Merge tag 'powerpc-5.9-3' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[linux-2.6-microblaze.git] / drivers / infiniband / hw / hfi1 / tid_rdma.c
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 /*
3  * Copyright(c) 2018 - 2020 Intel Corporation.
4  *
5  */
6
7 #include "hfi.h"
8 #include "qp.h"
9 #include "rc.h"
10 #include "verbs.h"
11 #include "tid_rdma.h"
12 #include "exp_rcv.h"
13 #include "trace.h"
14
15 /**
16  * DOC: TID RDMA READ protocol
17  *
18  * This is an end-to-end protocol at the hfi1 level between two nodes that
19  * improves performance by avoiding data copy on the requester side. It
20  * converts a qualified RDMA READ request into a TID RDMA READ request on
21  * the requester side and thereafter handles the request and response
22  * differently. To be qualified, the RDMA READ request should meet the
23  * following:
24  * -- The total data length should be greater than 256K;
25  * -- The total data length should be a multiple of 4K page size;
26  * -- Each local scatter-gather entry should be 4K page aligned;
27  * -- Each local scatter-gather entry should be a multiple of 4K page size;
28  */
29
30 #define RCV_TID_FLOW_TABLE_CTRL_FLOW_VALID_SMASK BIT_ULL(32)
31 #define RCV_TID_FLOW_TABLE_CTRL_HDR_SUPP_EN_SMASK BIT_ULL(33)
32 #define RCV_TID_FLOW_TABLE_CTRL_KEEP_AFTER_SEQ_ERR_SMASK BIT_ULL(34)
33 #define RCV_TID_FLOW_TABLE_CTRL_KEEP_ON_GEN_ERR_SMASK BIT_ULL(35)
34 #define RCV_TID_FLOW_TABLE_STATUS_SEQ_MISMATCH_SMASK BIT_ULL(37)
35 #define RCV_TID_FLOW_TABLE_STATUS_GEN_MISMATCH_SMASK BIT_ULL(38)
36
37 /* Maximum number of packets within a flow generation. */
38 #define MAX_TID_FLOW_PSN BIT(HFI1_KDETH_BTH_SEQ_SHIFT)
39
40 #define GENERATION_MASK 0xFFFFF
41
42 static u32 mask_generation(u32 a)
43 {
44         return a & GENERATION_MASK;
45 }
46
47 /* Reserved generation value to set to unused flows for kernel contexts */
48 #define KERN_GENERATION_RESERVED mask_generation(U32_MAX)
49
50 /*
51  * J_KEY for kernel contexts when TID RDMA is used.
52  * See generate_jkey() in hfi.h for more information.
53  */
54 #define TID_RDMA_JKEY                   32
55 #define HFI1_KERNEL_MIN_JKEY HFI1_ADMIN_JKEY_RANGE
56 #define HFI1_KERNEL_MAX_JKEY (2 * HFI1_ADMIN_JKEY_RANGE - 1)
57
58 /* Maximum number of segments in flight per QP request. */
59 #define TID_RDMA_MAX_READ_SEGS_PER_REQ  6
60 #define TID_RDMA_MAX_WRITE_SEGS_PER_REQ 4
61 #define MAX_REQ max_t(u16, TID_RDMA_MAX_READ_SEGS_PER_REQ, \
62                         TID_RDMA_MAX_WRITE_SEGS_PER_REQ)
63 #define MAX_FLOWS roundup_pow_of_two(MAX_REQ + 1)
64
65 #define MAX_EXPECTED_PAGES     (MAX_EXPECTED_BUFFER / PAGE_SIZE)
66
67 #define TID_RDMA_DESTQP_FLOW_SHIFT      11
68 #define TID_RDMA_DESTQP_FLOW_MASK       0x1f
69
70 #define TID_OPFN_QP_CTXT_MASK 0xff
71 #define TID_OPFN_QP_CTXT_SHIFT 56
72 #define TID_OPFN_QP_KDETH_MASK 0xff
73 #define TID_OPFN_QP_KDETH_SHIFT 48
74 #define TID_OPFN_MAX_LEN_MASK 0x7ff
75 #define TID_OPFN_MAX_LEN_SHIFT 37
76 #define TID_OPFN_TIMEOUT_MASK 0x1f
77 #define TID_OPFN_TIMEOUT_SHIFT 32
78 #define TID_OPFN_RESERVED_MASK 0x3f
79 #define TID_OPFN_RESERVED_SHIFT 26
80 #define TID_OPFN_URG_MASK 0x1
81 #define TID_OPFN_URG_SHIFT 25
82 #define TID_OPFN_VER_MASK 0x7
83 #define TID_OPFN_VER_SHIFT 22
84 #define TID_OPFN_JKEY_MASK 0x3f
85 #define TID_OPFN_JKEY_SHIFT 16
86 #define TID_OPFN_MAX_READ_MASK 0x3f
87 #define TID_OPFN_MAX_READ_SHIFT 10
88 #define TID_OPFN_MAX_WRITE_MASK 0x3f
89 #define TID_OPFN_MAX_WRITE_SHIFT 4
90
91 /*
92  * OPFN TID layout
93  *
94  * 63               47               31               15
95  * NNNNNNNNKKKKKKKK MMMMMMMMMMMTTTTT DDDDDDUVVVJJJJJJ RRRRRRWWWWWWCCCC
96  * 3210987654321098 7654321098765432 1098765432109876 5432109876543210
97  * N - the context Number
98  * K - the Kdeth_qp
99  * M - Max_len
100  * T - Timeout
101  * D - reserveD
102  * V - version
103  * U - Urg capable
104  * J - Jkey
105  * R - max_Read
106  * W - max_Write
107  * C - Capcode
108  */
109
110 static void tid_rdma_trigger_resume(struct work_struct *work);
111 static void hfi1_kern_exp_rcv_free_flows(struct tid_rdma_request *req);
112 static int hfi1_kern_exp_rcv_alloc_flows(struct tid_rdma_request *req,
113                                          gfp_t gfp);
114 static void hfi1_init_trdma_req(struct rvt_qp *qp,
115                                 struct tid_rdma_request *req);
116 static void hfi1_tid_write_alloc_resources(struct rvt_qp *qp, bool intr_ctx);
117 static void hfi1_tid_timeout(struct timer_list *t);
118 static void hfi1_add_tid_reap_timer(struct rvt_qp *qp);
119 static void hfi1_mod_tid_reap_timer(struct rvt_qp *qp);
120 static void hfi1_mod_tid_retry_timer(struct rvt_qp *qp);
121 static int hfi1_stop_tid_retry_timer(struct rvt_qp *qp);
122 static void hfi1_tid_retry_timeout(struct timer_list *t);
123 static int make_tid_rdma_ack(struct rvt_qp *qp,
124                              struct ib_other_headers *ohdr,
125                              struct hfi1_pkt_state *ps);
126 static void hfi1_do_tid_send(struct rvt_qp *qp);
127 static u32 read_r_next_psn(struct hfi1_devdata *dd, u8 ctxt, u8 fidx);
128 static void tid_rdma_rcv_err(struct hfi1_packet *packet,
129                              struct ib_other_headers *ohdr,
130                              struct rvt_qp *qp, u32 psn, int diff, bool fecn);
131 static void update_r_next_psn_fecn(struct hfi1_packet *packet,
132                                    struct hfi1_qp_priv *priv,
133                                    struct hfi1_ctxtdata *rcd,
134                                    struct tid_rdma_flow *flow,
135                                    bool fecn);
136
137 static void validate_r_tid_ack(struct hfi1_qp_priv *priv)
138 {
139         if (priv->r_tid_ack == HFI1_QP_WQE_INVALID)
140                 priv->r_tid_ack = priv->r_tid_tail;
141 }
142
143 static void tid_rdma_schedule_ack(struct rvt_qp *qp)
144 {
145         struct hfi1_qp_priv *priv = qp->priv;
146
147         priv->s_flags |= RVT_S_ACK_PENDING;
148         hfi1_schedule_tid_send(qp);
149 }
150
151 static void tid_rdma_trigger_ack(struct rvt_qp *qp)
152 {
153         validate_r_tid_ack(qp->priv);
154         tid_rdma_schedule_ack(qp);
155 }
156
157 static u64 tid_rdma_opfn_encode(struct tid_rdma_params *p)
158 {
159         return
160                 (((u64)p->qp & TID_OPFN_QP_CTXT_MASK) <<
161                         TID_OPFN_QP_CTXT_SHIFT) |
162                 ((((u64)p->qp >> 16) & TID_OPFN_QP_KDETH_MASK) <<
163                         TID_OPFN_QP_KDETH_SHIFT) |
164                 (((u64)((p->max_len >> PAGE_SHIFT) - 1) &
165                         TID_OPFN_MAX_LEN_MASK) << TID_OPFN_MAX_LEN_SHIFT) |
166                 (((u64)p->timeout & TID_OPFN_TIMEOUT_MASK) <<
167                         TID_OPFN_TIMEOUT_SHIFT) |
168                 (((u64)p->urg & TID_OPFN_URG_MASK) << TID_OPFN_URG_SHIFT) |
169                 (((u64)p->jkey & TID_OPFN_JKEY_MASK) << TID_OPFN_JKEY_SHIFT) |
170                 (((u64)p->max_read & TID_OPFN_MAX_READ_MASK) <<
171                         TID_OPFN_MAX_READ_SHIFT) |
172                 (((u64)p->max_write & TID_OPFN_MAX_WRITE_MASK) <<
173                         TID_OPFN_MAX_WRITE_SHIFT);
174 }
175
176 static void tid_rdma_opfn_decode(struct tid_rdma_params *p, u64 data)
177 {
178         p->max_len = (((data >> TID_OPFN_MAX_LEN_SHIFT) &
179                 TID_OPFN_MAX_LEN_MASK) + 1) << PAGE_SHIFT;
180         p->jkey = (data >> TID_OPFN_JKEY_SHIFT) & TID_OPFN_JKEY_MASK;
181         p->max_write = (data >> TID_OPFN_MAX_WRITE_SHIFT) &
182                 TID_OPFN_MAX_WRITE_MASK;
183         p->max_read = (data >> TID_OPFN_MAX_READ_SHIFT) &
184                 TID_OPFN_MAX_READ_MASK;
185         p->qp =
186                 ((((data >> TID_OPFN_QP_KDETH_SHIFT) & TID_OPFN_QP_KDETH_MASK)
187                         << 16) |
188                 ((data >> TID_OPFN_QP_CTXT_SHIFT) & TID_OPFN_QP_CTXT_MASK));
189         p->urg = (data >> TID_OPFN_URG_SHIFT) & TID_OPFN_URG_MASK;
190         p->timeout = (data >> TID_OPFN_TIMEOUT_SHIFT) & TID_OPFN_TIMEOUT_MASK;
191 }
192
193 void tid_rdma_opfn_init(struct rvt_qp *qp, struct tid_rdma_params *p)
194 {
195         struct hfi1_qp_priv *priv = qp->priv;
196
197         p->qp = (RVT_KDETH_QP_PREFIX << 16) | priv->rcd->ctxt;
198         p->max_len = TID_RDMA_MAX_SEGMENT_SIZE;
199         p->jkey = priv->rcd->jkey;
200         p->max_read = TID_RDMA_MAX_READ_SEGS_PER_REQ;
201         p->max_write = TID_RDMA_MAX_WRITE_SEGS_PER_REQ;
202         p->timeout = qp->timeout;
203         p->urg = is_urg_masked(priv->rcd);
204 }
205
206 bool tid_rdma_conn_req(struct rvt_qp *qp, u64 *data)
207 {
208         struct hfi1_qp_priv *priv = qp->priv;
209
210         *data = tid_rdma_opfn_encode(&priv->tid_rdma.local);
211         return true;
212 }
213
214 bool tid_rdma_conn_reply(struct rvt_qp *qp, u64 data)
215 {
216         struct hfi1_qp_priv *priv = qp->priv;
217         struct tid_rdma_params *remote, *old;
218         bool ret = true;
219
220         old = rcu_dereference_protected(priv->tid_rdma.remote,
221                                         lockdep_is_held(&priv->opfn.lock));
222         data &= ~0xfULL;
223         /*
224          * If data passed in is zero, return true so as not to continue the
225          * negotiation process
226          */
227         if (!data || !HFI1_CAP_IS_KSET(TID_RDMA))
228                 goto null;
229         /*
230          * If kzalloc fails, return false. This will result in:
231          * * at the requester a new OPFN request being generated to retry
232          *   the negotiation
233          * * at the responder, 0 being returned to the requester so as to
234          *   disable TID RDMA at both the requester and the responder
235          */
236         remote = kzalloc(sizeof(*remote), GFP_ATOMIC);
237         if (!remote) {
238                 ret = false;
239                 goto null;
240         }
241
242         tid_rdma_opfn_decode(remote, data);
243         priv->tid_timer_timeout_jiffies =
244                 usecs_to_jiffies((((4096UL * (1UL << remote->timeout)) /
245                                    1000UL) << 3) * 7);
246         trace_hfi1_opfn_param(qp, 0, &priv->tid_rdma.local);
247         trace_hfi1_opfn_param(qp, 1, remote);
248         rcu_assign_pointer(priv->tid_rdma.remote, remote);
249         /*
250          * A TID RDMA READ request's segment size is not equal to
251          * remote->max_len only when the request's data length is smaller
252          * than remote->max_len. In that case, there will be only one segment.
253          * Therefore, when priv->pkts_ps is used to calculate req->cur_seg
254          * during retry, it will lead to req->cur_seg = 0, which is exactly
255          * what is expected.
256          */
257         priv->pkts_ps = (u16)rvt_div_mtu(qp, remote->max_len);
258         priv->timeout_shift = ilog2(priv->pkts_ps - 1) + 1;
259         goto free;
260 null:
261         RCU_INIT_POINTER(priv->tid_rdma.remote, NULL);
262         priv->timeout_shift = 0;
263 free:
264         if (old)
265                 kfree_rcu(old, rcu_head);
266         return ret;
267 }
268
269 bool tid_rdma_conn_resp(struct rvt_qp *qp, u64 *data)
270 {
271         bool ret;
272
273         ret = tid_rdma_conn_reply(qp, *data);
274         *data = 0;
275         /*
276          * If tid_rdma_conn_reply() returns error, set *data as 0 to indicate
277          * TID RDMA could not be enabled. This will result in TID RDMA being
278          * disabled at the requester too.
279          */
280         if (ret)
281                 (void)tid_rdma_conn_req(qp, data);
282         return ret;
283 }
284
285 void tid_rdma_conn_error(struct rvt_qp *qp)
286 {
287         struct hfi1_qp_priv *priv = qp->priv;
288         struct tid_rdma_params *old;
289
290         old = rcu_dereference_protected(priv->tid_rdma.remote,
291                                         lockdep_is_held(&priv->opfn.lock));
292         RCU_INIT_POINTER(priv->tid_rdma.remote, NULL);
293         if (old)
294                 kfree_rcu(old, rcu_head);
295 }
296
297 /* This is called at context initialization time */
298 int hfi1_kern_exp_rcv_init(struct hfi1_ctxtdata *rcd, int reinit)
299 {
300         if (reinit)
301                 return 0;
302
303         BUILD_BUG_ON(TID_RDMA_JKEY < HFI1_KERNEL_MIN_JKEY);
304         BUILD_BUG_ON(TID_RDMA_JKEY > HFI1_KERNEL_MAX_JKEY);
305         rcd->jkey = TID_RDMA_JKEY;
306         hfi1_set_ctxt_jkey(rcd->dd, rcd, rcd->jkey);
307         return hfi1_alloc_ctxt_rcv_groups(rcd);
308 }
309
310 /**
311  * qp_to_rcd - determine the receive context used by a qp
312  * @qp - the qp
313  *
314  * This routine returns the receive context associated
315  * with a a qp's qpn.
316  *
317  * Returns the context.
318  */
319 static struct hfi1_ctxtdata *qp_to_rcd(struct rvt_dev_info *rdi,
320                                        struct rvt_qp *qp)
321 {
322         struct hfi1_ibdev *verbs_dev = container_of(rdi,
323                                                     struct hfi1_ibdev,
324                                                     rdi);
325         struct hfi1_devdata *dd = container_of(verbs_dev,
326                                                struct hfi1_devdata,
327                                                verbs_dev);
328         unsigned int ctxt;
329
330         if (qp->ibqp.qp_num == 0)
331                 ctxt = 0;
332         else
333                 ctxt = hfi1_get_qp_map(dd, qp->ibqp.qp_num >> dd->qos_shift);
334         return dd->rcd[ctxt];
335 }
336
337 int hfi1_qp_priv_init(struct rvt_dev_info *rdi, struct rvt_qp *qp,
338                       struct ib_qp_init_attr *init_attr)
339 {
340         struct hfi1_qp_priv *qpriv = qp->priv;
341         int i, ret;
342
343         qpriv->rcd = qp_to_rcd(rdi, qp);
344
345         spin_lock_init(&qpriv->opfn.lock);
346         INIT_WORK(&qpriv->opfn.opfn_work, opfn_send_conn_request);
347         INIT_WORK(&qpriv->tid_rdma.trigger_work, tid_rdma_trigger_resume);
348         qpriv->flow_state.psn = 0;
349         qpriv->flow_state.index = RXE_NUM_TID_FLOWS;
350         qpriv->flow_state.last_index = RXE_NUM_TID_FLOWS;
351         qpriv->flow_state.generation = KERN_GENERATION_RESERVED;
352         qpriv->s_state = TID_OP(WRITE_RESP);
353         qpriv->s_tid_cur = HFI1_QP_WQE_INVALID;
354         qpriv->s_tid_head = HFI1_QP_WQE_INVALID;
355         qpriv->s_tid_tail = HFI1_QP_WQE_INVALID;
356         qpriv->rnr_nak_state = TID_RNR_NAK_INIT;
357         qpriv->r_tid_head = HFI1_QP_WQE_INVALID;
358         qpriv->r_tid_tail = HFI1_QP_WQE_INVALID;
359         qpriv->r_tid_ack = HFI1_QP_WQE_INVALID;
360         qpriv->r_tid_alloc = HFI1_QP_WQE_INVALID;
361         atomic_set(&qpriv->n_requests, 0);
362         atomic_set(&qpriv->n_tid_requests, 0);
363         timer_setup(&qpriv->s_tid_timer, hfi1_tid_timeout, 0);
364         timer_setup(&qpriv->s_tid_retry_timer, hfi1_tid_retry_timeout, 0);
365         INIT_LIST_HEAD(&qpriv->tid_wait);
366
367         if (init_attr->qp_type == IB_QPT_RC && HFI1_CAP_IS_KSET(TID_RDMA)) {
368                 struct hfi1_devdata *dd = qpriv->rcd->dd;
369
370                 qpriv->pages = kzalloc_node(TID_RDMA_MAX_PAGES *
371                                                 sizeof(*qpriv->pages),
372                                             GFP_KERNEL, dd->node);
373                 if (!qpriv->pages)
374                         return -ENOMEM;
375                 for (i = 0; i < qp->s_size; i++) {
376                         struct hfi1_swqe_priv *priv;
377                         struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, i);
378
379                         priv = kzalloc_node(sizeof(*priv), GFP_KERNEL,
380                                             dd->node);
381                         if (!priv)
382                                 return -ENOMEM;
383
384                         hfi1_init_trdma_req(qp, &priv->tid_req);
385                         priv->tid_req.e.swqe = wqe;
386                         wqe->priv = priv;
387                 }
388                 for (i = 0; i < rvt_max_atomic(rdi); i++) {
389                         struct hfi1_ack_priv *priv;
390
391                         priv = kzalloc_node(sizeof(*priv), GFP_KERNEL,
392                                             dd->node);
393                         if (!priv)
394                                 return -ENOMEM;
395
396                         hfi1_init_trdma_req(qp, &priv->tid_req);
397                         priv->tid_req.e.ack = &qp->s_ack_queue[i];
398
399                         ret = hfi1_kern_exp_rcv_alloc_flows(&priv->tid_req,
400                                                             GFP_KERNEL);
401                         if (ret) {
402                                 kfree(priv);
403                                 return ret;
404                         }
405                         qp->s_ack_queue[i].priv = priv;
406                 }
407         }
408
409         return 0;
410 }
411
412 void hfi1_qp_priv_tid_free(struct rvt_dev_info *rdi, struct rvt_qp *qp)
413 {
414         struct hfi1_qp_priv *qpriv = qp->priv;
415         struct rvt_swqe *wqe;
416         u32 i;
417
418         if (qp->ibqp.qp_type == IB_QPT_RC && HFI1_CAP_IS_KSET(TID_RDMA)) {
419                 for (i = 0; i < qp->s_size; i++) {
420                         wqe = rvt_get_swqe_ptr(qp, i);
421                         kfree(wqe->priv);
422                         wqe->priv = NULL;
423                 }
424                 for (i = 0; i < rvt_max_atomic(rdi); i++) {
425                         struct hfi1_ack_priv *priv = qp->s_ack_queue[i].priv;
426
427                         if (priv)
428                                 hfi1_kern_exp_rcv_free_flows(&priv->tid_req);
429                         kfree(priv);
430                         qp->s_ack_queue[i].priv = NULL;
431                 }
432                 cancel_work_sync(&qpriv->opfn.opfn_work);
433                 kfree(qpriv->pages);
434                 qpriv->pages = NULL;
435         }
436 }
437
438 /* Flow and tid waiter functions */
439 /**
440  * DOC: lock ordering
441  *
442  * There are two locks involved with the queuing
443  * routines: the qp s_lock and the exp_lock.
444  *
445  * Since the tid space allocation is called from
446  * the send engine, the qp s_lock is already held.
447  *
448  * The allocation routines will get the exp_lock.
449  *
450  * The first_qp() call is provided to allow the head of
451  * the rcd wait queue to be fetched under the exp_lock and
452  * followed by a drop of the exp_lock.
453  *
454  * Any qp in the wait list will have the qp reference count held
455  * to hold the qp in memory.
456  */
457
458 /*
459  * return head of rcd wait list
460  *
461  * Must hold the exp_lock.
462  *
463  * Get a reference to the QP to hold the QP in memory.
464  *
465  * The caller must release the reference when the local
466  * is no longer being used.
467  */
468 static struct rvt_qp *first_qp(struct hfi1_ctxtdata *rcd,
469                                struct tid_queue *queue)
470         __must_hold(&rcd->exp_lock)
471 {
472         struct hfi1_qp_priv *priv;
473
474         lockdep_assert_held(&rcd->exp_lock);
475         priv = list_first_entry_or_null(&queue->queue_head,
476                                         struct hfi1_qp_priv,
477                                         tid_wait);
478         if (!priv)
479                 return NULL;
480         rvt_get_qp(priv->owner);
481         return priv->owner;
482 }
483
484 /**
485  * kernel_tid_waiters - determine rcd wait
486  * @rcd: the receive context
487  * @qp: the head of the qp being processed
488  *
489  * This routine will return false IFF
490  * the list is NULL or the head of the
491  * list is the indicated qp.
492  *
493  * Must hold the qp s_lock and the exp_lock.
494  *
495  * Return:
496  * false if either of the conditions below are satisfied:
497  * 1. The list is empty or
498  * 2. The indicated qp is at the head of the list and the
499  *    HFI1_S_WAIT_TID_SPACE bit is set in qp->s_flags.
500  * true is returned otherwise.
501  */
502 static bool kernel_tid_waiters(struct hfi1_ctxtdata *rcd,
503                                struct tid_queue *queue, struct rvt_qp *qp)
504         __must_hold(&rcd->exp_lock) __must_hold(&qp->s_lock)
505 {
506         struct rvt_qp *fqp;
507         bool ret = true;
508
509         lockdep_assert_held(&qp->s_lock);
510         lockdep_assert_held(&rcd->exp_lock);
511         fqp = first_qp(rcd, queue);
512         if (!fqp || (fqp == qp && (qp->s_flags & HFI1_S_WAIT_TID_SPACE)))
513                 ret = false;
514         rvt_put_qp(fqp);
515         return ret;
516 }
517
518 /**
519  * dequeue_tid_waiter - dequeue the qp from the list
520  * @qp - the qp to remove the wait list
521  *
522  * This routine removes the indicated qp from the
523  * wait list if it is there.
524  *
525  * This should be done after the hardware flow and
526  * tid array resources have been allocated.
527  *
528  * Must hold the qp s_lock and the rcd exp_lock.
529  *
530  * It assumes the s_lock to protect the s_flags
531  * field and to reliably test the HFI1_S_WAIT_TID_SPACE flag.
532  */
533 static void dequeue_tid_waiter(struct hfi1_ctxtdata *rcd,
534                                struct tid_queue *queue, struct rvt_qp *qp)
535         __must_hold(&rcd->exp_lock) __must_hold(&qp->s_lock)
536 {
537         struct hfi1_qp_priv *priv = qp->priv;
538
539         lockdep_assert_held(&qp->s_lock);
540         lockdep_assert_held(&rcd->exp_lock);
541         if (list_empty(&priv->tid_wait))
542                 return;
543         list_del_init(&priv->tid_wait);
544         qp->s_flags &= ~HFI1_S_WAIT_TID_SPACE;
545         queue->dequeue++;
546         rvt_put_qp(qp);
547 }
548
549 /**
550  * queue_qp_for_tid_wait - suspend QP on tid space
551  * @rcd: the receive context
552  * @qp: the qp
553  *
554  * The qp is inserted at the tail of the rcd
555  * wait queue and the HFI1_S_WAIT_TID_SPACE s_flag is set.
556  *
557  * Must hold the qp s_lock and the exp_lock.
558  */
559 static void queue_qp_for_tid_wait(struct hfi1_ctxtdata *rcd,
560                                   struct tid_queue *queue, struct rvt_qp *qp)
561         __must_hold(&rcd->exp_lock) __must_hold(&qp->s_lock)
562 {
563         struct hfi1_qp_priv *priv = qp->priv;
564
565         lockdep_assert_held(&qp->s_lock);
566         lockdep_assert_held(&rcd->exp_lock);
567         if (list_empty(&priv->tid_wait)) {
568                 qp->s_flags |= HFI1_S_WAIT_TID_SPACE;
569                 list_add_tail(&priv->tid_wait, &queue->queue_head);
570                 priv->tid_enqueue = ++queue->enqueue;
571                 rcd->dd->verbs_dev.n_tidwait++;
572                 trace_hfi1_qpsleep(qp, HFI1_S_WAIT_TID_SPACE);
573                 rvt_get_qp(qp);
574         }
575 }
576
577 /**
578  * __trigger_tid_waiter - trigger tid waiter
579  * @qp: the qp
580  *
581  * This is a private entrance to schedule the qp
582  * assuming the caller is holding the qp->s_lock.
583  */
584 static void __trigger_tid_waiter(struct rvt_qp *qp)
585         __must_hold(&qp->s_lock)
586 {
587         lockdep_assert_held(&qp->s_lock);
588         if (!(qp->s_flags & HFI1_S_WAIT_TID_SPACE))
589                 return;
590         trace_hfi1_qpwakeup(qp, HFI1_S_WAIT_TID_SPACE);
591         hfi1_schedule_send(qp);
592 }
593
594 /**
595  * tid_rdma_schedule_tid_wakeup - schedule wakeup for a qp
596  * @qp - the qp
597  *
598  * trigger a schedule or a waiting qp in a deadlock
599  * safe manner.  The qp reference is held prior
600  * to this call via first_qp().
601  *
602  * If the qp trigger was already scheduled (!rval)
603  * the the reference is dropped, otherwise the resume
604  * or the destroy cancel will dispatch the reference.
605  */
606 static void tid_rdma_schedule_tid_wakeup(struct rvt_qp *qp)
607 {
608         struct hfi1_qp_priv *priv;
609         struct hfi1_ibport *ibp;
610         struct hfi1_pportdata *ppd;
611         struct hfi1_devdata *dd;
612         bool rval;
613
614         if (!qp)
615                 return;
616
617         priv = qp->priv;
618         ibp = to_iport(qp->ibqp.device, qp->port_num);
619         ppd = ppd_from_ibp(ibp);
620         dd = dd_from_ibdev(qp->ibqp.device);
621
622         rval = queue_work_on(priv->s_sde ?
623                              priv->s_sde->cpu :
624                              cpumask_first(cpumask_of_node(dd->node)),
625                              ppd->hfi1_wq,
626                              &priv->tid_rdma.trigger_work);
627         if (!rval)
628                 rvt_put_qp(qp);
629 }
630
631 /**
632  * tid_rdma_trigger_resume - field a trigger work request
633  * @work - the work item
634  *
635  * Complete the off qp trigger processing by directly
636  * calling the progress routine.
637  */
638 static void tid_rdma_trigger_resume(struct work_struct *work)
639 {
640         struct tid_rdma_qp_params *tr;
641         struct hfi1_qp_priv *priv;
642         struct rvt_qp *qp;
643
644         tr = container_of(work, struct tid_rdma_qp_params, trigger_work);
645         priv = container_of(tr, struct hfi1_qp_priv, tid_rdma);
646         qp = priv->owner;
647         spin_lock_irq(&qp->s_lock);
648         if (qp->s_flags & HFI1_S_WAIT_TID_SPACE) {
649                 spin_unlock_irq(&qp->s_lock);
650                 hfi1_do_send(priv->owner, true);
651         } else {
652                 spin_unlock_irq(&qp->s_lock);
653         }
654         rvt_put_qp(qp);
655 }
656
657 /**
658  * tid_rdma_flush_wait - unwind any tid space wait
659  *
660  * This is called when resetting a qp to
661  * allow a destroy or reset to get rid
662  * of any tid space linkage and reference counts.
663  */
664 static void _tid_rdma_flush_wait(struct rvt_qp *qp, struct tid_queue *queue)
665         __must_hold(&qp->s_lock)
666 {
667         struct hfi1_qp_priv *priv;
668
669         if (!qp)
670                 return;
671         lockdep_assert_held(&qp->s_lock);
672         priv = qp->priv;
673         qp->s_flags &= ~HFI1_S_WAIT_TID_SPACE;
674         spin_lock(&priv->rcd->exp_lock);
675         if (!list_empty(&priv->tid_wait)) {
676                 list_del_init(&priv->tid_wait);
677                 qp->s_flags &= ~HFI1_S_WAIT_TID_SPACE;
678                 queue->dequeue++;
679                 rvt_put_qp(qp);
680         }
681         spin_unlock(&priv->rcd->exp_lock);
682 }
683
684 void hfi1_tid_rdma_flush_wait(struct rvt_qp *qp)
685         __must_hold(&qp->s_lock)
686 {
687         struct hfi1_qp_priv *priv = qp->priv;
688
689         _tid_rdma_flush_wait(qp, &priv->rcd->flow_queue);
690         _tid_rdma_flush_wait(qp, &priv->rcd->rarr_queue);
691 }
692
693 /* Flow functions */
694 /**
695  * kern_reserve_flow - allocate a hardware flow
696  * @rcd - the context to use for allocation
697  * @last - the index of the preferred flow. Use RXE_NUM_TID_FLOWS to
698  *         signify "don't care".
