Merge tag 'armsoc-soc' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[linux-2.6-microblaze.git] / drivers / infiniband / hw / hfi1 / tid_rdma.c
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 /*
3  * Copyright(c) 2018 Intel Corporation.
4  *
5  */
6
7 #include "hfi.h"
8 #include "qp.h"
9 #include "rc.h"
10 #include "verbs.h"
11 #include "tid_rdma.h"
12 #include "exp_rcv.h"
13 #include "trace.h"
14
15 /**
16  * DOC: TID RDMA READ protocol
17  *
18  * This is an end-to-end protocol at the hfi1 level between two nodes that
19  * improves performance by avoiding data copy on the requester side. It
20  * converts a qualified RDMA READ request into a TID RDMA READ request on
21  * the requester side and thereafter handles the request and response
22  * differently. To be qualified, the RDMA READ request should meet the
23  * following:
24  * -- The total data length should be greater than 256K;
25  * -- The total data length should be a multiple of 4K page size;
26  * -- Each local scatter-gather entry should be 4K page aligned;
27  * -- Each local scatter-gather entry should be a multiple of 4K page size;
28  */
29
30 #define RCV_TID_FLOW_TABLE_CTRL_FLOW_VALID_SMASK BIT_ULL(32)
31 #define RCV_TID_FLOW_TABLE_CTRL_HDR_SUPP_EN_SMASK BIT_ULL(33)
32 #define RCV_TID_FLOW_TABLE_CTRL_KEEP_AFTER_SEQ_ERR_SMASK BIT_ULL(34)
33 #define RCV_TID_FLOW_TABLE_CTRL_KEEP_ON_GEN_ERR_SMASK BIT_ULL(35)
34 #define RCV_TID_FLOW_TABLE_STATUS_SEQ_MISMATCH_SMASK BIT_ULL(37)
35 #define RCV_TID_FLOW_TABLE_STATUS_GEN_MISMATCH_SMASK BIT_ULL(38)
36
37 /* Maximum number of packets within a flow generation. */
38 #define MAX_TID_FLOW_PSN BIT(HFI1_KDETH_BTH_SEQ_SHIFT)
39
40 #define GENERATION_MASK 0xFFFFF
41
42 static u32 mask_generation(u32 a)
43 {
44         return a & GENERATION_MASK;
45 }
46
47 /* Reserved generation value to set to unused flows for kernel contexts */
48 #define KERN_GENERATION_RESERVED mask_generation(U32_MAX)
49
50 /*
51  * J_KEY for kernel contexts when TID RDMA is used.
52  * See generate_jkey() in hfi.h for more information.
53  */
54 #define TID_RDMA_JKEY                   32
55 #define HFI1_KERNEL_MIN_JKEY HFI1_ADMIN_JKEY_RANGE
56 #define HFI1_KERNEL_MAX_JKEY (2 * HFI1_ADMIN_JKEY_RANGE - 1)
57
58 /* Maximum number of segments in flight per QP request. */
59 #define TID_RDMA_MAX_READ_SEGS_PER_REQ  6
60 #define TID_RDMA_MAX_WRITE_SEGS_PER_REQ 4
61 #define MAX_REQ max_t(u16, TID_RDMA_MAX_READ_SEGS_PER_REQ, \
62                         TID_RDMA_MAX_WRITE_SEGS_PER_REQ)
63 #define MAX_FLOWS roundup_pow_of_two(MAX_REQ + 1)
64
65 #define MAX_EXPECTED_PAGES     (MAX_EXPECTED_BUFFER / PAGE_SIZE)
66
67 #define TID_RDMA_DESTQP_FLOW_SHIFT      11
68 #define TID_RDMA_DESTQP_FLOW_MASK       0x1f
69
70 #define TID_OPFN_QP_CTXT_MASK 0xff
71 #define TID_OPFN_QP_CTXT_SHIFT 56
72 #define TID_OPFN_QP_KDETH_MASK 0xff
73 #define TID_OPFN_QP_KDETH_SHIFT 48
74 #define TID_OPFN_MAX_LEN_MASK 0x7ff
75 #define TID_OPFN_MAX_LEN_SHIFT 37
76 #define TID_OPFN_TIMEOUT_MASK 0x1f
77 #define TID_OPFN_TIMEOUT_SHIFT 32
78 #define TID_OPFN_RESERVED_MASK 0x3f
79 #define TID_OPFN_RESERVED_SHIFT 26
80 #define TID_OPFN_URG_MASK 0x1
81 #define TID_OPFN_URG_SHIFT 25
82 #define TID_OPFN_VER_MASK 0x7
83 #define TID_OPFN_VER_SHIFT 22
84 #define TID_OPFN_JKEY_MASK 0x3f
85 #define TID_OPFN_JKEY_SHIFT 16
86 #define TID_OPFN_MAX_READ_MASK 0x3f
87 #define TID_OPFN_MAX_READ_SHIFT 10
88 #define TID_OPFN_MAX_WRITE_MASK 0x3f
89 #define TID_OPFN_MAX_WRITE_SHIFT 4
90
91 /*
92  * OPFN TID layout
93  *
94  * 63               47               31               15
95  * NNNNNNNNKKKKKKKK MMMMMMMMMMMTTTTT DDDDDDUVVVJJJJJJ RRRRRRWWWWWWCCCC
96  * 3210987654321098 7654321098765432 1098765432109876 5432109876543210
97  * N - the context Number
98  * K - the Kdeth_qp
99  * M - Max_len
100  * T - Timeout
101  * D - reserveD
102  * V - version
103  * U - Urg capable
104  * J - Jkey
105  * R - max_Read
106  * W - max_Write
107  * C - Capcode
108  */
109
110 static u32 tid_rdma_flow_wt;
111
112 static void tid_rdma_trigger_resume(struct work_struct *work);
113 static void hfi1_kern_exp_rcv_free_flows(struct tid_rdma_request *req);
114 static int hfi1_kern_exp_rcv_alloc_flows(struct tid_rdma_request *req,
115                                          gfp_t gfp);
116 static void hfi1_init_trdma_req(struct rvt_qp *qp,
117                                 struct tid_rdma_request *req);
118 static void hfi1_tid_write_alloc_resources(struct rvt_qp *qp, bool intr_ctx);
119 static void hfi1_tid_timeout(struct timer_list *t);
120 static void hfi1_add_tid_reap_timer(struct rvt_qp *qp);
121 static void hfi1_mod_tid_reap_timer(struct rvt_qp *qp);
122 static void hfi1_mod_tid_retry_timer(struct rvt_qp *qp);
123 static int hfi1_stop_tid_retry_timer(struct rvt_qp *qp);
124 static void hfi1_tid_retry_timeout(struct timer_list *t);
125 static int make_tid_rdma_ack(struct rvt_qp *qp,
126                              struct ib_other_headers *ohdr,
127                              struct hfi1_pkt_state *ps);
128 static void hfi1_do_tid_send(struct rvt_qp *qp);
129 static u32 read_r_next_psn(struct hfi1_devdata *dd, u8 ctxt, u8 fidx);
130 static void tid_rdma_rcv_err(struct hfi1_packet *packet,
131                              struct ib_other_headers *ohdr,
132                              struct rvt_qp *qp, u32 psn, int diff, bool fecn);
133 static void update_r_next_psn_fecn(struct hfi1_packet *packet,
134                                    struct hfi1_qp_priv *priv,
135                                    struct hfi1_ctxtdata *rcd,
136                                    struct tid_rdma_flow *flow,
137                                    bool fecn);
138
139 static u64 tid_rdma_opfn_encode(struct tid_rdma_params *p)
140 {
141         return
142                 (((u64)p->qp & TID_OPFN_QP_CTXT_MASK) <<
143                         TID_OPFN_QP_CTXT_SHIFT) |
144                 ((((u64)p->qp >> 16) & TID_OPFN_QP_KDETH_MASK) <<
145                         TID_OPFN_QP_KDETH_SHIFT) |
146                 (((u64)((p->max_len >> PAGE_SHIFT) - 1) &
147                         TID_OPFN_MAX_LEN_MASK) << TID_OPFN_MAX_LEN_SHIFT) |
148                 (((u64)p->timeout & TID_OPFN_TIMEOUT_MASK) <<
149                         TID_OPFN_TIMEOUT_SHIFT) |
150                 (((u64)p->urg & TID_OPFN_URG_MASK) << TID_OPFN_URG_SHIFT) |
151                 (((u64)p->jkey & TID_OPFN_JKEY_MASK) << TID_OPFN_JKEY_SHIFT) |
152                 (((u64)p->max_read & TID_OPFN_MAX_READ_MASK) <<
153                         TID_OPFN_MAX_READ_SHIFT) |
154                 (((u64)p->max_write & TID_OPFN_MAX_WRITE_MASK) <<
155                         TID_OPFN_MAX_WRITE_SHIFT);
156 }
157
158 static void tid_rdma_opfn_decode(struct tid_rdma_params *p, u64 data)
159 {
160         p->max_len = (((data >> TID_OPFN_MAX_LEN_SHIFT) &
161                 TID_OPFN_MAX_LEN_MASK) + 1) << PAGE_SHIFT;
162         p->jkey = (data >> TID_OPFN_JKEY_SHIFT) & TID_OPFN_JKEY_MASK;
163         p->max_write = (data >> TID_OPFN_MAX_WRITE_SHIFT) &
164                 TID_OPFN_MAX_WRITE_MASK;
165         p->max_read = (data >> TID_OPFN_MAX_READ_SHIFT) &
166                 TID_OPFN_MAX_READ_MASK;
167         p->qp =
168                 ((((data >> TID_OPFN_QP_KDETH_SHIFT) & TID_OPFN_QP_KDETH_MASK)
169                         << 16) |
170                 ((data >> TID_OPFN_QP_CTXT_SHIFT) & TID_OPFN_QP_CTXT_MASK));
171         p->urg = (data >> TID_OPFN_URG_SHIFT) & TID_OPFN_URG_MASK;
172         p->timeout = (data >> TID_OPFN_TIMEOUT_SHIFT) & TID_OPFN_TIMEOUT_MASK;
173 }
174
175 void tid_rdma_opfn_init(struct rvt_qp *qp, struct tid_rdma_params *p)
176 {
177         struct hfi1_qp_priv *priv = qp->priv;
178
179         p->qp = (kdeth_qp << 16) | priv->rcd->ctxt;
180         p->max_len = TID_RDMA_MAX_SEGMENT_SIZE;
181         p->jkey = priv->rcd->jkey;
182         p->max_read = TID_RDMA_MAX_READ_SEGS_PER_REQ;
183         p->max_write = TID_RDMA_MAX_WRITE_SEGS_PER_REQ;
184         p->timeout = qp->timeout;
185         p->urg = is_urg_masked(priv->rcd);
186 }
187
188 bool tid_rdma_conn_req(struct rvt_qp *qp, u64 *data)
189 {
190         struct hfi1_qp_priv *priv = qp->priv;
191
192         *data = tid_rdma_opfn_encode(&priv->tid_rdma.local);
193         return true;
194 }
195
196 bool tid_rdma_conn_reply(struct rvt_qp *qp, u64 data)
197 {
198         struct hfi1_qp_priv *priv = qp->priv;
199         struct tid_rdma_params *remote, *old;
200         bool ret = true;
201
202         old = rcu_dereference_protected(priv->tid_rdma.remote,
203                                         lockdep_is_held(&priv->opfn.lock));
204         data &= ~0xfULL;
205         /*
206          * If data passed in is zero, return true so as not to continue the
207          * negotiation process
208          */
209         if (!data || !HFI1_CAP_IS_KSET(TID_RDMA))
210                 goto null;
211         /*
212          * If kzalloc fails, return false. This will result in:
213          * * at the requester a new OPFN request being generated to retry
214          *   the negotiation
215          * * at the responder, 0 being returned to the requester so as to
216          *   disable TID RDMA at both the requester and the responder
217          */
218         remote = kzalloc(sizeof(*remote), GFP_ATOMIC);
219         if (!remote) {
220                 ret = false;
221                 goto null;
222         }
223
224         tid_rdma_opfn_decode(remote, data);
225         priv->tid_timer_timeout_jiffies =
226                 usecs_to_jiffies((((4096UL * (1UL << remote->timeout)) /
227                                    1000UL) << 3) * 7);
228         trace_hfi1_opfn_param(qp, 0, &priv->tid_rdma.local);
229         trace_hfi1_opfn_param(qp, 1, remote);
230         rcu_assign_pointer(priv->tid_rdma.remote, remote);
231         /*
232          * A TID RDMA READ request's segment size is not equal to
233          * remote->max_len only when the request's data length is smaller
234          * than remote->max_len. In that case, there will be only one segment.
235          * Therefore, when priv->pkts_ps is used to calculate req->cur_seg
236          * during retry, it will lead to req->cur_seg = 0, which is exactly
237          * what is expected.
238          */
239         priv->pkts_ps = (u16)rvt_div_mtu(qp, remote->max_len);
240         priv->timeout_shift = ilog2(priv->pkts_ps - 1) + 1;
241         goto free;
242 null:
243         RCU_INIT_POINTER(priv->tid_rdma.remote, NULL);
244         priv->timeout_shift = 0;
245 free:
246         if (old)
247                 kfree_rcu(old, rcu_head);
248         return ret;
249 }
250
251 bool tid_rdma_conn_resp(struct rvt_qp *qp, u64 *data)
252 {
253         bool ret;
254
255         ret = tid_rdma_conn_reply(qp, *data);
256         *data = 0;
257         /*
258          * If tid_rdma_conn_reply() returns error, set *data as 0 to indicate
259          * TID RDMA could not be enabled. This will result in TID RDMA being
260          * disabled at the requester too.
261          */
262         if (ret)
263                 (void)tid_rdma_conn_req(qp, data);
264         return ret;
265 }
266
267 void tid_rdma_conn_error(struct rvt_qp *qp)
268 {
269         struct hfi1_qp_priv *priv = qp->priv;
270         struct tid_rdma_params *old;
271
272         old = rcu_dereference_protected(priv->tid_rdma.remote,
273                                         lockdep_is_held(&priv->opfn.lock));
274         RCU_INIT_POINTER(priv->tid_rdma.remote, NULL);
275         if (old)
276                 kfree_rcu(old, rcu_head);
277 }
278
279 /* This is called at context initialization time */
280 int hfi1_kern_exp_rcv_init(struct hfi1_ctxtdata *rcd, int reinit)
281 {
282         if (reinit)
283                 return 0;
284
285         BUILD_BUG_ON(TID_RDMA_JKEY < HFI1_KERNEL_MIN_JKEY);
286         BUILD_BUG_ON(TID_RDMA_JKEY > HFI1_KERNEL_MAX_JKEY);
287         rcd->jkey = TID_RDMA_JKEY;
288         hfi1_set_ctxt_jkey(rcd->dd, rcd, rcd->jkey);
289         return hfi1_alloc_ctxt_rcv_groups(rcd);
290 }
291
292 /**
293  * qp_to_rcd - determine the receive context used by a qp
294  * @qp - the qp
295  *
296  * This routine returns the receive context associated
297  * with a a qp's qpn.
298  *
299  * Returns the context.
300  */
301 static struct hfi1_ctxtdata *qp_to_rcd(struct rvt_dev_info *rdi,
302                                        struct rvt_qp *qp)
303 {
304         struct hfi1_ibdev *verbs_dev = container_of(rdi,
305                                                     struct hfi1_ibdev,
306                                                     rdi);
307         struct hfi1_devdata *dd = container_of(verbs_dev,
308                                                struct hfi1_devdata,
309                                                verbs_dev);
310         unsigned int ctxt;
311
312         if (qp->ibqp.qp_num == 0)
313                 ctxt = 0;
314         else
315                 ctxt = hfi1_get_qp_map(dd, qp->ibqp.qp_num >> dd->qos_shift);
316         return dd->rcd[ctxt];
317 }
318
319 int hfi1_qp_priv_init(struct rvt_dev_info *rdi, struct rvt_qp *qp,
320                       struct ib_qp_init_attr *init_attr)
321 {
322         struct hfi1_qp_priv *qpriv = qp->priv;
323         int i, ret;
324
325         qpriv->rcd = qp_to_rcd(rdi, qp);
326
327         spin_lock_init(&qpriv->opfn.lock);
328         INIT_WORK(&qpriv->opfn.opfn_work, opfn_send_conn_request);
329         INIT_WORK(&qpriv->tid_rdma.trigger_work, tid_rdma_trigger_resume);
330         qpriv->flow_state.psn = 0;
331         qpriv->flow_state.index = RXE_NUM_TID_FLOWS;
332         qpriv->flow_state.last_index = RXE_NUM_TID_FLOWS;
333         qpriv->flow_state.generation = KERN_GENERATION_RESERVED;
334         qpriv->s_state = TID_OP(WRITE_RESP);
335         qpriv->s_tid_cur = HFI1_QP_WQE_INVALID;
336         qpriv->s_tid_head = HFI1_QP_WQE_INVALID;
337         qpriv->s_tid_tail = HFI1_QP_WQE_INVALID;
338         qpriv->rnr_nak_state = TID_RNR_NAK_INIT;
339         qpriv->r_tid_head = HFI1_QP_WQE_INVALID;
340         qpriv->r_tid_tail = HFI1_QP_WQE_INVALID;
341         qpriv->r_tid_ack = HFI1_QP_WQE_INVALID;
342         qpriv->r_tid_alloc = HFI1_QP_WQE_INVALID;
343         atomic_set(&qpriv->n_requests, 0);
344         atomic_set(&qpriv->n_tid_requests, 0);
345         timer_setup(&qpriv->s_tid_timer, hfi1_tid_timeout, 0);
346         timer_setup(&qpriv->s_tid_retry_timer, hfi1_tid_retry_timeout, 0);
347         INIT_LIST_HEAD(&qpriv->tid_wait);
348
349         if (init_attr->qp_type == IB_QPT_RC && HFI1_CAP_IS_KSET(TID_RDMA)) {
350                 struct hfi1_devdata *dd = qpriv->rcd->dd;
351
352                 qpriv->pages = kzalloc_node(TID_RDMA_MAX_PAGES *
353                                                 sizeof(*qpriv->pages),
354                                             GFP_KERNEL, dd->node);
355                 if (!qpriv->pages)
356                         return -ENOMEM;
357                 for (i = 0; i < qp->s_size; i++) {
358                         struct hfi1_swqe_priv *priv;
359                         struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, i);
360
361                         priv = kzalloc_node(sizeof(*priv), GFP_KERNEL,
362                                             dd->node);
363                         if (!priv)
364                                 return -ENOMEM;
365
366                         hfi1_init_trdma_req(qp, &priv->tid_req);
367                         priv->tid_req.e.swqe = wqe;
368                         wqe->priv = priv;
369                 }
370                 for (i = 0; i < rvt_max_atomic(rdi); i++) {
371                         struct hfi1_ack_priv *priv;
372
373                         priv = kzalloc_node(sizeof(*priv), GFP_KERNEL,
374                                             dd->node);
375                         if (!priv)
376                                 return -ENOMEM;
377
378                         hfi1_init_trdma_req(qp, &priv->tid_req);
379                         priv->tid_req.e.ack = &qp->s_ack_queue[i];
380
381                         ret = hfi1_kern_exp_rcv_alloc_flows(&priv->tid_req,
382                                                             GFP_KERNEL);
383                         if (ret) {
384                                 kfree(priv);
385                                 return ret;
386                         }
387                         qp->s_ack_queue[i].priv = priv;
388                 }
389         }
390
391         return 0;
392 }
393
394 void hfi1_qp_priv_tid_free(struct rvt_dev_info *rdi, struct rvt_qp *qp)
395 {
396         struct hfi1_qp_priv *qpriv = qp->priv;
397         struct rvt_swqe *wqe;
398         u32 i;
399
400         if (qp->ibqp.qp_type == IB_QPT_RC && HFI1_CAP_IS_KSET(TID_RDMA)) {
401                 for (i = 0; i < qp->s_size; i++) {
402                         wqe = rvt_get_swqe_ptr(qp, i);
403                         kfree(wqe->priv);
404                         wqe->priv = NULL;
405                 }
406                 for (i = 0; i < rvt_max_atomic(rdi); i++) {
407                         struct hfi1_ack_priv *priv = qp->s_ack_queue[i].priv;
408
409                         if (priv)
410                                 hfi1_kern_exp_rcv_free_flows(&priv->tid_req);
411                         kfree(priv);
412                         qp->s_ack_queue[i].priv = NULL;
413                 }
414                 cancel_work_sync(&qpriv->opfn.opfn_work);
415                 kfree(qpriv->pages);
416                 qpriv->pages = NULL;
417         }
418 }
419
420 /* Flow and tid waiter functions */
421 /**
422  * DOC: lock ordering
423  *
424  * There are two locks involved with the queuing
425  * routines: the qp s_lock and the exp_lock.
426  *
427  * Since the tid space allocation is called from
428  * the send engine, the qp s_lock is already held.
429  *
430  * The allocation routines will get the exp_lock.
431  *
432  * The first_qp() call is provided to allow the head of
433  * the rcd wait queue to be fetched under the exp_lock and
434  * followed by a drop of the exp_lock.
435  *
436  * Any qp in the wait list will have the qp reference count held
437  * to hold the qp in memory.
438  */
439
440 /*
441  * return head of rcd wait list
442  *
443  * Must hold the exp_lock.
444  *
445  * Get a reference to the QP to hold the QP in memory.
446  *
447  * The caller must release the reference when the local
448  * is no longer being used.
449  */
450 static struct rvt_qp *first_qp(struct hfi1_ctxtdata *rcd,
451                                struct tid_queue *queue)
452         __must_hold(&rcd->exp_lock)
453 {
454         struct hfi1_qp_priv *priv;
455
456         lockdep_assert_held(&rcd->exp_lock);
457         priv = list_first_entry_or_null(&queue->queue_head,
458                                         struct hfi1_qp_priv,
459                                         tid_wait);
460         if (!priv)
461                 return NULL;
462         rvt_get_qp(priv->owner);
463         return priv->owner;
464 }
465
466 /**
467  * kernel_tid_waiters - determine rcd wait
468  * @rcd: the receive context
469  * @qp: the head of the qp being processed
470  *
471  * This routine will return false IFF
472  * the list is NULL or the head of the
473  * list is the indicated qp.
474  *
475  * Must hold the qp s_lock and the exp_lock.
476  *
477  * Return:
478  * false if either of the conditions below are satisfied:
479  * 1. The list is empty or
480  * 2. The indicated qp is at the head of the list and the
481  *    HFI1_S_WAIT_TID_SPACE bit is set in qp->s_flags.
482  * true is returned otherwise.
483  */
484 static bool kernel_tid_waiters(struct hfi1_ctxtdata *rcd,
485                                struct tid_queue *queue, struct rvt_qp *qp)
486         __must_hold(&rcd->exp_lock) __must_hold(&qp->s_lock)
487 {
488         struct rvt_qp *fqp;
489         bool ret = true;
490
491         lockdep_assert_held(&qp->s_lock);
492         lockdep_assert_held(&rcd->exp_lock);
493         fqp = first_qp(rcd, queue);
494         if (!fqp || (fqp == qp && (qp->s_flags & HFI1_S_WAIT_TID_SPACE)))
495                 ret = false;
496         rvt_put_qp(fqp);
497         return ret;
498 }
499
500 /**
501  * dequeue_tid_waiter - dequeue the qp from the list
502  * @qp - the qp to remove the wait list
503  *
504  * This routine removes the indicated qp from the
505  * wait list if it is there.
506  *
507  * This should be done after the hardware flow and
508  * tid array resources have been allocated.
509  *
510  * Must hold the qp s_lock and the rcd exp_lock.
511  *
512  * It assumes the s_lock to protect the s_flags
513  * field and to reliably test the HFI1_S_WAIT_TID_SPACE flag.
514  */
515 static void dequeue_tid_waiter(struct hfi1_ctxtdata *rcd,
516                                struct tid_queue *queue, struct rvt_qp *qp)
517         __must_hold(&rcd->exp_lock) __must_hold(&qp->s_lock)
518 {
519         struct hfi1_qp_priv *priv = qp->priv;
520
521         lockdep_assert_held(&qp->s_lock);
522         lockdep_assert_held(&rcd->exp_lock);
523         if (list_empty(&priv->tid_wait))
524                 return;
525         list_del_init(&priv->tid_wait);
526         qp->s_flags &= ~HFI1_S_WAIT_TID_SPACE;
527         queue->dequeue++;
528         rvt_put_qp(qp);
529 }
530
531 /**
532  * queue_qp_for_tid_wait - suspend QP on tid space
533  * @rcd: the receive context
534  * @qp: the qp
535  *
536  * The qp is inserted at the tail of the rcd
537  * wait queue and the HFI1_S_WAIT_TID_SPACE s_flag is set.
538  *
539  * Must hold the qp s_lock and the exp_lock.
540  */
541 static void queue_qp_for_tid_wait(struct hfi1_ctxtdata *rcd,
542                                   struct tid_queue *queue, struct rvt_qp *qp)
543         __must_hold(&rcd->exp_lock) __must_hold(&qp->s_lock)
544 {
545         struct hfi1_qp_priv *priv = qp->priv;
546
547         lockdep_assert_held(&qp->s_lock);
548         lockdep_assert_held(&rcd->exp_lock);
549         if (list_empty(&priv->tid_wait)) {
550                 qp->s_flags |= HFI1_S_WAIT_TID_SPACE;
551                 list_add_tail(&priv->tid_wait, &queue->queue_head);
552                 priv->tid_enqueue = ++queue->enqueue;
553                 rcd->dd->verbs_dev.n_tidwait++;
554                 trace_hfi1_qpsleep(qp, HFI1_S_WAIT_TID_SPACE);
555                 rvt_get_qp(qp);
556         }
557 }
558
559 /**
560  * __trigger_tid_waiter - trigger tid waiter
561  * @qp: the qp
562  *
563  * This is a private entrance to schedule the qp
564  * assuming the caller is holding the qp->s_lock.
565  */
566 static void __trigger_tid_waiter(struct rvt_qp *qp)
567         __must_hold(&qp->s_lock)
568 {
569         lockdep_assert_held(&qp->s_lock);
570         if (!(qp->s_flags & HFI1_S_WAIT_TID_SPACE))
571                 return;
572         trace_hfi1_qpwakeup(qp, HFI1_S_WAIT_TID_SPACE);
573         hfi1_schedule_send(qp);
574 }
575
576 /**
577  * tid_rdma_schedule_tid_wakeup - schedule wakeup for a qp
578  * @qp - the qp
579  *
580  * trigger a schedule or a waiting qp in a deadlock
581  * safe manner.  The qp reference is held prior
582  * to this call via first_qp().
583  *
584  * If the qp trigger was already scheduled (!rval)
585  * the the reference is dropped, otherwise the resume
586  * or the destroy cancel will dispatch the reference.
587  */
588 static void tid_rdma_schedule_tid_wakeup(struct rvt_qp *qp)
589 {
590         struct hfi1_qp_priv *priv;
591         struct hfi1_ibport *ibp;
592         struct hfi1_pportdata *ppd;
593         struct hfi1_devdata *dd;
594         bool rval;
595
596         if (!qp)
597                 return;
598
599         priv = qp->priv;
600         ibp = to_iport(qp->ibqp.device, qp->port_num);
601         ppd = ppd_from_ibp(ibp);
602         dd = dd_from_ibdev(qp->ibqp.device);
603
604         rval = queue_work_on(priv->s_sde ?
605                              priv->s_sde->cpu :
606                              cpumask_first(cpumask_of_node(dd->node)),
607                              ppd->hfi1_wq,
608                              &priv->tid_rdma.trigger_work);
609         if (!rval)
610                 rvt_put_qp(qp);
611 }
612
613 /**
614  * tid_rdma_trigger_resume - field a trigger work request
615  * @work - the work item
616  *
617  * Complete the off qp trigger processing by directly
618  * calling the progress routine.
619  */
620 static void tid_rdma_trigger_resume(struct work_struct *work)
621 {
622         struct tid_rdma_qp_params *tr;
623         struct hfi1_qp_priv *priv;
624         struct rvt_qp *qp;
625
626         tr = container_of(work, struct tid_rdma_qp_params, trigger_work);
627         priv = container_of(tr, struct hfi1_qp_priv, tid_rdma);
628         qp = priv->owner;
629         spin_lock_irq(&qp->s_lock);
630         if (qp->s_flags & HFI1_S_WAIT_TID_SPACE) {
631                 spin_unlock_irq(&qp->s_lock);
632                 hfi1_do_send(priv->owner, true);
633         } else {
634                 spin_unlock_irq(&qp->s_lock);
635         }
636         rvt_put_qp(qp);
637 }
638
639 /**
640  * tid_rdma_flush_wait - unwind any tid space wait
641  *
642  * This is called when resetting a qp to
643  * allow a destroy or reset to get rid
644  * of any tid space linkage and reference counts.
645  */
646 static void _tid_rdma_flush_wait(struct rvt_qp *qp, struct tid_queue *queue)
647         __must_hold(&qp->s_lock)
648 {
649         struct hfi1_qp_priv *priv;
650
651         if (!qp)
652                 return;
653         lockdep_assert_held(&qp->s_lock);
654         priv = qp->priv;
655         qp->s_flags &= ~HFI1_S_WAIT_TID_SPACE;
656         spin_lock(&priv->rcd->exp_lock);
657         if (!list_empty(&priv->tid_wait)) {
658                 list_del_init(&priv->tid_wait);
659                 qp->s_flags &= ~HFI1_S_WAIT_TID_SPACE;
660                 queue->dequeue++;
661                 rvt_put_qp(qp);
662         }
663         spin_unlock(&priv->rcd->exp_lock);
664 }
665
666 void hfi1_tid_rdma_flush_wait(struct rvt_qp *qp)
667         __must_hold(&qp->s_lock)
668 {
669         struct hfi1_qp_priv *priv = qp->priv;
670
671         _tid_rdma_flush_wait(qp, &priv->rcd->flow_queue);
672         _tid_rdma_flush_wait(qp, &priv->rcd->rarr_queue);
673 }
674
675 /* Flow functions */
676 /**
677  * kern_reserve_flow - allocate a hardware flow
678  * @rcd - the context to use for allocation
679  * @last - the index of the preferred flow. Use RXE_NUM_TID_FLOWS to
680  *         signify "don't care".
681  *
682  * Use a bit mask based allocation to reserve a hardware
683  * flow for use in receiving KDETH data packets. If a preferred flow is
684  * specified the function will attempt to reserve that flow again, if
685  * available.
