocked on the lock
530          * for a long time.
531          * Copy the data to a local buffer so we can release the lock.
532          */
533         array = kcalloc(uctxt->expected_count, sizeof(*array), GFP_KERNEL);
534         if (!array)
535                 return -EFAULT;
536
537         spin_lock(&fd->invalid_lock);
538         if (fd->invalid_tid_idx) {
539                 memcpy(array, fd->invalid_tids, sizeof(*array) *
540                        fd->invalid_tid_idx);
541                 memset(fd->invalid_tids, 0, sizeof(*fd->invalid_tids) *
542                        fd->invalid_tid_idx);
543                 tinfo->tidcnt = fd->invalid_tid_idx;
544                 fd->invalid_tid_idx = 0;
545                 /*
546                  * Reset the user flag while still holding the lock.
547                  * Otherwise, PSM can miss events.
548                  */
549                 clear_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev);
550         } else {
551                 tinfo->tidcnt = 0;
552         }
553         spin_unlock(&fd->invalid_lock);
554
555         if (tinfo->tidcnt) {
556                 if (copy_to_user((void __user *)tinfo->tidlist,
557                                  array, sizeof(*array) * tinfo->tidcnt))
558                         ret = -EFAULT;
559         }
560         kfree(array);
561
562         return ret;
563 }
564
565 static u32 find_phys_blocks(struct tid_user_buf *tidbuf, unsigned int npages)
566 {
567         unsigned pagecount, pageidx, setcount = 0, i;
568         unsigned long pfn, this_pfn;
569         struct page **pages = tidbuf->pages;
570         struct tid_pageset *list = tidbuf->psets;
571
572         if (!npages)
573                 return 0;
574
575         /*
576          * Look for sets of physically contiguous pages in the user buffer.
577          * This will allow us to optimize Expected RcvArray entry usage by
578          * using the bigger supported sizes.
579          */
580         pfn = page_to_pfn(pages[0]);
581         for (pageidx = 0, pagecount = 1, i = 1; i <= npages; i++) {
582                 this_pfn = i < npages ? page_to_pfn(pages[i]) : 0;
583
584                 /*
585                  * If the pfn's are not sequential, pages are not physically
586                  * contiguous.
587                  */
588                 if (this_pfn != ++pfn) {
589                         /*
590                          * At this point we have to loop over the set of
591                          * physically contiguous pages and break them down it
592                          * sizes supported by the HW.
593                          * There are two main constraints:
594                          *     1. The max buffer size is MAX_EXPECTED_BUFFER.
595                          *        If the total set size is bigger than that
596                          *        program only a MAX_EXPECTED_BUFFER chunk.
597                          *     2. The buffer size has to be a power of two. If
598                          *        it is not, round down to the closes power of
599                          *        2 and program that size.
600                          */
601                         while (pagecount) {
602                                 int maxpages = pagecount;
603                                 u32 bufsize = pagecount * PAGE_SIZE;
604
605                                 if (bufsize > MAX_EXPECTED_BUFFER)
606                                         maxpages =
607                                                 MAX_EXPECTED_BUFFER >>
608                                                 PAGE_SHIFT;
609                                 else if (!is_power_of_2(bufsize))
610                                         maxpages =
611                                                 rounddown_pow_of_two(bufsize) >>
612                                                 PAGE_SHIFT;
613
614                                 list[setcount].idx = pageidx;
615                                 list[setcount].count = maxpages;
616                                 pagecount -= maxpages;
617                                 pageidx += maxpages;
618                                 setcount++;
619                         }
620                         pageidx = i;
621                         pagecount = 1;
622                         pfn = this_pfn;
623                 } else {
624                         pagecount++;
625                 }
626         }
627         return setcount;
628 }
629
630 /**
631  * program_rcvarray() - program an RcvArray group with receive buffers
632  * @fd: filedata pointer
633  * @tbuf: pointer to struct tid_user_buf that has the user buffer starting
634  *        virtual address, buffer length, page pointers, pagesets (array of
635  *        struct tid_pageset holding information on physically contiguous
636  *        chunks from the user buffer), and other fields.