699  *
700  * Use a bit mask based allocation to reserve a hardware
701  * flow for use in receiving KDETH data packets. If a preferred flow is
702  * specified the function will attempt to reserve that flow again, if
703  * available.
704  *
705  * The exp_lock must be held.
706  *
707  * Return:
708  * On success: a value postive value between 0 and RXE_NUM_TID_FLOWS - 1
709  * On failure: -EAGAIN
710  */
711 static int kern_reserve_flow(struct hfi1_ctxtdata *rcd, int last)
712         __must_hold(&rcd->exp_lock)
713 {
714         int nr;
715
716         /* Attempt to reserve the preferred flow index */
717         if (last >= 0 && last < RXE_NUM_TID_FLOWS &&
718             !test_and_set_bit(last, &rcd->flow_mask))
719                 return last;
720
721         nr = ffz(rcd->flow_mask);
722         BUILD_BUG_ON(RXE_NUM_TID_FLOWS >=
723                      (sizeof(rcd->flow_mask) * BITS_PER_BYTE));
724         if (nr > (RXE_NUM_TID_FLOWS - 1))
725                 return -EAGAIN;
726         set_bit(nr, &rcd->flow_mask);
727         return nr;
728 }
729
730 static void kern_set_hw_flow(struct hfi1_ctxtdata *rcd, u32 generation,
731                              u32 flow_idx)
732 {
733         u64 reg;
734
735         reg = ((u64)generation << HFI1_KDETH_BTH_SEQ_SHIFT) |
736                 RCV_TID_FLOW_TABLE_CTRL_FLOW_VALID_SMASK |
737                 RCV_TID_FLOW_TABLE_CTRL_KEEP_AFTER_SEQ_ERR_SMASK |
738                 RCV_TID_FLOW_TABLE_CTRL_KEEP_ON_GEN_ERR_SMASK |
739                 RCV_TID_FLOW_TABLE_STATUS_SEQ_MISMATCH_SMASK |
740                 RCV_TID_FLOW_TABLE_STATUS_GEN_MISMATCH_SMASK;
741
742         if (generation != KERN_GENERATION_RESERVED)
743                 reg |= RCV_TID_FLOW_TABLE_CTRL_HDR_SUPP_EN_SMASK;
744
745         write_uctxt_csr(rcd->dd, rcd->ctxt,
746                         RCV_TID_FLOW_TABLE + 8 * flow_idx, reg);
747 }
748
749 static u32 kern_setup_hw_flow(struct hfi1_ctxtdata *rcd, u32 flow_idx)
750         __must_hold(&rcd->exp_lock)
751 {
752         u32 generation = rcd->flows[flow_idx].generation;
753
754         kern_set_hw_flow(rcd, generation, flow_idx);
755         return generation;
756 }
757
758 static u32 kern_flow_generation_next(u32 gen)
759 {
760         u32 generation = mask_generation(gen + 1);
761
762         if (generation == KERN_GENERATION_RESERVED)
763                 generation = mask_generation(generation + 1);
764         return generation;
765 }
766
767 static void kern_clear_hw_flow(struct hfi1_ctxtdata *rcd, u32 flow_idx)
768         __must_hold(&rcd->exp_lock)
769 {
770         rcd->flows[flow_idx].generation =
771                 kern_flow_generation_next(rcd->flows[flow_idx].generation);
772         kern_set_hw_flow(rcd, KERN_GENERATION_RESERVED, flow_idx);
773 }
774
775 int hfi1_kern_setup_hw_flow(struct hfi1_ctxtdata *rcd, struct rvt_qp *qp)
776 {
777         struct hfi1_qp_priv *qpriv = (struct hfi1_qp_priv *)qp->priv;
778         struct tid_flow_state *fs = &qpriv->flow_state;
779         struct rvt_qp *fqp;
780         unsigned long flags;
781         int ret = 0;
782
783         /* The QP already has an allocated flow */
784         if (fs->index != RXE_NUM_TID_FLOWS)
785                 return ret;
786
787         spin_lock_irqsave(&rcd->exp_lock, flags);
788         if (kernel_tid_waiters(rcd, &rcd->flow_queue, qp))
789                 goto queue;
790
791         ret = kern_reserve_flow(rcd, fs->last_index);
792         if (ret < 0)
793                 goto queue;
794         fs->index = ret;
795         fs->last_index = fs->index;
796
797         /* Generation received in a RESYNC overrides default flow generation */
798         if (fs->generation != KERN_GENERATION_RESERVED)
799                 rcd->flows[fs->index].generation = fs->generation;
800         fs->generation = kern_setup_hw_flow(rcd, fs->index);
801         fs->psn = 0;
802         dequeue_tid_waiter(rcd, &rcd->flow_queue, qp);
803         /* get head before dropping lock */
804         fqp = first_qp(rcd, &rcd->flow_queue);
805         spin_unlock_irqrestore(&rcd->exp_lock, flags);
806
807         tid_rdma_schedule_tid_wakeup(fqp);
808         return 0;
809 queue:
810         queue_qp_for_tid_wait(rcd, &rcd->flow_queue, qp);
811         spin_unlock_irqrestore(&rcd->exp_lock, flags);
812         return -EAGAIN;
813 }
814
815 void hfi1_kern_clear_hw_flow(struct hfi1_ctxtdata *rcd, struct rvt_qp *qp)
816 {
817         struct hfi1_qp_priv *qpriv = (struct hfi1_qp_priv *)qp->priv;
818         struct tid_flow_state *fs = &qpriv->flow_state;
819         struct rvt_qp *fqp;
820         unsigned long flags;
821
822         if (fs->index >= RXE_NUM_TID_FLOWS)
823                 return;
824         spin_lock_irqsave(&rcd->exp_lock, flags);
825         kern_clear_hw_flow(rcd, fs->index);
826         clear_bit(fs->index, &rcd->flow_mask);
827         fs->index = RXE_NUM_TID_FLOWS;
828         fs->psn = 0;
829         fs->generation = KERN_GENERATION_RESERVED;
830
831         /* get head before dropping lock */
832         fqp = first_qp(rcd, &rcd->flow_queue);
833         spin_unlock_irqrestore(&rcd->exp_lock, flags);
834
835         if (fqp == qp) {
836                 __trigger_tid_waiter(fqp);
837                 rvt_put_qp(fqp);
838         } else {
839                 tid_rdma_schedule_tid_wakeup(fqp);
840         }
841 }
842
843 void hfi1_kern_init_ctxt_generations(struct hfi1_ctxtdata *rcd)
844 {
845         int i;
846
847         for (i = 0; i < RXE_NUM_TID_FLOWS; i++) {
848                 rcd->flows[i].generation = mask_generation(prandom_u32());
849                 kern_set_hw_flow(rcd, KERN_GENERATION_RESERVED, i);
850         }
851 }
852
853 /* TID allocation functions */
854 static u8 trdma_pset_order(struct tid_rdma_pageset *s)
855 {
856         u8 count = s->count;
857
858         return ilog2(count) + 1;
859 }
860
861 /**
862  * tid_rdma_find_phys_blocks_4k - get groups base on mr info
863  * @npages - number of pages
864  * @pages - pointer to an array of page structs
865  * @list - page set array to return
866  *
867  * This routine returns the number of groups associated with
868  * the current sge information.  This implementation is based
869  * on the expected receive find_phys_blocks() adjusted to
870  * use the MR information vs. the pfn.
871  *
872  * Return:
873  * the number of RcvArray entries
874  */
875 static u32 tid_rdma_find_phys_blocks_4k(struct tid_rdma_flow *flow,
876                                         struct page **pages,
877                                         u32 npages,
878                                         struct tid_rdma_pageset *list)
879 {
880         u32 pagecount, pageidx, setcount = 0, i;
881         void *vaddr, *this_vaddr;
882
883         if (!npages)
884                 return 0;
885
886         /*
887          * Look for sets of physically contiguous pages in the user buffer.
888          * This will allow us to optimize Expected RcvArray entry usage by
889          * using the bigger supported sizes.
890          */
891         vaddr = page_address(pages[0]);
892         trace_hfi1_tid_flow_page(flow->req->qp, flow, 0, 0, 0, vaddr);
893         for (pageidx = 0, pagecount = 1, i = 1; i <= npages; i++) {
894                 this_vaddr = i < npages ? page_address(pages[i]) : NULL;
895                 trace_hfi1_tid_flow_page(flow->req->qp, flow, i, 0, 0,
896                                          this_vaddr);
897                 /*
898                  * If the vaddr's are not sequential, pages are not physically
899                  * contiguous.
900                  */
901                 if (this_vaddr != (vaddr + PAGE_SIZE)) {
902                         /*
903                          * At this point we have to loop over the set of
904                          * physically contiguous pages and break them down it
905                          * sizes supported by the HW.
906                          * There are two main constraints:
907                          *     1. The max buffer size is MAX_EXPECTED_BUFFER.
908                          *        If the total set size is bigger than that
909                          *        program only a MAX_EXPECTED_BUFFER chunk.
910                          *     2. The buffer size has to be a power of two. If
911                          *        it is not, round down to the closes power of
912                          *        2 and program that size.
913                          */
914                         while (pagecount) {
915                                 int maxpages = pagecount;
916                                 u32 bufsize = pagecount * PAGE_SIZE;
917
918                                 if (bufsize > MAX_EXPECTED_BUFFER)
919                                         maxpages =
920                                                 MAX_EXPECTED_BUFFER >>
921                                                 PAGE_SHIFT;
922                                 else if (!is_power_of_2(bufsize))
923                                         maxpages =
924                                                 rounddown_pow_of_two(bufsize) >>
925                                                 PAGE_SHIFT;
926
927                                 list[setcount].idx = pageidx;
928                                 list[setcount].count = maxpages;
929                                 trace_hfi1_tid_pageset(flow->req->qp, setcount,
930                                                        list[setcount].idx,
931                                                        list[setcount].count);
932                                 pagecount -= maxpages;
933                                 pageidx += maxpages;
934                                 setcount++;
935                         }
936                         pageidx = i;
937                         pagecount = 1;
938                         vaddr = this_vaddr;
939                 } else {
940                         vaddr += PAGE_SIZE;
941                         pagecount++;
942                 }
943         }
944         /* insure we always return an even number of sets */
945         if (setcount & 1)
946                 list[setcount++].count = 0;
947         return setcount;
948 }
949
950 /**
951  * tid_flush_pages - dump out pages into pagesets
952  * @list - list of pagesets
953  * @idx - pointer to current page index
954  * @pages - number of pages to dump
955  * @sets - current number of pagesset
956  *
957  * This routine flushes out accumuated pages.
958  *
959  * To insure an even number of sets the
960  * code may add a filler.
961  *
962  * This can happen with when pages is not
963  * a power of 2 or pages is a power of 2
964  * less than the maximum pages.
965  *
966  * Return:
967  * The new number of sets
968  */
969
970 static u32 tid_flush_pages(struct tid_rdma_pageset *list,
971                            u32 *idx, u32 pages, u32 sets)
972 {
973         while (pages) {
974                 u32 maxpages = pages;
975
976                 if (maxpages > MAX_EXPECTED_PAGES)
977                         maxpages = MAX_EXPECTED_PAGES;
978                 else if (!is_power_of_2(maxpages))
979                         maxpages = rounddown_pow_of_two(maxpages);
980                 list[sets].idx = *idx;
981                 list[sets++].count = maxpages;
982                 *idx += maxpages;
983                 pages -= maxpages;
984         }
985         /* might need a filler */
986         if (sets & 1)
987                 list[sets++].count = 0;
988         return sets;
989 }
990
991 /**
992  * tid_rdma_find_phys_blocks_8k - get groups base on mr info
993  * @pages - pointer to an array of page structs
994  * @npages - number of pages
995  * @list - page set array to return
996  *
997  * This routine parses an array of pages to compute pagesets
998  * in an 8k compatible way.
999  *
1000  * pages are tested two at a time, i, i + 1 for contiguous
1001  * pages and i - 1 and i contiguous pages.
1002  *
1003  * If any condition is false, any accumlated pages are flushed and
1004  * v0,v1 are emitted as separate PAGE_SIZE pagesets
1005  *
1006  * Otherwise, the current 8k is totaled for a future flush.
1007  *
1008  * Return:
1009  * The number of pagesets
1010  * list set with the returned number of pagesets
1011  *
1012  */
1013 static u32 tid_rdma_find_phys_blocks_8k(struct tid_rdma_flow *flow,
1014                                         struct page **pages,
1015                                         u32 npages,
1016                                         struct tid_rdma_pageset *list)
1017 {
1018         u32 idx, sets = 0, i;
1019         u32 pagecnt = 0;
1020         void *v0, *v1, *vm1;
1021
1022         if (!npages)
1023                 return 0;
1024         for (idx = 0, i = 0, vm1 = NULL; i < npages; i += 2) {
1025                 /* get a new v0 */
1026                 v0 = page_address(pages[i]);
1027                 trace_hfi1_tid_flow_page(flow->req->qp, flow, i, 1, 0, v0);
1028                 v1 = i + 1 < npages ?
1029                                 page_address(pages[i + 1]) : NULL;
1030                 trace_hfi1_tid_flow_page(flow->req->qp, flow, i, 1, 1, v1);
1031                 /* compare i, i + 1 vaddr */
1032                 if (v1 != (v0 + PAGE_SIZE)) {
1033                         /* flush out pages */
1034                         sets = tid_flush_pages(list, &idx, pagecnt, sets);
1035                         /* output v0,v1 as two pagesets */
1036                         list[sets].idx = idx++;
1037                         list[sets++].count = 1;
1038                         if (v1) {
1039                                 list[sets].count = 1;
1040                                 list[sets++].idx = idx++;
1041                         } else {
1042                                 list[sets++].count = 0;
1043                         }
1044                         vm1 = NULL;
1045                         pagecnt = 0;
1046                         continue;
1047                 }
1048                 /* i,i+1 consecutive, look at i-1,i */
1049                 if (vm1 && v0 != (vm1 + PAGE_SIZE)) {
1050                         /* flush out pages */
1051                         sets = tid_flush_pages(list, &idx, pagecnt, sets);
1052                         pagecnt = 0;
1053                 }
1054                 /* pages will always be a multiple of 8k */
1055                 pagecnt += 2;
1056                 /* save i-1 */
1057                 vm1 = v1;
1058                 /* move to next pair */
1059         }
1060         /* dump residual pages at end */
1061         sets = tid_flush_pages(list, &idx, npages - idx, sets);
1062         /* by design cannot be odd sets */
1063         WARN_ON(sets & 1);
1064         return sets;
1065 }
1066
1067 /**
1068  * Find pages for one segment of a sge array represented by @ss. The function
1069  * does not check the sge, the sge must have been checked for alignment with a
1070  * prior call to hfi1_kern_trdma_ok. Other sge checking is done as part of
1071  * rvt_lkey_ok and rvt_rkey_ok. Also, the function only modifies the local sge
1072  * copy maintained in @ss->sge, the original sge is not modified.
1073  *
1074  * Unlike IB RDMA WRITE, we can't decrement ss->num_sge here because we are not
1075  * releasing the MR reference count at the same time. Otherwise, we'll "leak"
1076  * references to the MR. This difference requires that we keep track of progress
1077  * into the sg_list. This is done by the cur_seg cursor in the tid_rdma_request
1078  * structure.
1079  */
1080 static u32 kern_find_pages(struct tid_rdma_flow *flow,
1081                            struct page **pages,
1082                            struct rvt_sge_state *ss, bool *last)
1083 {
1084         struct tid_rdma_request *req = flow->req;
1085         struct rvt_sge *sge = &ss->sge;
1086         u32 length = flow->req->seg_len;
1087         u32 len = PAGE_SIZE;
1088         u32 i = 0;
1089
1090         while (length && req->isge < ss->num_sge) {
1091                 pages[i++] = virt_to_page(sge->vaddr);
1092
1093                 sge->vaddr += len;
1094                 sge->length -= len;
1095                 sge->sge_length -= len;
1096                 if (!sge->sge_length) {
1097                         if (++req->isge < ss->num_sge)
1098                                 *sge = ss->sg_list[req->isge - 1];
1099                 } else if (sge->length == 0 && sge->mr->lkey) {
1100                         if (++sge->n >= RVT_SEGSZ) {
1101                                 ++sge->m;
1102                                 sge->n = 0;
1103                         }
1104                         sge->vaddr = sge->mr->map[sge->m]->segs[sge->n].vaddr;
1105                         sge->length = sge->mr->map[sge->m]->segs[sge->n].length;
1106                 }
1107                 length -= len;
1108         }
1109
1110         flow->length = flow->req->seg_len - length;
1111         *last = req->isge == ss->num_sge ? false : true;
1112         return i;
1113 }
1114
1115 static void dma_unmap_flow(struct tid_rdma_flow *flow)
1116 {
1117         struct hfi1_devdata *dd;
1118         int i;
1119         struct tid_rdma_pageset *pset;
1120
1121         dd = flow->req->rcd->dd;
1122         for (i = 0, pset = &flow->pagesets[0]; i < flow->npagesets;
1123                         i++, pset++) {
1124                 if (pset->count && pset->addr) {
1125                         dma_unmap_page(&dd->pcidev->dev,
1126                                        pset->addr,
1127                                        PAGE_SIZE * pset->count,
1128                                        DMA_FROM_DEVICE);
1129                         pset->mapped = 0;
1130                 }
1131         }
1132 }
1133
1134 static int dma_map_flow(struct tid_rdma_flow *flow, struct page **pages)
1135 {
1136         int i;
1137         struct hfi1_devdata *dd = flow->req->rcd->dd;
1138         struct tid_rdma_pageset *pset;
1139
1140         for (i = 0, pset = &flow->pagesets[0]; i < flow->npagesets;
1141                         i++, pset++) {
1142                 if (pset->count) {
1143                         pset->addr = dma_map_page(&dd->pcidev->dev,
1144                                                   pages[pset->idx],
1145                                                   0,
1146                                                   PAGE_SIZE * pset->count,
1147                                                   DMA_FROM_DEVICE);
1148
1149                         if (dma_mapping_error(&dd->pcidev->dev, pset->addr)) {
1150                                 dma_unmap_flow(flow);
1151                                 return -ENOMEM;
1152                         }
1153                         pset->mapped = 1;
1154                 }
1155         }
1156         return 0;
1157 }
1158
1159 static inline bool dma_mapped(struct tid_rdma_flow *flow)
1160 {
1161         return !!flow->pagesets[0].mapped;
1162 }
1163
1164 /*
1165  * Get pages pointers and identify contiguous physical memory chunks for a
1166  * segment. All segments are of length flow->req->seg_len.
1167  */
1168 static int kern_get_phys_blocks(struct tid_rdma_flow *flow,
1169                                 struct page **pages,
1170                                 struct rvt_sge_state *ss, bool *last)
1171 {
1172         u8 npages;
1173
1174         /* Reuse previously computed pagesets, if any */
1175         if (flow->npagesets) {
1176                 trace_hfi1_tid_flow_alloc(flow->req->qp, flow->req->setup_head,
1177                                           flow);
1178                 if (!dma_mapped(flow))
1179                         return dma_map_flow(flow, pages);
1180                 return 0;
1181         }
1182
1183         npages = kern_find_pages(flow, pages, ss, last);
1184
1185         if (flow->req->qp->pmtu == enum_to_mtu(OPA_MTU_4096))
1186                 flow->npagesets =
1187                         tid_rdma_find_phys_blocks_4k(flow, pages, npages,
1188                                                      flow->pagesets);
1189         else
1190                 flow->npagesets =
1191                         tid_rdma_find_phys_blocks_8k(flow, pages, npages,
1192                                                      flow->pagesets);
1193
1194         return dma_map_flow(flow, pages);
1195 }
1196
1197 static inline void kern_add_tid_node(struct tid_rdma_flow *flow,
1198                                      struct hfi1_ctxtdata *rcd, char *s,
1199                                      struct tid_group *grp, u8 cnt)
1200 {
1201         struct kern_tid_node *node = &flow->tnode[flow->tnode_cnt++];
1202
1203         WARN_ON_ONCE(flow->tnode_cnt >=
1204                      (TID_RDMA_MAX_SEGMENT_SIZE >> PAGE_SHIFT));
1205         if (WARN_ON_ONCE(cnt & 1))
1206                 dd_dev_err(rcd->dd,
1207                            "unexpected odd allocation cnt %u map 0x%x used %u",
1208                            cnt, grp->map, grp->used);
1209
1210         node->grp = grp;
1211         node->map = grp->map;
1212         node->cnt = cnt;
1213         trace_hfi1_tid_node_add(flow->req->qp, s, flow->tnode_cnt - 1,
1214                                 grp->base, grp->map, grp->used, cnt);
1215 }
1216
1217 /*
1218  * Try to allocate pageset_count TID's from TID groups for a context
1219  *
1220  * This function allocates TID's without moving groups between lists or
1221  * modifying grp->map. This is done as follows, being cogizant of the lists
1222  * between which the TID groups will move:
1223  * 1. First allocate complete groups of 8 TID's since this is more efficient,
1224  *    these groups will move from group->full without affecting used
1225  * 2. If more TID's are needed allocate from used (will move from used->full or
1226  *    stay in used)
1227  * 3. If we still don't have the required number of TID's go back and look again
1228  *    at a complete group (will move from group->used)
1229  */
1230 static int kern_alloc_tids(struct tid_rdma_flow *flow)
1231 {
1232         struct hfi1_ctxtdata *rcd = flow->req->rcd;
1233         struct hfi1_devdata *dd = rcd->dd;
1234         u32 ngroups, pageidx = 0;
1235         struct tid_group *group = NULL, *used;
1236         u8 use;
1237
1238         flow->tnode_cnt = 0;
1239         ngroups = flow->npagesets / dd->rcv_entries.group_size;
1240         if (!ngroups)
1241                 goto used_list;
1242
1243         /* First look at complete groups */
1244         list_for_each_entry(group,  &rcd->tid_group_list.list, list) {
1245                 kern_add_tid_node(flow, rcd, "complete groups", group,
1246                                   group->size);
1247
1248                 pageidx += group->size;
1249                 if (!--ngroups)
1250                         break;
1251         }
1252
1253         if (pageidx >= flow->npagesets)
1254                 goto ok;
1255
1256 used_list:
1257         /* Now look at partially used groups */
1258         list_for_each_entry(used, &rcd->tid_used_list.list, list) {
1259                 use = min_t(u32, flow->npagesets - pageidx,
1260                             used->size - used->used);
1261                 kern_add_tid_node(flow, rcd, "used groups", used, use);
1262
1263                 pageidx += use;
1264                 if (pageidx >= flow->npagesets)
1265                         goto ok;
1266         }
1267
1268         /*
1269          * Look again at a complete group, continuing from where we left.
1270          * However, if we are at the head, we have reached the end of the
1271          * complete groups list from the first loop above
1272          */
1273         if (group && &group->list == &rcd->tid_group_list.list)
1274                 goto bail_eagain;
1275         group = list_prepare_entry(group, &rcd->tid_group_list.list,
1276                                    list);
1277         if (list_is_last(&group->list, &rcd->tid_group_list.list))
1278                 goto bail_eagain;
1279         group = list_next_entry(group, list);
1280         use = min_t(u32, flow->npagesets - pageidx, group->size);
1281         kern_add_tid_node(flow, rcd, "complete continue", group, use);
1282         pageidx += use;
1283         if (pageidx >= flow->npagesets)
1284                 goto ok;
1285 bail_eagain:
1286         trace_hfi1_msg_alloc_tids(flow->req->qp, " insufficient tids: needed ",
1287                                   (u64)flow->npagesets);
1288         return -EAGAIN;
1289 ok:
1290         return 0;
1291 }
1292
1293 static void kern_program_rcv_group(struct tid_rdma_flow *flow, int grp_num,
1294                                    u32 *pset_idx)
1295 {
1296         struct hfi1_ctxtdata *rcd = flow->req->rcd;
1297         struct hfi1_devdata *dd = rcd->dd;
1298         struct kern_tid_node *node = &flow->tnode[grp_num];
1299         struct tid_group *grp = node->grp;
1300         struct tid_rdma_pageset *pset;
1301         u32 pmtu_pg = flow->req->qp->pmtu >> PAGE_SHIFT;
1302         u32 rcventry, npages = 0, pair = 0, tidctrl;
1303         u8 i, cnt = 0;
1304
1305         for (i = 0; i < grp->size; i++) {
1306                 rcventry = grp->base + i;
1307
1308                 if (node->map & BIT(i) || cnt >= node->cnt) {
1309                         rcv_array_wc_fill(dd, rcventry);
1310                         continue;
1311                 }
1312                 pset = &flow->pagesets[(*pset_idx)++];
1313                 if (pset->count) {
1314                         hfi1_put_tid(dd, rcventry, PT_EXPECTED,
1315                                      pset->addr, trdma_pset_order(pset));
1316                 } else {
1317                         hfi1_put_tid(dd, rcventry, PT_INVALID, 0, 0);
1318                 }
1319                 npages += pset->count;
1320
1321                 rcventry -= rcd->expected_base;
1322                 tidctrl = pair ? 0x3 : rcventry & 0x1 ? 0x2 : 0x1;
1323                 /*
1324                  * A single TID entry will be used to use a rcvarr pair (with
1325                  * tidctrl 0x3), if ALL these are true (a) the bit pos is even
1326                  * (b) the group map shows current and the next bits as free
1327                  * indicating two consecutive rcvarry entries are available (c)
1328                  * we actually need 2 more entries
1329                  */
1330                 pair = !(i & 0x1) && !((node->map >> i) & 0x3) &&
1331                         node->cnt >= cnt + 2;
1332                 if (!pair) {
1333                         if (!pset->count)
1334                                 tidctrl = 0x1;
1335                         flow->tid_entry[flow->tidcnt++] =
1336                                 EXP_TID_SET(IDX, rcventry >> 1) |
1337                                 EXP_TID_SET(CTRL, tidctrl) |
1338                                 EXP_TID_SET(LEN, npages);
1339                         trace_hfi1_tid_entry_alloc(/* entry */
1340                            flow->req->qp, flow->tidcnt - 1,
1341                            flow->tid_entry[flow->tidcnt - 1]);
1342
1343                         /* Efficient DIV_ROUND_UP(npages, pmtu_pg) */
1344                         flow->npkts += (npages + pmtu_pg - 1) >> ilog2(pmtu_pg);
1345                         npages = 0;
1346                 }
1347
1348                 if (grp->used == grp->size - 1)
1349                         tid_group_move(grp, &rcd->tid_used_list,
1350                                        &rcd->tid_full_list);
1351                 else if (!grp->used)
1352                         tid_group_move(grp, &rcd->tid_group_list,
1353                                        &rcd->tid_used_list);
1354
1355                 grp->used++;
1356                 grp->map |= BIT(i);
1357                 cnt++;
1358         }
1359 }
1360
1361 static void kern_unprogram_rcv_group(struct tid_rdma_flow *flow, int grp_num)
1362 {
1363         struct hfi1_ctxtdata *rcd = flow->req->rcd;
1364         struct hfi1_devdata *dd = rcd->dd;
1365         struct kern_tid_node *node = &flow->tnode[grp_num];
1366         struct tid_group *grp = node->grp;
1367         u32 rcventry;
1368         u8 i, cnt = 0;
1369
1370         for (i = 0; i < grp->size; i++) {
1371                 rcventry = grp->base + i;
1372
1373                 if (node->map & BIT(i) || cnt >= node->cnt) {
1374                         rcv_array_wc_fill(dd, rcventry);
1375                         continue;
1376                 }
1377
1378                 hfi1_put_tid(dd, rcventry, PT_INVALID, 0, 0);
1379
1380                 grp->used--;
1381                 grp->map &= ~BIT(i);
1382                 cnt++;
1383
1384                 if (grp->used == grp->size - 1)
1385                         tid_group_move(grp, &rcd->tid_full_list,
1386                                        &rcd->tid_used_list);
1387                 else if (!grp->used)
1388                         tid_group_move(grp, &rcd->tid_used_list,
1389                                        &rcd->tid_group_list);
1390         }
1391         if (WARN_ON_ONCE(cnt & 1)) {
1392                 struct hfi1_ctxtdata *rcd = flow->req->rcd;
1393                 struct hfi1_devdata *dd = rcd->dd;
1394
1395                 dd_dev_err(dd, "unexpected odd free cnt %u map 0x%x used %u",
1396                            cnt, grp->map, grp->used);
1397         }
1398 }
1399
1400 static void kern_program_rcvarray(struct tid_rdma_flow *flow)
1401 {
1402         u32 pset_idx = 0;
1403         int i;
1404
1405         flow->npkts = 0;
1406         flow->tidcnt = 0;
1407         for (i = 0; i < flow->tnode_cnt; i++)
1408                 kern_program_rcv_group(flow, i, &pset_idx);
1409         trace_hfi1_tid_flow_alloc(flow->req->qp, flow->req->setup_head, flow);
1410 }
1411
1412 /**
1413  * hfi1_kern_exp_rcv_setup() - setup TID's and flow for one segment of a
1414  * TID RDMA request
1415  *
1416  * @req: TID RDMA request for which the segment/flow is being set up
1417  * @ss: sge state, maintains state across successive segments of a sge
1418  * @last: set to true after the last sge segment has been processed
1419  *
1420  * This function
1421  * (1) finds a free flow entry in the flow circular buffer
1422  * (2) finds pages and continuous physical chunks constituing one segment
1423  *     of an sge
1424  * (3) allocates TID group entries for those chunks
1425  * (4) programs rcvarray entries in the hardware corresponding to those
1426  *     TID's
1427  * (5) computes a tidarray with formatted TID entries which can be sent
1428  *     to the sender
1429  * (6) Reserves and programs HW flows.
1430  * (7) It also manages queing the QP when TID/flow resources are not
1431  *     available.
1432  *
1433  * @req points to struct tid_rdma_request of which the segments are a part. The
1434  * function uses qp, rcd and seg_len members of @req. In the absence of errors,
1435  * req->flow_idx is the index of the flow which has been prepared in this
1436  * invocation of function call. With flow = &req->flows[req->flow_idx],
1437  * flow->tid_entry contains the TID array which the sender can use for TID RDMA
1438  * sends and flow->npkts contains number of packets required to send the
1439  * segment.