686  *
687  * The exp_lock must be held.
688  *
689  * Return:
690  * On success: a value postive value between 0 and RXE_NUM_TID_FLOWS - 1
691  * On failure: -EAGAIN
692  */
693 static int kern_reserve_flow(struct hfi1_ctxtdata *rcd, int last)
694         __must_hold(&rcd->exp_lock)
695 {
696         int nr;
697
698         /* Attempt to reserve the preferred flow index */
699         if (last >= 0 && last < RXE_NUM_TID_FLOWS &&
700             !test_and_set_bit(last, &rcd->flow_mask))
701                 return last;
702
703         nr = ffz(rcd->flow_mask);
704         BUILD_BUG_ON(RXE_NUM_TID_FLOWS >=
705                      (sizeof(rcd->flow_mask) * BITS_PER_BYTE));
706         if (nr > (RXE_NUM_TID_FLOWS - 1))
707                 return -EAGAIN;
708         set_bit(nr, &rcd->flow_mask);
709         return nr;
710 }
711
712 static void kern_set_hw_flow(struct hfi1_ctxtdata *rcd, u32 generation,
713                              u32 flow_idx)
714 {
715         u64 reg;
716
717         reg = ((u64)generation << HFI1_KDETH_BTH_SEQ_SHIFT) |
718                 RCV_TID_FLOW_TABLE_CTRL_FLOW_VALID_SMASK |
719                 RCV_TID_FLOW_TABLE_CTRL_KEEP_AFTER_SEQ_ERR_SMASK |
720                 RCV_TID_FLOW_TABLE_CTRL_KEEP_ON_GEN_ERR_SMASK |
721                 RCV_TID_FLOW_TABLE_STATUS_SEQ_MISMATCH_SMASK |
722                 RCV_TID_FLOW_TABLE_STATUS_GEN_MISMATCH_SMASK;
723
724         if (generation != KERN_GENERATION_RESERVED)
725                 reg |= RCV_TID_FLOW_TABLE_CTRL_HDR_SUPP_EN_SMASK;
726
727         write_uctxt_csr(rcd->dd, rcd->ctxt,
728                         RCV_TID_FLOW_TABLE + 8 * flow_idx, reg);
729 }
730
731 static u32 kern_setup_hw_flow(struct hfi1_ctxtdata *rcd, u32 flow_idx)
732         __must_hold(&rcd->exp_lock)
733 {
734         u32 generation = rcd->flows[flow_idx].generation;
735
736         kern_set_hw_flow(rcd, generation, flow_idx);
737         return generation;
738 }
739
740 static u32 kern_flow_generation_next(u32 gen)
741 {
742         u32 generation = mask_generation(gen + 1);
743
744         if (generation == KERN_GENERATION_RESERVED)
745                 generation = mask_generation(generation + 1);
746         return generation;
747 }
748
749 static void kern_clear_hw_flow(struct hfi1_ctxtdata *rcd, u32 flow_idx)
750         __must_hold(&rcd->exp_lock)
751 {
752         rcd->flows[flow_idx].generation =
753                 kern_flow_generation_next(rcd->flows[flow_idx].generation);
754         kern_set_hw_flow(rcd, KERN_GENERATION_RESERVED, flow_idx);
755 }
756
757 int hfi1_kern_setup_hw_flow(struct hfi1_ctxtdata *rcd, struct rvt_qp *qp)
758 {
759         struct hfi1_qp_priv *qpriv = (struct hfi1_qp_priv *)qp->priv;
760         struct tid_flow_state *fs = &qpriv->flow_state;
761         struct rvt_qp *fqp;
762         unsigned long flags;
763         int ret = 0;
764
765         /* The QP already has an allocated flow */
766         if (fs->index != RXE_NUM_TID_FLOWS)
767                 return ret;
768
769         spin_lock_irqsave(&rcd->exp_lock, flags);
770         if (kernel_tid_waiters(rcd, &rcd->flow_queue, qp))
771                 goto queue;
772
773         ret = kern_reserve_flow(rcd, fs->last_index);
774         if (ret < 0)
775                 goto queue;
776         fs->index = ret;
777         fs->last_index = fs->index;
778
779         /* Generation received in a RESYNC overrides default flow generation */
780         if (fs->generation != KERN_GENERATION_RESERVED)
781                 rcd->flows[fs->index].generation = fs->generation;
782         fs->generation = kern_setup_hw_flow(rcd, fs->index);
783         fs->psn = 0;
784         dequeue_tid_waiter(rcd, &rcd->flow_queue, qp);
785         /* get head before dropping lock */
786         fqp = first_qp(rcd, &rcd->flow_queue);
787         spin_unlock_irqrestore(&rcd->exp_lock, flags);
788
789         tid_rdma_schedule_tid_wakeup(fqp);
790         return 0;
791 queue:
792         queue_qp_for_tid_wait(rcd, &rcd->flow_queue, qp);
793         spin_unlock_irqrestore(&rcd->exp_lock, flags);
794         return -EAGAIN;
795 }
796
797 void hfi1_kern_clear_hw_flow(struct hfi1_ctxtdata *rcd, struct rvt_qp *qp)
798 {
799         struct hfi1_qp_priv *qpriv = (struct hfi1_qp_priv *)qp->priv;
800         struct tid_flow_state *fs = &qpriv->flow_state;
801         struct rvt_qp *fqp;
802         unsigned long flags;
803
804         if (fs->index >= RXE_NUM_TID_FLOWS)
805                 return;
806         spin_lock_irqsave(&rcd->exp_lock, flags);
807         kern_clear_hw_flow(rcd, fs->index);
808         clear_bit(fs->index, &rcd->flow_mask);
809         fs->index = RXE_NUM_TID_FLOWS;
810         fs->psn = 0;
811         fs->generation = KERN_GENERATION_RESERVED;
812
813         /* get head before dropping lock */
814         fqp = first_qp(rcd, &rcd->flow_queue);
815         spin_unlock_irqrestore(&rcd->exp_lock, flags);
816
817         if (fqp == qp) {
818                 __trigger_tid_waiter(fqp);
819                 rvt_put_qp(fqp);
820         } else {
821                 tid_rdma_schedule_tid_wakeup(fqp);
822         }
823 }
824
825 void hfi1_kern_init_ctxt_generations(struct hfi1_ctxtdata *rcd)
826 {
827         int i;
828
829         for (i = 0; i < RXE_NUM_TID_FLOWS; i++) {
830                 rcd->flows[i].generation = mask_generation(prandom_u32());
831                 kern_set_hw_flow(rcd, KERN_GENERATION_RESERVED, i);
832         }
833 }
834
835 /* TID allocation functions */
836 static u8 trdma_pset_order(struct tid_rdma_pageset *s)
837 {
838         u8 count = s->count;
839
840         return ilog2(count) + 1;
841 }
842
843 /**
844  * tid_rdma_find_phys_blocks_4k - get groups base on mr info
845  * @npages - number of pages
846  * @pages - pointer to an array of page structs
847  * @list - page set array to return
848  *
849  * This routine returns the number of groups associated with
850  * the current sge information.  This implementation is based
851  * on the expected receive find_phys_blocks() adjusted to
852  * use the MR information vs. the pfn.
853  *
854  * Return:
855  * the number of RcvArray entries
856  */
857 static u32 tid_rdma_find_phys_blocks_4k(struct tid_rdma_flow *flow,
858                                         struct page **pages,
859                                         u32 npages,
860                                         struct tid_rdma_pageset *list)
861 {
862         u32 pagecount, pageidx, setcount = 0, i;
863         void *vaddr, *this_vaddr;
864
865         if (!npages)
866                 return 0;
867
868         /*
869          * Look for sets of physically contiguous pages in the user buffer.
870          * This will allow us to optimize Expected RcvArray entry usage by
871          * using the bigger supported sizes.
872          */
873         vaddr = page_address(pages[0]);
874         trace_hfi1_tid_flow_page(flow->req->qp, flow, 0, 0, 0, vaddr);
875         for (pageidx = 0, pagecount = 1, i = 1; i <= npages; i++) {
876                 this_vaddr = i < npages ? page_address(pages[i]) : NULL;
877                 trace_hfi1_tid_flow_page(flow->req->qp, flow, i, 0, 0,
878                                          this_vaddr);
879                 /*
880                  * If the vaddr's are not sequential, pages are not physically
881                  * contiguous.
882                  */
883                 if (this_vaddr != (vaddr + PAGE_SIZE)) {
884                         /*
885                          * At this point we have to loop over the set of
886                          * physically contiguous pages and break them down it
887                          * sizes supported by the HW.
888                          * There are two main constraints:
889                          *     1. The max buffer size is MAX_EXPECTED_BUFFER.
890                          *        If the total set size is bigger than that
891                          *        program only a MAX_EXPECTED_BUFFER chunk.
892                          *     2. The buffer size has to be a power of two. If
893                          *        it is not, round down to the closes power of
894                          *        2 and program that size.
895                          */
896                         while (pagecount) {
897                                 int maxpages = pagecount;
898                                 u32 bufsize = pagecount * PAGE_SIZE;
899
900                                 if (bufsize > MAX_EXPECTED_BUFFER)
901                                         maxpages =
902                                                 MAX_EXPECTED_BUFFER >>
903                                                 PAGE_SHIFT;
904                                 else if (!is_power_of_2(bufsize))
905                                         maxpages =
906                                                 rounddown_pow_of_two(bufsize) >>
907                                                 PAGE_SHIFT;
908
909                                 list[setcount].idx = pageidx;
910                                 list[setcount].count = maxpages;
911                                 trace_hfi1_tid_pageset(flow->req->qp, setcount,
912                                                        list[setcount].idx,
913                                                        list[setcount].count);
914                                 pagecount -= maxpages;
915                                 pageidx += maxpages;
916                                 setcount++;
917                         }
918                         pageidx = i;
919                         pagecount = 1;
920                         vaddr = this_vaddr;
921                 } else {
922                         vaddr += PAGE_SIZE;
923                         pagecount++;
924                 }
925         }
926         /* insure we always return an even number of sets */
927         if (setcount & 1)
928                 list[setcount++].count = 0;
929         return setcount;
930 }
931
932 /**
933  * tid_flush_pages - dump out pages into pagesets
934  * @list - list of pagesets
935  * @idx - pointer to current page index
936  * @pages - number of pages to dump
937  * @sets - current number of pagesset
938  *
939  * This routine flushes out accumuated pages.
940  *
941  * To insure an even number of sets the
942  * code may add a filler.
943  *
944  * This can happen with when pages is not
945  * a power of 2 or pages is a power of 2
946  * less than the maximum pages.
947  *
948  * Return:
949  * The new number of sets
950  */
951
952 static u32 tid_flush_pages(struct tid_rdma_pageset *list,
953                            u32 *idx, u32 pages, u32 sets)
954 {
955         while (pages) {
956                 u32 maxpages = pages;
957
958                 if (maxpages > MAX_EXPECTED_PAGES)
959                         maxpages = MAX_EXPECTED_PAGES;
960                 else if (!is_power_of_2(maxpages))
961                         maxpages = rounddown_pow_of_two(maxpages);
962                 list[sets].idx = *idx;
963                 list[sets++].count = maxpages;
964                 *idx += maxpages;
965                 pages -= maxpages;
966         }
967         /* might need a filler */
968         if (sets & 1)
969                 list[sets++].count = 0;
970         return sets;
971 }
972
973 /**
974  * tid_rdma_find_phys_blocks_8k - get groups base on mr info
975  * @pages - pointer to an array of page structs
976  * @npages - number of pages
977  * @list - page set array to return
978  *
979  * This routine parses an array of pages to compute pagesets
980  * in an 8k compatible way.
981  *
982  * pages are tested two at a time, i, i + 1 for contiguous
983  * pages and i - 1 and i contiguous pages.
984  *
985  * If any condition is false, any accumlated pages are flushed and
986  * v0,v1 are emitted as separate PAGE_SIZE pagesets
987  *
988  * Otherwise, the current 8k is totaled for a future flush.
989  *
990  * Return:
991  * The number of pagesets
992  * list set with the returned number of pagesets
993  *
994  */
995 static u32 tid_rdma_find_phys_blocks_8k(struct tid_rdma_flow *flow,
996                                         struct page **pages,
997                                         u32 npages,
998                                         struct tid_rdma_pageset *list)
999 {
1000         u32 idx, sets = 0, i;
1001         u32 pagecnt = 0;
1002         void *v0, *v1, *vm1;
1003
1004         if (!npages)
1005                 return 0;
1006         for (idx = 0, i = 0, vm1 = NULL; i < npages; i += 2) {
1007                 /* get a new v0 */
1008                 v0 = page_address(pages[i]);
1009                 trace_hfi1_tid_flow_page(flow->req->qp, flow, i, 1, 0, v0);
1010                 v1 = i + 1 < npages ?
1011                                 page_address(pages[i + 1]) : NULL;
1012                 trace_hfi1_tid_flow_page(flow->req->qp, flow, i, 1, 1, v1);
1013                 /* compare i, i + 1 vaddr */
1014                 if (v1 != (v0 + PAGE_SIZE)) {
1015                         /* flush out pages */
1016                         sets = tid_flush_pages(list, &idx, pagecnt, sets);
1017                         /* output v0,v1 as two pagesets */
1018                         list[sets].idx = idx++;
1019                         list[sets++].count = 1;
1020                         if (v1) {
1021                                 list[sets].count = 1;
1022                                 list[sets++].idx = idx++;
1023                         } else {
1024                                 list[sets++].count = 0;
1025                         }
1026                         vm1 = NULL;
1027                         pagecnt = 0;
1028                         continue;
1029                 }
1030                 /* i,i+1 consecutive, look at i-1,i */
1031                 if (vm1 && v0 != (vm1 + PAGE_SIZE)) {
1032                         /* flush out pages */
1033                         sets = tid_flush_pages(list, &idx, pagecnt, sets);
1034                         pagecnt = 0;
1035                 }
1036                 /* pages will always be a multiple of 8k */
1037                 pagecnt += 2;
1038                 /* save i-1 */
1039                 vm1 = v1;
1040                 /* move to next pair */
1041         }
1042         /* dump residual pages at end */
1043         sets = tid_flush_pages(list, &idx, npages - idx, sets);
1044         /* by design cannot be odd sets */
1045         WARN_ON(sets & 1);
1046         return sets;
1047 }
1048
1049 /**
1050  * Find pages for one segment of a sge array represented by @ss. The function
1051  * does not check the sge, the sge must have been checked for alignment with a
1052  * prior call to hfi1_kern_trdma_ok. Other sge checking is done as part of
1053  * rvt_lkey_ok and rvt_rkey_ok. Also, the function only modifies the local sge
1054  * copy maintained in @ss->sge, the original sge is not modified.
1055  *
1056  * Unlike IB RDMA WRITE, we can't decrement ss->num_sge here because we are not
1057  * releasing the MR reference count at the same time. Otherwise, we'll "leak"
1058  * references to the MR. This difference requires that we keep track of progress
1059  * into the sg_list. This is done by the cur_seg cursor in the tid_rdma_request
1060  * structure.
1061  */
1062 static u32 kern_find_pages(struct tid_rdma_flow *flow,
1063                            struct page **pages,
1064                            struct rvt_sge_state *ss, bool *last)
1065 {
1066         struct tid_rdma_request *req = flow->req;
1067         struct rvt_sge *sge = &ss->sge;
1068         u32 length = flow->req->seg_len;
1069         u32 len = PAGE_SIZE;
1070         u32 i = 0;
1071
1072         while (length && req->isge < ss->num_sge) {
1073                 pages[i++] = virt_to_page(sge->vaddr);
1074
1075                 sge->vaddr += len;
1076                 sge->length -= len;
1077                 sge->sge_length -= len;
1078                 if (!sge->sge_length) {
1079                         if (++req->isge < ss->num_sge)
1080                                 *sge = ss->sg_list[req->isge - 1];
1081                 } else if (sge->length == 0 && sge->mr->lkey) {
1082                         if (++sge->n >= RVT_SEGSZ) {
1083                                 ++sge->m;
1084                                 sge->n = 0;
1085                         }
1086                         sge->vaddr = sge->mr->map[sge->m]->segs[sge->n].vaddr;
1087                         sge->length = sge->mr->map[sge->m]->segs[sge->n].length;
1088                 }
1089                 length -= len;
1090         }
1091
1092         flow->length = flow->req->seg_len - length;
1093         *last = req->isge == ss->num_sge ? false : true;
1094         return i;
1095 }
1096
1097 static void dma_unmap_flow(struct tid_rdma_flow *flow)
1098 {
1099         struct hfi1_devdata *dd;
1100         int i;
1101         struct tid_rdma_pageset *pset;
1102
1103         dd = flow->req->rcd->dd;
1104         for (i = 0, pset = &flow->pagesets[0]; i < flow->npagesets;
1105                         i++, pset++) {
1106                 if (pset->count && pset->addr) {
1107                         dma_unmap_page(&dd->pcidev->dev,
1108                                        pset->addr,
1109                                        PAGE_SIZE * pset->count,
1110                                        DMA_FROM_DEVICE);
1111                         pset->mapped = 0;
1112                 }
1113         }
1114 }
1115
1116 static int dma_map_flow(struct tid_rdma_flow *flow, struct page **pages)
1117 {
1118         int i;
1119         struct hfi1_devdata *dd = flow->req->rcd->dd;
1120         struct tid_rdma_pageset *pset;
1121
1122         for (i = 0, pset = &flow->pagesets[0]; i < flow->npagesets;
1123                         i++, pset++) {
1124                 if (pset->count) {
1125                         pset->addr = dma_map_page(&dd->pcidev->dev,
1126                                                   pages[pset->idx],
1127                                                   0,
1128                                                   PAGE_SIZE * pset->count,
1129                                                   DMA_FROM_DEVICE);
1130
1131                         if (dma_mapping_error(&dd->pcidev->dev, pset->addr)) {
1132                                 dma_unmap_flow(flow);
1133                                 return -ENOMEM;
1134                         }
1135                         pset->mapped = 1;
1136                 }
1137         }
1138         return 0;
1139 }
1140
1141 static inline bool dma_mapped(struct tid_rdma_flow *flow)
1142 {
1143         return !!flow->pagesets[0].mapped;
1144 }
1145
1146 /*
1147  * Get pages pointers and identify contiguous physical memory chunks for a
1148  * segment. All segments are of length flow->req->seg_len.
1149  */
1150 static int kern_get_phys_blocks(struct tid_rdma_flow *flow,
1151                                 struct page **pages,
1152                                 struct rvt_sge_state *ss, bool *last)
1153 {
1154         u8 npages;
1155
1156         /* Reuse previously computed pagesets, if any */
1157         if (flow->npagesets) {
1158                 trace_hfi1_tid_flow_alloc(flow->req->qp, flow->req->setup_head,
1159                                           flow);
1160                 if (!dma_mapped(flow))
1161                         return dma_map_flow(flow, pages);
1162                 return 0;
1163         }
1164
1165         npages = kern_find_pages(flow, pages, ss, last);
1166
1167         if (flow->req->qp->pmtu == enum_to_mtu(OPA_MTU_4096))
1168                 flow->npagesets =
1169                         tid_rdma_find_phys_blocks_4k(flow, pages, npages,
1170                                                      flow->pagesets);
1171         else
1172                 flow->npagesets =
1173                         tid_rdma_find_phys_blocks_8k(flow, pages, npages,
1174                                                      flow->pagesets);
1175
1176         return dma_map_flow(flow, pages);
1177 }
1178
1179 static inline void kern_add_tid_node(struct tid_rdma_flow *flow,
1180                                      struct hfi1_ctxtdata *rcd, char *s,
1181                                      struct tid_group *grp, u8 cnt)
1182 {
1183         struct kern_tid_node *node = &flow->tnode[flow->tnode_cnt++];
1184
1185         WARN_ON_ONCE(flow->tnode_cnt >=
1186                      (TID_RDMA_MAX_SEGMENT_SIZE >> PAGE_SHIFT));
1187         if (WARN_ON_ONCE(cnt & 1))
1188                 dd_dev_err(rcd->dd,
1189                            "unexpected odd allocation cnt %u map 0x%x used %u",
1190                            cnt, grp->map, grp->used);
1191
1192         node->grp = grp;
1193         node->map = grp->map;
1194         node->cnt = cnt;
1195         trace_hfi1_tid_node_add(flow->req->qp, s, flow->tnode_cnt - 1,
1196                                 grp->base, grp->map, grp->used, cnt);
1197 }
1198
1199 /*
1200  * Try to allocate pageset_count TID's from TID groups for a context
1201  *
1202  * This function allocates TID's without moving groups between lists or
1203  * modifying grp->map. This is done as follows, being cogizant of the lists
1204  * between which the TID groups will move:
1205  * 1. First allocate complete groups of 8 TID's since this is more efficient,
1206  *    these groups will move from group->full without affecting used
1207  * 2. If more TID's are needed allocate from used (will move from used->full or
1208  *    stay in used)
1209  * 3. If we still don't have the required number of TID's go back and look again
1210  *    at a complete group (will move from group->used)
1211  */
1212 static int kern_alloc_tids(struct tid_rdma_flow *flow)
1213 {
1214         struct hfi1_ctxtdata *rcd = flow->req->rcd;
1215         struct hfi1_devdata *dd = rcd->dd;
1216         u32 ngroups, pageidx = 0;
1217         struct tid_group *group = NULL, *used;
1218         u8 use;
1219
1220         flow->tnode_cnt = 0;
1221         ngroups = flow->npagesets / dd->rcv_entries.group_size;
1222         if (!ngroups)
1223                 goto used_list;
1224
1225         /* First look at complete groups */
1226         list_for_each_entry(group,  &rcd->tid_group_list.list, list) {
1227                 kern_add_tid_node(flow, rcd, "complete groups", group,
1228                                   group->size);
1229
1230                 pageidx += group->size;
1231                 if (!--ngroups)
1232                         break;
1233         }
1234
1235         if (pageidx >= flow->npagesets)
1236                 goto ok;
1237
1238 used_list:
1239         /* Now look at partially used groups */
1240         list_for_each_entry(used, &rcd->tid_used_list.list, list) {
1241                 use = min_t(u32, flow->npagesets - pageidx,
1242                             used->size - used->used);
1243                 kern_add_tid_node(flow, rcd, "used groups", used, use);
1244
1245                 pageidx += use;
1246                 if (pageidx >= flow->npagesets)
1247                         goto ok;
1248         }
1249
1250         /*
1251          * Look again at a complete group, continuing from where we left.
1252          * However, if we are at the head, we have reached the end of the
1253          * complete groups list from the first loop above
1254          */
1255         if (group && &group->list == &rcd->tid_group_list.list)
1256                 goto bail_eagain;
1257         group = list_prepare_entry(group, &rcd->tid_group_list.list,
1258                                    list);
1259         if (list_is_last(&group->list, &rcd->tid_group_list.list))
1260                 goto bail_eagain;
1261         group = list_next_entry(group, list);
1262         use = min_t(u32, flow->npagesets - pageidx, group->size);
1263         kern_add_tid_node(flow, rcd, "complete continue", group, use);
1264         pageidx += use;
1265         if (pageidx >= flow->npagesets)
1266                 goto ok;
1267 bail_eagain:
1268         trace_hfi1_msg_alloc_tids(flow->req->qp, " insufficient tids: needed ",
1269                                   (u64)flow->npagesets);
1270         return -EAGAIN;
1271 ok:
1272         return 0;
1273 }
1274
1275 static void kern_program_rcv_group(struct tid_rdma_flow *flow, int grp_num,
1276                                    u32 *pset_idx)
1277 {
1278         struct hfi1_ctxtdata *rcd = flow->req->rcd;
1279         struct hfi1_devdata *dd = rcd->dd;
1280         struct kern_tid_node *node = &flow->tnode[grp_num];
1281         struct tid_group *grp = node->grp;
1282         struct tid_rdma_pageset *pset;
1283         u32 pmtu_pg = flow->req->qp->pmtu >> PAGE_SHIFT;
1284         u32 rcventry, npages = 0, pair = 0, tidctrl;
1285         u8 i, cnt = 0;
1286
1287         for (i = 0; i < grp->size; i++) {
1288                 rcventry = grp->base + i;
1289
1290                 if (node->map & BIT(i) || cnt >= node->cnt) {
1291                         rcv_array_wc_fill(dd, rcventry);
1292                         continue;
1293                 }
1294                 pset = &flow->pagesets[(*pset_idx)++];
1295                 if (pset->count) {
1296                         hfi1_put_tid(dd, rcventry, PT_EXPECTED,
1297                                      pset->addr, trdma_pset_order(pset));
1298                 } else {
1299                         hfi1_put_tid(dd, rcventry, PT_INVALID, 0, 0);
1300                 }
1301                 npages += pset->count;
1302
1303                 rcventry -= rcd->expected_base;
1304                 tidctrl = pair ? 0x3 : rcventry & 0x1 ? 0x2 : 0x1;
1305                 /*
1306                  * A single TID entry will be used to use a rcvarr pair (with
1307                  * tidctrl 0x3), if ALL these are true (a) the bit pos is even
1308                  * (b) the group map shows current and the next bits as free
1309                  * indicating two consecutive rcvarry entries are available (c)
1310                  * we actually need 2 more entries
1311                  */
1312                 pair = !(i & 0x1) && !((node->map >> i) & 0x3) &&
1313                         node->cnt >= cnt + 2;
1314                 if (!pair) {
1315                         if (!pset->count)
1316                                 tidctrl = 0x1;
1317                         flow->tid_entry[flow->tidcnt++] =
1318                                 EXP_TID_SET(IDX, rcventry >> 1) |
1319                                 EXP_TID_SET(CTRL, tidctrl) |
1320                                 EXP_TID_SET(LEN, npages);
1321                         trace_hfi1_tid_entry_alloc(/* entry */
1322                            flow->req->qp, flow->tidcnt - 1,
1323                            flow->tid_entry[flow->tidcnt - 1]);
1324
1325                         /* Efficient DIV_ROUND_UP(npages, pmtu_pg) */
1326                         flow->npkts += (npages + pmtu_pg - 1) >> ilog2(pmtu_pg);
1327                         npages = 0;
1328                 }
1329
1330                 if (grp->used == grp->size - 1)
1331                         tid_group_move(grp, &rcd->tid_used_list,
1332                                        &rcd->tid_full_list);
1333                 else if (!grp->used)
1334                         tid_group_move(grp, &rcd->tid_group_list,
1335                                        &rcd->tid_used_list);
1336
1337                 grp->used++;
1338                 grp->map |= BIT(i);
1339                 cnt++;
1340         }
1341 }
1342
1343 static void kern_unprogram_rcv_group(struct tid_rdma_flow *flow, int grp_num)
1344 {
1345         struct hfi1_ctxtdata *rcd = flow->req->rcd;
1346         struct hfi1_devdata *dd = rcd->dd;
1347         struct kern_tid_node *node = &flow->tnode[grp_num];
1348         struct tid_group *grp = node->grp;
1349         u32 rcventry;
1350         u8 i, cnt = 0;
1351
1352         for (i = 0; i < grp->size; i++) {
1353                 rcventry = grp->base + i;
1354
1355                 if (node->map & BIT(i) || cnt >= node->cnt) {
1356                         rcv_array_wc_fill(dd, rcventry);
1357                         continue;
1358                 }
1359
1360                 hfi1_put_tid(dd, rcventry, PT_INVALID, 0, 0);
1361
1362                 grp->used--;
1363                 grp->map &= ~BIT(i);
1364                 cnt++;
1365
1366                 if (grp->used == grp->size - 1)
1367                         tid_group_move(grp, &rcd->tid_full_list,
1368                                        &rcd->tid_used_list);
1369                 else if (!grp->used)
1370                         tid_group_move(grp, &rcd->tid_used_list,
1371                                        &rcd->tid_group_list);
1372         }
1373         if (WARN_ON_ONCE(cnt & 1)) {
1374                 struct hfi1_ctxtdata *rcd = flow->req->rcd;
1375                 struct hfi1_devdata *dd = rcd->dd;
1376
1377                 dd_dev_err(dd, "unexpected odd free cnt %u map 0x%x used %u",
1378                            cnt, grp->map, grp->used);
1379         }
1380 }
1381
1382 static void kern_program_rcvarray(struct tid_rdma_flow *flow)
1383 {
1384         u32 pset_idx = 0;
1385         int i;
1386
1387         flow->npkts = 0;
1388         flow->tidcnt = 0;
1389         for (i = 0; i < flow->tnode_cnt; i++)
1390                 kern_program_rcv_group(flow, i, &pset_idx);
1391         trace_hfi1_tid_flow_alloc(flow->req->qp, flow->req->setup_head, flow);
1392 }
1393
1394 /**
1395  * hfi1_kern_exp_rcv_setup() - setup TID's and flow for one segment of a
1396  * TID RDMA request
1397  *
1398  * @req: TID RDMA request for which the segment/flow is being set up
1399  * @ss: sge state, maintains state across successive segments of a sge
1400  * @last: set to true after the last sge segment has been processed
1401  *
1402  * This function
1403  * (1) finds a free flow entry in the flow circular buffer
1404  * (2) finds pages and continuous physical chunks constituing one segment
1405  *     of an sge
1406  * (3) allocates TID group entries for those chunks
1407  * (4) programs rcvarray entries in the hardware corresponding to those
1408  *     TID's
1409  * (5) computes a tidarray with formatted TID entries which can be sent
1410  *     to the sender
1411  * (6) Reserves and programs HW flows.
1412  * (7) It also manages queing the QP when TID/flow resources are not
1413  *     available.
1414  *
1415  * @req points to struct tid_rdma_request of which the segments are a part. The
1416  * function uses qp, rcd and seg_len members of @req. In the absence of errors,
1417  * req->flow_idx is the index of the flow which has been prepared in this
1418  * invocation of function call. With flow = &req->flows[req->flow_idx],
1419  * flow->tid_entry contains the TID array which the sender can use for TID RDMA
1420  * sends and flow->npkts contains number of packets required to send the
1421  * segment.
1422  *
1423  * hfi1_check_sge_align should be called prior to calling this function and if
1424  * it signals error TID RDMA cannot be used for this sge and this function
1425  * should not be called.
1426  *
1427  * For the queuing, caller must hold the flow->req->qp s_lock from the send
1428  * engine and the function will procure the exp_lock.