637  * @grp: RcvArray group
638  * @start: starting index into sets array
639  * @count: number of struct tid_pageset's to program
640  * @tidlist: the array of u32 elements when the information about the
641  *           programmed RcvArray entries is to be encoded.
642  * @tididx: starting offset into tidlist
643  * @pmapped: (output parameter) number of pages programmed into the RcvArray
644  *           entries.
645  *
646  * This function will program up to 'count' number of RcvArray entries from the
647  * group 'grp'. To make best use of write-combining writes, the function will
648  * perform writes to the unused RcvArray entries which will be ignored by the
649  * HW. Each RcvArray entry will be programmed with a physically contiguous
650  * buffer chunk from the user's virtual buffer.
651  *
652  * Return:
653  * -EINVAL if the requested count is larger than the size of the group,
654  * -ENOMEM or -EFAULT on error from set_rcvarray_entry(), or
655  * number of RcvArray entries programmed.
656  */
657 static int program_rcvarray(struct hfi1_filedata *fd, struct tid_user_buf *tbuf,
658                             struct tid_group *grp,
659                             unsigned int start, u16 count,
660                             u32 *tidlist, unsigned int *tididx,
661                             unsigned int *pmapped)
662 {
663         struct hfi1_ctxtdata *uctxt = fd->uctxt;
664         struct hfi1_devdata *dd = uctxt->dd;
665         u16 idx;
666         u32 tidinfo = 0, rcventry, useidx = 0;
667         int mapped = 0;
668
669         /* Count should never be larger than the group size */
670         if (count > grp->size)
671                 return -EINVAL;
672
673         /* Find the first unused entry in the group */
674         for (idx = 0; idx < grp->size; idx++) {
675                 if (!(grp->map & (1 << idx))) {
676                         useidx = idx;
677                         break;
678                 }
679                 rcv_array_wc_fill(dd, grp->base + idx);
680         }
681
682         idx = 0;
683         while (idx < count) {
684                 u16 npages, pageidx, setidx = start + idx;
685                 int ret = 0;
686
687                 /*
688                  * If this entry in the group is used, move to the next one.
689                  * If we go past the end of the group, exit the loop.
690                  */
691                 if (useidx >= grp->size) {
692                         break;
693                 } else if (grp->map & (1 << useidx)) {
694                         rcv_array_wc_fill(dd, grp->base + useidx);
695                         useidx++;
696                         continue;
697                 }
698
699                 rcventry = grp->base + useidx;
700                 npages = tbuf->psets[setidx].count;
701                 pageidx = tbuf->psets[setidx].idx;
702
703                 ret = set_rcvarray_entry(fd, tbuf,
704                                          rcventry, grp, pageidx,
705                                          npages);
706                 if (ret)
707                         return ret;
708                 mapped += npages;
709
710                 tidinfo = rcventry2tidinfo(rcventry - uctxt->expected_base) |
711                         EXP_TID_SET(LEN, npages);
712                 tidlist[(*tididx)++] = tidinfo;
713                 grp->used++;
714                 grp->map |= 1 << useidx++;
715                 idx++;
716         }
717
718         /* Fill the rest of the group with "blank" writes */
719         for (; useidx < grp->size; useidx++)
720                 rcv_array_wc_fill(dd, grp->base + useidx);
721         *pmapped = mapped;
722         return idx;
723 }
724
725 static int set_rcvarray_entry(struct hfi1_filedata *fd,
726                               struct tid_user_buf *tbuf,
727                               u32 rcventry, struct tid_group *grp,
728                               u16 pageidx, unsigned int npages)
729 {
730         int ret;
731         struct hfi1_ctxtdata *uctxt = fd->uctxt;
732         struct tid_rb_node *node;
733         struct hfi1_devdata *dd = uctxt->dd;
734         dma_addr_t phys;
735         struct page **pages = tbuf->pages + pageidx;
736
737         /*
738          * Allocate the node first so we can handle a potential
739          * failure before we've programmed anything.