1440  *
1441  * hfi1_check_sge_align should be called prior to calling this function and if
1442  * it signals error TID RDMA cannot be used for this sge and this function
1443  * should not be called.
1444  *
1445  * For the queuing, caller must hold the flow->req->qp s_lock from the send
1446  * engine and the function will procure the exp_lock.
1447  *
1448  * Return:
1449  * The function returns -EAGAIN if sufficient number of TID/flow resources to
1450  * map the segment could not be allocated. In this case the function should be
1451  * called again with previous arguments to retry the TID allocation. There are
1452  * no other error returns. The function returns 0 on success.
1453  */
1454 int hfi1_kern_exp_rcv_setup(struct tid_rdma_request *req,
1455                             struct rvt_sge_state *ss, bool *last)
1456         __must_hold(&req->qp->s_lock)
1457 {
1458         struct tid_rdma_flow *flow = &req->flows[req->setup_head];
1459         struct hfi1_ctxtdata *rcd = req->rcd;
1460         struct hfi1_qp_priv *qpriv = req->qp->priv;
1461         unsigned long flags;
1462         struct rvt_qp *fqp;
1463         u16 clear_tail = req->clear_tail;
1464
1465         lockdep_assert_held(&req->qp->s_lock);
1466         /*
1467          * We return error if either (a) we don't have space in the flow
1468          * circular buffer, or (b) we already have max entries in the buffer.
1469          * Max entries depend on the type of request we are processing and the
1470          * negotiated TID RDMA parameters.
1471          */
1472         if (!CIRC_SPACE(req->setup_head, clear_tail, MAX_FLOWS) ||
1473             CIRC_CNT(req->setup_head, clear_tail, MAX_FLOWS) >=
1474             req->n_flows)
1475                 return -EINVAL;
1476
1477         /*
1478          * Get pages, identify contiguous physical memory chunks for the segment
1479          * If we can not determine a DMA address mapping we will treat it just
1480          * like if we ran out of space above.
1481          */
1482         if (kern_get_phys_blocks(flow, qpriv->pages, ss, last)) {
1483                 hfi1_wait_kmem(flow->req->qp);
1484                 return -ENOMEM;
1485         }
1486
1487         spin_lock_irqsave(&rcd->exp_lock, flags);
1488         if (kernel_tid_waiters(rcd, &rcd->rarr_queue, flow->req->qp))
1489                 goto queue;
1490
1491         /*
1492          * At this point we know the number of pagesets and hence the number of
1493          * TID's to map the segment. Allocate the TID's from the TID groups. If
1494          * we cannot allocate the required number we exit and try again later
1495          */
1496         if (kern_alloc_tids(flow))
1497                 goto queue;
1498         /*
1499          * Finally program the TID entries with the pagesets, compute the
1500          * tidarray and enable the HW flow
1501          */
1502         kern_program_rcvarray(flow);
1503
1504         /*
1505          * Setup the flow state with relevant information.
1506          * This information is used for tracking the sequence of data packets
1507          * for the segment.
1508          * The flow is setup here as this is the most accurate time and place
1509          * to do so. Doing at a later time runs the risk of the flow data in
1510          * qpriv getting out of sync.
1511          */
1512         memset(&flow->flow_state, 0x0, sizeof(flow->flow_state));
1513         flow->idx = qpriv->flow_state.index;
1514         flow->flow_state.generation = qpriv->flow_state.generation;
1515         flow->flow_state.spsn = qpriv->flow_state.psn;
1516         flow->flow_state.lpsn = flow->flow_state.spsn + flow->npkts - 1;
1517         flow->flow_state.r_next_psn =
1518                 full_flow_psn(flow, flow->flow_state.spsn);
1519         qpriv->flow_state.psn += flow->npkts;
1520
1521         dequeue_tid_waiter(rcd, &rcd->rarr_queue, flow->req->qp);
1522         /* get head before dropping lock */
1523         fqp = first_qp(rcd, &rcd->rarr_queue);
1524         spin_unlock_irqrestore(&rcd->exp_lock, flags);
1525         tid_rdma_schedule_tid_wakeup(fqp);
1526
1527         req->setup_head = (req->setup_head + 1) & (MAX_FLOWS - 1);
1528         return 0;
1529 queue:
1530         queue_qp_for_tid_wait(rcd, &rcd->rarr_queue, flow->req->qp);
1531         spin_unlock_irqrestore(&rcd->exp_lock, flags);
1532         return -EAGAIN;
1533 }
1534
1535 static void hfi1_tid_rdma_reset_flow(struct tid_rdma_flow *flow)
1536 {
1537         flow->npagesets = 0;
1538 }
1539
1540 /*
1541  * This function is called after one segment has been successfully sent to
1542  * release the flow and TID HW/SW resources for that segment. The segments for a
1543  * TID RDMA request are setup and cleared in FIFO order which is managed using a
1544  * circular buffer.
1545  */
1546 int hfi1_kern_exp_rcv_clear(struct tid_rdma_request *req)
1547         __must_hold(&req->qp->s_lock)
1548 {
1549         struct tid_rdma_flow *flow = &req->flows[req->clear_tail];
1550         struct hfi1_ctxtdata *rcd = req->rcd;
1551         unsigned long flags;
1552         int i;
1553         struct rvt_qp *fqp;
1554
1555         lockdep_assert_held(&req->qp->s_lock);
1556         /* Exit if we have nothing in the flow circular buffer */
1557         if (!CIRC_CNT(req->setup_head, req->clear_tail, MAX_FLOWS))
1558                 return -EINVAL;
1559
1560         spin_lock_irqsave(&rcd->exp_lock, flags);
1561
1562         for (i = 0; i < flow->tnode_cnt; i++)
1563                 kern_unprogram_rcv_group(flow, i);
1564         /* To prevent double unprogramming */
1565         flow->tnode_cnt = 0;
1566         /* get head before dropping lock */
1567         fqp = first_qp(rcd, &rcd->rarr_queue);
1568         spin_unlock_irqrestore(&rcd->exp_lock, flags);
1569
1570         dma_unmap_flow(flow);
1571
1572         hfi1_tid_rdma_reset_flow(flow);
1573         req->clear_tail = (req->clear_tail + 1) & (MAX_FLOWS - 1);
1574
1575         if (fqp == req->qp) {
1576                 __trigger_tid_waiter(fqp);
1577                 rvt_put_qp(fqp);
1578         } else {
1579                 tid_rdma_schedule_tid_wakeup(fqp);
1580         }
1581
1582         return 0;
1583 }
1584
1585 /*
1586  * This function is called to release all the tid entries for
1587  * a request.
1588  */
1589 void hfi1_kern_exp_rcv_clear_all(struct tid_rdma_request *req)
1590         __must_hold(&req->qp->s_lock)
1591 {
1592         /* Use memory barrier for proper ordering */
1593         while (CIRC_CNT(req->setup_head, req->clear_tail, MAX_FLOWS)) {
1594                 if (hfi1_kern_exp_rcv_clear(req))
1595                         break;
1596         }
1597 }
1598
1599 /**
1600  * hfi1_kern_exp_rcv_free_flows - free priviously allocated flow information
1601  * @req - the tid rdma request to be cleaned
1602  */
1603 static void hfi1_kern_exp_rcv_free_flows(struct tid_rdma_request *req)
1604 {
1605         kfree(req->flows);
1606         req->flows = NULL;
1607 }
1608
1609 /**
1610  * __trdma_clean_swqe - clean up for large sized QPs
1611  * @qp: the queue patch
1612  * @wqe: the send wqe
1613  */
1614 void __trdma_clean_swqe(struct rvt_qp *qp, struct rvt_swqe *wqe)
1615 {
1616         struct hfi1_swqe_priv *p = wqe->priv;
1617
1618         hfi1_kern_exp_rcv_free_flows(&p->tid_req);
1619 }
1620
1621 /*
1622  * This can be called at QP create time or in the data path.
1623  */
1624 static int hfi1_kern_exp_rcv_alloc_flows(struct tid_rdma_request *req,
1625                                          gfp_t gfp)
1626 {
1627         struct tid_rdma_flow *flows;
1628         int i;
1629
1630         if (likely(req->flows))
1631                 return 0;
1632         flows = kmalloc_node(MAX_FLOWS * sizeof(*flows), gfp,
1633                              req->rcd->numa_id);
1634         if (!flows)
1635                 return -ENOMEM;
1636         /* mini init */
1637         for (i = 0; i < MAX_FLOWS; i++) {
1638                 flows[i].req = req;
1639                 flows[i].npagesets = 0;
1640                 flows[i].pagesets[0].mapped =  0;
1641                 flows[i].resync_npkts = 0;
1642         }
1643         req->flows = flows;
1644         return 0;
1645 }
1646
1647 static void hfi1_init_trdma_req(struct rvt_qp *qp,
1648                                 struct tid_rdma_request *req)
1649 {
1650         struct hfi1_qp_priv *qpriv = qp->priv;
1651
1652         /*
1653          * Initialize various TID RDMA request variables.
1654          * These variables are "static", which is why they
1655          * can be pre-initialized here before the WRs has
1656          * even been submitted.
1657          * However, non-NULL values for these variables do not
1658          * imply that this WQE has been enabled for TID RDMA.
1659          * Drivers should check the WQE's opcode to determine
1660          * if a request is a TID RDMA one or not.
1661          */
1662         req->qp = qp;
1663         req->rcd = qpriv->rcd;
1664 }
1665
1666 u64 hfi1_access_sw_tid_wait(const struct cntr_entry *entry,
1667                             void *context, int vl, int mode, u64 data)
1668 {
1669         struct hfi1_devdata *dd = context;
1670
1671         return dd->verbs_dev.n_tidwait;
1672 }
1673
1674 static struct tid_rdma_flow *find_flow_ib(struct tid_rdma_request *req,
1675                                           u32 psn, u16 *fidx)
1676 {
1677         u16 head, tail;
1678         struct tid_rdma_flow *flow;
1679
1680         head = req->setup_head;
1681         tail = req->clear_tail;
1682         for ( ; CIRC_CNT(head, tail, MAX_FLOWS);
1683              tail = CIRC_NEXT(tail, MAX_FLOWS)) {
1684                 flow = &req->flows[tail];
1685                 if (cmp_psn(psn, flow->flow_state.ib_spsn) >= 0 &&
1686                     cmp_psn(psn, flow->flow_state.ib_lpsn) <= 0) {
1687                         if (fidx)
1688                                 *fidx = tail;
1689                         return flow;
1690                 }
1691         }
1692         return NULL;
1693 }
1694
1695 /* TID RDMA READ functions */
1696 u32 hfi1_build_tid_rdma_read_packet(struct rvt_swqe *wqe,
1697                                     struct ib_other_headers *ohdr, u32 *bth1,
1698                                     u32 *bth2, u32 *len)
1699 {
1700         struct tid_rdma_request *req = wqe_to_tid_req(wqe);
1701         struct tid_rdma_flow *flow = &req->flows[req->flow_idx];
1702         struct rvt_qp *qp = req->qp;
1703         struct hfi1_qp_priv *qpriv = qp->priv;
1704         struct hfi1_swqe_priv *wpriv = wqe->priv;
1705         struct tid_rdma_read_req *rreq = &ohdr->u.tid_rdma.r_req;
1706         struct tid_rdma_params *remote;
1707         u32 req_len = 0;
1708         void *req_addr = NULL;
1709
1710         /* This is the IB psn used to send the request */
1711         *bth2 = mask_psn(flow->flow_state.ib_spsn + flow->pkt);
1712         trace_hfi1_tid_flow_build_read_pkt(qp, req->flow_idx, flow);
1713
1714         /* TID Entries for TID RDMA READ payload */
1715         req_addr = &flow->tid_entry[flow->tid_idx];
1716         req_len = sizeof(*flow->tid_entry) *
1717                         (flow->tidcnt - flow->tid_idx);
1718
1719         memset(&ohdr->u.tid_rdma.r_req, 0, sizeof(ohdr->u.tid_rdma.r_req));
1720         wpriv->ss.sge.vaddr = req_addr;
1721         wpriv->ss.sge.sge_length = req_len;
1722         wpriv->ss.sge.length = wpriv->ss.sge.sge_length;
1723         /*
1724          * We can safely zero these out. Since the first SGE covers the
1725          * entire packet, nothing else should even look at the MR.
1726          */
1727         wpriv->ss.sge.mr = NULL;
1728         wpriv->ss.sge.m = 0;
1729         wpriv->ss.sge.n = 0;
1730
1731         wpriv->ss.sg_list = NULL;
1732         wpriv->ss.total_len = wpriv->ss.sge.sge_length;
1733         wpriv->ss.num_sge = 1;
1734
1735         /* Construct the TID RDMA READ REQ packet header */
1736         rcu_read_lock();
1737         remote = rcu_dereference(qpriv->tid_rdma.remote);
1738
1739         KDETH_RESET(rreq->kdeth0, KVER, 0x1);
1740         KDETH_RESET(rreq->kdeth1, JKEY, remote->jkey);
1741         rreq->reth.vaddr = cpu_to_be64(wqe->rdma_wr.remote_addr +
1742                            req->cur_seg * req->seg_len + flow->sent);
1743         rreq->reth.rkey = cpu_to_be32(wqe->rdma_wr.rkey);
1744         rreq->reth.length = cpu_to_be32(*len);
1745         rreq->tid_flow_psn =
1746                 cpu_to_be32((flow->flow_state.generation <<
1747                              HFI1_KDETH_BTH_SEQ_SHIFT) |
1748                             ((flow->flow_state.spsn + flow->pkt) &
1749                              HFI1_KDETH_BTH_SEQ_MASK));
1750         rreq->tid_flow_qp =
1751                 cpu_to_be32(qpriv->tid_rdma.local.qp |
1752                             ((flow->idx & TID_RDMA_DESTQP_FLOW_MASK) <<
1753                              TID_RDMA_DESTQP_FLOW_SHIFT) |
1754                             qpriv->rcd->ctxt);
1755         rreq->verbs_qp = cpu_to_be32(qp->remote_qpn);
1756         *bth1 &= ~RVT_QPN_MASK;
1757         *bth1 |= remote->qp;
1758         *bth2 |= IB_BTH_REQ_ACK;
1759         rcu_read_unlock();
1760
1761         /* We are done with this segment */
1762         flow->sent += *len;
1763         req->cur_seg++;
1764         qp->s_state = TID_OP(READ_REQ);
1765         req->ack_pending++;
1766         req->flow_idx = (req->flow_idx + 1) & (MAX_FLOWS - 1);
1767         qpriv->pending_tid_r_segs++;
1768         qp->s_num_rd_atomic++;
1769
1770         /* Set the TID RDMA READ request payload size */
1771         *len = req_len;
1772
1773         return sizeof(ohdr->u.tid_rdma.r_req) / sizeof(u32);
1774 }
1775
1776 /*
1777  * @len: contains the data length to read upon entry and the read request
1778  *       payload length upon exit.
1779  */
1780 u32 hfi1_build_tid_rdma_read_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
1781                                  struct ib_other_headers *ohdr, u32 *bth1,
1782                                  u32 *bth2, u32 *len)
1783         __must_hold(&qp->s_lock)
1784 {
1785         struct hfi1_qp_priv *qpriv = qp->priv;
1786         struct tid_rdma_request *req = wqe_to_tid_req(wqe);
1787         struct tid_rdma_flow *flow = NULL;
1788         u32 hdwords = 0;
1789         bool last;
1790         bool retry = true;
1791         u32 npkts = rvt_div_round_up_mtu(qp, *len);
1792
1793         trace_hfi1_tid_req_build_read_req(qp, 0, wqe->wr.opcode, wqe->psn,
1794                                           wqe->lpsn, req);
1795         /*
1796          * Check sync conditions. Make sure that there are no pending
1797          * segments before freeing the flow.
1798          */
1799 sync_check:
1800         if (req->state == TID_REQUEST_SYNC) {
1801                 if (qpriv->pending_tid_r_segs)
1802                         goto done;
1803
1804                 hfi1_kern_clear_hw_flow(req->rcd, qp);
1805                 qpriv->s_flags &= ~HFI1_R_TID_SW_PSN;
1806                 req->state = TID_REQUEST_ACTIVE;
1807         }
1808
1809         /*
1810          * If the request for this segment is resent, the tid resources should
1811          * have been allocated before. In this case, req->flow_idx should
1812          * fall behind req->setup_head.
1813          */
1814         if (req->flow_idx == req->setup_head) {
1815                 retry = false;
1816                 if (req->state == TID_REQUEST_RESEND) {
1817                         /*
1818                          * This is the first new segment for a request whose
1819                          * earlier segments have been re-sent. We need to
1820                          * set up the sge pointer correctly.
1821                          */
1822                         restart_sge(&qp->s_sge, wqe, req->s_next_psn,
1823                                     qp->pmtu);
1824                         req->isge = 0;
1825                         req->state = TID_REQUEST_ACTIVE;
1826                 }
1827
1828                 /*
1829                  * Check sync. The last PSN of each generation is reserved for
1830                  * RESYNC.
1831                  */
1832                 if ((qpriv->flow_state.psn + npkts) > MAX_TID_FLOW_PSN - 1) {
1833                         req->state = TID_REQUEST_SYNC;
1834                         goto sync_check;
1835                 }
1836
1837                 /* Allocate the flow if not yet */
1838                 if (hfi1_kern_setup_hw_flow(qpriv->rcd, qp))
1839                         goto done;
1840
1841                 /*
1842                  * The following call will advance req->setup_head after
1843                  * allocating the tid entries.
1844                  */
1845                 if (hfi1_kern_exp_rcv_setup(req, &qp->s_sge, &last)) {
1846                         req->state = TID_REQUEST_QUEUED;
1847
1848                         /*
1849                          * We don't have resources for this segment. The QP has
1850                          * already been queued.
1851                          */
1852                         goto done;
1853                 }
1854         }
1855
1856         /* req->flow_idx should only be one slot behind req->setup_head */
1857         flow = &req->flows[req->flow_idx];
1858         flow->pkt = 0;
1859         flow->tid_idx = 0;
1860         flow->sent = 0;
1861         if (!retry) {
1862                 /* Set the first and last IB PSN for the flow in use.*/
1863                 flow->flow_state.ib_spsn = req->s_next_psn;
1864                 flow->flow_state.ib_lpsn =
1865                         flow->flow_state.ib_spsn + flow->npkts - 1;
1866         }
1867
1868         /* Calculate the next segment start psn.*/
1869         req->s_next_psn += flow->npkts;
1870
1871         /* Build the packet header */
1872         hdwords = hfi1_build_tid_rdma_read_packet(wqe, ohdr, bth1, bth2, len);
1873 done:
1874         return hdwords;
1875 }
1876
1877 /*
1878  * Validate and accept the TID RDMA READ request parameters.
1879  * Return 0 if the request is accepted successfully;
1880  * Return 1 otherwise.
1881  */
1882 static int tid_rdma_rcv_read_request(struct rvt_qp *qp,
1883                                      struct rvt_ack_entry *e,
1884                                      struct hfi1_packet *packet,
1885                                      struct ib_other_headers *ohdr,
1886                                      u32 bth0, u32 psn, u64 vaddr, u32 len)
1887 {
1888         struct hfi1_qp_priv *qpriv = qp->priv;
1889         struct tid_rdma_request *req;
1890         struct tid_rdma_flow *flow;
1891         u32 flow_psn, i, tidlen = 0, pktlen, tlen;
1892
1893         req = ack_to_tid_req(e);
1894
1895         /* Validate the payload first */
1896         flow = &req->flows[req->setup_head];
1897
1898         /* payload length = packet length - (header length + ICRC length) */
1899         pktlen = packet->tlen - (packet->hlen + 4);
1900         if (pktlen > sizeof(flow->tid_entry))
1901                 return 1;
1902         memcpy(flow->tid_entry, packet->ebuf, pktlen);
1903         flow->tidcnt = pktlen / sizeof(*flow->tid_entry);
1904
1905         /*
1906          * Walk the TID_ENTRY list to make sure we have enough space for a
1907          * complete segment. Also calculate the number of required packets.
1908          */
1909         flow->npkts = rvt_div_round_up_mtu(qp, len);
1910         for (i = 0; i < flow->tidcnt; i++) {
1911                 trace_hfi1_tid_entry_rcv_read_req(qp, i,
1912                                                   flow->tid_entry[i]);
1913                 tlen = EXP_TID_GET(flow->tid_entry[i], LEN);
1914                 if (!tlen)
1915                         return 1;
1916
1917                 /*
1918                  * For tid pair (tidctr == 3), the buffer size of the pair
1919                  * should be the sum of the buffer size described by each
1920                  * tid entry. However, only the first entry needs to be
1921                  * specified in the request (see WFR HAS Section 8.5.7.1).
1922                  */
1923                 tidlen += tlen;
1924         }
1925         if (tidlen * PAGE_SIZE < len)
1926                 return 1;
1927
1928         /* Empty the flow array */
1929         req->clear_tail = req->setup_head;
1930         flow->pkt = 0;
1931         flow->tid_idx = 0;
1932         flow->tid_offset = 0;
1933         flow->sent = 0;
1934         flow->tid_qpn = be32_to_cpu(ohdr->u.tid_rdma.r_req.tid_flow_qp);
1935         flow->idx = (flow->tid_qpn >> TID_RDMA_DESTQP_FLOW_SHIFT) &
1936                     TID_RDMA_DESTQP_FLOW_MASK;
1937         flow_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.r_req.tid_flow_psn));
1938         flow->flow_state.generation = flow_psn >> HFI1_KDETH_BTH_SEQ_SHIFT;
1939         flow->flow_state.spsn = flow_psn & HFI1_KDETH_BTH_SEQ_MASK;
1940         flow->length = len;
1941
1942         flow->flow_state.lpsn = flow->flow_state.spsn +
1943                 flow->npkts - 1;
1944         flow->flow_state.ib_spsn = psn;
1945         flow->flow_state.ib_lpsn = flow->flow_state.ib_spsn + flow->npkts - 1;
1946
1947         trace_hfi1_tid_flow_rcv_read_req(qp, req->setup_head, flow);
1948         /* Set the initial flow index to the current flow. */
1949         req->flow_idx = req->setup_head;
1950
1951         /* advance circular buffer head */
1952         req->setup_head = (req->setup_head + 1) & (MAX_FLOWS - 1);
1953
1954         /*
1955          * Compute last PSN for request.
1956          */
1957         e->opcode = (bth0 >> 24) & 0xff;
1958         e->psn = psn;
1959         e->lpsn = psn + flow->npkts - 1;
1960         e->sent = 0;
1961
1962         req->n_flows = qpriv->tid_rdma.local.max_read;
1963         req->state = TID_REQUEST_ACTIVE;
1964         req->cur_seg = 0;
1965         req->comp_seg = 0;
1966         req->ack_seg = 0;
1967         req->isge = 0;
1968         req->seg_len = qpriv->tid_rdma.local.max_len;
1969         req->total_len = len;
1970         req->total_segs = 1;
1971         req->r_flow_psn = e->psn;
1972
1973         trace_hfi1_tid_req_rcv_read_req(qp, 0, e->opcode, e->psn, e->lpsn,
1974                                         req);
1975         return 0;
1976 }
1977
1978 static int tid_rdma_rcv_error(struct hfi1_packet *packet,
1979                               struct ib_other_headers *ohdr,
1980                               struct rvt_qp *qp, u32 psn, int diff)
1981 {
1982         struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
1983         struct hfi1_ctxtdata *rcd = ((struct hfi1_qp_priv *)qp->priv)->rcd;
1984         struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
1985         struct hfi1_qp_priv *qpriv = qp->priv;
1986         struct rvt_ack_entry *e;
1987         struct tid_rdma_request *req;
1988         unsigned long flags;
1989         u8 prev;
1990         bool old_req;
1991
1992         trace_hfi1_rsp_tid_rcv_error(qp, psn);
1993         trace_hfi1_tid_rdma_rcv_err(qp, 0, psn, diff);
1994         if (diff > 0) {
1995                 /* sequence error */
1996                 if (!qp->r_nak_state) {
1997                         ibp->rvp.n_rc_seqnak++;
1998                         qp->r_nak_state = IB_NAK_PSN_ERROR;
1999                         qp->r_ack_psn = qp->r_psn;
2000                         rc_defered_ack(rcd, qp);
2001                 }
2002                 goto done;
2003         }
2004
2005         ibp->rvp.n_rc_dupreq++;
2006
2007         spin_lock_irqsave(&qp->s_lock, flags);
2008         e = find_prev_entry(qp, psn, &prev, NULL, &old_req);
2009         if (!e || (e->opcode != TID_OP(READ_REQ) &&
2010                    e->opcode != TID_OP(WRITE_REQ)))
2011                 goto unlock;
2012
2013         req = ack_to_tid_req(e);
2014         req->r_flow_psn = psn;
2015         trace_hfi1_tid_req_rcv_err(qp, 0, e->opcode, e->psn, e->lpsn, req);
2016         if (e->opcode == TID_OP(READ_REQ)) {
2017                 struct ib_reth *reth;
2018                 u32 len;
2019                 u32 rkey;
2020                 u64 vaddr;
2021                 int ok;
2022                 u32 bth0;
2023
2024                 reth = &ohdr->u.tid_rdma.r_req.reth;
2025                 /*
2026                  * The requester always restarts from the start of the original
2027                  * request.
2028                  */
2029                 len = be32_to_cpu(reth->length);
2030                 if (psn != e->psn || len != req->total_len)
2031                         goto unlock;
2032
2033                 release_rdma_sge_mr(e);
2034
2035                 rkey = be32_to_cpu(reth->rkey);
2036                 vaddr = get_ib_reth_vaddr(reth);
2037
2038                 qp->r_len = len;
2039                 ok = rvt_rkey_ok(qp, &e->rdma_sge, len, vaddr, rkey,
2040                                  IB_ACCESS_REMOTE_READ);
2041                 if (unlikely(!ok))
2042                         goto unlock;
2043
2044                 /*
2045                  * If all the response packets for the current request have
2046                  * been sent out and this request is complete (old_request
2047                  * == false) and the TID flow may be unusable (the
2048                  * req->clear_tail is advanced). However, when an earlier
2049                  * request is received, this request will not be complete any
2050                  * more (qp->s_tail_ack_queue is moved back, see below).
2051                  * Consequently, we need to update the TID flow info everytime
2052                  * a duplicate request is received.
2053                  */
2054                 bth0 = be32_to_cpu(ohdr->bth[0]);
2055                 if (tid_rdma_rcv_read_request(qp, e, packet, ohdr, bth0, psn,
2056                                               vaddr, len))
2057                         goto unlock;
2058
2059                 /*
2060                  * True if the request is already scheduled (between
2061                  * qp->s_tail_ack_queue and qp->r_head_ack_queue);
2062                  */
2063                 if (old_req)
2064                         goto unlock;
2065         } else {
2066                 struct flow_state *fstate;
2067                 bool schedule = false;
2068                 u8 i;
2069
2070                 if (req->state == TID_REQUEST_RESEND) {
2071                         req->state = TID_REQUEST_RESEND_ACTIVE;
2072                 } else if (req->state == TID_REQUEST_INIT_RESEND) {
2073                         req->state = TID_REQUEST_INIT;
2074                         schedule = true;
2075                 }
2076
2077                 /*
2078                  * True if the request is already scheduled (between
2079                  * qp->s_tail_ack_queue and qp->r_head_ack_queue).
2080                  * Also, don't change requests, which are at the SYNC
2081                  * point and haven't generated any responses yet.
2082                  * There is nothing to retransmit for them yet.
2083                  */
2084                 if (old_req || req->state == TID_REQUEST_INIT ||
2085                     (req->state == TID_REQUEST_SYNC && !req->cur_seg)) {
2086                         for (i = prev + 1; ; i++) {
2087                                 if (i > rvt_size_atomic(&dev->rdi))
2088                                         i = 0;
2089                                 if (i == qp->r_head_ack_queue)
2090                                         break;
2091                                 e = &qp->s_ack_queue[i];
2092                                 req = ack_to_tid_req(e);
2093                                 if (e->opcode == TID_OP(WRITE_REQ) &&
2094                                     req->state == TID_REQUEST_INIT)
2095                                         req->state = TID_REQUEST_INIT_RESEND;
2096                         }
2097                         /*
2098                          * If the state of the request has been changed,
2099                          * the first leg needs to get scheduled in order to
2100                          * pick up the change. Otherwise, normal response
2101                          * processing should take care of it.
2102                          */
2103                         if (!schedule)
2104                                 goto unlock;
2105                 }
2106
2107                 /*
2108                  * If there is no more allocated segment, just schedule the qp
2109                  * without changing any state.
2110                  */
2111                 if (req->clear_tail == req->setup_head)
2112                         goto schedule;
2113                 /*
2114                  * If this request has sent responses for segments, which have
2115                  * not received data yet (flow_idx != clear_tail), the flow_idx
2116                  * pointer needs to be adjusted so the same responses can be
2117                  * re-sent.
2118                  */
2119                 if (CIRC_CNT(req->flow_idx, req->clear_tail, MAX_FLOWS)) {
2120                         fstate = &req->flows[req->clear_tail].flow_state;
2121                         qpriv->pending_tid_w_segs -=
2122                                 CIRC_CNT(req->flow_idx, req->clear_tail,
2123                                          MAX_FLOWS);
2124                         req->flow_idx =
2125                                 CIRC_ADD(req->clear_tail,
2126                                          delta_psn(psn, fstate->resp_ib_psn),
2127                                          MAX_FLOWS);
2128                         qpriv->pending_tid_w_segs +=
2129                                 delta_psn(psn, fstate->resp_ib_psn);
2130                         /*
2131                          * When flow_idx == setup_head, we've gotten a duplicate
2132                          * request for a segment, which has not been allocated
2133                          * yet. In that case, don't adjust this request.
2134                          * However, we still want to go through the loop below
2135                          * to adjust all subsequent requests.