1429  *
1430  * Return:
1431  * The function returns -EAGAIN if sufficient number of TID/flow resources to
1432  * map the segment could not be allocated. In this case the function should be
1433  * called again with previous arguments to retry the TID allocation. There are
1434  * no other error returns. The function returns 0 on success.
1435  */
1436 int hfi1_kern_exp_rcv_setup(struct tid_rdma_request *req,
1437                             struct rvt_sge_state *ss, bool *last)
1438         __must_hold(&req->qp->s_lock)
1439 {
1440         struct tid_rdma_flow *flow = &req->flows[req->setup_head];
1441         struct hfi1_ctxtdata *rcd = req->rcd;
1442         struct hfi1_qp_priv *qpriv = req->qp->priv;
1443         unsigned long flags;
1444         struct rvt_qp *fqp;
1445         u16 clear_tail = req->clear_tail;
1446
1447         lockdep_assert_held(&req->qp->s_lock);
1448         /*
1449          * We return error if either (a) we don't have space in the flow
1450          * circular buffer, or (b) we already have max entries in the buffer.
1451          * Max entries depend on the type of request we are processing and the
1452          * negotiated TID RDMA parameters.
1453          */
1454         if (!CIRC_SPACE(req->setup_head, clear_tail, MAX_FLOWS) ||
1455             CIRC_CNT(req->setup_head, clear_tail, MAX_FLOWS) >=
1456             req->n_flows)
1457                 return -EINVAL;
1458
1459         /*
1460          * Get pages, identify contiguous physical memory chunks for the segment
1461          * If we can not determine a DMA address mapping we will treat it just
1462          * like if we ran out of space above.
1463          */
1464         if (kern_get_phys_blocks(flow, qpriv->pages, ss, last)) {
1465                 hfi1_wait_kmem(flow->req->qp);
1466                 return -ENOMEM;
1467         }
1468
1469         spin_lock_irqsave(&rcd->exp_lock, flags);
1470         if (kernel_tid_waiters(rcd, &rcd->rarr_queue, flow->req->qp))
1471                 goto queue;
1472
1473         /*
1474          * At this point we know the number of pagesets and hence the number of
1475          * TID's to map the segment. Allocate the TID's from the TID groups. If
1476          * we cannot allocate the required number we exit and try again later
1477          */
1478         if (kern_alloc_tids(flow))
1479                 goto queue;
1480         /*
1481          * Finally program the TID entries with the pagesets, compute the
1482          * tidarray and enable the HW flow
1483          */
1484         kern_program_rcvarray(flow);
1485
1486         /*
1487          * Setup the flow state with relevant information.
1488          * This information is used for tracking the sequence of data packets
1489          * for the segment.
1490          * The flow is setup here as this is the most accurate time and place
1491          * to do so. Doing at a later time runs the risk of the flow data in
1492          * qpriv getting out of sync.
1493          */
1494         memset(&flow->flow_state, 0x0, sizeof(flow->flow_state));
1495         flow->idx = qpriv->flow_state.index;
1496         flow->flow_state.generation = qpriv->flow_state.generation;
1497         flow->flow_state.spsn = qpriv->flow_state.psn;
1498         flow->flow_state.lpsn = flow->flow_state.spsn + flow->npkts - 1;
1499         flow->flow_state.r_next_psn =
1500                 full_flow_psn(flow, flow->flow_state.spsn);
1501         qpriv->flow_state.psn += flow->npkts;
1502
1503         dequeue_tid_waiter(rcd, &rcd->rarr_queue, flow->req->qp);
1504         /* get head before dropping lock */
1505         fqp = first_qp(rcd, &rcd->rarr_queue);
1506         spin_unlock_irqrestore(&rcd->exp_lock, flags);
1507         tid_rdma_schedule_tid_wakeup(fqp);
1508
1509         req->setup_head = (req->setup_head + 1) & (MAX_FLOWS - 1);
1510         return 0;
1511 queue:
1512         queue_qp_for_tid_wait(rcd, &rcd->rarr_queue, flow->req->qp);
1513         spin_unlock_irqrestore(&rcd->exp_lock, flags);
1514         return -EAGAIN;
1515 }
1516
1517 static void hfi1_tid_rdma_reset_flow(struct tid_rdma_flow *flow)
1518 {
1519         flow->npagesets = 0;
1520 }
1521
1522 /*
1523  * This function is called after one segment has been successfully sent to
1524  * release the flow and TID HW/SW resources for that segment. The segments for a
1525  * TID RDMA request are setup and cleared in FIFO order which is managed using a
1526  * circular buffer.
1527  */
1528 int hfi1_kern_exp_rcv_clear(struct tid_rdma_request *req)
1529         __must_hold(&req->qp->s_lock)
1530 {
1531         struct tid_rdma_flow *flow = &req->flows[req->clear_tail];
1532         struct hfi1_ctxtdata *rcd = req->rcd;
1533         unsigned long flags;
1534         int i;
1535         struct rvt_qp *fqp;
1536
1537         lockdep_assert_held(&req->qp->s_lock);
1538         /* Exit if we have nothing in the flow circular buffer */
1539         if (!CIRC_CNT(req->setup_head, req->clear_tail, MAX_FLOWS))
1540                 return -EINVAL;
1541
1542         spin_lock_irqsave(&rcd->exp_lock, flags);
1543
1544         for (i = 0; i < flow->tnode_cnt; i++)
1545                 kern_unprogram_rcv_group(flow, i);
1546         /* To prevent double unprogramming */
1547         flow->tnode_cnt = 0;
1548         /* get head before dropping lock */
1549         fqp = first_qp(rcd, &rcd->rarr_queue);
1550         spin_unlock_irqrestore(&rcd->exp_lock, flags);
1551
1552         dma_unmap_flow(flow);
1553
1554         hfi1_tid_rdma_reset_flow(flow);
1555         req->clear_tail = (req->clear_tail + 1) & (MAX_FLOWS - 1);
1556
1557         if (fqp == req->qp) {
1558                 __trigger_tid_waiter(fqp);
1559                 rvt_put_qp(fqp);
1560         } else {
1561                 tid_rdma_schedule_tid_wakeup(fqp);
1562         }
1563
1564         return 0;
1565 }
1566
1567 /*
1568  * This function is called to release all the tid entries for
1569  * a request.
1570  */
1571 void hfi1_kern_exp_rcv_clear_all(struct tid_rdma_request *req)
1572         __must_hold(&req->qp->s_lock)
1573 {
1574         /* Use memory barrier for proper ordering */
1575         while (CIRC_CNT(req->setup_head, req->clear_tail, MAX_FLOWS)) {
1576                 if (hfi1_kern_exp_rcv_clear(req))
1577                         break;
1578         }
1579 }
1580
1581 /**
1582  * hfi1_kern_exp_rcv_free_flows - free priviously allocated flow information
1583  * @req - the tid rdma request to be cleaned
1584  */
1585 static void hfi1_kern_exp_rcv_free_flows(struct tid_rdma_request *req)
1586 {
1587         kfree(req->flows);
1588         req->flows = NULL;
1589 }
1590
1591 /**
1592  * __trdma_clean_swqe - clean up for large sized QPs
1593  * @qp: the queue patch
1594  * @wqe: the send wqe
1595  */
1596 void __trdma_clean_swqe(struct rvt_qp *qp, struct rvt_swqe *wqe)
1597 {
1598         struct hfi1_swqe_priv *p = wqe->priv;
1599
1600         hfi1_kern_exp_rcv_free_flows(&p->tid_req);
1601 }
1602
1603 /*
1604  * This can be called at QP create time or in the data path.
1605  */
1606 static int hfi1_kern_exp_rcv_alloc_flows(struct tid_rdma_request *req,
1607                                          gfp_t gfp)
1608 {
1609         struct tid_rdma_flow *flows;
1610         int i;
1611
1612         if (likely(req->flows))
1613                 return 0;
1614         flows = kmalloc_node(MAX_FLOWS * sizeof(*flows), gfp,
1615                              req->rcd->numa_id);
1616         if (!flows)
1617                 return -ENOMEM;
1618         /* mini init */
1619         for (i = 0; i < MAX_FLOWS; i++) {
1620                 flows[i].req = req;
1621                 flows[i].npagesets = 0;
1622                 flows[i].pagesets[0].mapped =  0;
1623                 flows[i].resync_npkts = 0;
1624         }
1625         req->flows = flows;
1626         return 0;
1627 }
1628
1629 static void hfi1_init_trdma_req(struct rvt_qp *qp,
1630                                 struct tid_rdma_request *req)
1631 {
1632         struct hfi1_qp_priv *qpriv = qp->priv;
1633
1634         /*
1635          * Initialize various TID RDMA request variables.
1636          * These variables are "static", which is why they
1637          * can be pre-initialized here before the WRs has
1638          * even been submitted.
1639          * However, non-NULL values for these variables do not
1640          * imply that this WQE has been enabled for TID RDMA.
1641          * Drivers should check the WQE's opcode to determine
1642          * if a request is a TID RDMA one or not.
1643          */
1644         req->qp = qp;
1645         req->rcd = qpriv->rcd;
1646 }
1647
1648 u64 hfi1_access_sw_tid_wait(const struct cntr_entry *entry,
1649                             void *context, int vl, int mode, u64 data)
1650 {
1651         struct hfi1_devdata *dd = context;
1652
1653         return dd->verbs_dev.n_tidwait;
1654 }
1655
1656 static struct tid_rdma_flow *find_flow_ib(struct tid_rdma_request *req,
1657                                           u32 psn, u16 *fidx)
1658 {
1659         u16 head, tail;
1660         struct tid_rdma_flow *flow;
1661
1662         head = req->setup_head;
1663         tail = req->clear_tail;
1664         for ( ; CIRC_CNT(head, tail, MAX_FLOWS);
1665              tail = CIRC_NEXT(tail, MAX_FLOWS)) {
1666                 flow = &req->flows[tail];
1667                 if (cmp_psn(psn, flow->flow_state.ib_spsn) >= 0 &&
1668                     cmp_psn(psn, flow->flow_state.ib_lpsn) <= 0) {
1669                         if (fidx)
1670                                 *fidx = tail;
1671                         return flow;
1672                 }
1673         }
1674         return NULL;
1675 }
1676
1677 /* TID RDMA READ functions */
1678 u32 hfi1_build_tid_rdma_read_packet(struct rvt_swqe *wqe,
1679                                     struct ib_other_headers *ohdr, u32 *bth1,
1680                                     u32 *bth2, u32 *len)
1681 {
1682         struct tid_rdma_request *req = wqe_to_tid_req(wqe);
1683         struct tid_rdma_flow *flow = &req->flows[req->flow_idx];
1684         struct rvt_qp *qp = req->qp;
1685         struct hfi1_qp_priv *qpriv = qp->priv;
1686         struct hfi1_swqe_priv *wpriv = wqe->priv;
1687         struct tid_rdma_read_req *rreq = &ohdr->u.tid_rdma.r_req;
1688         struct tid_rdma_params *remote;
1689         u32 req_len = 0;
1690         void *req_addr = NULL;
1691
1692         /* This is the IB psn used to send the request */
1693         *bth2 = mask_psn(flow->flow_state.ib_spsn + flow->pkt);
1694         trace_hfi1_tid_flow_build_read_pkt(qp, req->flow_idx, flow);
1695
1696         /* TID Entries for TID RDMA READ payload */
1697         req_addr = &flow->tid_entry[flow->tid_idx];
1698         req_len = sizeof(*flow->tid_entry) *
1699                         (flow->tidcnt - flow->tid_idx);
1700
1701         memset(&ohdr->u.tid_rdma.r_req, 0, sizeof(ohdr->u.tid_rdma.r_req));
1702         wpriv->ss.sge.vaddr = req_addr;
1703         wpriv->ss.sge.sge_length = req_len;
1704         wpriv->ss.sge.length = wpriv->ss.sge.sge_length;
1705         /*
1706          * We can safely zero these out. Since the first SGE covers the
1707          * entire packet, nothing else should even look at the MR.
1708          */
1709         wpriv->ss.sge.mr = NULL;
1710         wpriv->ss.sge.m = 0;
1711         wpriv->ss.sge.n = 0;
1712
1713         wpriv->ss.sg_list = NULL;
1714         wpriv->ss.total_len = wpriv->ss.sge.sge_length;
1715         wpriv->ss.num_sge = 1;
1716
1717         /* Construct the TID RDMA READ REQ packet header */
1718         rcu_read_lock();
1719         remote = rcu_dereference(qpriv->tid_rdma.remote);
1720
1721         KDETH_RESET(rreq->kdeth0, KVER, 0x1);
1722         KDETH_RESET(rreq->kdeth1, JKEY, remote->jkey);
1723         rreq->reth.vaddr = cpu_to_be64(wqe->rdma_wr.remote_addr +
1724                            req->cur_seg * req->seg_len + flow->sent);
1725         rreq->reth.rkey = cpu_to_be32(wqe->rdma_wr.rkey);
1726         rreq->reth.length = cpu_to_be32(*len);
1727         rreq->tid_flow_psn =
1728                 cpu_to_be32((flow->flow_state.generation <<
1729                              HFI1_KDETH_BTH_SEQ_SHIFT) |
1730                             ((flow->flow_state.spsn + flow->pkt) &
1731                              HFI1_KDETH_BTH_SEQ_MASK));
1732         rreq->tid_flow_qp =
1733                 cpu_to_be32(qpriv->tid_rdma.local.qp |
1734                             ((flow->idx & TID_RDMA_DESTQP_FLOW_MASK) <<
1735                              TID_RDMA_DESTQP_FLOW_SHIFT) |
1736                             qpriv->rcd->ctxt);
1737         rreq->verbs_qp = cpu_to_be32(qp->remote_qpn);
1738         *bth1 &= ~RVT_QPN_MASK;
1739         *bth1 |= remote->qp;
1740         *bth2 |= IB_BTH_REQ_ACK;
1741         rcu_read_unlock();
1742
1743         /* We are done with this segment */
1744         flow->sent += *len;
1745         req->cur_seg++;
1746         qp->s_state = TID_OP(READ_REQ);
1747         req->ack_pending++;
1748         req->flow_idx = (req->flow_idx + 1) & (MAX_FLOWS - 1);
1749         qpriv->pending_tid_r_segs++;
1750         qp->s_num_rd_atomic++;
1751
1752         /* Set the TID RDMA READ request payload size */
1753         *len = req_len;
1754
1755         return sizeof(ohdr->u.tid_rdma.r_req) / sizeof(u32);
1756 }
1757
1758 /*
1759  * @len: contains the data length to read upon entry and the read request
1760  *       payload length upon exit.
1761  */
1762 u32 hfi1_build_tid_rdma_read_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
1763                                  struct ib_other_headers *ohdr, u32 *bth1,
1764                                  u32 *bth2, u32 *len)
1765         __must_hold(&qp->s_lock)
1766 {
1767         struct hfi1_qp_priv *qpriv = qp->priv;
1768         struct tid_rdma_request *req = wqe_to_tid_req(wqe);
1769         struct tid_rdma_flow *flow = NULL;
1770         u32 hdwords = 0;
1771         bool last;
1772         bool retry = true;
1773         u32 npkts = rvt_div_round_up_mtu(qp, *len);
1774
1775         trace_hfi1_tid_req_build_read_req(qp, 0, wqe->wr.opcode, wqe->psn,
1776                                           wqe->lpsn, req);
1777         /*
1778          * Check sync conditions. Make sure that there are no pending
1779          * segments before freeing the flow.
1780          */
1781 sync_check:
1782         if (req->state == TID_REQUEST_SYNC) {
1783                 if (qpriv->pending_tid_r_segs)
1784                         goto done;
1785
1786                 hfi1_kern_clear_hw_flow(req->rcd, qp);
1787                 qpriv->s_flags &= ~HFI1_R_TID_SW_PSN;
1788                 req->state = TID_REQUEST_ACTIVE;
1789         }
1790
1791         /*
1792          * If the request for this segment is resent, the tid resources should
1793          * have been allocated before. In this case, req->flow_idx should
1794          * fall behind req->setup_head.
1795          */
1796         if (req->flow_idx == req->setup_head) {
1797                 retry = false;
1798                 if (req->state == TID_REQUEST_RESEND) {
1799                         /*
1800                          * This is the first new segment for a request whose
1801                          * earlier segments have been re-sent. We need to
1802                          * set up the sge pointer correctly.
1803                          */
1804                         restart_sge(&qp->s_sge, wqe, req->s_next_psn,
1805                                     qp->pmtu);
1806                         req->isge = 0;
1807                         req->state = TID_REQUEST_ACTIVE;
1808                 }
1809
1810                 /*
1811                  * Check sync. The last PSN of each generation is reserved for
1812                  * RESYNC.
1813                  */
1814                 if ((qpriv->flow_state.psn + npkts) > MAX_TID_FLOW_PSN - 1) {
1815                         req->state = TID_REQUEST_SYNC;
1816                         goto sync_check;
1817                 }
1818
1819                 /* Allocate the flow if not yet */
1820                 if (hfi1_kern_setup_hw_flow(qpriv->rcd, qp))
1821                         goto done;
1822
1823                 /*
1824                  * The following call will advance req->setup_head after
1825                  * allocating the tid entries.
1826                  */
1827                 if (hfi1_kern_exp_rcv_setup(req, &qp->s_sge, &last)) {
1828                         req->state = TID_REQUEST_QUEUED;
1829
1830                         /*
1831                          * We don't have resources for this segment. The QP has
1832                          * already been queued.
1833                          */
1834                         goto done;
1835                 }
1836         }
1837
1838         /* req->flow_idx should only be one slot behind req->setup_head */
1839         flow = &req->flows[req->flow_idx];
1840         flow->pkt = 0;
1841         flow->tid_idx = 0;
1842         flow->sent = 0;
1843         if (!retry) {
1844                 /* Set the first and last IB PSN for the flow in use.*/
1845                 flow->flow_state.ib_spsn = req->s_next_psn;
1846                 flow->flow_state.ib_lpsn =
1847                         flow->flow_state.ib_spsn + flow->npkts - 1;
1848         }
1849
1850         /* Calculate the next segment start psn.*/
1851         req->s_next_psn += flow->npkts;
1852
1853         /* Build the packet header */
1854         hdwords = hfi1_build_tid_rdma_read_packet(wqe, ohdr, bth1, bth2, len);
1855 done:
1856         return hdwords;
1857 }
1858
1859 /*
1860  * Validate and accept the TID RDMA READ request parameters.
1861  * Return 0 if the request is accepted successfully;
1862  * Return 1 otherwise.
1863  */
1864 static int tid_rdma_rcv_read_request(struct rvt_qp *qp,
1865                                      struct rvt_ack_entry *e,
1866                                      struct hfi1_packet *packet,
1867                                      struct ib_other_headers *ohdr,
1868                                      u32 bth0, u32 psn, u64 vaddr, u32 len)
1869 {
1870         struct hfi1_qp_priv *qpriv = qp->priv;
1871         struct tid_rdma_request *req;
1872         struct tid_rdma_flow *flow;
1873         u32 flow_psn, i, tidlen = 0, pktlen, tlen;
1874
1875         req = ack_to_tid_req(e);
1876
1877         /* Validate the payload first */
1878         flow = &req->flows[req->setup_head];
1879
1880         /* payload length = packet length - (header length + ICRC length) */
1881         pktlen = packet->tlen - (packet->hlen + 4);
1882         if (pktlen > sizeof(flow->tid_entry))
1883                 return 1;
1884         memcpy(flow->tid_entry, packet->ebuf, pktlen);
1885         flow->tidcnt = pktlen / sizeof(*flow->tid_entry);
1886
1887         /*
1888          * Walk the TID_ENTRY list to make sure we have enough space for a
1889          * complete segment. Also calculate the number of required packets.
1890          */
1891         flow->npkts = rvt_div_round_up_mtu(qp, len);
1892         for (i = 0; i < flow->tidcnt; i++) {
1893                 trace_hfi1_tid_entry_rcv_read_req(qp, i,
1894                                                   flow->tid_entry[i]);
1895                 tlen = EXP_TID_GET(flow->tid_entry[i], LEN);
1896                 if (!tlen)
1897                         return 1;
1898
1899                 /*
1900                  * For tid pair (tidctr == 3), the buffer size of the pair
1901                  * should be the sum of the buffer size described by each
1902                  * tid entry. However, only the first entry needs to be
1903                  * specified in the request (see WFR HAS Section 8.5.7.1).
1904                  */
1905                 tidlen += tlen;
1906         }
1907         if (tidlen * PAGE_SIZE < len)
1908                 return 1;
1909
1910         /* Empty the flow array */
1911         req->clear_tail = req->setup_head;
1912         flow->pkt = 0;
1913         flow->tid_idx = 0;
1914         flow->tid_offset = 0;
1915         flow->sent = 0;
1916         flow->tid_qpn = be32_to_cpu(ohdr->u.tid_rdma.r_req.tid_flow_qp);
1917         flow->idx = (flow->tid_qpn >> TID_RDMA_DESTQP_FLOW_SHIFT) &
1918                     TID_RDMA_DESTQP_FLOW_MASK;
1919         flow_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.r_req.tid_flow_psn));
1920         flow->flow_state.generation = flow_psn >> HFI1_KDETH_BTH_SEQ_SHIFT;
1921         flow->flow_state.spsn = flow_psn & HFI1_KDETH_BTH_SEQ_MASK;
1922         flow->length = len;
1923
1924         flow->flow_state.lpsn = flow->flow_state.spsn +
1925                 flow->npkts - 1;
1926         flow->flow_state.ib_spsn = psn;
1927         flow->flow_state.ib_lpsn = flow->flow_state.ib_spsn + flow->npkts - 1;
1928
1929         trace_hfi1_tid_flow_rcv_read_req(qp, req->setup_head, flow);
1930         /* Set the initial flow index to the current flow. */
1931         req->flow_idx = req->setup_head;
1932
1933         /* advance circular buffer head */
1934         req->setup_head = (req->setup_head + 1) & (MAX_FLOWS - 1);
1935
1936         /*
1937          * Compute last PSN for request.
1938          */
1939         e->opcode = (bth0 >> 24) & 0xff;
1940         e->psn = psn;
1941         e->lpsn = psn + flow->npkts - 1;
1942         e->sent = 0;
1943
1944         req->n_flows = qpriv->tid_rdma.local.max_read;
1945         req->state = TID_REQUEST_ACTIVE;
1946         req->cur_seg = 0;
1947         req->comp_seg = 0;
1948         req->ack_seg = 0;
1949         req->isge = 0;
1950         req->seg_len = qpriv->tid_rdma.local.max_len;
1951         req->total_len = len;
1952         req->total_segs = 1;
1953         req->r_flow_psn = e->psn;
1954
1955         trace_hfi1_tid_req_rcv_read_req(qp, 0, e->opcode, e->psn, e->lpsn,
1956                                         req);
1957         return 0;
1958 }
1959
1960 static int tid_rdma_rcv_error(struct hfi1_packet *packet,
1961                               struct ib_other_headers *ohdr,
1962                               struct rvt_qp *qp, u32 psn, int diff)
1963 {
1964         struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
1965         struct hfi1_ctxtdata *rcd = ((struct hfi1_qp_priv *)qp->priv)->rcd;
1966         struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
1967         struct hfi1_qp_priv *qpriv = qp->priv;
1968         struct rvt_ack_entry *e;
1969         struct tid_rdma_request *req;
1970         unsigned long flags;
1971         u8 prev;
1972         bool old_req;
1973
1974         trace_hfi1_rsp_tid_rcv_error(qp, psn);
1975         trace_hfi1_tid_rdma_rcv_err(qp, 0, psn, diff);
1976         if (diff > 0) {
1977                 /* sequence error */
1978                 if (!qp->r_nak_state) {
1979                         ibp->rvp.n_rc_seqnak++;
1980                         qp->r_nak_state = IB_NAK_PSN_ERROR;
1981                         qp->r_ack_psn = qp->r_psn;
1982                         rc_defered_ack(rcd, qp);
1983                 }
1984                 goto done;
1985         }
1986
1987         ibp->rvp.n_rc_dupreq++;
1988
1989         spin_lock_irqsave(&qp->s_lock, flags);
1990         e = find_prev_entry(qp, psn, &prev, NULL, &old_req);
1991         if (!e || (e->opcode != TID_OP(READ_REQ) &&
1992                    e->opcode != TID_OP(WRITE_REQ)))
1993                 goto unlock;
1994
1995         req = ack_to_tid_req(e);
1996         req->r_flow_psn = psn;
1997         trace_hfi1_tid_req_rcv_err(qp, 0, e->opcode, e->psn, e->lpsn, req);
1998         if (e->opcode == TID_OP(READ_REQ)) {
1999                 struct ib_reth *reth;
2000                 u32 len;
2001                 u32 rkey;
2002                 u64 vaddr;
2003                 int ok;
2004                 u32 bth0;
2005
2006                 reth = &ohdr->u.tid_rdma.r_req.reth;
2007                 /*
2008                  * The requester always restarts from the start of the original
2009                  * request.
2010                  */
2011                 len = be32_to_cpu(reth->length);
2012                 if (psn != e->psn || len != req->total_len)
2013                         goto unlock;
2014
2015                 release_rdma_sge_mr(e);
2016
2017                 rkey = be32_to_cpu(reth->rkey);
2018                 vaddr = get_ib_reth_vaddr(reth);
2019
2020                 qp->r_len = len;
2021                 ok = rvt_rkey_ok(qp, &e->rdma_sge, len, vaddr, rkey,
2022                                  IB_ACCESS_REMOTE_READ);
2023                 if (unlikely(!ok))
2024                         goto unlock;
2025
2026                 /*
2027                  * If all the response packets for the current request have
2028                  * been sent out and this request is complete (old_request
2029                  * == false) and the TID flow may be unusable (the
2030                  * req->clear_tail is advanced). However, when an earlier
2031                  * request is received, this request will not be complete any
2032                  * more (qp->s_tail_ack_queue is moved back, see below).
2033                  * Consequently, we need to update the TID flow info everytime
2034                  * a duplicate request is received.
2035                  */
2036                 bth0 = be32_to_cpu(ohdr->bth[0]);
2037                 if (tid_rdma_rcv_read_request(qp, e, packet, ohdr, bth0, psn,
2038                                               vaddr, len))
2039                         goto unlock;
2040
2041                 /*
2042                  * True if the request is already scheduled (between
2043                  * qp->s_tail_ack_queue and qp->r_head_ack_queue);
2044                  */
2045                 if (old_req)
2046                         goto unlock;
2047         } else {
2048                 struct flow_state *fstate;
2049                 bool schedule = false;
2050                 u8 i;
2051
2052                 if (req->state == TID_REQUEST_RESEND) {
2053                         req->state = TID_REQUEST_RESEND_ACTIVE;
2054                 } else if (req->state == TID_REQUEST_INIT_RESEND) {
2055                         req->state = TID_REQUEST_INIT;
2056                         schedule = true;
2057                 }
2058
2059                 /*
2060                  * True if the request is already scheduled (between
2061                  * qp->s_tail_ack_queue and qp->r_head_ack_queue).
2062                  * Also, don't change requests, which are at the SYNC
2063                  * point and haven't generated any responses yet.
2064                  * There is nothing to retransmit for them yet.
2065                  */
2066                 if (old_req || req->state == TID_REQUEST_INIT ||
2067                     (req->state == TID_REQUEST_SYNC && !req->cur_seg)) {
2068                         for (i = prev + 1; ; i++) {
2069                                 if (i > rvt_size_atomic(&dev->rdi))
2070                                         i = 0;
2071                                 if (i == qp->r_head_ack_queue)
2072                                         break;
2073                                 e = &qp->s_ack_queue[i];
2074                                 req = ack_to_tid_req(e);
2075                                 if (e->opcode == TID_OP(WRITE_REQ) &&
2076                                     req->state == TID_REQUEST_INIT)
2077                                         req->state = TID_REQUEST_INIT_RESEND;
2078                         }
2079                         /*
2080                          * If the state of the request has been changed,
2081                          * the first leg needs to get scheduled in order to
2082                          * pick up the change. Otherwise, normal response
2083                          * processing should take care of it.
2084                          */
2085                         if (!schedule)
2086                                 goto unlock;
2087                 }
2088
2089                 /*
2090                  * If there is no more allocated segment, just schedule the qp
2091                  * without changing any state.
2092                  */
2093                 if (req->clear_tail == req->setup_head)
2094                         goto schedule;
2095                 /*
2096                  * If this request has sent responses for segments, which have
2097                  * not received data yet (flow_idx != clear_tail), the flow_idx
2098                  * pointer needs to be adjusted so the same responses can be
2099                  * re-sent.
2100                  */
2101                 if (CIRC_CNT(req->flow_idx, req->clear_tail, MAX_FLOWS)) {
2102                         fstate = &req->flows[req->clear_tail].flow_state;
2103                         qpriv->pending_tid_w_segs -=
2104                                 CIRC_CNT(req->flow_idx, req->clear_tail,
2105                                          MAX_FLOWS);
2106                         req->flow_idx =
2107                                 CIRC_ADD(req->clear_tail,
2108                                          delta_psn(psn, fstate->resp_ib_psn),
2109                                          MAX_FLOWS);
2110                         qpriv->pending_tid_w_segs +=
2111                                 delta_psn(psn, fstate->resp_ib_psn);
2112                         /*
2113                          * When flow_idx == setup_head, we've gotten a duplicate
2114                          * request for a segment, which has not been allocated
2115                          * yet. In that case, don't adjust this request.
2116                          * However, we still want to go through the loop below
2117                          * to adjust all subsequent requests.