740          */
741         node = kzalloc(sizeof(*node) + (sizeof(struct page *) * npages),
742                        GFP_KERNEL);
743         if (!node)
744                 return -ENOMEM;
745
746         phys = pci_map_single(dd->pcidev,
747                               __va(page_to_phys(pages[0])),
748                               npages * PAGE_SIZE, PCI_DMA_FROMDEVICE);
749         if (dma_mapping_error(&dd->pcidev->dev, phys)) {
750                 dd_dev_err(dd, "Failed to DMA map Exp Rcv pages 0x%llx\n",
751                            phys);
752                 kfree(node);
753                 return -EFAULT;
754         }
755
756         node->fdata = fd;
757         node->phys = page_to_phys(pages[0]);
758         node->npages = npages;
759         node->rcventry = rcventry;
760         node->dma_addr = phys;
761         node->grp = grp;
762         node->freed = false;
763         memcpy(node->pages, pages, sizeof(struct page *) * npages);
764
765         if (fd->use_mn) {
766                 ret = mmu_interval_notifier_insert(
767                         &node->notifier, fd->mm,
768                         tbuf->vaddr + (pageidx * PAGE_SIZE), npages * PAGE_SIZE,
769                         &tid_mn_ops);
770                 if (ret)
771                         goto out_unmap;
772                 /*
773                  * FIXME: This is in the wrong order, the notifier should be
774                  * established before the pages are pinned by pin_rcv_pages.
775                  */
776                 mmu_interval_read_begin(&node->notifier);
777         }
778         fd->entry_to_rb[node->rcventry - uctxt->expected_base] = node;
779
780         hfi1_put_tid(dd, rcventry, PT_EXPECTED, phys, ilog2(npages) + 1);
781         trace_hfi1_exp_tid_reg(uctxt->ctxt, fd->subctxt, rcventry, npages,
782                                node->notifier.interval_tree.start, node->phys,
783                                phys);
784         return 0;
785
786 out_unmap:
787         hfi1_cdbg(TID, "Failed to insert RB node %u 0x%lx, 0x%lx %d",
788                   node->rcventry, node->notifier.interval_tree.start,
789                   node->phys, ret);
790         pci_unmap_single(dd->pcidev, phys, npages * PAGE_SIZE,
791                          PCI_DMA_FROMDEVICE);
792         kfree(node);
793         return -EFAULT;
794 }
795
796 static int unprogram_rcvarray(struct hfi1_filedata *fd, u32 tidinfo,
797                               struct tid_group **grp)
798 {
799         struct hfi1_ctxtdata *uctxt = fd->uctxt;
800         struct hfi1_devdata *dd = uctxt->dd;
801         struct tid_rb_node *node;
802         u8 tidctrl = EXP_TID_GET(tidinfo, CTRL);
803         u32 tididx = EXP_TID_GET(tidinfo, IDX) << 1, rcventry;
804
805         if (tididx >= uctxt->expected_count) {
806                 dd_dev_err(dd, "Invalid RcvArray entry (%u) index for ctxt %u\n",
807                            tididx, uctxt->ctxt);
808                 return -EINVAL;
809         }
810
811         if (tidctrl == 0x3)
812                 return -EINVAL;
813
814         rcventry = tididx + (tidctrl - 1);
815
816         node = fd->entry_to_rb[rcventry];
817         if (!node || node->rcventry != (uctxt->expected_base + rcventry))
818                 return -EBADF;
819
820         if (grp)
821                 *grp = node->grp;
822
823         if (fd->use_mn)
824                 mmu_interval_notifier_remove(&node->notifier);
825         cacheless_tid_rb_remove(fd, node);
826
827         return 0;
828 }
829
830 static void clear_tid_node(struct hfi1_filedata *fd, struct tid_rb_node *node)
831 {
832         struct hfi1_ctxtdata *uctxt = fd->uctxt;
833         struct hfi1_devdata *dd = uctxt->dd;
834
835         trace_hfi1_exp_tid_unreg(uctxt->ctxt, fd->subctxt, node->rcventry,
836                                  node->npages,
837                                  node->notifier.interval_tree.start, node->phys,
838                                  node->dma_addr);
839
840         /*
841          * Make sure device has seen the write before we unpin the
842          * pages.