2136                          */
2137                         if (CIRC_CNT(req->setup_head, req->flow_idx,
2138                                      MAX_FLOWS)) {
2139                                 req->cur_seg = delta_psn(psn, e->psn);
2140                                 req->state = TID_REQUEST_RESEND_ACTIVE;
2141                         }
2142                 }
2143
2144                 for (i = prev + 1; ; i++) {
2145                         /*
2146                          * Look at everything up to and including
2147                          * s_tail_ack_queue
2148                          */
2149                         if (i > rvt_size_atomic(&dev->rdi))
2150                                 i = 0;
2151                         if (i == qp->r_head_ack_queue)
2152                                 break;
2153                         e = &qp->s_ack_queue[i];
2154                         req = ack_to_tid_req(e);
2155                         trace_hfi1_tid_req_rcv_err(qp, 0, e->opcode, e->psn,
2156                                                    e->lpsn, req);
2157                         if (e->opcode != TID_OP(WRITE_REQ) ||
2158                             req->cur_seg == req->comp_seg ||
2159                             req->state == TID_REQUEST_INIT ||
2160                             req->state == TID_REQUEST_INIT_RESEND) {
2161                                 if (req->state == TID_REQUEST_INIT)
2162                                         req->state = TID_REQUEST_INIT_RESEND;
2163                                 continue;
2164                         }
2165                         qpriv->pending_tid_w_segs -=
2166                                 CIRC_CNT(req->flow_idx,
2167                                          req->clear_tail,
2168                                          MAX_FLOWS);
2169                         req->flow_idx = req->clear_tail;
2170                         req->state = TID_REQUEST_RESEND;
2171                         req->cur_seg = req->comp_seg;
2172                 }
2173                 qpriv->s_flags &= ~HFI1_R_TID_WAIT_INTERLCK;
2174         }
2175         /* Re-process old requests.*/
2176         if (qp->s_acked_ack_queue == qp->s_tail_ack_queue)
2177                 qp->s_acked_ack_queue = prev;
2178         qp->s_tail_ack_queue = prev;
2179         /*
2180          * Since the qp->s_tail_ack_queue is modified, the
2181          * qp->s_ack_state must be changed to re-initialize
2182          * qp->s_ack_rdma_sge; Otherwise, we will end up in
2183          * wrong memory region.
2184          */
2185         qp->s_ack_state = OP(ACKNOWLEDGE);
2186 schedule:
2187         /*
2188          * It's possible to receive a retry psn that is earlier than an RNRNAK
2189          * psn. In this case, the rnrnak state should be cleared.
2190          */
2191         if (qpriv->rnr_nak_state) {
2192                 qp->s_nak_state = 0;
2193                 qpriv->rnr_nak_state = TID_RNR_NAK_INIT;
2194                 qp->r_psn = e->lpsn + 1;
2195                 hfi1_tid_write_alloc_resources(qp, true);
2196         }
2197
2198         qp->r_state = e->opcode;
2199         qp->r_nak_state = 0;
2200         qp->s_flags |= RVT_S_RESP_PENDING;
2201         hfi1_schedule_send(qp);
2202 unlock:
2203         spin_unlock_irqrestore(&qp->s_lock, flags);
2204 done:
2205         return 1;
2206 }
2207
2208 void hfi1_rc_rcv_tid_rdma_read_req(struct hfi1_packet *packet)
2209 {
2210         /* HANDLER FOR TID RDMA READ REQUEST packet (Responder side)*/
2211
2212         /*
2213          * 1. Verify TID RDMA READ REQ as per IB_OPCODE_RC_RDMA_READ
2214          *    (see hfi1_rc_rcv())
2215          * 2. Put TID RDMA READ REQ into the response queueu (s_ack_queue)
2216          *     - Setup struct tid_rdma_req with request info
2217          *     - Initialize struct tid_rdma_flow info;
2218          *     - Copy TID entries;
2219          * 3. Set the qp->s_ack_state.
2220          * 4. Set RVT_S_RESP_PENDING in s_flags.
2221          * 5. Kick the send engine (hfi1_schedule_send())
2222          */
2223         struct hfi1_ctxtdata *rcd = packet->rcd;
2224         struct rvt_qp *qp = packet->qp;
2225         struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
2226         struct ib_other_headers *ohdr = packet->ohdr;
2227         struct rvt_ack_entry *e;
2228         unsigned long flags;
2229         struct ib_reth *reth;
2230         struct hfi1_qp_priv *qpriv = qp->priv;
2231         u32 bth0, psn, len, rkey;
2232         bool fecn;
2233         u8 next;
2234         u64 vaddr;
2235         int diff;
2236         u8 nack_state = IB_NAK_INVALID_REQUEST;
2237
2238         bth0 = be32_to_cpu(ohdr->bth[0]);
2239         if (hfi1_ruc_check_hdr(ibp, packet))
2240                 return;
2241
2242         fecn = process_ecn(qp, packet);
2243         psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
2244         trace_hfi1_rsp_rcv_tid_read_req(qp, psn);
2245
2246         if (qp->state == IB_QPS_RTR && !(qp->r_flags & RVT_R_COMM_EST))
2247                 rvt_comm_est(qp);
2248
2249         if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ)))
2250                 goto nack_inv;
2251
2252         reth = &ohdr->u.tid_rdma.r_req.reth;
2253         vaddr = be64_to_cpu(reth->vaddr);
2254         len = be32_to_cpu(reth->length);
2255         /* The length needs to be in multiples of PAGE_SIZE */
2256         if (!len || len & ~PAGE_MASK || len > qpriv->tid_rdma.local.max_len)
2257                 goto nack_inv;
2258
2259         diff = delta_psn(psn, qp->r_psn);
2260         if (unlikely(diff)) {
2261                 tid_rdma_rcv_err(packet, ohdr, qp, psn, diff, fecn);
2262                 return;
2263         }
2264
2265         /* We've verified the request, insert it into the ack queue. */
2266         next = qp->r_head_ack_queue + 1;
2267         if (next > rvt_size_atomic(ib_to_rvt(qp->ibqp.device)))
2268                 next = 0;
2269         spin_lock_irqsave(&qp->s_lock, flags);
2270         if (unlikely(next == qp->s_tail_ack_queue)) {
2271                 if (!qp->s_ack_queue[next].sent) {
2272                         nack_state = IB_NAK_REMOTE_OPERATIONAL_ERROR;
2273                         goto nack_inv_unlock;
2274                 }
2275                 update_ack_queue(qp, next);
2276         }
2277         e = &qp->s_ack_queue[qp->r_head_ack_queue];
2278         release_rdma_sge_mr(e);
2279
2280         rkey = be32_to_cpu(reth->rkey);
2281         qp->r_len = len;
2282
2283         if (unlikely(!rvt_rkey_ok(qp, &e->rdma_sge, qp->r_len, vaddr,
2284                                   rkey, IB_ACCESS_REMOTE_READ)))
2285                 goto nack_acc;
2286
2287         /* Accept the request parameters */
2288         if (tid_rdma_rcv_read_request(qp, e, packet, ohdr, bth0, psn, vaddr,
2289                                       len))
2290                 goto nack_inv_unlock;
2291
2292         qp->r_state = e->opcode;
2293         qp->r_nak_state = 0;
2294         /*
2295          * We need to increment the MSN here instead of when we
2296          * finish sending the result since a duplicate request would
2297          * increment it more than once.
2298          */
2299         qp->r_msn++;
2300         qp->r_psn += e->lpsn - e->psn + 1;
2301
2302         qp->r_head_ack_queue = next;
2303
2304         /*
2305          * For all requests other than TID WRITE which are added to the ack
2306          * queue, qpriv->r_tid_alloc follows qp->r_head_ack_queue. It is ok to
2307          * do this because of interlocks between these and TID WRITE
2308          * requests. The same change has also been made in hfi1_rc_rcv().
2309          */
2310         qpriv->r_tid_alloc = qp->r_head_ack_queue;
2311
2312         /* Schedule the send tasklet. */
2313         qp->s_flags |= RVT_S_RESP_PENDING;
2314         if (fecn)
2315                 qp->s_flags |= RVT_S_ECN;
2316         hfi1_schedule_send(qp);
2317
2318         spin_unlock_irqrestore(&qp->s_lock, flags);
2319         return;
2320
2321 nack_inv_unlock:
2322         spin_unlock_irqrestore(&qp->s_lock, flags);
2323 nack_inv:
2324         rvt_rc_error(qp, IB_WC_LOC_QP_OP_ERR);
2325         qp->r_nak_state = nack_state;
2326         qp->r_ack_psn = qp->r_psn;
2327         /* Queue NAK for later */
2328         rc_defered_ack(rcd, qp);
2329         return;
2330 nack_acc:
2331         spin_unlock_irqrestore(&qp->s_lock, flags);
2332         rvt_rc_error(qp, IB_WC_LOC_PROT_ERR);
2333         qp->r_nak_state = IB_NAK_REMOTE_ACCESS_ERROR;
2334         qp->r_ack_psn = qp->r_psn;
2335 }
2336
2337 u32 hfi1_build_tid_rdma_read_resp(struct rvt_qp *qp, struct rvt_ack_entry *e,
2338                                   struct ib_other_headers *ohdr, u32 *bth0,
2339                                   u32 *bth1, u32 *bth2, u32 *len, bool *last)
2340 {
2341         struct hfi1_ack_priv *epriv = e->priv;
2342         struct tid_rdma_request *req = &epriv->tid_req;
2343         struct hfi1_qp_priv *qpriv = qp->priv;
2344         struct tid_rdma_flow *flow = &req->flows[req->clear_tail];
2345         u32 tidentry = flow->tid_entry[flow->tid_idx];
2346         u32 tidlen = EXP_TID_GET(tidentry, LEN) << PAGE_SHIFT;
2347         struct tid_rdma_read_resp *resp = &ohdr->u.tid_rdma.r_rsp;
2348         u32 next_offset, om = KDETH_OM_LARGE;
2349         bool last_pkt;
2350         u32 hdwords = 0;
2351         struct tid_rdma_params *remote;
2352
2353         *len = min_t(u32, qp->pmtu, tidlen - flow->tid_offset);
2354         flow->sent += *len;
2355         next_offset = flow->tid_offset + *len;
2356         last_pkt = (flow->sent >= flow->length);
2357
2358         trace_hfi1_tid_entry_build_read_resp(qp, flow->tid_idx, tidentry);
2359         trace_hfi1_tid_flow_build_read_resp(qp, req->clear_tail, flow);
2360
2361         rcu_read_lock();
2362         remote = rcu_dereference(qpriv->tid_rdma.remote);
2363         if (!remote) {
2364                 rcu_read_unlock();
2365                 goto done;
2366         }
2367         KDETH_RESET(resp->kdeth0, KVER, 0x1);
2368         KDETH_SET(resp->kdeth0, SH, !last_pkt);
2369         KDETH_SET(resp->kdeth0, INTR, !!(!last_pkt && remote->urg));
2370         KDETH_SET(resp->kdeth0, TIDCTRL, EXP_TID_GET(tidentry, CTRL));
2371         KDETH_SET(resp->kdeth0, TID, EXP_TID_GET(tidentry, IDX));
2372         KDETH_SET(resp->kdeth0, OM, om == KDETH_OM_LARGE);
2373         KDETH_SET(resp->kdeth0, OFFSET, flow->tid_offset / om);
2374         KDETH_RESET(resp->kdeth1, JKEY, remote->jkey);
2375         resp->verbs_qp = cpu_to_be32(qp->remote_qpn);
2376         rcu_read_unlock();
2377
2378         resp->aeth = rvt_compute_aeth(qp);
2379         resp->verbs_psn = cpu_to_be32(mask_psn(flow->flow_state.ib_spsn +
2380                                                flow->pkt));
2381
2382         *bth0 = TID_OP(READ_RESP) << 24;
2383         *bth1 = flow->tid_qpn;
2384         *bth2 = mask_psn(((flow->flow_state.spsn + flow->pkt++) &
2385                           HFI1_KDETH_BTH_SEQ_MASK) |
2386                          (flow->flow_state.generation <<
2387                           HFI1_KDETH_BTH_SEQ_SHIFT));
2388         *last = last_pkt;
2389         if (last_pkt)
2390                 /* Advance to next flow */
2391                 req->clear_tail = (req->clear_tail + 1) &
2392                                   (MAX_FLOWS - 1);
2393
2394         if (next_offset >= tidlen) {
2395                 flow->tid_offset = 0;
2396                 flow->tid_idx++;
2397         } else {
2398                 flow->tid_offset = next_offset;
2399         }
2400
2401         hdwords = sizeof(ohdr->u.tid_rdma.r_rsp) / sizeof(u32);
2402
2403 done:
2404         return hdwords;
2405 }
2406
2407 static inline struct tid_rdma_request *
2408 find_tid_request(struct rvt_qp *qp, u32 psn, enum ib_wr_opcode opcode)
2409         __must_hold(&qp->s_lock)
2410 {
2411         struct rvt_swqe *wqe;
2412         struct tid_rdma_request *req = NULL;
2413         u32 i, end;
2414
2415         end = qp->s_cur + 1;
2416         if (end == qp->s_size)
2417                 end = 0;
2418         for (i = qp->s_acked; i != end;) {
2419                 wqe = rvt_get_swqe_ptr(qp, i);
2420                 if (cmp_psn(psn, wqe->psn) >= 0 &&
2421                     cmp_psn(psn, wqe->lpsn) <= 0) {
2422                         if (wqe->wr.opcode == opcode)
2423                                 req = wqe_to_tid_req(wqe);
2424                         break;
2425                 }
2426                 if (++i == qp->s_size)
2427                         i = 0;
2428         }
2429
2430         return req;
2431 }
2432
2433 void hfi1_rc_rcv_tid_rdma_read_resp(struct hfi1_packet *packet)
2434 {
2435         /* HANDLER FOR TID RDMA READ RESPONSE packet (Requestor side */
2436
2437         /*
2438          * 1. Find matching SWQE
2439          * 2. Check that the entire segment has been read.
2440          * 3. Remove HFI1_S_WAIT_TID_RESP from s_flags.
2441          * 4. Free the TID flow resources.
2442          * 5. Kick the send engine (hfi1_schedule_send())
2443          */
2444         struct ib_other_headers *ohdr = packet->ohdr;
2445         struct rvt_qp *qp = packet->qp;
2446         struct hfi1_qp_priv *priv = qp->priv;
2447         struct hfi1_ctxtdata *rcd = packet->rcd;
2448         struct tid_rdma_request *req;
2449         struct tid_rdma_flow *flow;
2450         u32 opcode, aeth;
2451         bool fecn;
2452         unsigned long flags;
2453         u32 kpsn, ipsn;
2454
2455         trace_hfi1_sender_rcv_tid_read_resp(qp);
2456         fecn = process_ecn(qp, packet);
2457         kpsn = mask_psn(be32_to_cpu(ohdr->bth[2]));
2458         aeth = be32_to_cpu(ohdr->u.tid_rdma.r_rsp.aeth);
2459         opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff;
2460
2461         spin_lock_irqsave(&qp->s_lock, flags);
2462         ipsn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.r_rsp.verbs_psn));
2463         req = find_tid_request(qp, ipsn, IB_WR_TID_RDMA_READ);
2464         if (unlikely(!req))
2465                 goto ack_op_err;
2466
2467         flow = &req->flows[req->clear_tail];
2468         /* When header suppression is disabled */
2469         if (cmp_psn(ipsn, flow->flow_state.ib_lpsn)) {
2470                 update_r_next_psn_fecn(packet, priv, rcd, flow, fecn);
2471
2472                 if (cmp_psn(kpsn, flow->flow_state.r_next_psn))
2473                         goto ack_done;
2474                 flow->flow_state.r_next_psn = mask_psn(kpsn + 1);
2475                 /*
2476                  * Copy the payload to destination buffer if this packet is
2477                  * delivered as an eager packet due to RSM rule and FECN.
2478                  * The RSM rule selects FECN bit in BTH and SH bit in
2479                  * KDETH header and therefore will not match the last
2480                  * packet of each segment that has SH bit cleared.
2481                  */
2482                 if (fecn && packet->etype == RHF_RCV_TYPE_EAGER) {
2483                         struct rvt_sge_state ss;
2484                         u32 len;
2485                         u32 tlen = packet->tlen;
2486                         u16 hdrsize = packet->hlen;
2487                         u8 pad = packet->pad;
2488                         u8 extra_bytes = pad + packet->extra_byte +
2489                                 (SIZE_OF_CRC << 2);
2490                         u32 pmtu = qp->pmtu;
2491
2492                         if (unlikely(tlen != (hdrsize + pmtu + extra_bytes)))
2493                                 goto ack_op_err;
2494                         len = restart_sge(&ss, req->e.swqe, ipsn, pmtu);
2495                         if (unlikely(len < pmtu))
2496                                 goto ack_op_err;
2497                         rvt_copy_sge(qp, &ss, packet->payload, pmtu, false,
2498                                      false);
2499                         /* Raise the sw sequence check flag for next packet */
2500                         priv->s_flags |= HFI1_R_TID_SW_PSN;
2501                 }
2502
2503                 goto ack_done;
2504         }
2505         flow->flow_state.r_next_psn = mask_psn(kpsn + 1);
2506         req->ack_pending--;
2507         priv->pending_tid_r_segs--;
2508         qp->s_num_rd_atomic--;
2509         if ((qp->s_flags & RVT_S_WAIT_FENCE) &&
2510             !qp->s_num_rd_atomic) {
2511                 qp->s_flags &= ~(RVT_S_WAIT_FENCE |
2512                                  RVT_S_WAIT_ACK);
2513                 hfi1_schedule_send(qp);
2514         }
2515         if (qp->s_flags & RVT_S_WAIT_RDMAR) {
2516                 qp->s_flags &= ~(RVT_S_WAIT_RDMAR | RVT_S_WAIT_ACK);
2517                 hfi1_schedule_send(qp);
2518         }
2519
2520         trace_hfi1_ack(qp, ipsn);
2521         trace_hfi1_tid_req_rcv_read_resp(qp, 0, req->e.swqe->wr.opcode,
2522                                          req->e.swqe->psn, req->e.swqe->lpsn,
2523                                          req);
2524         trace_hfi1_tid_flow_rcv_read_resp(qp, req->clear_tail, flow);
2525
2526         /* Release the tid resources */
2527         hfi1_kern_exp_rcv_clear(req);
2528
2529         if (!do_rc_ack(qp, aeth, ipsn, opcode, 0, rcd))
2530                 goto ack_done;
2531
2532         /* If not done yet, build next read request */
2533         if (++req->comp_seg >= req->total_segs) {
2534                 priv->tid_r_comp++;
2535                 req->state = TID_REQUEST_COMPLETE;
2536         }
2537
2538         /*
2539          * Clear the hw flow under two conditions:
2540          * 1. This request is a sync point and it is complete;
2541          * 2. Current request is completed and there are no more requests.
2542          */
2543         if ((req->state == TID_REQUEST_SYNC &&
2544              req->comp_seg == req->cur_seg) ||
2545             priv->tid_r_comp == priv->tid_r_reqs) {
2546                 hfi1_kern_clear_hw_flow(priv->rcd, qp);
2547                 priv->s_flags &= ~HFI1_R_TID_SW_PSN;
2548                 if (req->state == TID_REQUEST_SYNC)
2549                         req->state = TID_REQUEST_ACTIVE;
2550         }
2551
2552         hfi1_schedule_send(qp);
2553         goto ack_done;
2554
2555 ack_op_err:
2556         /*
2557          * The test indicates that the send engine has finished its cleanup
2558          * after sending the request and it's now safe to put the QP into error
2559          * state. However, if the wqe queue is empty (qp->s_acked == qp->s_tail
2560          * == qp->s_head), it would be unsafe to complete the wqe pointed by
2561          * qp->s_acked here. Putting the qp into error state will safely flush
2562          * all remaining requests.
2563          */
2564         if (qp->s_last == qp->s_acked)
2565                 rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
2566
2567 ack_done:
2568         spin_unlock_irqrestore(&qp->s_lock, flags);
2569 }
2570
2571 void hfi1_kern_read_tid_flow_free(struct rvt_qp *qp)
2572         __must_hold(&qp->s_lock)
2573 {
2574         u32 n = qp->s_acked;
2575         struct rvt_swqe *wqe;
2576         struct tid_rdma_request *req;
2577         struct hfi1_qp_priv *priv = qp->priv;
2578
2579         lockdep_assert_held(&qp->s_lock);
2580         /* Free any TID entries */
2581         while (n != qp->s_tail) {
2582                 wqe = rvt_get_swqe_ptr(qp, n);
2583                 if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) {
2584                         req = wqe_to_tid_req(wqe);
2585                         hfi1_kern_exp_rcv_clear_all(req);
2586                 }
2587
2588                 if (++n == qp->s_size)
2589                         n = 0;
2590         }
2591         /* Free flow */
2592         hfi1_kern_clear_hw_flow(priv->rcd, qp);
2593 }
2594
2595 static bool tid_rdma_tid_err(struct hfi1_packet *packet, u8 rcv_type)
2596 {
2597         struct rvt_qp *qp = packet->qp;
2598
2599         if (rcv_type >= RHF_RCV_TYPE_IB)
2600                 goto done;
2601
2602         spin_lock(&qp->s_lock);
2603
2604         /*
2605          * We've ran out of space in the eager buffer.
2606          * Eagerly received KDETH packets which require space in the
2607          * Eager buffer (packet that have payload) are TID RDMA WRITE
2608          * response packets. In this case, we have to re-transmit the
2609          * TID RDMA WRITE request.
2610          */
2611         if (rcv_type == RHF_RCV_TYPE_EAGER) {
2612                 hfi1_restart_rc(qp, qp->s_last_psn + 1, 1);
2613                 hfi1_schedule_send(qp);
2614         }
2615
2616         /* Since no payload is delivered, just drop the packet */
2617         spin_unlock(&qp->s_lock);
2618 done:
2619         return true;
2620 }
2621
2622 static void restart_tid_rdma_read_req(struct hfi1_ctxtdata *rcd,
2623                                       struct rvt_qp *qp, struct rvt_swqe *wqe)
2624 {
2625         struct tid_rdma_request *req;
2626         struct tid_rdma_flow *flow;
2627
2628         /* Start from the right segment */
2629         qp->r_flags |= RVT_R_RDMAR_SEQ;
2630         req = wqe_to_tid_req(wqe);
2631         flow = &req->flows[req->clear_tail];
2632         hfi1_restart_rc(qp, flow->flow_state.ib_spsn, 0);
2633         if (list_empty(&qp->rspwait)) {
2634                 qp->r_flags |= RVT_R_RSP_SEND;
2635                 rvt_get_qp(qp);
2636                 list_add_tail(&qp->rspwait, &rcd->qp_wait_list);
2637         }
2638 }
2639
2640 /*
2641  * Handle the KDETH eflags for TID RDMA READ response.
2642  *
2643  * Return true if the last packet for a segment has been received and it is
2644  * time to process the response normally; otherwise, return true.
2645  *
2646  * The caller must hold the packet->qp->r_lock and the rcu_read_lock.
2647  */
2648 static bool handle_read_kdeth_eflags(struct hfi1_ctxtdata *rcd,
2649                                      struct hfi1_packet *packet, u8 rcv_type,
2650                                      u8 rte, u32 psn, u32 ibpsn)
2651         __must_hold(&packet->qp->r_lock) __must_hold(RCU)
2652 {
2653         struct hfi1_pportdata *ppd = rcd->ppd;
2654         struct hfi1_devdata *dd = ppd->dd;
2655         struct hfi1_ibport *ibp;
2656         struct rvt_swqe *wqe;
2657         struct tid_rdma_request *req;
2658         struct tid_rdma_flow *flow;
2659         u32 ack_psn;
2660         struct rvt_qp *qp = packet->qp;
2661         struct hfi1_qp_priv *priv = qp->priv;
2662         bool ret = true;
2663         int diff = 0;
2664         u32 fpsn;
2665
2666         lockdep_assert_held(&qp->r_lock);
2667         trace_hfi1_rsp_read_kdeth_eflags(qp, ibpsn);
2668         trace_hfi1_sender_read_kdeth_eflags(qp);
2669         trace_hfi1_tid_read_sender_kdeth_eflags(qp, 0);
2670         spin_lock(&qp->s_lock);
2671         /* If the psn is out of valid range, drop the packet */
2672         if (cmp_psn(ibpsn, qp->s_last_psn) < 0 ||
2673             cmp_psn(ibpsn, qp->s_psn) > 0)
2674                 goto s_unlock;
2675
2676         /*
2677          * Note that NAKs implicitly ACK outstanding SEND and RDMA write
2678          * requests and implicitly NAK RDMA read and atomic requests issued
2679          * before the NAK'ed request.
2680          */
2681         ack_psn = ibpsn - 1;
2682         wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
2683         ibp = to_iport(qp->ibqp.device, qp->port_num);
2684
2685         /* Complete WQEs that the PSN finishes. */
2686         while ((int)delta_psn(ack_psn, wqe->lpsn) >= 0) {
2687                 /*
2688                  * If this request is a RDMA read or atomic, and the NACK is
2689                  * for a later operation, this NACK NAKs the RDMA read or
2690                  * atomic.
2691                  */
2692                 if (wqe->wr.opcode == IB_WR_RDMA_READ ||
2693                     wqe->wr.opcode == IB_WR_TID_RDMA_READ ||
2694                     wqe->wr.opcode == IB_WR_ATOMIC_CMP_AND_SWP ||
2695                     wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) {
2696                         /* Retry this request. */
2697                         if (!(qp->r_flags & RVT_R_RDMAR_SEQ)) {
2698                                 qp->r_flags |= RVT_R_RDMAR_SEQ;
2699                                 if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) {
2700                                         restart_tid_rdma_read_req(rcd, qp,
2701                                                                   wqe);
2702                                 } else {
2703                                         hfi1_restart_rc(qp, qp->s_last_psn + 1,
2704                                                         0);
2705                                         if (list_empty(&qp->rspwait)) {
2706                                                 qp->r_flags |= RVT_R_RSP_SEND;
2707                                                 rvt_get_qp(qp);
2708                                                 list_add_tail(/* wait */
2709                                                    &qp->rspwait,
2710                                                    &rcd->qp_wait_list);
2711                                         }
2712                                 }
2713                         }
2714                         /*
2715                          * No need to process the NAK since we are
2716                          * restarting an earlier request.
2717                          */
2718                         break;
2719                 }
2720
2721                 wqe = do_rc_completion(qp, wqe, ibp);
2722                 if (qp->s_acked == qp->s_tail)
2723                         goto s_unlock;
2724         }
2725
2726         if (qp->s_acked == qp->s_tail)
2727                 goto s_unlock;
2728
2729         /* Handle the eflags for the request */
2730         if (wqe->wr.opcode != IB_WR_TID_RDMA_READ)
2731                 goto s_unlock;
2732
2733         req = wqe_to_tid_req(wqe);
2734         trace_hfi1_tid_req_read_kdeth_eflags(qp, 0, wqe->wr.opcode, wqe->psn,
2735                                              wqe->lpsn, req);
2736         switch (rcv_type) {
2737         case RHF_RCV_TYPE_EXPECTED:
2738                 switch (rte) {
2739                 case RHF_RTE_EXPECTED_FLOW_SEQ_ERR:
2740                         /*
2741                          * On the first occurrence of a Flow Sequence error,
2742                          * the flag TID_FLOW_SW_PSN is set.
2743                          *
2744                          * After that, the flow is *not* reprogrammed and the
2745                          * protocol falls back to SW PSN checking. This is done
2746                          * to prevent continuous Flow Sequence errors for any
2747                          * packets that could be still in the fabric.
2748                          */
2749                         flow = &req->flows[req->clear_tail];
2750                         trace_hfi1_tid_flow_read_kdeth_eflags(qp,
2751                                                               req->clear_tail,
2752                                                               flow);
2753                         if (priv->s_flags & HFI1_R_TID_SW_PSN) {
2754                                 diff = cmp_psn(psn,
2755                                                flow->flow_state.r_next_psn);
2756                                 if (diff > 0) {
2757                                         /* Drop the packet.*/
2758                                         goto s_unlock;
2759                                 } else if (diff < 0) {
2760                                         /*
2761                                          * If a response packet for a restarted
2762                                          * request has come back, reset the
2763                                          * restart flag.
2764                                          */
2765                                         if (qp->r_flags & RVT_R_RDMAR_SEQ)
2766                                                 qp->r_flags &=
2767                                                         ~RVT_R_RDMAR_SEQ;
2768
2769                                         /* Drop the packet.*/
2770                                         goto s_unlock;
2771                                 }
2772
2773                                 /*
2774                                  * If SW PSN verification is successful and
2775                                  * this is the last packet in the segment, tell
2776                                  * the caller to process it as a normal packet.
2777                                  */
2778                                 fpsn = full_flow_psn(flow,
2779                                                      flow->flow_state.lpsn);
2780                                 if (cmp_psn(fpsn, psn) == 0) {
2781                                         ret = false;
2782                                         if (qp->r_flags & RVT_R_RDMAR_SEQ)
2783                                                 qp->r_flags &=
2784                                                         ~RVT_R_RDMAR_SEQ;
2785                                 }
2786                                 flow->flow_state.r_next_psn =
2787                                         mask_psn(psn + 1);
2788                         } else {
2789                                 u32 last_psn;
2790
2791                                 last_psn = read_r_next_psn(dd, rcd->ctxt,
2792                                                            flow->idx);
2793                                 flow->flow_state.r_next_psn = last_psn;
2794                                 priv->s_flags |= HFI1_R_TID_SW_PSN;
2795                                 /*
2796                                  * If no request has been restarted yet,
2797                                  * restart the current one.
2798                                  */
2799                                 if (!(qp->r_flags & RVT_R_RDMAR_SEQ))
2800                                         restart_tid_rdma_read_req(rcd, qp,
2801                                                                   wqe);
2802                         }
2803
2804                         break;
2805
2806                 case RHF_RTE_EXPECTED_FLOW_GEN_ERR:
2807                         /*
2808                          * Since the TID flow is able to ride through
2809                          * generation mismatch, drop this stale packet.