2118                          */
2119                         if (CIRC_CNT(req->setup_head, req->flow_idx,
2120                                      MAX_FLOWS)) {
2121                                 req->cur_seg = delta_psn(psn, e->psn);
2122                                 req->state = TID_REQUEST_RESEND_ACTIVE;
2123                         }
2124                 }
2125
2126                 for (i = prev + 1; ; i++) {
2127                         /*
2128                          * Look at everything up to and including
2129                          * s_tail_ack_queue
2130                          */
2131                         if (i > rvt_size_atomic(&dev->rdi))
2132                                 i = 0;
2133                         if (i == qp->r_head_ack_queue)
2134                                 break;
2135                         e = &qp->s_ack_queue[i];
2136                         req = ack_to_tid_req(e);
2137                         trace_hfi1_tid_req_rcv_err(qp, 0, e->opcode, e->psn,
2138                                                    e->lpsn, req);
2139                         if (e->opcode != TID_OP(WRITE_REQ) ||
2140                             req->cur_seg == req->comp_seg ||
2141                             req->state == TID_REQUEST_INIT ||
2142                             req->state == TID_REQUEST_INIT_RESEND) {
2143                                 if (req->state == TID_REQUEST_INIT)
2144                                         req->state = TID_REQUEST_INIT_RESEND;
2145                                 continue;
2146                         }
2147                         qpriv->pending_tid_w_segs -=
2148                                 CIRC_CNT(req->flow_idx,
2149                                          req->clear_tail,
2150                                          MAX_FLOWS);
2151                         req->flow_idx = req->clear_tail;
2152                         req->state = TID_REQUEST_RESEND;
2153                         req->cur_seg = req->comp_seg;
2154                 }
2155                 qpriv->s_flags &= ~HFI1_R_TID_WAIT_INTERLCK;
2156         }
2157         /* Re-process old requests.*/
2158         if (qp->s_acked_ack_queue == qp->s_tail_ack_queue)
2159                 qp->s_acked_ack_queue = prev;
2160         qp->s_tail_ack_queue = prev;
2161         /*
2162          * Since the qp->s_tail_ack_queue is modified, the
2163          * qp->s_ack_state must be changed to re-initialize
2164          * qp->s_ack_rdma_sge; Otherwise, we will end up in
2165          * wrong memory region.
2166          */
2167         qp->s_ack_state = OP(ACKNOWLEDGE);
2168 schedule:
2169         /*
2170          * It's possible to receive a retry psn that is earlier than an RNRNAK
2171          * psn. In this case, the rnrnak state should be cleared.
2172          */
2173         if (qpriv->rnr_nak_state) {
2174                 qp->s_nak_state = 0;
2175                 qpriv->rnr_nak_state = TID_RNR_NAK_INIT;
2176                 qp->r_psn = e->lpsn + 1;
2177                 hfi1_tid_write_alloc_resources(qp, true);
2178         }
2179
2180         qp->r_state = e->opcode;
2181         qp->r_nak_state = 0;
2182         qp->s_flags |= RVT_S_RESP_PENDING;
2183         hfi1_schedule_send(qp);
2184 unlock:
2185         spin_unlock_irqrestore(&qp->s_lock, flags);
2186 done:
2187         return 1;
2188 }
2189
2190 void hfi1_rc_rcv_tid_rdma_read_req(struct hfi1_packet *packet)
2191 {
2192         /* HANDLER FOR TID RDMA READ REQUEST packet (Responder side)*/
2193
2194         /*
2195          * 1. Verify TID RDMA READ REQ as per IB_OPCODE_RC_RDMA_READ
2196          *    (see hfi1_rc_rcv())
2197          * 2. Put TID RDMA READ REQ into the response queueu (s_ack_queue)
2198          *     - Setup struct tid_rdma_req with request info
2199          *     - Initialize struct tid_rdma_flow info;
2200          *     - Copy TID entries;
2201          * 3. Set the qp->s_ack_state.
2202          * 4. Set RVT_S_RESP_PENDING in s_flags.
2203          * 5. Kick the send engine (hfi1_schedule_send())
2204          */
2205         struct hfi1_ctxtdata *rcd = packet->rcd;
2206         struct rvt_qp *qp = packet->qp;
2207         struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
2208         struct ib_other_headers *ohdr = packet->ohdr;
2209         struct rvt_ack_entry *e;
2210         unsigned long flags;
2211         struct ib_reth *reth;
2212         struct hfi1_qp_priv *qpriv = qp->priv;
2213         u32 bth0, psn, len, rkey;
2214         bool fecn;
2215         u8 next;
2216         u64 vaddr;
2217         int diff;
2218         u8 nack_state = IB_NAK_INVALID_REQUEST;
2219
2220         bth0 = be32_to_cpu(ohdr->bth[0]);
2221         if (hfi1_ruc_check_hdr(ibp, packet))
2222                 return;
2223
2224         fecn = process_ecn(qp, packet);
2225         psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
2226         trace_hfi1_rsp_rcv_tid_read_req(qp, psn);
2227
2228         if (qp->state == IB_QPS_RTR && !(qp->r_flags & RVT_R_COMM_EST))
2229                 rvt_comm_est(qp);
2230
2231         if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ)))
2232                 goto nack_inv;
2233
2234         reth = &ohdr->u.tid_rdma.r_req.reth;
2235         vaddr = be64_to_cpu(reth->vaddr);
2236         len = be32_to_cpu(reth->length);
2237         /* The length needs to be in multiples of PAGE_SIZE */
2238         if (!len || len & ~PAGE_MASK || len > qpriv->tid_rdma.local.max_len)
2239                 goto nack_inv;
2240
2241         diff = delta_psn(psn, qp->r_psn);
2242         if (unlikely(diff)) {
2243                 tid_rdma_rcv_err(packet, ohdr, qp, psn, diff, fecn);
2244                 return;
2245         }
2246
2247         /* We've verified the request, insert it into the ack queue. */
2248         next = qp->r_head_ack_queue + 1;
2249         if (next > rvt_size_atomic(ib_to_rvt(qp->ibqp.device)))
2250                 next = 0;
2251         spin_lock_irqsave(&qp->s_lock, flags);
2252         if (unlikely(next == qp->s_tail_ack_queue)) {
2253                 if (!qp->s_ack_queue[next].sent) {
2254                         nack_state = IB_NAK_REMOTE_OPERATIONAL_ERROR;
2255                         goto nack_inv_unlock;
2256                 }
2257                 update_ack_queue(qp, next);
2258         }
2259         e = &qp->s_ack_queue[qp->r_head_ack_queue];
2260         release_rdma_sge_mr(e);
2261
2262         rkey = be32_to_cpu(reth->rkey);
2263         qp->r_len = len;
2264
2265         if (unlikely(!rvt_rkey_ok(qp, &e->rdma_sge, qp->r_len, vaddr,
2266                                   rkey, IB_ACCESS_REMOTE_READ)))
2267                 goto nack_acc;
2268
2269         /* Accept the request parameters */
2270         if (tid_rdma_rcv_read_request(qp, e, packet, ohdr, bth0, psn, vaddr,
2271                                       len))
2272                 goto nack_inv_unlock;
2273
2274         qp->r_state = e->opcode;
2275         qp->r_nak_state = 0;
2276         /*
2277          * We need to increment the MSN here instead of when we
2278          * finish sending the result since a duplicate request would
2279          * increment it more than once.
2280          */
2281         qp->r_msn++;
2282         qp->r_psn += e->lpsn - e->psn + 1;
2283
2284         qp->r_head_ack_queue = next;
2285
2286         /*
2287          * For all requests other than TID WRITE which are added to the ack
2288          * queue, qpriv->r_tid_alloc follows qp->r_head_ack_queue. It is ok to
2289          * do this because of interlocks between these and TID WRITE
2290          * requests. The same change has also been made in hfi1_rc_rcv().
2291          */
2292         qpriv->r_tid_alloc = qp->r_head_ack_queue;
2293
2294         /* Schedule the send tasklet. */
2295         qp->s_flags |= RVT_S_RESP_PENDING;
2296         if (fecn)
2297                 qp->s_flags |= RVT_S_ECN;
2298         hfi1_schedule_send(qp);
2299
2300         spin_unlock_irqrestore(&qp->s_lock, flags);
2301         return;
2302
2303 nack_inv_unlock:
2304         spin_unlock_irqrestore(&qp->s_lock, flags);
2305 nack_inv:
2306         rvt_rc_error(qp, IB_WC_LOC_QP_OP_ERR);
2307         qp->r_nak_state = nack_state;
2308         qp->r_ack_psn = qp->r_psn;
2309         /* Queue NAK for later */
2310         rc_defered_ack(rcd, qp);
2311         return;
2312 nack_acc:
2313         spin_unlock_irqrestore(&qp->s_lock, flags);
2314         rvt_rc_error(qp, IB_WC_LOC_PROT_ERR);
2315         qp->r_nak_state = IB_NAK_REMOTE_ACCESS_ERROR;
2316         qp->r_ack_psn = qp->r_psn;
2317 }
2318
2319 u32 hfi1_build_tid_rdma_read_resp(struct rvt_qp *qp, struct rvt_ack_entry *e,
2320                                   struct ib_other_headers *ohdr, u32 *bth0,
2321                                   u32 *bth1, u32 *bth2, u32 *len, bool *last)
2322 {
2323         struct hfi1_ack_priv *epriv = e->priv;
2324         struct tid_rdma_request *req = &epriv->tid_req;
2325         struct hfi1_qp_priv *qpriv = qp->priv;
2326         struct tid_rdma_flow *flow = &req->flows[req->clear_tail];
2327         u32 tidentry = flow->tid_entry[flow->tid_idx];
2328         u32 tidlen = EXP_TID_GET(tidentry, LEN) << PAGE_SHIFT;
2329         struct tid_rdma_read_resp *resp = &ohdr->u.tid_rdma.r_rsp;
2330         u32 next_offset, om = KDETH_OM_LARGE;
2331         bool last_pkt;
2332         u32 hdwords = 0;
2333         struct tid_rdma_params *remote;
2334
2335         *len = min_t(u32, qp->pmtu, tidlen - flow->tid_offset);
2336         flow->sent += *len;
2337         next_offset = flow->tid_offset + *len;
2338         last_pkt = (flow->sent >= flow->length);
2339
2340         trace_hfi1_tid_entry_build_read_resp(qp, flow->tid_idx, tidentry);
2341         trace_hfi1_tid_flow_build_read_resp(qp, req->clear_tail, flow);
2342
2343         rcu_read_lock();
2344         remote = rcu_dereference(qpriv->tid_rdma.remote);
2345         if (!remote) {
2346                 rcu_read_unlock();
2347                 goto done;
2348         }
2349         KDETH_RESET(resp->kdeth0, KVER, 0x1);
2350         KDETH_SET(resp->kdeth0, SH, !last_pkt);
2351         KDETH_SET(resp->kdeth0, INTR, !!(!last_pkt && remote->urg));
2352         KDETH_SET(resp->kdeth0, TIDCTRL, EXP_TID_GET(tidentry, CTRL));
2353         KDETH_SET(resp->kdeth0, TID, EXP_TID_GET(tidentry, IDX));
2354         KDETH_SET(resp->kdeth0, OM, om == KDETH_OM_LARGE);
2355         KDETH_SET(resp->kdeth0, OFFSET, flow->tid_offset / om);
2356         KDETH_RESET(resp->kdeth1, JKEY, remote->jkey);
2357         resp->verbs_qp = cpu_to_be32(qp->remote_qpn);
2358         rcu_read_unlock();
2359
2360         resp->aeth = rvt_compute_aeth(qp);
2361         resp->verbs_psn = cpu_to_be32(mask_psn(flow->flow_state.ib_spsn +
2362                                                flow->pkt));
2363
2364         *bth0 = TID_OP(READ_RESP) << 24;
2365         *bth1 = flow->tid_qpn;
2366         *bth2 = mask_psn(((flow->flow_state.spsn + flow->pkt++) &
2367                           HFI1_KDETH_BTH_SEQ_MASK) |
2368                          (flow->flow_state.generation <<
2369                           HFI1_KDETH_BTH_SEQ_SHIFT));
2370         *last = last_pkt;
2371         if (last_pkt)
2372                 /* Advance to next flow */
2373                 req->clear_tail = (req->clear_tail + 1) &
2374                                   (MAX_FLOWS - 1);
2375
2376         if (next_offset >= tidlen) {
2377                 flow->tid_offset = 0;
2378                 flow->tid_idx++;
2379         } else {
2380                 flow->tid_offset = next_offset;
2381         }
2382
2383         hdwords = sizeof(ohdr->u.tid_rdma.r_rsp) / sizeof(u32);
2384
2385 done:
2386         return hdwords;
2387 }
2388
2389 static inline struct tid_rdma_request *
2390 find_tid_request(struct rvt_qp *qp, u32 psn, enum ib_wr_opcode opcode)
2391         __must_hold(&qp->s_lock)
2392 {
2393         struct rvt_swqe *wqe;
2394         struct tid_rdma_request *req = NULL;
2395         u32 i, end;
2396
2397         end = qp->s_cur + 1;
2398         if (end == qp->s_size)
2399                 end = 0;
2400         for (i = qp->s_acked; i != end;) {
2401                 wqe = rvt_get_swqe_ptr(qp, i);
2402                 if (cmp_psn(psn, wqe->psn) >= 0 &&
2403                     cmp_psn(psn, wqe->lpsn) <= 0) {
2404                         if (wqe->wr.opcode == opcode)
2405                                 req = wqe_to_tid_req(wqe);
2406                         break;
2407                 }
2408                 if (++i == qp->s_size)
2409                         i = 0;
2410         }
2411
2412         return req;
2413 }
2414
2415 void hfi1_rc_rcv_tid_rdma_read_resp(struct hfi1_packet *packet)
2416 {
2417         /* HANDLER FOR TID RDMA READ RESPONSE packet (Requestor side */
2418
2419         /*
2420          * 1. Find matching SWQE
2421          * 2. Check that the entire segment has been read.
2422          * 3. Remove HFI1_S_WAIT_TID_RESP from s_flags.
2423          * 4. Free the TID flow resources.
2424          * 5. Kick the send engine (hfi1_schedule_send())
2425          */
2426         struct ib_other_headers *ohdr = packet->ohdr;
2427         struct rvt_qp *qp = packet->qp;
2428         struct hfi1_qp_priv *priv = qp->priv;
2429         struct hfi1_ctxtdata *rcd = packet->rcd;
2430         struct tid_rdma_request *req;
2431         struct tid_rdma_flow *flow;
2432         u32 opcode, aeth;
2433         bool fecn;
2434         unsigned long flags;
2435         u32 kpsn, ipsn;
2436
2437         trace_hfi1_sender_rcv_tid_read_resp(qp);
2438         fecn = process_ecn(qp, packet);
2439         kpsn = mask_psn(be32_to_cpu(ohdr->bth[2]));
2440         aeth = be32_to_cpu(ohdr->u.tid_rdma.r_rsp.aeth);
2441         opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff;
2442
2443         spin_lock_irqsave(&qp->s_lock, flags);
2444         ipsn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.r_rsp.verbs_psn));
2445         req = find_tid_request(qp, ipsn, IB_WR_TID_RDMA_READ);
2446         if (unlikely(!req))
2447                 goto ack_op_err;
2448
2449         flow = &req->flows[req->clear_tail];
2450         /* When header suppression is disabled */
2451         if (cmp_psn(ipsn, flow->flow_state.ib_lpsn)) {
2452                 update_r_next_psn_fecn(packet, priv, rcd, flow, fecn);
2453
2454                 if (cmp_psn(kpsn, flow->flow_state.r_next_psn))
2455                         goto ack_done;
2456                 flow->flow_state.r_next_psn = mask_psn(kpsn + 1);
2457                 /*
2458                  * Copy the payload to destination buffer if this packet is
2459                  * delivered as an eager packet due to RSM rule and FECN.
2460                  * The RSM rule selects FECN bit in BTH and SH bit in
2461                  * KDETH header and therefore will not match the last
2462                  * packet of each segment that has SH bit cleared.
2463                  */
2464                 if (fecn && packet->etype == RHF_RCV_TYPE_EAGER) {
2465                         struct rvt_sge_state ss;
2466                         u32 len;
2467                         u32 tlen = packet->tlen;
2468                         u16 hdrsize = packet->hlen;
2469                         u8 pad = packet->pad;
2470                         u8 extra_bytes = pad + packet->extra_byte +
2471                                 (SIZE_OF_CRC << 2);
2472                         u32 pmtu = qp->pmtu;
2473
2474                         if (unlikely(tlen != (hdrsize + pmtu + extra_bytes)))
2475                                 goto ack_op_err;
2476                         len = restart_sge(&ss, req->e.swqe, ipsn, pmtu);
2477                         if (unlikely(len < pmtu))
2478                                 goto ack_op_err;
2479                         rvt_copy_sge(qp, &ss, packet->payload, pmtu, false,
2480                                      false);
2481                         /* Raise the sw sequence check flag for next packet */
2482                         priv->s_flags |= HFI1_R_TID_SW_PSN;
2483                 }
2484
2485                 goto ack_done;
2486         }
2487         flow->flow_state.r_next_psn = mask_psn(kpsn + 1);
2488         req->ack_pending--;
2489         priv->pending_tid_r_segs--;
2490         qp->s_num_rd_atomic--;
2491         if ((qp->s_flags & RVT_S_WAIT_FENCE) &&
2492             !qp->s_num_rd_atomic) {
2493                 qp->s_flags &= ~(RVT_S_WAIT_FENCE |
2494                                  RVT_S_WAIT_ACK);
2495                 hfi1_schedule_send(qp);
2496         }
2497         if (qp->s_flags & RVT_S_WAIT_RDMAR) {
2498                 qp->s_flags &= ~(RVT_S_WAIT_RDMAR | RVT_S_WAIT_ACK);
2499                 hfi1_schedule_send(qp);
2500         }
2501
2502         trace_hfi1_ack(qp, ipsn);
2503         trace_hfi1_tid_req_rcv_read_resp(qp, 0, req->e.swqe->wr.opcode,
2504                                          req->e.swqe->psn, req->e.swqe->lpsn,
2505                                          req);
2506         trace_hfi1_tid_flow_rcv_read_resp(qp, req->clear_tail, flow);
2507
2508         /* Release the tid resources */
2509         hfi1_kern_exp_rcv_clear(req);
2510
2511         if (!do_rc_ack(qp, aeth, ipsn, opcode, 0, rcd))
2512                 goto ack_done;
2513
2514         /* If not done yet, build next read request */
2515         if (++req->comp_seg >= req->total_segs) {
2516                 priv->tid_r_comp++;
2517                 req->state = TID_REQUEST_COMPLETE;
2518         }
2519
2520         /*
2521          * Clear the hw flow under two conditions:
2522          * 1. This request is a sync point and it is complete;
2523          * 2. Current request is completed and there are no more requests.
2524          */
2525         if ((req->state == TID_REQUEST_SYNC &&
2526              req->comp_seg == req->cur_seg) ||
2527             priv->tid_r_comp == priv->tid_r_reqs) {
2528                 hfi1_kern_clear_hw_flow(priv->rcd, qp);
2529                 priv->s_flags &= ~HFI1_R_TID_SW_PSN;
2530                 if (req->state == TID_REQUEST_SYNC)
2531                         req->state = TID_REQUEST_ACTIVE;
2532         }
2533
2534         hfi1_schedule_send(qp);
2535         goto ack_done;
2536
2537 ack_op_err:
2538         /*
2539          * The test indicates that the send engine has finished its cleanup
2540          * after sending the request and it's now safe to put the QP into error
2541          * state. However, if the wqe queue is empty (qp->s_acked == qp->s_tail
2542          * == qp->s_head), it would be unsafe to complete the wqe pointed by
2543          * qp->s_acked here. Putting the qp into error state will safely flush
2544          * all remaining requests.
2545          */
2546         if (qp->s_last == qp->s_acked)
2547                 rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
2548
2549 ack_done:
2550         spin_unlock_irqrestore(&qp->s_lock, flags);
2551 }
2552
2553 void hfi1_kern_read_tid_flow_free(struct rvt_qp *qp)
2554         __must_hold(&qp->s_lock)
2555 {
2556         u32 n = qp->s_acked;
2557         struct rvt_swqe *wqe;
2558         struct tid_rdma_request *req;
2559         struct hfi1_qp_priv *priv = qp->priv;
2560
2561         lockdep_assert_held(&qp->s_lock);
2562         /* Free any TID entries */
2563         while (n != qp->s_tail) {
2564                 wqe = rvt_get_swqe_ptr(qp, n);
2565                 if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) {
2566                         req = wqe_to_tid_req(wqe);
2567                         hfi1_kern_exp_rcv_clear_all(req);
2568                 }
2569
2570                 if (++n == qp->s_size)
2571                         n = 0;
2572         }
2573         /* Free flow */
2574         hfi1_kern_clear_hw_flow(priv->rcd, qp);
2575 }
2576
2577 static bool tid_rdma_tid_err(struct hfi1_packet *packet, u8 rcv_type)
2578 {
2579         struct rvt_qp *qp = packet->qp;
2580
2581         if (rcv_type >= RHF_RCV_TYPE_IB)
2582                 goto done;
2583
2584         spin_lock(&qp->s_lock);
2585
2586         /*
2587          * We've ran out of space in the eager buffer.
2588          * Eagerly received KDETH packets which require space in the
2589          * Eager buffer (packet that have payload) are TID RDMA WRITE
2590          * response packets. In this case, we have to re-transmit the
2591          * TID RDMA WRITE request.
2592          */
2593         if (rcv_type == RHF_RCV_TYPE_EAGER) {
2594                 hfi1_restart_rc(qp, qp->s_last_psn + 1, 1);
2595                 hfi1_schedule_send(qp);
2596         }
2597
2598         /* Since no payload is delivered, just drop the packet */
2599         spin_unlock(&qp->s_lock);
2600 done:
2601         return true;
2602 }
2603
2604 static void restart_tid_rdma_read_req(struct hfi1_ctxtdata *rcd,
2605                                       struct rvt_qp *qp, struct rvt_swqe *wqe)
2606 {
2607         struct tid_rdma_request *req;
2608         struct tid_rdma_flow *flow;
2609
2610         /* Start from the right segment */
2611         qp->r_flags |= RVT_R_RDMAR_SEQ;
2612         req = wqe_to_tid_req(wqe);
2613         flow = &req->flows[req->clear_tail];
2614         hfi1_restart_rc(qp, flow->flow_state.ib_spsn, 0);
2615         if (list_empty(&qp->rspwait)) {
2616                 qp->r_flags |= RVT_R_RSP_SEND;
2617                 rvt_get_qp(qp);
2618                 list_add_tail(&qp->rspwait, &rcd->qp_wait_list);
2619         }
2620 }
2621
2622 /*
2623  * Handle the KDETH eflags for TID RDMA READ response.
2624  *
2625  * Return true if the last packet for a segment has been received and it is
2626  * time to process the response normally; otherwise, return true.
2627  *
2628  * The caller must hold the packet->qp->r_lock and the rcu_read_lock.
2629  */
2630 static bool handle_read_kdeth_eflags(struct hfi1_ctxtdata *rcd,
2631                                      struct hfi1_packet *packet, u8 rcv_type,
2632                                      u8 rte, u32 psn, u32 ibpsn)
2633         __must_hold(&packet->qp->r_lock) __must_hold(RCU)
2634 {
2635         struct hfi1_pportdata *ppd = rcd->ppd;
2636         struct hfi1_devdata *dd = ppd->dd;
2637         struct hfi1_ibport *ibp;
2638         struct rvt_swqe *wqe;
2639         struct tid_rdma_request *req;
2640         struct tid_rdma_flow *flow;
2641         u32 ack_psn;
2642         struct rvt_qp *qp = packet->qp;
2643         struct hfi1_qp_priv *priv = qp->priv;
2644         bool ret = true;
2645         int diff = 0;
2646         u32 fpsn;
2647
2648         lockdep_assert_held(&qp->r_lock);
2649         spin_lock(&qp->s_lock);
2650         /* If the psn is out of valid range, drop the packet */
2651         if (cmp_psn(ibpsn, qp->s_last_psn) < 0 ||
2652             cmp_psn(ibpsn, qp->s_psn) > 0)
2653                 goto s_unlock;
2654
2655         /*
2656          * Note that NAKs implicitly ACK outstanding SEND and RDMA write
2657          * requests and implicitly NAK RDMA read and atomic requests issued
2658          * before the NAK'ed request.
2659          */
2660         ack_psn = ibpsn - 1;
2661         wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
2662         ibp = to_iport(qp->ibqp.device, qp->port_num);
2663
2664         /* Complete WQEs that the PSN finishes. */
2665         while ((int)delta_psn(ack_psn, wqe->lpsn) >= 0) {
2666                 /*
2667                  * If this request is a RDMA read or atomic, and the NACK is
2668                  * for a later operation, this NACK NAKs the RDMA read or
2669                  * atomic.
2670                  */
2671                 if (wqe->wr.opcode == IB_WR_RDMA_READ ||
2672                     wqe->wr.opcode == IB_WR_TID_RDMA_READ ||
2673                     wqe->wr.opcode == IB_WR_ATOMIC_CMP_AND_SWP ||
2674                     wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) {
2675                         /* Retry this request. */
2676                         if (!(qp->r_flags & RVT_R_RDMAR_SEQ)) {
2677                                 qp->r_flags |= RVT_R_RDMAR_SEQ;
2678                                 if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) {
2679                                         restart_tid_rdma_read_req(rcd, qp,
2680                                                                   wqe);
2681                                 } else {
2682                                         hfi1_restart_rc(qp, qp->s_last_psn + 1,
2683                                                         0);
2684                                         if (list_empty(&qp->rspwait)) {
2685                                                 qp->r_flags |= RVT_R_RSP_SEND;
2686                                                 rvt_get_qp(qp);
2687                                                 list_add_tail(/* wait */
2688                                                    &qp->rspwait,
2689                                                    &rcd->qp_wait_list);
2690                                         }
2691                                 }
2692                         }
2693                         /*
2694                          * No need to process the NAK since we are
2695                          * restarting an earlier request.
2696                          */
2697                         break;
2698                 }
2699
2700                 wqe = do_rc_completion(qp, wqe, ibp);
2701                 if (qp->s_acked == qp->s_tail)
2702                         goto s_unlock;
2703         }
2704
2705         if (qp->s_acked == qp->s_tail)
2706                 goto s_unlock;
2707
2708         /* Handle the eflags for the request */
2709         if (wqe->wr.opcode != IB_WR_TID_RDMA_READ)
2710                 goto s_unlock;
2711
2712         req = wqe_to_tid_req(wqe);
2713         switch (rcv_type) {
2714         case RHF_RCV_TYPE_EXPECTED:
2715                 switch (rte) {
2716                 case RHF_RTE_EXPECTED_FLOW_SEQ_ERR:
2717                         /*
2718                          * On the first occurrence of a Flow Sequence error,
2719                          * the flag TID_FLOW_SW_PSN is set.
2720                          *
2721                          * After that, the flow is *not* reprogrammed and the
2722                          * protocol falls back to SW PSN checking. This is done
2723                          * to prevent continuous Flow Sequence errors for any
2724                          * packets that could be still in the fabric.
2725                          */
2726                         flow = &req->flows[req->clear_tail];
2727                         if (priv->s_flags & HFI1_R_TID_SW_PSN) {
2728                                 diff = cmp_psn(psn,
2729                                                flow->flow_state.r_next_psn);
2730                                 if (diff > 0) {
2731                                         if (!(qp->r_flags & RVT_R_RDMAR_SEQ))
2732                                                 restart_tid_rdma_read_req(rcd,
2733                                                                           qp,
2734                                                                           wqe);
2735
2736                                         /* Drop the packet.*/
2737                                         goto s_unlock;
2738                                 } else if (diff < 0) {
2739                                         /*
2740                                          * If a response packet for a restarted
2741                                          * request has come back, reset the
2742                                          * restart flag.
2743                                          */
2744                                         if (qp->r_flags & RVT_R_RDMAR_SEQ)
2745                                                 qp->r_flags &=
2746                                                         ~RVT_R_RDMAR_SEQ;
2747
2748                                         /* Drop the packet.*/
2749                                         goto s_unlock;
2750                                 }
2751
2752                                 /*
2753                                  * If SW PSN verification is successful and
2754                                  * this is the last packet in the segment, tell
2755                                  * the caller to process it as a normal packet.
2756                                  */
2757                                 fpsn = full_flow_psn(flow,
2758                                                      flow->flow_state.lpsn);
2759                                 if (cmp_psn(fpsn, psn) == 0) {
2760                                         ret = false;
2761                                         if (qp->r_flags & RVT_R_RDMAR_SEQ)
2762                                                 qp->r_flags &=
2763                                                         ~RVT_R_RDMAR_SEQ;
2764                                 }
2765                                 flow->flow_state.r_next_psn =
2766                                         mask_psn(psn + 1);
2767                         } else {
2768                                 u32 last_psn;
2769
2770                                 last_psn = read_r_next_psn(dd, rcd->ctxt,
2771                                                            flow->idx);
2772                                 flow->flow_state.r_next_psn = last_psn;
2773                                 priv->s_flags |= HFI1_R_TID_SW_PSN;
2774                                 /*
2775                                  * If no request has been restarted yet,
2776                                  * restart the current one.
2777                                  */
2778                                 if (!(qp->r_flags & RVT_R_RDMAR_SEQ))
2779                                         restart_tid_rdma_read_req(rcd, qp,
2780                                                                   wqe);
2781                         }
2782
2783                         break;
2784
2785                 case RHF_RTE_EXPECTED_FLOW_GEN_ERR:
2786                         /*
2787                          * Since the TID flow is able to ride through
2788                          * generation mismatch, drop this stale packet.