843          */
844         hfi1_put_tid(dd, node->rcventry, PT_INVALID_FLUSH, 0, 0);
845
846         unpin_rcv_pages(fd, NULL, node, 0, node->npages, true);
847
848         node->grp->used--;
849         node->grp->map &= ~(1 << (node->rcventry - node->grp->base));
850
851         if (node->grp->used == node->grp->size - 1)
852                 tid_group_move(node->grp, &uctxt->tid_full_list,
853                                &uctxt->tid_used_list);
854         else if (!node->grp->used)
855                 tid_group_move(node->grp, &uctxt->tid_used_list,
856                                &uctxt->tid_group_list);
857         kfree(node);
858 }
859
860 /*
861  * As a simple helper for hfi1_user_exp_rcv_free, this function deals with
862  * clearing nodes in the non-cached case.
863  */
864 static void unlock_exp_tids(struct hfi1_ctxtdata *uctxt,
865                             struct exp_tid_set *set,
866                             struct hfi1_filedata *fd)
867 {
868         struct tid_group *grp, *ptr;
869         int i;
870
871         list_for_each_entry_safe(grp, ptr, &set->list, list) {
872                 list_del_init(&grp->list);
873
874                 for (i = 0; i < grp->size; i++) {
875                         if (grp->map & (1 << i)) {
876                                 u16 rcventry = grp->base + i;
877                                 struct tid_rb_node *node;
878
879                                 node = fd->entry_to_rb[rcventry -
880                                                           uctxt->expected_base];
881                                 if (!node || node->rcventry != rcventry)
882                                         continue;
883
884                                 if (fd->use_mn)
885                                         mmu_interval_notifier_remove(
886                                                 &node->notifier);
887                                 cacheless_tid_rb_remove(fd, node);
888                         }
889                 }
890         }
891 }
892
893 static bool tid_rb_invalidate(struct mmu_interval_notifier *mni,
894                               const struct mmu_notifier_range *range,
895                               unsigned long cur_seq)
896 {
897         struct tid_rb_node *node =
898                 container_of(mni, struct tid_rb_node, notifier);
899         struct hfi1_filedata *fdata = node->fdata;
900         struct hfi1_ctxtdata *uctxt = fdata->uctxt;
901
902         if (node->freed)
903                 return true;
904
905         trace_hfi1_exp_tid_inval(uctxt->ctxt, fdata->subctxt,
906                                  node->notifier.interval_tree.start,
907                                  node->rcventry, node->npages, node->dma_addr);
908         node->freed = true;
909
910         spin_lock(&fdata->invalid_lock);
911         if (fdata->invalid_tid_idx < uctxt->expected_count) {
912                 fdata->invalid_tids[fdata->invalid_tid_idx] =
913                         rcventry2tidinfo(node->rcventry - uctxt->expected_base);
914                 fdata->invalid_tids[fdata->invalid_tid_idx] |=
915                         EXP_TID_SET(LEN, node->npages);
916                 if (!fdata->invalid_tid_idx) {
917                         unsigned long *ev;
918
919                         /*
920                          * hfi1_set_uevent_bits() sets a user event flag
921                          * for all processes. Because calling into the
922                          * driver to process TID cache invalidations is
923                          * expensive and TID cache invalidations are
924                          * handled on a per-process basis, we can
925                          * optimize this to set the flag only for the
926                          * process in question.
927                          */
928                         ev = uctxt->dd->events +
929                                 (uctxt_offset(uctxt) + fdata->subctxt);
930                         set_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev);
931                 }
932                 fdata->invalid_tid_idx++;
933         }
934         spin_unlock(&fdata->invalid_lock);
935         return true;
936 }
937
938 static void cacheless_tid_rb_remove(struct hfi1_filedata *fdata,
939                                     struct tid_rb_node *tnode)
940 {
941         u32 base = fdata->uctxt->expected_base;
942
943         fdata->entry_to_rb[tnode->rcventry - base] = NULL;
944         clear_tid_node(fdata, tnode);
945 }