2810                          */
2811                         break;
2812
2813                 default:
2814                         break;
2815                 }
2816                 break;
2817
2818         case RHF_RCV_TYPE_ERROR:
2819                 switch (rte) {
2820                 case RHF_RTE_ERROR_OP_CODE_ERR:
2821                 case RHF_RTE_ERROR_KHDR_MIN_LEN_ERR:
2822                 case RHF_RTE_ERROR_KHDR_HCRC_ERR:
2823                 case RHF_RTE_ERROR_KHDR_KVER_ERR:
2824                 case RHF_RTE_ERROR_CONTEXT_ERR:
2825                 case RHF_RTE_ERROR_KHDR_TID_ERR:
2826                 default:
2827                         break;
2828                 }
2829         default:
2830                 break;
2831         }
2832 s_unlock:
2833         spin_unlock(&qp->s_lock);
2834         return ret;
2835 }
2836
2837 bool hfi1_handle_kdeth_eflags(struct hfi1_ctxtdata *rcd,
2838                               struct hfi1_pportdata *ppd,
2839                               struct hfi1_packet *packet)
2840 {
2841         struct hfi1_ibport *ibp = &ppd->ibport_data;
2842         struct hfi1_devdata *dd = ppd->dd;
2843         struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
2844         u8 rcv_type = rhf_rcv_type(packet->rhf);
2845         u8 rte = rhf_rcv_type_err(packet->rhf);
2846         struct ib_header *hdr = packet->hdr;
2847         struct ib_other_headers *ohdr = NULL;
2848         int lnh = be16_to_cpu(hdr->lrh[0]) & 3;
2849         u16 lid  = be16_to_cpu(hdr->lrh[1]);
2850         u8 opcode;
2851         u32 qp_num, psn, ibpsn;
2852         struct rvt_qp *qp;
2853         struct hfi1_qp_priv *qpriv;
2854         unsigned long flags;
2855         bool ret = true;
2856         struct rvt_ack_entry *e;
2857         struct tid_rdma_request *req;
2858         struct tid_rdma_flow *flow;
2859         int diff = 0;
2860
2861         trace_hfi1_msg_handle_kdeth_eflags(NULL, "Kdeth error: rhf ",
2862                                            packet->rhf);
2863         if (packet->rhf & RHF_ICRC_ERR)
2864                 return ret;
2865
2866         packet->ohdr = &hdr->u.oth;
2867         ohdr = packet->ohdr;
2868         trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
2869
2870         /* Get the destination QP number. */
2871         qp_num = be32_to_cpu(ohdr->u.tid_rdma.r_rsp.verbs_qp) &
2872                 RVT_QPN_MASK;
2873         if (lid >= be16_to_cpu(IB_MULTICAST_LID_BASE))
2874                 goto drop;
2875
2876         psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
2877         opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff;
2878
2879         rcu_read_lock();
2880         qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
2881         if (!qp)
2882                 goto rcu_unlock;
2883
2884         packet->qp = qp;
2885
2886         /* Check for valid receive state. */
2887         spin_lock_irqsave(&qp->r_lock, flags);
2888         if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) {
2889                 ibp->rvp.n_pkt_drops++;
2890                 goto r_unlock;
2891         }
2892
2893         if (packet->rhf & RHF_TID_ERR) {
2894                 /* For TIDERR and RC QPs preemptively schedule a NAK */
2895                 u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */
2896
2897                 /* Sanity check packet */
2898                 if (tlen < 24)
2899                         goto r_unlock;
2900
2901                 /*
2902                  * Check for GRH. We should never get packets with GRH in this
2903                  * path.
2904                  */
2905                 if (lnh == HFI1_LRH_GRH)
2906                         goto r_unlock;
2907
2908                 if (tid_rdma_tid_err(packet, rcv_type))
2909                         goto r_unlock;
2910         }
2911
2912         /* handle TID RDMA READ */
2913         if (opcode == TID_OP(READ_RESP)) {
2914                 ibpsn = be32_to_cpu(ohdr->u.tid_rdma.r_rsp.verbs_psn);
2915                 ibpsn = mask_psn(ibpsn);
2916                 ret = handle_read_kdeth_eflags(rcd, packet, rcv_type, rte, psn,
2917                                                ibpsn);
2918                 goto r_unlock;
2919         }
2920
2921         /*
2922          * qp->s_tail_ack_queue points to the rvt_ack_entry currently being
2923          * processed. These a completed sequentially so we can be sure that
2924          * the pointer will not change until the entire request has completed.
2925          */
2926         spin_lock(&qp->s_lock);
2927         qpriv = qp->priv;
2928         if (qpriv->r_tid_tail == HFI1_QP_WQE_INVALID ||
2929             qpriv->r_tid_tail == qpriv->r_tid_head)
2930                 goto unlock;
2931         e = &qp->s_ack_queue[qpriv->r_tid_tail];
2932         if (e->opcode != TID_OP(WRITE_REQ))
2933                 goto unlock;
2934         req = ack_to_tid_req(e);
2935         if (req->comp_seg == req->cur_seg)
2936                 goto unlock;
2937         flow = &req->flows[req->clear_tail];
2938         trace_hfi1_eflags_err_write(qp, rcv_type, rte, psn);
2939         trace_hfi1_rsp_handle_kdeth_eflags(qp, psn);
2940         trace_hfi1_tid_write_rsp_handle_kdeth_eflags(qp);
2941         trace_hfi1_tid_req_handle_kdeth_eflags(qp, 0, e->opcode, e->psn,
2942                                                e->lpsn, req);
2943         trace_hfi1_tid_flow_handle_kdeth_eflags(qp, req->clear_tail, flow);
2944
2945         switch (rcv_type) {
2946         case RHF_RCV_TYPE_EXPECTED:
2947                 switch (rte) {
2948                 case RHF_RTE_EXPECTED_FLOW_SEQ_ERR:
2949                         if (!(qpriv->s_flags & HFI1_R_TID_SW_PSN)) {
2950                                 qpriv->s_flags |= HFI1_R_TID_SW_PSN;
2951                                 flow->flow_state.r_next_psn =
2952                                         read_r_next_psn(dd, rcd->ctxt,
2953                                                         flow->idx);
2954                                 qpriv->r_next_psn_kdeth =
2955                                         flow->flow_state.r_next_psn;
2956                                 goto nak_psn;
2957                         } else {
2958                                 /*
2959                                  * If the received PSN does not match the next
2960                                  * expected PSN, NAK the packet.
2961                                  * However, only do that if we know that the a
2962                                  * NAK has already been sent. Otherwise, this
2963                                  * mismatch could be due to packets that were
2964                                  * already in flight.
2965                                  */
2966                                 diff = cmp_psn(psn,
2967                                                flow->flow_state.r_next_psn);
2968                                 if (diff > 0)
2969                                         goto nak_psn;
2970                                 else if (diff < 0)
2971                                         break;
2972
2973                                 qpriv->s_nak_state = 0;
2974                                 /*
2975                                  * If SW PSN verification is successful and this
2976                                  * is the last packet in the segment, tell the
2977                                  * caller to process it as a normal packet.
2978                                  */
2979                                 if (psn == full_flow_psn(flow,
2980                                                          flow->flow_state.lpsn))
2981                                         ret = false;
2982                                 flow->flow_state.r_next_psn =
2983                                         mask_psn(psn + 1);
2984                                 qpriv->r_next_psn_kdeth =
2985                                         flow->flow_state.r_next_psn;
2986                         }
2987                         break;
2988
2989                 case RHF_RTE_EXPECTED_FLOW_GEN_ERR:
2990                         goto nak_psn;
2991
2992                 default:
2993                         break;
2994                 }
2995                 break;
2996
2997         case RHF_RCV_TYPE_ERROR:
2998                 switch (rte) {
2999                 case RHF_RTE_ERROR_OP_CODE_ERR:
3000                 case RHF_RTE_ERROR_KHDR_MIN_LEN_ERR:
3001                 case RHF_RTE_ERROR_KHDR_HCRC_ERR:
3002                 case RHF_RTE_ERROR_KHDR_KVER_ERR:
3003                 case RHF_RTE_ERROR_CONTEXT_ERR:
3004                 case RHF_RTE_ERROR_KHDR_TID_ERR:
3005                 default:
3006                         break;
3007                 }
3008         default:
3009                 break;
3010         }
3011
3012 unlock:
3013         spin_unlock(&qp->s_lock);
3014 r_unlock:
3015         spin_unlock_irqrestore(&qp->r_lock, flags);
3016 rcu_unlock:
3017         rcu_read_unlock();
3018 drop:
3019         return ret;
3020 nak_psn:
3021         ibp->rvp.n_rc_seqnak++;
3022         if (!qpriv->s_nak_state) {
3023                 qpriv->s_nak_state = IB_NAK_PSN_ERROR;
3024                 /* We are NAK'ing the next expected PSN */
3025                 qpriv->s_nak_psn = mask_psn(flow->flow_state.r_next_psn);
3026                 tid_rdma_trigger_ack(qp);
3027         }
3028         goto unlock;
3029 }
3030
3031 /*
3032  * "Rewind" the TID request information.
3033  * This means that we reset the state back to ACTIVE,
3034  * find the proper flow, set the flow index to that flow,
3035  * and reset the flow information.
3036  */
3037 void hfi1_tid_rdma_restart_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
3038                                u32 *bth2)
3039 {
3040         struct tid_rdma_request *req = wqe_to_tid_req(wqe);
3041         struct tid_rdma_flow *flow;
3042         struct hfi1_qp_priv *qpriv = qp->priv;
3043         int diff, delta_pkts;
3044         u32 tididx = 0, i;
3045         u16 fidx;
3046
3047         if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) {
3048                 *bth2 = mask_psn(qp->s_psn);
3049                 flow = find_flow_ib(req, *bth2, &fidx);
3050                 if (!flow) {
3051                         trace_hfi1_msg_tid_restart_req(/* msg */
3052                            qp, "!!!!!! Could not find flow to restart: bth2 ",
3053                            (u64)*bth2);
3054                         trace_hfi1_tid_req_restart_req(qp, 0, wqe->wr.opcode,
3055                                                        wqe->psn, wqe->lpsn,
3056                                                        req);
3057                         return;
3058                 }
3059         } else {
3060                 fidx = req->acked_tail;
3061                 flow = &req->flows[fidx];
3062                 *bth2 = mask_psn(req->r_ack_psn);
3063         }
3064
3065         if (wqe->wr.opcode == IB_WR_TID_RDMA_READ)
3066                 delta_pkts = delta_psn(*bth2, flow->flow_state.ib_spsn);
3067         else
3068                 delta_pkts = delta_psn(*bth2,
3069                                        full_flow_psn(flow,
3070                                                      flow->flow_state.spsn));
3071
3072         trace_hfi1_tid_flow_restart_req(qp, fidx, flow);
3073         diff = delta_pkts + flow->resync_npkts;
3074
3075         flow->sent = 0;
3076         flow->pkt = 0;
3077         flow->tid_idx = 0;
3078         flow->tid_offset = 0;
3079         if (diff) {
3080                 for (tididx = 0; tididx < flow->tidcnt; tididx++) {
3081                         u32 tidentry = flow->tid_entry[tididx], tidlen,
3082                                 tidnpkts, npkts;
3083
3084                         flow->tid_offset = 0;
3085                         tidlen = EXP_TID_GET(tidentry, LEN) * PAGE_SIZE;
3086                         tidnpkts = rvt_div_round_up_mtu(qp, tidlen);
3087                         npkts = min_t(u32, diff, tidnpkts);
3088                         flow->pkt += npkts;
3089                         flow->sent += (npkts == tidnpkts ? tidlen :
3090                                        npkts * qp->pmtu);
3091                         flow->tid_offset += npkts * qp->pmtu;
3092                         diff -= npkts;
3093                         if (!diff)
3094                                 break;
3095                 }
3096         }
3097         if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE) {
3098                 rvt_skip_sge(&qpriv->tid_ss, (req->cur_seg * req->seg_len) +
3099                              flow->sent, 0);
3100                 /*
3101                  * Packet PSN is based on flow_state.spsn + flow->pkt. However,
3102                  * during a RESYNC, the generation is incremented and the
3103                  * sequence is reset to 0. Since we've adjusted the npkts in the
3104                  * flow and the SGE has been sufficiently advanced, we have to
3105                  * adjust flow->pkt in order to calculate the correct PSN.
3106                  */
3107                 flow->pkt -= flow->resync_npkts;
3108         }
3109
3110         if (flow->tid_offset ==
3111             EXP_TID_GET(flow->tid_entry[tididx], LEN) * PAGE_SIZE) {
3112                 tididx++;
3113                 flow->tid_offset = 0;
3114         }
3115         flow->tid_idx = tididx;
3116         if (wqe->wr.opcode == IB_WR_TID_RDMA_READ)
3117                 /* Move flow_idx to correct index */
3118                 req->flow_idx = fidx;
3119         else
3120                 req->clear_tail = fidx;
3121
3122         trace_hfi1_tid_flow_restart_req(qp, fidx, flow);
3123         trace_hfi1_tid_req_restart_req(qp, 0, wqe->wr.opcode, wqe->psn,
3124                                        wqe->lpsn, req);
3125         req->state = TID_REQUEST_ACTIVE;
3126         if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE) {
3127                 /* Reset all the flows that we are going to resend */
3128                 fidx = CIRC_NEXT(fidx, MAX_FLOWS);
3129                 i = qpriv->s_tid_tail;
3130                 do {
3131                         for (; CIRC_CNT(req->setup_head, fidx, MAX_FLOWS);
3132                               fidx = CIRC_NEXT(fidx, MAX_FLOWS)) {
3133                                 req->flows[fidx].sent = 0;
3134                                 req->flows[fidx].pkt = 0;
3135                                 req->flows[fidx].tid_idx = 0;
3136                                 req->flows[fidx].tid_offset = 0;
3137                                 req->flows[fidx].resync_npkts = 0;
3138                         }
3139                         if (i == qpriv->s_tid_cur)
3140                                 break;
3141                         do {
3142                                 i = (++i == qp->s_size ? 0 : i);
3143                                 wqe = rvt_get_swqe_ptr(qp, i);
3144                         } while (wqe->wr.opcode != IB_WR_TID_RDMA_WRITE);
3145                         req = wqe_to_tid_req(wqe);
3146                         req->cur_seg = req->ack_seg;
3147                         fidx = req->acked_tail;
3148                         /* Pull req->clear_tail back */
3149                         req->clear_tail = fidx;
3150                 } while (1);
3151         }
3152 }
3153
3154 void hfi1_qp_kern_exp_rcv_clear_all(struct rvt_qp *qp)
3155 {
3156         int i, ret;
3157         struct hfi1_qp_priv *qpriv = qp->priv;
3158         struct tid_flow_state *fs;
3159
3160         if (qp->ibqp.qp_type != IB_QPT_RC || !HFI1_CAP_IS_KSET(TID_RDMA))
3161                 return;
3162
3163         /*
3164          * First, clear the flow to help prevent any delayed packets from
3165          * being delivered.
3166          */
3167         fs = &qpriv->flow_state;
3168         if (fs->index != RXE_NUM_TID_FLOWS)
3169                 hfi1_kern_clear_hw_flow(qpriv->rcd, qp);
3170
3171         for (i = qp->s_acked; i != qp->s_head;) {
3172                 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, i);
3173
3174                 if (++i == qp->s_size)
3175                         i = 0;
3176                 /* Free only locally allocated TID entries */
3177                 if (wqe->wr.opcode != IB_WR_TID_RDMA_READ)
3178                         continue;
3179                 do {
3180                         struct hfi1_swqe_priv *priv = wqe->priv;
3181
3182                         ret = hfi1_kern_exp_rcv_clear(&priv->tid_req);
3183                 } while (!ret);
3184         }
3185         for (i = qp->s_acked_ack_queue; i != qp->r_head_ack_queue;) {
3186                 struct rvt_ack_entry *e = &qp->s_ack_queue[i];
3187
3188                 if (++i == rvt_max_atomic(ib_to_rvt(qp->ibqp.device)))
3189                         i = 0;
3190                 /* Free only locally allocated TID entries */
3191                 if (e->opcode != TID_OP(WRITE_REQ))
3192                         continue;
3193                 do {
3194                         struct hfi1_ack_priv *priv = e->priv;
3195
3196                         ret = hfi1_kern_exp_rcv_clear(&priv->tid_req);
3197                 } while (!ret);
3198         }
3199 }
3200
3201 bool hfi1_tid_rdma_wqe_interlock(struct rvt_qp *qp, struct rvt_swqe *wqe)
3202 {
3203         struct rvt_swqe *prev;
3204         struct hfi1_qp_priv *priv = qp->priv;
3205         u32 s_prev;
3206         struct tid_rdma_request *req;
3207
3208         s_prev = (qp->s_cur == 0 ? qp->s_size : qp->s_cur) - 1;
3209         prev = rvt_get_swqe_ptr(qp, s_prev);
3210
3211         switch (wqe->wr.opcode) {
3212         case IB_WR_SEND:
3213         case IB_WR_SEND_WITH_IMM:
3214         case IB_WR_SEND_WITH_INV:
3215         case IB_WR_ATOMIC_CMP_AND_SWP:
3216         case IB_WR_ATOMIC_FETCH_AND_ADD:
3217         case IB_WR_RDMA_WRITE:
3218         case IB_WR_RDMA_WRITE_WITH_IMM:
3219                 switch (prev->wr.opcode) {
3220                 case IB_WR_TID_RDMA_WRITE:
3221                         req = wqe_to_tid_req(prev);
3222                         if (req->ack_seg != req->total_segs)
3223                                 goto interlock;
3224                 default:
3225                         break;
3226                 }
3227                 break;
3228         case IB_WR_RDMA_READ:
3229                 if (prev->wr.opcode != IB_WR_TID_RDMA_WRITE)
3230                         break;
3231                 fallthrough;
3232         case IB_WR_TID_RDMA_READ:
3233                 switch (prev->wr.opcode) {
3234                 case IB_WR_RDMA_READ:
3235                         if (qp->s_acked != qp->s_cur)
3236                                 goto interlock;
3237                         break;
3238                 case IB_WR_TID_RDMA_WRITE:
3239                         req = wqe_to_tid_req(prev);
3240                         if (req->ack_seg != req->total_segs)
3241                                 goto interlock;
3242                 default:
3243                         break;
3244                 }
3245         default:
3246                 break;
3247         }
3248         return false;
3249
3250 interlock:
3251         priv->s_flags |= HFI1_S_TID_WAIT_INTERLCK;
3252         return true;
3253 }
3254
3255 /* Does @sge meet the alignment requirements for tid rdma? */
3256 static inline bool hfi1_check_sge_align(struct rvt_qp *qp,
3257                                         struct rvt_sge *sge, int num_sge)
3258 {
3259         int i;
3260
3261         for (i = 0; i < num_sge; i++, sge++) {
3262                 trace_hfi1_sge_check_align(qp, i, sge);
3263                 if ((u64)sge->vaddr & ~PAGE_MASK ||
3264                     sge->sge_length & ~PAGE_MASK)
3265                         return false;
3266         }
3267         return true;
3268 }
3269
3270 void setup_tid_rdma_wqe(struct rvt_qp *qp, struct rvt_swqe *wqe)
3271 {
3272         struct hfi1_qp_priv *qpriv = (struct hfi1_qp_priv *)qp->priv;
3273         struct hfi1_swqe_priv *priv = wqe->priv;
3274         struct tid_rdma_params *remote;
3275         enum ib_wr_opcode new_opcode;
3276         bool do_tid_rdma = false;
3277         struct hfi1_pportdata *ppd = qpriv->rcd->ppd;
3278
3279         if ((rdma_ah_get_dlid(&qp->remote_ah_attr) & ~((1 << ppd->lmc) - 1)) ==
3280                                 ppd->lid)
3281                 return;
3282         if (qpriv->hdr_type != HFI1_PKT_TYPE_9B)
3283                 return;
3284
3285         rcu_read_lock();
3286         remote = rcu_dereference(qpriv->tid_rdma.remote);
3287         /*
3288          * If TID RDMA is disabled by the negotiation, don't
3289          * use it.
3290          */
3291         if (!remote)
3292                 goto exit;
3293
3294         if (wqe->wr.opcode == IB_WR_RDMA_READ) {
3295                 if (hfi1_check_sge_align(qp, &wqe->sg_list[0],
3296                                          wqe->wr.num_sge)) {
3297                         new_opcode = IB_WR_TID_RDMA_READ;
3298                         do_tid_rdma = true;
3299                 }
3300         } else if (wqe->wr.opcode == IB_WR_RDMA_WRITE) {
3301                 /*
3302                  * TID RDMA is enabled for this RDMA WRITE request iff:
3303                  *   1. The remote address is page-aligned,
3304                  *   2. The length is larger than the minimum segment size,
3305                  *   3. The length is page-multiple.
3306                  */
3307                 if (!(wqe->rdma_wr.remote_addr & ~PAGE_MASK) &&
3308                     !(wqe->length & ~PAGE_MASK)) {
3309                         new_opcode = IB_WR_TID_RDMA_WRITE;
3310                         do_tid_rdma = true;
3311                 }
3312         }
3313
3314         if (do_tid_rdma) {
3315                 if (hfi1_kern_exp_rcv_alloc_flows(&priv->tid_req, GFP_ATOMIC))
3316                         goto exit;
3317                 wqe->wr.opcode = new_opcode;
3318                 priv->tid_req.seg_len =
3319                         min_t(u32, remote->max_len, wqe->length);
3320                 priv->tid_req.total_segs =
3321                         DIV_ROUND_UP(wqe->length, priv->tid_req.seg_len);
3322                 /* Compute the last PSN of the request */
3323                 wqe->lpsn = wqe->psn;
3324                 if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) {
3325                         priv->tid_req.n_flows = remote->max_read;
3326                         qpriv->tid_r_reqs++;
3327                         wqe->lpsn += rvt_div_round_up_mtu(qp, wqe->length) - 1;
3328                 } else {
3329                         wqe->lpsn += priv->tid_req.total_segs - 1;
3330                         atomic_inc(&qpriv->n_requests);
3331                 }
3332
3333                 priv->tid_req.cur_seg = 0;
3334                 priv->tid_req.comp_seg = 0;
3335                 priv->tid_req.ack_seg = 0;
3336                 priv->tid_req.state = TID_REQUEST_INACTIVE;
3337                 /*
3338                  * Reset acked_tail.
3339                  * TID RDMA READ does not have ACKs so it does not
3340                  * update the pointer. We have to reset it so TID RDMA
3341                  * WRITE does not get confused.
3342                  */
3343                 priv->tid_req.acked_tail = priv->tid_req.setup_head;
3344                 trace_hfi1_tid_req_setup_tid_wqe(qp, 1, wqe->wr.opcode,
3345                                                  wqe->psn, wqe->lpsn,
3346                                                  &priv->tid_req);
3347         }
3348 exit:
3349         rcu_read_unlock();
3350 }
3351
3352 /* TID RDMA WRITE functions */
3353
3354 u32 hfi1_build_tid_rdma_write_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
3355                                   struct ib_other_headers *ohdr,
3356                                   u32 *bth1, u32 *bth2, u32 *len)
3357 {
3358         struct hfi1_qp_priv *qpriv = qp->priv;
3359         struct tid_rdma_request *req = wqe_to_tid_req(wqe);
3360         struct tid_rdma_params *remote;
3361
3362         rcu_read_lock();
3363         remote = rcu_dereference(qpriv->tid_rdma.remote);
3364         /*
3365          * Set the number of flow to be used based on negotiated
3366          * parameters.
3367          */
3368         req->n_flows = remote->max_write;
3369         req->state = TID_REQUEST_ACTIVE;
3370
3371         KDETH_RESET(ohdr->u.tid_rdma.w_req.kdeth0, KVER, 0x1);
3372         KDETH_RESET(ohdr->u.tid_rdma.w_req.kdeth1, JKEY, remote->jkey);
3373         ohdr->u.tid_rdma.w_req.reth.vaddr =
3374                 cpu_to_be64(wqe->rdma_wr.remote_addr + (wqe->length - *len));
3375         ohdr->u.tid_rdma.w_req.reth.rkey =
3376                 cpu_to_be32(wqe->rdma_wr.rkey);
3377         ohdr->u.tid_rdma.w_req.reth.length = cpu_to_be32(*len);
3378         ohdr->u.tid_rdma.w_req.verbs_qp = cpu_to_be32(qp->remote_qpn);
3379         *bth1 &= ~RVT_QPN_MASK;
3380         *bth1 |= remote->qp;
3381         qp->s_state = TID_OP(WRITE_REQ);
3382         qp->s_flags |= HFI1_S_WAIT_TID_RESP;
3383         *bth2 |= IB_BTH_REQ_ACK;
3384         *len = 0;
3385
3386         rcu_read_unlock();
3387         return sizeof(ohdr->u.tid_rdma.w_req) / sizeof(u32);
3388 }
3389
3390 static u32 hfi1_compute_tid_rdma_flow_wt(struct rvt_qp *qp)
3391 {
3392         /*
3393          * Heuristic for computing the RNR timeout when waiting on the flow
3394          * queue. Rather than a computationaly expensive exact estimate of when
3395          * a flow will be available, we assume that if a QP is at position N in
3396          * the flow queue it has to wait approximately (N + 1) * (number of
3397          * segments between two sync points). The rationale for this is that
3398          * flows are released and recycled at each sync point.
3399          */
3400         return (MAX_TID_FLOW_PSN * qp->pmtu) >> TID_RDMA_SEGMENT_SHIFT;
3401 }
3402
3403 static u32 position_in_queue(struct hfi1_qp_priv *qpriv,
3404                              struct tid_queue *queue)
3405 {
3406         return qpriv->tid_enqueue - queue->dequeue;
3407 }
3408
3409 /*
3410  * @qp: points to rvt_qp context.
3411  * @to_seg: desired RNR timeout in segments.
3412  * Return: index of the next highest timeout in the ib_hfi1_rnr_table[]
3413  */
3414 static u32 hfi1_compute_tid_rnr_timeout(struct rvt_qp *qp, u32 to_seg)
3415 {
3416         struct hfi1_qp_priv *qpriv = qp->priv;
3417         u64 timeout;
3418         u32 bytes_per_us;
3419         u8 i;
3420
3421         bytes_per_us = active_egress_rate(qpriv->rcd->ppd) / 8;
3422         timeout = (to_seg * TID_RDMA_MAX_SEGMENT_SIZE) / bytes_per_us;
3423         /*
3424          * Find the next highest value in the RNR table to the required
3425          * timeout. This gives the responder some padding.
3426          */
3427         for (i = 1; i <= IB_AETH_CREDIT_MASK; i++)
3428                 if (rvt_rnr_tbl_to_usec(i) >= timeout)
3429                         return i;
3430         return 0;
3431 }
3432
3433 /**
3434  * Central place for resource allocation at TID write responder,
3435  * is called from write_req and write_data interrupt handlers as
3436  * well as the send thread when a queued QP is scheduled for
3437  * resource allocation.
3438  *
3439  * Iterates over (a) segments of a request and then (b) queued requests
3440  * themselves to allocate resources for up to local->max_write
3441  * segments across multiple requests. Stop allocating when we
3442  * hit a sync point, resume allocating after data packets at
3443  * sync point have been received.
3444  *
3445  * Resource allocation and sending of responses is decoupled. The
3446  * request/segment which are being allocated and sent are as follows.
3447  * Resources are allocated for:
3448  *     [request: qpriv->r_tid_alloc, segment: req->alloc_seg]
3449  * The send thread sends:
3450  *     [request: qp->s_tail_ack_queue, segment:req->cur_seg]
3451  */
3452 static void hfi1_tid_write_alloc_resources(struct rvt_qp *qp, bool intr_ctx)
3453 {
3454         struct tid_rdma_request *req;
3455         struct hfi1_qp_priv *qpriv = qp->priv;
3456         struct hfi1_ctxtdata *rcd = qpriv->rcd;
3457         struct tid_rdma_params *local = &qpriv->tid_rdma.local;
3458         struct rvt_ack_entry *e;
3459         u32 npkts, to_seg;
3460         bool last;
3461         int ret = 0;
3462
3463         lockdep_assert_held(&qp->s_lock);
3464
3465         while (1) {
3466                 trace_hfi1_rsp_tid_write_alloc_res(qp, 0);
3467                 trace_hfi1_tid_write_rsp_alloc_res(qp);
3468                 /*
3469                  * Don't allocate more segments if a RNR NAK has already been
3470                  * scheduled to avoid messing up qp->r_psn: the RNR NAK will
3471                  * be sent only when all allocated segments have been sent.
3472                  * However, if more segments are allocated before that, TID RDMA
3473                  * WRITE RESP packets will be sent out for these new segments
3474                  * before the RNR NAK packet. When the requester receives the
3475                  * RNR NAK packet, it will restart with qp->s_last_psn + 1,
3476                  * which does not match qp->r_psn and will be dropped.
3477                  * Consequently, the requester will exhaust its retries and
3478                  * put the qp into error state.
3479                  */
3480                 if (qpriv->rnr_nak_state == TID_RNR_NAK_SEND)
3481                         break;
3482
3483                 /* No requests left to process */
3484                 if (qpriv->r_tid_alloc == qpriv->r_tid_head) {
3485                         /* If all data has been received, clear the flow */
3486                         if (qpriv->flow_state.index < RXE_NUM_TID_FLOWS &&
3487                             !qpriv->alloc_w_segs) {
3488                                 hfi1_kern_clear_hw_flow(rcd, qp);
3489                                 qpriv->s_flags &= ~HFI1_R_TID_SW_PSN;
3490                         }
3491                         break;
3492                 }
3493
3494                 e = &qp->s_ack_queue[qpriv->r_tid_alloc];
3495                 if (e->opcode != TID_OP(WRITE_REQ))
3496                         goto next_req;
3497                 req = ack_to_tid_req(e);
3498                 trace_hfi1_tid_req_write_alloc_res(qp, 0, e->opcode, e->psn,
3499                                                    e->lpsn, req);
3500                 /* Finished allocating for all segments of this request */
3501                 if (req->alloc_seg >= req->total_segs)
3502                         goto next_req;
3503
3504                 /* Can allocate only a maximum of local->max_write for a QP */
3505                 if (qpriv->alloc_w_segs >= local->max_write)
3506                         break;
3507
3508                 /* Don't allocate at a sync point with data packets pending */
3509                 if (qpriv->sync_pt && qpriv->alloc_w_segs)
3510                         break;
3511
3512                 /* All data received at the sync point, continue */
3513                 if (qpriv->sync_pt && !qpriv->alloc_w_segs) {
3514                         hfi1_kern_clear_hw_flow(rcd, qp);
3515                         qpriv->sync_pt = false;
3516                         qpriv->s_flags &= ~HFI1_R_TID_SW_PSN;
3517                 }
3518
3519                 /* Allocate flow if we don't have one */
3520                 if (qpriv->flow_state.index >= RXE_NUM_TID_FLOWS) {
3521                         ret = hfi1_kern_setup_hw_flow(qpriv->rcd, qp);
3522                         if (ret) {
3523                                 to_seg = hfi1_compute_tid_rdma_flow_wt(qp) *
3524                                         position_in_queue(qpriv,
3525                                                           &rcd->flow_queue);
3526                                 break;
3527                         }
3528                 }
3529
3530                 npkts = rvt_div_round_up_mtu(qp, req->seg_len);
3531
3532                 /*
3533                  * We are at a sync point if we run out of KDETH PSN space.
3534                  * Last PSN of every generation is reserved for RESYNC.