2789                          */
2790                         break;
2791
2792                 default:
2793                         break;
2794                 }
2795                 break;
2796
2797         case RHF_RCV_TYPE_ERROR:
2798                 switch (rte) {
2799                 case RHF_RTE_ERROR_OP_CODE_ERR:
2800                 case RHF_RTE_ERROR_KHDR_MIN_LEN_ERR:
2801                 case RHF_RTE_ERROR_KHDR_HCRC_ERR:
2802                 case RHF_RTE_ERROR_KHDR_KVER_ERR:
2803                 case RHF_RTE_ERROR_CONTEXT_ERR:
2804                 case RHF_RTE_ERROR_KHDR_TID_ERR:
2805                 default:
2806                         break;
2807                 }
2808         default:
2809                 break;
2810         }
2811 s_unlock:
2812         spin_unlock(&qp->s_lock);
2813         return ret;
2814 }
2815
2816 bool hfi1_handle_kdeth_eflags(struct hfi1_ctxtdata *rcd,
2817                               struct hfi1_pportdata *ppd,
2818                               struct hfi1_packet *packet)
2819 {
2820         struct hfi1_ibport *ibp = &ppd->ibport_data;
2821         struct hfi1_devdata *dd = ppd->dd;
2822         struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
2823         u8 rcv_type = rhf_rcv_type(packet->rhf);
2824         u8 rte = rhf_rcv_type_err(packet->rhf);
2825         struct ib_header *hdr = packet->hdr;
2826         struct ib_other_headers *ohdr = NULL;
2827         int lnh = be16_to_cpu(hdr->lrh[0]) & 3;
2828         u16 lid  = be16_to_cpu(hdr->lrh[1]);
2829         u8 opcode;
2830         u32 qp_num, psn, ibpsn;
2831         struct rvt_qp *qp;
2832         struct hfi1_qp_priv *qpriv;
2833         unsigned long flags;
2834         bool ret = true;
2835         struct rvt_ack_entry *e;
2836         struct tid_rdma_request *req;
2837         struct tid_rdma_flow *flow;
2838         int diff = 0;
2839
2840         trace_hfi1_msg_handle_kdeth_eflags(NULL, "Kdeth error: rhf ",
2841                                            packet->rhf);
2842         if (packet->rhf & RHF_ICRC_ERR)
2843                 return ret;
2844
2845         packet->ohdr = &hdr->u.oth;
2846         ohdr = packet->ohdr;
2847         trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
2848
2849         /* Get the destination QP number. */
2850         qp_num = be32_to_cpu(ohdr->u.tid_rdma.r_rsp.verbs_qp) &
2851                 RVT_QPN_MASK;
2852         if (lid >= be16_to_cpu(IB_MULTICAST_LID_BASE))
2853                 goto drop;
2854
2855         psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
2856         opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff;
2857
2858         rcu_read_lock();
2859         qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
2860         if (!qp)
2861                 goto rcu_unlock;
2862
2863         packet->qp = qp;
2864
2865         /* Check for valid receive state. */
2866         spin_lock_irqsave(&qp->r_lock, flags);
2867         if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) {
2868                 ibp->rvp.n_pkt_drops++;
2869                 goto r_unlock;
2870         }
2871
2872         if (packet->rhf & RHF_TID_ERR) {
2873                 /* For TIDERR and RC QPs preemptively schedule a NAK */
2874                 u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */
2875
2876                 /* Sanity check packet */
2877                 if (tlen < 24)
2878                         goto r_unlock;
2879
2880                 /*
2881                  * Check for GRH. We should never get packets with GRH in this
2882                  * path.
2883                  */
2884                 if (lnh == HFI1_LRH_GRH)
2885                         goto r_unlock;
2886
2887                 if (tid_rdma_tid_err(packet, rcv_type))
2888                         goto r_unlock;
2889         }
2890
2891         /* handle TID RDMA READ */
2892         if (opcode == TID_OP(READ_RESP)) {
2893                 ibpsn = be32_to_cpu(ohdr->u.tid_rdma.r_rsp.verbs_psn);
2894                 ibpsn = mask_psn(ibpsn);
2895                 ret = handle_read_kdeth_eflags(rcd, packet, rcv_type, rte, psn,
2896                                                ibpsn);
2897                 goto r_unlock;
2898         }
2899
2900         /*
2901          * qp->s_tail_ack_queue points to the rvt_ack_entry currently being
2902          * processed. These a completed sequentially so we can be sure that
2903          * the pointer will not change until the entire request has completed.
2904          */
2905         spin_lock(&qp->s_lock);
2906         qpriv = qp->priv;
2907         if (qpriv->r_tid_tail == HFI1_QP_WQE_INVALID ||
2908             qpriv->r_tid_tail == qpriv->r_tid_head)
2909                 goto unlock;
2910         e = &qp->s_ack_queue[qpriv->r_tid_tail];
2911         if (e->opcode != TID_OP(WRITE_REQ))
2912                 goto unlock;
2913         req = ack_to_tid_req(e);
2914         if (req->comp_seg == req->cur_seg)
2915                 goto unlock;
2916         flow = &req->flows[req->clear_tail];
2917         trace_hfi1_eflags_err_write(qp, rcv_type, rte, psn);
2918         trace_hfi1_rsp_handle_kdeth_eflags(qp, psn);
2919         trace_hfi1_tid_write_rsp_handle_kdeth_eflags(qp);
2920         trace_hfi1_tid_req_handle_kdeth_eflags(qp, 0, e->opcode, e->psn,
2921                                                e->lpsn, req);
2922         trace_hfi1_tid_flow_handle_kdeth_eflags(qp, req->clear_tail, flow);
2923
2924         switch (rcv_type) {
2925         case RHF_RCV_TYPE_EXPECTED:
2926                 switch (rte) {
2927                 case RHF_RTE_EXPECTED_FLOW_SEQ_ERR:
2928                         if (!(qpriv->s_flags & HFI1_R_TID_SW_PSN)) {
2929                                 qpriv->s_flags |= HFI1_R_TID_SW_PSN;
2930                                 flow->flow_state.r_next_psn =
2931                                         read_r_next_psn(dd, rcd->ctxt,
2932                                                         flow->idx);
2933                                 qpriv->r_next_psn_kdeth =
2934                                         flow->flow_state.r_next_psn;
2935                                 goto nak_psn;
2936                         } else {
2937                                 /*
2938                                  * If the received PSN does not match the next
2939                                  * expected PSN, NAK the packet.
2940                                  * However, only do that if we know that the a
2941                                  * NAK has already been sent. Otherwise, this
2942                                  * mismatch could be due to packets that were
2943                                  * already in flight.
2944                                  */
2945                                 diff = cmp_psn(psn,
2946                                                flow->flow_state.r_next_psn);
2947                                 if (diff > 0)
2948                                         goto nak_psn;
2949                                 else if (diff < 0)
2950                                         break;
2951
2952                                 qpriv->s_nak_state = 0;
2953                                 /*
2954                                  * If SW PSN verification is successful and this
2955                                  * is the last packet in the segment, tell the
2956                                  * caller to process it as a normal packet.
2957                                  */
2958                                 if (psn == full_flow_psn(flow,
2959                                                          flow->flow_state.lpsn))
2960                                         ret = false;
2961                                 flow->flow_state.r_next_psn =
2962                                         mask_psn(psn + 1);
2963                                 qpriv->r_next_psn_kdeth =
2964                                         flow->flow_state.r_next_psn;
2965                         }
2966                         break;
2967
2968                 case RHF_RTE_EXPECTED_FLOW_GEN_ERR:
2969                         goto nak_psn;
2970
2971                 default:
2972                         break;
2973                 }
2974                 break;
2975
2976         case RHF_RCV_TYPE_ERROR:
2977                 switch (rte) {
2978                 case RHF_RTE_ERROR_OP_CODE_ERR:
2979                 case RHF_RTE_ERROR_KHDR_MIN_LEN_ERR:
2980                 case RHF_RTE_ERROR_KHDR_HCRC_ERR:
2981                 case RHF_RTE_ERROR_KHDR_KVER_ERR:
2982                 case RHF_RTE_ERROR_CONTEXT_ERR:
2983                 case RHF_RTE_ERROR_KHDR_TID_ERR:
2984                 default:
2985                         break;
2986                 }
2987         default:
2988                 break;
2989         }
2990
2991 unlock:
2992         spin_unlock(&qp->s_lock);
2993 r_unlock:
2994         spin_unlock_irqrestore(&qp->r_lock, flags);
2995 rcu_unlock:
2996         rcu_read_unlock();
2997 drop:
2998         return ret;
2999 nak_psn:
3000         ibp->rvp.n_rc_seqnak++;
3001         if (!qpriv->s_nak_state) {
3002                 qpriv->s_nak_state = IB_NAK_PSN_ERROR;
3003                 /* We are NAK'ing the next expected PSN */
3004                 qpriv->s_nak_psn = mask_psn(flow->flow_state.r_next_psn);
3005                 qpriv->s_flags |= RVT_S_ACK_PENDING;
3006                 if (qpriv->r_tid_ack == HFI1_QP_WQE_INVALID)
3007                         qpriv->r_tid_ack = qpriv->r_tid_tail;
3008                 hfi1_schedule_tid_send(qp);
3009         }
3010         goto unlock;
3011 }
3012
3013 /*
3014  * "Rewind" the TID request information.
3015  * This means that we reset the state back to ACTIVE,
3016  * find the proper flow, set the flow index to that flow,
3017  * and reset the flow information.
3018  */
3019 void hfi1_tid_rdma_restart_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
3020                                u32 *bth2)
3021 {
3022         struct tid_rdma_request *req = wqe_to_tid_req(wqe);
3023         struct tid_rdma_flow *flow;
3024         struct hfi1_qp_priv *qpriv = qp->priv;
3025         int diff, delta_pkts;
3026         u32 tididx = 0, i;
3027         u16 fidx;
3028
3029         if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) {
3030                 *bth2 = mask_psn(qp->s_psn);
3031                 flow = find_flow_ib(req, *bth2, &fidx);
3032                 if (!flow) {
3033                         trace_hfi1_msg_tid_restart_req(/* msg */
3034                            qp, "!!!!!! Could not find flow to restart: bth2 ",
3035                            (u64)*bth2);
3036                         trace_hfi1_tid_req_restart_req(qp, 0, wqe->wr.opcode,
3037                                                        wqe->psn, wqe->lpsn,
3038                                                        req);
3039                         return;
3040                 }
3041         } else {
3042                 fidx = req->acked_tail;
3043                 flow = &req->flows[fidx];
3044                 *bth2 = mask_psn(req->r_ack_psn);
3045         }
3046
3047         if (wqe->wr.opcode == IB_WR_TID_RDMA_READ)
3048                 delta_pkts = delta_psn(*bth2, flow->flow_state.ib_spsn);
3049         else
3050                 delta_pkts = delta_psn(*bth2,
3051                                        full_flow_psn(flow,
3052                                                      flow->flow_state.spsn));
3053
3054         trace_hfi1_tid_flow_restart_req(qp, fidx, flow);
3055         diff = delta_pkts + flow->resync_npkts;
3056
3057         flow->sent = 0;
3058         flow->pkt = 0;
3059         flow->tid_idx = 0;
3060         flow->tid_offset = 0;
3061         if (diff) {
3062                 for (tididx = 0; tididx < flow->tidcnt; tididx++) {
3063                         u32 tidentry = flow->tid_entry[tididx], tidlen,
3064                                 tidnpkts, npkts;
3065
3066                         flow->tid_offset = 0;
3067                         tidlen = EXP_TID_GET(tidentry, LEN) * PAGE_SIZE;
3068                         tidnpkts = rvt_div_round_up_mtu(qp, tidlen);
3069                         npkts = min_t(u32, diff, tidnpkts);
3070                         flow->pkt += npkts;
3071                         flow->sent += (npkts == tidnpkts ? tidlen :
3072                                        npkts * qp->pmtu);
3073                         flow->tid_offset += npkts * qp->pmtu;
3074                         diff -= npkts;
3075                         if (!diff)
3076                                 break;
3077                 }
3078         }
3079         if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE) {
3080                 rvt_skip_sge(&qpriv->tid_ss, (req->cur_seg * req->seg_len) +
3081                              flow->sent, 0);
3082                 /*
3083                  * Packet PSN is based on flow_state.spsn + flow->pkt. However,
3084                  * during a RESYNC, the generation is incremented and the
3085                  * sequence is reset to 0. Since we've adjusted the npkts in the
3086                  * flow and the SGE has been sufficiently advanced, we have to
3087                  * adjust flow->pkt in order to calculate the correct PSN.
3088                  */
3089                 flow->pkt -= flow->resync_npkts;
3090         }
3091
3092         if (flow->tid_offset ==
3093             EXP_TID_GET(flow->tid_entry[tididx], LEN) * PAGE_SIZE) {
3094                 tididx++;
3095                 flow->tid_offset = 0;
3096         }
3097         flow->tid_idx = tididx;
3098         if (wqe->wr.opcode == IB_WR_TID_RDMA_READ)
3099                 /* Move flow_idx to correct index */
3100                 req->flow_idx = fidx;
3101         else
3102                 req->clear_tail = fidx;
3103
3104         trace_hfi1_tid_flow_restart_req(qp, fidx, flow);
3105         trace_hfi1_tid_req_restart_req(qp, 0, wqe->wr.opcode, wqe->psn,
3106                                        wqe->lpsn, req);
3107         req->state = TID_REQUEST_ACTIVE;
3108         if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE) {
3109                 /* Reset all the flows that we are going to resend */
3110                 fidx = CIRC_NEXT(fidx, MAX_FLOWS);
3111                 i = qpriv->s_tid_tail;
3112                 do {
3113                         for (; CIRC_CNT(req->setup_head, fidx, MAX_FLOWS);
3114                               fidx = CIRC_NEXT(fidx, MAX_FLOWS)) {
3115                                 req->flows[fidx].sent = 0;
3116                                 req->flows[fidx].pkt = 0;
3117                                 req->flows[fidx].tid_idx = 0;
3118                                 req->flows[fidx].tid_offset = 0;
3119                                 req->flows[fidx].resync_npkts = 0;
3120                         }
3121                         if (i == qpriv->s_tid_cur)
3122                                 break;
3123                         do {
3124                                 i = (++i == qp->s_size ? 0 : i);
3125                                 wqe = rvt_get_swqe_ptr(qp, i);
3126                         } while (wqe->wr.opcode != IB_WR_TID_RDMA_WRITE);
3127                         req = wqe_to_tid_req(wqe);
3128                         req->cur_seg = req->ack_seg;
3129                         fidx = req->acked_tail;
3130                         /* Pull req->clear_tail back */
3131                         req->clear_tail = fidx;
3132                 } while (1);
3133         }
3134 }
3135
3136 void hfi1_qp_kern_exp_rcv_clear_all(struct rvt_qp *qp)
3137 {
3138         int i, ret;
3139         struct hfi1_qp_priv *qpriv = qp->priv;
3140         struct tid_flow_state *fs;
3141
3142         if (qp->ibqp.qp_type != IB_QPT_RC || !HFI1_CAP_IS_KSET(TID_RDMA))
3143                 return;
3144
3145         /*
3146          * First, clear the flow to help prevent any delayed packets from
3147          * being delivered.
3148          */
3149         fs = &qpriv->flow_state;
3150         if (fs->index != RXE_NUM_TID_FLOWS)
3151                 hfi1_kern_clear_hw_flow(qpriv->rcd, qp);
3152
3153         for (i = qp->s_acked; i != qp->s_head;) {
3154                 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, i);
3155
3156                 if (++i == qp->s_size)
3157                         i = 0;
3158                 /* Free only locally allocated TID entries */
3159                 if (wqe->wr.opcode != IB_WR_TID_RDMA_READ)
3160                         continue;
3161                 do {
3162                         struct hfi1_swqe_priv *priv = wqe->priv;
3163
3164                         ret = hfi1_kern_exp_rcv_clear(&priv->tid_req);
3165                 } while (!ret);
3166         }
3167         for (i = qp->s_acked_ack_queue; i != qp->r_head_ack_queue;) {
3168                 struct rvt_ack_entry *e = &qp->s_ack_queue[i];
3169
3170                 if (++i == rvt_max_atomic(ib_to_rvt(qp->ibqp.device)))
3171                         i = 0;
3172                 /* Free only locally allocated TID entries */
3173                 if (e->opcode != TID_OP(WRITE_REQ))
3174                         continue;
3175                 do {
3176                         struct hfi1_ack_priv *priv = e->priv;
3177
3178                         ret = hfi1_kern_exp_rcv_clear(&priv->tid_req);
3179                 } while (!ret);
3180         }
3181 }
3182
3183 bool hfi1_tid_rdma_wqe_interlock(struct rvt_qp *qp, struct rvt_swqe *wqe)
3184 {
3185         struct rvt_swqe *prev;
3186         struct hfi1_qp_priv *priv = qp->priv;
3187         u32 s_prev;
3188         struct tid_rdma_request *req;
3189
3190         s_prev = (qp->s_cur == 0 ? qp->s_size : qp->s_cur) - 1;
3191         prev = rvt_get_swqe_ptr(qp, s_prev);
3192
3193         switch (wqe->wr.opcode) {
3194         case IB_WR_SEND:
3195         case IB_WR_SEND_WITH_IMM:
3196         case IB_WR_SEND_WITH_INV:
3197         case IB_WR_ATOMIC_CMP_AND_SWP:
3198         case IB_WR_ATOMIC_FETCH_AND_ADD:
3199         case IB_WR_RDMA_WRITE:
3200                 switch (prev->wr.opcode) {
3201                 case IB_WR_TID_RDMA_WRITE:
3202                         req = wqe_to_tid_req(prev);
3203                         if (req->ack_seg != req->total_segs)
3204                                 goto interlock;
3205                 default:
3206                         break;
3207                 }
3208                 break;
3209         case IB_WR_RDMA_READ:
3210                 if (prev->wr.opcode != IB_WR_TID_RDMA_WRITE)
3211                         break;
3212                 /* fall through */
3213         case IB_WR_TID_RDMA_READ:
3214                 switch (prev->wr.opcode) {
3215                 case IB_WR_RDMA_READ:
3216                         if (qp->s_acked != qp->s_cur)
3217                                 goto interlock;
3218                         break;
3219                 case IB_WR_TID_RDMA_WRITE:
3220                         req = wqe_to_tid_req(prev);
3221                         if (req->ack_seg != req->total_segs)
3222                                 goto interlock;
3223                 default:
3224                         break;
3225                 }
3226         default:
3227                 break;
3228         }
3229         return false;
3230
3231 interlock:
3232         priv->s_flags |= HFI1_S_TID_WAIT_INTERLCK;
3233         return true;
3234 }
3235
3236 /* Does @sge meet the alignment requirements for tid rdma? */
3237 static inline bool hfi1_check_sge_align(struct rvt_qp *qp,
3238                                         struct rvt_sge *sge, int num_sge)
3239 {
3240         int i;
3241
3242         for (i = 0; i < num_sge; i++, sge++) {
3243                 trace_hfi1_sge_check_align(qp, i, sge);
3244                 if ((u64)sge->vaddr & ~PAGE_MASK ||
3245                     sge->sge_length & ~PAGE_MASK)
3246                         return false;
3247         }
3248         return true;
3249 }
3250
3251 void setup_tid_rdma_wqe(struct rvt_qp *qp, struct rvt_swqe *wqe)
3252 {
3253         struct hfi1_qp_priv *qpriv = (struct hfi1_qp_priv *)qp->priv;
3254         struct hfi1_swqe_priv *priv = wqe->priv;
3255         struct tid_rdma_params *remote;
3256         enum ib_wr_opcode new_opcode;
3257         bool do_tid_rdma = false;
3258         struct hfi1_pportdata *ppd = qpriv->rcd->ppd;
3259
3260         if ((rdma_ah_get_dlid(&qp->remote_ah_attr) & ~((1 << ppd->lmc) - 1)) ==
3261                                 ppd->lid)
3262                 return;
3263         if (qpriv->hdr_type != HFI1_PKT_TYPE_9B)
3264                 return;
3265
3266         rcu_read_lock();
3267         remote = rcu_dereference(qpriv->tid_rdma.remote);
3268         /*
3269          * If TID RDMA is disabled by the negotiation, don't
3270          * use it.
3271          */
3272         if (!remote)
3273                 goto exit;
3274
3275         if (wqe->wr.opcode == IB_WR_RDMA_READ) {
3276                 if (hfi1_check_sge_align(qp, &wqe->sg_list[0],
3277                                          wqe->wr.num_sge)) {
3278                         new_opcode = IB_WR_TID_RDMA_READ;
3279                         do_tid_rdma = true;
3280                 }
3281         } else if (wqe->wr.opcode == IB_WR_RDMA_WRITE) {
3282                 /*
3283                  * TID RDMA is enabled for this RDMA WRITE request iff:
3284                  *   1. The remote address is page-aligned,
3285                  *   2. The length is larger than the minimum segment size,
3286                  *   3. The length is page-multiple.
3287                  */
3288                 if (!(wqe->rdma_wr.remote_addr & ~PAGE_MASK) &&
3289                     !(wqe->length & ~PAGE_MASK)) {
3290                         new_opcode = IB_WR_TID_RDMA_WRITE;
3291                         do_tid_rdma = true;
3292                 }
3293         }
3294
3295         if (do_tid_rdma) {
3296                 if (hfi1_kern_exp_rcv_alloc_flows(&priv->tid_req, GFP_ATOMIC))
3297                         goto exit;
3298                 wqe->wr.opcode = new_opcode;
3299                 priv->tid_req.seg_len =
3300                         min_t(u32, remote->max_len, wqe->length);
3301                 priv->tid_req.total_segs =
3302                         DIV_ROUND_UP(wqe->length, priv->tid_req.seg_len);
3303                 /* Compute the last PSN of the request */
3304                 wqe->lpsn = wqe->psn;
3305                 if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) {
3306                         priv->tid_req.n_flows = remote->max_read;
3307                         qpriv->tid_r_reqs++;
3308                         wqe->lpsn += rvt_div_round_up_mtu(qp, wqe->length) - 1;
3309                 } else {
3310                         wqe->lpsn += priv->tid_req.total_segs - 1;
3311                         atomic_inc(&qpriv->n_requests);
3312                 }
3313
3314                 priv->tid_req.cur_seg = 0;
3315                 priv->tid_req.comp_seg = 0;
3316                 priv->tid_req.ack_seg = 0;
3317                 priv->tid_req.state = TID_REQUEST_INACTIVE;
3318                 /*
3319                  * Reset acked_tail.
3320                  * TID RDMA READ does not have ACKs so it does not
3321                  * update the pointer. We have to reset it so TID RDMA
3322                  * WRITE does not get confused.
3323                  */
3324                 priv->tid_req.acked_tail = priv->tid_req.setup_head;
3325                 trace_hfi1_tid_req_setup_tid_wqe(qp, 1, wqe->wr.opcode,
3326                                                  wqe->psn, wqe->lpsn,
3327                                                  &priv->tid_req);
3328         }
3329 exit:
3330         rcu_read_unlock();
3331 }
3332
3333 /* TID RDMA WRITE functions */
3334
3335 u32 hfi1_build_tid_rdma_write_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
3336                                   struct ib_other_headers *ohdr,
3337                                   u32 *bth1, u32 *bth2, u32 *len)
3338 {
3339         struct hfi1_qp_priv *qpriv = qp->priv;
3340         struct tid_rdma_request *req = wqe_to_tid_req(wqe);
3341         struct tid_rdma_params *remote;
3342
3343         rcu_read_lock();
3344         remote = rcu_dereference(qpriv->tid_rdma.remote);
3345         /*
3346          * Set the number of flow to be used based on negotiated
3347          * parameters.
3348          */
3349         req->n_flows = remote->max_write;
3350         req->state = TID_REQUEST_ACTIVE;
3351
3352         KDETH_RESET(ohdr->u.tid_rdma.w_req.kdeth0, KVER, 0x1);
3353         KDETH_RESET(ohdr->u.tid_rdma.w_req.kdeth1, JKEY, remote->jkey);
3354         ohdr->u.tid_rdma.w_req.reth.vaddr =
3355                 cpu_to_be64(wqe->rdma_wr.remote_addr + (wqe->length - *len));
3356         ohdr->u.tid_rdma.w_req.reth.rkey =
3357                 cpu_to_be32(wqe->rdma_wr.rkey);
3358         ohdr->u.tid_rdma.w_req.reth.length = cpu_to_be32(*len);
3359         ohdr->u.tid_rdma.w_req.verbs_qp = cpu_to_be32(qp->remote_qpn);
3360         *bth1 &= ~RVT_QPN_MASK;
3361         *bth1 |= remote->qp;
3362         qp->s_state = TID_OP(WRITE_REQ);
3363         qp->s_flags |= HFI1_S_WAIT_TID_RESP;
3364         *bth2 |= IB_BTH_REQ_ACK;
3365         *len = 0;
3366
3367         rcu_read_unlock();
3368         return sizeof(ohdr->u.tid_rdma.w_req) / sizeof(u32);
3369 }
3370
3371 void hfi1_compute_tid_rdma_flow_wt(void)
3372 {
3373         /*
3374          * Heuristic for computing the RNR timeout when waiting on the flow
3375          * queue. Rather than a computationaly expensive exact estimate of when
3376          * a flow will be available, we assume that if a QP is at position N in
3377          * the flow queue it has to wait approximately (N + 1) * (number of
3378          * segments between two sync points), assuming PMTU of 4K. The rationale
3379          * for this is that flows are released and recycled at each sync point.
3380          */
3381         tid_rdma_flow_wt = MAX_TID_FLOW_PSN * enum_to_mtu(OPA_MTU_4096) /
3382                 TID_RDMA_MAX_SEGMENT_SIZE;
3383 }
3384
3385 static u32 position_in_queue(struct hfi1_qp_priv *qpriv,
3386                              struct tid_queue *queue)
3387 {
3388         return qpriv->tid_enqueue - queue->dequeue;
3389 }
3390
3391 /*
3392  * @qp: points to rvt_qp context.
3393  * @to_seg: desired RNR timeout in segments.
3394  * Return: index of the next highest timeout in the ib_hfi1_rnr_table[]
3395  */
3396 static u32 hfi1_compute_tid_rnr_timeout(struct rvt_qp *qp, u32 to_seg)
3397 {
3398         struct hfi1_qp_priv *qpriv = qp->priv;
3399         u64 timeout;
3400         u32 bytes_per_us;
3401         u8 i;
3402
3403         bytes_per_us = active_egress_rate(qpriv->rcd->ppd) / 8;
3404         timeout = (to_seg * TID_RDMA_MAX_SEGMENT_SIZE) / bytes_per_us;
3405         /*
3406          * Find the next highest value in the RNR table to the required
3407          * timeout. This gives the responder some padding.
3408          */
3409         for (i = 1; i <= IB_AETH_CREDIT_MASK; i++)
3410                 if (rvt_rnr_tbl_to_usec(i) >= timeout)
3411                         return i;
3412         return 0;
3413 }
3414
3415 /**
3416  * Central place for resource allocation at TID write responder,
3417  * is called from write_req and write_data interrupt handlers as
3418  * well as the send thread when a queued QP is scheduled for
3419  * resource allocation.
3420  *
3421  * Iterates over (a) segments of a request and then (b) queued requests
3422  * themselves to allocate resources for up to local->max_write
3423  * segments across multiple requests. Stop allocating when we
3424  * hit a sync point, resume allocating after data packets at
3425  * sync point have been received.
3426  *
3427  * Resource allocation and sending of responses is decoupled. The
3428  * request/segment which are being allocated and sent are as follows.
3429  * Resources are allocated for:
3430  *     [request: qpriv->r_tid_alloc, segment: req->alloc_seg]
3431  * The send thread sends:
3432  *     [request: qp->s_tail_ack_queue, segment:req->cur_seg]
3433  */
3434 static void hfi1_tid_write_alloc_resources(struct rvt_qp *qp, bool intr_ctx)
3435 {
3436         struct tid_rdma_request *req;
3437         struct hfi1_qp_priv *qpriv = qp->priv;
3438         struct hfi1_ctxtdata *rcd = qpriv->rcd;
3439         struct tid_rdma_params *local = &qpriv->tid_rdma.local;
3440         struct rvt_ack_entry *e;
3441         u32 npkts, to_seg;
3442         bool last;
3443         int ret = 0;
3444
3445         lockdep_assert_held(&qp->s_lock);
3446
3447         while (1) {
3448                 trace_hfi1_rsp_tid_write_alloc_res(qp, 0);
3449                 trace_hfi1_tid_write_rsp_alloc_res(qp);
3450                 /*
3451                  * Don't allocate more segments if a RNR NAK has already been
3452                  * scheduled to avoid messing up qp->r_psn: the RNR NAK will
3453                  * be sent only when all allocated segments have been sent.
3454                  * However, if more segments are allocated before that, TID RDMA
3455                  * WRITE RESP packets will be sent out for these new segments
3456                  * before the RNR NAK packet. When the requester receives the
3457                  * RNR NAK packet, it will restart with qp->s_last_psn + 1,
3458                  * which does not match qp->r_psn and will be dropped.
3459                  * Consequently, the requester will exhaust its retries and
3460                  * put the qp into error state.
3461                  */
3462                 if (qpriv->rnr_nak_state == TID_RNR_NAK_SEND)
3463                         break;
3464
3465                 /* No requests left to process */
3466                 if (qpriv->r_tid_alloc == qpriv->r_tid_head) {
3467                         /* If all data has been received, clear the flow */
3468                         if (qpriv->flow_state.index < RXE_NUM_TID_FLOWS &&
3469                             !qpriv->alloc_w_segs) {
3470                                 hfi1_kern_clear_hw_flow(rcd, qp);
3471                                 qpriv->s_flags &= ~HFI1_R_TID_SW_PSN;
3472                         }
3473                         break;
3474                 }
3475
3476                 e = &qp->s_ack_queue[qpriv->r_tid_alloc];
3477                 if (e->opcode != TID_OP(WRITE_REQ))
3478                         goto next_req;
3479                 req = ack_to_tid_req(e);
3480                 trace_hfi1_tid_req_write_alloc_res(qp, 0, e->opcode, e->psn,
3481                                                    e->lpsn, req);
3482                 /* Finished allocating for all segments of this request */
3483                 if (req->alloc_seg >= req->total_segs)
3484                         goto next_req;
3485
3486                 /* Can allocate only a maximum of local->max_write for a QP */
3487                 if (qpriv->alloc_w_segs >= local->max_write)
3488                         break;
3489
3490                 /* Don't allocate at a sync point with data packets pending */
3491                 if (qpriv->sync_pt && qpriv->alloc_w_segs)
3492                         break;
3493
3494                 /* All data received at the sync point, continue */
3495                 if (qpriv->sync_pt && !qpriv->alloc_w_segs) {
3496                         hfi1_kern_clear_hw_flow(rcd, qp);
3497                         qpriv->sync_pt = false;
3498                         qpriv->s_flags &= ~HFI1_R_TID_SW_PSN;
3499                 }
3500
3501                 /* Allocate flow if we don't have one */
3502                 if (qpriv->flow_state.index >= RXE_NUM_TID_FLOWS) {
3503                         ret = hfi1_kern_setup_hw_flow(qpriv->rcd, qp);
3504                         if (ret) {
3505                                 to_seg = tid_rdma_flow_wt *
3506                                         position_in_queue(qpriv,
3507                                                           &rcd->flow_queue);
3508                                 break;
3509                         }
3510                 }
3511
3512                 npkts = rvt_div_round_up_mtu(qp, req->seg_len);
3513
3514                 /*
3515                  * We are at a sync point if we run out of KDETH PSN space.
3516                  * Last PSN of every generation is reserved for RESYNC.