3535                  */
3536                 if (qpriv->flow_state.psn + npkts > MAX_TID_FLOW_PSN - 1) {
3537                         qpriv->sync_pt = true;
3538                         break;
3539                 }
3540
3541                 /*
3542                  * If overtaking req->acked_tail, send an RNR NAK. Because the
3543                  * QP is not queued in this case, and the issue can only be
3544                  * caused by a delay in scheduling the second leg which we
3545                  * cannot estimate, we use a rather arbitrary RNR timeout of
3546                  * (MAX_FLOWS / 2) segments
3547                  */
3548                 if (!CIRC_SPACE(req->setup_head, req->acked_tail,
3549                                 MAX_FLOWS)) {
3550                         ret = -EAGAIN;
3551                         to_seg = MAX_FLOWS >> 1;
3552                         tid_rdma_trigger_ack(qp);
3553                         break;
3554                 }
3555
3556                 /* Try to allocate rcv array / TID entries */
3557                 ret = hfi1_kern_exp_rcv_setup(req, &req->ss, &last);
3558                 if (ret == -EAGAIN)
3559                         to_seg = position_in_queue(qpriv, &rcd->rarr_queue);
3560                 if (ret)
3561                         break;
3562
3563                 qpriv->alloc_w_segs++;
3564                 req->alloc_seg++;
3565                 continue;
3566 next_req:
3567                 /* Begin processing the next request */
3568                 if (++qpriv->r_tid_alloc >
3569                     rvt_size_atomic(ib_to_rvt(qp->ibqp.device)))
3570                         qpriv->r_tid_alloc = 0;
3571         }
3572
3573         /*
3574          * Schedule an RNR NAK to be sent if (a) flow or rcv array allocation
3575          * has failed (b) we are called from the rcv handler interrupt context
3576          * (c) an RNR NAK has not already been scheduled
3577          */
3578         if (ret == -EAGAIN && intr_ctx && !qp->r_nak_state)
3579                 goto send_rnr_nak;
3580
3581         return;
3582
3583 send_rnr_nak:
3584         lockdep_assert_held(&qp->r_lock);
3585
3586         /* Set r_nak_state to prevent unrelated events from generating NAK's */
3587         qp->r_nak_state = hfi1_compute_tid_rnr_timeout(qp, to_seg) | IB_RNR_NAK;
3588
3589         /* Pull back r_psn to the segment being RNR NAK'd */
3590         qp->r_psn = e->psn + req->alloc_seg;
3591         qp->r_ack_psn = qp->r_psn;
3592         /*
3593          * Pull back r_head_ack_queue to the ack entry following the request
3594          * being RNR NAK'd. This allows resources to be allocated to the request
3595          * if the queued QP is scheduled.
3596          */
3597         qp->r_head_ack_queue = qpriv->r_tid_alloc + 1;
3598         if (qp->r_head_ack_queue > rvt_size_atomic(ib_to_rvt(qp->ibqp.device)))
3599                 qp->r_head_ack_queue = 0;
3600         qpriv->r_tid_head = qp->r_head_ack_queue;
3601         /*
3602          * These send side fields are used in make_rc_ack(). They are set in
3603          * hfi1_send_rc_ack() but must be set here before dropping qp->s_lock
3604          * for consistency
3605          */
3606         qp->s_nak_state = qp->r_nak_state;
3607         qp->s_ack_psn = qp->r_ack_psn;
3608         /*
3609          * Clear the ACK PENDING flag to prevent unwanted ACK because we
3610          * have modified qp->s_ack_psn here.
3611          */
3612         qp->s_flags &= ~(RVT_S_ACK_PENDING);
3613
3614         trace_hfi1_rsp_tid_write_alloc_res(qp, qp->r_psn);
3615         /*
3616          * qpriv->rnr_nak_state is used to determine when the scheduled RNR NAK
3617          * has actually been sent. qp->s_flags RVT_S_ACK_PENDING bit cannot be
3618          * used for this because qp->s_lock is dropped before calling
3619          * hfi1_send_rc_ack() leading to inconsistency between the receive
3620          * interrupt handlers and the send thread in make_rc_ack()
3621          */
3622         qpriv->rnr_nak_state = TID_RNR_NAK_SEND;
3623
3624         /*
3625          * Schedule RNR NAK to be sent. RNR NAK's are scheduled from the receive
3626          * interrupt handlers but will be sent from the send engine behind any
3627          * previous responses that may have been scheduled
3628          */
3629         rc_defered_ack(rcd, qp);
3630 }
3631
3632 void hfi1_rc_rcv_tid_rdma_write_req(struct hfi1_packet *packet)
3633 {
3634         /* HANDLER FOR TID RDMA WRITE REQUEST packet (Responder side)*/
3635
3636         /*
3637          * 1. Verify TID RDMA WRITE REQ as per IB_OPCODE_RC_RDMA_WRITE_FIRST
3638          *    (see hfi1_rc_rcv())
3639          *     - Don't allow 0-length requests.
3640          * 2. Put TID RDMA WRITE REQ into the response queueu (s_ack_queue)
3641          *     - Setup struct tid_rdma_req with request info
3642          *     - Prepare struct tid_rdma_flow array?
3643          * 3. Set the qp->s_ack_state as state diagram in design doc.
3644          * 4. Set RVT_S_RESP_PENDING in s_flags.
3645          * 5. Kick the send engine (hfi1_schedule_send())
3646          */
3647         struct hfi1_ctxtdata *rcd = packet->rcd;
3648         struct rvt_qp *qp = packet->qp;
3649         struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
3650         struct ib_other_headers *ohdr = packet->ohdr;
3651         struct rvt_ack_entry *e;
3652         unsigned long flags;
3653         struct ib_reth *reth;
3654         struct hfi1_qp_priv *qpriv = qp->priv;
3655         struct tid_rdma_request *req;
3656         u32 bth0, psn, len, rkey, num_segs;
3657         bool fecn;
3658         u8 next;
3659         u64 vaddr;
3660         int diff;
3661
3662         bth0 = be32_to_cpu(ohdr->bth[0]);
3663         if (hfi1_ruc_check_hdr(ibp, packet))
3664                 return;
3665
3666         fecn = process_ecn(qp, packet);
3667         psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
3668         trace_hfi1_rsp_rcv_tid_write_req(qp, psn);
3669
3670         if (qp->state == IB_QPS_RTR && !(qp->r_flags & RVT_R_COMM_EST))
3671                 rvt_comm_est(qp);
3672
3673         if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
3674                 goto nack_inv;
3675
3676         reth = &ohdr->u.tid_rdma.w_req.reth;
3677         vaddr = be64_to_cpu(reth->vaddr);
3678         len = be32_to_cpu(reth->length);
3679
3680         num_segs = DIV_ROUND_UP(len, qpriv->tid_rdma.local.max_len);
3681         diff = delta_psn(psn, qp->r_psn);
3682         if (unlikely(diff)) {
3683                 tid_rdma_rcv_err(packet, ohdr, qp, psn, diff, fecn);
3684                 return;
3685         }
3686
3687         /*
3688          * The resent request which was previously RNR NAK'd is inserted at the
3689          * location of the original request, which is one entry behind
3690          * r_head_ack_queue
3691          */
3692         if (qpriv->rnr_nak_state)
3693                 qp->r_head_ack_queue = qp->r_head_ack_queue ?
3694                         qp->r_head_ack_queue - 1 :
3695                         rvt_size_atomic(ib_to_rvt(qp->ibqp.device));
3696
3697         /* We've verified the request, insert it into the ack queue. */
3698         next = qp->r_head_ack_queue + 1;
3699         if (next > rvt_size_atomic(ib_to_rvt(qp->ibqp.device)))
3700                 next = 0;
3701         spin_lock_irqsave(&qp->s_lock, flags);
3702         if (unlikely(next == qp->s_acked_ack_queue)) {
3703                 if (!qp->s_ack_queue[next].sent)
3704                         goto nack_inv_unlock;
3705                 update_ack_queue(qp, next);
3706         }
3707         e = &qp->s_ack_queue[qp->r_head_ack_queue];
3708         req = ack_to_tid_req(e);
3709
3710         /* Bring previously RNR NAK'd request back to life */
3711         if (qpriv->rnr_nak_state) {
3712                 qp->r_nak_state = 0;
3713                 qp->s_nak_state = 0;
3714                 qpriv->rnr_nak_state = TID_RNR_NAK_INIT;
3715                 qp->r_psn = e->lpsn + 1;
3716                 req->state = TID_REQUEST_INIT;
3717                 goto update_head;
3718         }
3719
3720         release_rdma_sge_mr(e);
3721
3722         /* The length needs to be in multiples of PAGE_SIZE */
3723         if (!len || len & ~PAGE_MASK)
3724                 goto nack_inv_unlock;
3725
3726         rkey = be32_to_cpu(reth->rkey);
3727         qp->r_len = len;
3728
3729         if (e->opcode == TID_OP(WRITE_REQ) &&
3730             (req->setup_head != req->clear_tail ||
3731              req->clear_tail != req->acked_tail))
3732                 goto nack_inv_unlock;
3733
3734         if (unlikely(!rvt_rkey_ok(qp, &e->rdma_sge, qp->r_len, vaddr,
3735                                   rkey, IB_ACCESS_REMOTE_WRITE)))
3736                 goto nack_acc;
3737
3738         qp->r_psn += num_segs - 1;
3739
3740         e->opcode = (bth0 >> 24) & 0xff;
3741         e->psn = psn;
3742         e->lpsn = qp->r_psn;
3743         e->sent = 0;
3744
3745         req->n_flows = min_t(u16, num_segs, qpriv->tid_rdma.local.max_write);
3746         req->state = TID_REQUEST_INIT;
3747         req->cur_seg = 0;
3748         req->comp_seg = 0;
3749         req->ack_seg = 0;
3750         req->alloc_seg = 0;
3751         req->isge = 0;
3752         req->seg_len = qpriv->tid_rdma.local.max_len;
3753         req->total_len = len;
3754         req->total_segs = num_segs;
3755         req->r_flow_psn = e->psn;
3756         req->ss.sge = e->rdma_sge;
3757         req->ss.num_sge = 1;
3758
3759         req->flow_idx = req->setup_head;
3760         req->clear_tail = req->setup_head;
3761         req->acked_tail = req->setup_head;
3762
3763         qp->r_state = e->opcode;
3764         qp->r_nak_state = 0;
3765         /*
3766          * We need to increment the MSN here instead of when we
3767          * finish sending the result since a duplicate request would
3768          * increment it more than once.
3769          */
3770         qp->r_msn++;
3771         qp->r_psn++;
3772
3773         trace_hfi1_tid_req_rcv_write_req(qp, 0, e->opcode, e->psn, e->lpsn,
3774                                          req);
3775
3776         if (qpriv->r_tid_tail == HFI1_QP_WQE_INVALID) {
3777                 qpriv->r_tid_tail = qp->r_head_ack_queue;
3778         } else if (qpriv->r_tid_tail == qpriv->r_tid_head) {
3779                 struct tid_rdma_request *ptr;
3780
3781                 e = &qp->s_ack_queue[qpriv->r_tid_tail];
3782                 ptr = ack_to_tid_req(e);
3783
3784                 if (e->opcode != TID_OP(WRITE_REQ) ||
3785                     ptr->comp_seg == ptr->total_segs) {
3786                         if (qpriv->r_tid_tail == qpriv->r_tid_ack)
3787                                 qpriv->r_tid_ack = qp->r_head_ack_queue;
3788                         qpriv->r_tid_tail = qp->r_head_ack_queue;
3789                 }
3790         }
3791 update_head:
3792         qp->r_head_ack_queue = next;
3793         qpriv->r_tid_head = qp->r_head_ack_queue;
3794
3795         hfi1_tid_write_alloc_resources(qp, true);
3796         trace_hfi1_tid_write_rsp_rcv_req(qp);
3797
3798         /* Schedule the send tasklet. */
3799         qp->s_flags |= RVT_S_RESP_PENDING;
3800         if (fecn)
3801                 qp->s_flags |= RVT_S_ECN;
3802         hfi1_schedule_send(qp);
3803
3804         spin_unlock_irqrestore(&qp->s_lock, flags);
3805         return;
3806
3807 nack_inv_unlock:
3808         spin_unlock_irqrestore(&qp->s_lock, flags);
3809 nack_inv:
3810         rvt_rc_error(qp, IB_WC_LOC_QP_OP_ERR);
3811         qp->r_nak_state = IB_NAK_INVALID_REQUEST;
3812         qp->r_ack_psn = qp->r_psn;
3813         /* Queue NAK for later */
3814         rc_defered_ack(rcd, qp);
3815         return;
3816 nack_acc:
3817         spin_unlock_irqrestore(&qp->s_lock, flags);
3818         rvt_rc_error(qp, IB_WC_LOC_PROT_ERR);
3819         qp->r_nak_state = IB_NAK_REMOTE_ACCESS_ERROR;
3820         qp->r_ack_psn = qp->r_psn;
3821 }
3822
3823 u32 hfi1_build_tid_rdma_write_resp(struct rvt_qp *qp, struct rvt_ack_entry *e,
3824                                    struct ib_other_headers *ohdr, u32 *bth1,
3825                                    u32 bth2, u32 *len,
3826                                    struct rvt_sge_state **ss)
3827 {
3828         struct hfi1_ack_priv *epriv = e->priv;
3829         struct tid_rdma_request *req = &epriv->tid_req;
3830         struct hfi1_qp_priv *qpriv = qp->priv;
3831         struct tid_rdma_flow *flow = NULL;
3832         u32 resp_len = 0, hdwords = 0;
3833         void *resp_addr = NULL;
3834         struct tid_rdma_params *remote;
3835
3836         trace_hfi1_tid_req_build_write_resp(qp, 0, e->opcode, e->psn, e->lpsn,
3837                                             req);
3838         trace_hfi1_tid_write_rsp_build_resp(qp);
3839         trace_hfi1_rsp_build_tid_write_resp(qp, bth2);
3840         flow = &req->flows[req->flow_idx];
3841         switch (req->state) {
3842         default:
3843                 /*
3844                  * Try to allocate resources here in case QP was queued and was
3845                  * later scheduled when resources became available
3846                  */
3847                 hfi1_tid_write_alloc_resources(qp, false);
3848
3849                 /* We've already sent everything which is ready */
3850                 if (req->cur_seg >= req->alloc_seg)
3851                         goto done;
3852
3853                 /*
3854                  * Resources can be assigned but responses cannot be sent in
3855                  * rnr_nak state, till the resent request is received
3856                  */
3857                 if (qpriv->rnr_nak_state == TID_RNR_NAK_SENT)
3858                         goto done;
3859
3860                 req->state = TID_REQUEST_ACTIVE;
3861                 trace_hfi1_tid_flow_build_write_resp(qp, req->flow_idx, flow);
3862                 req->flow_idx = CIRC_NEXT(req->flow_idx, MAX_FLOWS);
3863                 hfi1_add_tid_reap_timer(qp);
3864                 break;
3865
3866         case TID_REQUEST_RESEND_ACTIVE:
3867         case TID_REQUEST_RESEND:
3868                 trace_hfi1_tid_flow_build_write_resp(qp, req->flow_idx, flow);
3869                 req->flow_idx = CIRC_NEXT(req->flow_idx, MAX_FLOWS);
3870                 if (!CIRC_CNT(req->setup_head, req->flow_idx, MAX_FLOWS))
3871                         req->state = TID_REQUEST_ACTIVE;
3872
3873                 hfi1_mod_tid_reap_timer(qp);
3874                 break;
3875         }
3876         flow->flow_state.resp_ib_psn = bth2;
3877         resp_addr = (void *)flow->tid_entry;
3878         resp_len = sizeof(*flow->tid_entry) * flow->tidcnt;
3879         req->cur_seg++;
3880
3881         memset(&ohdr->u.tid_rdma.w_rsp, 0, sizeof(ohdr->u.tid_rdma.w_rsp));
3882         epriv->ss.sge.vaddr = resp_addr;
3883         epriv->ss.sge.sge_length = resp_len;
3884         epriv->ss.sge.length = epriv->ss.sge.sge_length;
3885         /*
3886          * We can safely zero these out. Since the first SGE covers the
3887          * entire packet, nothing else should even look at the MR.
3888          */
3889         epriv->ss.sge.mr = NULL;
3890         epriv->ss.sge.m = 0;
3891         epriv->ss.sge.n = 0;
3892
3893         epriv->ss.sg_list = NULL;
3894         epriv->ss.total_len = epriv->ss.sge.sge_length;
3895         epriv->ss.num_sge = 1;
3896
3897         *ss = &epriv->ss;
3898         *len = epriv->ss.total_len;
3899
3900         /* Construct the TID RDMA WRITE RESP packet header */
3901         rcu_read_lock();
3902         remote = rcu_dereference(qpriv->tid_rdma.remote);
3903
3904         KDETH_RESET(ohdr->u.tid_rdma.w_rsp.kdeth0, KVER, 0x1);
3905         KDETH_RESET(ohdr->u.tid_rdma.w_rsp.kdeth1, JKEY, remote->jkey);
3906         ohdr->u.tid_rdma.w_rsp.aeth = rvt_compute_aeth(qp);
3907         ohdr->u.tid_rdma.w_rsp.tid_flow_psn =
3908                 cpu_to_be32((flow->flow_state.generation <<
3909                              HFI1_KDETH_BTH_SEQ_SHIFT) |
3910                             (flow->flow_state.spsn &
3911                              HFI1_KDETH_BTH_SEQ_MASK));
3912         ohdr->u.tid_rdma.w_rsp.tid_flow_qp =
3913                 cpu_to_be32(qpriv->tid_rdma.local.qp |
3914                             ((flow->idx & TID_RDMA_DESTQP_FLOW_MASK) <<
3915                              TID_RDMA_DESTQP_FLOW_SHIFT) |
3916                             qpriv->rcd->ctxt);
3917         ohdr->u.tid_rdma.w_rsp.verbs_qp = cpu_to_be32(qp->remote_qpn);
3918         *bth1 = remote->qp;
3919         rcu_read_unlock();
3920         hdwords = sizeof(ohdr->u.tid_rdma.w_rsp) / sizeof(u32);
3921         qpriv->pending_tid_w_segs++;
3922 done:
3923         return hdwords;
3924 }
3925
3926 static void hfi1_add_tid_reap_timer(struct rvt_qp *qp)
3927 {
3928         struct hfi1_qp_priv *qpriv = qp->priv;
3929
3930         lockdep_assert_held(&qp->s_lock);
3931         if (!(qpriv->s_flags & HFI1_R_TID_RSC_TIMER)) {
3932                 qpriv->s_flags |= HFI1_R_TID_RSC_TIMER;
3933                 qpriv->s_tid_timer.expires = jiffies +
3934                         qpriv->tid_timer_timeout_jiffies;
3935                 add_timer(&qpriv->s_tid_timer);
3936         }
3937 }
3938
3939 static void hfi1_mod_tid_reap_timer(struct rvt_qp *qp)
3940 {
3941         struct hfi1_qp_priv *qpriv = qp->priv;
3942
3943         lockdep_assert_held(&qp->s_lock);
3944         qpriv->s_flags |= HFI1_R_TID_RSC_TIMER;
3945         mod_timer(&qpriv->s_tid_timer, jiffies +
3946                   qpriv->tid_timer_timeout_jiffies);
3947 }
3948
3949 static int hfi1_stop_tid_reap_timer(struct rvt_qp *qp)
3950 {
3951         struct hfi1_qp_priv *qpriv = qp->priv;
3952         int rval = 0;
3953
3954         lockdep_assert_held(&qp->s_lock);
3955         if (qpriv->s_flags & HFI1_R_TID_RSC_TIMER) {
3956                 rval = del_timer(&qpriv->s_tid_timer);
3957                 qpriv->s_flags &= ~HFI1_R_TID_RSC_TIMER;
3958         }
3959         return rval;
3960 }
3961
3962 void hfi1_del_tid_reap_timer(struct rvt_qp *qp)
3963 {
3964         struct hfi1_qp_priv *qpriv = qp->priv;
3965
3966         del_timer_sync(&qpriv->s_tid_timer);
3967         qpriv->s_flags &= ~HFI1_R_TID_RSC_TIMER;
3968 }
3969
3970 static void hfi1_tid_timeout(struct timer_list *t)
3971 {
3972         struct hfi1_qp_priv *qpriv = from_timer(qpriv, t, s_tid_timer);
3973         struct rvt_qp *qp = qpriv->owner;
3974         struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
3975         unsigned long flags;
3976         u32 i;
3977
3978         spin_lock_irqsave(&qp->r_lock, flags);
3979         spin_lock(&qp->s_lock);
3980         if (qpriv->s_flags & HFI1_R_TID_RSC_TIMER) {
3981                 dd_dev_warn(dd_from_ibdev(qp->ibqp.device), "[QP%u] %s %d\n",
3982                             qp->ibqp.qp_num, __func__, __LINE__);
3983                 trace_hfi1_msg_tid_timeout(/* msg */
3984                         qp, "resource timeout = ",
3985                         (u64)qpriv->tid_timer_timeout_jiffies);
3986                 hfi1_stop_tid_reap_timer(qp);
3987                 /*
3988                  * Go though the entire ack queue and clear any outstanding
3989                  * HW flow and RcvArray resources.
3990                  */
3991                 hfi1_kern_clear_hw_flow(qpriv->rcd, qp);
3992                 for (i = 0; i < rvt_max_atomic(rdi); i++) {
3993                         struct tid_rdma_request *req =
3994                                 ack_to_tid_req(&qp->s_ack_queue[i]);
3995
3996                         hfi1_kern_exp_rcv_clear_all(req);
3997                 }
3998                 spin_unlock(&qp->s_lock);
3999                 if (qp->ibqp.event_handler) {
4000                         struct ib_event ev;
4001
4002                         ev.device = qp->ibqp.device;
4003                         ev.element.qp = &qp->ibqp;
4004                         ev.event = IB_EVENT_QP_FATAL;
4005                         qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
4006                 }
4007                 rvt_rc_error(qp, IB_WC_RESP_TIMEOUT_ERR);
4008                 goto unlock_r_lock;
4009         }
4010         spin_unlock(&qp->s_lock);
4011 unlock_r_lock:
4012         spin_unlock_irqrestore(&qp->r_lock, flags);
4013 }
4014
4015 void hfi1_rc_rcv_tid_rdma_write_resp(struct hfi1_packet *packet)
4016 {
4017         /* HANDLER FOR TID RDMA WRITE RESPONSE packet (Requestor side */
4018
4019         /*
4020          * 1. Find matching SWQE
4021          * 2. Check that TIDENTRY array has enough space for a complete
4022          *    segment. If not, put QP in error state.
4023          * 3. Save response data in struct tid_rdma_req and struct tid_rdma_flow
4024          * 4. Remove HFI1_S_WAIT_TID_RESP from s_flags.
4025          * 5. Set qp->s_state
4026          * 6. Kick the send engine (hfi1_schedule_send())
4027          */
4028         struct ib_other_headers *ohdr = packet->ohdr;
4029         struct rvt_qp *qp = packet->qp;
4030         struct hfi1_qp_priv *qpriv = qp->priv;
4031         struct hfi1_ctxtdata *rcd = packet->rcd;
4032         struct rvt_swqe *wqe;
4033         struct tid_rdma_request *req;
4034         struct tid_rdma_flow *flow;
4035         enum ib_wc_status status;
4036         u32 opcode, aeth, psn, flow_psn, i, tidlen = 0, pktlen;
4037         bool fecn;
4038         unsigned long flags;
4039
4040         fecn = process_ecn(qp, packet);
4041         psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
4042         aeth = be32_to_cpu(ohdr->u.tid_rdma.w_rsp.aeth);
4043         opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff;
4044
4045         spin_lock_irqsave(&qp->s_lock, flags);
4046
4047         /* Ignore invalid responses */
4048         if (cmp_psn(psn, qp->s_next_psn) >= 0)
4049                 goto ack_done;
4050
4051         /* Ignore duplicate responses. */
4052         if (unlikely(cmp_psn(psn, qp->s_last_psn) <= 0))
4053                 goto ack_done;
4054
4055         if (unlikely(qp->s_acked == qp->s_tail))
4056                 goto ack_done;
4057
4058         /*
4059          * If we are waiting for a particular packet sequence number
4060          * due to a request being resent, check for it. Otherwise,
4061          * ensure that we haven't missed anything.
4062          */
4063         if (qp->r_flags & RVT_R_RDMAR_SEQ) {
4064                 if (cmp_psn(psn, qp->s_last_psn + 1) != 0)
4065                         goto ack_done;
4066                 qp->r_flags &= ~RVT_R_RDMAR_SEQ;
4067         }
4068
4069         wqe = rvt_get_swqe_ptr(qp, qpriv->s_tid_cur);
4070         if (unlikely(wqe->wr.opcode != IB_WR_TID_RDMA_WRITE))
4071                 goto ack_op_err;
4072
4073         req = wqe_to_tid_req(wqe);
4074         /*
4075          * If we've lost ACKs and our acked_tail pointer is too far
4076          * behind, don't overwrite segments. Just drop the packet and
4077          * let the reliability protocol take care of it.
4078          */
4079         if (!CIRC_SPACE(req->setup_head, req->acked_tail, MAX_FLOWS))
4080                 goto ack_done;
4081
4082         /*
4083          * The call to do_rc_ack() should be last in the chain of
4084          * packet checks because it will end up updating the QP state.
4085          * Therefore, anything that would prevent the packet from
4086          * being accepted as a successful response should be prior
4087          * to it.
4088          */
4089         if (!do_rc_ack(qp, aeth, psn, opcode, 0, rcd))
4090                 goto ack_done;
4091
4092         trace_hfi1_ack(qp, psn);
4093
4094         flow = &req->flows[req->setup_head];
4095         flow->pkt = 0;
4096         flow->tid_idx = 0;
4097         flow->tid_offset = 0;
4098         flow->sent = 0;
4099         flow->resync_npkts = 0;
4100         flow->tid_qpn = be32_to_cpu(ohdr->u.tid_rdma.w_rsp.tid_flow_qp);
4101         flow->idx = (flow->tid_qpn >> TID_RDMA_DESTQP_FLOW_SHIFT) &
4102                 TID_RDMA_DESTQP_FLOW_MASK;
4103         flow_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.w_rsp.tid_flow_psn));
4104         flow->flow_state.generation = flow_psn >> HFI1_KDETH_BTH_SEQ_SHIFT;
4105         flow->flow_state.spsn = flow_psn & HFI1_KDETH_BTH_SEQ_MASK;
4106         flow->flow_state.resp_ib_psn = psn;
4107         flow->length = min_t(u32, req->seg_len,
4108                              (wqe->length - (req->comp_seg * req->seg_len)));
4109
4110         flow->npkts = rvt_div_round_up_mtu(qp, flow->length);
4111         flow->flow_state.lpsn = flow->flow_state.spsn +
4112                 flow->npkts - 1;
4113         /* payload length = packet length - (header length + ICRC length) */
4114         pktlen = packet->tlen - (packet->hlen + 4);
4115         if (pktlen > sizeof(flow->tid_entry)) {
4116                 status = IB_WC_LOC_LEN_ERR;
4117                 goto ack_err;
4118         }
4119         memcpy(flow->tid_entry, packet->ebuf, pktlen);
4120         flow->tidcnt = pktlen / sizeof(*flow->tid_entry);
4121         trace_hfi1_tid_flow_rcv_write_resp(qp, req->setup_head, flow);
4122
4123         req->comp_seg++;
4124         trace_hfi1_tid_write_sender_rcv_resp(qp, 0);
4125         /*
4126          * Walk the TID_ENTRY list to make sure we have enough space for a
4127          * complete segment.
4128          */
4129         for (i = 0; i < flow->tidcnt; i++) {
4130                 trace_hfi1_tid_entry_rcv_write_resp(/* entry */
4131                         qp, i, flow->tid_entry[i]);
4132                 if (!EXP_TID_GET(flow->tid_entry[i], LEN)) {
4133                         status = IB_WC_LOC_LEN_ERR;
4134                         goto ack_err;
4135                 }
4136                 tidlen += EXP_TID_GET(flow->tid_entry[i], LEN);
4137         }
4138         if (tidlen * PAGE_SIZE < flow->length) {
4139                 status = IB_WC_LOC_LEN_ERR;
4140                 goto ack_err;
4141         }
4142
4143         trace_hfi1_tid_req_rcv_write_resp(qp, 0, wqe->wr.opcode, wqe->psn,
4144                                           wqe->lpsn, req);
4145         /*
4146          * If this is the first response for this request, set the initial
4147          * flow index to the current flow.
4148          */
4149         if (!cmp_psn(psn, wqe->psn)) {
4150                 req->r_last_acked = mask_psn(wqe->psn - 1);
4151                 /* Set acked flow index to head index */
4152                 req->acked_tail = req->setup_head;
4153         }
4154
4155         /* advance circular buffer head */
4156         req->setup_head = CIRC_NEXT(req->setup_head, MAX_FLOWS);
4157         req->state = TID_REQUEST_ACTIVE;
4158
4159         /*
4160          * If all responses for this TID RDMA WRITE request have been received
4161          * advance the pointer to the next one.
4162          * Since TID RDMA requests could be mixed in with regular IB requests,
4163          * they might not appear sequentially in the queue. Therefore, the
4164          * next request needs to be "found".