3517                  */
3518                 if (qpriv->flow_state.psn + npkts > MAX_TID_FLOW_PSN - 1) {
3519                         qpriv->sync_pt = true;
3520                         break;
3521                 }
3522
3523                 /*
3524                  * If overtaking req->acked_tail, send an RNR NAK. Because the
3525                  * QP is not queued in this case, and the issue can only be
3526                  * caused due a delay in scheduling the second leg which we
3527                  * cannot estimate, we use a rather arbitrary RNR timeout of
3528                  * (MAX_FLOWS / 2) segments
3529                  */
3530                 if (!CIRC_SPACE(req->setup_head, req->acked_tail,
3531                                 MAX_FLOWS)) {
3532                         ret = -EAGAIN;
3533                         to_seg = MAX_FLOWS >> 1;
3534                         qpriv->s_flags |= RVT_S_ACK_PENDING;
3535                         hfi1_schedule_tid_send(qp);
3536                         break;
3537                 }
3538
3539                 /* Try to allocate rcv array / TID entries */
3540                 ret = hfi1_kern_exp_rcv_setup(req, &req->ss, &last);
3541                 if (ret == -EAGAIN)
3542                         to_seg = position_in_queue(qpriv, &rcd->rarr_queue);
3543                 if (ret)
3544                         break;
3545
3546                 qpriv->alloc_w_segs++;
3547                 req->alloc_seg++;
3548                 continue;
3549 next_req:
3550                 /* Begin processing the next request */
3551                 if (++qpriv->r_tid_alloc >
3552                     rvt_size_atomic(ib_to_rvt(qp->ibqp.device)))
3553                         qpriv->r_tid_alloc = 0;
3554         }
3555
3556         /*
3557          * Schedule an RNR NAK to be sent if (a) flow or rcv array allocation
3558          * has failed (b) we are called from the rcv handler interrupt context
3559          * (c) an RNR NAK has not already been scheduled
3560          */
3561         if (ret == -EAGAIN && intr_ctx && !qp->r_nak_state)
3562                 goto send_rnr_nak;
3563
3564         return;
3565
3566 send_rnr_nak:
3567         lockdep_assert_held(&qp->r_lock);
3568
3569         /* Set r_nak_state to prevent unrelated events from generating NAK's */
3570         qp->r_nak_state = hfi1_compute_tid_rnr_timeout(qp, to_seg) | IB_RNR_NAK;
3571
3572         /* Pull back r_psn to the segment being RNR NAK'd */
3573         qp->r_psn = e->psn + req->alloc_seg;
3574         qp->r_ack_psn = qp->r_psn;
3575         /*
3576          * Pull back r_head_ack_queue to the ack entry following the request
3577          * being RNR NAK'd. This allows resources to be allocated to the request
3578          * if the queued QP is scheduled.
3579          */
3580         qp->r_head_ack_queue = qpriv->r_tid_alloc + 1;
3581         if (qp->r_head_ack_queue > rvt_size_atomic(ib_to_rvt(qp->ibqp.device)))
3582                 qp->r_head_ack_queue = 0;
3583         qpriv->r_tid_head = qp->r_head_ack_queue;
3584         /*
3585          * These send side fields are used in make_rc_ack(). They are set in
3586          * hfi1_send_rc_ack() but must be set here before dropping qp->s_lock
3587          * for consistency
3588          */
3589         qp->s_nak_state = qp->r_nak_state;
3590         qp->s_ack_psn = qp->r_ack_psn;
3591         /*
3592          * Clear the ACK PENDING flag to prevent unwanted ACK because we
3593          * have modified qp->s_ack_psn here.
3594          */
3595         qp->s_flags &= ~(RVT_S_ACK_PENDING);
3596
3597         trace_hfi1_rsp_tid_write_alloc_res(qp, qp->r_psn);
3598         /*
3599          * qpriv->rnr_nak_state is used to determine when the scheduled RNR NAK
3600          * has actually been sent. qp->s_flags RVT_S_ACK_PENDING bit cannot be
3601          * used for this because qp->s_lock is dropped before calling
3602          * hfi1_send_rc_ack() leading to inconsistency between the receive
3603          * interrupt handlers and the send thread in make_rc_ack()
3604          */
3605         qpriv->rnr_nak_state = TID_RNR_NAK_SEND;
3606
3607         /*
3608          * Schedule RNR NAK to be sent. RNR NAK's are scheduled from the receive
3609          * interrupt handlers but will be sent from the send engine behind any
3610          * previous responses that may have been scheduled
3611          */
3612         rc_defered_ack(rcd, qp);
3613 }
3614
3615 void hfi1_rc_rcv_tid_rdma_write_req(struct hfi1_packet *packet)
3616 {
3617         /* HANDLER FOR TID RDMA WRITE REQUEST packet (Responder side)*/
3618
3619         /*
3620          * 1. Verify TID RDMA WRITE REQ as per IB_OPCODE_RC_RDMA_WRITE_FIRST
3621          *    (see hfi1_rc_rcv())
3622          *     - Don't allow 0-length requests.
3623          * 2. Put TID RDMA WRITE REQ into the response queueu (s_ack_queue)
3624          *     - Setup struct tid_rdma_req with request info
3625          *     - Prepare struct tid_rdma_flow array?
3626          * 3. Set the qp->s_ack_state as state diagram in design doc.
3627          * 4. Set RVT_S_RESP_PENDING in s_flags.
3628          * 5. Kick the send engine (hfi1_schedule_send())
3629          */
3630         struct hfi1_ctxtdata *rcd = packet->rcd;
3631         struct rvt_qp *qp = packet->qp;
3632         struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
3633         struct ib_other_headers *ohdr = packet->ohdr;
3634         struct rvt_ack_entry *e;
3635         unsigned long flags;
3636         struct ib_reth *reth;
3637         struct hfi1_qp_priv *qpriv = qp->priv;
3638         struct tid_rdma_request *req;
3639         u32 bth0, psn, len, rkey, num_segs;
3640         bool fecn;
3641         u8 next;
3642         u64 vaddr;
3643         int diff;
3644
3645         bth0 = be32_to_cpu(ohdr->bth[0]);
3646         if (hfi1_ruc_check_hdr(ibp, packet))
3647                 return;
3648
3649         fecn = process_ecn(qp, packet);
3650         psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
3651         trace_hfi1_rsp_rcv_tid_write_req(qp, psn);
3652
3653         if (qp->state == IB_QPS_RTR && !(qp->r_flags & RVT_R_COMM_EST))
3654                 rvt_comm_est(qp);
3655
3656         if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
3657                 goto nack_inv;
3658
3659         reth = &ohdr->u.tid_rdma.w_req.reth;
3660         vaddr = be64_to_cpu(reth->vaddr);
3661         len = be32_to_cpu(reth->length);
3662
3663         num_segs = DIV_ROUND_UP(len, qpriv->tid_rdma.local.max_len);
3664         diff = delta_psn(psn, qp->r_psn);
3665         if (unlikely(diff)) {
3666                 tid_rdma_rcv_err(packet, ohdr, qp, psn, diff, fecn);
3667                 return;
3668         }
3669
3670         /*
3671          * The resent request which was previously RNR NAK'd is inserted at the
3672          * location of the original request, which is one entry behind
3673          * r_head_ack_queue
3674          */
3675         if (qpriv->rnr_nak_state)
3676                 qp->r_head_ack_queue = qp->r_head_ack_queue ?
3677                         qp->r_head_ack_queue - 1 :
3678                         rvt_size_atomic(ib_to_rvt(qp->ibqp.device));
3679
3680         /* We've verified the request, insert it into the ack queue. */
3681         next = qp->r_head_ack_queue + 1;
3682         if (next > rvt_size_atomic(ib_to_rvt(qp->ibqp.device)))
3683                 next = 0;
3684         spin_lock_irqsave(&qp->s_lock, flags);
3685         if (unlikely(next == qp->s_acked_ack_queue)) {
3686                 if (!qp->s_ack_queue[next].sent)
3687                         goto nack_inv_unlock;
3688                 update_ack_queue(qp, next);
3689         }
3690         e = &qp->s_ack_queue[qp->r_head_ack_queue];
3691         req = ack_to_tid_req(e);
3692
3693         /* Bring previously RNR NAK'd request back to life */
3694         if (qpriv->rnr_nak_state) {
3695                 qp->r_nak_state = 0;
3696                 qp->s_nak_state = 0;
3697                 qpriv->rnr_nak_state = TID_RNR_NAK_INIT;
3698                 qp->r_psn = e->lpsn + 1;
3699                 req->state = TID_REQUEST_INIT;
3700                 goto update_head;
3701         }
3702
3703         release_rdma_sge_mr(e);
3704
3705         /* The length needs to be in multiples of PAGE_SIZE */
3706         if (!len || len & ~PAGE_MASK)
3707                 goto nack_inv_unlock;
3708
3709         rkey = be32_to_cpu(reth->rkey);
3710         qp->r_len = len;
3711
3712         if (e->opcode == TID_OP(WRITE_REQ) &&
3713             (req->setup_head != req->clear_tail ||
3714              req->clear_tail != req->acked_tail))
3715                 goto nack_inv_unlock;
3716
3717         if (unlikely(!rvt_rkey_ok(qp, &e->rdma_sge, qp->r_len, vaddr,
3718                                   rkey, IB_ACCESS_REMOTE_WRITE)))
3719                 goto nack_acc;
3720
3721         qp->r_psn += num_segs - 1;
3722
3723         e->opcode = (bth0 >> 24) & 0xff;
3724         e->psn = psn;
3725         e->lpsn = qp->r_psn;
3726         e->sent = 0;
3727
3728         req->n_flows = min_t(u16, num_segs, qpriv->tid_rdma.local.max_write);
3729         req->state = TID_REQUEST_INIT;
3730         req->cur_seg = 0;
3731         req->comp_seg = 0;
3732         req->ack_seg = 0;
3733         req->alloc_seg = 0;
3734         req->isge = 0;
3735         req->seg_len = qpriv->tid_rdma.local.max_len;
3736         req->total_len = len;
3737         req->total_segs = num_segs;
3738         req->r_flow_psn = e->psn;
3739         req->ss.sge = e->rdma_sge;
3740         req->ss.num_sge = 1;
3741
3742         req->flow_idx = req->setup_head;
3743         req->clear_tail = req->setup_head;
3744         req->acked_tail = req->setup_head;
3745
3746         qp->r_state = e->opcode;
3747         qp->r_nak_state = 0;
3748         /*
3749          * We need to increment the MSN here instead of when we
3750          * finish sending the result since a duplicate request would
3751          * increment it more than once.
3752          */
3753         qp->r_msn++;
3754         qp->r_psn++;
3755
3756         trace_hfi1_tid_req_rcv_write_req(qp, 0, e->opcode, e->psn, e->lpsn,
3757                                          req);
3758
3759         if (qpriv->r_tid_tail == HFI1_QP_WQE_INVALID) {
3760                 qpriv->r_tid_tail = qp->r_head_ack_queue;
3761         } else if (qpriv->r_tid_tail == qpriv->r_tid_head) {
3762                 struct tid_rdma_request *ptr;
3763
3764                 e = &qp->s_ack_queue[qpriv->r_tid_tail];
3765                 ptr = ack_to_tid_req(e);
3766
3767                 if (e->opcode != TID_OP(WRITE_REQ) ||
3768                     ptr->comp_seg == ptr->total_segs) {
3769                         if (qpriv->r_tid_tail == qpriv->r_tid_ack)
3770                                 qpriv->r_tid_ack = qp->r_head_ack_queue;
3771                         qpriv->r_tid_tail = qp->r_head_ack_queue;
3772                 }
3773         }
3774 update_head:
3775         qp->r_head_ack_queue = next;
3776         qpriv->r_tid_head = qp->r_head_ack_queue;
3777
3778         hfi1_tid_write_alloc_resources(qp, true);
3779         trace_hfi1_tid_write_rsp_rcv_req(qp);
3780
3781         /* Schedule the send tasklet. */
3782         qp->s_flags |= RVT_S_RESP_PENDING;
3783         if (fecn)
3784                 qp->s_flags |= RVT_S_ECN;
3785         hfi1_schedule_send(qp);
3786
3787         spin_unlock_irqrestore(&qp->s_lock, flags);
3788         return;
3789
3790 nack_inv_unlock:
3791         spin_unlock_irqrestore(&qp->s_lock, flags);
3792 nack_inv:
3793         rvt_rc_error(qp, IB_WC_LOC_QP_OP_ERR);
3794         qp->r_nak_state = IB_NAK_INVALID_REQUEST;
3795         qp->r_ack_psn = qp->r_psn;
3796         /* Queue NAK for later */
3797         rc_defered_ack(rcd, qp);
3798         return;
3799 nack_acc:
3800         spin_unlock_irqrestore(&qp->s_lock, flags);
3801         rvt_rc_error(qp, IB_WC_LOC_PROT_ERR);
3802         qp->r_nak_state = IB_NAK_REMOTE_ACCESS_ERROR;
3803         qp->r_ack_psn = qp->r_psn;
3804 }
3805
3806 u32 hfi1_build_tid_rdma_write_resp(struct rvt_qp *qp, struct rvt_ack_entry *e,
3807                                    struct ib_other_headers *ohdr, u32 *bth1,
3808                                    u32 bth2, u32 *len,
3809                                    struct rvt_sge_state **ss)
3810 {
3811         struct hfi1_ack_priv *epriv = e->priv;
3812         struct tid_rdma_request *req = &epriv->tid_req;
3813         struct hfi1_qp_priv *qpriv = qp->priv;
3814         struct tid_rdma_flow *flow = NULL;
3815         u32 resp_len = 0, hdwords = 0;
3816         void *resp_addr = NULL;
3817         struct tid_rdma_params *remote;
3818
3819         trace_hfi1_tid_req_build_write_resp(qp, 0, e->opcode, e->psn, e->lpsn,
3820                                             req);
3821         trace_hfi1_tid_write_rsp_build_resp(qp);
3822         trace_hfi1_rsp_build_tid_write_resp(qp, bth2);
3823         flow = &req->flows[req->flow_idx];
3824         switch (req->state) {
3825         default:
3826                 /*
3827                  * Try to allocate resources here in case QP was queued and was
3828                  * later scheduled when resources became available
3829                  */
3830                 hfi1_tid_write_alloc_resources(qp, false);
3831
3832                 /* We've already sent everything which is ready */
3833                 if (req->cur_seg >= req->alloc_seg)
3834                         goto done;
3835
3836                 /*
3837                  * Resources can be assigned but responses cannot be sent in
3838                  * rnr_nak state, till the resent request is received
3839                  */
3840                 if (qpriv->rnr_nak_state == TID_RNR_NAK_SENT)
3841                         goto done;
3842
3843                 req->state = TID_REQUEST_ACTIVE;
3844                 trace_hfi1_tid_flow_build_write_resp(qp, req->flow_idx, flow);
3845                 req->flow_idx = CIRC_NEXT(req->flow_idx, MAX_FLOWS);
3846                 hfi1_add_tid_reap_timer(qp);
3847                 break;
3848
3849         case TID_REQUEST_RESEND_ACTIVE:
3850         case TID_REQUEST_RESEND:
3851                 trace_hfi1_tid_flow_build_write_resp(qp, req->flow_idx, flow);
3852                 req->flow_idx = CIRC_NEXT(req->flow_idx, MAX_FLOWS);
3853                 if (!CIRC_CNT(req->setup_head, req->flow_idx, MAX_FLOWS))
3854                         req->state = TID_REQUEST_ACTIVE;
3855
3856                 hfi1_mod_tid_reap_timer(qp);
3857                 break;
3858         }
3859         flow->flow_state.resp_ib_psn = bth2;
3860         resp_addr = (void *)flow->tid_entry;
3861         resp_len = sizeof(*flow->tid_entry) * flow->tidcnt;
3862         req->cur_seg++;
3863
3864         memset(&ohdr->u.tid_rdma.w_rsp, 0, sizeof(ohdr->u.tid_rdma.w_rsp));
3865         epriv->ss.sge.vaddr = resp_addr;
3866         epriv->ss.sge.sge_length = resp_len;
3867         epriv->ss.sge.length = epriv->ss.sge.sge_length;
3868         /*
3869          * We can safely zero these out. Since the first SGE covers the
3870          * entire packet, nothing else should even look at the MR.
3871          */
3872         epriv->ss.sge.mr = NULL;
3873         epriv->ss.sge.m = 0;
3874         epriv->ss.sge.n = 0;
3875
3876         epriv->ss.sg_list = NULL;
3877         epriv->ss.total_len = epriv->ss.sge.sge_length;
3878         epriv->ss.num_sge = 1;
3879
3880         *ss = &epriv->ss;
3881         *len = epriv->ss.total_len;
3882
3883         /* Construct the TID RDMA WRITE RESP packet header */
3884         rcu_read_lock();
3885         remote = rcu_dereference(qpriv->tid_rdma.remote);
3886
3887         KDETH_RESET(ohdr->u.tid_rdma.w_rsp.kdeth0, KVER, 0x1);
3888         KDETH_RESET(ohdr->u.tid_rdma.w_rsp.kdeth1, JKEY, remote->jkey);
3889         ohdr->u.tid_rdma.w_rsp.aeth = rvt_compute_aeth(qp);
3890         ohdr->u.tid_rdma.w_rsp.tid_flow_psn =
3891                 cpu_to_be32((flow->flow_state.generation <<
3892                              HFI1_KDETH_BTH_SEQ_SHIFT) |
3893                             (flow->flow_state.spsn &
3894                              HFI1_KDETH_BTH_SEQ_MASK));
3895         ohdr->u.tid_rdma.w_rsp.tid_flow_qp =
3896                 cpu_to_be32(qpriv->tid_rdma.local.qp |
3897                             ((flow->idx & TID_RDMA_DESTQP_FLOW_MASK) <<
3898                              TID_RDMA_DESTQP_FLOW_SHIFT) |
3899                             qpriv->rcd->ctxt);
3900         ohdr->u.tid_rdma.w_rsp.verbs_qp = cpu_to_be32(qp->remote_qpn);
3901         *bth1 = remote->qp;
3902         rcu_read_unlock();
3903         hdwords = sizeof(ohdr->u.tid_rdma.w_rsp) / sizeof(u32);
3904         qpriv->pending_tid_w_segs++;
3905 done:
3906         return hdwords;
3907 }
3908
3909 static void hfi1_add_tid_reap_timer(struct rvt_qp *qp)
3910 {
3911         struct hfi1_qp_priv *qpriv = qp->priv;
3912
3913         lockdep_assert_held(&qp->s_lock);
3914         if (!(qpriv->s_flags & HFI1_R_TID_RSC_TIMER)) {
3915                 qpriv->s_flags |= HFI1_R_TID_RSC_TIMER;
3916                 qpriv->s_tid_timer.expires = jiffies +
3917                         qpriv->tid_timer_timeout_jiffies;
3918                 add_timer(&qpriv->s_tid_timer);
3919         }
3920 }
3921
3922 static void hfi1_mod_tid_reap_timer(struct rvt_qp *qp)
3923 {
3924         struct hfi1_qp_priv *qpriv = qp->priv;
3925
3926         lockdep_assert_held(&qp->s_lock);
3927         qpriv->s_flags |= HFI1_R_TID_RSC_TIMER;
3928         mod_timer(&qpriv->s_tid_timer, jiffies +
3929                   qpriv->tid_timer_timeout_jiffies);
3930 }
3931
3932 static int hfi1_stop_tid_reap_timer(struct rvt_qp *qp)
3933 {
3934         struct hfi1_qp_priv *qpriv = qp->priv;
3935         int rval = 0;
3936
3937         lockdep_assert_held(&qp->s_lock);
3938         if (qpriv->s_flags & HFI1_R_TID_RSC_TIMER) {
3939                 rval = del_timer(&qpriv->s_tid_timer);
3940                 qpriv->s_flags &= ~HFI1_R_TID_RSC_TIMER;
3941         }
3942         return rval;
3943 }
3944
3945 void hfi1_del_tid_reap_timer(struct rvt_qp *qp)
3946 {
3947         struct hfi1_qp_priv *qpriv = qp->priv;
3948
3949         del_timer_sync(&qpriv->s_tid_timer);
3950         qpriv->s_flags &= ~HFI1_R_TID_RSC_TIMER;
3951 }
3952
3953 static void hfi1_tid_timeout(struct timer_list *t)
3954 {
3955         struct hfi1_qp_priv *qpriv = from_timer(qpriv, t, s_tid_timer);
3956         struct rvt_qp *qp = qpriv->owner;
3957         struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
3958         unsigned long flags;
3959         u32 i;
3960
3961         spin_lock_irqsave(&qp->r_lock, flags);
3962         spin_lock(&qp->s_lock);
3963         if (qpriv->s_flags & HFI1_R_TID_RSC_TIMER) {
3964                 dd_dev_warn(dd_from_ibdev(qp->ibqp.device), "[QP%u] %s %d\n",
3965                             qp->ibqp.qp_num, __func__, __LINE__);
3966                 trace_hfi1_msg_tid_timeout(/* msg */
3967                         qp, "resource timeout = ",
3968                         (u64)qpriv->tid_timer_timeout_jiffies);
3969                 hfi1_stop_tid_reap_timer(qp);
3970                 /*
3971                  * Go though the entire ack queue and clear any outstanding
3972                  * HW flow and RcvArray resources.
3973                  */
3974                 hfi1_kern_clear_hw_flow(qpriv->rcd, qp);
3975                 for (i = 0; i < rvt_max_atomic(rdi); i++) {
3976                         struct tid_rdma_request *req =
3977                                 ack_to_tid_req(&qp->s_ack_queue[i]);
3978
3979                         hfi1_kern_exp_rcv_clear_all(req);
3980                 }
3981                 spin_unlock(&qp->s_lock);
3982                 if (qp->ibqp.event_handler) {
3983                         struct ib_event ev;
3984
3985                         ev.device = qp->ibqp.device;
3986                         ev.element.qp = &qp->ibqp;
3987                         ev.event = IB_EVENT_QP_FATAL;
3988                         qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
3989                 }
3990                 rvt_rc_error(qp, IB_WC_RESP_TIMEOUT_ERR);
3991                 goto unlock_r_lock;
3992         }
3993         spin_unlock(&qp->s_lock);
3994 unlock_r_lock:
3995         spin_unlock_irqrestore(&qp->r_lock, flags);
3996 }
3997
3998 void hfi1_rc_rcv_tid_rdma_write_resp(struct hfi1_packet *packet)
3999 {
4000         /* HANDLER FOR TID RDMA WRITE RESPONSE packet (Requestor side */
4001
4002         /*
4003          * 1. Find matching SWQE
4004          * 2. Check that TIDENTRY array has enough space for a complete
4005          *    segment. If not, put QP in error state.
4006          * 3. Save response data in struct tid_rdma_req and struct tid_rdma_flow
4007          * 4. Remove HFI1_S_WAIT_TID_RESP from s_flags.
4008          * 5. Set qp->s_state
4009          * 6. Kick the send engine (hfi1_schedule_send())
4010          */
4011         struct ib_other_headers *ohdr = packet->ohdr;
4012         struct rvt_qp *qp = packet->qp;
4013         struct hfi1_qp_priv *qpriv = qp->priv;
4014         struct hfi1_ctxtdata *rcd = packet->rcd;
4015         struct rvt_swqe *wqe;
4016         struct tid_rdma_request *req;
4017         struct tid_rdma_flow *flow;
4018         enum ib_wc_status status;
4019         u32 opcode, aeth, psn, flow_psn, i, tidlen = 0, pktlen;
4020         bool fecn;
4021         unsigned long flags;
4022
4023         fecn = process_ecn(qp, packet);
4024         psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
4025         aeth = be32_to_cpu(ohdr->u.tid_rdma.w_rsp.aeth);
4026         opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff;
4027
4028         spin_lock_irqsave(&qp->s_lock, flags);
4029
4030         /* Ignore invalid responses */
4031         if (cmp_psn(psn, qp->s_next_psn) >= 0)
4032                 goto ack_done;
4033
4034         /* Ignore duplicate responses. */
4035         if (unlikely(cmp_psn(psn, qp->s_last_psn) <= 0))
4036                 goto ack_done;
4037
4038         if (unlikely(qp->s_acked == qp->s_tail))
4039                 goto ack_done;
4040
4041         /*
4042          * If we are waiting for a particular packet sequence number
4043          * due to a request being resent, check for it. Otherwise,
4044          * ensure that we haven't missed anything.
4045          */
4046         if (qp->r_flags & RVT_R_RDMAR_SEQ) {
4047                 if (cmp_psn(psn, qp->s_last_psn + 1) != 0)
4048                         goto ack_done;
4049                 qp->r_flags &= ~RVT_R_RDMAR_SEQ;
4050         }
4051
4052         wqe = rvt_get_swqe_ptr(qp, qpriv->s_tid_cur);
4053         if (unlikely(wqe->wr.opcode != IB_WR_TID_RDMA_WRITE))
4054                 goto ack_op_err;
4055
4056         req = wqe_to_tid_req(wqe);
4057         /*
4058          * If we've lost ACKs and our acked_tail pointer is too far
4059          * behind, don't overwrite segments. Just drop the packet and
4060          * let the reliability protocol take care of it.
4061          */
4062         if (!CIRC_SPACE(req->setup_head, req->acked_tail, MAX_FLOWS))
4063                 goto ack_done;
4064
4065         /*
4066          * The call to do_rc_ack() should be last in the chain of
4067          * packet checks because it will end up updating the QP state.
4068          * Therefore, anything that would prevent the packet from
4069          * being accepted as a successful response should be prior
4070          * to it.
4071          */
4072         if (!do_rc_ack(qp, aeth, psn, opcode, 0, rcd))
4073                 goto ack_done;
4074
4075         trace_hfi1_ack(qp, psn);
4076
4077         flow = &req->flows[req->setup_head];
4078         flow->pkt = 0;
4079         flow->tid_idx = 0;
4080         flow->tid_offset = 0;
4081         flow->sent = 0;
4082         flow->resync_npkts = 0;
4083         flow->tid_qpn = be32_to_cpu(ohdr->u.tid_rdma.w_rsp.tid_flow_qp);
4084         flow->idx = (flow->tid_qpn >> TID_RDMA_DESTQP_FLOW_SHIFT) &
4085                 TID_RDMA_DESTQP_FLOW_MASK;
4086         flow_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.w_rsp.tid_flow_psn));
4087         flow->flow_state.generation = flow_psn >> HFI1_KDETH_BTH_SEQ_SHIFT;
4088         flow->flow_state.spsn = flow_psn & HFI1_KDETH_BTH_SEQ_MASK;
4089         flow->flow_state.resp_ib_psn = psn;
4090         flow->length = min_t(u32, req->seg_len,
4091                              (wqe->length - (req->comp_seg * req->seg_len)));
4092
4093         flow->npkts = rvt_div_round_up_mtu(qp, flow->length);
4094         flow->flow_state.lpsn = flow->flow_state.spsn +
4095                 flow->npkts - 1;
4096         /* payload length = packet length - (header length + ICRC length) */
4097         pktlen = packet->tlen - (packet->hlen + 4);
4098         if (pktlen > sizeof(flow->tid_entry)) {
4099                 status = IB_WC_LOC_LEN_ERR;
4100                 goto ack_err;
4101         }
4102         memcpy(flow->tid_entry, packet->ebuf, pktlen);
4103         flow->tidcnt = pktlen / sizeof(*flow->tid_entry);
4104         trace_hfi1_tid_flow_rcv_write_resp(qp, req->setup_head, flow);
4105
4106         req->comp_seg++;
4107         trace_hfi1_tid_write_sender_rcv_resp(qp, 0);
4108         /*
4109          * Walk the TID_ENTRY list to make sure we have enough space for a
4110          * complete segment.
4111          */
4112         for (i = 0; i < flow->tidcnt; i++) {
4113                 trace_hfi1_tid_entry_rcv_write_resp(/* entry */
4114                         qp, i, flow->tid_entry[i]);
4115                 if (!EXP_TID_GET(flow->tid_entry[i], LEN)) {
4116                         status = IB_WC_LOC_LEN_ERR;
4117                         goto ack_err;
4118                 }
4119                 tidlen += EXP_TID_GET(flow->tid_entry[i], LEN);
4120         }
4121         if (tidlen * PAGE_SIZE < flow->length) {
4122                 status = IB_WC_LOC_LEN_ERR;
4123                 goto ack_err;
4124         }
4125
4126         trace_hfi1_tid_req_rcv_write_resp(qp, 0, wqe->wr.opcode, wqe->psn,
4127                                           wqe->lpsn, req);
4128         /*
4129          * If this is the first response for this request, set the initial
4130          * flow index to the current flow.
4131          */
4132         if (!cmp_psn(psn, wqe->psn)) {
4133                 req->r_last_acked = mask_psn(wqe->psn - 1);
4134                 /* Set acked flow index to head index */
4135                 req->acked_tail = req->setup_head;
4136         }
4137
4138         /* advance circular buffer head */
4139         req->setup_head = CIRC_NEXT(req->setup_head, MAX_FLOWS);
4140         req->state = TID_REQUEST_ACTIVE;
4141
4142         /*
4143          * If all responses for this TID RDMA WRITE request have been received
4144          * advance the pointer to the next one.
4145          * Since TID RDMA requests could be mixed in with regular IB requests,
4146          * they might not appear sequentially in the queue. Therefore, the
4147          * next request needs to be "found".
4148          */
4149         if (qpriv->s_tid_cur != qpriv->s_tid_head &&
4150             req->comp_seg == req->total_segs) {
4151                 for (i = qpriv->s_tid_cur + 1; ; i++) {
4152                         if (i == qp->s_size)
4153                                 i = 0;
4154                         wqe = rvt_get_swqe_ptr(qp, i);
4155                         if (i == qpriv->s_tid_head)
4156                                 break;
4157                         if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE)
4158                                 break;
4159                 }
4160                 qpriv->s_tid_cur = i;
4161         }
4162         qp->s_flags &= ~HFI1_S_WAIT_TID_RESP;
4163         hfi1_schedule_tid_send(qp);
4164         goto ack_done;
4165
4166 ack_op_err:
4167         status = IB_WC_LOC_QP_OP_ERR;
4168 ack_err:
4169         rvt_error_qp(qp, status);
4170 ack_done:
4171         if (fecn)
4172                 qp->s_flags |= RVT_S_ECN;
4173         spin_unlock_irqrestore(&qp->s_lock, flags);
4174 }
4175
4176 bool hfi1_build_tid_rdma_packet(struct rvt_swqe *wqe,
4177                                 struct ib_other_headers *ohdr,
4178                                 u32 *bth1, u32 *bth2, u32 *len)
4179 {
4180         struct tid_rdma_request *req = wqe_to_tid_req(wqe);
4181         struct tid_rdma_flow *flow = &req->flows[req->clear_tail];
4182         struct tid_rdma_params *remote;
4183         struct rvt_qp *qp = req->qp;
4184         struct hfi1_qp_priv *qpriv = qp->priv;
4185         u32 tidentry = flow->tid_entry[flow->tid_idx];
4186         u32 tidlen = EXP_TID_GET(tidentry, LEN) << PAGE_SHIFT;
4187         struct tid_rdma_write_data *wd = &ohdr->u.tid_rdma.w_data;
4188         u32 next_offset, om = KDETH_OM_LARGE;
4189         bool last_pkt;
4190
4191         if (!tidlen) {
4192                 hfi1_trdma_send_complete(qp, wqe, IB_WC_REM_INV_RD_REQ_ERR);
4193                 rvt_error_qp(qp, IB_WC_REM_INV_RD_REQ_ERR);
4194         }
4195
4196         *len = min_t(u32, qp->pmtu, tidlen - flow->tid_offset);
4197         flow->sent += *len;
4198         next_offset = flow->tid_offset + *len;
4199         last_pkt = (flow->tid_idx == (flow->tidcnt - 1) &&
4200                     next_offset >= tidlen) || (flow->sent >= flow->length);
4201         trace_hfi1_tid_entry_build_write_data(qp, flow->tid_idx, tidentry);
4202         trace_hfi1_tid_flow_build_write_data(qp, req->clear_tail, flow);
4203
4204         rcu_read_lock();
4205         remote = rcu_dereference(qpriv->tid_rdma.remote);
4206         KDETH_RESET(wd->kdeth0, KVER, 0x1);
4207         KDETH_SET(wd->kdeth0, SH, !last_pkt);
4208         KDETH_SET(wd->kdeth0, INTR, !!(!last_pkt && remote->urg));
4209         KDETH_SET(wd->kdeth0, TIDCTRL, EXP_TID_GET(tidentry, CTRL));
4210         KDETH_SET(wd->kdeth0, TID, EXP_TID_GET(tidentry, IDX));
4211         KDETH_SET(wd->kdeth0, OM, om == KDETH_OM_LARGE);
4212         KDETH_SET(wd->kdeth0, OFFSET, flow->tid_offset / om);
4213         KDETH_RESET(wd->kdeth1, JKEY, remote->jkey);
4214         wd->verbs_qp = cpu_to_be32(qp->remote_qpn);
4215         rcu_read_unlock();
4216
4217         *bth1 = flow->tid_qpn;
4218         *bth2 = mask_psn(((flow->flow_state.spsn + flow->pkt++) &
4219                          HFI1_KDETH_BTH_SEQ_MASK) |
4220                          (flow->flow_state.generation <<
4221                           HFI1_KDETH_BTH_SEQ_SHIFT));
4222         if (last_pkt) {
4223                 /* PSNs are zero-based, so +1 to count number of packets */
4224                 if (flow->flow_state.lpsn + 1 +
4225                     rvt_div_round_up_mtu(qp, req->seg_len) >
4226                     MAX_TID_FLOW_PSN)
4227                         req->state = TID_REQUEST_SYNC;
4228                 *bth2 |= IB_BTH_REQ_ACK;
4229         }
4230
4231         if (next_offset >= tidlen) {
4232                 flow->tid_offset = 0;
4233                 flow->tid_idx++;
4234         } else {
4235                 flow->tid_offset = next_offset;
4236         }
4237         return last_pkt;
4238 }
4239
4240 void hfi1_rc_rcv_tid_rdma_write_data(struct hfi1_packet *packet)
4241 {
4242         struct rvt_qp *qp = packet->qp;
4243         struct hfi1_qp_priv *priv = qp->priv;
4244         struct hfi1_ctxtdata *rcd = priv->rcd;
4245         struct ib_other_headers *ohdr = packet->ohdr;
4246         struct rvt_ack_entry *e;
4247         struct tid_rdma_request *req;
4248         struct tid_rdma_flow *flow;
4249         struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
4250         unsigned long flags;
4251         u32 psn, next;
4252         u8 opcode;
4253         bool fecn;
4254
4255         fecn = process_ecn(qp, packet);
4256         psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
4257         opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff;
4258
4259         /*
4260          * All error handling should be done by now. If we are here, the packet
4261          * is either good or been accepted by the error handler.
4262          */
4263         spin_lock_irqsave(&qp->s_lock, flags);
4264         e = &qp->s_ack_queue[priv->r_tid_tail];
4265         req = ack_to_tid_req(e);
4266         flow = &req->flows[req->clear_tail];
4267         if (cmp_psn(psn, full_flow_psn(flow, flow->flow_state.lpsn))) {
4268                 update_r_next_psn_fecn(packet, priv, rcd, flow, fecn);
4269
4270                 if (cmp_psn(psn, flow->flow_state.r_next_psn))
4271                         goto send_nak;
4272
4273                 flow->flow_state.r_next_psn = mask_psn(psn + 1);
4274                 /*
4275                  * Copy the payload to destination buffer if this packet is
4276                  * delivered as an eager packet due to RSM rule and FECN.
4277                  * The RSM rule selects FECN bit in BTH and SH bit in
4278                  * KDETH header and therefore will not match the last
4279                  * packet of each segment that has SH bit cleared.
4280                  */
4281                 if (fecn && packet->etype == RHF_RCV_TYPE_EAGER) {
4282                         struct rvt_sge_state ss;
4283                         u32 len;
4284                         u32 tlen = packet->tlen;
4285                         u16 hdrsize = packet->hlen;
4286                         u8 pad = packet->pad;
4287                         u8 extra_bytes = pad + packet->extra_byte +
4288                                 (SIZE_OF_CRC << 2);
4289                         u32 pmtu = qp->pmtu;
4290
4291                         if (unlikely(tlen != (hdrsize + pmtu + extra_bytes)))
4292                                 goto send_nak;
4293                         len = req->comp_seg * req->seg_len;
4294                         len += delta_psn(psn,
4295                                 full_flow_psn(flow, flow->flow_state.spsn)) *
4296                                 pmtu;
4297                         if (unlikely(req->total_len - len < pmtu))
4298                                 goto send_nak;
4299
4300                         /*
4301                          * The e->rdma_sge field is set when TID RDMA WRITE REQ
4302                          * is first received and is never modified thereafter.
4303                          */
4304                         ss.sge = e->rdma_sge;
4305                         ss.sg_list = NULL;
4306                         ss.num_sge = 1;
4307                         ss.total_len = req->total_len;
4308                         rvt_skip_sge(&ss, len, false);
4309                         rvt_copy_sge(qp, &ss, packet->payload, pmtu, false,
4310                                      false);
4311                         /* Raise the sw sequence check flag for next packet */
4312                         priv->r_next_psn_kdeth = mask_psn(psn + 1);
4313                         priv->s_flags |= HFI1_R_TID_SW_PSN;
4314                 }
4315                 goto exit;
4316         }
4317         flow->flow_state.r_next_psn = mask_psn(psn + 1);
4318         hfi1_kern_exp_rcv_clear(req);
4319         priv->alloc_w_segs--;
4320         rcd->flows[flow->idx].psn = psn & HFI1_KDETH_BTH_SEQ_MASK;
4321         req->comp_seg++;
4322         priv->s_nak_state = 0;
4323
4324         /*
4325          * Release the flow if one of the following conditions has been met:
4326          *  - The request has reached a sync point AND all outstanding
4327          *    segments have been completed, or
4328          *  - The entire request is complete and there are no more requests
4329          *    (of any kind) in the queue.
4330          */
4331         trace_hfi1_rsp_rcv_tid_write_data(qp, psn);
4332         trace_hfi1_tid_req_rcv_write_data(qp, 0, e->opcode, e->psn, e->lpsn,
4333                                           req);
4334         trace_hfi1_tid_write_rsp_rcv_data(qp);
4335         if (priv->r_tid_ack == HFI1_QP_WQE_INVALID)
4336                 priv->r_tid_ack = priv->r_tid_tail;
4337
4338         if (opcode == TID_OP(WRITE_DATA_LAST)) {
4339                 release_rdma_sge_mr(e);
4340                 for (next = priv->r_tid_tail + 1; ; next++) {
4341                         if (next > rvt_size_atomic(&dev->rdi))
4342                                 next = 0;
4343                         if (next == priv->r_tid_head)
4344                                 break;
4345                         e = &qp->s_ack_queue[next];
4346                         if (e->opcode == TID_OP(WRITE_REQ))
4347                                 break;
4348                 }
4349                 priv->r_tid_tail = next;
4350                 if (++qp->s_acked_ack_queue > rvt_size_atomic(&dev->rdi))
4351                         qp->s_acked_ack_queue = 0;
4352         }
4353
4354         hfi1_tid_write_alloc_resources(qp, true);
4355
4356         /*
4357          * If we need to generate more responses, schedule the
4358          * send engine.
4359          */
4360         if (req->cur_seg < req->total_segs ||
4361             qp->s_tail_ack_queue != qp->r_head_ack_queue) {
4362                 qp->s_flags |= RVT_S_RESP_PENDING;
4363                 hfi1_schedule_send(qp);
4364         }
4365
4366         priv->pending_tid_w_segs--;
4367         if (priv->s_flags & HFI1_R_TID_RSC_TIMER) {
4368                 if (priv->pending_tid_w_segs)
4369                         hfi1_mod_tid_reap_timer(req->qp);
4370                 else
4371                         hfi1_stop_tid_reap_timer(req->qp);
4372         }
4373
4374 done:
4375         priv->s_flags |= RVT_S_ACK_PENDING;
4376         hfi1_schedule_tid_send(qp);
4377 exit:
4378         priv->r_next_psn_kdeth = flow->flow_state.r_next_psn;
4379         if (fecn)
4380                 qp->s_flags |= RVT_S_ECN;
4381         spin_unlock_irqrestore(&qp->s_lock, flags);
4382         return;
4383
4384 send_nak:
4385         if (!priv->s_nak_state) {
4386                 priv->s_nak_state = IB_NAK_PSN_ERROR;
4387                 priv->s_nak_psn = flow->flow_state.r_next_psn;
4388                 priv->s_flags |= RVT_S_ACK_PENDING;
4389                 if (priv->r_tid_ack == HFI1_QP_WQE_INVALID)
4390                         priv->r_tid_ack = priv->r_tid_tail;
4391                 hfi1_schedule_tid_send(qp);
4392         }
4393         goto done;
4394 }
4395
4396 static bool hfi1_tid_rdma_is_resync_psn(u32 psn)
4397 {
4398         return (bool)((psn & HFI1_KDETH_BTH_SEQ_MASK) ==
4399                       HFI1_KDETH_BTH_SEQ_MASK);
4400 }
4401
4402 u32 hfi1_build_tid_rdma_write_ack(struct rvt_qp *qp, struct rvt_ack_entry *e,
4403                                   struct ib_other_headers *ohdr, u16 iflow,
4404                                   u32 *bth1, u32 *bth2)
4405 {
4406         struct hfi1_qp_priv *qpriv = qp->priv;
4407         struct tid_flow_state *fs = &qpriv->flow_state;
4408         struct tid_rdma_request *req = ack_to_tid_req(e);
4409         struct tid_rdma_flow *flow = &req->flows[iflow];
4410         struct tid_rdma_params *remote;
4411
4412         rcu_read_lock();
4413         remote = rcu_dereference(qpriv->tid_rdma.remote);
4414         KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth1, JKEY, remote->jkey);
4415         ohdr->u.tid_rdma.ack.verbs_qp = cpu_to_be32(qp->remote_qpn);
4416         *bth1 = remote->qp;
4417         rcu_read_unlock();
4418
4419         if (qpriv->resync) {
4420                 *bth2 = mask_psn((fs->generation <<
4421                                   HFI1_KDETH_BTH_SEQ_SHIFT) - 1);
4422                 ohdr->u.tid_rdma.ack.aeth = rvt_compute_aeth(qp);
4423         } else if (qpriv->s_nak_state) {
4424                 *bth2 = mask_psn(qpriv->s_nak_psn);
4425                 ohdr->u.tid_rdma.ack.aeth =
4426                         cpu_to_be32((qp->r_msn & IB_MSN_MASK) |
4427                                     (qpriv->s_nak_state <<
4428                                      IB_AETH_CREDIT_SHIFT));
4429         } else {
4430                 *bth2 = full_flow_psn(flow, flow->flow_state.lpsn);
4431                 ohdr->u.tid_rdma.ack.aeth = rvt_compute_aeth(qp);
4432         }
4433         KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth0, KVER, 0x1);
4434         ohdr->u.tid_rdma.ack.tid_flow_qp =
4435                 cpu_to_be32(qpriv->tid_rdma.local.qp |
4436                             ((flow->idx & TID_RDMA_DESTQP_FLOW_MASK) <<
4437                              TID_RDMA_DESTQP_FLOW_SHIFT) |
4438                             qpriv->rcd->ctxt);
4439
4440         ohdr->u.tid_rdma.ack.tid_flow_psn = 0;
4441         ohdr->u.tid_rdma.ack.verbs_psn =
4442                 cpu_to_be32(flow->flow_state.resp_ib_psn);
4443
4444         if (qpriv->resync) {
4445                 /*
4446                  * If the PSN before the current expect KDETH PSN is the
4447                  * RESYNC PSN, then we never received a good TID RDMA WRITE
4448                  * DATA packet after a previous RESYNC.
4449                  * In this case, the next expected KDETH PSN stays the same.
4450                  */
4451                 if (hfi1_tid_rdma_is_resync_psn(qpriv->r_next_psn_kdeth - 1)) {
4452                         ohdr->u.tid_rdma.ack.tid_flow_psn =
4453                                 cpu_to_be32(qpriv->r_next_psn_kdeth_save);
4454                 } else {
4455                         /*
4456                          * Because the KDETH PSNs jump during a RESYNC, it's
4457                          * not possible to infer (or compute) the previous value
4458                          * of r_next_psn_kdeth in the case of back-to-back
4459                          * RESYNC packets. Therefore, we save it.
4460                          */
4461                         qpriv->r_next_psn_kdeth_save =
4462                                 qpriv->r_next_psn_kdeth - 1;
4463                         ohdr->u.tid_rdma.ack.tid_flow_psn =
4464                                 cpu_to_be32(qpriv->r_next_psn_kdeth_save);
4465                         qpriv->r_next_psn_kdeth = mask_psn(*bth2 + 1);
4466                 }
4467                 qpriv->resync = false;
4468         }
4469
4470         return sizeof(ohdr->u.tid_rdma.ack) / sizeof(u32);
4471 }
4472
4473 void hfi1_rc_rcv_tid_rdma_ack(struct hfi1_packet *packet)
4474 {
4475         struct ib_other_headers *ohdr = packet->ohdr;
4476         struct rvt_qp *qp = packet->qp;
4477         struct hfi1_qp_priv *qpriv = qp->priv;
4478         struct rvt_swqe *wqe;
4479         struct tid_rdma_request *req;
4480         struct tid_rdma_flow *flow;
4481         u32 aeth, psn, req_psn, ack_psn, flpsn, resync_psn, ack_kpsn;
4482         unsigned long flags;
4483         u16 fidx;
4484
4485         trace_hfi1_tid_write_sender_rcv_tid_ack(qp, 0);
4486         process_ecn(qp, packet);
4487         psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
4488         aeth = be32_to_cpu(ohdr->u.tid_rdma.ack.aeth);
4489         req_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.ack.verbs_psn));
4490         resync_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.ack.tid_flow_psn));
4491
4492         spin_lock_irqsave(&qp->s_lock, flags);
4493         trace_hfi1_rcv_tid_ack(qp, aeth, psn, req_psn, resync_psn);
4494
4495         /* If we are waiting for an ACK to RESYNC, drop any other packets */
4496         if ((qp->s_flags & HFI1_S_WAIT_HALT) &&
4497             cmp_psn(psn, qpriv->s_resync_psn))
4498                 goto ack_op_err;
4499
4500         ack_psn = req_psn;
4501         if (hfi1_tid_rdma_is_resync_psn(psn))
4502                 ack_kpsn = resync_psn;
4503         else
4504                 ack_kpsn = psn;
4505         if (aeth >> 29) {
4506                 ack_psn--;
4507                 ack_kpsn--;
4508         }
4509
4510         if (unlikely(qp->s_acked == qp->s_tail))
4511                 goto ack_op_err;
4512
4513         wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
4514
4515         if (wqe->wr.opcode != IB_WR_TID_RDMA_WRITE)
4516                 goto ack_op_err;
4517
4518         req = wqe_to_tid_req(wqe);
4519         trace_hfi1_tid_req_rcv_tid_ack(qp, 0, wqe->wr.opcode, wqe->psn,
4520                                        wqe->lpsn, req);
4521         flow = &req->flows[req->acked_tail];
4522         trace_hfi1_tid_flow_rcv_tid_ack(qp, req->acked_tail, flow);
4523
4524         /* Drop stale ACK/NAK */
4525         if (cmp_psn(psn, full_flow_psn(flow, flow->flow_state.spsn)) < 0 ||
4526             cmp_psn(req_psn, flow->flow_state.resp_ib_psn) < 0)
4527                 goto ack_op_err;
4528
4529         while (cmp_psn(ack_kpsn,
4530                        full_flow_psn(flow, flow->flow_state.lpsn)) >= 0 &&
4531                req->ack_seg < req->cur_seg) {
4532                 req->ack_seg++;
4533                 /* advance acked segment pointer */
4534                 req->acked_tail = CIRC_NEXT(req->acked_tail, MAX_FLOWS);
4535                 req->r_last_acked = flow->flow_state.resp_ib_psn;
4536                 trace_hfi1_tid_req_rcv_tid_ack(qp, 0, wqe->wr.opcode, wqe->psn,
4537                                                wqe->lpsn, req);
4538                 if (req->ack_seg == req->total_segs) {
4539                         req->state = TID_REQUEST_COMPLETE;
4540                         wqe = do_rc_completion(qp, wqe,
4541                                                to_iport(qp->ibqp.device,
4542                                                         qp->port_num));
4543                         trace_hfi1_sender_rcv_tid_ack(qp);
4544                         atomic_dec(&qpriv->n_tid_requests);
4545                         if (qp->s_acked == qp->s_tail)
4546                                 break;
4547                         if (wqe->wr.opcode != IB_WR_TID_RDMA_WRITE)
4548                                 break;
4549                         req = wqe_to_tid_req(wqe);
4550                 }
4551                 flow = &req->flows[req->acked_tail];
4552                 trace_hfi1_tid_flow_rcv_tid_ack(qp, req->acked_tail, flow);
4553         }
4554
4555         trace_hfi1_tid_req_rcv_tid_ack(qp, 0, wqe->wr.opcode, wqe->psn,
4556                                        wqe->lpsn, req);
4557         switch (aeth >> 29) {
4558         case 0:         /* ACK */
4559                 if (qpriv->s_flags & RVT_S_WAIT_ACK)
4560                         qpriv->s_flags &= ~RVT_S_WAIT_ACK;
4561                 if (!hfi1_tid_rdma_is_resync_psn(psn)) {
4562                         /* Check if there is any pending TID ACK */
4563                         if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE &&
4564                             req->ack_seg < req->cur_seg)
4565                                 hfi1_mod_tid_retry_timer(qp);
4566                         else
4567                                 hfi1_stop_tid_retry_timer(qp);
4568                         hfi1_schedule_send(qp);
4569                 } else {
4570                         u32 spsn, fpsn, last_acked, generation;
4571                         struct tid_rdma_request *rptr;
4572
4573                         /* ACK(RESYNC) */
4574                         hfi1_stop_tid_retry_timer(qp);
4575                         /* Allow new requests (see hfi1_make_tid_rdma_pkt) */
4576                         qp->s_flags &= ~HFI1_S_WAIT_HALT;
4577                         /*
4578                          * Clear RVT_S_SEND_ONE flag in case that the TID RDMA
4579                          * ACK is received after the TID retry timer is fired
4580                          * again. In this case, do not send any more TID
4581                          * RESYNC request or wait for any more TID ACK packet.
4582                          */
4583                         qpriv->s_flags &= ~RVT_S_SEND_ONE;
4584                         hfi1_schedule_send(qp);
4585
4586                         if ((qp->s_acked == qpriv->s_tid_tail &&
4587                              req->ack_seg == req->total_segs) ||
4588                             qp->s_acked == qp->s_tail) {
4589                                 qpriv->s_state = TID_OP(WRITE_DATA_LAST);
4590                                 goto done;
4591                         }
4592
4593                         if (req->ack_seg == req->comp_seg) {
4594                                 qpriv->s_state = TID_OP(WRITE_DATA);
4595                                 goto done;
4596                         }
4597
4598                         /*
4599                          * The PSN to start with is the next PSN after the
4600                          * RESYNC PSN.
4601                          */
4602                         psn = mask_psn(psn + 1);
4603                         generation = psn >> HFI1_KDETH_BTH_SEQ_SHIFT;
4604                         spsn = 0;
4605
4606                         /*
4607                          * Update to the correct WQE when we get an ACK(RESYNC)
4608                          * in the middle of a request.
4609                          */
4610                         if (delta_psn(ack_psn, wqe->lpsn))
4611                                 wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
4612                         req = wqe_to_tid_req(wqe);
4613                         flow = &req->flows[req->acked_tail];
4614                         /*
4615                          * RESYNC re-numbers the PSN ranges of all remaining
4616                          * segments. Also, PSN's start from 0 in the middle of a
4617                          * segment and the first segment size is less than the
4618                          * default number of packets. flow->resync_npkts is used
4619                          * to track the number of packets from the start of the
4620                          * real segment to the point of 0 PSN after the RESYNC
4621                          * in order to later correctly rewind the SGE.
4622                          */
4623                         fpsn = full_flow_psn(flow, flow->flow_state.spsn);
4624                         req->r_ack_psn = psn;
4625                         flow->resync_npkts +=
4626                                 delta_psn(mask_psn(resync_psn + 1), fpsn);
4627                         /*
4628                          * Renumber all packet sequence number ranges
4629                          * based on the new generation.
4630                          */
4631                         last_acked = qp->s_acked;
4632                         rptr = req;
4633                         while (1) {
4634                                 /* start from last acked segment */
4635                                 for (fidx = rptr->acked_tail;
4636                                      CIRC_CNT(rptr->setup_head, fidx,
4637                                               MAX_FLOWS);
4638                                      fidx = CIRC_NEXT(fidx, MAX_FLOWS)) {
4639                                         u32 lpsn;
4640                                         u32 gen;
4641
4642                                         flow = &rptr->flows[fidx];
4643                                         gen = flow->flow_state.generation;
4644                                         if (WARN_ON(gen == generation &&
4645                                                     flow->flow_state.spsn !=
4646                                                      spsn))
4647                                                 continue;
4648                                         lpsn = flow->flow_state.lpsn;
4649                                         lpsn = full_flow_psn(flow, lpsn);
4650                                         flow->npkts =
4651                                                 delta_psn(lpsn,
4652                                                           mask_psn(resync_psn)
4653                                                           );
4654                                         flow->flow_state.generation =
4655                                                 generation;
4656                                         flow->flow_state.spsn = spsn;
4657                                         flow->flow_state.lpsn =
4658                                                 flow->flow_state.spsn +
4659                                                 flow->npkts - 1;
4660                                         flow->pkt = 0;
4661                                         spsn += flow->npkts;
4662                                         resync_psn += flow->npkts;
4663                                         trace_hfi1_tid_flow_rcv_tid_ack(qp,
4664                                                                         fidx,
4665                                                                         flow);
4666                                 }
4667                                 if (++last_acked == qpriv->s_tid_cur + 1)
4668                                         break;
4669                                 if (last_acked == qp->s_size)
4670                                         last_acked = 0;
4671                                 wqe = rvt_get_swqe_ptr(qp, last_acked);
4672                                 rptr = wqe_to_tid_req(wqe);
4673                         }
4674                         req->cur_seg = req->ack_seg;
4675                         qpriv->s_tid_tail = qp->s_acked;
4676                         qpriv->s_state = TID_OP(WRITE_REQ);
4677                         hfi1_schedule_tid_send(qp);
4678                 }
4679 done:
4680                 qpriv->s_retry = qp->s_retry_cnt;
4681                 break;
4682
4683         case 3:         /* NAK */
4684                 hfi1_stop_tid_retry_timer(qp);
4685                 switch ((aeth >> IB_AETH_CREDIT_SHIFT) &
4686                         IB_AETH_CREDIT_MASK) {
4687                 case 0: /* PSN sequence error */
4688                         if (!req->flows)
4689                                 break;
4690                         flow = &req->flows[req->acked_tail];
4691                         flpsn = full_flow_psn(flow, flow->flow_state.lpsn);
4692                         if (cmp_psn(psn, flpsn) > 0)
4693                                 break;
4694                         trace_hfi1_tid_flow_rcv_tid_ack(qp, req->acked_tail,
4695                                                         flow);
4696                         req->r_ack_psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
4697                         req->cur_seg = req->ack_seg;
4698                         qpriv->s_tid_tail = qp->s_acked;
4699                         qpriv->s_state = TID_OP(WRITE_REQ);
4700                         qpriv->s_retry = qp->s_retry_cnt;
4701                         hfi1_schedule_tid_send(qp);
4702                         break;
4703
4704                 default:
4705                         break;
4706                 }
4707                 break;
4708
4709         default:
4710                 break;
4711         }
4712
4713 ack_op_err:
4714         spin_unlock_irqrestore(&qp->s_lock, flags);
4715 }
4716
4717 void hfi1_add_tid_retry_timer(struct rvt_qp *qp)
4718 {
4719         struct hfi1_qp_priv *priv = qp->priv;
4720         struct ib_qp *ibqp = &qp->ibqp;
4721         struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
4722
4723         lockdep_assert_held(&qp->s_lock);
4724         if (!(priv->s_flags & HFI1_S_TID_RETRY_TIMER)) {
4725                 priv->s_flags |= HFI1_S_TID_RETRY_TIMER;
4726                 priv->s_tid_retry_timer.expires = jiffies +
4727                         priv->tid_retry_timeout_jiffies + rdi->busy_jiffies;
4728                 add_timer(&priv->s_tid_retry_timer);
4729         }
4730 }
4731
4732 static void hfi1_mod_tid_retry_timer(struct rvt_qp *qp)
4733 {
4734         struct hfi1_qp_priv *priv = qp->priv;
4735         struct ib_qp *ibqp = &qp->ibqp;
4736         struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
4737
4738         lockdep_assert_held(&qp->s_lock);
4739         priv->s_flags |= HFI1_S_TID_RETRY_TIMER;
4740         mod_timer(&priv->s_tid_retry_timer, jiffies +
4741                   priv->tid_retry_timeout_jiffies + rdi->busy_jiffies);
4742 }
4743
4744 static int hfi1_stop_tid_retry_timer(struct rvt_qp *qp)
4745 {
4746         struct hfi1_qp_priv *priv = qp->priv;
4747         int rval = 0;
4748
4749         lockdep_assert_held(&qp->s_lock);
4750         if (priv->s_flags & HFI1_S_TID_RETRY_TIMER) {
4751                 rval = del_timer(&priv->s_tid_retry_timer);
4752                 priv->s_flags &= ~HFI1_S_TID_RETRY_TIMER;
4753         }
4754         return rval;
4755 }
4756
4757 void hfi1_del_tid_retry_timer(struct rvt_qp *qp)
4758 {
4759         struct hfi1_qp_priv *priv = qp->priv;
4760
4761         del_timer_sync(&priv->s_tid_retry_timer);
4762         priv->s_flags &= ~HFI1_S_TID_RETRY_TIMER;
4763 }
4764
4765 static void hfi1_tid_retry_timeout(struct timer_list *t)
4766 {
4767         struct hfi1_qp_priv *priv = from_timer(priv, t, s_tid_retry_timer);
4768         struct rvt_qp *qp = priv->owner;
4769         struct rvt_swqe *wqe;
4770         unsigned long flags;
4771         struct tid_rdma_request *req;
4772
4773         spin_lock_irqsave(&qp->r_lock, flags);
4774         spin_lock(&qp->s_lock);
4775         trace_hfi1_tid_write_sender_retry_timeout(qp, 0);
4776         if (priv->s_flags & HFI1_S_TID_RETRY_TIMER) {
4777                 hfi1_stop_tid_retry_timer(qp);
4778                 if (!priv->s_retry) {
4779                         trace_hfi1_msg_tid_retry_timeout(/* msg */
4780                                 qp,
4781                                 "Exhausted retries. Tid retry timeout = ",
4782                                 (u64)priv->tid_retry_timeout_jiffies);
4783
4784                         wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
4785                         hfi1_trdma_send_complete(qp, wqe, IB_WC_RETRY_EXC_ERR);
4786                         rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
4787                 } else {
4788                         wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
4789                         req = wqe_to_tid_req(wqe);
4790                         trace_hfi1_tid_req_tid_retry_timeout(/* req */
4791                            qp, 0, wqe->wr.opcode, wqe->psn, wqe->lpsn, req);
4792
4793                         priv->s_flags &= ~RVT_S_WAIT_ACK;
4794                         /* Only send one packet (the RESYNC) */
4795                         priv->s_flags |= RVT_S_SEND_ONE;
4796                         /*
4797                          * No additional request shall be made by this QP until
4798                          * the RESYNC has been complete.