4165          */
4166         if (qpriv->s_tid_cur != qpriv->s_tid_head &&
4167             req->comp_seg == req->total_segs) {
4168                 for (i = qpriv->s_tid_cur + 1; ; i++) {
4169                         if (i == qp->s_size)
4170                                 i = 0;
4171                         wqe = rvt_get_swqe_ptr(qp, i);
4172                         if (i == qpriv->s_tid_head)
4173                                 break;
4174                         if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE)
4175                                 break;
4176                 }
4177                 qpriv->s_tid_cur = i;
4178         }
4179         qp->s_flags &= ~HFI1_S_WAIT_TID_RESP;
4180         hfi1_schedule_tid_send(qp);
4181         goto ack_done;
4182
4183 ack_op_err:
4184         status = IB_WC_LOC_QP_OP_ERR;
4185 ack_err:
4186         rvt_error_qp(qp, status);
4187 ack_done:
4188         if (fecn)
4189                 qp->s_flags |= RVT_S_ECN;
4190         spin_unlock_irqrestore(&qp->s_lock, flags);
4191 }
4192
4193 bool hfi1_build_tid_rdma_packet(struct rvt_swqe *wqe,
4194                                 struct ib_other_headers *ohdr,
4195                                 u32 *bth1, u32 *bth2, u32 *len)
4196 {
4197         struct tid_rdma_request *req = wqe_to_tid_req(wqe);
4198         struct tid_rdma_flow *flow = &req->flows[req->clear_tail];
4199         struct tid_rdma_params *remote;
4200         struct rvt_qp *qp = req->qp;
4201         struct hfi1_qp_priv *qpriv = qp->priv;
4202         u32 tidentry = flow->tid_entry[flow->tid_idx];
4203         u32 tidlen = EXP_TID_GET(tidentry, LEN) << PAGE_SHIFT;
4204         struct tid_rdma_write_data *wd = &ohdr->u.tid_rdma.w_data;
4205         u32 next_offset, om = KDETH_OM_LARGE;
4206         bool last_pkt;
4207
4208         if (!tidlen) {
4209                 hfi1_trdma_send_complete(qp, wqe, IB_WC_REM_INV_RD_REQ_ERR);
4210                 rvt_error_qp(qp, IB_WC_REM_INV_RD_REQ_ERR);
4211         }
4212
4213         *len = min_t(u32, qp->pmtu, tidlen - flow->tid_offset);
4214         flow->sent += *len;
4215         next_offset = flow->tid_offset + *len;
4216         last_pkt = (flow->tid_idx == (flow->tidcnt - 1) &&
4217                     next_offset >= tidlen) || (flow->sent >= flow->length);
4218         trace_hfi1_tid_entry_build_write_data(qp, flow->tid_idx, tidentry);
4219         trace_hfi1_tid_flow_build_write_data(qp, req->clear_tail, flow);
4220
4221         rcu_read_lock();
4222         remote = rcu_dereference(qpriv->tid_rdma.remote);
4223         KDETH_RESET(wd->kdeth0, KVER, 0x1);
4224         KDETH_SET(wd->kdeth0, SH, !last_pkt);
4225         KDETH_SET(wd->kdeth0, INTR, !!(!last_pkt && remote->urg));
4226         KDETH_SET(wd->kdeth0, TIDCTRL, EXP_TID_GET(tidentry, CTRL));
4227         KDETH_SET(wd->kdeth0, TID, EXP_TID_GET(tidentry, IDX));
4228         KDETH_SET(wd->kdeth0, OM, om == KDETH_OM_LARGE);
4229         KDETH_SET(wd->kdeth0, OFFSET, flow->tid_offset / om);
4230         KDETH_RESET(wd->kdeth1, JKEY, remote->jkey);
4231         wd->verbs_qp = cpu_to_be32(qp->remote_qpn);
4232         rcu_read_unlock();
4233
4234         *bth1 = flow->tid_qpn;
4235         *bth2 = mask_psn(((flow->flow_state.spsn + flow->pkt++) &
4236                          HFI1_KDETH_BTH_SEQ_MASK) |
4237                          (flow->flow_state.generation <<
4238                           HFI1_KDETH_BTH_SEQ_SHIFT));
4239         if (last_pkt) {
4240                 /* PSNs are zero-based, so +1 to count number of packets */
4241                 if (flow->flow_state.lpsn + 1 +
4242                     rvt_div_round_up_mtu(qp, req->seg_len) >
4243                     MAX_TID_FLOW_PSN)
4244                         req->state = TID_REQUEST_SYNC;
4245                 *bth2 |= IB_BTH_REQ_ACK;
4246         }
4247
4248         if (next_offset >= tidlen) {
4249                 flow->tid_offset = 0;
4250                 flow->tid_idx++;
4251         } else {
4252                 flow->tid_offset = next_offset;
4253         }
4254         return last_pkt;
4255 }
4256
4257 void hfi1_rc_rcv_tid_rdma_write_data(struct hfi1_packet *packet)
4258 {
4259         struct rvt_qp *qp = packet->qp;
4260         struct hfi1_qp_priv *priv = qp->priv;
4261         struct hfi1_ctxtdata *rcd = priv->rcd;
4262         struct ib_other_headers *ohdr = packet->ohdr;
4263         struct rvt_ack_entry *e;
4264         struct tid_rdma_request *req;
4265         struct tid_rdma_flow *flow;
4266         struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
4267         unsigned long flags;
4268         u32 psn, next;
4269         u8 opcode;
4270         bool fecn;
4271
4272         fecn = process_ecn(qp, packet);
4273         psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
4274         opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff;
4275
4276         /*
4277          * All error handling should be done by now. If we are here, the packet
4278          * is either good or been accepted by the error handler.
4279          */
4280         spin_lock_irqsave(&qp->s_lock, flags);
4281         e = &qp->s_ack_queue[priv->r_tid_tail];
4282         req = ack_to_tid_req(e);
4283         flow = &req->flows[req->clear_tail];
4284         if (cmp_psn(psn, full_flow_psn(flow, flow->flow_state.lpsn))) {
4285                 update_r_next_psn_fecn(packet, priv, rcd, flow, fecn);
4286
4287                 if (cmp_psn(psn, flow->flow_state.r_next_psn))
4288                         goto send_nak;
4289
4290                 flow->flow_state.r_next_psn = mask_psn(psn + 1);
4291                 /*
4292                  * Copy the payload to destination buffer if this packet is
4293                  * delivered as an eager packet due to RSM rule and FECN.
4294                  * The RSM rule selects FECN bit in BTH and SH bit in
4295                  * KDETH header and therefore will not match the last
4296                  * packet of each segment that has SH bit cleared.
4297                  */
4298                 if (fecn && packet->etype == RHF_RCV_TYPE_EAGER) {
4299                         struct rvt_sge_state ss;
4300                         u32 len;
4301                         u32 tlen = packet->tlen;
4302                         u16 hdrsize = packet->hlen;
4303                         u8 pad = packet->pad;
4304                         u8 extra_bytes = pad + packet->extra_byte +
4305                                 (SIZE_OF_CRC << 2);
4306                         u32 pmtu = qp->pmtu;
4307
4308                         if (unlikely(tlen != (hdrsize + pmtu + extra_bytes)))
4309                                 goto send_nak;
4310                         len = req->comp_seg * req->seg_len;
4311                         len += delta_psn(psn,
4312                                 full_flow_psn(flow, flow->flow_state.spsn)) *
4313                                 pmtu;
4314                         if (unlikely(req->total_len - len < pmtu))
4315                                 goto send_nak;
4316
4317                         /*
4318                          * The e->rdma_sge field is set when TID RDMA WRITE REQ
4319                          * is first received and is never modified thereafter.
4320                          */
4321                         ss.sge = e->rdma_sge;
4322                         ss.sg_list = NULL;
4323                         ss.num_sge = 1;
4324                         ss.total_len = req->total_len;
4325                         rvt_skip_sge(&ss, len, false);
4326                         rvt_copy_sge(qp, &ss, packet->payload, pmtu, false,
4327                                      false);
4328                         /* Raise the sw sequence check flag for next packet */
4329                         priv->r_next_psn_kdeth = mask_psn(psn + 1);
4330                         priv->s_flags |= HFI1_R_TID_SW_PSN;
4331                 }
4332                 goto exit;
4333         }
4334         flow->flow_state.r_next_psn = mask_psn(psn + 1);
4335         hfi1_kern_exp_rcv_clear(req);
4336         priv->alloc_w_segs--;
4337         rcd->flows[flow->idx].psn = psn & HFI1_KDETH_BTH_SEQ_MASK;
4338         req->comp_seg++;
4339         priv->s_nak_state = 0;
4340
4341         /*
4342          * Release the flow if one of the following conditions has been met:
4343          *  - The request has reached a sync point AND all outstanding
4344          *    segments have been completed, or
4345          *  - The entire request is complete and there are no more requests
4346          *    (of any kind) in the queue.
4347          */
4348         trace_hfi1_rsp_rcv_tid_write_data(qp, psn);
4349         trace_hfi1_tid_req_rcv_write_data(qp, 0, e->opcode, e->psn, e->lpsn,
4350                                           req);
4351         trace_hfi1_tid_write_rsp_rcv_data(qp);
4352         validate_r_tid_ack(priv);
4353
4354         if (opcode == TID_OP(WRITE_DATA_LAST)) {
4355                 release_rdma_sge_mr(e);
4356                 for (next = priv->r_tid_tail + 1; ; next++) {
4357                         if (next > rvt_size_atomic(&dev->rdi))
4358                                 next = 0;
4359                         if (next == priv->r_tid_head)
4360                                 break;
4361                         e = &qp->s_ack_queue[next];
4362                         if (e->opcode == TID_OP(WRITE_REQ))
4363                                 break;
4364                 }
4365                 priv->r_tid_tail = next;
4366                 if (++qp->s_acked_ack_queue > rvt_size_atomic(&dev->rdi))
4367                         qp->s_acked_ack_queue = 0;
4368         }
4369
4370         hfi1_tid_write_alloc_resources(qp, true);
4371
4372         /*
4373          * If we need to generate more responses, schedule the
4374          * send engine.
4375          */
4376         if (req->cur_seg < req->total_segs ||
4377             qp->s_tail_ack_queue != qp->r_head_ack_queue) {
4378                 qp->s_flags |= RVT_S_RESP_PENDING;
4379                 hfi1_schedule_send(qp);
4380         }
4381
4382         priv->pending_tid_w_segs--;
4383         if (priv->s_flags & HFI1_R_TID_RSC_TIMER) {
4384                 if (priv->pending_tid_w_segs)
4385                         hfi1_mod_tid_reap_timer(req->qp);
4386                 else
4387                         hfi1_stop_tid_reap_timer(req->qp);
4388         }
4389
4390 done:
4391         tid_rdma_schedule_ack(qp);
4392 exit:
4393         priv->r_next_psn_kdeth = flow->flow_state.r_next_psn;
4394         if (fecn)
4395                 qp->s_flags |= RVT_S_ECN;
4396         spin_unlock_irqrestore(&qp->s_lock, flags);
4397         return;
4398
4399 send_nak:
4400         if (!priv->s_nak_state) {
4401                 priv->s_nak_state = IB_NAK_PSN_ERROR;
4402                 priv->s_nak_psn = flow->flow_state.r_next_psn;
4403                 tid_rdma_trigger_ack(qp);
4404         }
4405         goto done;
4406 }
4407
4408 static bool hfi1_tid_rdma_is_resync_psn(u32 psn)
4409 {
4410         return (bool)((psn & HFI1_KDETH_BTH_SEQ_MASK) ==
4411                       HFI1_KDETH_BTH_SEQ_MASK);
4412 }
4413
4414 u32 hfi1_build_tid_rdma_write_ack(struct rvt_qp *qp, struct rvt_ack_entry *e,
4415                                   struct ib_other_headers *ohdr, u16 iflow,
4416                                   u32 *bth1, u32 *bth2)
4417 {
4418         struct hfi1_qp_priv *qpriv = qp->priv;
4419         struct tid_flow_state *fs = &qpriv->flow_state;
4420         struct tid_rdma_request *req = ack_to_tid_req(e);
4421         struct tid_rdma_flow *flow = &req->flows[iflow];
4422         struct tid_rdma_params *remote;
4423
4424         rcu_read_lock();
4425         remote = rcu_dereference(qpriv->tid_rdma.remote);
4426         KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth1, JKEY, remote->jkey);
4427         ohdr->u.tid_rdma.ack.verbs_qp = cpu_to_be32(qp->remote_qpn);
4428         *bth1 = remote->qp;
4429         rcu_read_unlock();
4430
4431         if (qpriv->resync) {
4432                 *bth2 = mask_psn((fs->generation <<
4433                                   HFI1_KDETH_BTH_SEQ_SHIFT) - 1);
4434                 ohdr->u.tid_rdma.ack.aeth = rvt_compute_aeth(qp);
4435         } else if (qpriv->s_nak_state) {
4436                 *bth2 = mask_psn(qpriv->s_nak_psn);
4437                 ohdr->u.tid_rdma.ack.aeth =
4438                         cpu_to_be32((qp->r_msn & IB_MSN_MASK) |
4439                                     (qpriv->s_nak_state <<
4440                                      IB_AETH_CREDIT_SHIFT));
4441         } else {
4442                 *bth2 = full_flow_psn(flow, flow->flow_state.lpsn);
4443                 ohdr->u.tid_rdma.ack.aeth = rvt_compute_aeth(qp);
4444         }
4445         KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth0, KVER, 0x1);
4446         ohdr->u.tid_rdma.ack.tid_flow_qp =
4447                 cpu_to_be32(qpriv->tid_rdma.local.qp |
4448                             ((flow->idx & TID_RDMA_DESTQP_FLOW_MASK) <<
4449                              TID_RDMA_DESTQP_FLOW_SHIFT) |
4450                             qpriv->rcd->ctxt);
4451
4452         ohdr->u.tid_rdma.ack.tid_flow_psn = 0;
4453         ohdr->u.tid_rdma.ack.verbs_psn =
4454                 cpu_to_be32(flow->flow_state.resp_ib_psn);
4455
4456         if (qpriv->resync) {
4457                 /*
4458                  * If the PSN before the current expect KDETH PSN is the
4459                  * RESYNC PSN, then we never received a good TID RDMA WRITE
4460                  * DATA packet after a previous RESYNC.
4461                  * In this case, the next expected KDETH PSN stays the same.
4462                  */
4463                 if (hfi1_tid_rdma_is_resync_psn(qpriv->r_next_psn_kdeth - 1)) {
4464                         ohdr->u.tid_rdma.ack.tid_flow_psn =
4465                                 cpu_to_be32(qpriv->r_next_psn_kdeth_save);
4466                 } else {
4467                         /*
4468                          * Because the KDETH PSNs jump during a RESYNC, it's
4469                          * not possible to infer (or compute) the previous value
4470                          * of r_next_psn_kdeth in the case of back-to-back
4471                          * RESYNC packets. Therefore, we save it.
4472                          */
4473                         qpriv->r_next_psn_kdeth_save =
4474                                 qpriv->r_next_psn_kdeth - 1;
4475                         ohdr->u.tid_rdma.ack.tid_flow_psn =
4476                                 cpu_to_be32(qpriv->r_next_psn_kdeth_save);
4477                         qpriv->r_next_psn_kdeth = mask_psn(*bth2 + 1);
4478                 }
4479                 qpriv->resync = false;
4480         }
4481
4482         return sizeof(ohdr->u.tid_rdma.ack) / sizeof(u32);
4483 }
4484
4485 void hfi1_rc_rcv_tid_rdma_ack(struct hfi1_packet *packet)
4486 {
4487         struct ib_other_headers *ohdr = packet->ohdr;
4488         struct rvt_qp *qp = packet->qp;
4489         struct hfi1_qp_priv *qpriv = qp->priv;
4490         struct rvt_swqe *wqe;
4491         struct tid_rdma_request *req;
4492         struct tid_rdma_flow *flow;
4493         u32 aeth, psn, req_psn, ack_psn, flpsn, resync_psn, ack_kpsn;
4494         unsigned long flags;
4495         u16 fidx;
4496
4497         trace_hfi1_tid_write_sender_rcv_tid_ack(qp, 0);
4498         process_ecn(qp, packet);
4499         psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
4500         aeth = be32_to_cpu(ohdr->u.tid_rdma.ack.aeth);
4501         req_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.ack.verbs_psn));
4502         resync_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.ack.tid_flow_psn));
4503
4504         spin_lock_irqsave(&qp->s_lock, flags);
4505         trace_hfi1_rcv_tid_ack(qp, aeth, psn, req_psn, resync_psn);
4506
4507         /* If we are waiting for an ACK to RESYNC, drop any other packets */
4508         if ((qp->s_flags & HFI1_S_WAIT_HALT) &&
4509             cmp_psn(psn, qpriv->s_resync_psn))
4510                 goto ack_op_err;
4511
4512         ack_psn = req_psn;
4513         if (hfi1_tid_rdma_is_resync_psn(psn))
4514                 ack_kpsn = resync_psn;
4515         else
4516                 ack_kpsn = psn;
4517         if (aeth >> 29) {
4518                 ack_psn--;
4519                 ack_kpsn--;
4520         }
4521
4522         if (unlikely(qp->s_acked == qp->s_tail))
4523                 goto ack_op_err;
4524
4525         wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
4526
4527         if (wqe->wr.opcode != IB_WR_TID_RDMA_WRITE)
4528                 goto ack_op_err;
4529
4530         req = wqe_to_tid_req(wqe);
4531         trace_hfi1_tid_req_rcv_tid_ack(qp, 0, wqe->wr.opcode, wqe->psn,
4532                                        wqe->lpsn, req);
4533         flow = &req->flows[req->acked_tail];
4534         trace_hfi1_tid_flow_rcv_tid_ack(qp, req->acked_tail, flow);
4535
4536         /* Drop stale ACK/NAK */
4537         if (cmp_psn(psn, full_flow_psn(flow, flow->flow_state.spsn)) < 0 ||
4538             cmp_psn(req_psn, flow->flow_state.resp_ib_psn) < 0)
4539                 goto ack_op_err;
4540
4541         while (cmp_psn(ack_kpsn,
4542                        full_flow_psn(flow, flow->flow_state.lpsn)) >= 0 &&
4543                req->ack_seg < req->cur_seg) {
4544                 req->ack_seg++;
4545                 /* advance acked segment pointer */
4546                 req->acked_tail = CIRC_NEXT(req->acked_tail, MAX_FLOWS);
4547                 req->r_last_acked = flow->flow_state.resp_ib_psn;
4548                 trace_hfi1_tid_req_rcv_tid_ack(qp, 0, wqe->wr.opcode, wqe->psn,
4549                                                wqe->lpsn, req);
4550                 if (req->ack_seg == req->total_segs) {
4551                         req->state = TID_REQUEST_COMPLETE;
4552                         wqe = do_rc_completion(qp, wqe,
4553                                                to_iport(qp->ibqp.device,
4554                                                         qp->port_num));
4555                         trace_hfi1_sender_rcv_tid_ack(qp);
4556                         atomic_dec(&qpriv->n_tid_requests);
4557                         if (qp->s_acked == qp->s_tail)
4558                                 break;
4559                         if (wqe->wr.opcode != IB_WR_TID_RDMA_WRITE)
4560                                 break;
4561                         req = wqe_to_tid_req(wqe);
4562                 }
4563                 flow = &req->flows[req->acked_tail];
4564                 trace_hfi1_tid_flow_rcv_tid_ack(qp, req->acked_tail, flow);
4565         }
4566
4567         trace_hfi1_tid_req_rcv_tid_ack(qp, 0, wqe->wr.opcode, wqe->psn,
4568                                        wqe->lpsn, req);
4569         switch (aeth >> 29) {
4570         case 0:         /* ACK */
4571                 if (qpriv->s_flags & RVT_S_WAIT_ACK)
4572                         qpriv->s_flags &= ~RVT_S_WAIT_ACK;
4573                 if (!hfi1_tid_rdma_is_resync_psn(psn)) {
4574                         /* Check if there is any pending TID ACK */
4575                         if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE &&
4576                             req->ack_seg < req->cur_seg)
4577                                 hfi1_mod_tid_retry_timer(qp);
4578                         else
4579                                 hfi1_stop_tid_retry_timer(qp);
4580                         hfi1_schedule_send(qp);
4581                 } else {
4582                         u32 spsn, fpsn, last_acked, generation;
4583                         struct tid_rdma_request *rptr;
4584
4585                         /* ACK(RESYNC) */
4586                         hfi1_stop_tid_retry_timer(qp);
4587                         /* Allow new requests (see hfi1_make_tid_rdma_pkt) */
4588                         qp->s_flags &= ~HFI1_S_WAIT_HALT;
4589                         /*
4590                          * Clear RVT_S_SEND_ONE flag in case that the TID RDMA
4591                          * ACK is received after the TID retry timer is fired
4592                          * again. In this case, do not send any more TID
4593                          * RESYNC request or wait for any more TID ACK packet.
4594                          */
4595                         qpriv->s_flags &= ~RVT_S_SEND_ONE;
4596                         hfi1_schedule_send(qp);
4597
4598                         if ((qp->s_acked == qpriv->s_tid_tail &&
4599                              req->ack_seg == req->total_segs) ||
4600                             qp->s_acked == qp->s_tail) {
4601                                 qpriv->s_state = TID_OP(WRITE_DATA_LAST);
4602                                 goto done;
4603                         }
4604
4605                         if (req->ack_seg == req->comp_seg) {
4606                                 qpriv->s_state = TID_OP(WRITE_DATA);
4607                                 goto done;
4608                         }
4609
4610                         /*
4611                          * The PSN to start with is the next PSN after the
4612                          * RESYNC PSN.
4613                          */
4614                         psn = mask_psn(psn + 1);
4615                         generation = psn >> HFI1_KDETH_BTH_SEQ_SHIFT;
4616                         spsn = 0;
4617
4618                         /*
4619                          * Update to the correct WQE when we get an ACK(RESYNC)
4620                          * in the middle of a request.
4621                          */
4622                         if (delta_psn(ack_psn, wqe->lpsn))
4623                                 wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
4624                         req = wqe_to_tid_req(wqe);
4625                         flow = &req->flows[req->acked_tail];
4626                         /*
4627                          * RESYNC re-numbers the PSN ranges of all remaining
4628                          * segments. Also, PSN's start from 0 in the middle of a
4629                          * segment and the first segment size is less than the
4630                          * default number of packets. flow->resync_npkts is used
4631                          * to track the number of packets from the start of the
4632                          * real segment to the point of 0 PSN after the RESYNC
4633                          * in order to later correctly rewind the SGE.
4634                          */
4635                         fpsn = full_flow_psn(flow, flow->flow_state.spsn);
4636                         req->r_ack_psn = psn;
4637                         /*
4638                          * If resync_psn points to the last flow PSN for a
4639                          * segment and the new segment (likely from a new
4640                          * request) starts with a new generation number, we
4641                          * need to adjust resync_psn accordingly.
4642                          */
4643                         if (flow->flow_state.generation !=
4644                             (resync_psn >> HFI1_KDETH_BTH_SEQ_SHIFT))
4645                                 resync_psn = mask_psn(fpsn - 1);
4646                         flow->resync_npkts +=
4647                                 delta_psn(mask_psn(resync_psn + 1), fpsn);
4648                         /*
4649                          * Renumber all packet sequence number ranges
4650                          * based on the new generation.
4651                          */
4652                         last_acked = qp->s_acked;
4653                         rptr = req;
4654                         while (1) {
4655                                 /* start from last acked segment */
4656                                 for (fidx = rptr->acked_tail;
4657                                      CIRC_CNT(rptr->setup_head, fidx,
4658                                               MAX_FLOWS);
4659                                      fidx = CIRC_NEXT(fidx, MAX_FLOWS)) {
4660                                         u32 lpsn;
4661                                         u32 gen;
4662
4663                                         flow = &rptr->flows[fidx];
4664                                         gen = flow->flow_state.generation;
4665                                         if (WARN_ON(gen == generation &&
4666                                                     flow->flow_state.spsn !=
4667                                                      spsn))
4668                                                 continue;
4669                                         lpsn = flow->flow_state.lpsn;
4670                                         lpsn = full_flow_psn(flow, lpsn);
4671                                         flow->npkts =
4672                                                 delta_psn(lpsn,
4673                                                           mask_psn(resync_psn)
4674                                                           );
4675                                         flow->flow_state.generation =
4676                                                 generation;
4677                                         flow->flow_state.spsn = spsn;
4678                                         flow->flow_state.lpsn =
4679                                                 flow->flow_state.spsn +
4680                                                 flow->npkts - 1;
4681                                         flow->pkt = 0;
4682                                         spsn += flow->npkts;
4683                                         resync_psn += flow->npkts;
4684                                         trace_hfi1_tid_flow_rcv_tid_ack(qp,
4685                                                                         fidx,
4686                                                                         flow);
4687                                 }
4688                                 if (++last_acked == qpriv->s_tid_cur + 1)
4689                                         break;
4690                                 if (last_acked == qp->s_size)
4691                                         last_acked = 0;
4692                                 wqe = rvt_get_swqe_ptr(qp, last_acked);
4693                                 rptr = wqe_to_tid_req(wqe);
4694                         }
4695                         req->cur_seg = req->ack_seg;
4696                         qpriv->s_tid_tail = qp->s_acked;
4697                         qpriv->s_state = TID_OP(WRITE_REQ);
4698                         hfi1_schedule_tid_send(qp);
4699                 }
4700 done:
4701                 qpriv->s_retry = qp->s_retry_cnt;
4702                 break;
4703
4704         case 3:         /* NAK */
4705                 hfi1_stop_tid_retry_timer(qp);
4706                 switch ((aeth >> IB_AETH_CREDIT_SHIFT) &
4707                         IB_AETH_CREDIT_MASK) {
4708                 case 0: /* PSN sequence error */
4709                         if (!req->flows)
4710                                 break;
4711                         flow = &req->flows[req->acked_tail];
4712                         flpsn = full_flow_psn(flow, flow->flow_state.lpsn);
4713                         if (cmp_psn(psn, flpsn) > 0)
4714                                 break;
4715                         trace_hfi1_tid_flow_rcv_tid_ack(qp, req->acked_tail,
4716                                                         flow);
4717                         req->r_ack_psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
4718                         req->cur_seg = req->ack_seg;
4719                         qpriv->s_tid_tail = qp->s_acked;
4720                         qpriv->s_state = TID_OP(WRITE_REQ);
4721                         qpriv->s_retry = qp->s_retry_cnt;
4722                         hfi1_schedule_tid_send(qp);
4723                         break;
4724
4725                 default:
4726                         break;
4727                 }
4728                 break;
4729
4730         default:
4731                 break;
4732         }
4733
4734 ack_op_err:
4735         spin_unlock_irqrestore(&qp->s_lock, flags);
4736 }
4737
4738 void hfi1_add_tid_retry_timer(struct rvt_qp *qp)
4739 {
4740         struct hfi1_qp_priv *priv = qp->priv;
4741         struct ib_qp *ibqp = &qp->ibqp;
4742         struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
4743
4744         lockdep_assert_held(&qp->s_lock);
4745         if (!(priv->s_flags & HFI1_S_TID_RETRY_TIMER)) {
4746                 priv->s_flags |= HFI1_S_TID_RETRY_TIMER;
4747                 priv->s_tid_retry_timer.expires = jiffies +
4748                         priv->tid_retry_timeout_jiffies + rdi->busy_jiffies;
4749                 add_timer(&priv->s_tid_retry_timer);
4750         }
4751 }
4752
4753 static void hfi1_mod_tid_retry_timer(struct rvt_qp *qp)
4754 {
4755         struct hfi1_qp_priv *priv = qp->priv;
4756         struct ib_qp *ibqp = &qp->ibqp;
4757         struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
4758
4759         lockdep_assert_held(&qp->s_lock);
4760         priv->s_flags |= HFI1_S_TID_RETRY_TIMER;
4761         mod_timer(&priv->s_tid_retry_timer, jiffies +
4762                   priv->tid_retry_timeout_jiffies + rdi->busy_jiffies);
4763 }
4764
4765 static int hfi1_stop_tid_retry_timer(struct rvt_qp *qp)
4766 {
4767         struct hfi1_qp_priv *priv = qp->priv;
4768         int rval = 0;
4769
4770         lockdep_assert_held(&qp->s_lock);
4771         if (priv->s_flags & HFI1_S_TID_RETRY_TIMER) {
4772                 rval = del_timer(&priv->s_tid_retry_timer);
4773                 priv->s_flags &= ~HFI1_S_TID_RETRY_TIMER;
4774         }
4775         return rval;
4776 }
4777
4778 void hfi1_del_tid_retry_timer(struct rvt_qp *qp)
4779 {
4780         struct hfi1_qp_priv *priv = qp->priv;
4781
4782         del_timer_sync(&priv->s_tid_retry_timer);
4783         priv->s_flags &= ~HFI1_S_TID_RETRY_TIMER;
4784 }
4785
4786 static void hfi1_tid_retry_timeout(struct timer_list *t)
4787 {
4788         struct hfi1_qp_priv *priv = from_timer(priv, t, s_tid_retry_timer);
4789         struct rvt_qp *qp = priv->owner;
4790         struct rvt_swqe *wqe;
4791         unsigned long flags;
4792         struct tid_rdma_request *req;
4793
4794         spin_lock_irqsave(&qp->r_lock, flags);
4795         spin_lock(&qp->s_lock);
4796         trace_hfi1_tid_write_sender_retry_timeout(qp, 0);
4797         if (priv->s_flags & HFI1_S_TID_RETRY_TIMER) {
4798                 hfi1_stop_tid_retry_timer(qp);
4799                 if (!priv->s_retry) {
4800                         trace_hfi1_msg_tid_retry_timeout(/* msg */
4801                                 qp,
4802                                 "Exhausted retries. Tid retry timeout = ",
4803                                 (u64)priv->tid_retry_timeout_jiffies);
4804
4805                         wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
4806                         hfi1_trdma_send_complete(qp, wqe, IB_WC_RETRY_EXC_ERR);
4807                         rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
4808                 } else {
4809                         wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
4810                         req = wqe_to_tid_req(wqe);
4811                         trace_hfi1_tid_req_tid_retry_timeout(/* req */
4812                            qp, 0, wqe->wr.opcode, wqe->psn, wqe->lpsn, req);
4813
4814                         priv->s_flags &= ~RVT_S_WAIT_ACK;
4815                         /* Only send one packet (the RESYNC) */
4816                         priv->s_flags |= RVT_S_SEND_ONE;
4817                         /*
4818                          * No additional request shall be made by this QP until
4819                          * the RESYNC has been complete.