4799                          */
4800                         qp->s_flags |= HFI1_S_WAIT_HALT;
4801                         priv->s_state = TID_OP(RESYNC);
4802                         priv->s_retry--;
4803                         hfi1_schedule_tid_send(qp);
4804                 }
4805         }
4806         spin_unlock(&qp->s_lock);
4807         spin_unlock_irqrestore(&qp->r_lock, flags);
4808 }
4809
4810 u32 hfi1_build_tid_rdma_resync(struct rvt_qp *qp, struct rvt_swqe *wqe,
4811                                struct ib_other_headers *ohdr, u32 *bth1,
4812                                u32 *bth2, u16 fidx)
4813 {
4814         struct hfi1_qp_priv *qpriv = qp->priv;
4815         struct tid_rdma_params *remote;
4816         struct tid_rdma_request *req = wqe_to_tid_req(wqe);
4817         struct tid_rdma_flow *flow = &req->flows[fidx];
4818         u32 generation;
4819
4820         rcu_read_lock();
4821         remote = rcu_dereference(qpriv->tid_rdma.remote);
4822         KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth1, JKEY, remote->jkey);
4823         ohdr->u.tid_rdma.ack.verbs_qp = cpu_to_be32(qp->remote_qpn);
4824         *bth1 = remote->qp;
4825         rcu_read_unlock();
4826
4827         generation = kern_flow_generation_next(flow->flow_state.generation);
4828         *bth2 = mask_psn((generation << HFI1_KDETH_BTH_SEQ_SHIFT) - 1);
4829         qpriv->s_resync_psn = *bth2;
4830         *bth2 |= IB_BTH_REQ_ACK;
4831         KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth0, KVER, 0x1);
4832
4833         return sizeof(ohdr->u.tid_rdma.resync) / sizeof(u32);
4834 }
4835
4836 void hfi1_rc_rcv_tid_rdma_resync(struct hfi1_packet *packet)
4837 {
4838         struct ib_other_headers *ohdr = packet->ohdr;
4839         struct rvt_qp *qp = packet->qp;
4840         struct hfi1_qp_priv *qpriv = qp->priv;
4841         struct hfi1_ctxtdata *rcd = qpriv->rcd;
4842         struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
4843         struct rvt_ack_entry *e;
4844         struct tid_rdma_request *req;
4845         struct tid_rdma_flow *flow;
4846         struct tid_flow_state *fs = &qpriv->flow_state;
4847         u32 psn, generation, idx, gen_next;
4848         bool fecn;
4849         unsigned long flags;
4850
4851         fecn = process_ecn(qp, packet);
4852         psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
4853
4854         generation = mask_psn(psn + 1) >> HFI1_KDETH_BTH_SEQ_SHIFT;
4855         spin_lock_irqsave(&qp->s_lock, flags);
4856
4857         gen_next = (fs->generation == KERN_GENERATION_RESERVED) ?
4858                 generation : kern_flow_generation_next(fs->generation);
4859         /*
4860          * RESYNC packet contains the "next" generation and can only be
4861          * from the current or previous generations
4862          */
4863         if (generation != mask_generation(gen_next - 1) &&
4864             generation != gen_next)
4865                 goto bail;
4866         /* Already processing a resync */
4867         if (qpriv->resync)
4868                 goto bail;
4869
4870         spin_lock(&rcd->exp_lock);
4871         if (fs->index >= RXE_NUM_TID_FLOWS) {
4872                 /*
4873                  * If we don't have a flow, save the generation so it can be
4874                  * applied when a new flow is allocated
4875                  */
4876                 fs->generation = generation;
4877         } else {
4878                 /* Reprogram the QP flow with new generation */
4879                 rcd->flows[fs->index].generation = generation;
4880                 fs->generation = kern_setup_hw_flow(rcd, fs->index);
4881         }
4882         fs->psn = 0;
4883         /*
4884          * Disable SW PSN checking since a RESYNC is equivalent to a
4885          * sync point and the flow has/will be reprogrammed
4886          */
4887         qpriv->s_flags &= ~HFI1_R_TID_SW_PSN;
4888         trace_hfi1_tid_write_rsp_rcv_resync(qp);
4889
4890         /*
4891          * Reset all TID flow information with the new generation.
4892          * This is done for all requests and segments after the
4893          * last received segment
4894          */
4895         for (idx = qpriv->r_tid_tail; ; idx++) {
4896                 u16 flow_idx;
4897
4898                 if (idx > rvt_size_atomic(&dev->rdi))
4899                         idx = 0;
4900                 e = &qp->s_ack_queue[idx];
4901                 if (e->opcode == TID_OP(WRITE_REQ)) {
4902                         req = ack_to_tid_req(e);
4903                         trace_hfi1_tid_req_rcv_resync(qp, 0, e->opcode, e->psn,
4904                                                       e->lpsn, req);
4905
4906                         /* start from last unacked segment */
4907                         for (flow_idx = req->clear_tail;
4908                              CIRC_CNT(req->setup_head, flow_idx,
4909                                       MAX_FLOWS);
4910                              flow_idx = CIRC_NEXT(flow_idx, MAX_FLOWS)) {
4911                                 u32 lpsn;
4912                                 u32 next;
4913
4914                                 flow = &req->flows[flow_idx];
4915                                 lpsn = full_flow_psn(flow,
4916                                                      flow->flow_state.lpsn);
4917                                 next = flow->flow_state.r_next_psn;
4918                                 flow->npkts = delta_psn(lpsn, next - 1);
4919                                 flow->flow_state.generation = fs->generation;
4920                                 flow->flow_state.spsn = fs->psn;
4921                                 flow->flow_state.lpsn =
4922                                         flow->flow_state.spsn + flow->npkts - 1;
4923                                 flow->flow_state.r_next_psn =
4924                                         full_flow_psn(flow,
4925                                                       flow->flow_state.spsn);
4926                                 fs->psn += flow->npkts;
4927                                 trace_hfi1_tid_flow_rcv_resync(qp, flow_idx,
4928                                                                flow);
4929                         }
4930                 }
4931                 if (idx == qp->s_tail_ack_queue)
4932                         break;
4933         }
4934
4935         spin_unlock(&rcd->exp_lock);
4936         qpriv->resync = true;
4937         /* RESYNC request always gets a TID RDMA ACK. */
4938         qpriv->s_nak_state = 0;
4939         qpriv->s_flags |= RVT_S_ACK_PENDING;
4940         hfi1_schedule_tid_send(qp);
4941 bail:
4942         if (fecn)
4943                 qp->s_flags |= RVT_S_ECN;
4944         spin_unlock_irqrestore(&qp->s_lock, flags);
4945 }
4946
4947 /*
4948  * Call this function when the last TID RDMA WRITE DATA packet for a request
4949  * is built.
4950  */
4951 static void update_tid_tail(struct rvt_qp *qp)
4952         __must_hold(&qp->s_lock)
4953 {
4954         struct hfi1_qp_priv *priv = qp->priv;
4955         u32 i;
4956         struct rvt_swqe *wqe;
4957
4958         lockdep_assert_held(&qp->s_lock);
4959         /* Can't move beyond s_tid_cur */
4960         if (priv->s_tid_tail == priv->s_tid_cur)
4961                 return;
4962         for (i = priv->s_tid_tail + 1; ; i++) {
4963                 if (i == qp->s_size)
4964                         i = 0;
4965
4966                 if (i == priv->s_tid_cur)
4967                         break;
4968                 wqe = rvt_get_swqe_ptr(qp, i);
4969                 if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE)
4970                         break;
4971         }
4972         priv->s_tid_tail = i;
4973         priv->s_state = TID_OP(WRITE_RESP);
4974 }
4975
4976 int hfi1_make_tid_rdma_pkt(struct rvt_qp *qp, struct hfi1_pkt_state *ps)
4977         __must_hold(&qp->s_lock)
4978 {
4979         struct hfi1_qp_priv *priv = qp->priv;
4980         struct rvt_swqe *wqe;
4981         u32 bth1 = 0, bth2 = 0, hwords = 5, len, middle = 0;
4982         struct ib_other_headers *ohdr;
4983         struct rvt_sge_state *ss = &qp->s_sge;
4984         struct rvt_ack_entry *e = &qp->s_ack_queue[qp->s_tail_ack_queue];
4985         struct tid_rdma_request *req = ack_to_tid_req(e);
4986         bool last = false;
4987         u8 opcode = TID_OP(WRITE_DATA);
4988
4989         lockdep_assert_held(&qp->s_lock);
4990         trace_hfi1_tid_write_sender_make_tid_pkt(qp, 0);
4991         /*
4992          * Prioritize the sending of the requests and responses over the
4993          * sending of the TID RDMA data packets.
4994          */
4995         if (((atomic_read(&priv->n_tid_requests) < HFI1_TID_RDMA_WRITE_CNT) &&
4996              atomic_read(&priv->n_requests) &&
4997              !(qp->s_flags & (RVT_S_BUSY | RVT_S_WAIT_ACK |
4998                              HFI1_S_ANY_WAIT_IO))) ||
4999             (e->opcode == TID_OP(WRITE_REQ) && req->cur_seg < req->alloc_seg &&
5000              !(qp->s_flags & (RVT_S_BUSY | HFI1_S_ANY_WAIT_IO)))) {
5001                 struct iowait_work *iowork;
5002
5003                 iowork = iowait_get_ib_work(&priv->s_iowait);
5004                 ps->s_txreq = get_waiting_verbs_txreq(iowork);
5005                 if (ps->s_txreq || hfi1_make_rc_req(qp, ps)) {
5006                         priv->s_flags |= HFI1_S_TID_BUSY_SET;
5007                         return 1;
5008                 }
5009         }
5010
5011         ps->s_txreq = get_txreq(ps->dev, qp);
5012         if (!ps->s_txreq)
5013                 goto bail_no_tx;
5014
5015         ohdr = &ps->s_txreq->phdr.hdr.ibh.u.oth;
5016
5017         if ((priv->s_flags & RVT_S_ACK_PENDING) &&
5018             make_tid_rdma_ack(qp, ohdr, ps))
5019                 return 1;
5020
5021         /*
5022          * Bail out if we can't send data.
5023          * Be reminded that this check must been done after the call to
5024          * make_tid_rdma_ack() because the responding QP could be in
5025          * RTR state where it can send TID RDMA ACK, not TID RDMA WRITE DATA.
5026          */
5027         if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_SEND_OK))
5028                 goto bail;
5029
5030         if (priv->s_flags & RVT_S_WAIT_ACK)
5031                 goto bail;
5032
5033         /* Check whether there is anything to do. */
5034         if (priv->s_tid_tail == HFI1_QP_WQE_INVALID)
5035                 goto bail;
5036         wqe = rvt_get_swqe_ptr(qp, priv->s_tid_tail);
5037         req = wqe_to_tid_req(wqe);
5038         trace_hfi1_tid_req_make_tid_pkt(qp, 0, wqe->wr.opcode, wqe->psn,
5039                                         wqe->lpsn, req);
5040         switch (priv->s_state) {
5041         case TID_OP(WRITE_REQ):
5042         case TID_OP(WRITE_RESP):
5043                 priv->tid_ss.sge = wqe->sg_list[0];
5044                 priv->tid_ss.sg_list = wqe->sg_list + 1;
5045                 priv->tid_ss.num_sge = wqe->wr.num_sge;
5046                 priv->tid_ss.total_len = wqe->length;
5047
5048                 if (priv->s_state == TID_OP(WRITE_REQ))
5049                         hfi1_tid_rdma_restart_req(qp, wqe, &bth2);
5050                 priv->s_state = TID_OP(WRITE_DATA);
5051                 /* fall through */
5052
5053         case TID_OP(WRITE_DATA):
5054                 /*
5055                  * 1. Check whether TID RDMA WRITE RESP available.
5056                  * 2. If no:
5057                  *    2.1 If have more segments and no TID RDMA WRITE RESP,
5058                  *        set HFI1_S_WAIT_TID_RESP
5059                  *    2.2 Return indicating no progress made.
5060                  * 3. If yes:
5061                  *    3.1 Build TID RDMA WRITE DATA packet.
5062                  *    3.2 If last packet in segment:
5063                  *        3.2.1 Change KDETH header bits
5064                  *        3.2.2 Advance RESP pointers.
5065                  *    3.3 Return indicating progress made.
5066                  */
5067                 trace_hfi1_sender_make_tid_pkt(qp);
5068                 trace_hfi1_tid_write_sender_make_tid_pkt(qp, 0);
5069                 wqe = rvt_get_swqe_ptr(qp, priv->s_tid_tail);
5070                 req = wqe_to_tid_req(wqe);
5071                 len = wqe->length;
5072
5073                 if (!req->comp_seg || req->cur_seg == req->comp_seg)
5074                         goto bail;
5075
5076                 trace_hfi1_tid_req_make_tid_pkt(qp, 0, wqe->wr.opcode,
5077                                                 wqe->psn, wqe->lpsn, req);
5078                 last = hfi1_build_tid_rdma_packet(wqe, ohdr, &bth1, &bth2,
5079                                                   &len);
5080
5081                 if (last) {
5082                         /* move pointer to next flow */
5083                         req->clear_tail = CIRC_NEXT(req->clear_tail,
5084                                                     MAX_FLOWS);
5085                         if (++req->cur_seg < req->total_segs) {
5086                                 if (!CIRC_CNT(req->setup_head, req->clear_tail,
5087                                               MAX_FLOWS))
5088                                         qp->s_flags |= HFI1_S_WAIT_TID_RESP;
5089                         } else {
5090                                 priv->s_state = TID_OP(WRITE_DATA_LAST);
5091                                 opcode = TID_OP(WRITE_DATA_LAST);
5092
5093                                 /* Advance the s_tid_tail now */
5094                                 update_tid_tail(qp);
5095                         }
5096                 }
5097                 hwords += sizeof(ohdr->u.tid_rdma.w_data) / sizeof(u32);
5098                 ss = &priv->tid_ss;
5099                 break;
5100
5101         case TID_OP(RESYNC):
5102                 trace_hfi1_sender_make_tid_pkt(qp);
5103                 /* Use generation from the most recently received response */
5104                 wqe = rvt_get_swqe_ptr(qp, priv->s_tid_cur);
5105                 req = wqe_to_tid_req(wqe);
5106                 /* If no responses for this WQE look at the previous one */
5107                 if (!req->comp_seg) {
5108                         wqe = rvt_get_swqe_ptr(qp,
5109                                                (!priv->s_tid_cur ? qp->s_size :
5110                                                 priv->s_tid_cur) - 1);
5111                         req = wqe_to_tid_req(wqe);
5112                 }
5113                 hwords += hfi1_build_tid_rdma_resync(qp, wqe, ohdr, &bth1,
5114                                                      &bth2,
5115                                                      CIRC_PREV(req->setup_head,
5116                                                                MAX_FLOWS));
5117                 ss = NULL;
5118                 len = 0;
5119                 opcode = TID_OP(RESYNC);
5120                 break;
5121
5122         default:
5123                 goto bail;
5124         }
5125         if (priv->s_flags & RVT_S_SEND_ONE) {
5126                 priv->s_flags &= ~RVT_S_SEND_ONE;
5127                 priv->s_flags |= RVT_S_WAIT_ACK;
5128                 bth2 |= IB_BTH_REQ_ACK;
5129         }
5130         qp->s_len -= len;
5131         ps->s_txreq->hdr_dwords = hwords;
5132         ps->s_txreq->sde = priv->s_sde;
5133         ps->s_txreq->ss = ss;
5134         ps->s_txreq->s_cur_size = len;
5135         hfi1_make_ruc_header(qp, ohdr, (opcode << 24), bth1, bth2,
5136                              middle, ps);
5137         return 1;
5138 bail:
5139         hfi1_put_txreq(ps->s_txreq);
5140 bail_no_tx:
5141         ps->s_txreq = NULL;
5142         priv->s_flags &= ~RVT_S_BUSY;
5143         /*
5144          * If we didn't get a txreq, the QP will be woken up later to try
5145          * again, set the flags to the the wake up which work item to wake
5146          * up.
5147          * (A better algorithm should be found to do this and generalize the
5148          * sleep/wakeup flags.)
5149          */
5150         iowait_set_flag(&priv->s_iowait, IOWAIT_PENDING_TID);
5151         return 0;
5152 }
5153
5154 static int make_tid_rdma_ack(struct rvt_qp *qp,
5155                              struct ib_other_headers *ohdr,
5156                              struct hfi1_pkt_state *ps)
5157 {
5158         struct rvt_ack_entry *e;
5159         struct hfi1_qp_priv *qpriv = qp->priv;
5160         struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
5161         u32 hwords, next;
5162         u32 len = 0;
5163         u32 bth1 = 0, bth2 = 0;
5164         int middle = 0;
5165         u16 flow;
5166         struct tid_rdma_request *req, *nreq;
5167
5168         trace_hfi1_tid_write_rsp_make_tid_ack(qp);
5169         /* Don't send an ACK if we aren't supposed to. */
5170         if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK))
5171                 goto bail;
5172
5173         /* header size in 32-bit words LRH+BTH = (8+12)/4. */
5174         hwords = 5;
5175
5176         e = &qp->s_ack_queue[qpriv->r_tid_ack];
5177         req = ack_to_tid_req(e);
5178         /*
5179          * In the RESYNC case, we are exactly one segment past the
5180          * previously sent ack or at the previously sent NAK. So to send
5181          * the resync ack, we go back one segment (which might be part of
5182          * the previous request) and let the do-while loop execute again.
5183          * The advantage of executing the do-while loop is that any data
5184          * received after the previous ack is automatically acked in the
5185          * RESYNC ack. It turns out that for the do-while loop we only need
5186          * to pull back qpriv->r_tid_ack, not the segment
5187          * indices/counters. The scheme works even if the previous request
5188          * was not a TID WRITE request.
5189          */
5190         if (qpriv->resync) {
5191                 if (!req->ack_seg || req->ack_seg == req->total_segs)
5192                         qpriv->r_tid_ack = !qpriv->r_tid_ack ?
5193                                 rvt_size_atomic(&dev->rdi) :
5194                                 qpriv->r_tid_ack - 1;
5195                 e = &qp->s_ack_queue[qpriv->r_tid_ack];
5196                 req = ack_to_tid_req(e);
5197         }
5198
5199         trace_hfi1_rsp_make_tid_ack(qp, e->psn);
5200         trace_hfi1_tid_req_make_tid_ack(qp, 0, e->opcode, e->psn, e->lpsn,
5201                                         req);
5202         /*
5203          * If we've sent all the ACKs that we can, we are done
5204          * until we get more segments...
5205          */
5206         if (!qpriv->s_nak_state && !qpriv->resync &&
5207             req->ack_seg == req->comp_seg)
5208                 goto bail;
5209
5210         do {
5211                 /*
5212                  * To deal with coalesced ACKs, the acked_tail pointer
5213                  * into the flow array is used. The distance between it
5214                  * and the clear_tail is the number of flows that are
5215                  * being ACK'ed.
5216                  */
5217                 req->ack_seg +=
5218                         /* Get up-to-date value */
5219                         CIRC_CNT(req->clear_tail, req->acked_tail,
5220                                  MAX_FLOWS);
5221                 /* Advance acked index */
5222                 req->acked_tail = req->clear_tail;
5223
5224                 /*
5225                  * req->clear_tail points to the segment currently being
5226                  * received. So, when sending an ACK, the previous
5227                  * segment is being ACK'ed.
5228                  */
5229                 flow = CIRC_PREV(req->acked_tail, MAX_FLOWS);
5230                 if (req->ack_seg != req->total_segs)
5231                         break;
5232                 req->state = TID_REQUEST_COMPLETE;
5233
5234                 next = qpriv->r_tid_ack + 1;
5235                 if (next > rvt_size_atomic(&dev->rdi))
5236                         next = 0;
5237                 qpriv->r_tid_ack = next;
5238                 if (qp->s_ack_queue[next].opcode != TID_OP(WRITE_REQ))
5239                         break;
5240                 nreq = ack_to_tid_req(&qp->s_ack_queue[next]);
5241                 if (!nreq->comp_seg || nreq->ack_seg == nreq->comp_seg)
5242                         break;
5243
5244                 /* Move to the next ack entry now */
5245                 e = &qp->s_ack_queue[qpriv->r_tid_ack];
5246                 req = ack_to_tid_req(e);
5247         } while (1);
5248
5249         /*
5250          * At this point qpriv->r_tid_ack == qpriv->r_tid_tail but e and
5251          * req could be pointing at the previous ack queue entry
5252          */
5253         if (qpriv->s_nak_state ||
5254             (qpriv->resync &&
5255              !hfi1_tid_rdma_is_resync_psn(qpriv->r_next_psn_kdeth - 1) &&
5256              (cmp_psn(qpriv->r_next_psn_kdeth - 1,
5257                       full_flow_psn(&req->flows[flow],
5258                                     req->flows[flow].flow_state.lpsn)) > 0))) {
5259                 /*
5260                  * A NAK will implicitly acknowledge all previous TID RDMA
5261                  * requests. Therefore, we NAK with the req->acked_tail
5262                  * segment for the request at qpriv->r_tid_ack (same at
5263                  * this point as the req->clear_tail segment for the
5264                  * qpriv->r_tid_tail request)
5265                  */
5266                 e = &qp->s_ack_queue[qpriv->r_tid_ack];
5267                 req = ack_to_tid_req(e);
5268                 flow = req->acked_tail;
5269         } else if (req->ack_seg == req->total_segs &&
5270                    qpriv->s_flags & HFI1_R_TID_WAIT_INTERLCK)
5271                 qpriv->s_flags &= ~HFI1_R_TID_WAIT_INTERLCK;
5272
5273         trace_hfi1_tid_write_rsp_make_tid_ack(qp);
5274         trace_hfi1_tid_req_make_tid_ack(qp, 0, e->opcode, e->psn, e->lpsn,
5275                                         req);
5276         hwords += hfi1_build_tid_rdma_write_ack(qp, e, ohdr, flow, &bth1,
5277                                                 &bth2);
5278         len = 0;
5279         qpriv->s_flags &= ~RVT_S_ACK_PENDING;
5280         ps->s_txreq->hdr_dwords = hwords;
5281         ps->s_txreq->sde = qpriv->s_sde;
5282         ps->s_txreq->s_cur_size = len;
5283         ps->s_txreq->ss = NULL;
5284         hfi1_make_ruc_header(qp, ohdr, (TID_OP(ACK) << 24), bth1, bth2, middle,
5285                              ps);
5286         ps->s_txreq->txreq.flags |= SDMA_TXREQ_F_VIP;
5287         return 1;
5288 bail:
5289         /*
5290          * Ensure s_rdma_ack_cnt changes are committed prior to resetting
5291          * RVT_S_RESP_PENDING
5292          */
5293         smp_wmb();
5294         qpriv->s_flags &= ~RVT_S_ACK_PENDING;
5295         return 0;
5296 }
5297
5298 static int hfi1_send_tid_ok(struct rvt_qp *qp)
5299 {
5300         struct hfi1_qp_priv *priv = qp->priv;
5301
5302         return !(priv->s_flags & RVT_S_BUSY ||
5303                  qp->s_flags & HFI1_S_ANY_WAIT_IO) &&
5304                 (verbs_txreq_queued(iowait_get_tid_work(&priv->s_iowait)) ||
5305                  (priv->s_flags & RVT_S_RESP_PENDING) ||
5306                  !(qp->s_flags & HFI1_S_ANY_TID_WAIT_SEND));
5307 }
5308
5309 void _hfi1_do_tid_send(struct work_struct *work)
5310 {
5311         struct iowait_work *w = container_of(work, struct iowait_work, iowork);
5312         struct rvt_qp *qp = iowait_to_qp(w->iow);
5313
5314         hfi1_do_tid_send(qp);
5315 }
5316
5317 static void hfi1_do_tid_send(struct rvt_qp *qp)
5318 {
5319         struct hfi1_pkt_state ps;
5320         struct hfi1_qp_priv *priv = qp->priv;
5321
5322         ps.dev = to_idev(qp->ibqp.device);
5323         ps.ibp = to_iport(qp->ibqp.device, qp->port_num);
5324         ps.ppd = ppd_from_ibp(ps.ibp);
5325         ps.wait = iowait_get_tid_work(&priv->s_iowait);
5326         ps.in_thread = false;
5327         ps.timeout_int = qp->timeout_jiffies / 8;
5328
5329         trace_hfi1_rc_do_tid_send(qp, false);
5330         spin_lock_irqsave(&qp->s_lock, ps.flags);
5331
5332         /* Return if we are already busy processing a work request. */
5333         if (!hfi1_send_tid_ok(qp)) {
5334                 if (qp->s_flags & HFI1_S_ANY_WAIT_IO)
5335                         iowait_set_flag(&priv->s_iowait, IOWAIT_PENDING_TID);
5336                 spin_unlock_irqrestore(&qp->s_lock, ps.flags);
5337                 return;
5338         }
5339
5340         priv->s_flags |= RVT_S_BUSY;
5341
5342         ps.timeout = jiffies + ps.timeout_int;
5343         ps.cpu = priv->s_sde ? priv->s_sde->cpu :
5344                 cpumask_first(cpumask_of_node(ps.ppd->dd->node));
5345         ps.pkts_sent = false;
5346
5347         /* insure a pre-built packet is handled  */
5348         ps.s_txreq = get_waiting_verbs_txreq(ps.wait);
5349         do {
5350                 /* Check for a constructed packet to be sent. */
5351                 if (ps.s_txreq) {
5352                         if (priv->s_flags & HFI1_S_TID_BUSY_SET) {
5353                                 qp->s_flags |= RVT_S_BUSY;
5354                                 ps.wait = iowait_get_ib_work(&priv->s_iowait);
5355                         }
5356                         spin_unlock_irqrestore(&qp->s_lock, ps.flags);
5357
5358                         /*
5359                          * If the packet cannot be sent now, return and
5360                          * the send tasklet will be woken up later.
5361                          */
5362                         if (hfi1_verbs_send(qp, &ps))
5363                                 return;
5364
5365                         /* allow other tasks to run */
5366                         if (hfi1_schedule_send_yield(qp, &ps, true))
5367                                 return;
5368
5369                         spin_lock_irqsave(&qp->s_lock, ps.flags);
5370                         if (priv->s_flags & HFI1_S_TID_BUSY_SET) {
5371                                 qp->s_flags &= ~RVT_S_BUSY;
5372                                 priv->s_flags &= ~HFI1_S_TID_BUSY_SET;
5373                                 ps.wait = iowait_get_tid_work(&priv->s_iowait);
5374                                 if (iowait_flag_set(&priv->s_iowait,
5375                                                     IOWAIT_PENDING_IB))
5376                                         hfi1_schedule_send(qp);
5377                         }
5378                 }
5379         } while (hfi1_make_tid_rdma_pkt(qp, &ps));
5380         iowait_starve_clear(ps.pkts_sent, &priv->s_iowait);
5381         spin_unlock_irqrestore(&qp->s_lock, ps.flags);
5382 }
5383
5384 static bool _hfi1_schedule_tid_send(struct rvt_qp *qp)
5385 {
5386         struct hfi1_qp_priv *priv = qp->priv;
5387         struct hfi1_ibport *ibp =
5388                 to_iport(qp->ibqp.device, qp->port_num);
5389         struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
5390         struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
5391
5392         return iowait_tid_schedule(&priv->s_iowait, ppd->hfi1_wq,
5393                                    priv->s_sde ?
5394                                    priv->s_sde->cpu :
5395                                    cpumask_first(cpumask_of_node(dd->node)));
5396 }
5397
5398 /**
5399  * hfi1_schedule_tid_send - schedule progress on TID RDMA state machine
5400  * @qp: the QP
5401  *
5402  * This schedules qp progress on the TID RDMA state machine. Caller
5403  * should hold the s_lock.
5404  * Unlike hfi1_schedule_send(), this cannot use hfi1_send_ok() because
5405  * the two state machines can step on each other with respect to the
5406  * RVT_S_BUSY flag.
5407  * Therefore, a modified test is used.
5408  * @return true if the second leg is scheduled;
5409  *  false if the second leg is not scheduled.
5410  */
5411 bool hfi1_schedule_tid_send(struct rvt_qp *qp)
5412 {
5413         lockdep_assert_held(&qp->s_lock);
5414         if (hfi1_send_tid_ok(qp)) {
5415                 /*
5416                  * The following call returns true if the qp is not on the
5417                  * queue and false if the qp is already on the queue before
5418                  * this call. Either way, the qp will be on the queue when the
5419                  * call returns.
5420                  */
5421                 _hfi1_schedule_tid_send(qp);
5422                 return true;
5423         }
5424         if (qp->s_flags & HFI1_S_ANY_WAIT_IO)
5425                 iowait_set_flag(&((struct hfi1_qp_priv *)qp->priv)->s_iowait,
5426                                 IOWAIT_PENDING_TID);
5427         return false;
5428 }
5429
5430 bool hfi1_tid_rdma_ack_interlock(struct rvt_qp *qp, struct rvt_ack_entry *e)
5431 {
5432         struct rvt_ack_entry *prev;
5433         struct tid_rdma_request *req;
5434         struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
5435         struct hfi1_qp_priv *priv = qp->priv;
5436         u32 s_prev;
5437
5438         s_prev = qp->s_tail_ack_queue == 0 ? rvt_size_atomic(&dev->rdi) :
5439                 (qp->s_tail_ack_queue - 1);
5440         prev = &qp->s_ack_queue[s_prev];
5441
5442         if ((e->opcode == TID_OP(READ_REQ) ||
5443              e->opcode == OP(RDMA_READ_REQUEST)) &&
5444             prev->opcode == TID_OP(WRITE_REQ)) {
5445                 req = ack_to_tid_req(prev);
5446                 if (req->ack_seg != req->total_segs) {
5447                         priv->s_flags |= HFI1_R_TID_WAIT_INTERLCK;
5448                         return true;
5449                 }
5450         }
5451         return false;
5452 }
5453
5454 static u32 read_r_next_psn(struct hfi1_devdata *dd, u8 ctxt, u8 fidx)
5455 {
5456         u64 reg;
5457
5458         /*
5459          * The only sane way to get the amount of
5460          * progress is to read the HW flow state.
5461          */
5462         reg = read_uctxt_csr(dd, ctxt, RCV_TID_FLOW_TABLE + (8 * fidx));
5463         return mask_psn(reg);
5464 }
5465
5466 static void tid_rdma_rcv_err(struct hfi1_packet *packet,
5467                              struct ib_other_headers *ohdr,
5468                              struct rvt_qp *qp, u32 psn, int diff, bool fecn)
5469 {
5470         unsigned long flags;
5471
5472         tid_rdma_rcv_error(packet, ohdr, qp, psn, diff);
5473         if (fecn) {
5474                 spin_lock_irqsave(&qp->s_lock, flags);
5475                 qp->s_flags |= RVT_S_ECN;
5476                 spin_unlock_irqrestore(&qp->s_lock, flags);
5477         }
5478 }
5479
5480 static void update_r_next_psn_fecn(struct hfi1_packet *packet,
5481                                    struct hfi1_qp_priv *priv,
5482                                    struct hfi1_ctxtdata *rcd,
5483                                    struct tid_rdma_flow *flow,
5484                                    bool fecn)
5485 {
5486         /*
5487          * If a start/middle packet is delivered here due to
5488          * RSM rule and FECN, we need to update the r_next_psn.
5489          */
5490         if (fecn && packet->etype == RHF_RCV_TYPE_EAGER &&
5491             !(priv->s_flags & HFI1_R_TID_SW_PSN)) {
5492                 struct hfi1_devdata *dd = rcd->dd;
5493
5494                 flow->flow_state.r_next_psn =
5495                         read_r_next_psn(dd, rcd->ctxt, flow->idx);
5496         }
5497 }