4820                          */
4821                         qp->s_flags |= HFI1_S_WAIT_HALT;
4822                         priv->s_state = TID_OP(RESYNC);
4823                         priv->s_retry--;
4824                         hfi1_schedule_tid_send(qp);
4825                 }
4826         }
4827         spin_unlock(&qp->s_lock);
4828         spin_unlock_irqrestore(&qp->r_lock, flags);
4829 }
4830
4831 u32 hfi1_build_tid_rdma_resync(struct rvt_qp *qp, struct rvt_swqe *wqe,
4832                                struct ib_other_headers *ohdr, u32 *bth1,
4833                                u32 *bth2, u16 fidx)
4834 {
4835         struct hfi1_qp_priv *qpriv = qp->priv;
4836         struct tid_rdma_params *remote;
4837         struct tid_rdma_request *req = wqe_to_tid_req(wqe);
4838         struct tid_rdma_flow *flow = &req->flows[fidx];
4839         u32 generation;
4840
4841         rcu_read_lock();
4842         remote = rcu_dereference(qpriv->tid_rdma.remote);
4843         KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth1, JKEY, remote->jkey);
4844         ohdr->u.tid_rdma.ack.verbs_qp = cpu_to_be32(qp->remote_qpn);
4845         *bth1 = remote->qp;
4846         rcu_read_unlock();
4847
4848         generation = kern_flow_generation_next(flow->flow_state.generation);
4849         *bth2 = mask_psn((generation << HFI1_KDETH_BTH_SEQ_SHIFT) - 1);
4850         qpriv->s_resync_psn = *bth2;
4851         *bth2 |= IB_BTH_REQ_ACK;
4852         KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth0, KVER, 0x1);
4853
4854         return sizeof(ohdr->u.tid_rdma.resync) / sizeof(u32);
4855 }
4856
4857 void hfi1_rc_rcv_tid_rdma_resync(struct hfi1_packet *packet)
4858 {
4859         struct ib_other_headers *ohdr = packet->ohdr;
4860         struct rvt_qp *qp = packet->qp;
4861         struct hfi1_qp_priv *qpriv = qp->priv;
4862         struct hfi1_ctxtdata *rcd = qpriv->rcd;
4863         struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
4864         struct rvt_ack_entry *e;
4865         struct tid_rdma_request *req;
4866         struct tid_rdma_flow *flow;
4867         struct tid_flow_state *fs = &qpriv->flow_state;
4868         u32 psn, generation, idx, gen_next;
4869         bool fecn;
4870         unsigned long flags;
4871
4872         fecn = process_ecn(qp, packet);
4873         psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
4874
4875         generation = mask_psn(psn + 1) >> HFI1_KDETH_BTH_SEQ_SHIFT;
4876         spin_lock_irqsave(&qp->s_lock, flags);
4877
4878         gen_next = (fs->generation == KERN_GENERATION_RESERVED) ?
4879                 generation : kern_flow_generation_next(fs->generation);
4880         /*
4881          * RESYNC packet contains the "next" generation and can only be
4882          * from the current or previous generations
4883          */
4884         if (generation != mask_generation(gen_next - 1) &&
4885             generation != gen_next)
4886                 goto bail;
4887         /* Already processing a resync */
4888         if (qpriv->resync)
4889                 goto bail;
4890
4891         spin_lock(&rcd->exp_lock);
4892         if (fs->index >= RXE_NUM_TID_FLOWS) {
4893                 /*
4894                  * If we don't have a flow, save the generation so it can be
4895                  * applied when a new flow is allocated
4896                  */
4897                 fs->generation = generation;
4898         } else {
4899                 /* Reprogram the QP flow with new generation */
4900                 rcd->flows[fs->index].generation = generation;
4901                 fs->generation = kern_setup_hw_flow(rcd, fs->index);
4902         }
4903         fs->psn = 0;
4904         /*
4905          * Disable SW PSN checking since a RESYNC is equivalent to a
4906          * sync point and the flow has/will be reprogrammed
4907          */
4908         qpriv->s_flags &= ~HFI1_R_TID_SW_PSN;
4909         trace_hfi1_tid_write_rsp_rcv_resync(qp);
4910
4911         /*
4912          * Reset all TID flow information with the new generation.
4913          * This is done for all requests and segments after the
4914          * last received segment
4915          */
4916         for (idx = qpriv->r_tid_tail; ; idx++) {
4917                 u16 flow_idx;
4918
4919                 if (idx > rvt_size_atomic(&dev->rdi))
4920                         idx = 0;
4921                 e = &qp->s_ack_queue[idx];
4922                 if (e->opcode == TID_OP(WRITE_REQ)) {
4923                         req = ack_to_tid_req(e);
4924                         trace_hfi1_tid_req_rcv_resync(qp, 0, e->opcode, e->psn,
4925                                                       e->lpsn, req);
4926
4927                         /* start from last unacked segment */
4928                         for (flow_idx = req->clear_tail;
4929                              CIRC_CNT(req->setup_head, flow_idx,
4930                                       MAX_FLOWS);
4931                              flow_idx = CIRC_NEXT(flow_idx, MAX_FLOWS)) {
4932                                 u32 lpsn;
4933                                 u32 next;
4934
4935                                 flow = &req->flows[flow_idx];
4936                                 lpsn = full_flow_psn(flow,
4937                                                      flow->flow_state.lpsn);
4938                                 next = flow->flow_state.r_next_psn;
4939                                 flow->npkts = delta_psn(lpsn, next - 1);
4940                                 flow->flow_state.generation = fs->generation;
4941                                 flow->flow_state.spsn = fs->psn;
4942                                 flow->flow_state.lpsn =
4943                                         flow->flow_state.spsn + flow->npkts - 1;
4944                                 flow->flow_state.r_next_psn =
4945                                         full_flow_psn(flow,
4946                                                       flow->flow_state.spsn);
4947                                 fs->psn += flow->npkts;
4948                                 trace_hfi1_tid_flow_rcv_resync(qp, flow_idx,
4949                                                                flow);
4950                         }
4951                 }
4952                 if (idx == qp->s_tail_ack_queue)
4953                         break;
4954         }
4955
4956         spin_unlock(&rcd->exp_lock);
4957         qpriv->resync = true;
4958         /* RESYNC request always gets a TID RDMA ACK. */
4959         qpriv->s_nak_state = 0;
4960         tid_rdma_trigger_ack(qp);
4961 bail:
4962         if (fecn)
4963                 qp->s_flags |= RVT_S_ECN;
4964         spin_unlock_irqrestore(&qp->s_lock, flags);
4965 }
4966
4967 /*
4968  * Call this function when the last TID RDMA WRITE DATA packet for a request
4969  * is built.
4970  */
4971 static void update_tid_tail(struct rvt_qp *qp)
4972         __must_hold(&qp->s_lock)
4973 {
4974         struct hfi1_qp_priv *priv = qp->priv;
4975         u32 i;
4976         struct rvt_swqe *wqe;
4977
4978         lockdep_assert_held(&qp->s_lock);
4979         /* Can't move beyond s_tid_cur */
4980         if (priv->s_tid_tail == priv->s_tid_cur)
4981                 return;
4982         for (i = priv->s_tid_tail + 1; ; i++) {
4983                 if (i == qp->s_size)
4984                         i = 0;
4985
4986                 if (i == priv->s_tid_cur)
4987                         break;
4988                 wqe = rvt_get_swqe_ptr(qp, i);
4989                 if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE)
4990                         break;
4991         }
4992         priv->s_tid_tail = i;
4993         priv->s_state = TID_OP(WRITE_RESP);
4994 }
4995
4996 int hfi1_make_tid_rdma_pkt(struct rvt_qp *qp, struct hfi1_pkt_state *ps)
4997         __must_hold(&qp->s_lock)
4998 {
4999         struct hfi1_qp_priv *priv = qp->priv;
5000         struct rvt_swqe *wqe;
5001         u32 bth1 = 0, bth2 = 0, hwords = 5, len, middle = 0;
5002         struct ib_other_headers *ohdr;
5003         struct rvt_sge_state *ss = &qp->s_sge;
5004         struct rvt_ack_entry *e = &qp->s_ack_queue[qp->s_tail_ack_queue];
5005         struct tid_rdma_request *req = ack_to_tid_req(e);
5006         bool last = false;
5007         u8 opcode = TID_OP(WRITE_DATA);
5008
5009         lockdep_assert_held(&qp->s_lock);
5010         trace_hfi1_tid_write_sender_make_tid_pkt(qp, 0);
5011         /*
5012          * Prioritize the sending of the requests and responses over the
5013          * sending of the TID RDMA data packets.
5014          */
5015         if (((atomic_read(&priv->n_tid_requests) < HFI1_TID_RDMA_WRITE_CNT) &&
5016              atomic_read(&priv->n_requests) &&
5017              !(qp->s_flags & (RVT_S_BUSY | RVT_S_WAIT_ACK |
5018                              HFI1_S_ANY_WAIT_IO))) ||
5019             (e->opcode == TID_OP(WRITE_REQ) && req->cur_seg < req->alloc_seg &&
5020              !(qp->s_flags & (RVT_S_BUSY | HFI1_S_ANY_WAIT_IO)))) {
5021                 struct iowait_work *iowork;
5022
5023                 iowork = iowait_get_ib_work(&priv->s_iowait);
5024                 ps->s_txreq = get_waiting_verbs_txreq(iowork);
5025                 if (ps->s_txreq || hfi1_make_rc_req(qp, ps)) {
5026                         priv->s_flags |= HFI1_S_TID_BUSY_SET;
5027                         return 1;
5028                 }
5029         }
5030
5031         ps->s_txreq = get_txreq(ps->dev, qp);
5032         if (!ps->s_txreq)
5033                 goto bail_no_tx;
5034
5035         ohdr = &ps->s_txreq->phdr.hdr.ibh.u.oth;
5036
5037         if ((priv->s_flags & RVT_S_ACK_PENDING) &&
5038             make_tid_rdma_ack(qp, ohdr, ps))
5039                 return 1;
5040
5041         /*
5042          * Bail out if we can't send data.
5043          * Be reminded that this check must been done after the call to
5044          * make_tid_rdma_ack() because the responding QP could be in
5045          * RTR state where it can send TID RDMA ACK, not TID RDMA WRITE DATA.
5046          */
5047         if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_SEND_OK))
5048                 goto bail;
5049
5050         if (priv->s_flags & RVT_S_WAIT_ACK)
5051                 goto bail;
5052
5053         /* Check whether there is anything to do. */
5054         if (priv->s_tid_tail == HFI1_QP_WQE_INVALID)
5055                 goto bail;
5056         wqe = rvt_get_swqe_ptr(qp, priv->s_tid_tail);
5057         req = wqe_to_tid_req(wqe);
5058         trace_hfi1_tid_req_make_tid_pkt(qp, 0, wqe->wr.opcode, wqe->psn,
5059                                         wqe->lpsn, req);
5060         switch (priv->s_state) {
5061         case TID_OP(WRITE_REQ):
5062         case TID_OP(WRITE_RESP):
5063                 priv->tid_ss.sge = wqe->sg_list[0];
5064                 priv->tid_ss.sg_list = wqe->sg_list + 1;
5065                 priv->tid_ss.num_sge = wqe->wr.num_sge;
5066                 priv->tid_ss.total_len = wqe->length;
5067
5068                 if (priv->s_state == TID_OP(WRITE_REQ))
5069                         hfi1_tid_rdma_restart_req(qp, wqe, &bth2);
5070                 priv->s_state = TID_OP(WRITE_DATA);
5071                 fallthrough;
5072
5073         case TID_OP(WRITE_DATA):
5074                 /*
5075                  * 1. Check whether TID RDMA WRITE RESP available.
5076                  * 2. If no:
5077                  *    2.1 If have more segments and no TID RDMA WRITE RESP,
5078                  *        set HFI1_S_WAIT_TID_RESP
5079                  *    2.2 Return indicating no progress made.
5080                  * 3. If yes:
5081                  *    3.1 Build TID RDMA WRITE DATA packet.
5082                  *    3.2 If last packet in segment:
5083                  *        3.2.1 Change KDETH header bits
5084                  *        3.2.2 Advance RESP pointers.
5085                  *    3.3 Return indicating progress made.
5086                  */
5087                 trace_hfi1_sender_make_tid_pkt(qp);
5088                 trace_hfi1_tid_write_sender_make_tid_pkt(qp, 0);
5089                 wqe = rvt_get_swqe_ptr(qp, priv->s_tid_tail);
5090                 req = wqe_to_tid_req(wqe);
5091                 len = wqe->length;
5092
5093                 if (!req->comp_seg || req->cur_seg == req->comp_seg)
5094                         goto bail;
5095
5096                 trace_hfi1_tid_req_make_tid_pkt(qp, 0, wqe->wr.opcode,
5097                                                 wqe->psn, wqe->lpsn, req);
5098                 last = hfi1_build_tid_rdma_packet(wqe, ohdr, &bth1, &bth2,
5099                                                   &len);
5100
5101                 if (last) {
5102                         /* move pointer to next flow */
5103                         req->clear_tail = CIRC_NEXT(req->clear_tail,
5104                                                     MAX_FLOWS);
5105                         if (++req->cur_seg < req->total_segs) {
5106                                 if (!CIRC_CNT(req->setup_head, req->clear_tail,
5107                                               MAX_FLOWS))
5108                                         qp->s_flags |= HFI1_S_WAIT_TID_RESP;
5109                         } else {
5110                                 priv->s_state = TID_OP(WRITE_DATA_LAST);
5111                                 opcode = TID_OP(WRITE_DATA_LAST);
5112
5113                                 /* Advance the s_tid_tail now */
5114                                 update_tid_tail(qp);
5115                         }
5116                 }
5117                 hwords += sizeof(ohdr->u.tid_rdma.w_data) / sizeof(u32);
5118                 ss = &priv->tid_ss;
5119                 break;
5120
5121         case TID_OP(RESYNC):
5122                 trace_hfi1_sender_make_tid_pkt(qp);
5123                 /* Use generation from the most recently received response */
5124                 wqe = rvt_get_swqe_ptr(qp, priv->s_tid_cur);
5125                 req = wqe_to_tid_req(wqe);
5126                 /* If no responses for this WQE look at the previous one */
5127                 if (!req->comp_seg) {
5128                         wqe = rvt_get_swqe_ptr(qp,
5129                                                (!priv->s_tid_cur ? qp->s_size :
5130                                                 priv->s_tid_cur) - 1);
5131                         req = wqe_to_tid_req(wqe);
5132                 }
5133                 hwords += hfi1_build_tid_rdma_resync(qp, wqe, ohdr, &bth1,
5134                                                      &bth2,
5135                                                      CIRC_PREV(req->setup_head,
5136                                                                MAX_FLOWS));
5137                 ss = NULL;
5138                 len = 0;
5139                 opcode = TID_OP(RESYNC);
5140                 break;
5141
5142         default:
5143                 goto bail;
5144         }
5145         if (priv->s_flags & RVT_S_SEND_ONE) {
5146                 priv->s_flags &= ~RVT_S_SEND_ONE;
5147                 priv->s_flags |= RVT_S_WAIT_ACK;
5148                 bth2 |= IB_BTH_REQ_ACK;
5149         }
5150         qp->s_len -= len;
5151         ps->s_txreq->hdr_dwords = hwords;
5152         ps->s_txreq->sde = priv->s_sde;
5153         ps->s_txreq->ss = ss;
5154         ps->s_txreq->s_cur_size = len;
5155         hfi1_make_ruc_header(qp, ohdr, (opcode << 24), bth1, bth2,
5156                              middle, ps);
5157         return 1;
5158 bail:
5159         hfi1_put_txreq(ps->s_txreq);
5160 bail_no_tx:
5161         ps->s_txreq = NULL;
5162         priv->s_flags &= ~RVT_S_BUSY;
5163         /*
5164          * If we didn't get a txreq, the QP will be woken up later to try
5165          * again, set the flags to the the wake up which work item to wake
5166          * up.
5167          * (A better algorithm should be found to do this and generalize the
5168          * sleep/wakeup flags.)
5169          */
5170         iowait_set_flag(&priv->s_iowait, IOWAIT_PENDING_TID);
5171         return 0;
5172 }
5173
5174 static int make_tid_rdma_ack(struct rvt_qp *qp,
5175                              struct ib_other_headers *ohdr,
5176                              struct hfi1_pkt_state *ps)
5177 {
5178         struct rvt_ack_entry *e;
5179         struct hfi1_qp_priv *qpriv = qp->priv;
5180         struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
5181         u32 hwords, next;
5182         u32 len = 0;
5183         u32 bth1 = 0, bth2 = 0;
5184         int middle = 0;
5185         u16 flow;
5186         struct tid_rdma_request *req, *nreq;
5187
5188         trace_hfi1_tid_write_rsp_make_tid_ack(qp);
5189         /* Don't send an ACK if we aren't supposed to. */
5190         if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK))
5191                 goto bail;
5192
5193         /* header size in 32-bit words LRH+BTH = (8+12)/4. */
5194         hwords = 5;
5195
5196         e = &qp->s_ack_queue[qpriv->r_tid_ack];
5197         req = ack_to_tid_req(e);
5198         /*
5199          * In the RESYNC case, we are exactly one segment past the
5200          * previously sent ack or at the previously sent NAK. So to send
5201          * the resync ack, we go back one segment (which might be part of
5202          * the previous request) and let the do-while loop execute again.
5203          * The advantage of executing the do-while loop is that any data
5204          * received after the previous ack is automatically acked in the
5205          * RESYNC ack. It turns out that for the do-while loop we only need
5206          * to pull back qpriv->r_tid_ack, not the segment
5207          * indices/counters. The scheme works even if the previous request
5208          * was not a TID WRITE request.
5209          */
5210         if (qpriv->resync) {
5211                 if (!req->ack_seg || req->ack_seg == req->total_segs)
5212                         qpriv->r_tid_ack = !qpriv->r_tid_ack ?
5213                                 rvt_size_atomic(&dev->rdi) :
5214                                 qpriv->r_tid_ack - 1;
5215                 e = &qp->s_ack_queue[qpriv->r_tid_ack];
5216                 req = ack_to_tid_req(e);
5217         }
5218
5219         trace_hfi1_rsp_make_tid_ack(qp, e->psn);
5220         trace_hfi1_tid_req_make_tid_ack(qp, 0, e->opcode, e->psn, e->lpsn,
5221                                         req);
5222         /*
5223          * If we've sent all the ACKs that we can, we are done
5224          * until we get more segments...
5225          */
5226         if (!qpriv->s_nak_state && !qpriv->resync &&
5227             req->ack_seg == req->comp_seg)
5228                 goto bail;
5229
5230         do {
5231                 /*
5232                  * To deal with coalesced ACKs, the acked_tail pointer
5233                  * into the flow array is used. The distance between it
5234                  * and the clear_tail is the number of flows that are
5235                  * being ACK'ed.
5236                  */
5237                 req->ack_seg +=
5238                         /* Get up-to-date value */
5239                         CIRC_CNT(req->clear_tail, req->acked_tail,
5240                                  MAX_FLOWS);
5241                 /* Advance acked index */
5242                 req->acked_tail = req->clear_tail;
5243
5244                 /*
5245                  * req->clear_tail points to the segment currently being
5246                  * received. So, when sending an ACK, the previous
5247                  * segment is being ACK'ed.
5248                  */
5249                 flow = CIRC_PREV(req->acked_tail, MAX_FLOWS);
5250                 if (req->ack_seg != req->total_segs)
5251                         break;
5252                 req->state = TID_REQUEST_COMPLETE;
5253
5254                 next = qpriv->r_tid_ack + 1;
5255                 if (next > rvt_size_atomic(&dev->rdi))
5256                         next = 0;
5257                 qpriv->r_tid_ack = next;
5258                 if (qp->s_ack_queue[next].opcode != TID_OP(WRITE_REQ))
5259                         break;
5260                 nreq = ack_to_tid_req(&qp->s_ack_queue[next]);
5261                 if (!nreq->comp_seg || nreq->ack_seg == nreq->comp_seg)
5262                         break;
5263
5264                 /* Move to the next ack entry now */
5265                 e = &qp->s_ack_queue[qpriv->r_tid_ack];
5266                 req = ack_to_tid_req(e);
5267         } while (1);
5268
5269         /*
5270          * At this point qpriv->r_tid_ack == qpriv->r_tid_tail but e and
5271          * req could be pointing at the previous ack queue entry
5272          */
5273         if (qpriv->s_nak_state ||
5274             (qpriv->resync &&
5275              !hfi1_tid_rdma_is_resync_psn(qpriv->r_next_psn_kdeth - 1) &&
5276              (cmp_psn(qpriv->r_next_psn_kdeth - 1,
5277                       full_flow_psn(&req->flows[flow],
5278                                     req->flows[flow].flow_state.lpsn)) > 0))) {
5279                 /*
5280                  * A NAK will implicitly acknowledge all previous TID RDMA
5281                  * requests. Therefore, we NAK with the req->acked_tail
5282                  * segment for the request at qpriv->r_tid_ack (same at
5283                  * this point as the req->clear_tail segment for the
5284                  * qpriv->r_tid_tail request)
5285                  */
5286                 e = &qp->s_ack_queue[qpriv->r_tid_ack];
5287                 req = ack_to_tid_req(e);
5288                 flow = req->acked_tail;
5289         } else if (req->ack_seg == req->total_segs &&
5290                    qpriv->s_flags & HFI1_R_TID_WAIT_INTERLCK)
5291                 qpriv->s_flags &= ~HFI1_R_TID_WAIT_INTERLCK;
5292
5293         trace_hfi1_tid_write_rsp_make_tid_ack(qp);
5294         trace_hfi1_tid_req_make_tid_ack(qp, 0, e->opcode, e->psn, e->lpsn,
5295                                         req);
5296         hwords += hfi1_build_tid_rdma_write_ack(qp, e, ohdr, flow, &bth1,
5297                                                 &bth2);
5298         len = 0;
5299         qpriv->s_flags &= ~RVT_S_ACK_PENDING;
5300         ps->s_txreq->hdr_dwords = hwords;
5301         ps->s_txreq->sde = qpriv->s_sde;
5302         ps->s_txreq->s_cur_size = len;
5303         ps->s_txreq->ss = NULL;
5304         hfi1_make_ruc_header(qp, ohdr, (TID_OP(ACK) << 24), bth1, bth2, middle,
5305                              ps);
5306         ps->s_txreq->txreq.flags |= SDMA_TXREQ_F_VIP;
5307         return 1;
5308 bail:
5309         /*
5310          * Ensure s_rdma_ack_cnt changes are committed prior to resetting
5311          * RVT_S_RESP_PENDING
5312          */
5313         smp_wmb();
5314         qpriv->s_flags &= ~RVT_S_ACK_PENDING;
5315         return 0;
5316 }
5317
5318 static int hfi1_send_tid_ok(struct rvt_qp *qp)
5319 {
5320         struct hfi1_qp_priv *priv = qp->priv;
5321
5322         return !(priv->s_flags & RVT_S_BUSY ||
5323                  qp->s_flags & HFI1_S_ANY_WAIT_IO) &&
5324                 (verbs_txreq_queued(iowait_get_tid_work(&priv->s_iowait)) ||
5325                  (priv->s_flags & RVT_S_RESP_PENDING) ||
5326                  !(qp->s_flags & HFI1_S_ANY_TID_WAIT_SEND));
5327 }
5328
5329 void _hfi1_do_tid_send(struct work_struct *work)
5330 {
5331         struct iowait_work *w = container_of(work, struct iowait_work, iowork);
5332         struct rvt_qp *qp = iowait_to_qp(w->iow);
5333
5334         hfi1_do_tid_send(qp);
5335 }
5336
5337 static void hfi1_do_tid_send(struct rvt_qp *qp)
5338 {
5339         struct hfi1_pkt_state ps;
5340         struct hfi1_qp_priv *priv = qp->priv;
5341
5342         ps.dev = to_idev(qp->ibqp.device);
5343         ps.ibp = to_iport(qp->ibqp.device, qp->port_num);
5344         ps.ppd = ppd_from_ibp(ps.ibp);
5345         ps.wait = iowait_get_tid_work(&priv->s_iowait);
5346         ps.in_thread = false;
5347         ps.timeout_int = qp->timeout_jiffies / 8;
5348
5349         trace_hfi1_rc_do_tid_send(qp, false);
5350         spin_lock_irqsave(&qp->s_lock, ps.flags);
5351
5352         /* Return if we are already busy processing a work request. */
5353         if (!hfi1_send_tid_ok(qp)) {
5354                 if (qp->s_flags & HFI1_S_ANY_WAIT_IO)
5355                         iowait_set_flag(&priv->s_iowait, IOWAIT_PENDING_TID);
5356                 spin_unlock_irqrestore(&qp->s_lock, ps.flags);
5357                 return;
5358         }
5359
5360         priv->s_flags |= RVT_S_BUSY;
5361
5362         ps.timeout = jiffies + ps.timeout_int;
5363         ps.cpu = priv->s_sde ? priv->s_sde->cpu :
5364                 cpumask_first(cpumask_of_node(ps.ppd->dd->node));
5365         ps.pkts_sent = false;
5366
5367         /* insure a pre-built packet is handled  */
5368         ps.s_txreq = get_waiting_verbs_txreq(ps.wait);
5369         do {
5370                 /* Check for a constructed packet to be sent. */
5371                 if (ps.s_txreq) {
5372                         if (priv->s_flags & HFI1_S_TID_BUSY_SET) {
5373                                 qp->s_flags |= RVT_S_BUSY;
5374                                 ps.wait = iowait_get_ib_work(&priv->s_iowait);
5375                         }
5376                         spin_unlock_irqrestore(&qp->s_lock, ps.flags);
5377
5378                         /*
5379                          * If the packet cannot be sent now, return and
5380                          * the send tasklet will be woken up later.
5381                          */
5382                         if (hfi1_verbs_send(qp, &ps))
5383                                 return;
5384
5385                         /* allow other tasks to run */
5386                         if (hfi1_schedule_send_yield(qp, &ps, true))
5387                                 return;
5388
5389                         spin_lock_irqsave(&qp->s_lock, ps.flags);
5390                         if (priv->s_flags & HFI1_S_TID_BUSY_SET) {
5391                                 qp->s_flags &= ~RVT_S_BUSY;
5392                                 priv->s_flags &= ~HFI1_S_TID_BUSY_SET;
5393                                 ps.wait = iowait_get_tid_work(&priv->s_iowait);
5394                                 if (iowait_flag_set(&priv->s_iowait,
5395                                                     IOWAIT_PENDING_IB))
5396                                         hfi1_schedule_send(qp);
5397                         }
5398                 }
5399         } while (hfi1_make_tid_rdma_pkt(qp, &ps));
5400         iowait_starve_clear(ps.pkts_sent, &priv->s_iowait);
5401         spin_unlock_irqrestore(&qp->s_lock, ps.flags);
5402 }
5403
5404 static bool _hfi1_schedule_tid_send(struct rvt_qp *qp)
5405 {
5406         struct hfi1_qp_priv *priv = qp->priv;
5407         struct hfi1_ibport *ibp =
5408                 to_iport(qp->ibqp.device, qp->port_num);
5409         struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
5410         struct hfi1_devdata *dd = ppd->dd;
5411
5412         if ((dd->flags & HFI1_SHUTDOWN))
5413                 return true;
5414
5415         return iowait_tid_schedule(&priv->s_iowait, ppd->hfi1_wq,
5416                                    priv->s_sde ?
5417                                    priv->s_sde->cpu :
5418                                    cpumask_first(cpumask_of_node(dd->node)));
5419 }
5420
5421 /**
5422  * hfi1_schedule_tid_send - schedule progress on TID RDMA state machine
5423  * @qp: the QP
5424  *
5425  * This schedules qp progress on the TID RDMA state machine. Caller
5426  * should hold the s_lock.
5427  * Unlike hfi1_schedule_send(), this cannot use hfi1_send_ok() because
5428  * the two state machines can step on each other with respect to the
5429  * RVT_S_BUSY flag.
5430  * Therefore, a modified test is used.
5431  * @return true if the second leg is scheduled;
5432  *  false if the second leg is not scheduled.
5433  */
5434 bool hfi1_schedule_tid_send(struct rvt_qp *qp)
5435 {
5436         lockdep_assert_held(&qp->s_lock);
5437         if (hfi1_send_tid_ok(qp)) {
5438                 /*
5439                  * The following call returns true if the qp is not on the
5440                  * queue and false if the qp is already on the queue before
5441                  * this call. Either way, the qp will be on the queue when the
5442                  * call returns.
5443                  */
5444                 _hfi1_schedule_tid_send(qp);
5445                 return true;
5446         }
5447         if (qp->s_flags & HFI1_S_ANY_WAIT_IO)
5448                 iowait_set_flag(&((struct hfi1_qp_priv *)qp->priv)->s_iowait,
5449                                 IOWAIT_PENDING_TID);
5450         return false;
5451 }
5452
5453 bool hfi1_tid_rdma_ack_interlock(struct rvt_qp *qp, struct rvt_ack_entry *e)
5454 {
5455         struct rvt_ack_entry *prev;
5456         struct tid_rdma_request *req;
5457         struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
5458         struct hfi1_qp_priv *priv = qp->priv;
5459         u32 s_prev;
5460
5461         s_prev = qp->s_tail_ack_queue == 0 ? rvt_size_atomic(&dev->rdi) :
5462                 (qp->s_tail_ack_queue - 1);
5463         prev = &qp->s_ack_queue[s_prev];
5464
5465         if ((e->opcode == TID_OP(READ_REQ) ||
5466              e->opcode == OP(RDMA_READ_REQUEST)) &&
5467             prev->opcode == TID_OP(WRITE_REQ)) {
5468                 req = ack_to_tid_req(prev);
5469                 if (req->ack_seg != req->total_segs) {
5470                         priv->s_flags |= HFI1_R_TID_WAIT_INTERLCK;
5471                         return true;
5472                 }
5473         }
5474         return false;
5475 }
5476
5477 static u32 read_r_next_psn(struct hfi1_devdata *dd, u8 ctxt, u8 fidx)
5478 {
5479         u64 reg;
5480
5481         /*
5482          * The only sane way to get the amount of
5483          * progress is to read the HW flow state.
5484          */
5485         reg = read_uctxt_csr(dd, ctxt, RCV_TID_FLOW_TABLE + (8 * fidx));
5486         return mask_psn(reg);
5487 }
5488
5489 static void tid_rdma_rcv_err(struct hfi1_packet *packet,
5490                              struct ib_other_headers *ohdr,
5491                              struct rvt_qp *qp, u32 psn, int diff, bool fecn)
5492 {
5493         unsigned long flags;
5494
5495         tid_rdma_rcv_error(packet, ohdr, qp, psn, diff);
5496         if (fecn) {
5497                 spin_lock_irqsave(&qp->s_lock, flags);
5498                 qp->s_flags |= RVT_S_ECN;
5499                 spin_unlock_irqrestore(&qp->s_lock, flags);
5500         }
5501 }
5502
5503 static void update_r_next_psn_fecn(struct hfi1_packet *packet,
5504                                    struct hfi1_qp_priv *priv,
5505                                    struct hfi1_ctxtdata *rcd,
5506                                    struct tid_rdma_flow *flow,
5507                                    bool fecn)
5508 {
5509         /*
5510          * If a start/middle packet is delivered here due to
5511          * RSM rule and FECN, we need to update the r_next_psn.
5512          */
5513         if (fecn && packet->etype == RHF_RCV_TYPE_EAGER &&
5514             !(priv->s_flags & HFI1_R_TID_SW_PSN)) {
5515                 struct hfi1_devdata *dd = rcd->dd;
5516
5517                 flow->flow_state.r_next_psn =
5518                         read_r_next_psn(dd, rcd->ctxt, flow->idx);
5519         }
5520 }